
Probabilistic Extensions

of Semantical Models

Jerry den Hartog

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301667825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2002 Jerry den Hartog

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).

VRIJE UNIVERSITEIT

Probabilistic Extensions

of Semantical Models

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op donderdag 17 oktober 2002 om 13.45 uur

in het auditorium van de universiteit,
De Boelelaan 1105

door

Jeremy Ian den Hartog

geboren te Amsterdam

promotor: prof.dr. J.W. de Bakker
copromotoren: dr. E.P. de Vink

dr. J.J.M.M. Rutten

Acknowledgments

The path towards the completion of a thesis is a long one, and many have helped me
along this path.

I would like to take this opportunity to mention some of them. I would particularly
like to thank Jaco de Bakker, Jan Rutten and Erik de Vink for the extensive attention
they paid to this thesis, including much-needed proof reading. I am also grateful to the
reading committee members for evaluating this thesis and for their valuable comments,
and Mirna Bognar and Michel Oey for acting as Paranyphms.

I took my first steps into the world of scientific research at the Vrije Universiteit under
the guidance of Erik de Vink and the watchful eye of Jaco de Bakker. With catching
enthusiasm Erik introduced me to the world of Φ’s and Ψ’s: The world of writing papers
on comparative metric semantics. Erik is one of those rare people who are able to combine
a relaxed atmosphere with a great dedication to doing high quality research. Erik, it
always was, and still is a pleasure to work with you.

My roommate Mirna Bognar provided many hours of fruitful, and fruitless but still
enjoyable discussion. It is very nice to have someone on the same path that you can
talk to and share your triumphs and complaints with. Regularly Michel Oey and Gerard
Kok dropped in to add to the fun, not to mention some applied probability theory and
psychology during our breaks. At lunch time we often joined up with Stefan Blom, Frank
Dehne and Frank Niessink. Stefan and I regularly cut the lunch short to join up with
Evert Wattel, Perry Groot, Martijn Bot and anyone else we could find for a quick hand
of bridge. Thank you all for making my time at the VU so much fun.

I found in-depth knowledge of the research field as well as a source of feedback on
my own ideas in the members of the Amsterdam Concurrency Group (ACG) during
our regular meetings. The schools and conferences of the research school IPA also helped
increase my knowledge of the area of formal methods. A more specific forum for discussing
research on probabilistic systems was provided by the PROMISE (PRobabilistic Methods
In Software Engineering) colloquium, a cooperation set up with researchers working on
probability at several Dutch research institutes. The members of the PROMACS-project
(Probabilistic Methods for the Analysis of Continuous Systems) kept me up to date on
all of their work at the project meetings.

Over time, I migrated from the VU to the Center for Mathematics and Computer
Science (CWI). Here, Jan Rutten took over part of the supervising duties. During this
period, I had the pleasure of sharing rooms with Marcello Bonsangue, Alexandru Baltag,
Kees Everaars and Peter Zoeteweij. Many a tea break was again spent with Stefan Blom,
talking mainly about computer hardware. Finally, I moved to the Formal Methods group

i

ii

at the Technische Universiteit Eindhoven (TU/e). I look forward to spending more time
there. I would like to thank my colleges at VU, CWI and TU/e for creating a pleasant
working environment over the years.

Luckily I also had family and friends to remind me that there is more to life than
work alone. My mother Miny Hulst is an never ending source of energy, support, energy,
fun and energy. Her energy is not limited to work. Many a Sunday she had me trying
to keep up biking, ice-skating or rollerblading or playing tennis or squash. My sister
Deanne den Hartog provided inspirational leadership by example, by preceding me first
as a student and then as PhD-candidate at the VU. She also provided refreshing different
interpretations of mathematical proofs. Together with Robert Verburg she occasionally
dragged me from behind my terminal to visit the theme parks of Europe and the white
slopes of “Washington, Tirol” or other famous skiing destinations. With my father Niek
den Hartog I had many very philosophical deliberations, while he helped me on very
practical jobs and problems. My bi-continental family was there in thought and always
made me feel at home whenever I did manage to visit.

Fortunately, my opinion that chasing after a little, hardly bouncing ball is fun, was
luckily shared by Ronald Starink and we got together for many intensive squash work-
outs. During our time spent on our shared hobby of stripping and rebuilding computers,
Stefan Blom proved to be a source for everything you want to know about computers but
did not even know how to ask...

Contents

1 Introduction 1

1.1 Semantic modeling . 2
1.2 Probabilistic extensions of semantical models 4
1.3 Related approaches . 10

2 Mathematical preliminaries 13

2.1 Metric spaces . 13
2.2 Category theory and domain equations . 17

3 Modeling probabilistic choice 23

3.1 Introduction . 23
3.2 Mathematical preliminaries . 26

3.2.1 Finite multisets . 26
3.3 The syntax and operational semantics of Lp 28

3.3.1 The syntax of the language Lp . 29
3.3.2 Transition system specification . 30
3.3.3 The transition system Tp . 32
3.3.4 The operational domain; the functor Meas 36
3.3.5 Operational semantics: The function O 41

3.4 The denotational semantics of Lp . 43
3.4.1 Multisets over metric spaces: The functor MPf 44
3.4.2 A branching probabilistic domain: Pd 47
3.4.3 The denotational model D . 49

3.5 Comparing O and D . 51
3.6 Conclusions and bibliographical remarks 54

4 Combining 2 and ⊕ρ 59

4.1 Introduction . 59
4.2 Priority for nondeterminism . 63

4.2.1 The syntax of the language Lpnd 64
4.2.2 A transition system with priority for 2: Tpnd 66
4.2.3 Properties of the transition system 72
4.2.4 The operational semantics O . 76
4.2.5 Denotational semantics . 82

iii

iv CONTENTS

4.2.6 Comparing the operational and denotational semantics 86
4.3 Priority for probability . 95

4.3.1 A transition system with priority for ⊕ρ: T
(2)

pnd 97

4.3.2 Properties of the transition system T
(2)

pnd 102

4.3.3 Operational semantics . 105
4.3.4 Denotational semantics . 108
4.3.5 Comparing O and D . 114
4.3.6 Linearizing the operational domain Po 118

4.4 Combining ⊕ρ and 2 without priorities 124

4.4.1 The language L
(3a)

pnd : choice, chance and failure 126

4.4.2 The transition system T
(3a)

pnd . 128

4.4.3 Properties of the transition system T
(3a)

pnd 130

4.4.4 The operational semantics O . 131

4.4.5 Bisimulation for L
(3a)

pnd : First step bisimulation 138

4.4.6 Congruence results for first step bisimulation 147

4.4.7 The language L
(3b)

pnd: Adding parallel composition 151

4.4.8 Bisimulation for L
(3b)

pnd . 157

4.5 Conclusions and bibliographical remarks 160

5 Action Refinement 165

5.1 Introduction . 165
5.2 An interleaving model for action refinement 168

5.2.1 Syntax and operational semantics 169
5.2.2 Semantical refinements and denotational semantics 176
5.2.3 Correctness and full abstractness of D 183

5.3 Action refinement and probabilistic choice 191
5.3.1 Syntax and operational semantics of Lpr 192
5.3.2 Denotational semantics . 199
5.3.3 Correctness . 203
5.3.4 Full abstractness . 205

5.4 Conclusions and bibliographical remarks 208

6 A probabilistic Hoare-style logic 211

6.1 Introduction . 211
6.2 Mathematical preliminaries . 212
6.3 Syntax and semantics of Lpif . 213
6.4 Probabilistic predicates and Hoare logic 219
6.5 Weakest preconditions and completeness 227
6.6 Extending Lpif: Adding iteration . 232

6.6.1 Two example programs . 236
6.7 Another extension of Lpif: Adding nondeterminism 239

6.7.1 The syntax and semantics of the language Lpnif 240
6.7.2 A Hoare-style logic for Lpnif . 248

CONTENTS v

6.7.3 Weakest preconditions and completeness 253
6.7.4 An example: Three doors revisited 258

6.8 Conclusions and bibliographical remarks 262

7 Continuous Probability 265

7.1 Introduction . 265
7.2 Mathematical preliminaries . 266
7.3 The language Lc with random assignment 270

7.3.1 Examples . 273
7.3.2 The transition system Tc . 275
7.3.3 Properties of the transition system 279
7.3.4 The operational domain and the operational semantics 282

7.4 Conclusions and bibliographical remarks 286

vi CONTENTS

Chapter 1

Introduction

The rapidly increasing complexity of computer systems and computer programs, makes
the design of correct and secure programs a challenge. This does not only apply to general
purpose computers and their programs. Hardware for specific purposes and embedded
systems range in complexity from simple collections of switches to complex dynamically
changing networks such as a mobile phone network or an air-traffic control system. The
complexity of the latter systems has reached a point where no one can comprehend the
system in its entirety and traditional programming approaches fail [87] while correctness
of the system is critical. Criteria for the correctness of the behavior of a system are
the absence of certain unwanted events (safety properties) and a guaranteed performance
(performance and liveness properties). An increasingly important correctness criterion
is the protection of the information within a system (security properties). Several de-
sign methods have emerged to aid in meeting the challenge of creating and maintaining
systems. At first, guidelines to structured programming were developed. Then complete
programming paradigms such as object-oriented, functional and logical programming were
employed. Another step in the battle of designing correct software is the use of formal
methods. Formal methods combine a precise mathematical modeling of the semantics of
systems with formal reasoning. The use of formal methods aids in making precise and
understanding the specification of a system, and formal methods can be used to verify
properties of the implementation of a system. Some examples of methods used for spec-
ification and verification are process algebras, model checking and theorem proving and
logics developed to reason about program properties such as Hoare logic and dynamic
logic. The use of formal methods does not necessarily guarantee correctness but it does
help in finding errors early on and it can nearly eliminate some classes of errors [101].

This thesis deals with probabilistic extensions of semantical models. The work re-
ported concentrates mainly on the semantical modeling of probabilistic choice. Further-
more, specification of probabilistic properties and logical reasoning is studied as well
but to a lesser extent. A question that can be asked is: “Why is probability included
in semantical modeling, computers are not random, are they?”. The easiest answer to
this question is that many programming languages contain an operation or system call
‘random’, that can introduce random behavior into the computation. (Even though the
numbers generated by ‘random’ are usually pseudo-random numbers, it is conceptually a

1

2 CHAPTER 1. INTRODUCTION

probabilistic choice.) There are, however, more causes for probabilistic behavior of com-
puter systems. For example, for a faulty communication channel the error-rate provides
stochastic information on the likelihood to have packages delivered without corruption
along the channel.

Probability plays an important role in many algorithms. Randomized algorithms can
be used to solve programs more efficiently. For example, the sorting algorithm quicksort
is probabilistic and also one of the best of the known primality testing algorithms is prob-
abilistic [156]. In some settings randomization can even be used to solve problems for
which no deterministic solution exists. Self-stabilizing token rings are early examples of
the use of probabilistic protocols (see e.g. [116]). Other examples of issues that can be
addressed using probabilistic choice are fairness concerns, breaking of symmetry between
identical parallel components and finding safe or optimal strategies in a known strat-
egy game. Probability is also used to design algorithms to solve optimization problems,
e.g. for efficient searching. Evolutionary computing (see e.g. [17, 16]) is also inherently
probabilistic. (See e.g. [164, 5, 156] for more on randomized algorithms.) Thus probability
in the semantical model of a system can be used to express behavior of systems which is
inherently probabilistic or only approximately known.

1.1 Semantic modeling

As mentioned above, this thesis concentrates mainly on the semantical modeling of prob-
abilistic choice. The main goal is to add probability to existing semantical models and to
study the interplay of probability with other concepts. To this end several languages that
are used to specify programs, or more generally systems, are introduced: First a basic
language with sequential composition, recursion and probabilistic choice is studied. Then
several extensions of this basic setting with probability are treated. The main concepts
that are combined with probabilistic choice are nondeterminism, concurrency and action
refinement. Another extension that is considered allows a probabilistic choice to be made
between infinitely many options in a single step.

The study of the control flow aspects of the programs is the main goal of this work.
As such the actual data used and the basic computational steps are of less concern and
therefore in most cases abstracted away from in the languages at hand. Schematic or
process description languages are used in which the basic steps of the computation are
described by atomic actions which are left without further interpretation in the modeling.

The semantic modeling is mostly done in a metric setting, i.e. the mathematical do-
mains used to express the meaning of programs have a metric structure. The presence
of recursion in the languages introduces the possibility of infinite behavior. One of the
major advantages of using the metric setting is that it helps in dealing with the issues
caused by this possibility.

Two main approaches are distinguished in giving the semantics of a program resulting
in two, possibly different semantics. The first approach captures the computational intu-
ition of a program. The behavior that can be observed for a machine running the program
is central in this approach. A virtual machine that runs the program is described by a
transition system which gives the possible transitions for each possible state. Each pro-
gram has a corresponding state in the transition system, and the possible behavior when

1.1. SEMANTIC MODELING 3

running the program can be found by looking at all transitions possible for this state and
again for the resulting states. In this way a tree of possible steps is obtained referred to as
the transition tree for the program. From the transition tree the observable behavior for a
program is obtained by removing information that cannot be seen by someone observing
the machine. The model that specifies the meaning of a program in this way is called the
operational semantics.

The semantical model of a program is used to verify properties of a program. Model
checking, for example, is a method that is often used to check properties of a program by
looking at all transitions for the program as given by the transition system. The largest
problem in model checking is that of the state space explosion. The number of states in-
volved can grow very vast if the complexity of a program increases. To address this issue
one can try split the verification of a large program into verification of properties of parts
of the program. To aid in doing this, the denotational semantics gives the meaning of pro-
grams in a compositional way. In the denotational approach the structure of the program
is central in giving the semantics instead of the computational intuition. If, for example,
a program consists of a probabilistic choice between two subprograms, the meaning of the
program should be a combination of the meanings of these two subprograms. For this to
be made precise one needs to specify how to combine the meanings of two subprograms
to obtain the meaning of the program consisting of the probabilistic choice between these
subprograms. To this end a domain of all possible meanings is formed. The elements of
this domain are called denotations (hence the name denotational semantics) or processes.
An operation on this domain which composes two processes into another process then
specifies how meanings of subprograms are combined. In this way, finding the meaning of
a program is reduced to finding the denotations for all basic components of the program
and giving the operations which compose these denotations.

For this approach of composing meanings to work, clearly it must be possible to com-
pose processes: If two programs that have the same meaning are both combined with
a third program then for both cases the meaning of the resulting program will be the
same. As the operational semantics is not always compositional this shows that the de-
notational semantics cannot always be the same as the operational semantics. In general,
the denotational semantics will have to maintain extra information about a program in
its meaning to be able to compose programs. In case extra information does need to be
added, an abstraction function is given to be able to recover the operational meaning of a
program from the process yielded by the denotational semantics. (In chapter 5, the issue
of full abstractness is also addressed. Full abstractness of a denotational model basically
states that this model is the best one possible; only information that is really needed to
make the model compositional is added.)

The motivation for introducing the denotational approach is to deal with the increasing
complexity of larger programs. Using the denotational meaning of a program, verification
of a program can be split into verification for subprograms of the program (for suitable
properties).

In the metric approach, the domain of processes has a metric structure. This structure
helps in reasoning about infinite processes, in the definition of the operations on the
domain as well as in the comparison of the operational semantics and the denotational
semantics.

4 CHAPTER 1. INTRODUCTION

As mentioned above, specification of probabilistic properties and logical reasoning is also
treated in this thesis. In this setting properties of a program that one wants to check are
expressed using formulae in a suitable logical specification language. To check that these
properties are satisfied one can use methods based on the semantics of the programs, such
as model checking. One can also reason about programs directly without calculating the
semantics. The use of Hoare logic falls in the latter category. Hoare triples consist of a
precondition and a postcondition both expressed in some logical specification language
together with a program. Hoare logic provides a deduction system to obtain correctness
of such triples. In this thesis a Hoare-style logic to reason about probabilistic programs
is given.

1.2 Probabilistic extensions of semantical models:

Overview, main contributions and chapter depen-

dencies.

In this section an overview of the results presented in this thesis is given. The mathe-
matical preliminaries in chapter 2 below recall some known definitions and results used
in later chapters. No new work is presented there.

In chapter 3 the modeling of probabilistic choice itself is the central theme. This chapter
provides both a technical and a conceptual basis for all further chapters. Probabilistic
choice is introduced into a schematic language Lp by adding a binary operator for prob-
abilistic choice, denoted ⊕ρ. The program ‘heads ⊕ 1

2
tails’, for example, can be used to

describe the tossing of a fair coin. A probabilistic choice with more than two but still
finitely many options can be expressed by repeated uses of the operator ⊕ρ (possibly for
different values of ρ).

To find the operational meaning of programs in the language Lp the notion of transi-
tion system is extended to a notion of probabilistic transition system. A minor technical
complication with probabilistic transitions is that multiple occurrences of the same transi-
tion should not be identified. The extension of transition systems introduced in chapter 3
deals with this complication in a relatively transparent manner.

The transition system specifies the possible transitions in each step. A program is
executed by choosing, in each step, one of the possible transitions at that stage. Each
transition can have some observable effect, together forming the observable behavior for
this single execution of the program. A property of the behavior of a program that one
can observe is called an observable event. For a single execution of a program one can,
thus, check whether or not an observable event is produced. For a probabilistic program,
however, an event may occur in some executions of the program but not in others. The
operational meaning of a probabilistic program is described by giving, for each observable
event, the probability that an execution of the program will produce this event. Measures
are the mathematical structures used in probability theory to assign a probability to all
events. In chapter 3 the notion of a compact support measure is introduced. The compact
support measures are a subclass of the measures, suitable for modeling the observable
behavior of programs.

1.2. PROBABILISTIC EXTENSIONS OF SEMANTICAL MODELS 5

A denotational semantics for the language Lp with probabilistic choice is also given
in chapter 3. In the denotations or processes describing the meaning of programs, the
probabilities for choices made in each step are given instead of the probabilities of all
observable events. Instead of using measures, the collection of options together with their
probabilities are used to model a step. As multiple occurrences cannot be identified, a
multiset is used to describe this collection. To be able to use the metric techniques in this
setting, a distance between finite multisets is defined.

The main technical contributions of chapter 3 are the introduction of a method of
specifying probabilistic transition systems, the definition of the functor to construct the
metric space of all finite multisets over a given metric space and a new characterization
of the distance on the space of compact support measures.

In chapter 4 the modeling techniques for probabilistic choice developed in chapter 3 are
used to study the interplay of nondeterministic choice and concurrency with probabilistic
choice. In general a program is called nondeterministic if there is more than one possible
flow of control in the execution of the program. A nondeterministic choice introduces
nondeterminism by allowing a choice between execution of different subprograms. Here
nondeterministic choice is seen as some choice made in an unspecified manner. In chapter 4
an operator, denoted 2, for nondeterministic choice is introduced into the language.

Concurrency is one cause of nondeterministic behavior. An interleaving interpretation
of concurrency is used in this thesis: Each step produced by a program consisting of
several components running in parallel is produced by one of the component programs, or
possibly by communication between parallel components. Any of the components running
in parallel may produce the next step. Many factors that one does not want to model
or may not even be able to model, influence which component produces the next step.
The selection of the process which produces the next step is therefore modeled as a choice
made in some unspecified manner, i.e. a form of nondeterministic choice.

Nondeterministic choice can also be used to express many other different aspects of
a system besides concurrency. For example, user interaction and underspecification can
also be expressed through nondeterministic choice. The different uses of nondeterministic
choice lead to different interpretations of the operator 2. Already without the presence of
probability, the different interpretations of the operator 2 lead to different models. With
the addition of probabilistic choice the influence of the interpretation of nondeterministic
choice becomes even larger. Interpretations that could be modeled in the same manner
in a setting without probabilistic choice now need to be distinguished.

In chapter 4 three main classes of interpretations of nondeterministic choice will be
considered, with priority for nondeterminism, with priority for probabilistic choice or
without priorities. In section 4.2 the nondeterministic choices are always made before
probabilistic choices in finding the next step of a system. This approach, referred to as
giving priority to the nondeterminism, is well suited for an interpretation of nondetermin-
istic choice as a choice made by a user. In this setting, one can look at program properties
that may hold if the right choices are made or properties that must hold, no matter how
the choices are made.

In section 4.3 the order of the choices is reversed compared to section 4.2 by giving
priority to probability: In section 4.3 probabilistic choices are always made before nonde-
terministic choices in finding the next step of a system. This approach fits with a resource

6 CHAPTER 1. INTRODUCTION

oriented view of nondeterministic choice: One is interested in the probability that a given
set of nondeterministic options is available, i.e. a given set of resources is offered.

Finally in section 4.4 an approach without ‘priority’ for either choice is treated. This
section addresses some of the disadvantages of giving priority to either choice. Instead
of giving a denotational semantics, a notion of bisimulation called first step bisimulation
is treated in this section. The notion of first step bisimulation extends the commonly
used notions of Larsen-Skou bisimulation [149] for probabilistic systems and the standard
notion of strong bisimulation [171, 159] for nondeterministic systems. The first step bisim-
ulation is shown to be correct with respect to the operational semantics; two programs
that are bisimilar have the same traces. In the metric setting equality in a denotational
domain is usually used instead of defining a bisimulation relation as these relations usually
coincide in the metric approach. (A more precise formulation of this property can be given
in a coalgebraic setting [179, 191].) The first step bisimulation is shown to be a congruence
for all operators except for postfixing where restrictions on the program being appended
are needed. As first step bisimulation is not a full congruence relation, no compositional
model can be given that yields the same equivalence as first step bisimulation.

Chapter 4 provides an overview of several different interpretations of nondeterminism
and corresponding models in a setting which also contains probabilistic choice. The main
technical contributions of this chapter are the introduction, for the first two interpretations
of nondeterministic choice, of an operational and a denotational model and the comparison
of these models. Also an operational model is presented for the third interpretation and
a notion of bisimulation is introduced that extends both Larsen-Skou bisimulation and
strong bisimulation.

The work in chapter 4 shows that nondeterminism and probability are not easy to com-
bine. Many choices have to be made about the exact properties of the nondeterminism
that is considered. One may wonder if this is an intrinsic property of the combination
of nondeterminism and probability or whether it is just a weakness in our modeling of
probabilistic choice. The work in chapter 5 and chapter 6 argues in favor of the former,
the combination of nondeterminism and probability is intrinsically difficult. In chapter 5
a model with action refinement is extended with probabilistic choice using the same tech-
niques to model probabilistic choice as in chapters 3 and 4 without creating major issues.
A full abstractness result obtained in this chapter also indicates that the compact support
measures are indeed an appropriate way of modeling probabilistic choices. In chapter 6
the technical modeling of the probabilistic choice is different. Nondeterminism returns in
this chapter as underspecification of properties as well as in the form of a specific operator
for nondeterministic choice. In both cases several choices need to be made about the in-
terpretation of the nondeterminism. This again indicates that different ways of modeling
nondeterminism are needed for the different possible interpretations of nondeterminism.

Section 5.2 treats the concept of action refinement in an interleaving framework. Usu-
ally when treating action refinement a true concurrency model is used because no com-
positional model is thought to be possible in the interleaving setting. An operational
semantics for a language with action refinement, however, can easily be given in an inter-
leaving framework. For the denotational model in section 5.2 two programs are considered
semantically equivalent whenever their meanings coincide for all interpretations of the ac-
tions describing the basic elements of the computation, i.e. if their meaning coincides

1.2. PROBABILISTIC EXTENSIONS OF SEMANTICAL MODELS 7

under all refinements. The view is used that in the framework of schematic languages
employed here, the fact that the elementary actions are uninterpreted induces as a natu-
ral counterpart that the semantic equivalence of two programs requires equality of their
associated meanings under all interpretations of the elementary actions, or equivalently,
under all their possible refinements. Using this view of program equivalence, a composi-
tional denotational model can also be given in the interleaving framework as is shown in
subsection 5.2.2.

The strength of the probabilistic modeling techniques is shown in section 5.3 where
probabilistic choice and action refinement are combined. The work in this section is a
relatively straightforward combination of the techniques introduced in chapter 3 with
those discussed in section 5.2.

In both section 5.2 and section 5.3 an operational semantics and a denotational se-
mantics are given. The processes used to express the denotational meaning of programs
in section 5.3 are based on compact support measures. The definition of the denotational
semantics requires that an operation for sequential composition is defined on these pro-
cesses. To this end a notion of composition of measures is treated that can be applied
in this specific setting. (General composition of compact support measures is treated in
chapter 7.) In both sections 5.2 and 5.3 a full abstractness result is obtained for the
denotational model. This shows that the denotational models are optimal in a particular
way: The denotational model contains more information about a program than the oper-
ational model; it provides the meaning of the program for all possible interpretations of
the atomic actions, in accordance with the view mentioned above. The full abstractness
result expresses that the denotational model does not contain too much information; all
information that is added is needed to obtain a compositional model. As an auxiliary
result we obtain in section 5.3 that for any compact support measure, a program can be
found the meaning of which is arbitrarily close to the given measure. In other words, a
syntactic representation of a measure can be given. This shows that the space of compact
support measures is also ‘optimal’ in some sense: The space of all measures only contains
those objects that are needed either to model actual program behavior, or to guarantee
completeness of the space.

Chapter 5 treats a language with action refinement in an interleaving setting and also
deals with a language which combines action refinement and probabilistic choice. The
main technical contributions of this chapter are operational and denotational models with
full abstractness results for both languages, an operator for the sequential composition
of compact support measures in a specific setting and the syntactical representation of
compact support measures.

Chapter 6 deviates from the approach in the other chapters in that the main concern of
this chapter is not the semantic modeling of a language but rather the reasoning about
properties of the programs in the languages. A probabilistic Hoare-style logic is introduced
in this chapter. Unlike the semantical models for schematic languages discussed above,
the languages and Hoare logic in chapter 6 explicitly deal with data, and also deal with
infinite behavior in a different way.

Three languages are considered. The first language Lpif is a basic language with
assignment, sequential composition, conditional choice and probabilistic choice. Two ex-
tensions of this language, either with iteration Lpw or with nondeterministic choice Lpnif

8 CHAPTER 1. INTRODUCTION

are also treated. As the programs in these languages can be probabilistic, the properties
that one wants to check for these programs may also state claims about probabilities
of given events. To be able to express such probabilistic properties, a notion of prob-
abilistic predicate is introduced. The probabilistic predicates allow the specification of
logical properties while at the same time enabling the use of arithmetical properties of
probabilities.

To reason about programs and probabilistic predicates, deduction systems are intro-
duced for each of the languages considered. These deduction systems are used to deduce
so-called Hoare triples. A Hoare triple consists of a precondition, a program and a post-
condition and expresses that if the precondition holds then the postcondition will be met
after execution of the program. To show that the reasoning supported by these deduction
systems is sound, (denotational) semantics are also given for the languages in chapter 6.
A complete partial order approach is used as, in this input-output setting, it is simpler
than giving a metric model and the main benefits of the metric setting are not needed
here.

Each of the deduction systems introduced is shown to be sound. Each Hoare triple
deduced using this system expresses a valid claim about the precondition, program and
postcondition that form the triple. For the languages Lpif and Lpnif a completeness result
is also available: Any Hoare triple that expresses a valid claim can be deduced using the
deduction system as long as its postcondition satisfies some minor restrictions. To obtain
the completeness results for the languages Lpif and Lpnif the weakest preconditions are
found for these languages. For a given program and postcondition, the weakest precon-
dition is the weakest property which guarantees that the postcondition will hold after
execution of the program.

The main technical contributions of chapter 6 are the introduction of the notion of
probabilistic predicate, the specification of sound and complete proof systems for the
languages Lpif and Lpnif and a sound proof system for the language Lpw as well as the
definition of weakest preconditions for Lpif and Lpnif.

All probabilistic choices discussed so far have had one important aspect in common: Each
probabilistic choice has finitely many alternatives. Each of these choices can be seen as a
choice which can be decided by a finite series of coin flips. Some probabilistic processes
have infinitely many options in a single step and can therefore not be expressed in this way.
Consider, for example, the selection of a random real number from an interval [a, b] using
a uniform distribution. Each number greater than or equal to a but less than or equal to
b can be selected. This amounts to infinitely many options. The uniform distribution on
[a, b] is an example of a continuous distribution. Examples of processes that may exhibit
continuous probabilistic behavior are processes dealing with time, such as the life time of
a light bulb, as well as processes describing hybrid automata such as a process monitoring
the amount of fluid in a leaking tank. Continuous probability also plays an important role
in much work in the area of performance modeling and real time systems. There are also
other types of infinite probabilistic choices which are not based on a continuous choice.
An example of a process with such infinite probabilistic choices is a process that counts
the number of arrivals in a given time interval. The outcome of this counting process may
be any number in N giving infinitely many options.

Chapter 7 provides an overview of the possibilities of methods developed in the pre-

1.2. PROBABILISTIC EXTENSIONS OF SEMANTICAL MODELS 9

vious chapters in dealing with processes with infinite probabilistic choices. The recursion
present in the probabilistic language treated in chapter 3 already introduced the need
to express probabilities for a process with infinitely many options. A compact support
measure was used for this. In chapter 7 measures are also used to describe the infinite
probabilistic choice. An important difference with chapter 3 is that, while in chapter 3
the measures are only needed for processes describing the meaning of complete programs,
the measures in chapter 7 are already needed to describe a single step. In chapter 7, the
steps produced by a program still need to be combined into a single process describing
the meaning of the program. Finite probabilistic choices can be combined by using multi-
plication and addition. The combination of infinite probabilistic choices uses integration
over a measure. Integration, however, is only possible for measurable functions. To guar-
antee that the integration is possible, extra structure is required. This extra structure
is provided by using stochastic kernels [169] in the modeling instead of just looking at
measures. In this way the measures describing the steps are linked in such a way that
measurability is guaranteed for the functions that need to be integrated.

In chapter 7 a metric version of stochastic kernels is introduced based on compact
support measures. Using these kernels the notion of probabilistic transition system is
extended to be able to deal with steps described by measures. A transition system and
operational semantics are given for a language with the construct of random assignment.
A random assignment statement is a probabilistic assignment in which the value assigned
to a variable is chosen according to some measure over possible values.

The main technical contributions of chapter 7 are the definition of a metric variant
of the notion of a kernel as well as the introduction of a general method of composing
compact support measures through the use of this variant of kernels.

The following graph illustrates the dependencies between the chapters of this thesis.

Section 5.3

Chapter 5

Chapter 4

Section 6.7

Chapter 6

Chapter 3

Chapter 2

Chapter 7

The preliminaries in chapter 2 contain definitions and results used in all chapters. Chap-
ter 3 introduces probabilistic choice and other concepts used in all parts dealing with
probabilistic choice. Section 5.2 does not depend on chapter 3 as no probability is present
in this section. Section 5.3 which adds probability, however, does depend on chapter 3.
The other three chapters 4, 6 and 7 also depend on chapter 3. Finally section 6.7, which
adds nondeterminism to the probabilistic Hoare-style logic developed in earlier sections of
chapter 6, depends on chapter 4 for a description of the interpretation of nondeterministic
choice in a probabilistic setting.

Parts of this thesis are based on the following work: The report [107] treats the combi-
nation of nondeterminism and probability. Chapter 3 and the first sections of chapter 4

10 CHAPTER 1. INTRODUCTION

build on this report. The report [110] and the conference paper [109] form the basis for
the remainder of chapter 4. Section 5.2 has been previously published in the journal
article [112]. The results of section 5.3 have appeared in the conference paper [113]. The
conference paper [108] introduces the probabilistic Hoare-style logic discussed in chap-
ter 6. The journal article [111] presents the more precise syntax used in chapter 6 and
adds the completeness result presented in section 6.5. Section 6.7 and chapter 7 have not
been previously published.

1.3 Related approaches

In this section several approaches to formal methods and to semantical modeling in par-
ticular are briefly discussed. Only some basic references are given here. An overview of
related work can be found within each chapter.

This thesis uses the metric approach to giving semantic models. The use of metric
spaces in semantical modeling was initiated by Arnold and Nivat [15, 166]. A lot of work
in this area has been done by the Amsterdam Concurrency group (ACG). See e.g. [36] and
more recently also [38, 39, 55]. A comprehensive overview of the use of metric techniques
and results is given in the monograph [38]. Further references can be found there.

Domain equations are regularly employed to specify the metric domains in this thesis.
Domain equations over metric spaces were pioneered by De Bakker and Zucker [41] and
a general, categorical approach was developed by America and Rutten [6]. The work
presented here is based on the thesis of Van Breugel [54] where sufficient conditions for
the existence of unique solutions for domain equations are given. The domain equations
used in this thesis will be shown to satisfy these conditions. References to further work
in the field of domain equations can also be found in [54].

The notion of a probabilistic transition system used in this thesis extends Plotkin’s struc-
tured operational semantics [173] to be able to deal with probabilistic choice. The use of
some form of probabilistic transition system is a standard way of describing the opera-
tional behavior of a probabilistic system. Probabilistic automata (see e.g. [181]) are also
essentially probabilistic transition systems.

In the metric setting a trace model is constructed from the probabilistic transition
system and a denotational semantics is used to give a compositional notion of equality of
processes. An alternative approach is to define a notion of bisimulation on the transition
systems. Two programs are identified by a bisimulation relation if either program can
mimic the steps of the other program: If one program produces a step to some next
state then the other program can produce a similar step resulting in a related next state.
For nondeterministic systems strong or Park-Milner bisimulation [171, 159] is a standard
notion. The most standard definition for bisimulation on probabilistic systems is due to
Larsen and Skou [149]. Probabilistic bisimulation relates states which, not only produce
the same steps, but also yield the same probabilities for the resulting classes of states.

Weak bisimulation [159, 160] is a variation where ‘internal’ and ‘external’ computation
are distinguished and only the external behavior has to be the same. Several notions of
weak bisimulation have been introduced for probabilistic systems. (See e.g. [26, 10, 172].)

A whole spectrum of equivalences of processes, which include trace equivalence, as
well as several bisimulation equivalences is treated in [88, 89].

1.3. RELATED APPROACHES 11

Closely related to the metric approach is the use of coalgebras [179, 180]. Many of
the metric techniques can be seen as instances of more general coalgebraic methods.
A coalgebra defines a structure on some object by the use of some endofunctor F . A
coalgebra can thus be used to describe the structure of a system. A general notion of
similarity for all F-coalgebras exists. Several notions of bisimulation have been shown to
fit in this general framework including the probabilistic Larsen-Skou bisimulation [190].
A ‘final’ coalgebra is a canonical representation of a system. Bisimilarity coincides with
equality in this canonical representation. Usually the denotational domains used in a
metric setting can be described as the final coalgebra for some functor F . A notion
of bisimulation equivalence coinciding with equality in the denotational domain is thus
automatically obtained.

Although tools have been developed to calculate bisimulation equivalence classes (see
e.g. [24, 122, 185, 26] for probabilistic bisimulation) it is useful to be able to check bisim-
ilarity, or more generally equivalence of processes without having to actually find all
transitions and calculating the bisimulation classes. An important strand of research in
this area uses process algebras to accomplish this. In a process algebra an equational
theory is used to express the equivalence of processes. The equational theory contains
open equations expressing properties like e.g. the associativity of sequential composition.
Equational and logical reasoning are thus used to obtain equivalence from the syntax of
a system rather than having to find the semantics. Transition systems with a notion
of bisimulation equivalence are given, but are only needed to justify the equational the-
ory. The process algebra can also be used to reduce a given program to some equivalent
standard representation. A vast amount of research exists in the area of process alge-
bras. Early work on process algebras can be found e.g. in [43, 42]. See e.g. the text
books [82, 22, 44] for a description of process algebras and some of the results obtained
using process algebras.

Extensions of process algebra with probabilistic choice have been considered e.g. in [8,
21]. Transition systems for the programs together with a notion of bisimulation are used
to justify the equations in the process algebra. These transition systems differ only on
some technical points from the transitions systems used to give the operational semantics
in this thesis. Between the bisimilarity in the process algebra setting and the denotational
equivalence used e.g. in chapter 3 similar minor differences exist.

For process algebras which also deal with time (see e.g. [18, 83, 20]) extensions with
probability have also been considered [9, 125]. In stochastic process algebras, such as
TIPP [124, 117] and SPADES [64, 68] the probability considered is continuous. Chapter 7
of this thesis aims to extend the modeling techniques introduced in earlier chapters to be
able to express continuous probability.

Another way of reasoning about a bisimulation relations is by giving a logical char-
terisation: A logical language, usually some form of model logic, is given and processes
are shown to be bisimilar exactly when they satify the same formulas. Showing that two
processes are not bisimilar can then be done by giving a destinguishing formula in the
logic. Desharnais et al give a logical charaterization of bisimulation for both discreet and
continuous probabilistic processes in [75]. A surpricingly weak logical language needed
for this charaterization. Logical charictarizations of bisimulation are not considered any
further in this thesis. See e.g. [149, 75, 148] for more on this topic.

12 CHAPTER 1. INTRODUCTION

Above we have mentioned semantical domains based on metric spaces, and coalgebras.
Partial orders are also often used to define structures. In the complete partial order (cpo)
approach (see e.g. [187, 34, 197]) a partial order structure is defined on a domain such
that every ascending sequence has a least upper bound. The cpo structure is used to solve
reflexive definitions and to be able to deal with infinite behavior. The use of least fixed
points replaces the use of unique fixed points in metric spaces.

The thesis work of Jones [133] uses evaluations, which are a slight simplification of
measures, to introduce probabilistic semantical domains. (In the setting used in this
thesis each evaluation has a unique extension to a measure, though not necessarily a
compact support measure.) Both a metric domain of evaluations and a complete partial
order domain of evaluations can be defined. A comparison of these two domains and
of denotational models for a probabilistic process language is given in [23]. The metric
model captures bisimulation and the cpo model describes simulation.

Event structures (e.g. [198, 137]) and partially ordered multisets (e.g. [85, 98]) also
use partial orders. Here, however, the order is not defined on the processes but on the
elements of the computation. The order expresses the structure of the computation. If
one element is smaller than another, it must appear earlier in the computation. Two
incomparable elements are independent and can be computed concurrently. In this way
‘true concurrency’ can be expressed within a process. This thesis will only consider so-
called interleaving models of concurrency.

The papers [30, 32, 31] provide comparisons of partial order semantics with metric
semantics.

Instead of specifying the complete behavior of a program, one may want to require only
some specific properties of this behavior. Several logical approaches for the specification
of and reasoning about program properties have been developed. As mentioned above,
chapter 6 treats a probabilistic version of Hoare logic. Hoare logic [126] allows specifi-
cation of properties of the state which then specify preconditions and postconditions for
programs. A program together with a precondition and a postcondition is referred to as a
Hoare triple. A proof system is introduced to deduce valid Hoare triples. See [34, 12, 13]
for an overview of Hoare-style logics.

Other logical approaches do not specify properties of the state but rather properties
of the computation, for example using dynamic, temporal and modal logics. Verification
methodes such as model checking are then used to check if a system satisfies the properties.
Model checking starts with a finite state machine representation of a system and uses
exhaustive search of the state space to check a given logical formula. An advantage of
this approach is that if the formula fails to hold, a counter example showing why this
is the case is found. Since the state space can easily become vary large, a symbolic
representation of the state space e.g. using binary decision diagrams (BDDs) is often
used. Also reduction techniques are used to find minimal representations of the system.
For example process algebras can be used to find a smaller bisimilar system.

Model checking for probabilistic systems has also been studied extensively, see e.g. [45,
3, 145, 4]. Multi-terminal binary decision diagrams (MTBDDs) [60, 4] are used in symbolic
model checking of probabilstic systems. Chapter 7 contains a discussion of some of the
work done in the area of model checking continuous time Markov chains.

Chapter 2

Mathematical preliminaries

In this chapter several definitions and results from topology and category theory are
recalled. This chapter is not intended to provide a comprehensive introduction to these
subjects. Rather, it is aimed to list the main results and notation used in later chapters.
Results are presented in a way suitable for this instead of in their most general form.

2.1 Metric spaces

The presentation in this thesis assumes knowledge of basic metric and topological no-
tions. In this section several definitions and results are briefly recalled. A more extensive
introduction to metric spaces and their application to semantical modeling can be found
in [38]. The monographs [81, 79] can be consulted for general topological definitions and
results.

Definition 2.1.1

(a) A metric space (M,d) is a set M with a function d : M ×M → [0,∞) such that for
all x, y, z ∈M

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y)

The function d is called a metric or a distance on M . Often the metric d is clear
from the context and M is written for (M,d).

(b) An ultrametric space (M,d) is a metric space in which the third requirement is strength-
ened to

3. d(x, y) ≤ max{ d(x, z), d(z, y) }

for all x, y, z ∈M .

13

14 CHAPTER 2. MATHEMATICAL PRELIMINARIES

(c) A function d : M ×M → [0,∞) is called 1-bounded if d(x, y) ≤ 1 for all x, y ∈ M .
The metric space (M,d) is called 1-bounded if the metric d is 1-bounded.

In this thesis we will mainly deal with 1-bounded ultrametric spaces.

Example 2.1.2 The real numbers R with the usual metric d(x, y) = |x − y| is a metric
space but not an ultrametric space. This space is also not 1-bounded.

For any, not necessarily 1-bounded, metric space (M,d) the space (M,d1) with d1(x, y) =
min{ d(x, y), 1 } is a 1-bounded metric space.

For any set A we have that (A, d) with d(x, y) =

{
0 x=y
1 otherwise

is a 1-bounded ultra-

metric space. This metric d is called the discrete metric on A.

An important metric space is that of sequences over a given set A called the alphabet.
These sequences are also referred to as words. The set of all finite words is denoted by A∗.
The set of all infinite words is denoted by Aω. Combining these two sets gives the set of
all words over A, denoted by A∞. The concatenation of the words w and w′ is denoted
by w ·w′ or simply by ww′. For an infinite word w we have that w ·w′ = w. For S a set of
words we additionally put wS = {ww′ | w′ ∈ S }. The Baire metric defines the distance
between words. Two words are closer the longer the prefix they have in common.

Example 2.1.3 For a word w, w[n] denotes the sequence w truncated after n elements,
i.e. the prefix of length n. Given any alphabet A the spaces (A∗, dB), (Aω, dB) and
(A∞, dB), with dB(w,w

′) = inf{ 2−n | w[n] = w′[n] }, are 1-bounded ultrametric spaces.
The metric dB is called the Baire metric.

Recursive definitions play an important role in semantical modeling using metric spaces.
To be able to guarantee the existence of a solution (see theorem 2.1.9), the underlying
metric space should be complete. In the next definition a few auxiliary topological notions
are given along with the notion of a complete metric space.

Definition 2.1.4 Let (M,d) be a metric space.

(a) For any element x in M and ratio ε greater than 0 , the open ball Bε(x) is the set of
all points in M with distance less than ε from x, thus

Bε(x) = { y ∈M | d(x, y)< ε }

(b) A subset O of M is called open if an open ball which remains completely within O can
be placed around all x in M , i.e. M is open when ∀x ∈ O : ∃ε > 0 : Bε(x) ⊆ 0.

(c) A subset C of M is called closed if it is the complement of an open subset of M .

(d) A Cauchy sequence in M is a sequence (xi)i∈N for which the elements of the tail are
close together, that is the sequence satisfies ∀ε > 0 : ∃Nε : ∀i, j > Nε : d(xi, xj)< ε.

(e) The limit of a sequence (xi)i∈N is a point x such that the distance between x and xi
goes to zero when i goes to infinity, that is x satisfies ∀ε>0 : ∃Nε : ∀i>Nε : d(x, xi)<ε.

2.1. METRIC SPACES 15

(f) A metric space (M,d) is called complete if every Cauchy sequence in M has a limit
in M .

Note that any open set is the union of a collection of open balls. A subset C of M is
closed exactly when every point of M that is a limit of a sequence in C is also in C.

Example 2.1.5 Consider the metric space (A∞, dB) with the alphabet A = { a, b }. An

open ball with radius 1
2

2
around the word abab consists of all words starting with aba,

B 1
2
2(abab) = { abaw | w ∈ A∞ } The open ball with radius 1

2

3
around the word abab

consists of all words starting with abab. The open ball with radius 1
2

4
around the word abab

consists of only the word abab itself. To get a distance between a word w and abab of less

than 1
2

4
, w[5] has to be equal to abab[5] = abab. Only abab itself has this property.

The set { a, aa, aaa, . . . } is open but not closed. The set { aω } is closed but not open.
The singleton set { abab } is both open and closed.
The sequence a, aa, aaa, . . . is a Cauchy sequence in A∗ and also in A∞. The word aω

is the limit of this sequence in A∞. In A∗ the sequence does not have a limit.

For any set A the spaces (Aω, dB) and (A∞, dB) are complete. The space (A
∗, dB) is not

complete (unless A is empty).
If C is a closed subset of M and (M,d) is a complete metric space then (C, d) is also

a complete metric space.

As x is always in Bε(x), an open ball is always a nonempty set. In an ultrametric space
two open balls are disjoint or one is contained in the other. For two balls of size ε this
means that the balls are disjoint or the same.

Lemma 2.1.6 Let (M,d) be an ultrametric space and ε and δ two ratios with 0< ε ≤ δ.
Then for all x, x′ ∈M we have Bε(x) ⊆ Bδ(x

′) or Bε(x) ∩ Bδ(x
′) = ∅.

Proof If x ∈ Bδ(x
′) then Bε(x) ⊆ Bδ(x

′) because for all y ∈ Bε(x) we have d(y, x′) ≤
max d(y, x), d(x, x′) ≤ δ and thus y ∈ Bδ(x

′).
If x /∈ Bδ(x

′) then Bε(x) ∩ Bδ(x
′) = ∅ because for all y ∈ Bδ(x

′) we have d(x, x′) ≤
max d(x, y), d(y, x′). Since d(y, x′)<δ and d(x, x′)>δ this gives d(x, y) ≥ d(x, x′) ≥ δ ≥ ε
and thus y /∈ Bε(x). 2

Several operations on sets can be extended to metric spaces. By introducing the right
metric on the resulting set, these operations not only yield metric spaces but also preserve
completeness and ultrametricity of metric spaces.

Lemma 2.1.7

(a) For any two metric spaces (M,dM) and (N, dN) the Cartesian product, (M×N, dM×N)
the disjoint union, (M +N, dM+N) and the function space, (M → N, dM→N) with

dM×N ((m,n), (m′, n′)) = max{ dM (m,m′), dN (n, n′) }

dM+N (x, y) =

dM (x, y) if x, y ∈M
dN (x, y) if x, y ∈ N
1 otherwise

dM→N (f, g) = sup{ dN (f(m), g(m)) | m ∈M }

16 CHAPTER 2. MATHEMATICAL PRELIMINARIES

are also metric spaces. If both (M,dM) and (N, dN) are ultrametric spaces then
(M × N, dM×N), (M + N, dM+N) and (M → N, dM→N) are also ultrametric. If
both (M,dM) and (N, dN) are complete then so are (M ×N, dM×N), (M +N, dM+N)
and (M → N, dM→N).

(b) For any metric space (M,d) the space of closed subsets of M with the Hausdorff
distance, (Pcl(M), dH), where Pcl(M) = {S ⊆M | S closed } and

dH(S, S′) = inf{ ε > 0 | ∀x ∈ S : ∃y ∈ S′ : d(x, y) ≤ ε and

∀y ∈ S′ : ∃x ∈ S : d(x, y) ≤ ε }

is also a metric space. If (M,d) is an ultrametric space then (Pcl(M), dH) is also
ultrametric. If (M,d) is complete then so is (Pcl(M), dH).

This lemma provides the means to build a metric space with the given structure for certain
simple structures. A more powerful way of building metric spaces is treated in section 2.2.
First one of the reasons why metric spaces are useful in metric modeling is derived: A
recursive equation of the right type has a unique solution on a complete metric space. An
equation of the right type is an equation of the form x = f(x) where f is a contractive
function.

Definition 2.1.8 Let (M,dM) and (N, dN) be metric spaces. A function f : M → N is
called continuous the reverse image of an open set is again open and it is called α-Lipschitz
if for all m,m′ ∈M :

dN (f(m), f(m′)) ≤ αdM (m,m′)

The function f is called contractive if it is α-Lipschitz for some α < 1 and nonexpansive
if it is 1-Lipschitz. The space of all nonexpansive functions from M to N is denoted by

M
1
→ N .

The set M
1
→ N is a closed subset of M → N . If M and N are compete, this means

that M
1
→ N is also complete. For a function f : M → M , a solution of the equation

x = f(x) is called a fixed point of the function f . Contractive functions have at most one
fixed point.

Theorem 2.1.9 (Banach’s Fixed Point Theorem) For a contractive function f :M →M
on a complete metric space M there exists a unique point x ∈M , called the fixed point of
f , that satisfies f(x) = x.

The fixed point of a function f is denoted by fix(f).

Example 2.1.10 The function f on the space ({ a, b }∞, dB) given by f(w) = aw is a
contractive function. The unique fixed point fix(f) of f is aω.

An important property of subsets of metric spaces that has not yet been mentioned is
that of compactness. The notion of compact sets extends the notion of finite sets. Finite
collections, modeled by finite sets, are import structures within semantical modeling. The
collection of finite subsets of a space, however, does not always form a complete metric
space. The limit of a sequence of finite sets does not need to be finite. The compact sets
are exactly those sets which can be obtained as the limit of a sequence of finite sets.

2.2. CATEGORY THEORY AND DOMAIN EQUATIONS 17

Definition 2.1.11 Let (M,d) be a metric space. An open cover of a subset C of M is
a collection of open sets (Oi)i∈I such that each element of C is in at least one of these
open sets, C ⊆ ∪i∈IOi. A subset C of a metric space is called compact if every open cover
(Oi)i∈I of C has a finite subcover, i.e. there exists a number of indices i1, . . . , in in I
such that C ⊆ Oi1 ∪Oi2 ∪ . . . ∪Oin .
The space of all compact subsets of M is denoted by Pco(M).

Each finite set is clearly compact. Each compact set is also a closed set, thus the space
Pco(M) is a subset of Pcl(M). The same metric dH (see lemma 2.1.7(b)) is used to turn
Pco(M) into a metric space. The space of compact sets Pco(M) is a closed subset of
the space of all closed sets Pcl(M). As such Pco(M) is a complete metric space for each
complete space M .

Lemma 2.1.12 A set C is compact exactly when it is the limit of finite sets.

Proof That the limit of finite sets is compact is clear from the completeness of P co(M)
(see [38]). The reverse implication, that each compact set is the limit of finite sets can be
seen as follows: For a compact set C and a positive number n take the cover (B1/n(x))x∈C .
This cover must have a finite subcover B1/n(x(1,n)), . . . ,B1/n(x(mn,n)). When n goes to
infinity, the finite sets {x(1,n), . . . , x(mn,n) } go to C as each point in this set is in C and
each point in C has at most distance 1/n to a point in this set. 2

Thus we see that the space of compact sets Pco(M) is the smallest complete subspace of
Pcl(M) that contains all finite sets.

Lemma 2.1.13 If f : X → Y is a continuous function and C is a compact subset of X
then f [C] = { f(x) | x ∈ C } is a compact subset of Y .

The proof of this lemma can be found e.g. in [38, lemma 2.13].

2.2 Category theory and domain equations

Throughout this thesis different metric spaces are employed to model the meaning of
programs. Thus the semantical domain which contains all possible meanings of programs
is given as a metric space. To describe the meaning of a program, the structure of the
(elements of) the semantical domain is essential. Several examples of metric spaces have
already been given, as well as ways of combining metric spaces. For example, a sequence
can be used to describe events that occur one after another. Joining sets with disjoint
union and creating pairs using Cartesian product are two important ways of building
structured domains. A pair in the Cartesian product can be used to combine two events
that belong together and disjoint union can be used to describe that one out of two
different types of events may occur. From these examples one can see that relatively
simple structure in the domain can be constructed directly. If, however, the required
structure of the domain is more complicated, it is convenient to be able to specify the
structure using domain equations. A domain equation gives a property that the domain
must satisfy instead of specifying the structure of the domain directly. The equations may
be recursive, allowing easy specification of possibly infinite structures.

18 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Example 2.2.1 The domain equation P ' { 1 }+P specifies a domain P with infinitely
many distinct copies of the element 1.

Specifying a domain using domain equations is of course only useful if the equations have
a solution. For the domain equations to completely describe the structure of the domain
the solution should also be ‘unique’. What exactly uniqueness of the solution means in
this setting will be explained below. Several types of domain equations can be shown
to have a unique solution using metric means (cf. [38]) but for other types a categorical
approach is required. This section introduces the categorical notions required to show
that the domain equations used in this thesis have a unique solution. The main result
of this section is that a domain equation built with a so called locally contractive functor
(definition 2.2.8) has a unique solution. The only explicit use of categories and functors
(definition 2.2.6) in this thesis is in the building and solving of domain equations.

Definition 2.2.2 A category C is a collection of objects with for each pair of objects
X and Y a collection of arrows from X to Y and a notion of composition ◦ of arrows
satisfying

• For every arrow f from X to Y and arrow g from Y to Z, g ◦ f is an arrow from
X to Z.

• For every object X there is an identity arrow idX satisfying idX ◦ f = f for every
arrow f to X and f ◦ idX = f for every arrow f from X.

• The composition of arrows is associative. That is, for all objects Q,X, Y, Z and
arrows f from Q to X, g from X to Y and h from Y to Z we have that h◦ (g ◦f) =
(h ◦ g) ◦ f .

Looking at the properties of objects and arrows in a category one immediately sees the
connection with sets and functions. Indeed, the collection of all sets with functions as
arrows is a standard example of a category, denoted by SET.

Example 2.2.3 Taking sets as objects and the functions from X to Y as the arrows from
X to Y for any sets X and Y gives the category SET. It is obvious that the requirements
of a category are satisfied.

The category CMS has complete metric spaces as its objects and continuous functions as
arrows.
Note that taking metric spaces as objects and any functions as arrows also gives a cate-

gory. When working with metric spaces, however, one often restricts arrows to continuous
functions as these functions preserve important structures within the metric spaces.

The category CUMS has complete ultrametric spaces as its objects and nonexpansive func-
tions as arrows. The category CUMS is a subcategory of CMS: All objects and arrows in
CUMS are also in CMS and the composition of arrows is the same in CUMS and CMS
(for arrows from CUMS).

The product of categories is also a category. The category CUMS × CUMS with pairs of
complete ultrametric spaces as objects and pairs of nonexpansive function as arrows is a
category. The composition of the arrows is element wise.

2.2. CATEGORY THEORY AND DOMAIN EQUATIONS 19

The sets {n ∈ N | n is even } and {n ∈ N | n is uneven } are clearly not the same as
they have different elements. Both, however, have the same structure (infinitely many
independent elements). As such one does not want to distinguish these two sets as being
two different domains, just two ways of describing the same domain. Different objects in
a category which are structurally the same are called isomorphic.

Definition 2.2.4 Let C be a category and X, Y objects in C. The objects X and Y are
called isomorphic if there exist arrows f from X to Y and g from Y to X such that g ◦ f
is the identity idX on X and f ◦ g is the identity idY on Y .

Two isomorphic objects in the category have the same structure. One can go back and
forth between the two objects using the arrows f and g. Sets are just collections without
any other structure. In the category SET two objects are isomorphic if a bijection exists
between the sets, i.e. if they have the same cardinality.

Example 2.2.5 In the category SET the objects Se = {n ∈ N | n is even } and Su =
{n ∈ N | n is uneven } are isomorphic because one can take the functions f : Se → Su
given by f(x) = x+1 and g : Su → Se given by g(x) = x− 1. Clearly both f ◦ g and g ◦ f
are the identity function on Su and Se respectively.
In the category CUMS × CUMS the objects M × N and N ×M are isomorphic for

any spaces M and N in CUMS.
In the category CUMS the objects ({ a }∞, dB) and ({ a }∞, dB)× ({ b }∞, dB) are not

isomorphic. Intuitively this is clear as the structure of these spaces is different. Formally
one checks that no bijection f exists between ({ a }∞, dB) and ({ a }∞, dB)× ({ b }∞, dB)
such that both f and f−1 are nonexpansive.

On a metric space, equations are defined using nonexpansive functions. For a contractive
function f , the equation x = f(x) has a unique solution. In domain equations, a functor
is used instead of a function.

Definition 2.2.6 For two categories C and D, a functor F : C → D is a function as-
signing to every object X in C an object F(X) in D and to every arrow f from X to Y
in C an arrow F(f) from F(X) to F(Y) in D such that identities and compositions are
preserved, i.e. F(idX) = idF (X) and F(g ◦ f) = F(g) ◦ F(f).

A functor is a function on the objects of the category, but also on the arrows of the
category. To create a functor for operations on sets and metric spaces one thus needs to
specify the effect of the operations on functions.

Example 2.2.7 The function F which adds the discrete metric to any given set and does
not change the functions is a functor from SET to CUMS. Any function between discrete
metric spaces is nonexpansive thus each arrow in SET is indeed assigned an arrow in
CUMS. Also each set is assigned an ultrametric space and identities and composition are
preserved.
The function P which gives the powerset of a set as the object and which lifts functions

by applying them element wise is a functor on SET, i.e. a functor from SET to SET.

20 CHAPTER 2. MATHEMATICAL PRELIMINARIES

The function Pcl which assigns the space (Pcl(M), dH) of closed subsets of M to the
space (M,d) is a functor on CUMS. Similar functors are Pco and Pnco which yield the
compact subsets and the nonempty compact subsets of M respectively.
Another functor on CUMS is the scaling id 1

2
. The scaling functor assigns the space

(M, 12d) to a metric space (M,d), i.e. the elements are the same as inM but their distance
is reduced by 1

2 . The nonexpansive functions are unaffected: On the arrows of CUMS,
id 1

2
is the identity.
Cartesian product × and disjoint union + are functors from CUMS×CUMS to CUMS.

The Cartesian product functor assigns the space (M × N, dN × dM) (see lemma 2.1.7)
to the pair of spaces (M,dM) and (N, dN). An arrow in CUMS × CUMS is a pair of
functions. This pair of functions is exactly a function on the Cartesian product. Disjoint
union is similar.

Using a functor F on a category C one can form the domain equation P ' F(P). From this
point we restrict ourselves to complete ultrametric spaces, in particular to the categories
CUMS and CUMS × CUMS. Although much more general results can be obtained (see
e.g. [54]) all domain equations used in this thesis remain within this setting. The recursive
equation x = f(x) has a unique solution if the function f is contractive. A similar property
can be derived for domain equations: The domain equation P ' F(P) has a unique solution
if F is a locally contractive functor.

Definition 2.2.8 Let C be the category CUMS or the category CUMS×CUMS. A functor
F : C → CUMS is called locally nonexpansive if for all objects X,Y in C the function

F ↓ (X
1
→ Y) that maps f : X

1
→ Y to F(f) : F(X)

1
→ F(Y) is nonexpansive. The

functor is called locally contractive if this function is contractive.
In other words, if for all objects X,Y in C and for all nonexpansive mappings f, g :

X
1
→ Y

dF(X)→F(Y)(F(f),F(g)) ≤ dX→Y (f, g)

then F is locally nonexpansive and if

dF(X)→F(Y)(F(f),F(g)) ≤ αdX→Y (f, g)

for α < 1 then F is locally contractive.

A locally contractive functor has a unique fixed point enabling its use in domain equations.
Most of the functors treated so far are locally nonexpansive.

Example 2.2.9 The constant functor Z : CUMS → CUMS is locally contractive: For

X,Y ∈ CUMS, f, g : X
1
→ Y we have

dZ→Z(Z(f), Z(g)) = dZ→Z(idZ , idZ) = 0 ≤ 1
2dX→Y (f, g)

The functor id 1
2
: CUMS→ CUMS is locally contractive: For X,Y ∈ CUMS, f, g : X

1
→

Y and x ∈ id 1
2
(X) we have

did 1
2
(Y)(id 1

2
(f)(x), id 1

2
(g)(x)) = [def. id 1

2
(f)] did 1

2
(Y)(f(x), g(x))

= [def. did 1
2
(Y)]

1
2dY (f(x), g(x))

≤ [def. dX→Y]
1
2dX→Y (f, g)

2.2. CATEGORY THEORY AND DOMAIN EQUATIONS 21

That the functors × : (CUMS × CUMS) → CUMS and + : (CUMS × CUMS) → CUMS
are locally nonexpansive is directly clear from the definitions.

A locally nonexpansive functor can be used in composition with a contractive functor:
The composition of a locally nonexpansive functor and a locally contractive functor is
again a locally contractive functor.

Theorem 2.2.10 Let F be a locally contractive functor F : CUMS→ CUMS. Then the
domain equation P ' F(P) has a unique solution up to isomorphism.

A proof of this theorem can be found in e.g. [177]. A domain equation based on a locally
contractive functor has a unique solution up to isomorphism. This means that if both
P and Q are solutions of the equation then they have the same structure, i.e. they are
isomorphic. Domain equations thus specify the structure of a domain independent of
the names of the actual elements of the domain. This is exactly what one wants in a
semantical domain that is used to model program behavior where it is the structure of
the objects that describes the behavior rather than the precise identity of the objects.

Example 2.2.11 The domain equation P ' A × id 1
2
(P) has a unique solution, namely

infinite words with the Baire distance (Aω, dB).
The domain equation P ' A+A× id 1

2
(P) also has a unique solution, namely finite or

infinite words with the Baire distance (A∞, dB).
The solution for the domain equation P ' Pnco(A × P) describes infinite trees (with

identification of bisimilar trees) with arcs labeled by elements from A.

22 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Chapter 3

Modeling probabilistic choice

3.1 Introduction

In this chapter the control flow aspects of discrete probabilistic choice are studied. To
this end a schematic language Lp containing the operator ⊕ρ is introduced. The operator
⊕ρ denotes a probabilistic choice between two alternatives. Each probabilistic choice can
be thought of as flipping a coin or throwing a die: All probabilistic choices are assumed
to be made independently of any choices that have been made before, and of any actions
that may have occurred. The outcome of a single probabilistic choice cannot be predicted.
The probability gives information about how often each alternative is selected in the long
run, i.e. the relative frequencies of the possible outcomes. When modeling a fair coin flip,
for example, this will be done with a probabilistic choice with probability 1

2 for heads
and 1

2 for tails. Before flipping the coin the outcome is not known. It is known, however,
that when the coin is flipped often, approximately half of all the outcomes is heads.

As the control flow is the main concern, the language does not deal with data or the
details of the basic steps of computation. The language is based on a set of atomic actions.
The atomic actions represent the basic elements of the computation and as such are left
without any further interpretation.

The behavior that can be observed when a program in Lp is executed is seen as the
operational meaning of the program. As the atomic actions are left without further
interpretation, the behavior that can be observed when executing an atomic action is the
action itself. In general, more than one atomic action is performed when a program is
executed; a sequence of actions can be observed. A single execution of the program is
referred to as a run of the system. Thus the observable behavior for a run of the system
is a sequence of actions.

The probability associated with a probabilistic choice predicts the relative frequencies
of the outcomes. A sequence of probabilistic choices is subject to statistical laws like
the law of large numbers. The probability associated with a choice can be estimated by
repeating the choice and taking the relative frequency of an outcome as its probability.
This means that the probability of an alternative of a probabilistic choice can actually be
found by observing the system: For a single run of the system a sequence of actions can

23

24 CHAPTER 3. MODELING PROBABILISTIC CHOICE

be observed. Using multiple runs a probability can be assigned to the sequence of actions.
The sequences of actions that a program can execute together with the probability of

executing that sequence, is part of the observable behavior of a program. The probabilities
that one can see are, however, not only the probabilities of the complete sequences that the
execution of a program produces, but also the probabilities for other events like e.g. “the
sequence of actions produced starts with action a followed by action b”. This event can
be described by the set of sequences starting with ab. A set of sequences of a special
form, like e.g. the set of all sequences starting with ab, is called an “observable event”.
Every sequence of actions, or more precisely every singleton set consisting of a sequence
of actions, is also an observable event. By looking at the results of multiple runs of the
system, a probability can be assigned to every observable event. Thus the observable
behavior of a program consists of the probabilities of all observable events.

If an observable event consists of a finite or countable set of sequences, the probability
of the observable event can be found from the probability of each single sequence. The
sequences of actions produced when executing a program may, however, be infinite in
length. The number of infinitely long sequences is too large to find the probability of
an observable event from the probabilities of the individual sequences: A collection of
sequences may have positive probability while all individual sequences have probability 0.
To give the observable behavior of a program it is not sufficient to list the probability of
each sequence of actions that the program may produce. Instead a measure over sequences
is used to describe the meaning of a program. Besides the probabilities of the individual
sequences, a measure also gives the probability for other observable events. Example
3.3.12 shows a program in Lp for which the extra information given by the measure is
really needed.

In order to find the sequences of actions of a program, a transition system is given. The
transition system is an abstract representation of a machine on which the program runs.
In the transition system, a step which takes the abstract machine from one configuration
to another and produces some observable behavior, is called a transition. If, for example,
the observable behavior produced by the transition is an atomic action, the transition
represents the execution of that atomic action by the machine.

As the probability of a certain alternative is seen as something which is observable, it
must be incorporated in the observable behavior that the transition system produces. In
the transition system for Lp each transition will produce a pair of a real number in [0, 1]
and an atomic action. The number gives the probability that in the current configuration
this atomic action is executed. If several probabilistic choices have to be made before it is
clear which action is executed, the making of these choices is not visible in the transition
system, only the resulting action with its probability. A transition system which deals
with probability in this way is called a generative transition system [92]. It is also possible
to model the actual making of probabilistic choices in the transition system. A transition
system which explicitly models the making of each probabilistic choice is called a stratified
transition system. In a stratified transition system the observable behavior produced by
a transition is either a probability or an atomic action. A stratified transition system for
a language with probabilistic choice is given in the next chapter, section 4.3. The setting
in that section does not allow for a generative transition system.

The transition system still contains a lot of information which is not actually observable:

3.1. INTRODUCTION 25

e.g. the state of the abstract machine, given by a configuration in the transition system,
cannot be observed. Only the actions the abstract machine produces can be seen. The
(operational) meaning of a program is only the observable behavior, i.e. the probability of
observable events. The operational semantics of a program gives exactly the observable
behavior of the program.

The operational semantics is given as a function from programs to the operational
domain. The definition of the operational semantics is based on the transition system. The
operational domain, denoted Po, contains all possible observable behaviors of programs
in Lp. Recall that the observable behavior of a program consists of the probabilities
of all observable events, i.e. of a measure over sequences of actions. The elements of a
semantical domain such as the operational domain are called processes.

The programs in Lp may exhibit infinite behavior. To have a convenient way to deal
with infinite behavior, a metric structure is given to the operational domain. Instead
of seeing Po as a set, Po is defined to be a complete metric space. On a metric space,
uniqueness of the fixed point of a contractive operator (using the well-known Banach fixed
point theorem 2.1.9) is an important tool in definitions and equality proofs. Showing that
two possibly infinite processes coincide is reduced to finding an operator which has both
processes as a fixed point and showing that this operator is contractive.

The operational semantics is based on the observational behavior of an abstract machine.
Although this describes the computational intuition of a program, it does not support
checking properties the program must satisfy. To be able to check a property it would be
useful to be able to split a program into parts, which are presumably easier to analyze.
To this end a denotational semantics is given.

In the denotational view, every program denotes some value and the combination of
program components using the syntactical operators should be the same as combining the
values they denote. This means that the denotational semantics uses the compositionality
principle: the meaning of a program can be found by composing the meanings of the parts
of the program. Using compositionality, the analysis of a program can be split into the
analysis of the parts of the program.

The denotational meaning of a program is an element of the denotational domain Pd.
Like the operational domain the denotational domain is given a metric structure. To
compose meanings, a semantical operation is defined on Pd for every syntactical opera-
tor. The denotational semantics is based on these operations using the compositionality
principle.

The denotational meaning of a program is often not the same as the operational
meaning of that program. In particular, to allow composing meanings, it may be required
to remember more about a program than only its observable behavior. (Two programs
with the same observable behavior may act differently when placed in a context.) It
should be possible to remove the extra information contained in the denotational meaning
to obtain the operational meaning. An abstraction function is used to relate denotational
meanings and operational meanings. As the operational semantics of a program describes
the computational intuition of a program, the denotational semantics must be correct
with respect to the operational semantics, i.e. when applying the abstraction function to
the meaning given by the denotational semantics, one should obtain the meaning given
by the operational semantics. If this is the case, the operational semantics is called an

26 CHAPTER 3. MODELING PROBABILISTIC CHOICE

abstraction of the denotational semantics.

The remainder of this chapter is organized as follows: In section 3.2 several notions
required in the chapter are introduced. In section 3.3 the language Lp is defined. The
notion of a transition system is made formal and a transition system for the language Lp is
provided. To construct the metric space of measures of sequences, the functor Meas which
constructs the metric space of measures over a given space is defined and using Meas the
operational domain Po is constructed. Based on the transition system the operational
semantics is given as a function from programs to the operational domain Po.

In section 3.4 the functor MPf , which constructs multisets over a given domain is
introduced. Using MPf the denotational domain Pd is constructed. On the domain Pd,
semantical versions of the syntactical operators of Lp are defined. Using the semantical
operators, the denotational semantics of Lp is given.

In section 3.5 an abstraction function is introduced which relates denotational mean-
ings and operational meanings. The operational semantics is shown to be an abstraction
of the denotational semantics. Finally section 3.6 contains some concluding remarks and
references to related work.

3.2 Mathematical preliminaries

3.2.1 Finite multisets

In this subsection a formal model for finite multisets is given and several important oper-
ations on multisets are defined. Informally multisets are sets in which elements may occur
more than once. How often an element occurs is called the multiplicity of the element. A
multiset is finite if it contains finitely many elements, each with a finite multiplicity.

The formal model of a multiset over a given set S is a (partial) labeling of N with
elements of S. The labeling is a function from N to S + { ∗ }, where ∗ is used to denote
undefinedness of a label. The support of the labeling is the set of numbers not mapped to
∗. For example, the multiset containing a twice and b one can be modelled by assigning
label a to 1 and 2, b to 3 and ∗ to all other numbers. (See also example 3.2.2 below.)

This way of modeling multisets is derived from event structures, see e.g. [198, 137],
and pomsets, see e.g. [85, 98]. A more usual way of representing multisets over a set S
is as functions from S to the natural numbers; assigning a multiplicity to each element.
The representation as labelings is used here because it fits nicely with the introduction of
a metric on multisets over metric spaces as is done in section 3.4.

Definition 3.2.1 Let S be a set. The support of a function f : N→ S+{ ∗ } is the subset
of N mapped to S, i.e. f−1[S]. A partial labeling of N with elements of S is a function
N→ S + { ∗ } with finite support. The set of all partial labelings of N with elements of S
is denoted by L(S) and ranged over by L.

L(S) = N→ (S + {∗}) with finite support

From here on, the elements of L(S) are simply referred to as labelings instead of as partial
labelings of N with elements of S.

3.2. MATHEMATICAL PRELIMINARIES 27

Example 3.2.2 The multiset over { a, b } containing the element a twice and the element
b once can be represented by the following labelings. The support of labeling L1 is { 1, 2, 3 }
and the support of L2 is { 2, 4, 5 }.

L1(1) = a L2(2) = b L1(x) : a b a ∗ ∗ ∗
L1(2) = b L2(4) = a x : 1 2 3 4 5 . . .
L1(3) = a L2(5) = a L2(x) : ∗ b ∗ a a ∗

As example 3.2.2 already shows, several labelings can describe the same multiset. Two
different labelings that describe the same multiset list the same elements, but for different
numbers in N. The relation ∼, given below, relates labelings describing the same multisets.
A multiset is defined as a ∼-equivalence class of labelings.

In a multiset the order of the elements is not relevant, so the difference between e.g. the
labelings L1 and L2 above should be abstracted away from. Formally two labelings L1

and L2 are related if there exists a bijection Φ on N for which L1 ◦ Φ = L2.

Definition 3.2.3 Two labelings L1, L2 : N → (S + {∗}) are related, L1 ∼ L2, if there
exists a bijection Φ : N→ N such that L1◦Φ = L2. A class of labelings with representative
L is denoted by L.

A labeling L1 that describes the same multiset as the labeling L2 yields the same elements
of S with the same multiplicity. The only possible difference is for which numbers in N
the elements are obtained. The bijection Φ rearranges the numbers in N to remove this
difference.

It is clear that ∼ is an equivalence relation on L(S). The formal definition of a multiset
over a set S can now be given.

Definition 3.2.4 For a set S, the set of (finite) multisets over S, denoted by MPf (S),
is given by:

MPf (S) = L(S)/ ∼

The multiplicity of an element of a multiset is the number of times that the element occurs
in the multiset. That an element x occurs exactly n times, for n > 0, in a multiset M is
denoted by x ∈n M . If an element x occurs at least once in a multiset x ∈M is written.

When using multisets, one does not want to think in terms of the formal definition as
equivalence classes of labelings. To allow a more intuitive way of thinking about multisets,
the following notation is used to describe a multiset. The notation {|x1, x2, . . . , xn |} is
used for the multiset containing x1 through xn. Here x1, x2, . . ., xn are, not necessarily
distinct, elements of S. If M = {|x1, x2, . . . , xn |} then {| f(x) | x ∈ M |} denotes the
multiset {| f(x1), f(x2), . . . , f(xn) |} and

∑
M = x1 + x2 + . . . + xn (when summation is

defined on S).

Definition 3.2.5

(a) Let S be a set and let M = L a multiset over S. For x ∈ S, the multiplicity of x in
M is # { i | L(i) = x }. The following notation is used

x ∈n M if the multiplicity of x in M is n > 0

x ∈M if x ∈n M for some n > 0

28 CHAPTER 3. MODELING PROBABILISTIC CHOICE

(b) Let S be a set and let x1, x2, . . . , xn be, not necessarily distinct, elements of S. Define
L(i) = xi for i = 1, 2, . . . , n and L(i) = ∗ for i > n, then

{|x1, x2, . . . , xn |} = L

(c) Let S1, S2 be sets, f : S1 → S2 and let M = L be a multiset over S1. Then {| f(x) |
x ∈M |} denotes a multiset over S2,

{| f(x) | x ∈M |} = f ◦ L

(d) Let M = L be a multiset over R, the real numbers, and let X ⊆ N be the support of
L. Then

∑
M =

∑

n∈X

L(n)

As multisets are equivalence classes of labelings, the definitions may not depend on the
choice of representative of a class. It is, however, easy to check that the definitions give
the same result for different labelings from the same class.

Example 3.2.6

(a) The multiset described by L1 and L2 in example 3.2.2 above can be written as {| a, b, a |}.

(b) The multiplicity of a in {| a, b, a |} is 2, a ∈ {| a, b, a |}, a ∈2 {| a, b, a |}, a 6∈1 {| a, b, a |}.

(c) Let M = {| 12 ,
1
4 ,

1
4 |}. Then {|x/2 | x ∈M |}= {| 14 ,

1
8 ,

1
8 |} and

∑
M = 1

2 + 1
4 + 1

4 = 1.

A basic operation on multisets is union, denoted by t. The union of the two multisets
{|x1, x2, . . . , xn |} and {| y1, y2, . . . , ym |} is {|x1, x2, . . . , xn, y1, y2, . . . , ym |}.

Definition 3.2.7 Let L1 and L2 be two multisets over a set S. The union of the multisets
is given by

L1 t L2 = L3

where L3(2n) = L1(n) and L3(2n− 1) = L2(n) for all n ∈ N.

It is again easy to check that the definition does not depend on the choice of the repre-
sentatives L1 and L2.

Example 3.2.8 The union of the multisets {| a, b, a |} and {| c, a |} is given by {| a, b, a |} t
{| c, a |} = {| a, a, a, b, c |}.

3.3 The syntax and operational semantics of Lp

In this section the syntax of the language Lp is given. The elements of the language Lp are
called programs. A transition system Tp which abstractly describes the execution of the
programs in Lp is defined. A functor Meas is introduced to build the space of all measures
over a given space. The operational domain Po which contains all possible meanings of
programs is defined using the functorMeas. Finally the operational semantics O is defined
as a function from programs to the domain Po based on the transition system Tp.

3.3. THE SYNTAX AND OPERATIONAL SEMANTICS OF Lp 29

3.3.1 The syntax of the language Lp

A program in Lp consists of a declaration in Decl and a statement in Stat. A typical
declaration is denoted by D and a typical statement by s.

The statements in Stat are built from a set of atomic actions Act which is ranged over
by a and a set of procedure variables PVar ranged over by x. The atomic actions represent
the primitive elements of the computation, and are left without further interpretation.
The meaning of an action a is simply a itself. A procedure variable represents a procedure
to be called. The body of a procedure is the statement that should be executed as a result
of a call of the procedure. A declarationD gives the bodyD(x) for each procedure variable
x.

Statements are built from the atomic actions and procedure variables by constructing
combinations using the syntactical operators ⊕ρ and ; .

Definition 3.3.1

(a) The set of statements Stat, ranged over by s, is given by

s ::= a | x | s ; s | s⊕ρ s

where ρ ∈ (0, 1).

(b) The set of guarded statements GStat, ranged over by g, is given by

g ::= a | g ; s | g ⊕ρ g

where ρ ∈ (0, 1).

(c) The set of declarations Decl, ranged over by D, is given by

Decl = PVar→ GStat

(d) The language Lp is given by

Lp = Decl× Stat

The statements of the language are combinations of atomic actions and procedure variables
using the syntactical operators ; and ⊕ρ. The statements which are built using the
operators ; and ⊕ρ are assumed to be enclosed in brackets. One should, therefore,
actually write (s ; s) instead of s ; s and (s⊕ρ s) instead of s⊕ρ s. However, the brackets
are omitted when no confusion is possible.

The operator ; denotes sequential composition. The statement s1 ; s2 behaves like s1
until s1 terminates after which s1 ; s2 continues by behaving like s2. The operator ⊕ρ

denotes probabilistic choice. The argument ρ denotes the probability that the first al-
ternative is chosen and is assumed to be strictly between 0 and 1. The execution of the
statement s1 ⊕ρ s2 starts with making a probabilistic choice. With probability ρ the first
statement, s1, is selected and executed. With the remaining probability, 1−ρ, the second
statement, s2, is selected and executed.

30 CHAPTER 3. MODELING PROBABILISTIC CHOICE

A declaration D gives the body D(x) for a procedure x. The body of a procedure
cannot be any statement, but must be a guarded statement. A guarded statement guar-
antees that at least one atomic action is done before some procedure is called. The
recursive definition of a procedure can be used to specify an infinite process. The proce-
dure x with body D(x) = a;x will produce an infinite sequence of a’s. The restriction to
guarded statements as possible body for a procedure prevents ambiguous definitions like
D(x) = x. The meaning of a procedure defined by D(x) = x is not well-defined. Guarded
recursion is a common way to deal with this problem. With guarded recursion, the body
of each procedure must be a guarded statement.

When executing a program in Lp the declarationD does not change, as is the case with
all languages considered in this thesis. In the rest of this chapter one fixed declaration
D is assumed and D is dropped from the notation, e.g. s ∈ Lp is written instead of
(D, s) ∈ Lp.

3.3.2 Transition system specification

A transition system T = (Conf,Lab, →) is an abstract representation of a machine. When
a program “runs” on the abstract machine, the machine takes steps between configurations
in Conf producing some observable behavior. Which steps can be taken is given by the
transition relation → . The behavior of a step which is observed is an element of Lab.

The transition system for each statement in the language is defined using a transition
system specification. A transition system specification T = (Conf,Lab, → ,Spec) is a
structured way of defining transition systems. The transition system specification defines
the transition relation → by means of a specification Spec consisting of a set of axioms
and rules. The transition relation specified by Spec consists of those transitions which
can be derived from the axioms in Spec using the rules in Spec. With some abuse of
terminology the transition system specification will simply be called the transition system:
No distinction is made between the transition system specification and the transition
system specified by the transition system specification.

The idea of a transition system specification comes from structured operational se-
mantics [173]. The transition system specifications used in this thesis, extend the format
used in structured operational semantics to be able to deal with probabilistic choice.

Definition 3.3.2

(a) A transition system specification T , from now on simply called a transition system, is
a four-tuple T = (Conf,Lab, → ,Spec) where

• Conf is a set of configurations, ranged over by c,

• Lab is a set of transition labels, ranged over by θ,

• → , the transition relation, is the subset of Conf×Lab×Conf satisfying Spec as
described below. An element of Conf× Lab× Conf is called a transition.

• The specification, Spec, is a set of axioms and rules, containing at least one

axiom. An axiom is a construct of the form c
θ
→ c′ (name). It specifies that the

tuple (c, θ, c′) belongs to → .

3.3. THE SYNTAX AND OPERATIONAL SEMANTICS OF Lp 31

A rule is a construct:

c1
θ1−→ c′1 . . . ck

θk−→ c′k
c

θ
→ c′

(name)

It specifies that if (ci, θi, c
′
i) ∈ → (i = 1, . . . , k) then also (c, θ, c′) ∈ → . Here

c1
θ1−→ c′1 through ck

θk−→ c′k are called premises of the rule and c
θ
→ c′ is called the

conclusion of the rule. An axiom can be seen as a rule with no premise.

(b) A proof tree for a specification is a finite tree in which every node is the conclusion of
a rule in Spec and its sub-nodes are the premises of this rule. The leaves of the tree
are axioms. The transition at the root of a proof tree is said to be derived from the
specification (by the proof tree). Proof trees are depicted with the root of the tree at
the bottom.

(c) The transition relation → is the subset of Conf×Lab×Conf consisting exactly of the
transitions that can be derived from the specification, i.e. for which there is a proof
tree based on Spec.

(d) The multiplicity of a transition c
θ
→ c′ is the number of different proof trees that exist

for the transition. That (c, θ, c′) belongs to → and has multiplicity n is denoted by

c
θ
→n c

′.

The parts of a transition system specification are as usual. Often the transition relation
is defined as “the smallest subset of Conf×Lab×Conf which satisfies all axioms and rules
in Spec”. In all cases considered this definition results in the same transition relation → .
The explicit reference to proof trees is needed in order to specify the multiplicity of a
transition. The multiplicity of a transition can be important for probabilistic transitions,
as is illustrated in example 3.3.4 below. This example also shows two simple proof trees.
All proof trees in this chapter are linear. More complicated (branching) proof trees appear
e.g. in section 4.3.

As each transition in the set → has a multiplicity assigned, the set → can also be seen
as a multiset by including every transition with the right multiplicity, i.e. (c, θ, c′) ∈n →

exactly when c
θ
→n c

′. In this chapter, however, the transition relation → will be seen as
a set and the multiplicities are written explicitly to clearly show where they play a role.

If several rules have the same premises, the shorthand notation

c1
θ1−→ c′1 . . . ck

θk−→ c′k

c̄1
θ̄1−→ c̄′1 (name 1)

· · ·
c̄n

θ̄n−→ c̄′n (name n)

is used for the n rules

c1
θ1−→ c′1 . . . ck

θk−→ c′k (name i)
c̄i

θ̄i−→ c̄′i

(i = 1, . . . , n)

32 CHAPTER 3. MODELING PROBABILISTIC CHOICE

3.3.3 The transition system Tp

The transition system for the language Lp is called Tp. All the information required
to describe the state of an execution of a program in Lp is the part of the program that
remains to be executed. A resumption is used to describe the remainder of a program. The
set of resumptions is denoted by Res and ranged over by r. The remainder of a program
is either another program or nothing, in case the execution is finished. A resumption is
either a statement s in Stat or a special symbol E denoting a finished computation:

r ::= s | E

A configuration in Tp is a resumption r together with a declaration D, i.e. Conf = Decl×
Res. As with programs, the declaration part is dropped from the notation as a single
declaration is assumed to be fixed.

As described in the introduction the observable behavior produced by a transition in a
probabilistic transition system consists of an action together with the probability that the
transition occurs. The observables in the transition system Tp are probability-action pairs.
The set of all probability-action pairs PAct = [0, 1]×Act is ranged over by α. Probabilities
in [0, 1] are ranged over by ρ, σ and atomic actions are ranged over by a. Alternatively
an element of PAct can be written as ρ · a, denoting action a with probability ρ. Note
that the notation · is used for three different operations: For concatenation of words as in
w · w′, for multiplication of numbers as in ρ · σ and for forming (probability,action)-pairs
as in ρ · a. The first two are usually suppressed in the notation; ww′ is written for the
word w followed by the word w′ and ρσ is written for the product of ρ and σ.

Definition 3.3.3 The transition system Tp is given by Tp = (Conf, PAct, → , Spec). A

transition (r, α, r′) ∈ → is written as r
α
→ r′.

The specification Spec consists of

• a
1·a
−→E (Act)

•

s1
α
→ r

s1; s2
α
→ r; s2 (Seq)

•

D(x)
α
→ r

x
α
→ r (Rec)

•

s1
σ·a
−→ s

s1 ⊕ρ s2
ρσ·a
−→ s (Chance 1)

s2 ⊕ρ s1
(1−ρ)σ·a
−→ s (Chance 2)

where r; s2 in rule (Seq) should be read as s2 if r = E.

3.3. THE SYNTAX AND OPERATIONAL SEMANTICS OF Lp 33

The axioms and rules given above are actually axiom-schemas and rule-schemas. The

axiom-schema (Act) indicates that the axiom a
1·a
−→E (Act) is in Spec for every action

a ∈ Act. Below the term “the axiom (Act)” is used when formally one should refer to the
axiom (Act) for a specific action a ∈ Act, the action-schema (Act), or the set of axioms
with name (Act). The same is done for the rule-schemas: No distinction is made between
a rule-schema and the actual rules it represents.

The axiom (Act) expresses that the statement consisting of only the action a takes
an a transition with probability 1 after which it is finished. The Rule (Rec) takes care of
recursion by body replacement. To execute a procedure x, the body D(x) of the procedure
has to be executed. The rule (Seq) states that s1 ; s2 behaves like s1 until s1 is done (the
case that r = E) and after that behaves like s2 (since E ; s2 = s2). The statement s1⊕ρ s2
acts like s1 with probability ρ; the statement s2 ⊕ρ s1 acts like s1 with probability 1− ρ.

With the rules for probabilistic choice there is a subtle point that has to be dealt with.
It may be possible to derive the same transition more than once. The easiest example is

s = a⊕ 1
2
a. The transition s

1
2
·a
−→E can be derived twice. (See example 3.3.4 below.) This

is not the same as having the transition once, because the total probability of s performing
an action should be 1, not 1

2 . This requires taking the multiplicity of a transition into
account when defining the operational semantics.

Example 3.3.4 Let s be the statement a ⊕ 1
2
a. There exist two different proof trees for

the specification in Tp deriving the same transition:

a
1·a
−→E

(Act)

a⊕ 1
2
a

1
2
·a
−→E

(Chance 1)
a

1·a
−→E

(Act)

a⊕ 1
2
a

1
2
·a
−→E

(Chance 2)

Thus the multiplicity of the transition s
1
2
·a
−→ s is 2, i.e. s

1
2
·a
−→2 s.

Example 3.3.4 shows a transition with multiplicity two. Using the multiplicity of the
transition is essential to prevent “losing probability” when two alternatives of a proba-
bilistic choice are the same and happen with the same probability. The total probability
of taking an action is 1 for every statement when the multiplicities are taken into account.
This fact is proven in lemma 3.3.9 below.

Example 3.3.5 Let D(x) = (a⊕ρ b) ; c. We have a
1·a
−→E, b

1·b
−→E and c

1·c
−→E by axiom

(Act) so

(a⊕ρ b)
ρ·a
−→ E rule (Chance 1)

(1−ρ)·b
−→ E rule (Chance 2)

(a⊕ρ b) ; c
ρ·a
−→ c rule (Seq)

(1−ρ)·b
−→ c rule (Seq)

x
ρ·a
−→ c rule (Rec)

(1−ρ)·b
−→ c rule (Rec)

c
1·c
−→ E rule (Act)

c

1 · c

E

c

1 · c

E

x

(1−ρ) · bρ · a

34 CHAPTER 3. MODELING PROBABILISTIC CHOICE

For a statement s the transition that can be taken during the execution of s can be
represented as a tree. The root of the tree is s itself. The first level of the tree are the
transitions of s. The second level of the tree are the transitions of the resumptions that
s can reach, etc. The tree that is generated in this way is called the transition tree for s.
Transition trees are depicted with the root of the tree at the top. In example 3.3.5 above
the transition tree for the statement x is shown. Often the names of the resumptions
labeling the nodes of the tree are removed, keeping only the observable behavior of the
transitions (see e.g. example 3.3.10).

Definition 3.3.6 The successor (multi)set of a resumption r denoted by Suc(r), is the
multiset of possible actions that r can execute, together with their corresponding resump-
tions. As E can take no actions Suc(E) = ∅. For a statement s, 〈α, r〉 ∈n Suc(s) exactly

when s
α
→n r.

The successor set Suc(s) of s gives all possible steps for the statement s with the correct
multiplicity. If → is seen as a multiset, as explained directly below definition 3.3.2, the
successor set of a statement can also be described by Suc(s) = {| 〈α, r〉 | s

α
→ r |}.

Example 3.3.7

(a) (See example 3.3.4.) Let s = a⊕ 1
2
a. Then s

1
2
·a
−→2 E so Suc(s) = {| 〈

1
2 ·a,E〉, 〈

1
2 ·a,E〉 |}.

(b) (See example 3.3.5.) Let s = x with D(x) = (a ⊕ρ b); c. Then s
ρ·a
−→ c and s

(1−ρ)·b
−→ c

so Suc(s) = {| 〈ρ · a, c〉, 〈(1− ρ) · b, c〉 |}.

For a statement s the successor set Suc(s) is specified in definition 3.3.6 by giving its
elements with their multiplicity. To show that this indeed specifies a finite multiset, the
number of successors of s has to be shown to be finite and each successor must have a
finite multiplicity. Also, as the probability to do some step is 1 for every statement s, the
probabilities in Suc(s) should add up to 1. Lemma 3.3.9 below shows these properties.

The lemma is proven by weight induction: In a transition s
a
→ s′ the statement s on the

left-hand side of the arrow is referred to as the starting statement of the transition. The
starting statement D(x) in the premise of rule (Rec) is not syntactically simpler than the
starting statement x in the conclusion of the rule. Structural induction cannot be used
to show facts such as: For every transition there is a limit to the height that any proof
tree for the transition can have. Also for other properties, structural induction is not
sufficient. The restriction to guarded recursion prevents problems with the rule (Rec).
The procedure variable x can still be seen as “more complex” than the guarded statement
D(x). The complexity of a statement can be formally defined by giving a weight to each
resumption using a weight function wgt. Induction on the weight of a statement, called
weight induction, replaces structural induction.

Definition 3.3.8 The function wgt:Res→ N is given by

wgt(E) = 0

wgt(a) = 1

3.3. THE SYNTAX AND OPERATIONAL SEMANTICS OF Lp 35

wgt(x) = wgt(D(x)) + 1

wgt(s1 ; s2) = wgt(s1) + 1

wgt(s1 ⊕ρ s2) = wgt(s1) + wgt(s2) + 1

That the weight function wgt is well-defined is easy to see by structural induction, first
on guarded statements and then on all resumptions. For every rule in Tp the starting
resumptions of the premises of the rule are less complex, i.e. have a lower weight, than
the starting resumption of the conclusion of the rule. This makes weight induction a
useful way to prove properties about the transition system. Weight induction is also
useful when specifying the denotational semantics and when comparing the operational
and denotational semantics.

Lemma 3.3.9 For Tp the following holds.

(a) Tp is finitely branching, that is, for all resumptions r ∈ Res, Suc(r) is a finite multiset.

(b) For all statements s ∈ Stat the sum of the probabilities in Suc(s) is 1.

Proof By induction on the weight of the resumption r for (a) and the weight of the
statement s for (b).

• The successor set of E is empty so this set is definitely finite.

• The statement a has only one transition: Suc(a) = {| 〈1 · a,E〉 |}. Clearly Suc(a) is
finite and the sum of the probabilities is 1.

• The successor set of x, Suc(x), is exactly the same as Suc(D(x)) and the weight of
D(x) is less than that of x. Therefore, we are done by induction.

• As is clear from rule (Seq) and the absence of any other rules for s1; s2, the successor
set of s1; s2 is equal to {| 〈α, r; s2〉 | 〈α, r〉 ∈ Suc(s1) |}. As wgt(s1) < wgt(s1; s2),
Suc(s1) is finite and the probabilities in Suc(s1) sum up to 1 by induction. The
same properties follow immediately for Suc(s1; s2).

• As can be seen from the rules (Chance), the successor set of s1⊕ρ s2 is the union of
{| 〈ρσ ·a, r〉 | 〈σ ·a, r〉 ∈ Suc(s1) |} and {| 〈(1− ρ)σ ·a, r〉 | 〈σ ·a, r〉 ∈ Suc(s2) |}. As the
weights of s1 and s2 are both less than the weight of s1; s2, by induction both Suc(s1)
and Suc(s2) are finite. But then clearly also {| 〈ρσ · a, r〉 | 〈σ · a, r〉 ∈ Suc(s1) |} and
{| 〈(1− ρ)σ ·a, r〉 | 〈σ ·a, r〉 ∈ Suc(s2) |} are finite and so is their union, Suc(s1⊕ρ s2).
Also by induction, the probabilities sum up to 1 in Suc(s1) so they sum up to ρ in
{| 〈ρσ · a, r〉 | 〈σ · a, r〉 ∈ Suc(s1) |} and the probabilities in Suc(s2) sum up to 1 so in
{| 〈(1− ρ)σ ·a, r〉 | 〈σ ·a, r〉 ∈ Suc(s2) |} the probabilities sum up to 1−ρ. Therefore,
in Suc(s1 ⊕ρ s2) the probabilities sum up to ρ+ (1− ρ) = 1. 2

The successor set describes the possible first steps of a resumption. These steps are
obtained from the transition system. Before the operational semantics, which describes
the complete observable behavior of a program, can be given, the operational domain Po
is introduced in the next subsection.

36 CHAPTER 3. MODELING PROBABILISTIC CHOICE

3.3.4 The operational domain; the functor Meas

As described in the introduction, the transition system contains information that cannot
be observed. For the operational semantics, which only gives observable behavior, this
information should be removed. The configuration of the abstract machine during the
execution of a program is one thing that cannot be seen. Another thing which cannot be
observed is when a probabilistic choice is made. The information about the configurations
can be removed by looking at abstract transition trees. An abstract transition tree is a
transition tree in which the configurations labeling the nodes have been removed. The
two statements in example 3.3.10 below produce the same observable behavior but have
different abstract transition trees, showing that the abstract transition trees still contain
information which is not observable.

Example 3.3.10 The statements s1 = a ; (b⊕ρ c) and s2 = (a ; c)⊕ρ (a ; b) have the same
observable behavior (sequence ac with probability ρ and sequence bc with probability 1−ρ).
The abstract transition trees for both statements are different.

ρ · a (1− ρ) · a

1 · b 1 · c

1 · a

ρ · b (1− ρ) · c

s = (a; b)⊕ρ (a; c) s = a; (b⊕ρ c)

The difference between the statements in this example is the moment the probabilistic
choice is made. The observable behavior of both statements is sequence ab with probability
ρ and sequence ac with probability 1− ρ. The fact that the probabilistic choice is made
later for the second statement cannot be observed from sequences of actions that are
produced, i.e. the moment of choice is not part of the observable behavior of a statement.
To obtain only the observable behavior, the moment of choice has to be abstracted away
from. To this end the domain of behaviors is given as a linear domain. In a linear domain,
the moment of choice is removed. A linear representation of the meaning of a program is
basically a collection of sequences where each sequence corresponds to a possible execution
of the program.

Definition 3.3.11 The set of all finite sequences of action in Act is denoted by Act?,
the set all infinite sequences of action in Act is denoted by Actω. The set Act∞ is the set
of finite or infinite sequences, Act∞ = Act? ∪Actω. The distance on each of these sets is
the Baire metric (see example 2.1.3).
Furthermore, ε is written for the the empty sequence, and w ·w′ for the concatenation

of the sequences w and w′. The concatenation w ·S of a sequence w with a set of sequences
S is given by w · S = {w · w′ | w′ ∈ S }.

The operator · for the concatenation is usually omitted from the notation, e.g. ww′ is
written instead of w · w′.

In a probabilistic setting, the probability of the sequences should also be incorporated.
This cannot be done by simply adding a probability to each sequence as can be seen from
the statement s in the following example.

3.3. THE SYNTAX AND OPERATIONAL SEMANTICS OF Lp 37

Example 3.3.12 Let the statement s be given by:

s = x

D(x) = (a⊕ 1
2
b) ;x

The statement s can produce any infinite sequence of a’s and b’s. For a given infinite
sequence, the probability to execute the first action of the sequence is 1

2 , the probability to
execute the first two actions of the sequence is 1

4 , etc. Thus the probability of executing
the entire infinite sequence is 0.
The probability of executing some sequence starting with ab is 1

4 , but the probability
for each of these sequences separately is 0.

There are too many possible sequences of actions to let the probability of single sequences
describe the probability of all “observable events”. The next question is, what exactly is
an observable event? Clearly “executing some sequence starting with ab” is something
that can be observed, i.e. this is an observable event. The probability of this event can be
found by running the program often and checking how often it starts with ab. An other
event which can be observed is “exactly the sequence ab is executed”. These events can
be reformulated as “the sequence produced is in the set {w ∈ Act∞ | w starts with ab }=
abAct∞” and “the sequence produced is in the set { ab }”. The events can be described
by a set of sequences. The sets wAct∞ and {w } for w ∈ Act? are exactly the open balls
in Act∞. The event “the sequence produced does not start with ab” is also observable.
In general, the complement of an observable event is also an observable event. Similarly
one can observe the event “the sequence produced starts with ab or with aa”. In general,
the (countable) union of observable events is again an observable event. So the collection
of observable events should contain the open balls and be closed under complement and
countable union. A collection of sets that satisfies these properties are the Borel sets over
Act∞.

Definition 3.3.13 Let M be an ultrametric space.

(a) A σ-algebra A overM is a collection of subsets ofM which is closed under complement
and countable union.

(b) The σ-algebra over M generated by a collection of subsets of M is the least σ-algebra
containing all the sets in the collection.

(c) The collection B(M) of Borel sets over M is the σ-algebra generated by the open
subsets of M .

The notion of an observable event can now be made formal: an observable event is a Borel
set. As the probability of an observable event cannot be found by adding the probabilities
of all sequences in the observable event, the probability for all observable events has to be
given directly. This can be done by a function from the observable events to [0, 1]. The
function has to satisfy the calculation rules for probabilities, e.g. the probability assigned
to the union of nonoverlaping events should be the sum of the probabilities assigned to
the events. A function like this is called a measure.

In the definition below the functor Meas is introduced that yields the space of all
measures over a given ultrametric space.

38 CHAPTER 3. MODELING PROBABILISTIC CHOICE

Definition 3.3.14 Let M be an ultrametric space.

(a) A measure onM , or more precisely a Borel probability measure onM , is a function µ :
B(M)→ [0, 1] such that µ(M) = 1 and µ is σ-additive, i.e. µ(∪i∈IAi) =

∑
i∈I µ(Ai)

for any countable collection of pairwise disjoint sets Ai (for i ∈ I).

(b) A measure µ is said to have compact support if µ vanishes outside some compact set
K, i.e. µ(M \K) = 0 thus µ(K) = 1. In this case the support spt(µ) of µ is defined
as the smallest compact set K for which µ(M \K) = 0.

(c) Meas(M) denotes the space of all measures with compact support on M .

(d) The distance dMeas on Meas(M) is defined by

dMeas(µ, ν) = inf{ ε > 0 | ∀x ∈M : µ(Bε(x)) = ν(Bε(x)) }

Throughout this chapter the term measure refers to a Borel probability measure with
compact support. The support spt(µ) of a measure µ is obtained as the intersection of
all compact sets K with µ(K) = 1. That dMeas is indeed a metric on Meas(M) is shown
in lemma 3.3.16. For technical reasons it is in general not possible to give the probability
for any set (see e.g. [102]). A measure only gives the probability for Borel sets.

The Borel sets over Act∞ contain all finite sets, all sets of the form wAct∞ for w ∈
Act? but also all sets that can be obtained by be taking complements and unions. It is
sufficient, however, to know the probabilities for the events of the form {w } and wAct∞

for w ∈ Act?. (Recall that these are the open balls.) If these probabilities are known,
the probabilities of the other events are fixed by general properties of probabilities that a
measure must satisfy.

Lemma 3.3.15 If two (compact support Borel probability) measures µ and µ′ coincide
on the open balls of an ultrametric space M , they are the same.

Proof It is first shown that the two measures coincide on all sets in Oε = {O ⊆M | x ∈
O ⇒ Bε(x) ⊆ O } (for all ε > 0). A basic result from measure theory can then be used to
show that µ and µ′ are the same.

For a given ε > 0 take a finite collection of points x1, . . . xn such that both µ and µ′

vanish outside Bε(x1) ∪ . . . ∪ Bε(xn). Clearly such a collection of points exists as the
collection of all ε-balls is a cover of M and both µ and µ′ vanish outside some compact
set which must have a finite subcover. The balls Bε(x1), . . . ,Bε(xn) can be assumed to
be pairwise disjoint because if two of these balls intersect, they must be equal due to
ultrametricity and one of the two can be removed. Also, for a given set O ∈ Oε, a ball
Bε(x) is either completely inside O or completely outside O.

µ(O) = µ(∪n
i=1Bε(xi) ∩O)

= µ(∪{Bε(xi) | xi ∈ O, i = 1, . . . , n })

=
∑
{µ(Bε(xi)) | xi ∈ O, i = 1, . . . , n }

=
∑
{µ′(Bε(xi)) | xi ∈ O, i = 1, . . . , n }

= µ′(∪{Bε(xi) | xi ∈ O, i = 1, . . . , n })

= µ′(∪n
i=1Bε(xi) ∩O)

= µ′(O)

3.3. THE SYNTAX AND OPERATIONAL SEMANTICS OF Lp 39

The two sums are equal because the two measures coincide on balls.
We have now shown that the measures coincide on the ring O∗ =

⋃
ε>0Oε. The σ-ring

generated by O∗ is the collection of all Borel sets. A basic result from measure theory
states that there exists a unique extension of a measure on a ring to the σ-ring generated
by the ring. (See e.g. [102].) Therefore, two measures which coincide on O∗ must also
coincide on all Borel sets. 2

The lemma is used to show that Meas(M) with distance dMeas is a metric space. It
also allows defining a measure by giving the probabilities of open balls only, because the
probabilities of the other events are then fixed. This fact is used e.g. in section 4.3.

Lemma 3.3.16 For any ultrametric spaceM , the spaceMeas(M) is an ultrametric space.
If M is complete, then so is Meas(M).

Proof That dMeas is an ultrametric is straightforward using lemma 3.3.15 above. For
completeness of Meas(M) for a complete space M , we follow the reasoning of [189].

Assume that M is a complete ultrametric space. The notation Oε = {O ⊆ M | x ∈
O ⇒ Bε(x) ⊆ O } (for ε > 0) and O∗ =

⋃
ε>0Oε from lemma 3.3.15 is again used. Let

(µi)i∈N be a Cauchy sequence of compact support measures on O∗. We show that the
point wise limit µ∞ of this Cauchy sequence is again a compact support measure on O∗.
To prove this we need to show that µ∞(M) = 1, that µ∞ is σ-additive and that µ∞ has
compact support. That µ∞(M) = 1 is directly clear.

First some auxiliary properties are shown followed by the compactness of the support
of µ∞ and finally the σ-additivity of µ∞.

(a) For all closed sets sets E,F ⊆ M we have that d(E,F) ≤ ε exactly when ∀O ∈ Oε :
E ∩O = ∅ ⇐⇒ F ∩O = ∅.

(b) For all measures ν1, ν2 in Meas(M) we have d(spt(ν1), spt(ν2)) ≤ d(ν1, ν2).

(c) A measure ν has compact support spt(ν) = K exactly when for every open set O in
O∗, ν(O) = 0 ⇐⇒ O ∩K = ∅.

(d) The function µ is finitely additive.

(e) The set limi→∞ spt(µi) exists and is compact. The support of µ∞ is equal to this set,
i.e. spt(µ) = limi→∞ spt(µi).

(f) The function µ∞ is σ-additive.

Finally using property (b) the sequence spt(µi) is a Cauchy sequence of compact sets. By
completeness of the space of compact sets (cf. [38]) its limit exists and is compact.

(a) This property follows from the definition of the Hausdorff distance on closed sets.

(b) This property is straightforward from property (a).

(c) If ν is a compact support measure then clearly ν(O) = 0 ⇐⇒ O ∩ spt(ν) = ∅ for
every open set O. If ν(O) = 0 ⇐⇒ O ∩ K = ∅ for every open set in O∗ then ν
vanishes outside of K so ν has compact support. It is straightforward to check that
spt(ν) = K.

40 CHAPTER 3. MODELING PROBABILISTIC CHOICE

(d) The finite additivity of µ∞ is immediate from the finite additivity of each of the
measures µi.

(e) Property (b) shows that the sequence spt(µi) is a Cauchy sequence of compact sets.
By completeness of the space of compact sets (cf. [38]) its limit exists and is compact.
Property (c) is used to show that µ∞ has compact support and that the support of
µ∞ is given by spt(µ∞) = limi→∞ spt(µi): Let O ∈ Oε and let i > iε. Then

O ∩ (limi→∞ spt(µi)) = ∅
⇐⇒ [property (a), i > iε] O ∩ spt(µi) = ∅
⇐⇒ [property (c)] µi(O) = 0
⇐⇒ [i > iε] µ∞(O) = 0

(f) Let (Oi)i∈N be a sequence of disjoint sets in O∗ such that ∪i∈NOi is also a set in O∗.
Then ∪i∈NOi ∈ Oε for some ε > 0. But then O′ = M \ (∪i∈NOi) is also a set in Oε

so in particular, this is an open set. The sets O′ and Oi for i ∈ N cover the compact
support set spt(µ∞). As the sets are disjoint, only finitely many of these sets can
intersect spt(µ∞). Let I be the finite set of indices of sets Oi that intersect spt(µ∞).

µ∞(∪∞i=1Oi) = µ∞(∪i/∈IOi ∪ ∪i∈IOi)

[finite additivity] = µ∞(∪i/∈IOi) +
∑

i∈Iµ(Oi)

= 0 +
∑

i∈Iµ∞(Oi)

=
∑

i/∈Iµ∞(Oi) +
∑

i∈Iµ∞(Oi)

=
∑∞

i=1µ∞(Oi) 2

As Meas yields a complete ultrametric space for any given complete ultrametric space, the
domain Meas(Act∞), which consists of all measures over sequences of actions, is also a
complete ultrametric space. More complex domains can also be defined by using Meas in
domain equations. To allow the use of Meas in domain equations, it is defined as functor
on CUMS by giving Meas(f) for each nonexpansive function f .

Lemma 3.3.17 Let M,N be complete ultrametric spaces and f :M → N a nonexpansive
function. Define Meas(f) : Meas(M)→ Meas(N) by

Meas(f)(µ)(B) = µ(f−1(B))

Then Meas is a locally nonexpansive functor on CUMS.

Proof Let f, g : M → N be two nonexpansive functions. If d(f, g) ≤ ε then for all
x ∈ M we have that f−1(Bε(x)) = g−1(Bε(x)) holds. But then Meas(f)(µ)(Bε(x)) =
µ(f−1(Bε(x))) = µ(g−1(Bε(x))) = Meas(g)(µ)(Bε(x)) for all µ ∈ Meas(M). This means
that if d(f, g) ≤ ε then d(Meas(g),Meas(f) ≤ ε. As this holds for all ε > 0 we have
d(Meas(g),Meas(f) ≤ d(f, g). 2

The domain Po used for the operational semantics consists of the space of measures over
sequences of actions. When working with measures over the space of sequences of actions,
the function •/a plays an important role.

3.3. THE SYNTAX AND OPERATIONAL SEMANTICS OF Lp 41

Definition 3.3.18

(a) The operational domain Po is given by

Po = Meas(Act∞)

(b) The function •/a : B(Act∞)→ B(Act∞) is given by B/a = {w | aw ∈ B }.

(c) The function •/a : Meas(Act∞)→ Meas(Act∞) is given by µ/a(B) = µ(B/a).

If B is a Borel set then B/a is also a Borel set. The operation •/a on measures is the
lifting to measures of prefixing with action a as is done by Meas: µ/a = λB.µ({w | aw ∈
B }) = Meas(λw.aw)(µ). The measure µ/a is called the measure along prefix a.

Example 3.3.19 Let a, b be actions in Act.

(a) The sets { ε }, { ababab · · · }, { a, aa, aaa, . . . } and { aw | w ∈ Act∞ } are in B(Act∞).
Each of these sets is either open or closed. The set { ababab · · · } ∪ { a, aa, aaa, . . . }
is neither open nor closed but is still a Borel set because it is the union of two Borel
sets (a closed and an open set).

(b) The sets { ε }/a = ∅, { ababab · · · }/a = { babab · · · }, { a, aa, aaa, . . . }/a =
{ ε, a, aa, . . . } and { aw | w ∈ Act∞ }/a = Act∞ are also in B(Act∞).

(c) There exists a measure µ such that for any word w in { a, b }∗: µ(wAct∞) = 1
2

|w|
i.e.

µ(aAct∞) = 1
2 , µ(bAct

∞) = 1
2 , µ(aaAct

∞) = 1
4 , µ(abAct

∞) = 1
4 , etc. This measure

describes the meaning of the statement x with D(x) = (a⊕ 1
2
b);x.

(d) If a measure µ satisfies µ({ ε }) = 1
2 and µ({ baba · · · }) = 1

2 , then µ/a satisfies
µ/a({ a }) = 1

2 and µ/a({ ababa · · · }) =
1
2 .

The last example above shows why the operation •/a can be seen as action prefixing on
measures.

3.3.5 Operational semantics: The function O

With the operational domain in place, the operational meaning of resumptions can be
given. For an element x ∈M the measure ∆x : B(M)→ { 0, 1 } is given by

∆x(B) =

{
1 if x ∈ B
0 otherwise

The measure ∆x is called the Dirac measure at x. The Dirac measure at x assigns all
probability to x.

Definition 3.3.20 The operational model O : Res→ Po is given by

O(E) = ∆ε

O(s) =
∑

s
ρ·a
−→n r

n · ρ · O(r)/a

42 CHAPTER 3. MODELING PROBABILISTIC CHOICE

The empty resumption produces no actions, so its observable behavior is ε (the empty
sequence) with probability 1. The measure O(r)/a is the measure O(r) along prefix a.
Recall that taking the measure along prefix a can be seen as prefixing with action a,
i.e. O(r)/a can be read as a followed by the meaning of r. The probability that a given
event B occurs when executing the statement s, i.e. O(s)(B), is obtained by adding the
probabilities for event B for each step that s can take. To obtain a sequence in B when s
executes an action a and end up with resumption r, the resumption r must produce a
sequence w such that aw is in B, i.e. r must produce a sequence in B/a. The probability

that r produces such a sequence is O(r)(B/a) = (O(r)/a)(B). If the transition s
ρ·a
−→ r

occurs n times (s
ρ·a
−→n r) then this transition contributes n·ρ·O(r)(B/a) to the probability

of the event B.
The definition can be justified by showing that it is the fixed point of a higher-order

transformation:

Lemma 3.3.21 Let Sem = Res → Po, let S range over Sem and let Φ : Sem → Sem be
given by

Φ(S)(E) = ∆ε

Φ(S)(s) =
∑

s
ρ·a
−→n r

n · ρ · S(r)/a

Then Φ has a unique fixed point, and therefore there is exactly one function O satisfying
the equations in definition 3.3.20.

Proof It is sufficient to show that Φ is a contractive function; using Banach’s theorem
this gives that Φ has a unique fixed point.

Let ε>0 and S1, S2 ∈ Sem with d(S1, S2)<ε be given. To show that d(Φ(S1),Φ(S2)) ≤
1
2ε holds it is sufficient to show that Φ(S1)(r)(B 1

2
ε(w)) = Φ(S2)(r)(B 1

2
ε(w)) holds for all

r ∈ Res and w ∈ Act∞. As Φ(S1)(E) = ∆ε = Φ(S2)(E) the case r = E is clear.
For the case r = s with s ∈ Stat note that

B 1
2
ε(aw)/b =

{
∅ if a 6= b
Bε(w) otherwise

For each resumption r ∈ Res and sequence w ∈ Act∞, S1(r)(Bε(w)) equals S2(r)(Bε(w))
as d(S1, S2) < ε. Since also S1(r)(∅) = 0 = S2(r)(∅), we have that S1(r)(B 1

2
ε(w)/a) =

S2(r)(B 1
2
ε(w)/a), for all r ∈ Res, w ∈ Act∞.

Φ(S1)(s)(B 1
2
ε(w)) =

∑

s
ρ·a
−→n r

n · ρ · S1(r)(B 1
2
ε(w)/a)

=
∑

s
ρ·a
−→n r

n · ρ · S2(r)(B 1
2
ε(w)/a)

= Φ(S2)(s)(B 1
2
ε(w)) 2

Lemma 3.3.21 illustrates the use of a higher-order function to justify the reflexive defi-
nition of the operational semantics. The higher-order characterization of the operational

3.4. THE DENOTATIONAL SEMANTICS OF Lp 43

semantics is also used in section 3.5 to show correctness of the denotational model with
respect to the operational model.

The operational semantics for Lp should be given for programs. The function O,
however, gives the meaning of resumptions. To remove this small discrepancy we define:

Definition 3.3.22 The operational semantics O[[•]] : Lp → Po for Lp is given by O[[s]] :=
O(s).

The operational semantics O[[•]] is the same as the operational model O but restricted to
programs in Lp.

3.4 The denotational semantics of Lp

The operational semantics gives the observable behavior of a program through use of a
transition system. The transition system describes an abstract machine which runs the
program. There is also a more abstract way of thinking about a program. For example
the intuition behind the program s1; s2 is, first behave like s1, then like s2. This way of
describing the meaning of statement s1; s2 works for all statements s1 and s2 independent
of the actual transitions that these statements produce. Of course the description “behave
like s1 and then like s2” still has to be made precise by giving the meaning of s1 and s2
and a way to compose these meanings.

In general one can think of the meaning of a program in terms of the meanings of
the parts of the programs and a way to compose these meanings: The meaning of a
program is built using the compositionality principle. In this section the denotational
semantics for Lp is given. The denotational semantics of a program is obtained by using
the compositionality principle. The meaning of a basic program is given as an element of
the denotational domain Pd and semantical operations ; and ⊕ρ on Pd are introduced to
compose these meanings. In this way the meaning can be given for programs built with
the syntactical operators ; and ⊕ρ.

The denotational domain Pd is a branching domain. The elements of Pd are called
processes. At each point a process can probabilistically select the next action. This means
that a process which makes a choice before executing the first action can be distinguished
from a process which makes a choice after executing the first action even if the processes
produce the same sequences with the same probabilities. On the processes in Pd, the
operations ⊕ρ and ; can easily be defined. The branching information is not strictly
necessary for the language Lp, a denotational semantics can also be given on a linear
domain as is done in chapter 5. For extensions of the language (e.g. as in chapter 4) the
branching information is really needed.

In a branching domain, the number of probabilistic options is finite at each stage. A
probabilistic choice can be described by simply listing the probabilistic options together
with their probability. As in the transition system, the same options may appear more
than once. The statement a ⊕ 1

2
a has two a transitions to E. Similarly, in the meaning

of a⊕ 1
2
a, the option “a with probability 1

2” should appear twice. A probabilistic choice
should therefore be modeled with multisets rather than with sets.

The set of all multisets over a given set is defined in section 3.2. When used in the
denotational domain, a metric structure has to be defined on multisets. The functorMPf

44 CHAPTER 3. MODELING PROBABILISTIC CHOICE

constructs the metric space of all finite multisets over a given metric space. An important
property of the functor MPf is that the functor is locally nonexpansive. That MPf is
locally nonexpansive is important for the existence of a unique solution of the domain
equations which define the denotational domain Pd.

The next subsection introduces the functor MPf . The denotational domain and the
semantical operations are defined in subsection 3.4.2. The denotational semantics is given
in subsection 3.4.3.

3.4.1 Multisets over metric spaces: The functor MPf

In this subsection the functor MPf that yield an ultrametric space MPf (S) of multisets
over a given ultrametric space S is defined. Next it is shown that for a complete ultrametric
space S the space MPf (S) is also complete, making MPf an endo-functor on CUMS.
Finally MPf is defined on nonexpansive mappings (the arrows of CUMS) and shown to
be locally nonexpansive.

Recall from definition 3.2.1 that a labeling with elements of a space S, L ∈ L(S), is a
function from N to S+{ ∗ }. If S is a metric space equipped with metric d then the metric
dLab on L(S) is given by

dLab(L1, L2) = sup{ d∗(L1(n), L2(n)) | n ∈ N }

where the metric d∗ on S+{ ∗ } is given by d∗(x, x
′) = d(x, x′), d∗(∗, ∗) = 0 and d∗(∗, x) =

d∗(x, ∗) = 1 for x, x′ ∈ S. The metric d∗ is the metric on S + { ∗ } generated by d and
dLab is the metric on N→ (S+{ ∗ }) generated by d∗. The distance of two labelings is the
largest distance between the labels assigned to any n ∈ N. The distance between a label
in s and an undefined label ∗ is one. As there are only finitely many labels not equal to
∗, the supremum used in the definition is actually a maximum.

The metric dMPf on MPf (S) is defined as follows:

Definition 3.4.1 Let L1, L2 be two labelings. The distance between the multisets L1 and
L2 is given by

dMPf (L1, L2) = min{dLab(L,L
′) | L ∈ L1, L

′ ∈ L2}

The distance between multisets is the minimum distance between labelings representing
the multisets. Equivalently we can put

dMPf (L1, L2) = min{dLab(L1 ◦ Φ, L2) | Φ : N→ N is a bijection}

where the representative for one of the multisets is fixed and a closest labeling for the
other multiset is taken. Calculating the distance can be seen as pairing up the elements
of both multisets (choosing Φ) and taking the largest distance within a pair (dLab). Note
that the distance between two multisets with a different number of elements is always 1.

Clearly dMPf (L1, L2) ≤ 1. Any bijection Φ which gives dLab(L1 ◦Φ, L2)< 1 must map
the support of L2 to the support of L1. The behavior of Φ on the rest of N is irrelevant
for the distance dLab(L1 ◦ Φ, L2). As there are only finitely many ways to map the finite

3.4. THE DENOTATIONAL SEMANTICS OF Lp 45

support of L2 to the finite support of L1, there are only finitely many possible distances
less than one and therefore the minimum used in the definition exists. Having shown
that dMPf is a well-defined function, showing that dMPf is a metric is straightforward.

Example 3.4.2 Consider S = { a, b }∞, with the Baire metric. Define the multisets M1

and M2 over S by:

M1 = {| ab, ab, b |}

M2 = {| ab, abb, b |}

then dMPf (M1,M2) = 1
4 . The elements can be paired as follows: The first ab from the

multiset M1 is compared with ab from M2, the second ab from M1 is compared with abb
from M2 and b from M1 is compared with b from M2. The maximum distance that is
obtained in this way is 1

4 .

Using the formal definition a representative L1 is chosen for M1. A labeling L2 in the
class M2 with minimum distance to L1 is then sought. The two possible choices for L2

are the one below and L2 with L2(1) and L2(2) reversed.

L1(1) = ab L2(1) = ab L1(x) : ab ab b ∗
L1(2) = ab L2(2) = abb x : 1 2 3 . . .
L1(3) = b L2(3) = b L2(x) : ab abb b ∗

The distance between the labelings L1 and L2 is
1
4 .

The next step is showing that (MPf (S), dMPf) is complete and ultrametric for any com-
plete ultrametric space (S, d) in CUMS.

Lemma 3.4.3 If (S, d) is a complete ultrametric space, then (MPf (S), dMPf) is also a
complete ultrametric space.

Proof Showing that dMPf is an ultrametric is straightforward. For completeness of
(MPf (S), dMPf) consider a given Cauchy sequence of multisets (Mi)i∈N. Fix a repre-
sentation L1 for the first element M1. For M2 choose a representation L2 with min-
imum distance to L1. For M3 choose a representation L3 with minimum distance to
L2, etc. The sequence of labelings obtained by doing this is also a Cauchy sequence as
d(Li, Li+1) = d(Mi,Mi+1). The Cauchy sequence of labelings must have a limit L∞ in
N→ (S + { ∗ }) as this space of labelings is complete. That L∞ again has finite support
is clear from the fact that two labelings which are close must have the same support. It
is easy to see that L∞ is the limit of the sequence of multisets. 2

The space of all finite sets over a space S ∈ CUMS is not complete: For example the
Cauchy sequence (Xi)i∈N given in example 3.4.4 below does not have a finite set as its
limit. The metric on multisets, however, is significantly different from the Hausdorff
distance on sets. Two sets which are close in the Hausdorff sense can still have distance
1 if interpreted as multisets (with multiplicity 1 for each element).

46 CHAPTER 3. MODELING PROBABILISTIC CHOICE

Example 3.4.4 Take for S the space {a}∞ consisting of all (possibly infinite) sequences
of a’s, then the following holds:

dH({ a, aa, aaa }, { a, aa }) = 1
4

dMPf ({| a, aa, aaa |}, {| a, aa |}) = 1

where dH is the Hausdorff distance on sets. The second distance is 1 since the first multiset
contains more elements than the second. Irrespective of the representation, one element
of the first multiset will always be compared with ∗.
For i ∈ N let Xi = { a, aa, . . . , a

i } andMi = {| a, aa, . . . , a
i |} then (Xi)i∈N is a Cauchy

sequence in Pf (S) but (Mi)i∈N is not a Cauchy sequence inMPf (S).

As an aside, the following relation exists: If two multisets are close then so are the sets
obtained by forgetting multiplicity. Also if two finite sets are close then there are two
multisets which contain the same elements as the sets (but possibly more than once) that
are also close. In example 3.4.4 above, one could take {| a, aa, aa |} for the second multiset.

By defining MPf on nonexpansive functions, MPf becomes an endo-functor on CUMS,
the category of complete ultrametric spaces.

Definition 3.4.5 Let S1, S2 be complete ultrametric spaces in CUMS and let g be a non-

expansive function from S1 to S2 thenMPf (g) :MPf (S1)
1
→MPf (S2) is defined by

MPf (g)(L) = g∗ ◦ L

where L is a multiset inMPf (S1) and g
∗(x) =

{
g(x) if x ∈ S1
∗ if x = ∗

Using the notation introduced in definition 3.2.5 the definition can also be written as
MPf (g)(M) = {| g(x) | x ∈ M |} for any multiset M ∈ MPf (S1). This means that
a function is lifted to multisets by applying the function elementwise, so for exam-
ple MPf (g)({|x1, x2, . . . , xn |}) = {| g(x1), g(x2), . . . , g(xn) |}. Checking that the definition
does not depend on the choice of the representative L is again straightforward. It is also
easy to see that MPf (g) is a nonexpansive function.

Lemma 3.4.6 The functorMPf is locally nonexpansive.

Proof Let S1, S2 ∈ CUMS, g, h : S1
1
→ S2 and M ∈ MPf (S1). Choose a representative

L for the multiset M then:

d(MPf (g)(M),MPf (h)(M)) = d(g∗ ◦ L, h∗ ◦ L) ≤ d(g∗ ◦ L, h∗ ◦ L)

≤ d(g∗, h∗) = d(g, h)

That d(MPf (g),MPf (h)) ≤ d(g, h) follows since this inequality holds for every multi-
set M in MPf (S1). 2

Having this property available, the functor MPf can be used in domain equations. The
first place it is used is in the definition of the denotational domain Pd below.

Caution has to be observed when defining functions that return multisets. If such a
function f has to be contractive in an argument x, one has to see to it that the number of
elements in f(x) is independent of x. The following form of definition, not unusual when
working with sets, does not result in a contractive function f when using multisets.

3.4. THE DENOTATIONAL SEMANTICS OF Lp 47

Example 3.4.7 The function g:MPf ({ a, b }
∞
)→MPf ({ a, b }

∞
) given by

g(M) = {| aw | w ∈M |}

is not contractive, since

d(g({| a, b |}), g({| a |})) = d({| aa, ab |}, {| aa |}) = 1 = d({| a, b |}, {| a |})

Definitions of the form given in example 3.4.7 are typically used in linear domains. To
describe probability in a linear domain, measures are employed, as done in section 3.3.
Multisets are only used to describe probabilistic choices in a branching fashion.

3.4.2 A branching probabilistic domain: Pd

In this subsection, a branching domain of probabilistic processes, Pd, is defined. On Pd
semantical versions of the syntactical operators ; and ⊕ρ are given. The domain Pd is
defined by domain equations using the functorMPf . A probabilistic process has a choice
between several alternatives. Each alternative is an action together with a probability
that this action is chosen. An action may be followed by another process.

Definition 3.4.8 The denotational domain Pd is given by the following domain equations

Pd ' MPf (Qd)

Qd ' PAct+ PAct× id 1
2
(Pd)

Recall that PAct = [0, 1]×Act. As shown in lemma 2.2.10, a domain equation P = F(P)
has a unique solution up to isomorphism if the functor F is locally contractive. That the
functor MPf (PAct + PAct × id 1

2
(•)) is locally contractive follows directly from the fact

that MPf is locally nonexpansive. The domain equation for Pd has a unique solution up
to isomorphism. On the domain Pd the operations ⊕ρ and ; are defined as follows.

Definition 3.4.9 Let Op = Pd × Pd
1
→ Pd. The operations ⊕ρ, ; ∈ Op are given by

p⊕ρ p
′ = ρ p t (1− ρ) p′

p; p′ = {| 〈α, p′〉 | α ∈ p |} t {| 〈α, p′′; p′〉 | 〈α, p′′〉 ∈ p |}

Multiplication with a ratio ρ is defined on Qd by ρ(σ ·a) = ρσ ·a and ρ〈σ ·a, p〉 = 〈ρσ ·a, p〉.
The multiplication with ρ is lifted to multisets as specified by MPf , i.e. by multiplying
all elements of the multiset by ρ, thus

ρ{|x1, x2, . . . , xn |} = {| ρx1, ρx2, . . . , ρxn |}

That the operation ⊕ρ is well-defined follows directly from the fact that the operations
‘multiplying by ρ’ and t are nonexpansive. The definition of ; is recursive but can be
shown to be correct using metric machinery, by showing that the operation is the unique
fixed point of a contractive higher order function Ω;:Op→ Op.

48 CHAPTER 3. MODELING PROBABILISTIC CHOICE

Lemma 3.4.10 Define Ω; : Op→ Op by

Ω;(φ)(p, p
′) = {| 〈α, p′〉 | α ∈ p |} t {| 〈α, φ(p′′, p′)〉 | 〈α, p′′〉 ∈ p |}

then Ω; has a unique fixed point and therefore there exists exactly one operation ; in Op
satisfying the equation in definition 3.4.9.

Proof Clearly any operation satisfying the equation for ; in definition 3.4.9 is a fixed
point of Ω;. It is sufficient to show that Ω; is contractive as then Ω; has a unique fixed
point by Banach’s fixed point theorem.

Let two operations φ, φ′ ∈ Op and two processes p, p′ ∈ Pd be given. As

Ω;(φ)(p, p
′) = {| 〈α, p′〉 | α ∈ p |} t {| 〈α, φ(p′′, p′)〉 | 〈α, p′′〉 ∈ p |} and

Ω;(φ
′)(p, p′) = {| 〈α, p′〉 | α ∈ p |} t {| 〈α, φ′(p′′, p′)〉 | 〈α, p′′〉 ∈ p |}

the distance d(Ω;(φ)(p, p
′),Ω;(φ

′)(p, p′)) is less than or equal to d(〈α, p′〉, 〈α, p′〉) for some
α ∈ p or d(〈α, φ(p′′, p′)〉, 〈α, φ′(p′′, p′)〉) for some 〈α, p′′〉 ∈ p and all these distances are
less than or equal to 1

2d(φ, φ
′). 2

The operations ⊕ρ and ; are nonexpansive by definition. Sequential composition is also
contractive in its second argument.

Lemma 3.4.11 The operation ; is nonexpansive in its first argument and contractive in
its second argument, i.e.

d(p1 ; p2, p
′
1 ; p

′
2) ≤ max{ d(p1, p

′
1),

1
2 · d(p2, p

′
2) }

Proof Take the subspace Op′ of Op to be those operations which are nonexpansive in its
first argument and contractive in its second argument, i.e. φ ∈ Op′ if d(φ(p, p′′), φ(p′, p′′))
≤ d(p, p′) and d(φ(p, p′), φ(p, p′′)) ≤ 1

2d(p
′, p′′) for all processes p, p′, p′′.

We show that Op′ is a non-empty closed subset of Op and that Ω; restricts to a
contractive function on Op′. This means that Ω; has a fixed point within Op′. As ; is
the only fixed point of Ω;, ; must be in Op′.

The operation φ0 with φ(p, p′) = p is an element of Op′ so Op′ is non-empty. If
(φi)i∈N is a Cauchy sequence in Op′ then the limit φ∞, which exists in Op, is again in

Op′ showing that Op′ is closed: As d(φi(p, p
′′), φi(p

′, p′′)) ≤ d(p, p′) for all i ∈ N and both
d(φ∞(p, p′′), φi(p, p

′′) ≤ d(p, p′) and d(φ∞(p′, p′′), φi(p
′, p′′) ≤ d(p, p′) for sufficiently large

indices i we have that

d(φ∞(p, p′′), φ∞(p′, p′′))

≤ max{ d(φ∞(p, p′′), φi(p, p
′′)), d(φi(p, p

′′), φi(p
′, p′′)),

d(φi(p
′, p′′), φ∞(p′, p′′)) }

≤ d(p, p′)

Similarly d(φ∞(p, p′), φ∞(p, p′′)) ≤ 1
2d(p

′, p′′) as d(φ∞, φi) ≤
1
2d(p

′, p′′) for sufficiently
large indices i.

3.4. THE DENOTATIONAL SEMANTICS OF Lp 49

If φ ∈ Op′ then Ω;(φ) ∈ Op′ showing that Ω; restricts to a function on Op′:

d(Ω(φ)(p, p′),Ω(φ)(p, p′′))
= d({| 〈α, p′〉 | α ∈ p |} ∪ {| 〈α, φ(p̄, p′)〉 | 〈α, p̄〉 ∈ p |},

{| 〈α, p′′〉 | α ∈ p |} ∪ {| 〈α, φ(p̄, p′′)〉 | 〈α, p̄〉 ∈ p |})
≤ max({ d(〈α, p′, α, p′′〉) | α ∈ p } ∪

{ d(〈α, φ(p̄, p′)〉, 〈α, φ(p̄, p′′)〉) | 〈α, p̄〉 ∈ p })
≤ 1

2d(p
′, p′′)

To find a distance between two multisets, the elements of the multisets are linked. Without
loss of generality both p and p′ contain the same number of elements because otherwise
directly d(Ω(φ)(p, p′′),Ω(φ)(p′, p′′)) ≤ 1 = d(p, p′). If, for example, an element 〈α, p̄〉 in p is
linked with 〈β, p̄′, p′′〉 in p′ then one can link 〈α, φ(p̄, p′′)〉 in Ω(φ)(p, p′′) with 〈β, φ(p̄′, p′′)〉
in Ω(φ)(p′, p′′) and have that d(〈α, φ(p̄, p′′)〉, 〈β, φ(p̄′, p′′)〉 ≤ d(〈α, p̄〉, 〈β, p̄′〉). One can
do the same for the other elements of p and p′ that are linked. In this way one obtains
a linking of the elements of Ω(φ)(p, p′′) and Ω(φ)(p′, p′′) with a distance between linked
pairs smaller than or equal to the distance of some pair linked in p and p′. This works for
every linking of the multisets p and p′ showing that d(Ω(φ)(p, p′′),Ω(φ)(p′, p′′)) ≤ d(p, p′).

2

Contractiveness of ; in its second argument is required for the contractiveness of the
higher-order specification of the denotational model given in the next subsection.

3.4.3 The denotational model D

With the semantical operations ; and ⊕ρ in place, the definition of the denotational
meaning of statements is as given by the compositionality principle. To define the meaning
of a program, the semantical operations are used to combine the respective meanings of
the part from which the program is constructed.

Definition 3.4.12 The denotational model D:Lp → Pd

D(a) = {| 1 · a |}

D(x) = D(D(x))

D(s1; s2) = D(s1);D(s2)

D(s1 ⊕ρ s2) = D(s1)⊕ρ D(s2)

A single action a acts like a with probability one. Recursion is handled by body replace-
ment. As the procedure variable does not contain a substatement D(x), the definition
D(x) = D(D(x)) is not directly an application of the compositionality principle. However,
as the body of a procedure is seen as less complex than the procedure itself (by using
the weight of statements), the definition of the denotational semantics for procedures still
uses the idea of decomposing a program into simpler parts. The semantical operation op
is used to give the meaning of any statement built using the syntactic operator op, where
op is either ⊕ρ or ; .

The recursive definition of the denotational semantics is justified by showing it is the
fixed point of a contractive higher-order operation Ψ.

50 CHAPTER 3. MODELING PROBABILISTIC CHOICE

Lemma 3.4.13 . Let SemD = Lp → Pd, let S range over SemD and let Ψ : SemD →
SemD be given by

Ψ(S)(a) = {| 1 · a |}

Ψ(S)(x) = Ψ(S)(D(x))

Ψ(S)(s1; s2) = Ψ(S)(s1);S(s2)

Ψ(S)(s1 ⊕ρ s2) = Ψ(S)(s1)⊕ρ Ψ(S)(s2)

Then Ψ has a unique fixed point, and therefore there exists exactly one function D in
SemD satisfying the equations in definition 3.4.12.

Proof Clearly a function D satisfies the equations in definition 3.4.12 exactly when it is
a fixed point of Ψ. Banach’s fixed point theorem gives that there exists a unique fixed
point for Ψ if Ψ is contractive. That Ψ is contractive, i.e. that d(Ψ(S1)(s),Ψ(S2)(s)) ≤
1
2d(S1, S2) for all s ∈ Lp, is direct by induction on the weight of the statement s, using
nonexpansiveness of ⊕ρ for the case s = s1⊕ρ s2 and lemma 3.4.11 for the case s = s1; s2.

2

The following example shows how the meaning of a simple program consisting of a single
procedure call is calculated and how a probabilistic process can be represented as a tree.

Example 3.4.14 Let D(x) = (a⊕ρ b) ; c then

D(x) = D(D(x)) = D((a⊕ρ b) ; c) = D(a⊕ρ b) ;D(c)

= (D(a)⊕ρ D(b)) ;D(c) = ({| 1 · a |}⊕ρ{| 1 · b |}) ; {| 1 · c |}

= {| ρ · a, (1− ρ) · b |} ; {| 1 · c |}

= {| 〈ρ · a, {| 1 · c |}〉, 〈(1− ρ) · b, {| 1 · c |}〉 |}

ρ · a (1− ρ) · b

1 · c 1 · c

Note the similarity with the trees given in example 3.3.10. A branching probabilistic
process in Pd is very similar to an abstract transition tree.

With the denotational model in place the denotational semantics can be given. The
denotational semantics D[[·]] and the model D coincide and are only given separately to
maintain symmetry with the definition of the operational semantics.

Definition 3.4.15 The denotational semantics D[[·]]:Lp → Pd is given by

D[[s]] = D(s)

3.5. COMPARING O AND D 51

3.5 Comparing the operational and denotational se-

mantics

The denotational semantics of a statement is supposed to describe the meaning of a state-
ment possibly with extra information required for the compositionality. The denotational
semantics should be correct with respect to the operational semantics: It should be possi-
ble to recover the operational meaning of a statement by removing the extra information
from the denotational meaning of the statement. If the extra information in the deno-
tational meaning can be removed by an abstraction function abs, then the operational
model is called an abstraction of the denotational model. In this section the operational
model O[[·]] defined in section 3.3 is shown to be an abstraction of the denotational model
D[[·]] defined in section 3.4.

The extra information added in the denotational semantics D for Lp consists of the
moments of the probabilistic branching, present in the branching domain Pd but not in the
linear domain Po. The operational meaning is obtained from the denotational meaning
by abstracting away this branching information. This is done in several steps. First the
denotational model D is extended to give a meaning to all resumptions instead of only to
statements. To be able to assign a meaning to the empty resumption E the denotational
domain is extended with the empty process pε. Next an operational-like model O∗ is
defined on the denotational domain. The term operational-like model is used for a model
based on the transition system, but defined on a domain other than the operational
domain. The denotational model D is shown to coincide with the operational-like model
O∗ using the higher-order description of O∗. Then an abstraction function abs which
removes the branching information from meanings in Pd is given and the operational
model O is shown to be an abstraction of O∗. Finally these results are combined to show
that the operational model is an abstraction of the denotational model.

abs
D = O∗ O

Pd + { pε } Pb

The denotational model is extended by assigning the empty process pε as meaning to the
empty resumption E. For statements D remains the same.

Definition 3.5.1 The model D : Res→ Pd + { pε } is given by

D(E) = pε

D(a) = {| 1 · a |}

D(x) = D(D(x))

D(s1 op s2) = D(s1) opD(s2)

for op ∈ { ; ,⊕ρ }.

The operational-like model O∗ is defined as the fixed point of a higher-order operator Φ∗.

52 CHAPTER 3. MODELING PROBABILISTIC CHOICE

Definition 3.5.2 Put Sem = Res→ Pd, let S range over Sem and define O∗ as the fixed
point of Φ∗, where Φ∗ : Sem→ Sem is given by

Φ∗(S)(E) = pε

Φ∗(S)(s) = {| 〈ρ · a, S(r)〉 | 〈ρ · a, r〉 ∈ Suc(s) |}

Note that this definition uses the notation introduced in definition 3.2.5 part (c). This

means that if s
ρ·a
−→n r, i.e. 〈ρ · a, r〉 ∈n Suc(s), then 〈ρ · a, S(r)〉 is included n times in

Φ∗(S)(s). Note also that the only the resumption E is assigned the empty process as
its meaning, all other resumptions are given a meaning in Pd. Showing that Φ∗ is a
contraction on Sem is easy (cf. lemma 3.3.21). The following equations follow directly
from this definition:

O∗(E) = pε

O∗(s) = {| 〈ρ · a,O∗(r)〉 | 〈ρ · a, r〉 ∈ Suc(s) |}

Using the higher-order operator Φ∗ we show that the operational-like model O∗ coincides
with the extended denotational model D.

Lemma 3.5.3 The model D is a fixed point of Φ∗ and thus, by uniqueness of the fixed
point (Banach’s theorem), D = O∗.

Proof By induction on the weight of the resumption Φ∗(D)(r) = D(r) is shown. The
cases r = E and r = a are immediate and the case r = x is directly clear by induction.
This leaves the cases r = s1 ⊕ρ s2 and r = s1; s2.

Φ∗(D)(s1 ⊕ρ s2) = {| 〈σ · a,D(r′)〉 | 〈σ · a, r′〉 ∈ Suc(s1 ⊕ρ s2) |}

= {| 〈ρσ · a,D(r′)〉 | 〈σ · a, r′〉 ∈ Suc(s1) |}

t {| 〈(1− ρ)σ · a,D(r′)〉 | 〈σ · a, r′〉 ∈ Suc(s2) |}

= ρΦ∗(D)(s1) t (1− ρ)Φ∗(D)(s2)

[ind. hyp.] = ρD(s1) t (1− ρ)D(s2)

= D(s1 ⊕ρ s2)

as both wgt(s1) and wgt(s2) are less than wgt(s1 ⊕ρ s2).

Φ∗(D)(s1; s2) = {| 〈σ · a,D(r′)〉 | 〈σ · a, r′〉 ∈ Suc(s1; s2) |}

= {| 〈σ · a,D(r′; s2)〉 | 〈σ · a, r
′〉 ∈ Suc(s1) |}

= {| 〈σ · a,D(r′);D(s2)〉 | 〈σ · a, r
′〉 ∈ Suc(s1) |}

= {| 〈σ · a,D(r′)〉 | 〈σ · a, r′〉 ∈ Suc(s1) |};D(s2)

= Φ∗(D)(s1);D(s2)

[ind. hyp.] = D(s1);D(s2)

= D(s1; s2)

as wgt(s1)< wgt(s1; s2). 2

3.5. COMPARING O AND D 53

To relate meanings in the branching denotational domain Pd with meanings in the linear
operational domain Po, the branching information is abstracted away by applying an
abstraction function abs.

Definition 3.5.4 The abstraction function abs : (Pd + { pε })→ Po is given by

abs(pε) = ∆ε

abs({| 〈ρ1 · a1, p1〉, . . . , 〈ρn · an, pn〉 |}) =

n∑

i=1

ρi (abs(pi)/ai)

The process pε will result in an empty sequence, ε, with probability 1. Any other branching
process is a multiset. Recalling that •/a can be seen as prefixing with action a on measures
the second equation in the definition becomes clear. Taking some observable event B one
can also reason directly: An element 〈ρ · a, p〉 of the multiset adds ρ times the probability
that p produces a sequence w such that aw ∈ B to the total probability of producing
a sequence in B. The probability that p produces a sequence w such that aw ∈ B is
abs(p)(B/a) = (abs(p)/a)(B).

The definition of the function abs is recursive but can be justified by showing that abs
is the unique fixed point of a higher-order operator Ωabs. This justification is similar to
that of ; (see lemma 3.4.10) and is therefore omitted.

By applying the abstraction function to a meaning in the branching denotational
domain Pd the branching information is removed and a meaning in the linear operational
domain Pb is obtained. As the addition of the branching information is supposed to
be the only difference between the operational and the operational-like model, applying
the abstraction to the operational-like model should yield the operational model. The
following lemma shows that this is indeed the case.

Lemma 3.5.5 The operational model O is an abstraction of the operational-like model
O∗, i.e.

O = abs ◦ O∗

Proof This proof is very similar to the proof of lemma 3.5.3 above: It is sufficient to
show that abs ◦ O∗ is a fixed point of Φ as O is the unique fixed point of Φ. Further
details are omitted. 2

Combining the results in this section gives that the operational semantics O[[·]] is an
abstraction of the denotational semantics D[[·]].

Theorem 3.5.6 For all s ∈ Lp: O[[s]] = abs ◦ D[[s]].

Proof

O[[s]] = [definition O[[·]]] O(s)

= [lemma 3.5.5] abs ◦ O∗(s)

= [lemma 3.5.3] abs ◦ D(s)

= [definition D[[·]]] abs ◦ D[[s]] 2

54 CHAPTER 3. MODELING PROBABILISTIC CHOICE

3.6 Conclusions and bibliographical remarks

In this chapter an operational semantics and a denotational semantics for a basic process
language with probabilistic choice have been given and compared. The notions of com-
pact support measure, finite multisets and several other notions and proof methods used
throughout this thesis are introduced. The work in this chapter is included here for an
introductory purpose and is mainly based on [107]. It follows the general approach to
comparative metric semantics set out in [38].

The construction of a metric space of compact support measures has been introduced
in [190] and studied further in [188]. The note [189] provides the basis for the important
proof of completeness (cf. lemma 3.3.16) of the space of compact support measures. In [28]
a metric space of evaluations is introduced and compared with spaces defined using a set-
theoretic and a complete partial order approach. The evaluations introduced in [28] are
similar to the compact support measures used in this thesis. The work of Van Breugel
and Worrell [53, 52] introduces a pseudo metric on probabilistic processes in which small
variations in the probabilities lead to small distances. More details on the comparison of
the pseudometric space obtained in this way with the metric space of compact support
measures are given below. In [53] a real-valued logic is introduced which can be used
to characterize the distance between processes. In this paper a comparison is also given
with the pseudo metric introduced by Desharnais, Gupta, Jagadeesan and Panangaden
in [77], the metric on compact support measures from [190] also used here and with the
pseudometric introduced by Norman in his thesis [167, section 6.1].

Several techniques for modeling a language with probabilistic choice have been intro-
duced in this chapter. The operational semantics is based on a probabilistic transition
system specification. The notion of a probabilistic transition system extends Plotkin’s
structured operational semantics [173] to be able to deal with probabilistic choice. The
quantitative information provided by the probabilities causes a technical problem: Multi-
ple occurrences of the same transition cannot be identified with a single occurrence. The
solution used in the transition systems in this thesis is to keep the multiplicities of the
transitions. The paper [168] also implicitly uses multisets of transitions but does not spec-
ify how the multiplicities of transitions are found. Other solutions that have been used are
to combine multiple occurrences by summing the probabilities (e.g. [154]) and calculating
the probabilities separately (e.g. [10, 7]). After summing the probabilities one can use
e.g. sets of labeled transitions [92], discrete probability distributions over transitions [181]
to describe the probabilistic steps.

In [181] Segala introduces a notion of probabilistic automaton which is essentially
also a probabilistic transition system. The discussion there is restricted to analysis of
the probabilistic automata whereas here the specification of a transition system for a
program in a process language is also an important step. The probabilistic automata of
Segala use measures (called probability distributions in [181]) to describe the probabilistic
steps instead of the finite multisets of labeled transitions used here. For finitely branching
transition systems the multisets are (slightly) more expressive, but unlike measures they
cannot be used to describe infinite probabilistic choice.

In [92] reactive, generative and stratified transition systems are introduced to give
a meaning to a language with probabilistic choice. In a reactive system, an action is
executed after which a probabilistic choice decides the next state. In a generative system,

3.6. CONCLUSIONS AND BIBLIOGRAPHICAL REMARKS 55

a single probabilistic choice is made to decide the next action and corresponding next
state. In a stratified system, multiple probabilistic choices can be made in deciding the
next step. It is shown that the stratified model is more general than the generative model
in the sense that there are programs which can be distinguished by the stratified model
but not by the generative model. The reverse does not hold, all programs identified by
the stratified model are also identified by the generative model. The generative model
in turn is more general than the reactive model. The transition system Tp is generative.
Stratified transition systems will also be used in this thesis (e.g. section 4.4). For Lp a
stratified transition system can be given but would yield the same operational model O
as obtained using the generative transition system. Language constructs like e.g. hiding
and failure which would be modeled differently by a generative and a stratified transition
system are not present in the language Lp. No reactive transition systems are used in this
thesis as these systems do not seem to fit with Lp and the other languages considered.

In this chapter the operational model O gives the meaning of a program by remov-
ing information which is not observable, like the names of the configurations, from the
transition system. Another common way to abstract away from irrelevant information of
a transition system is to define a notion of bisimulation (cf. [171, 159]). For probabilis-
tic processes the standard form of bisimulation is Larson-Skou bisimulation introduced
in [149]. See sections 4.4 and 4.5 for more information on bisimulation.

The operational model O uses a linear domain of probabilistic processes. The linear
domain is built using a functor Meas which constructs a complete ultrametric space of
measures over a given complete ultrametric space. General measure theoretical results can
be found in [102]. In [170] the application of measure theory in modeling concurrency is
discussed. The functor Meas has been introduced by Rutten and De Vink asM′

1 in [190]
and studied further in [188]. The proof of the completeness of the space given by Meas
is based on [189]. This functor is also used in [107, 109, 110]. In [28] a metric space of
evaluations is introduced and compared with spaces defined using a set-theoretic and a
complete partial order approach. The evaluations introduced in [28] are similar to the
measures used here.

The metric defined on the domain of compact support measures is ‘qualitative on
the probabilities’ rather than quantitative as the pseudo-metric defined in e.g. [53, 52].
The distance on the compact support measures does provide quantitative information by
answering the question ‘how far are processes apart?’. Two processes are close if they
start with exactly the same behavior. The longer they behave exactly the same, the
closer they are. The probabilities, however, have to be exactly the same. For example,
1
2∆aaa +

1
2∆bbb and

1
2∆aab +

1
2∆bbb behave the same in the first two actions. The process

1
3∆aaa+

2
3∆bbb, however, is considered to behave completely different from these processes

as the probabilities are not the same. Van Breugel and Worrell argue that if the difference
between the probabilities is small then the processes should be close. For example 1

2∆a+
1
2∆b should be close to (12+ε)∆a+(12−ε)∆b for small values of ε. In the papers [53, 52] they
use the Hutchinson metric to provide quantitative information about the probabilities: A
pseudometric space of probabilistic processes is obtained as the final coalgebra of a functor
based on the Hutchinson metric. (See e.g. [179, 131] for more on coalgebras.) In this
pseudometric space the distance between probabilistic processes is small if the processes
start with approximately the same behavior. One can paraphrase the comparison of two

56 CHAPTER 3. MODELING PROBABILISTIC CHOICE

linear domains built with either the Hutchinson metric or the De Vink-Rutten metric
on compact support measures as: Two processes are close in the former if they produce
exactly the same sequences most of the time while processes are close in the latter if they
produce approximately the same sequences all of the time. For the work of Van Breugel
and Worrell mentioned above the situation is slightly different as they define a distance
on transition systems, i.e. on branching structures. The Hutchinson metric is combined
with the scaling functor id 1

2
, also used in for the branching domains in this thesis. The

distance obtained in this way can be described by saying that two processes are close if they
produce approximately the same trees most of the time. This distance is a pseudo-metric
in which transition systems have distance zero exactly when they are probabilistically
bisimilar in the sense of [149]. For the linear domain Po described in this chapter, it
may also be possible to define a distance similar to the distance of [53, 52] by using the
characterization of processes which will be given in subsection 5.3.2. On the domain Po
this would probably result in a real metric rather than just a pseudometric. An advantage
of the approach of [53, 52] is that their metric can also be used for continuous probabilistic
choices. For these choices, however, it is unclear if a version for a linear domain can also
be given. (Chapter 7 of this thesis deals with infinite probabilistic choices on a linear
domain.)

The denotational semantics uses a branching probabilistic domain. In the branching
domain the process remaining after the first step is again a process in the branching
domain. This requires a reflexive definition of the domain. Domain equations are used to
specify reflexive definitions. In [38] several domain equations are shown to have a unique
solution using purely metric arguments. Earlier work on domain equations can be found
in [41]. The work presented here is based on [54, 51]. In [54] it is shown that equations
using locally contractive functors have a unique solution (up to isomorphism). Further
references to work in the field of domain equations can also be found there.

To describe probabilistic choice in a branching domain multisets are used. The func-
tor MPf which yields a metric space of finite multisets over a given metric space was
first introduced in [107]. The modeling of multisets is derived from the modeling of event
structures (e.g. [198, 137]) and partially ordered multisets (e.g. [85, 98]). In [196, 40]
a metric is introduced on partially ordered multisets. Although the metric used here is
inspired on the metric introduced in these papers, the two metrics are quite different as
a partially ordered multiset is used to describe an entire structure while here a multiset
is used to describe a single step.

Several papers discussing randomized algorithms and the modeling of probabilistic choice
have already been discussed in chapter 1. Here we mention some further work in this area.
The paper [100] discusses different techniques in the design of randomized algorithms and
illustrates these with several examples such as primality testing and dining philosophers.
In [136, 86] the process language PCCS is obtained from Milner’s SCCS by replacing
nondeterminism by probability. The paper [136] also introduces time. This work is
extended in [67] where a probabilistic version of parallel composition is added. In [155, 153]
(finite) probabilistic choice is added to a deterministic version of timed CSP. In [151] a
true concurrency model and a probabilistic process algebra are given for a language with
parallelism and probabilistic choice. No probabilities need be associated with the parallel

3.6. CONCLUSIONS AND BIBLIOGRAPHICAL REMARKS 57

composition like e.g. in [67] as, unlike in an interleaving model, the addition of parallelism
does not introduce nondeterminism in a true concurrency model. Other examples of
papers dealing with (purely) probabilistic process languages are [150, 103].

Further related work which deals with both probability and nondeterminism is dis-
cussed in chapter 4. Some related work dealing with full abstractness in a probabilistic
setting is discussed in chapter 5. Continuous time Markov chains and stochastic process
algebra are used in a setting with a continuous form of probability. See chapter 7 for a
discussion of work in this area.

58 CHAPTER 3. MODELING PROBABILISTIC CHOICE

Chapter 4

Combining nondeterminism

and probabilistic choice

4.1 Introduction

The goal in this chapter is to study the control flow of a schematic language in which
the notions of general nondeterminism and of probabilistic choice are combined. The
main focus is on the effects of the operators on the control flow rather than on a detailed
description of the primitive elements of the computation.

The introduction of probabilistic choice as done in chapter 3 creates the possibility for
different flows of control starting from the same situation. A program using probabilistic
choice is therefore no longer deterministic. In the literature nondeterministic choice is
often removed when introducing probabilistic choice (cf. [21, 183, 168]). When modeling
aspects of a system that are not deterministic, probabilistic choice instead of the nonde-
terministic choice is used. When using probabilistic choice in a program to model some
choice in a system, this choice must satisfy the properties of a probabilistic choice: In
the statement a ⊕ρ b it is not known which action will be taken. However, the choice is
made according to some given probability, so the relative frequencies of the occurrences
of a and b over multiple runs are approximately known. In n runs, the action a will occur
approximately ρn times and the action b will occur approximately (1− ρ)n times.

Another property of the probabilistic choice is that the choice is unpredictable. With
a probabilistic choice, one can be certain that no one will know the result beforehand.
This is important e.g. when modeling a game between two players. A third aspect of
the probabilistic choice is that the choice is independent. The probabilistic choice is
independent in that it cannot be influenced by the current state or the outcomes of other
choices in the program. This is contrary to choices a player makes while playing a game:
The choices a player makes will definitely depend on the choices made by other players
or other events in the game.

As the example of a game between two players already shows, there are forms of choice
for which the properties of probabilistic choice do not hold. To allow modeling these

59

60 CHAPTER 4. COMBINING 2 AND ⊕ρ

kinds of choice nondeterministic choice instead of probabilistic choice is needed. The
operator 2 is used for nondeterministic choice. Nondeterministic choice is interpreted as
“a choice that is made in some unspecified manner”. No information on how the choice is
made is assumed. To derive a property for a program with nondeterministic choice, the
property should hold for all possible ways of making the choice. It is not always possible to
remain this general in the interpretation of the nondeterministic choice, i.e. not making
assumptions at all about how the nondeterministic choice is made, and still obtaining
usable results. Therefore, at some points assumptions need to be made about the type of
nondeterminism that is being considered.

One form of nondeterminism is caused by a choice by a user or an opponent: If in
an algorithm the user has to choose between different ways to continue, this is modeled
by nondeterministic choice. The program a 2 b, for example, gives the user the choice
between the execution of action a and action b. This type of nondeterministic choice can
also be used to describe choices of an opponent when modeling a strategy for a two player
game. Generally one will be interested in the best or worst case behavior.

Another form of nondeterminism is a choice in a specification: A specification is given
in which one of several options should be available. The implementer of the specification
chooses which one to implement. A specification a2b can be implemented by the algorithm
‘a’ or the algorithm ‘b’. (Note that the program ‘a⊕ρ b’ also implements the specification
a 2 b.) More generally one can think of nondeterminism as under-specification. One is
not interested in which of the nondeterministic alternatives is chosen, only that ‘one of
these options is chosen’. This allows removing irrelevant details from a specification.

Using nondeterministic choice to model a choice which is known to be probabilistic,
in a situation where this fact is not relevant or where the exact probability is unknown, is
also a form of under-specification. Nondeterminism, however, is more general than only
probabilistic choice with unknown probability: If for some unknown ρ the program a⊕ρ b
is run many times and the outcome a occurs often, then it is unlikely that running the
program many times more will result in only b’s occurring. (Running the program often
will almost surely yield an a.) The program a 2 b, on the other hand, may very well
produce only b’s in the second series of runs.

A third form of nondeterminism is the nondeterminism caused by parallelism. When
two processes are running in parallel, complex timing issues (e.g. racing conditions, relative
speeds of computers, connection latencies, etc.) may influence the order in which actions
happen.

When modeling choices in a system, it is clear that some choices will have to be modeled
with nondeterministic choice, they cannot be assumed to satisfy the properties of the
probabilistic choice. As one still wants to use the probabilistic choice where this is possible,
both types of choice will have to be combined in a single language. This raises the question
how to deal with programs which combine the two choices. In the program a 2 (b⊕ 1

2
c),

for example, a choice has to be made between a and the probabilistic choice between b
and c. In the program a⊕ 1

2
(b2c) a probabilistic choice has to be made between a and the

choice between b and c. The question is how these programs should be interpreted. For
instance, both the programs may execute the action a, but what can be said about the
probability with which this occurs ? There are several ways to approach this question.
The first option is to always make the nondeterministic choice first. The second is to

4.1. INTRODUCTION 61

always make the probabilistic choice first. A third approach is to first make the choice
which “appears first”.

The first approach, where the nondeterministic choice is made first, removes the prob-
lem of interpreting statements by reducing the statements to purely probabilistic state-
ments. The results from chapter 3 can be used to interpret the purely probabilistic
statement. This approach corresponds to an information-oriented way of interpreting
nondeterministic choice. The choice should be made with the correct amount of informa-
tion: In a⊕ 1

2
(b2 c) the choice between b and c can be made beforehand as this will not

influence the probabilistic choice. It is possible to see this program as a nondeterministic
choice between a⊕ 1

2
b and a⊕ 1

2
c. In other words, the statement a⊕ 1

2
(b2 c) is assigned

the same meaning as (a⊕ 1
2
b) 2 (a⊕ 1

2
c). In a2 (b⊕ 1

2
c), the probabilistic choice cannot

be made before the nondeterministic choice, as the outcome of the probabilistic choice
should not yet be known at the time of making the nondeterministic choice. Think of
the program as describing a game where the user wins one for a, two for b and nothing
for c. The program (a 2 b) ⊕ 1

2
(a 2 c), where the probabilistic choice is made before

the nondeterministic choice, describes a different game. In the first game the user has
to choose between taking the sure one for a, or gambling and getting two for b or none
for case c. In the second game, the user will either have to choose between a and b or
between a and c, either choice is easy to make. The user is able to achieve higher expected
winnings in the second game. Always making nondeterministic choices first is referred to
as giving priority to the nondeterminism. In section 4.2, which is based mainly on [107],
this approach is followed.

The second approach, where the probabilistic choice has to be made first, corresponds
to a resource-oriented way of looking at the nondeterministic choice: The program is
going to offer the user some of the actions a, b or c. The probabilistic choice has to
be made to see which actions will actually be offered. The user can then select one of
the options. By first making the probabilistic choice, the remaining statement is purely
nondeterministic. The usual interpretation of a nondeterministic statement can be used
to find the meaning of the remaining statement. Always making probabilistic choices first
is referred to as giving priority to the probability. This approach is worked out in section
4.3. This section is based on [107] together with some previously unpublished results.
Recently a lot of work in the area of probabilistic process algebra has also been done in
this setting, see e.g. [10].

The third approach where the choice which “appears first” is made first is an obvious
choice. With the choice that appears first we mean the choice that is the highest in the
parse tree or, equivalently, the choice at the front using prefix notation for the operators.
See also section 4.4. This approach does not force a certain interpretation of the nonde-
terministic choice. However, it also does not give a direct way of interpreting statements
with both types of choice. The operational processes yielded as the final result in section
4.4 have the same form as those in section 4.2 but are constructed using the third ap-
proach; choices are made in the order they are encountered. This section is mainly based
on work done in [109, 110].

The operator 2 is added to the language to express the nondeterministic choice between
two alternatives. As was mentioned above, one type of nondeterminism is the nondeter-
minism caused by concurrency, i.e. by programs running in parallel. Concurrency is such

62 CHAPTER 4. COMBINING 2 AND ⊕ρ

an important cause of nondeterminism that a special operator ‖, called merge, is intro-
duced to describe the parallel execution of two programs. The program s‖s′ describes
that the programs s and s′ run concurrently. The interleaving interpretation of paral-
lelism is used: The actions produced by s‖s′ are still seen as a single sequence, but at
each stage either s or s′ may produce the next action. No information about which state-
ment produces the next action is assumed to be available: The choice which statement
produces the next action is a nondeterministic choice.

Within concurrent programs, it may be necessary for parallel components to com-
municate. Communication between programs running in parallel is enabled through the
introduction of special synchronization actions. Two programs synchronize by executing
matching synchronization actions at the same time. With the introduction of synchro-
nization also comes the possibility of deadlock. A system or component is said to be
deadlocked if it is not yet finished but is unable to perform any actions. A component
can become deadlocked by trying to execute a synchronization action while no other com-
ponent executes a matching synchronization action. The symbol δ is used to denote a
deadlocked system.

The presence of deadlock adds yet another distinction; the interpretation of nonde-
terminism as local or global. The interpretations differ in the manner they deal with
potential deadlock. A local nondeterministic choice is made independent of the actions of
the environment (i.e. the other parallel components); the choice is made locally, without
looking at actions that other components are willing to execute. Global nondeterminis-
tic choice may be influenced by the environment; the global choice will “adapt” to the
actions the other components are willing to perform. If no other component is willing to
synchronize, a global nondeterministic choice will avoid starting with a synchronization
action if possible, as this will lead to deadlock. The nondeterminism caused by the oper-
ator merge is also interpreted as being local or global. If the nondeterminism is global,
a component that wants to synchronize but is unable to at the moment, can wait and
let other components execute actions first. If the nondeterminism is interpreted as local,
synchronization has to be preformed immediately. If a component tries to synchronize
when this is not possible, it will directly lead to deadlock.

The distinction between the local and global interpretation of nondeterminism is well
known. In literature the terms internal and external or static and dynamic are also used
for local and global (cf. [35, 127]) For probabilistic choice a similar distinction can be
made, giving unconditional or conditional probabilistic choice. This will be explained
further in section 4.2 below.

The outline of the remainder of this chapter is as follows: In section 4.2 the approach
with priority for nondeterminism is worked out by giving an operational and a deno-
tational semantics for a language Lpnd which adds nondeterministic choice and parallel
composition to the language Lp introduced in chapter 3. The relationship between the
operational and denotational semantics is also established. Both an unconditional and a
conditional interpretation for probabilistic choice are considered. In section 4.3 the ap-
proach with priority for probabilistic choice is worked out for the same language Lpnd in
a similar manner. Both a local and a global interpretation of nondeterminism are given.
In section 4.4 the approach which does not require priority for either nondeterminism or

probabilistic choice is worked out for an adapted language L
(2)

pnd. An unconditional and a

4.2. PRIORITY FOR NONDETERMINISM 63

conditional interpretation for probabilistic choice are combined with a local and a global
interpretation of nondeterminism.

4.2 Priority for nondeterminism

In this section a language Lpnd with both nondeterminism and probabilistic choice is in-
troduced. The nondeterminism is introduced by the operator 2 which denotes nondeter-
ministic choice and by the operator ‖, called merge, which denotes parallel composition.
‘Mixed’ statements containing both a nondeterministic operator and the probabilistic
choice operator are dealt with by giving priority to the nondeterminism. Selecting which
alternative of a nondeterministic choice to execute and finding the component in a paral-
lel system which produces the next action is referred to as resolving the nondeterminism.
Giving priority to the nondeterminism means that all nondeterminism in finding the first
action is resolved before making any probabilistic choices or executing any actions.

As explained in the introduction of this chapter, nondeterminism can be interpreted
as being local or global and similarly the probabilistic choice can be interpreted as being
unconditional or conditional (to be explained in a moment). Combining the different
interpretations of nondeterministic and probabilistic choice gives rise to four possible in-
terpretations for the language Lpnd. To be global, nondeterministic choice has to react
to actions from the environment. However, the nondeterminism has priority and must
be resolved before any probabilistic choices are made. If the actions of the environment
depend on the outcome of a probabilistic choice, the actions of the environment cannot
be known at the time the nondeterministic choice has to be resolved, so the nondeter-
ministic choice cannot depend on them as is necessary for a global choice. This shows
that a nondeterministic choice which has priority is not well suited for modeling a global
nondeterministic choice. This observation leaves us with two interpretations, local non-
determinism combined with either unconditional or conditional probabilistic choice. For
both of these interpretations an operational semantics is given in subsection 4.2.4. A sin-
gle denotational model, which can be used for both interpretations despite the differences
between these interpretations, is given in subsection 4.2.5. The denotational semantics is
related with both operational models in subsection 4.2.6.

The distinction between unconditional or conditional probabilistic choice is similar to the
distinction between local and global nondeterministic choice. Unconditional probabilistic
choice is made independent of the environment. Conditional probabilistic choice, on the
other hand, also takes the actions of the environment into account. The probability of
a certain alternative being chosen, is a probability given that the alternative does not
deadlock, i.e. the probability is a conditional probability. Clearly unconditional prob-
abilistic choice leads to a form of local nondeterminism, while conditional probabilistic
choice induces a form of global nondeterminism. The techniques for making the dis-
tinction between unconditional and conditional probability are, therefore, similar to the
techniques used to describe local and global choice. All that needs to be added is a way
to deal with the quantitative information provided by the probabilistic choice. When an
alternative of a probabilistic choice deadlocks, normalization of the probabilities for the
other alternatives is required.

64 CHAPTER 4. COMBINING 2 AND ⊕ρ

The distinction between unconditional and conditional probabilistic choice is usually
not made. Most papers dealing with probabilistic choice only include the unconditional
form of probabilistic choice. As with global nondeterminism, however, the conditional
form of probabilistic choice is also useful. For an application of a conditional probabilistic
choice in specifying a system consider the following example. A server should execute
tasks for two users. The tasks of the first user take twice as long as those of the second
user. The server should schedule the tasks of two users in a “fair” way such that both
users get approximately equal amounts of server time when both are using the server.
Clearly if only one of the users is using the server, this user should get all the server
time. This server can easily be specified using conditional probabilistic choice: server =
(serve− first− user ⊕ 1

3
serve− second− user); server. This server will serve the first

user one third and the second user two thirds of the time when both are competing for
use of the server. Due to the conditionality of the choice, the server will never try to serve
a user which is not requesting use of the server.

4.2.1 The syntax of the language Lpnd

The language Lpnd extends the language Lp of chapter 3 with two constructs which have
a nondeterministic nature: nondeterministic choice and parallel composition. To allow
communication between parallel components, some of the atomic actions are assumed to
be synchronization actions. The set Act of atomic actions is divided into two disjoint sets:
A set of observable actions OAct ranged over by b and a set of synchronization actions
Sync ranged over by c.

Act = OAct ∪ Sync

Note that a is still used to range over Act, so an action a can be an observable action as
well as a synchronization action.

For each synchronization action c ∈ Sync there is a unique complementary action c̄ in
Sync with which c can synchronize. The complementary action for c̄ is c, i.e. ¯̄c = c. The
synchronization of the actions c and c̄ results in a special observable action τ .

A synchronization action represents an attempt at synchronization and the observable
action τ represents a successful communication. The observable atomic actions (except
for τ) represent the observations resulting from the atomic steps in the computation and
are left uninterpreted. The meaning of an action b in OAct will simply be b itself. As in
the language Lp a set of procedure variables PVar, ranged over by x, is used for recursion.

Definition 4.2.1

(a) The set of statements Stat, ranged over by s, is given by

s ::= a | x | s ; s | s⊕ρ s | s 2 s | s‖s

where ρ ∈ (0, 1).

(b) The set of guarded statements GStat, ranged over by g, is given by

g ::= a | g ; s | g ⊕ρ g | g 2 g | g‖g

where ρ ∈ (0, 1).

4.2. PRIORITY FOR NONDETERMINISM 65

(c) The set of declarations Decl, ranged over by D, is given by

Decl = PVar→ GStat

(d) The language Lpnd is given by

Lpnd = Decl× Stat

A basic statement is an atomic action or a procedure variable. An atomic action a can
be either an observable action or a synchronization action. The operators ; and ⊕ρ are
interpreted as for Lp. The operator ; denotes sequential composition. The statement
s1 ; s2 behaves like s1 until s1 terminates after which s1 ; s2 continues by behaving like s2.

A declaration D gives the body D(x) for a procedure x. The body of a procedure
must be a guarded statement. A guarded statement guarantees that at least one atomic
action is done before some procedure is called. In the remainder of this section one fixed
declaration D is assumed and D is dropped from the notation, e.g. s ∈ Lpnd is written
instead of (D, s) ∈ Lpnd.

The statement s1 2 s2 denotes a nondeterministic choice. The statement s1 or the
statement s2 will be executed, but it is not known which one. As explained in the
introduction of this section, the nondeterminism is local. If one of the two statements
deadlocks, it can still be selected.

The operator ⊕ρ denotes probabilistic choice. The argument ρ denotes the probability
that the first alternative is chosen and is assumed to be between 0 and 1. The execution
of the statement s1 ⊕ρ s2 starts with making a probabilistic choice. With probability ρ
the first statement, s1, is selected and executed. With the remaining probability, 1 − ρ,
the second statement, s2, is selected and executed. As explained in the introduction,
the probabilistic choice can be unconditional or conditional. If the choice is conditional
and the selected statement fails, the other option is selected instead. If the choice is
unconditional then it is not possible to recover from a failure of the selected statement.

The statement s1‖s2 denotes parallel composition. Parallel composition also intro-
duces nondeterminism: The first action may be taken by s1 or it may be taken by s2 or
the two statements may synchronize. A failed synchronization attempt (from either s1 or
s2) will result in deadlock. A failed synchronization attempt from s1 is an action c from
s1 without a matching action c̄ from s2.

Example 4.2.2 The following are all valid statements (in Stat): (a 2 b) ⊕ρ c, (a ⊕ρ

c) 2 (b ⊕ρ c), (b1 ⊕ρ c)‖(b2 ⊕ρ c̄), (a ⊕ρ b);x and x; b. All but the last are also guarded
statements (in GStat) and can, therefore, be used as the body of a procedure variable,
e.g. D(x) = (a⊕ρ b);x.
As a single declaration D is assumed to be fixed, each of these statements also repre-

sents a program, e.g. x; b also denotes the program (D,x; b).

A program in Lpnd can be used to describe a game against some opponent. Probabilistic
choices are used to model probabilistic events within the game. The choices of the oppo-
nent are modeled by nondeterministic choices. In this way no assumptions are made on
how the choices of the opponent are made. Any result derived will hold for every possible
way the opponent can play.

66 CHAPTER 4. COMBINING 2 AND ⊕ρ

Example 4.2.3 As an example of a game consider the so called ‘three doors problem’:
In a quiz-show a prize is hidden behind one of three doors. The contestant gets to pick a
door. After the contestant picks a door the quiz-master will open one of the other doors
to show that the prize is not located there. Now the contestant has to choose to stick to
the first selected door or to change to the other remaining closed door. The question is
which strategy maximizes the probability of winning the prize.
To model this game, the door with the prize behind it is called a and the other two

doors are called b and c. The strategy where the player first selects a random door and
then sticks with this door can be described as follows: First a random door is selected
giving a ⊕ 1

3
(b ⊕ 1

2
c) as the description of the first step. Note that each door is selected

with probability 1
3 . Another equivalent way of modeling this first step is e.g. (a⊕ 1

2
b)⊕ 2

3
c.

In the next step one of the other doors is opened. The door opened cannot be a, nor can
it be the door selected by the player giving (a; (b 2 c)) ⊕ 1

3
((b; c) ⊕ 1

2
(c; b)). As the door

is opened by the quiz-master and not by the contestant nondeterministic choice is used
to model the selection of a door. Finally the contestant sticks with the first selected door
giving

s1 = (a; (b 2 c); a)⊕ 1
3
((b; c; b)⊕ 1

2
(c; b; c))

as the complete description of this strategy.
The second strategy, where the player switches doors, can be described similarly. The

first two steps are the same giving (a; (b2c))⊕ 1
3
((b; c)⊕ 1

2
(c; b)) as a description for these

steps. Next the player selects the other closed door. The remaining closed door is the door
that is not selected by the player in the first step and not selected by the quiz-master in
the second step resulting in

s2 = (a; ((b; c) 2 (c; b))⊕ 1
3
((b; c; a)⊕ 1

2
(c; b; a))

as the complete description of this strategy.

This example shows how two strategies for playing a game against an opponent can be
described by programs in Lpnd. To be able to solve the ‘three doors problem’, i.e. to find
which strategy is best, we will look at the semantics of these programs in example 4.2.24
below.

4.2.2 A transition system with priority for nondeterministic
choice: Tpnd

In this subsection a transition system Tpnd is given for the language Lpnd which gives
priority to the nondeterministic choices. In finding which action the system will do next,
first all nondeterministic choices are resolved and only then the probabilistic choices are
made.

To be able to deal with parallel composition, two auxiliary operators, ‖− and |, are

added to the language (following the approach of [43]). The operator ‖− is called leftmerge

and | is called synchronize. The extended set of statements obtained by adding these
operators is denoted by Stat+ and also ranged over by s. Thus for Stat+ we extend part
(a) of definition 4.2.1 by putting

s ::= . . . | s ‖− s | s|s

4.2. PRIORITY FOR NONDETERMINISM 67

The first action taken by the statement s1‖s2 can be produced by s1 or s2 separately
or by a synchronization between s1 and s2. The operator ‖− is used to describe the first

situation. The statement s1 ‖− s2 is like the statement s1‖s2 except that the first step

must come from s1. (Synchronizing with s2 is not allowed.) Similarly the statement s1|s2
behaves like s1‖s2 except that the first step must be a synchronization between s1 and
s2. Combining the three possibilities for the first step of s1‖s2 we get (as in [43])

s1‖s2 is equivalent with (s1 ‖− s2) 2 (s2 ‖− s1) 2 (s1|s2)

The information required to describe the state of an execution of a program in Lpnd is the
part of the program that remains to be executed. A resumption is used to describe the
remainder of a program. The set of resumptions is denoted by Res and ranged over by r.
The remainder of a program is either another program or nothing, in case the execution
is finished. A resumption, therefore, is either a statement s in Stat+ or a special symbol
E denoting a finished computation

r ::= s | E

A configuration in Tpnd is a resumption r together with a declaration D, i.e. Conf =
Decl × Res. As with programs, the declaration part is dropped from the notation as a
single declaration is assumed to be fixed.

To execute the statement s1 2s2, the nondeterministic choice has to be made between
executing s1 and executing s2. Recall that making this choice is referred to as resolving
the nondeterministic choice or more generally as resolving the nondeterminism. Usually
the nondeterminism is resolved implicitly. The transitions that s1 2 s2 can take are
those of s1 and those of s2; the nondeterminism is implicitly resolved when one of the
transitions is taken. The following example shows that simply allowing the transitions
of both alternatives cannot be used to add nondeterminism to the transition system Tp
introduced in chapter 3 (see definition 3.3.3).

Example 4.2.4 Consider the statement

s = (a1 ⊕ρ a2) 2 (a3 ⊕σ a4)

The transitions system Tp of chapter 3 gives the transitions (a1 ⊕ρ a2)
ρ·a1
−→E, (a1 ⊕ρ

a2)
(1−ρ)·a2
−→ E, (a3 ⊕σ a4)

σ·a3−→E and (a3 ⊕σ a4)
(1−σ)·a4
−→ E.

Taking s
ρ·a1
−→E, s

(1−ρ)·a2
−→ E, s

σ·a3−→E and s
(1−σ)·a4
−→ E as the transitions for s would give

a total probability of 2 instead of 1.

To be able to assign a probability to a1 in the statement s from the example above, it is
necessary to first resolve the nondeterminism. If the first alternative a1 ⊕ρ a2 is chosen
then the probability of a1 is ρ, otherwise it is 0 (assuming distinct actions a1, a2, a3, a4).

After resolving the nondeterminism and finding the probabilities of each action it has
to be clear which actions belong to which nondeterministic alternative. The auxiliary
action ν is used to distinguish between the different nondeterministic alternatives. All

68 CHAPTER 4. COMBINING 2 AND ⊕ρ

nondeterminism is explicitly resolved resulting in a ν transition. The ν transitions are not
interpreted as real actions, only auxiliary steps in the transition system. The ν transitions,
as auxiliary steps, are not part of the observable behavior of a statement. When giving
the operational semantics, O[[•]], the ν transitions are removed. (Other mechanisms to
bundle together transitions, instead of using auxiliary steps, are also possible, for example
by using the hyper transitions systems of [48, 49].)

A statement which does not need to make anymore nondeterministic choices before the
first action, is called resolved. As nondeterministic choices are to be made first, resolving
the nondeterminism has priority and only resolved statements should be able to make
probabilistic choices and produce actions.

Definition 4.2.5 The statement a is resolved. The statement x is resolved whenever
D(x) is resolved. The statements s1; s2 and s1‖−s2 are resolved exactly when s1 is resolved.

The statements s1 ⊕ρ s2 and s1|s2 are resolved if and only if both s1 and s2 are resolved.

For s = s1; s2 and s = s1 ‖− s2 the first action must come from s1, so it is sufficient to

resolve the nondeterminism in s1 to find the possible first actions of s. For s = s1 ⊕ρ s2
and s = s1|s2 both s1 and s2 play a role in finding the first action that is executed. Both
s1 and s2 must be resolved for s to be resolved.

The labels used in the transition system Tp for the language Lp are actions together
with the probability that the action occurs. As the nondeterminism in the language Lpnd

is resolved explicitly by means of ν-transitions, the symbol ν is added to these labels for
the transition system Tpnd. Recall that PAct = [0, 1]×Act and that α ranges over PAct,
i.e. α = ρ · a for some ρ ∈ [0, 1] and a ∈ Act. As Act is split into OAct and Sync, the set
PAct can be separated into the set POAct of pairs in [0, 1]×OAct, ranged over by β and
the set PSAct of pairs in [0, 1]× Sync.

PAct = [0, 1]×Act = [0, 1]×OAct+ [0, 1]× Sync

The set of all transition labels, i.e. PAct ∪ { ν }, is ranged over by θ, thus θ = ν or θ = α
for some α ∈ PAct.

Definition 4.2.6 The transition system Tpnd is given by Tpnd = (Conf, PAct∪{ ν }, → ,

Spec). A transition (r, θ, r′) ∈ → is written as r
θ
→ r′. The specification Spec is given

below, divided into four parts.

The first part of the specification are the axioms and rules dealing with actions, recursion
and sequential composition.

• a
1·a
−→E (Act)

•

s1
θ
→ r

s1; s2
θ
→ r; s2 (Seq)

•

D(x)
θ
→ r

x
θ
→ r (Rec)

4.2. PRIORITY FOR NONDETERMINISM 69

where r; s2 in rule (Seq) should be read as s2 if r = E.

These rules have not changed from the rules in the transition system Tp except that θ
replaces α as a variable denoting an arbitrary observation. The statement a results in the
action a with probability one after which the execution is finished. To execute a procedure
x, the body of the procedure D(x) has to be executed. The statement s1 ; s2 behaves like
s1 until s1 is done (the case that r = E) after which it behaves like s2.

The second part of the specification are the axioms dealing with the resolution of nonde-
terminism.

• s1 2 s2
ν
→ s1 (Choice 1)

s1 2 s2
ν
→ s2 (Choice 2)

• s1‖s2
ν
→ s1 ‖− s2 (Intro ‖− 1)

s1‖s2
ν
→ s2 ‖− s1 (Intro ‖− 2)

s1‖s2
ν
→ s1|s2 (Intro |)

The nondeterminism is introduced by the operators 2 and ‖. The nondeterminism is
resolved explicitly resulting in a ν-transition. The axioms (Choice 1) and (Choice 2)
are clear. The axioms (Intro ‖− 1), (Intro ‖− 2) and (Intro |) give the three possibilities

for execution of the parallel composition using the auxiliary operators leftmerge ‖− and

synchronize |.

The third part of the transition system are the rules for the auxiliary operators ‖− and |.

•

s1
ν
→ s

s1 ‖− s2
ν
→ s ‖− s2 (Leftmerge ν)

s1|s2
ν
→ s|s2 (Sync ν 1)

s2|s1
ν
→ s2|s (Sync ν 2)

•

s1
α
→ r

s1 ‖− s2
α
→ r‖s2 (Leftmerge)

•

s1
ρ·c
−→ r1 s2

σ·c̄
−→ r2

s1|s2
ρσ·τ
−→ r1‖r2 (Sync)

where r‖s2 in rule (Leftmerge) should be read as s2 if r = E and r1‖r2 in rule (Sync)
should be read as r1 if r2 = E and as r2 if r1 = E.

The statement s1 ‖− s2 first resolves the nondeterminism in s1. After the first step this

results in s‖−s2. The leftmerge is still maintained since resolving the nondeterminism has

not produced any actions, only auxiliary ν steps. If all nondeterminism in s1 has been

70 CHAPTER 4. COMBINING 2 AND ⊕ρ

resolved, s1‖−s2 takes the same action as s1. After the first action, the execution continues

with the parallel composition ‖ of the resulting resumption r and s2. If r is equal to E then
the computation of the first component is finished and the parallel composition continues
with executing s2 by itself.

The configuration s1|s2 resolves the nondeterminism in both s1 and s2 and then tries
to synchronize on the first step. Failure to synchronize will result in deadlock. Because
of the possibility of deadlock, the probability that a statement s1|s2 takes any step may
be less than one. In the operational model, O, this “missing probability” will be inter-
preted as deadlock for unconditional probability. For the conditional interpretation, the
missing probability is divided over the available alternatives. Recall that ρσ denotes the
multiplication of the real numbers (probabilities) ρ and σ.

The last part of the specification contains the rules for probabilistic choice.

•

s1
ν
→ s

s1 ⊕ρ s2
ν
→ s⊕ρ s2 (Chance ν 1)

s2 ⊕ρ s1
ν
→ s2 ⊕ρ s (Chance ν 2)

•

s1
σ·a
−→ s s1, s2 resolved

s1 ⊕ρ s2
ρσ·a
−→ s (Chance α 1)

s2 ⊕ρ s1
(1−ρ)σ·a
−→ s (Chance α 1)

The statement s1 ⊕ρ s2 first resolves the nondeterminism in s1 and s2 in any order. In
the rules (Chance α 1) and (Chance α 2) the priority for resolving nondeterminism is
stated explicitly: The probabilistic choice is only made for resolved statements. If all
nondeterminism in both s1 and s2 has been resolved s1⊕ρ s2 acts like s1 with probability
ρ and like s2 with probability 1− ρ.

Example 4.2.7 Combining the transitions obtained from the proof trees

(Choice 1)
(a2 b)

ν
→ a

(Chance ν 1)
(a2 b)⊕ρ c

ν
→ a⊕ρ c

and

(Choice 1)
(a⊕ρ c) 2 (b⊕ρ c)

ν
→ a⊕ρ c

with the transitions obtained from the symmetric case using (Choice 2) already shows that
statements (a2 b)⊕ρ c and (a⊕ρ c)2 (b⊕ρ c) have the same transition trees except for the
name of the root node. The abstract transition trees for these programs are the same (see

4.2. PRIORITY FOR NONDETERMINISM 71

the figure below) as the names of the nodes are not present in abstract transition trees.
The following two proof trees give the transitions for a⊕ρ c.

(Act)
a

1·a
−→E

(Chance α 1)
(a⊕ρ c)

ρ·a
−→E

(Act)
c

1·c
−→E

(Chance α 2)
(a⊕ρ c)

(1−ρ)·c
−→ E

The transitions for b ⊕ρ c are obtained in the same way. This completes the transition
tree for both (a2 b)⊕ρ c and (a⊕ρ c)2 (b⊕ρ c). The following picture shows the abstract
transition tree for these statements.

(1− ρ) · cρ · b(1− ρ) · cρ · a

ν ν

The transition tree for the statement (b1⊕ρ c)‖(b2⊕σ c̄) is shown in the following picture.
In this picture ρ̂ is used as a shorthand for (1− ρ) and similarly σ̂ is short for (1− σ).

σ · b2 σ̂ · c̄

EE

b2 ⊕σ c̄

ρ · b1 ρ̂ · c

σ · b2 σ̂ · c̄

EE

b2 ⊕σ c̄

(b1 ⊕ρ c) ‖− (b2 ⊕σ c̄)

ν νν

(b1 ⊕ρ c)|(b2 ⊕σ c̄)

E

ρ̂σ̂ · τ

(b1 ⊕ρ c)‖(b2 ⊕σ c̄)

ρ · b1 ρ̂ · c

EE

b1 ⊕σ c

σ̂ · c̄σ · b2

ρ · b1 ρ̂ · c

EE

b1 ⊕σ c

(b2 ⊕σ c̄) ‖− (b1 ⊕ρ c)

The first step is to resolve the nondeterminism introduced by the operator ‖. The next
step is taking the actions with appropriate probabilities.

In the following example the transitions of the two programs describing the strategies for
the three doors problem are given.

Example 4.2.8 Consider the program s1, where

s1 = (a; (b 2 c); a)⊕ 1
3
((b; c; b)⊕ 1

2
(c; b; c))

which was introduced in example 4.2.3. Using a
1·a
−→E obtained from axiom (Act) as

premise for rule (Seq) gives the transition a; (b 2 c); a
1·a
−→ (b 2 c); a. The transitions

b; c; b
1·b
−→ c; b and c; b; c

1·c
−→ b; c can be derived similarly. Using rules (Chance α 1) and

(Chance α 2) gives the transitions (b; c; b)⊕ 1
2
(c; b; c)

1
2
·b

−→ c; b and (b; c; b)⊕ 1
2
(c; b; c)

1
2
·c

−→ b; c.

72 CHAPTER 4. COMBINING 2 AND ⊕ρ

Using these rules again gives all the first steps of the program s1.

(a; (b 2 c); a)⊕ 1
3
((b; c; b)⊕ 1

2
(c; b; c))

1
3
·a
−→ (b2 c); a

(a; (b 2 c); a)⊕ 1
3
((b; c; b)⊕ 1

2
(c; b; c))

1
3
·b

−→ c; b

(a; (b 2 c); a)⊕ 1
3
((b; c; b)⊕ 1

2
(c; b; c))

1
3
·c

−→ b; c

The transitions for the program (b 2 c); a are obtained by using rules (Choice 1) and
(Choice 2).

(b2 c); a
ν
→ b; a

(b2 c); a
ν
→ c; a

The transitions for the programs b; a, c; a, c; b and b; c are found by using axiom (Act) and
using rule (Seq). Combining all these transitions gives the following abstract transition
tree for s1

1 · b

1 · c

ν ν

1 · c

1 · a

1 · b

1 · a

1
3 · a 1

3 · b

1
3 · c

1 · c

1 · b

For the second program s2 introduced in example 4.2.3,

s2 = (a; ((b; c) 2 (c; b))⊕ 1
3
((b; c; a)⊕ 1

2
(c; b; a))

the transitions can be found in a similar way resulting in the following abstract transition
tree

ν ν

1 · c

1 · c

1 · b

1
3 · a 1

3 · b

1
3 · c

1 · b

1 · a1 · a

1 · b1 · c

4.2.3 Properties of the transition system

In this subsection some notation is introduced and several properties of the transition
system are shown. Structural induction is not applicable for the proofs of these properties.

4.2. PRIORITY FOR NONDETERMINISM 73

Induction on the complexity of a resumption is used instead of induction on its syntactical
structure. The complexity of a resumption is expressed by a weight function wgt. The
weight function is an extension of the weight function used in chapter 3.

Definition 4.2.9 The complexity function wgt:Res→ N is given by

wgt(E) = 0

wgt(a) = 1

wgt(x) = wgt(D(x)) + 1

wgt(s1 ; s2) = wgt(s1) + 1, and similarly for ‖−
wgt(s1 2 s2) = 1 + wgt(s1) + wgt(s2), and similarly for ⊕ρ and |

wgt(s1‖s2) = wgt(s1 ‖− s2) + wgt(s2 ‖− s1) + wgt(s1|s2) + 1

That the weight function wgt is well-defined is easy to see by structural induction, first
on guarded statements and then on all resumptions.

Example 4.2.10 As wgt((b1 ⊕ρ c) ‖− (b2 ⊕σ c̄)) = wgt(b1 ⊕ρ c) + 1 = 3 + 1 = 4 and

wgt((b1⊕ρ c)|(b2⊕σ c̄)) = wgt(b1⊕ρ c)+wgt(b2⊕σ c̄) = 3+3 = 6 we have that wgt((b1⊕ρ

c)‖(b2⊕σ c̄)) = wgt((b1⊕ρc)‖−(b2⊕σ c̄))+wgt((b2⊕σ c̄)‖−(b1⊕ρc))+wgt((b1⊕ρc)|(b2⊕σ c̄)) =

4 + 4 + 6 = 14
As wgt(a ⊕ρ b) = 3 we have that wgt((a ⊕ρ b);x) = 4 and if D(x) = (a ⊕ρ b);x then

wgt(x) = wgt(D(x)) + 1 = 4 + 1 = 5.

Sometimes one is only interested in the existence of a transition with a given observation,

not in the resulting configuration. The notation s
θ
→ is used to express that there exists

some resumption r such that s
θ
→ r and s

θ

6→ denotes that no such resumption exists.
The notation s

ν
; s′ is used to denote that s′ is one of the nondeterministic alternatives

of s and that s′ is resolved.

Definition 4.2.11 For any statements s, s′ in Stat+ the following notation is introduced

s
ν+

→ s′ ⇐⇒ ∃s′′ : s
ν
→ s′′ ∧ s′′

ν∗
→ s′

s
ν∗
→ s′ ⇐⇒ s = s′ ∨ s

ν+

→ s′

s
ν
; s′ ⇐⇒ s

ν∗
→ s′ ∧ s′

ν

6→

The notation s
ν+

→ s′ expresses that s can go to s′ by taking one or more ν steps. If s can

reach s′ in zero or more ν steps s
ν∗
→ s′ is written. As already mentioned above, s

ν
; s′

denotes that s can reach the resolved statement s′ by ν steps. Correctness of the recursive

definition of
ν+

→ and
ν∗
→ follows directly from the fact that if s

ν
→ s′ then the weight of s′

is less than the weight of s (see lemma 4.2.16 below).
Resolving nondeterminism is done by taking ν steps. The notion of a statement being

resolved is supposed to describe that all nondeterminism before taking the first action has
been resolved. Resolved statements should, therefore, be exactly those statements that
do not take any ν steps. The following lemma states that this is indeed the case.

74 CHAPTER 4. COMBINING 2 AND ⊕ρ

Lemma 4.2.12 A statement s can take a ν step exactly when it is not resolved: s
ν
→ ⇐⇒

s not resolved.

Proof Clear by induction on the weight of the statement. 2

Example 4.2.13 Let, in this example, a, b, c, d be actions in Act and ρ a ratio in (0, 1).

As the statement a is resolved, it cannot take any ν steps, so a
ν
; a.

As the statement a⊕ρ b is resolved it cannot take any ν steps. The transition (a2b)⊕ρ

c
ν
→ a⊕ρc, was derived in example 4.2.7. Combining these two gives that (a2b)⊕ρc

ν
; a⊕ρc

holds.
A possible sequence of transitions for the program (a2b)‖(c2d) is given by (a2b)‖(c2

d)
ν
→ (a2 b) ‖−(c2d)

ν
→ a ‖−(c2d). Therefore we have that (a2 b)‖(c2d)

ν+

→ a ‖−(c2d)

holds and, as the statement a ‖−(c2 d) is resolved, also (a2 b)‖(c2 d)
ν
; a ‖−(c2 d) holds.

The transitions for a resolved statement can be described by a multiset. For each transition
a (probability, action) pair together with the resumption resulting from executing this
action is included in the multiset. This multiset is called the probabilistic successor set
of the statement. For a general statement it may be necessary to first resolve some
nondeterminism. The successor set of a statement is therefore a set of multisets, where
each element of the set is the probabilistic successor set of one of the nondeterministic
alternatives of the statement.

Definition 4.2.14 For a resolved statement s in Stat+ the probabilistic successor (mul-
ti)set of s, denoted by Suc′(s), is a multiset consisting of the pairs of the transition label
and resulting resumption of all transitions that s can take. The observable probabilistic
successor set, denoted by Suc′obs is similar except that only transitions with an observable
action as label are considered. The functions Suc′ : Statres → MPf (PAct × Res) and
Suc′obs : Statres →MPf (POAct × Res) (with MPf as introduced in definition 3.2.4) are
given by

Suc′(s) = {| 〈α, r〉 | s
α
→ r |}

Suc′obs(s) = {| 〈β, r〉 | s
β
→ r |}

Note that, as s
α
→ r is a different notation for (s, α, r) ∈ → , this definition uses the

notation for multisets introduced in definition 3.2.5. As a result 〈α, r〉 ∈n Suc′(s) holds

exactly when the multiplicity of s
α
→ r is n.

For a statement s in Stat+ the (observable) successor set of s, which is denoted by Suc(s)
(Sucobs(s)), is the set containing the (observable) probabilistic successor sets of the state-
ments that s can reach by ν steps. The functions Suc : Stat → Pf (MPf (PAct × Res))
and Sucobs : Stat → Pf (MPf (OAct × Res)) (where Pf (X) denotes the space of all finite
subsets of X) are given by

Suc(s) = { Suc′(s′) | s
ν
; s′ }

Sucobs(s) = { Suc′obs(s
′) | s

ν
; s′ }

4.2. PRIORITY FOR NONDETERMINISM 75

The probabilistic successor set for a resolved statement s is similar to the successor sets
used in the previous chapter. As an aside: For statements in Lp the two even coincide:
Suc′(s) = Sucp(s) for s ∈ Lp, where Sucp(s) denotes the successor sets used in the previous
chapter. As a general statement in Lpnd may have to resolve some nondeterminism before
the probabilistic-action steps can be found, the successor of a statement is a set. The
probabilistic successor set of any statement s′ that s can resolve into (s

ν
; s′) is included

in the successor set of s.

Example 4.2.15 Taking an observable action b in OAct and a synchronization action c

in Sync we have that the transitions for the resolved statement b⊕ρ c are b⊕ρ c
ρ·b
−→E and

b ⊕ρ c
(1−ρ)·c
−→ E, so the probabilistic successor set Suc′(b ⊕ρ c) is given by Suc

′(b ⊕ρ c) =
{| 〈ρ·b,E〉, 〈(1− ρ)·c,E〉 |}. The observable probabilistic successor set Suc′obs(b⊕ρc) is given
by Suc′obs(b⊕ρ c) = {| 〈ρ · b,E〉 |}. The successor set Suc(b⊕ρ c) is given by Suc(b⊕ρ c) =
{ {| 〈ρ · b,E〉, 〈(1− ρ) · c,E〉 |} }. The observable successor set Sucobs(b ⊕ρ c) is given by
Sucobs(b⊕ρ c) = { {| 〈ρ ·b,E〉 |} }. The (observable) successor set for any resolved statement
consists of the singleton set containing only the (observable) probabilistic successor set of
the statement.
For observable actions b, b′ in OAct and a synchronization action c in Sync we have

that the statement (b2b′)⊕ρc has two nondeterministic alternatives: As (b2b
′)⊕ρc

ν
; b⊕ρc

and (b 2 b′) ⊕ρ c
ν
; b′ ⊕ρ c give the two possible nondeterministic alternatives for the

statement (b2 b′)⊕ρ c, the successor set of this statement is given by Suc((b2 b′)⊕ρ c) =
{ {| 〈ρ · b,E〉, 〈(1− ρ) · c,E〉 |}, {| 〈ρ · b′,E〉, 〈(1− ρ) · c,E〉 |} }. The observable successor set
Sucobs((b 2 b′)⊕ρ c) is given by Sucobs((b 2 b′)⊕ρ c) = { {| 〈ρ · b,E〉 |}, {| 〈ρ · b

′,E〉 |} }.

The following properties of the transition system can now easily be shown to hold by
weight induction.

Lemma 4.2.16

(a) s
ν

6→E.

(b) If s
ν
→ s′ then wgt(s′)< wgt(s).

(c) No infinite sequence s
ν
→ s1

ν
→ s2

ν
→ . . . exists.

(d) Tpnd is finitely branching, that is

1. Suc(s) is a finite set for all s and,

2. Suc′(s) is a finite multiset for each resolved statement s.

The first property gives that a nondeterministic alternative of a program is always some
program and never a finished computation. The second property gives that a single non-
deterministic alternative of a program is always seen as simpler than the whole program.
The third property states that there is no internal divergence in the transition system. It
is not possible to keep taking auxiliary ν steps. This property is a direct consequence of
the second property. The final property, that the transition system is finitely branching,
is important for the well-definedness of the operational semantics.

76 CHAPTER 4. COMBINING 2 AND ⊕ρ

4.2.4 The operational semantics O

The transition system contains information which is not considered to be observable
behavior. For example the auxiliary ν steps do not correspond to actual observable
behavior. To obtain the operational semantics this additional information is removed.
The domain of all possible behaviors is denoted by Po. The elements of Po are called
processes.

Definition 4.2.17 The operational domain Po, ranged over by p, is given by

Po = Pnco(Qo)

Qo = Meas(Ro)

Ro = OAct∞δ

where OAct∞δ = OAct? ∪OAct? · { δ }∪OActω.

A sequence r in Ro corresponds to a possible run of the system. The sequence gives the
observable actions produced by a single execution of the system. The run can terminate
normally, r ∈ OAct?, deadlock after executing a number of actions, r ∈ OAct? · { δ }, or
not terminate at all, r ∈ OActω. The elements of Qo are called probabilistic subprocesses
or simply subprocesses. A probabilistic subprocess in Qo gives the probability for each
observable event, i.e. for each Borel set of sequences in Ro. A special case of an observ-
able event is a set consisting of a single sequence. It is, therefore, possible to find the
probability of executing a given sequence by looking at the probability of the observable
event ‘singleton the sequence’.

A process in Po consists of a set of possible probabilistic subprocesses in Qo. Each
probabilistic subprocess corresponds to a single nondeterministic alternative of the system.

The following example shows some processes in Po and subprocesses in Qo. Recall the
definition of the Dirac measure ∆x from subsection 3.3.5 in the previous chapter: Given
a sequence w in Ro the measure ∆w ∈ Meas(Ro) is given by

∆x(B) =

{
1 if x ∈ B
0 otherwise

where B is any Borel set of sequences in Ro. The measure ∆w returns 1 for a Borel set
B exactly when the sequence w is in B and 0 otherwise. In other words ∆w describes a
situation where the sequence w is obtained with probability 1.

Example 4.2.18 The sequences b, bb′, bδ and bω are all elements of Ro. The first se-
quence corresponds to the execution of a single b followed by normal termination. The
second sequence corresponds to the execution of the action b followed by the execution of
the action b′ followed by normal termination. The sequence bδ corresponds to the execu-
tion of the action b followed by deadlock of the system. The sequence bω corresponds to
forever repeating the execution of the action b.

The measures q1 = ∆b, q2 = 1
4∆bδ + 3

4∆bω are both elements of Qo. The measure q1
corresponds to executing the sequence b with probability 1. The measure q2 corresponds to
executing the sequence bδ with probability 1

4 and the sequence b
ω with probability 3

4 .

4.2. PRIORITY FOR NONDETERMINISM 77

The measure q3 with q3(wOAct
∞
δ) = 1

2

length of w
for all w ∈ { b, b′ }∗, is also an element

of Q. The measure q3 corresponds to the execution of an infinite sequence of actions
where each action of the sequence is b with probability 1

2 or b
′ also with probability 1

2 . The
probability that the sequence which is chosen starts with e.g. bb′b, is 1

8 (as q3(bb
′bOAct∞δ) =

1
8). For each infinite sequence the probability that exactly this sequence is obtained is 0.
No finite sequence is obtained as q3(Act

?) is 0: For every n ≥ 0 there are 2n+1 different
words w of length n + 1 consisting of actions b and b′. For each of these words, the
probability, q3(wOAct

∞
δ), of starting with this word is 2−(n+1). Adding these probabilities

gives a probability of 1 for starting with some word of length n+ 1. This means that the
probability of executing a word of length n is 0. By using countable additivity one obtains
that the probability, q3(Act

?), of executing any finite word is 0

The sets p1 = {∆b }, p2 = { q2, q3 } and p3 = {∆b,∆bb,∆bbb, . . . ,∆bω } are elements of
Po. The set p1 gives only one possibility namely to behave like ∆b, i.e. to execute b with
probability one. The set p2 offers the choice between acting like q2 and acting like q3. The
set p3 allows the execution of any positive number of actions b, including the possibility
of executing infinitely many b actions. Note that the set {∆b,∆bb,∆bbb, . . . } without
the possibility for infinitely many actions b is not in Po. The sequence ∆b,∆bb,∆bbb, . . .
converges to ∆bω so for closedness of the set and thus for compactness of the set ∆bω must
be included.

The operational semantics is given as a model with values in the operational domain Po
introduced in definition 4.2.17. It is here where the distinction between the conditional
and unconditional interpretation of probabilistic choice is made. The operational model
for the unconditional interpretation of probabilistic choice is denoted by Ou and the model
for the conditional interpretation of probabilistic choice is denoted by Oc.

Definition 4.2.19 Let the index i be i = u for the unconditional interpretation of proba-
bilistic choice or i = c for the conditional interpretation of probabilistic choice. The oper-

ational models Oi : Res
1
→ Po and the auxiliary functions Ôi :MPf (POAct× Res)→ Po

are given by

Oi(E) = {∆ε }

Oi(s) =
⋃
{ Ôi(M) |M ∈ Sucobs(s) }

Ôi(∅) = {∆δ }

Ôu({| 〈ρ1 · b1, r1〉, . . . , 〈ρn · bn, rn〉 |})

= { (1− π)∆δ +
∑n

j=1 ρj(µj/bj) | µ1 ∈ O(r1), . . . , µn ∈ O(rn) }

Ôc({| 〈ρ1 · b1, r1〉, . . . , 〈ρn · bn, rn〉 |})

= {
∑n

j=1
ρj
π (µj/bj) | µ1 ∈ O(r1), . . . , µn ∈ O(rn) }

where n is greater or equal to one and π equals
∑n

j=1 ρj.

Recall the definition of the measure along prefix b, µ/b(B) = µ(B/b) with B/b = {w |
bw ∈ B }. The operation /b plays the role of prefixing on measures, see definition 3.3.18

78 CHAPTER 4. COMBINING 2 AND ⊕ρ

and example 3.3.19. Also note that ρµ denotes the measure µ multiplied with the scalar ρ,
so for example, if µ({ a }) = 1

2 then 1
2 (µ/b) gives

1
4 for the set { ba }.

The meaning or behavior of a statement consists of a set of possible probabilistic
subprocesses. The resumption E denotes a finished computation. The only possible
behavior for E is to produce no actions and terminate normally with probability one. The
meaning of a statement s is obtained by combining the meanings of all its nondeterministic
alternatives. A nondeterministic alternative is described by a probabilistic successor set
M in Sucobs(s).

A possible probabilistic subprocess for the probabilistic successor set {| 〈ρ1 ·b1, r1〉, . . . ,
〈ρn · bn, rn〉 |} is found by choosing, for each j, one probabilistic subprocess µj from O(rj).
These probabilistic subprocesses are “prefixed” with the corresponding action, giving
µj/bj , multiplied with the corresponding probability ρj and then added. For the uncon-
ditional interpretation of probabilistic choice, any missing probability (1−π) is interpreted
as a probability of deadlock. If the probabilistic choice is interpreted as being conditional,
the numbers ρ1, . . . , ρn are interpreted as relative frequencies and normalized to ρ1

π ,. . . ,
ρn
π to obtain actual probabilities. Deadlock is only introduced if there are no observable
steps possible at all.

Example 4.2.20 Let b1, b2 and b3 be actions in OAct and let c, c̄ be complementary
actions in Sync. The internal successor set of the statement s = (b1 2 b2)⊕ρ c is { {| 〈ρ ·

b1,E〉 |}, {| 〈ρ · b2,E〉 |} } so the operational meaning Oi(s) is given by Oi(s) = Ôi({| 〈ρ ·

b1,E〉 |}) ∪ Ôi({| 〈ρ · b2,E〉 |}). For the unconditional interpretation of probabilistic choice

the first term is given by Ôu({| 〈ρ·b1,E〉 |}) = { (1−ρ)∆δ+ρµ/b1 | µ ∈ O(E) }= { (1−ρ)∆δ+

ρ∆ε/b1 }= { (1−ρ)∆δ+ρ∆b1 }. Similarly we have Ôu({| 〈ρ·b2,E〉 |}) = { (1−ρ)∆δ+ρ∆b2 }.
The unconditional operational meaning of s is the union of these two sets, Ou(s) =
{ (1− ρ)∆δ + ρ∆b1 , (1− ρ)∆δ + ρ∆b2 }.

Using the conditional interpretation of probabilistic choice gives Ôc({| 〈ρ · b1,E〉 |}) =

{ ρ
ρµ/b1 | µ ∈ O(E) }= {∆ε/b1 }= {∆b1 } for the first term and similarly Ôc({| 〈ρ ·

b2,E〉 |}) = {∆b2 } for the second term. The conditional operational meaning of s is
the union of these two sets, Oc(s) = {∆b1 ,∆b2 }.
Independent of the interpretation of the probabilistic choice, the operational meaning

of the program (b1⊕ρ b2)2 b3 is given by Oi((b1⊕ρ b2)2 b3) = { ρ∆b1 +(1− ρ)∆b2 ,∆b3 }.
The operational meaning of the statement (b1⊕ρ c)‖(b2⊕σ c̄) (see example 4.2.7 for the

transitions of this statement) does depend on the interpretation of probabilistic choice. For
the unconditional interpretation the operational meaning is given by Ou((b1 ⊕ρ c)‖(b2 ⊕σ

c̄)) = { ρσ∆b1b2 + ρ(1 − σ)∆b1δ + (1 − ρ)∆δ, σρ∆b2b1 + σ(1 − ρ)∆b2δ + (1 − σ)∆δ, (1 −
ρ)(1− σ)∆τ + (ρ+ σ− ρσ)∆δ }. For the conditional interpretation of probabilistic choice
the operational meaning is given by Oc((b1 ⊕ρ c)‖(b2 ⊕σ c̄)) = {∆b1b2 ,∆b2b1 ,∆τ }

The last example shows an important property of the modeling of the parallel composition.
The parallel composition is modeled as a scheduler. Whether the next action is produced
by the left component, by the right component or by synchronization between the com-
ponents is decided by resolving the nondeterminism introduced by the operator ‖. As
resolving the nondeterminism has priority over the probabilistic choice, it cannot depend
on the outcome of the probabilistic choice. A subprocess of the form ρ∆b1b2 + (1− ρ)∆τ

4.2. PRIORITY FOR NONDETERMINISM 79

which allows a separate step of the lefthand process for one probabilistic option but at
the same time synchronization for the other probabilistic option, is therefore not present
in Oc((b1⊕ρ c)‖(b2⊕σ c̄)). Such a subprocess would require that the outcome of resolving
the parallel composition depends on the outcome of the probabilistic choice between b1
and c in the first component. Note that the probability in the second component does not
play a role here, if for example the first component selects b1 then the second component
can no longer select c̄ due to the conditionality of the probabilistic choice.

The definition of the operational model can be justified by showing that it is the unique
fixed point of a higher-order operator.

Lemma 4.2.21 Let i be u for the unconditional or c for the conditional interpretation of

probabilistic choice. Let Sem = Res
1
→ Po and let Φi : Sem→ Sem be given by

Φi(S)(E) = {∆ε }

Φi(S)(s) =
⋃
{ Φ̂i(S)(M) |M ∈ Sucobs(s) }

Φ̂i(S)(∅) = {∆δ }

Φ̂u(S)({| 〈ρ1 · b1, r1〉, . . . , 〈ρn · bn, rn〉 |})

= { (1− π)∆δ +
∑n

i=1 ρi(µi/bi) | µ1 ∈ S(r1), . . . , µn ∈ S(rn) }

Φ̂c(S)({| 〈ρ1 · b1, r1〉, . . . , 〈ρn · bn, rn〉 |})

= {
∑n

i=1
ρi
π (µi/bi) | µ1 ∈ S(r1), . . . , µn ∈ S(rn) }

with π =
∑n

i=1 ρi, then Φi has a unique fixed point. Therefore, there is exactly one
function Oi satisfying the equations in definition 4.2.19.

Proof Clearly a function Oi satisfies the equations given in definition 4.2.19 exactly
when it is a fixed point of Φi (for i = u or i = c). It is sufficient to show that Φi is a
well-defined contractive function. Using Banach’s theorem this gives that Φi has a unique
fixed point.

To show that Φi is well-defined requires showing that Φi(S) ∈ Sem holds for all S in
Sem. In other words one has to show that Φi(S)(r) ∈ Po for all S in Sem and r in Res. As
this is directly clear for r = E we only need to check the case that r = s for some program s.
The transition system is finitely branching so each probabilistic successor set is finite. For
a finite successor set M , the elements of Φ̂i(S)(M) are clearly probabilistic subprocesses
in Qo. Straightforward calculation shows that the function which takes (µ1, . . . , µn) to
{ (1−π)∆δ+

∑n
i=1 ρi(µi/bi) } is nonexpansive and thus continuous. This gives that the set

Φ̂i(S)(M) is a compact set as it is a continuous image of the product of the compact sets

S(r1) through S(rn) (lemma 2.1.13). As Φi(S)(s) is the union of Φ̂i(S)(M) for finitely

many multisets M , it is also a compact set of subprocesses. Nonemptiness of Φ̂i(S)(s) is
obvious.

To show that Φi is contractive it is sufficient to show that

d(Φi(S)(r),Φi(S
′)(r)) ≤ 1

2d(S, S
′)

holds for all resumptions r. Note that d(Φ̂i(S)(∅), Φ̂i(S
′)(∅)) = d(∆δ,∆δ) = 0 ≤ 1

2d(S, S
′).

80 CHAPTER 4. COMBINING 2 AND ⊕ρ

Also, if µi ∈ S(ri) and µ
′
i ∈ S

′(ri) for i = 1, . . . , n then

d((1− π)∆δ +
∑n

i=1 ρi(µi/bi), (1− π)∆δ +
∑n

i=1 ρi(µ
′
i/bi))

≤ max{ d(µi/bi, µ
′
i/bi) | i = 1, . . . , n }

≤ max{ 1
2d(µi, µ

′
i) | i = 1, . . . , n }

≤ max{ 1
2d(S(ri), S

′(ri)) | i = 1, . . . , n }

≤ 1
2d(S, S

′)

so d(Φ̂u(S)(M), d(Φ̂u(S
′)(M)) ≤ 1

2d(S, S
′) for all M . Similarly it follows that

d(Φ̂c(S)(M), Φ̂c(S
′)(M)) ≤ 1

2d(S, S
′) for all M . This gives

d(Φi(S)(s),Φi(S
′)(s))

= d(
⋃
{ Φ̂i(S)(M) |M ∈ Sucobs(s) },

⋃
{ Φ̂i(S

′)(M) |M ∈ Sucobs(s) })

≤ max{ d(Φ̂i(S)(M), Φ̂i(S
′)(M)) |M ∈ Sucobs(s) }

≤ 1
2d(S, S

′) 2

Example 4.2.22 Take S with S(r) = {∆ε } for all r. The function S gives direct ter-
mination ignoring the program completely. Applying Φi to S gives Φi(S)(s) = {

∑
{ ρ∆b |

〈ρ · b, r〉 ∈ M }| M ∈ Sucobs(s) }. The function Φi(S) gives the first step of a program
followed by termination, ignoring the remaining part of the program. The function Φn

i (S)
gives the first n steps of a program.

The operational semantics for Lpnd should be given for programs. The function O, how-
ever, gives the meaning of resumptions. To remove this small discrepancy we define:

Definition 4.2.23 The operational semantics Oi[[•]] : Lpnd → Po for Lpnd is given by
Oi[[s]] = Oi(s), where i = u for the unconditional interpretation of probabilistic choice or
i = c for the conditional interpretation of probabilistic choice.

By restricting to statements instead of resumptions the operational semantics Oi[[•]] is
obtained from the operational model Oi.

Example 4.2.24 In this example we again consider the ‘3 doors problem’ introduced in
example 4.2.3 and find the solution.
The programs s1 = (a; (b2 c); a)⊕ 1

3
((b; c; b)⊕ 1

2
(c; b; c)) and s2 = (a; ((b; c)2 (c; b))⊕ 1

3

((b; c; a)⊕ 1
2
(c; b; a)) describe two strategies in the quiz-show as introduced in example 4.2.3.

Using the transitions derived in in example 4.2.8 the operational meaning of these pro-
grams can be found. Note that here a, b and c are all observable actions in OAct. As these
programs do not contain synchronization, the unconditional and conditional meanings are
the same. Only the unconditional meaning is given. It turns out that to find the meaning
of the programs s1 and s2, the meanings of the sub programs (b 2 c); a and (b; c) 2 (c; b)
are needed. The observable successor sets for these statements are

Sucobs((b 2 c); a) = { {| 〈1 · b, a〉 |}, {| 〈1 · c, a〉 |} }

Sucobs((b; c) 2 (c; b)) = { {| 〈1 · b, c〉 |}, {| 〈1 · c, b〉 |} }

4.2. PRIORITY FOR NONDETERMINISM 81

this gives

Ou((b 2 c); a) = Ôu({| 〈1 · b, a〉 |}) ∪ Ôu({| 〈1 · c, a〉 |})

= {µ/b | µ ∈ Ou(a) }∪{µ/c | µ ∈ Ou(a) }

= {∆a/b }∪{∆a/c }

= {∆ba,∆ca }

Ou((b; c) 2 (c; b)) = Ôu({| 〈1 · b, c〉 |}) ∪ Ôu({| 〈1 · c, b〉 |})

= {∆bc,∆cb }

The processes Ou(s1) and Ou(s2) can now be found as follows: The observable successor
sets for s1 and s2 are

Sucobs(s1) = { {| 〈 13 · a, (b 2 c); a〉, 〈 13 · b, c; b〉, 〈
1
3 · c, b; c〉 |} }

Sucobs(s2) = { {| 〈 13 · a, (b; c) 2 (c; b)〉, 〈 13 · b, c; a〉, 〈
1
3 · c, b; a〉 |} }

which gives

Ou(s1) = Ôi({| 〈
1
3 · a, (b 2 c); a〉, 〈 13 · b, c; b〉, 〈

1
3 · c, b; c〉 |})

= { 1
3 (µ/a) +

1
3∆bcb +

1
3∆cbc | µ ∈ Ou((b 2 c); a) }

= { 1
3∆aba +

1
3∆bcb +

1
3∆cbc,

1
3∆aca +

1
3∆bcb +

1
3∆cbc }

Ou(s2) = Ôi({| 〈
1
3 · a, (b; c) 2 (c; b)〉, 〈 13 · b, c; a〉, 〈

1
3 · c, b; a〉 |})

= { 1
3 (µ/a) +

1
3∆bca +

1
3∆cba | µ ∈ Ou((b; c) 2 (c; b)) }

= { 1
3∆abc +

1
3∆bca +

1
3∆cba,

1
3∆acb +

1
3∆bca +

1
3∆cba }

The semantics Ou[[sj]] of sj coincides with Ou(sj) (for j = 1, 2).

Having found the semantics of both programs, the next step is to give an observable event
which describes ‘winning the prize’. The contestant wins the prize if the door with the
prize, i.e. door a, is selected at the end of the program. This means that the event we are
looking for is Act? a, the set of all finite words ending in a. Observable events are Borel
sets of action sequences. The set Act? a is open and therefore indeed an observable event.
(All words in Act? a are finite and a sufficiently small open ball around a finite word w
contains only the word w itself.)

For both strategies we can now give which probabilities are possible for winning the
prize (in general the probability of winning the prize may depend on the actions of the
quiz-master, i.e. on the nondeterminism). For the strategy described by s1 we get:

Ou(s1)(Act
? a) = { 1

3∆aba(Act
? a) + 1

3∆bcb(Act
? a) + 1

3∆cbc(Act
? a) ,

1
3∆aca(Act

? a) + 1
3∆bcb(Act

? a) + 1
3∆cbc(Act

? a) }

= { 1
3 + 0 + 0 , 1

3 + 0 + 0 }

= { 1
3 }

82 CHAPTER 4. COMBINING 2 AND ⊕ρ

and for the strategy described by s2 we get:

Ou(s2)(Act
? a) = { 1

3∆abc(Act
? a) + 1

3∆bca(Act
? a) + 1

3∆cba(Act
? a) ,

1
3∆acb(Act

? a) + 1
3∆bca(Act

? a) + 1
3∆cba(Act

? a) }

= { 0 + 1
3 + 1

3 , 0 +
1
3 + 1

3 }

= { 2
3 }

Staying with the first selected door gives a probability of 1
3 of winning the prize. Switching

doors, however, gives a probability of 2
3 of winning the prize.

This solves the three doors problem:
Switching doors is the better strategy.

At first sight people often think that the probability of winning is 1
2 as in the end there

is a choice between two doors, one of which must contain the prize. This reasoning
actually corresponds to a different strategy in which the contestant simply forgets what
happened before and randomly selects one of the remaining closed doors. This strategy can
be described by the program s3 given by s3 = (a; (b; (a⊕ 1

2
c)2 c; (a⊕ 1

2
b)))⊕ 1

3
((b; c; (b⊕ 1

2

a))⊕ 1
2
(c; b; (c⊕ 1

2
a))). That the probability of winning with this strategy is indeed 1

2 can

be checked by looking at Ou(s3)(Act
? a). As we have seen, however, the strategy to always

switch doors, as described by s2, gives a higher probability of winning.

4.2.5 Denotational semantics

When checking properties of a statement one wants to be able to decompose the statement
in parts and work with the parts of the statement. As in chapter 3, section 3.4 the
compositionality principle is used to make this possible; the meaning of a statement is
described based on the meaning of the parts of a statement.

The denotational semantics, introduced below, gives the meaning of statements in a
compositional way. The meaning of a statement is given as an element of the domain of
denotational meanings, denoted by Pd, and several semantical operations are introduced
to compose these meanings.

The operational semantics is not compositional. The statements c1 and c2 have the
same operational behavior, but within the context • ‖c̄1 they behave differently. (Here •

indicates the place in the context where a statement can be substituted.) This means that
the operational behavior does not contain sufficient information to be able to compose
meanings. For the denotational model extra information about a statement is maintained.
In the denotational meaning, unmatched synchronization actions are visible and do not
result in deadlock. Also, the moments of choice are remembered in the denotational
meaning. This branching information is not essential for the unconditional interpretation
of probabilistic choice, only for the conditional interpretation of choice.

Definition 4.2.25 The denotational domain Pd is given by the following domain equa-
tions:

Pd ' Pnco(Qd)

4.2. PRIORITY FOR NONDETERMINISM 83

Qd ' MPf (Rd)

Rd ' PAct+ PAct× id 1
2
(Pd)

The elements of Pd are called denotational processes, or simply processes if no confusion is
possible. The elements of Qd are called probabilistic subprocesses, or just subprocesses. A
process p first nondeterministically chooses a probabilistic subprocess q. The subprocess q
probabilistically chooses an action to execute. The action is possibly followed by another
process. To have a single notation for all elements of Rd a element α of PAct is identified
with 〈α, pε〉 and the (meta-)variables p̂ and p̂′ are used to range over Pd + { pε }. Using
this convention, 〈α, p̂〉 ranges over Rd. Having a single notation for elements of Rd avoids
the need for excessive case-distinctions in the definitions and proofs below.

Example 4.2.26 The process p given by p = { {| ρ·a, (1− ρ)·c |}, {| 〈ρ·b, { {| 1·a |} }〉, (1− ρ)·
c |} } contains two subprocesses. The first subprocess gives a with probability ρ and c with
probability 1−ρ. The second process gives c with probability 1−ρ and b followed by another
process with probability ρ. The process following b only has one option, a with probability
1. The following tree depicts the process p.

(1− ρ) · cρ · b(1− ρ) · cρ · a

1 · a

Note the similarity between the tree representation of a denotational process and the ab-
stract transition trees as e.g. in example 4.2.7.

For each of the syntactical operators, a semantical operation on processes is defined. The
semantical operation specifies how meanings are combined to obtain the meaning of a
statement built with the corresponding syntactical operator.

Definition 4.2.27 All denotational operations are elements of Op = Pd × Pd
1
→ Pd,

i.e. they are nonexpansive functions that take a pair of processes and yield a single pro-
cess.

(a) The operation 2 ∈ Op is defined by

p1 2 p2 = p1 ∪ p2

(b) The operation ⊕ρ ∈ Op is defined by

p1 ⊕ρ p2 = { q1 ⊕
′
ρ q2 | q1 ∈ p1, q2 ∈ p2 }

q1 ⊕
′
ρ q2 = ρq1 t (1− ρ)q2

ρq = {| 〈ρσ · a, p̂〉 | 〈σ · a, p̂〉 ∈ q |}

(c) The operation ; ∈ Op is defined by

p1 ; p2 = { q1 ;
′ p2 | q1 ∈ p1 }

q ;′ p = {| 〈α, p̂ ; p〉 | 〈α, p̂〉 ∈ q |}

84 CHAPTER 4. COMBINING 2 AND ⊕ρ

where p̂ ; p = p if p̂ = pε.

(d) The operation ‖ ∈ Op is defined by

p1‖p2 = p1 ‖− p2 ∪ p1 ‖− p2 ∪ p1|p2

p1 ‖− p2 = { q1 ‖−
′
p2 | q1 ∈ p1 }

q ‖−
′
p = {| 〈α, p̂‖p〉 | 〈α, p̂〉 ∈ q |}

p1|p2 = { q1|
′q2 | q1 ∈ p1, q2 ∈ p2 }

q1|
′q2 = {| 〈ρσ · τ, p̂‖p̂′〉 | 〈ρ · c, p̂〉 ∈ q1, 〈σ · c̄, p̂

′〉 ∈ q2 |}

where p̂‖p̂′ = p̂′‖p̂ = p̂′ if p̂ = pε.

The definitions of several of the operations are recursive but can be shown to be correct
using the metric machinery. Each operation is shown to be the unique fixed point of
a contractive higher order operation Ω:Op → Op. The proof that the higher order
operation Ω is indeed contractive is omitted as it is a straightforward extension of results
in chapter 3, e.g. lemma 3.4.10, and known results (see e.g. [38]).

Note that q1|q2 may have a total probability of less than one. It may even be the
empty multiset. As in the transition system, the interpretation of this ‘missing’ prob-
ability depends on the interpretation of the probabilistic choice. For the unconditional
interpretation of probabilistic choice, the missing probability is a probability of deadlock.
The subprocess {| 23 · a |} describes a situation in which with probability 2

3 an action a will
be taken and with probability 1

3 deadlock will occur. For the conditional interpretation of
probabilistic choice, the real numbers assigned to actions are seen as relative frequencies
of these actions. To get probabilities the numbers have to be normalized to sum up to
one. The only subprocess in which deadlock is possible is the empty multiset. The sub-
processes {| 14 · a,

1
4 · b |} and {| 12 · a,

1
2 · b |} describes the same situation. In this situation a

and b are equally likely to occur, i.e. both occur with probability 1
2 , and no deadlock is

possible.

Example 4.2.28 Let pa = { {| 1 · a |} }, pb = { {| 1 · b |} } and pc = { {| 1 · c |} }. Then
pb; pa = { {| 〈1 · b, pa〉 |} }, and pa 2 pb; pa = { pa, {| 〈1 · b, pa〉 |} }, and (pa 2 pb; pa) ⊕ρ pc =
{ {| ρ ·a, (1− ρ) · c |}, {| 〈ρ · b, pa〉, (1− ρ) · c |} }. See example 4.2.26 for a tree representation
of this process.
The following tree depicts the process given by ((pa2pb)⊕ρpc); pa = { {| 〈ρ ·a, pa〉, 〈(1−

ρ) · c, pa〉 |}, {| 〈ρ · b, pa〉, 〈(1− ρ) · c, pa〉 |} }.

1 · a1 · a

(1− ρ) · cρ · b(1− ρ) · cρ · a

1 · a 1 · a

In a denotational process it is still possible to interpret the probability as conditional or
unconditional. Due to this, no distinction needs to be made between the conditional and

4.2. PRIORITY FOR NONDETERMINISM 85

unconditional interpretation of probabilistic choice when giving the denotational meaning
of a statement. A single denotational model can be used for both interpretations.

The operations introduced above are nonexpansive by definition. For the operation
‘ ; ’ this can be strengthened. The operation ‘ ; ’ is nonexpansive in its first component
and contractive in its second, i.e.

d(p1 ; p2, p
′
1 ; p

′
2) ≤ max{ d(p1, p

′
1),

1
2d(p2, p

′
2) }

The proof of this fact is again a straightforward extension of results in chapter 3 (lem-
ma 3.4.11) and known results. To justify the following definition, D can be defined as
the fixed point of a higher-order mapping. Contractiveness of ; in its second argument is
required for contractiveness of this higher-order mapping.

Definition 4.2.29 The denotational model D:Lpnd → Pd is given by

D(a) = { {| 1 · a |} }

D(x) = D(D(x))

D(s1 op s2) = D(s1) op D(s2)

where op is 2, ⊕ρ, ; or ‖.

A single action a acts like a with probability one. Recursion is handled by body replace-
ment and the semantical operation op is used to give the meaning of any statement built
using the syntactic operator op.

Example 4.2.30 The denotational meanings of a, b and c are { {| 1 ·a |} }, { {| 1 · b |} } and
{ {| 1 · c |} } respectively, so using example 4.2.28,

D((a 2 b; a)⊕ρ c) = { {| ρ · a, (1−ρ) · c |}, {| 〈ρ · b, { {| 1 · a |} }〉, (1−ρ) · c |} }

D(((a 2 b)⊕ρ c); a) = D((a 2 b; a)⊕ρ c); { {| 1 · a |} }

= { {| 〈ρ · a, { {| 1 · a |} }〉, 〈(1− ρ) · c, { {| 1 · a |} }〉 |},
{| 〈ρ · b, { {| 1 · a |} }〉, 〈(1− ρ) · c, { {| 1 · a |} }〉 |} }

See example 4.2.28 for a tree representation of the process D(((a 2 b)⊕ρ c); a).

The denotational model D already has the correct form. We define the denotational
semantics D[[•]], which coincides with the model D, only to maintain symmetry with the
definition of the operational semantics.

Definition 4.2.31 The denotational semantics D[[•]]:Lpnd → Pd is given by

D[[s]] = D(s)

Having given two operational models and a denotational model, a natural question to ask
is how the models are related. In the following subsection, the operational models are
compared with the denotational model.

86 CHAPTER 4. COMBINING 2 AND ⊕ρ

4.2.6 Comparing the operational and denotational semantics

The denotational semantics contains more information than the operational semantics.
As described in the previous subsection this is necessary to achieve compositionality. The
branching structure and unmatched synchronization actions are still present in the de-
notational processes. Recall that a model based on the transition system but using a
domain other than the operational domain is called an operational-like model. To com-
pare the denotational and operational semantics a series of operational-like intermediate
models are introduced. Step by step the extra information from the denotational mean-
ing is removed by abstraction functions. For processes in the denotational domain, the
probabilistic choice can still be interpreted as an unconditional or a conditional choice.
The choice for unconditional or conditional probabilistic choice is already expressed in
processes in the operational domain. Different abstraction functions are needed for the
unconditional interpretation of probabilistic choice and for the conditional interpretation
of probabilistic choice. The following graph shows the steps involved in the comparison
of the operational and denotational semantics.

abs1 abs2
D = O∗ Ob

Om

Ou

abs3c

abs3u

Pd + { pε } Pb Pm Po

Oc

The empty process pε is added to the denotational domain and the denotational model
D is extended from a function from statements to Pd to a function, from resumptions
to Pd + { pε }. The extended function is also called D. An operational-like model O∗ is
defined on the denotational domain and shown to coincide with the extended denotational
model. A branching domain Pb is introduced in which the unmatched synchronization
actions are not present in the processes. An abstraction from the denotational domain to
a branching domain Pb removes unmatched synchronization actions. An operational-like
model Ob on the branching domain is given and shown to be an abstraction of O∗.

Next an intermediate domain Pm is given. A process in the intermediate domain con-
tains information about the probabilistic branching but does not contain nondeterministic
branching. A second abstraction function removes the nondeterministic branching from
a process in the branching domain Pb to obtain a process in the intermediate domain
Pm. An operational-like model Om, given on the intermediate domain, is shown to be an
abstraction of Ob.

Finally the operational models Ou and Oc, which use the linear operational domain Po,
are shown to be abstractions of the intermediate model Om. It is here that the difference
between the unconditional and conditional interpretation of probabilistic choice results
in two different abstraction functions. These results are combined to give that both
operational semantics are abstractions of the denotational semantics.

The first step is to extend the denotational model to resumptions. To be able to assign a
meaning to the empty resumption E, the empty meaning pε is added to the domain. The
extended denotational model is also denoted by D.

4.2. PRIORITY FOR NONDETERMINISM 87

Definition 4.2.32 The model D : Res→ (Pd + { pε }) is given by

D(E) = pε

D(a) = { {| 1 · a |} }

D(x) = D(D(x))

D(s op s′) = D(s) opD(s′)

where op is ; , ⊕ρ ,2, ‖, ‖− or | and s, s
′ ∈ Stat+.

For well-definedness one should check that D(s) is in Pd for all statements s, as op is only
defined on Pd. It is clear that the model D on resumptions is a conservative extension of
the denotational model D on statements and that indeed D(s) ∈ Pd holds.

The operational-like model O∗, introduced below, also uses the domain Pd + { pε }.

Definition 4.2.33 Put Sem = Res→ (Pd+{ pε }) and let S range over Sem. The higher
order function Φ∗ : Sem→ Sem and auxiliary function Φ̂∗(S) :MPf (POAct×Res)→ Qd

are given by

Φ∗(S)(E) = pε

Φ∗(S)(s) = { Φ̂∗(S)(M) |M ∈ Suc(s) }

Φ̂∗(S)(M) = {| 〈α, S(r)〉 | 〈α, r〉 ∈M |}

The operational-like model O∗ is the unique fixed point of Φ∗.

Recall that 〈α, pε〉 is identified with α. That Φ∗ is contractive and thus has a unique
fixed point is not difficult to check. The operational-like model O∗ satisfies the following
equations:

O∗(E) = pε

O∗(s) = { Ô
∗
(M) |M ∈ Suc(s) }

Ô
∗
(M) = {| 〈α,O∗(r)〉 | 〈α, r〉 ∈M |}

The definition of O∗ as the fixed point of the higher-order operator Φ∗ is exploited in the
proof of the next lemma which establishes the equality of O∗ and D.

Lemma 4.2.34 The extended denotational model D is a fixed point of Φ∗, i.e. Φ∗(D)(r) =
D(r) for all resumptions r. As O∗ is the unique fixed point of Φ∗ this implies that O∗ = D.

Proof That Φ∗(D)(r) = D(r) can be checked by induction on the weight of the resump-
tion r. A few typical cases are given below.

• As s2 s′
ν
; s0 exactly when s

ν
; s0 or s′

ν
; s0 we have

Φ∗(D)(s 2 s′) = { Φ̂∗(D)(M) |M ∈ Suc(s 2 s′) }

= { Φ̂∗(D)(M) |M ∈ Suc(s) ∪ Suc(s′) }
= Φ∗(D)(s) ∪ Φ∗(D)(s′)

[ind. hyp.] = D(s) ∪ D(s′)
= D(s 2 s′)

88 CHAPTER 4. COMBINING 2 AND ⊕ρ

Note that both s and s′ have a lower weight that s2s′ allowing use of the induction
assumption.

• If s
ν
→ si for i = 1, . . . , n, are all the possible steps for s then D(s⊕ρs

′) = ∪n
i=1D(si⊕ρ

s′). Using this the case for s⊕ρ s
′ with s not resolved is similar to the case for s2 s′

above. If s′ is not resolved the situation is symmetrical.

If both s and s′ are resolved then we have that

Suc(s⊕ρ s
′) = { ρSuc′(s) t (1− ρ)Suc′(s′) }

holds, so

Φ∗(D)(s⊕ρ s
′) = { Φ̂∗(D)(M) |M ∈ Suc(s⊕ρ s

′) }

= { Φ̂∗(D)(ρSuc′(s) t (1− ρ)Suc′(s′)) }

= { Φ̂∗(D)(ρSuc′(s)) t Φ̂∗(D)((1− ρ)Suc′(s′)) }

= { {| 〈α,D(r)〉 | 〈α, r〉 ∈ (ρSuc′(s) t (1−ρ)Suc′(s′)) |} }

= { ρ{| 〈α,D(r)〉 | 〈α, r〉 ∈ Suc′(s) |} t

(1− ρ){| 〈α,D(r)〉 | 〈α, r〉 ∈ Suc′(s′)) |} }

= { Φ̂∗(D)(Suc′(s))⊕′ρ Φ̂
∗(D)(Suc′(s′)) }

= { Φ̂∗(D)(Suc′(s)) }⊕ρ{ Φ̂
∗(D)(Suc′(s′)) }

= Φ∗(D)(s)⊕ρ Φ
∗(D)(s′)

[ind. hyp.] = D(s)⊕ρ D(s
′)

= D(s⊕ρ s
′)

• If s
ν
→ r then s; s′

ν
→ r; s′ and if s; s′

ν
→ r′ then r′ = r; s′ and s

ν
→ r which gives that

Suc(s; s′) = { Suc′(s0; s
′) | s

ν
; s0 }

If s0 is a resolved statement then

Φ̂∗(D)({| 〈α, r〉 | s0; s
′ α
→ r |}) = {| 〈α,D(r)〉 | s0; s

′ α
→ r |}

= {| 〈α,D(r′; s′)〉 | s0
α
→ r′ |}

= {| 〈α,D(r′);D(s′)〉 | s0
α
→ r′ |}

= {| 〈α,D(r′)〉 | s0
α
→ r′ |} ;′D(s′)

In other words Φ̂∗(D)(Suc′(s0; s
′)) = Φ̂∗(D)(Suc′(s0)) ;

′D(s′).

Putting these results together gives that

Φ∗(D)(s; s′) = { Φ̂∗(D)(M) |M ∈ Suc(s; s′) }

= { Φ̂∗(D)(Suc′(s0; s
′)) | s

ν
; s0 }

= { Φ̂∗(D)(Suc′(s0)) ;
′D(s′) | s

ν
; s0 }

= { Φ̂∗(D)(Suc′(s0)) | s
ν
; s0 } ;D(s

′)

4.2. PRIORITY FOR NONDETERMINISM 89

= Φ∗(D)(s) ;D(s′)

[ind. hyp.] = D(s) ;D(s′)

= D(s; s′)

Note that the induction assumption is only used for s, not for s′. (Recall the
complexity wgt(s′) of the statement s′ is not necessarily less than the complexity
wgt(s; s′) of the statement s; s′.) The second and third equation follow from the
properties derived above. The other equations are clear from the definitions of Φ∗,
; and D. 2

In the operational meaning of a statement, unmatched synchronization actions are not
present. Compared to the denotational domain, the branching domain Pb removes the
possibility of synchronization actions. Removing the synchronization actions may cause
‘missing probability’, i.e. a total probability of less than one. As for denotational pro-
cesses, this missing probability is seen as a probability of deadlock for an unconditional
interpretation of choice. For a conditional interpretation the ratios have to be normalized
to obtain the actual probabilities.

Definition 4.2.35 The branching domain Pb is given by

Pb ' Pnco(Qb) + { pε }

Qb ' MPf (Rb)

Rb ' POAct× id 1
2
(Pb)

The branching domain Pb is the same as the denotational domain except that synchro-
nization actions are no longer present. An abstraction function is used to relate the
denotational domain with the branching domain. All that is required is to remove the
synchronization actions from a process.

Definition 4.2.36 The functions abs1:Pd + { pε }→ Pb and abs′1:Qd → Qb are defined
by

abs1(pε) = pε

abs1(p) = { abs′1(q) | q ∈ p }

abs′1(q) = {| 〈β, abs1(p̂)〉 | 〈β, p̂〉 ∈ q |}

where p̂ ranges over Pd + { pε } and 〈β, p̂〉 should be read as β for p̂ = pε. Recall that
β = ρ · b is an observable action b in OAct labeled with a probability ρ in [0, 1].

The function abs′1 removes synchronization actions from a subprocess in Qd and keeps only
the observable actions. The function abs1 applies the function abs′1 to every subprocess
in a given process from Qd.

Example 4.2.37 Let in this example b1, b2 be actions in OAct and c and action in Sync.
The abstraction of the process { {| 〈ρ·b1, { {| 1·b1 |} }〉, 〈(1− ρ)·b2, { {| 1·b1 |} }〉 |}, {| 〈ρ·c, { {| 1·

90 CHAPTER 4. COMBINING 2 AND ⊕ρ

b1 |} }〉, 〈(1− ρ) · b2, { {| 1 · b1 |} }〉 |} } is the process { {| 〈ρ · b1, { {| 〈1 · b1, pε〉 |} }〉, 〈(1− ρ) ·
b2, { {| 〈1 · b1, pε〉 |} }〉 |}, {| 〈(1− ρ) · b2, { {| 〈1 · b1, pε〉 |} }〉 |} }. In the tree representation of the
branching process the trailing pε at each leaf is omitted and in both trees the shorthand ρ̂
is used for (1− ρ).

1 · b1 1 · b1 1 · b1

ρ · c ρ̂ · b2ρ · b1

1 · b1

ρ̂ · b2

abs1
1 · b1 1 · b1

ρ̂ · b2ρ · b1

1 · b1

ρ̂ · b2

The operation-like model Ob yields branching processes in the domain Pb.

Definition 4.2.38 The operational-like model Ob : Res→ Pb is given by

Ob(E) = pε

Ob(s) = { Ô
b
(M) |M ∈ Sucobs(s) }

Ô
b
(M) = {| 〈β,Ob(r)〉 | 〈β, r〉 ∈M |}

The meaning of the empty resumption E is the empty process pε. The meaning of a
statement s can be found by looking at which observable steps s can take. The steps that
s can take are collected in the successor set Sucobs(s) of s.

The operational-like model Ob yielding processes in the branching domain Pb is an
abstraction of the operational-like model O∗ with values in the denotational domain Pd.
If from a process O∗(s) the synchronization actions are removed the process Ob(s) is
obtained.

Lemma 4.2.39 The operational-like branching model is an abstraction of the operational-
like model O∗: Ob = abs1 ◦ O

∗.

Proof This proof uses the same idea as the proof of lemma 4.2.34. One shows that
abs1 ◦O

∗ is a fixed point of the higher-order function Φb which was used implicitly in the
definition of Ob. In other words abs ◦ O∗ satisfies the same equations. By uniqueness of
the fixed point, Ob and abs1 ◦ O

∗ have to coincide. Note that

Φ̂b(abs1 ◦ O
∗)(M) = {| 〈β, abs1(O

∗(r))〉 | 〈β, r〉 ∈M |}

= abs′1({| 〈β,O
∗(r)〉 | 〈β, r〉 ∈M |})

= abs′1({| 〈α,O
∗(r)〉 | 〈α, r〉 ∈M tM ′ |})

for all multisets M ′ containing only pairs starting with a synchronization action. The
second equation holds as abs′1 removes all pairs starting with a synchronization action.
Using these two equalities we obtain

Φb(abs1 ◦ O
∗)(E) = pε = abs1(pε) = abs1(O

∗(E))

Φb(abs1 ◦ O
∗)(s) = { Φ̂b(abs1 ◦ O

∗)(M) |M ∈ Sucobs(s) }

= { abs′1({| 〈β,O
∗(r)〉 | 〈β, r〉 ∈M |}|M ∈ Sucobs(s) }

= { abs′1({| 〈α,O
∗(r)〉 | 〈α, r〉 ∈M |}|M ∈ Suc(s) }

= abs1(O
∗(s))

4.2. PRIORITY FOR NONDETERMINISM 91

That a multiset M from Sucobs(s) can be replaced by a multiset from Suc(s) is clear, as
only pairs starting with a synchronization action are added to M . 2

The branching operational-like model Om is an abstraction of the operational-like model
O∗. This implies that the the model Ob identifies all statements that O∗ identifies. The
following example shows that the reverse does not hold.

Example 4.2.40 Let for this example c1, c2 be two different actions in Sync. The pro-
grams c1 and c2 are identified by O

b but not by O∗

Ob(c1) = { ∅ } = Ob(c2)

O∗(c1) = { {| 1 · c1 |} }

O∗(c2) = { {| 1 · c2 |} }

The next step is to introduce an operational-like model on an intermediate domain and
show that this is an abstraction of the operational-like model on the branching domain.
The intermediate domain is a ‘mixed’ domain: Processes in the intermediate domain do
not contain any nondeterministic branching, but can have probabilistic branching.

Definition 4.2.41 The intermediate domain Pm is given by

Pm = Pnco(Qm)

where Qm is given by the domain equations:

Qm ' MPf (Rm) + { qε }

Rm ' POAct× id 1
2
(Qm)

with qε a fresh symbol denoting an empty subprocess.

The domains Qm and Rm are defined as the unique solution (up to isomorphism) of the
given domain equations. The domain Pm consists of the nonempty compact subsets of Qm

and does not need to be defined using domain equations as its definition is not recursive.
In a process in the branching domain, an action can be followed by another process p.

In the intermediate domain, an action can only be followed by a probabilistic subprocess
q. The new symbol qε denotes an empty subprocess. The singleton set containing only
the empty subprocess is used to denote the process that does nothing, replacing the sym-
bol pε. As with the denotational domain and the branching domain, a process can still be
interpreted in two ways, corresponding to an unconditional or a conditional probabilistic
choice. The abstraction function abs2 relates the branching domain with the intermediate
domain.

Definition 4.2.42 The abstraction function abs2:Pb → Pm and the auxiliary function
abs′2:Qb → Pm are defined by

abs2(pε) = { qε }

abs2(p) =
⋃
{ abs′2(q) | q ∈ p }

abs′2(∅) = { ∅ }

abs′2({| 〈β1, p1〉, . . . , 〈βn, pn〉 |})

= { {| 〈β1, q1〉, . . . , 〈βn, qn〉 |}| q1 ∈ abs2(p1), . . . , qn ∈ abs2(pn) }

92 CHAPTER 4. COMBINING 2 AND ⊕ρ

In the branching domain, a process can choose nondeterministically between probabilistic
subprocesses after each action. In the intermediate domain all nondeterministic choices
are collected in a single choice between probabilistic subprocesses. Selecting a probabilistic
subprocess from abs2(pi) corresponds to making all nondeterministic choices in the process
pi. For a probabilistic subprocess q, abs′2(q) collects all nondeterministic choices for all
probabilistic alternatives in q. All nondeterministic choices in abs2(p) are collected by
joining all choices for all probabilistic subprocesses q in p. If there are no actions at all in
the probabilistic subprocesses, the statement deadlocks. In both the branching and the
intermediate domain this is modeled by the empty multiset ∅.

Example 4.2.43 Let for this example b1, b2 and b3 be actions in OAct. The branching
process

{ {| 〈1 · b1, { {| 〈1 · b2, pε〉, 〈1 · b3, pε〉 |} }〉 |}, {| 〈1 · b1, pε〉 |} }

is mapped to the intermediate process

{ {| 〈1 · b1, {| 〈1 · b2, qε〉 |}〉 |}, {| 〈1 · b1, {| 〈1 · b3, qε〉 |}〉 |}, {| 〈1 · b1, qε〉 |} }

by the abstraction function abs2.

1 · b11 · b1

1 · b3

abs2

1 · b2

1 · b11 · b1

1 · b3

1 · b1

1 · b2

In the tree representation of the branching process the trailing pε at each leaf is omitted.
In the tree representation of the intermediate process the trailing qε at each leaf is omitted.

The operational-like model Om yields values in the intermediate domain Pm introduced
in definition 4.2.41.

Definition 4.2.44 The intermediate operational-like model Om is given by

Om(E) = { qε }

Om(s) =
⋃
{ Ô

m
(M) |M ∈ Sucobs(s) }

Ô
m
(∅) = { ∅ }

Ô
m
({| 〈β1, r1〉, . . . , 〈βn, rn〉 |})

= { {| 〈β1, q1〉, . . . , 〈βn, qn〉 |}| q1 ∈ O
m(r1), . . . , qn ∈ O

m(rn) }

In the intermediate domain actions may not be followed by a process, only by a proba-
bilistic subprocess. The construction 〈β,Ob(r)〉, used in definition 4.2.38, cannot be used
here. A probabilistic subprocess q is selected from Om(r) and 〈β, q〉 is used instead. In
this way the nondeterministic choices are collected as is done in the abstraction from the
branching domain to the intermediate domain. As the intermediate operational-like model
removes the nondeterministic branching in the same way as the abstraction function abs2
does, the following lemma is not surprising.

4.2. PRIORITY FOR NONDETERMINISM 93

Lemma 4.2.45 The intermediate operational-like model Om is an abstraction from the
branching model Ob: Om = abs2 ◦ O

b.

The same technique as used in lemmas 4.2.34 and 4.2.39 can be applied to prove this
lemma. The intermediate operational-like model Om is an abstraction of the branching
operational-like model Ob. The gives that the model Om identifies all statements that Ob

identifies. The following example shows that the reverse does not hold.

Example 4.2.46 Let for this example b1, b2 and b3 be actions in OAct. The programs
b1; (b2 2 b3) and b1; b2 2 b1; b3 are identified by the model O

m but not by the model Ob

Om(b1; (b2 2 b3)) = { {| 〈1 · b1, {| 〈1 · b2, qε〉 |} |}, {| 〈1 · b1, {| 〈1 · b3, qε〉 |} |} }

= Om(b1; b2 2 b1; b3)

Ob(b1; (b2 2 b3)) = { {| 〈1 · b1, { {| 〈1 · b2, pε〉 |}, {| 〈1 · b3, pε〉 |} }〉 |} }

Ob(a; b 2 a; c) = { {| 〈1 · b1, { {| 〈1 · b2, pε〉 |} }〉 |}, {| 〈1 · b1, { {| 〈1 · b3, pε〉 |} }〉 |} }

The final step is to remove the probabilistic branching structure from the intermediate
domain. A linear meaning in the operational domain should be obtained. As a process in
the domain Po has only one interpretation, while a process in the intermediate domain Pm
has two possible interpretations, two different abstraction functions are given. The first
abstraction function abs3u yields processes in Po corresponding to an unconditional inter-
pretation of probabilistic choice. The second abstraction function abs3c yields processes
in Po corresponding to a conditional interpretation of probabilistic choice.

Definition 4.2.47 The abstraction functions abs3i:Pm → Po and the auxiliary functions
abs′3i:Qm → Qo are defined by

abs3i(p) = { abs′3i(q) | q ∈ p }

abs′3i(qε) = ∆ε

abs′3i(∅) = ∆δ

abs′3u({| 〈ρ1 · b1, q1〉, . . . , 〈ρn · bn, qn〉 |}) = (1−π)∆δ +
∑n

j=1 ρj(abs
′
3u(qj)/bj)

abs′3c({| 〈ρ1 · b1, q1〉, . . . , 〈ρn · bn, qn〉 |}) =
∑n

j=1
ρj
π (abs′3c(qj)/bj)

where π =
∑n

j=1 ρj and i is u for the unconditional or c for the conditional interpretation
of probabilistic choice.

Recall that the operation •/b on measures plays the role of prefixing with action b. The
function abs′3u is actually only well-defined for subprocesses where the total probability (π)
is less than or equal to 1. This is not a problem because all subprocesses of interest satisfy
this constraint. (To make abs′3u everywhere well-defined one can use an arbitrary measure
as outcome for subprocesses with total probability greater than one.) The following lemma
can again be proven by using the technique of lemmas 4.2.34 and 4.2.39.

Lemma 4.2.48 Both operational models are abstractions of the intermediate operational-
like model: Oi(s) = abs3i(O

m(s)) where i is u for the unconditional or c for the conditional
interpretation of probabilistic choice.

94 CHAPTER 4. COMBINING 2 AND ⊕ρ

Example 4.2.49 Let for this example b be an action in OAct and c an action in Sync.
For the program b⊕ 1

2
c the intermediate operation-like model gives Om(b⊕ 1

2
c) = { {| 〈 12 ·

b, qε〉 |} }. The abstractions for the unconditional and the conditional interpretation of this
process are { 1

2∆b +
1
2∆δ } and {∆b } respectively.

These results can now be combined to show that the the operational semantics is an
abstraction of the denotational semantics.

Theorem 4.2.50 There exist abstraction functions absi : Pd → Po such that Oi[[•]] =
absi ◦ D[[•]] where i is u for the unconditional or c for the conditional interpretation of
probabilistic choice.

Proof Take absi = abs3i ◦ abs2 ◦ abs1 then

Oi[[s]] = [lemma 4.2.48] abs3i(O
m(s))

= [lemma 4.2.45] abs3i(abs2(O
b(s))

= [lemma 4.2.39] abs3i(abs2(abs1(O
∗(s)))

= [lemma 4.2.34] abs3i(abs2(abs1(D(s)))
= [definition 4.2.31] absi(D[[s]]) 2

The result obtained in theorem 4.2.50 implies that D is correct with respect to both
operational semantics, which means that if D identifies two statements then Ou and Oc

will also identify them. The following example shows that the reverse does not hold.
Both operational semantics identify more statements than the denotational semantics.
The unconditional and conditional operational semantics are incomparable; there exist
statements which are identified by the unconditional, but not by the conditional model
but there also exist statements which are identified by the conditional but not by the
unconditional model.

Example 4.2.51 Take s1 = b; (b⊕ 1
2
b′), s2 = b; b⊕ 1

2
b; b′. These statements are identified

by both operational semantics, but not by the operational-like model Om, and also not by
the denotational semantics

Oi(s1) = { 1
2∆bb +

1
2∆bb′ } = Oi(s2)

Om(s1) = { {| 〈1 · b, {| 〈 12 · b, qε〉, 〈
1

2
· b′, qε〉 |}〉 |} }

6= { {| 〈 12 · b, {| 〈1 · b, qε〉 |}〉, 〈
1
2 · b, {| 〈1 · b

′, qε〉 |}〉 |} } = Om(s2)

Om(s1) Om(s2)

1
2 · b

′1
2 · b 1 · b 1 · b′

1
2 · b

1
2 · b1 · b

As the operational-like model Om already gives different meanings for programs s1 and
s2, the denotational model definitely gives different meanings for these programs.

4.3. PRIORITY FOR PROBABILITY 95

Take s3 = b and s4 = b ⊕ 1
2
c then Oc(s3) = {∆b }= Oc(s4) but Ou(s3) = {∆b }6=

{ 1
2∆b +

1
2∆δ }= Ou(s4).

Finally take s5 = b; (b⊕ 1
2
c) and s6 = b; b⊕ 1

2
b; c then Ou(s5) = {

1
2∆bb+

1
2∆bδ }= Ou(s6)

but Oc(s5) = {∆bb }6= {
1
2∆bb +

1
2∆bδ }= Oc(s6).

The following summarizes the results of this subsection.

ex 4.2.40 ex 4.2.46

ex 4.2.51

ex 4.2.51

ex 4.2.51

absu

OmObE = O∗
abs1 abs2

abs3c

Oc
absc

abs3u

Ou

Each model is an abstraction of the model to its left. Therefore, the further to the right
a model is, the more programs it identifies. For each abstraction there is an example that
shows that strictly more statements are identified after the abstraction.

4.3 Priority for probability

In this section the language Lpnd with both nondeterminism and probabilistic choice is
again considered. Although the language remains the same, the interpretation of state-
ments is different from the interpretation in the previous section. In this section priority
is given to probability. The probabilistic choices are always made first when executing a
‘mixed’ program in which both probabilistic choices and nondeterministic decisions have
to be made to find the next action of the program. Giving priority to probability over
nondeterminism corresponds to a ‘resource oriented’ view of nondeterminism. The prob-
abilistic choice has to be made first to see which nondeterministic options, i.e. which
resources, the system will offer.

In the introduction to this chapter the local and the global interpretation of nondetermin-
ism have been explained. The unconditional and conditional interpretation of probabilistic
choice are also mentioned in the introduction and further explained in section 4.2. A local
nondeterministic choice and an unconditional probabilistic choice are made independently
of the environment. In contrast a global nondeterministic choice and a conditional prob-
abilistic choice will ‘adapt’ to the environment, restricting the choice to the alternatives
which will not fail within this environment.

In section 4.2 it was concluded that a setting with priority for nondeterminism is not
well suited for a global nondeterministic choice. For the same reasons as given there, a
setting with priority for probability is not well suited for a conditional probabilistic choice.
To be conditional, the probabilistic choice has to react to actions from the environment.
However, the probabilistic choice has priority and must be resolved before any nondeter-
ministic choices are made. If the actions of the environment depend on the outcome of a

96 CHAPTER 4. COMBINING 2 AND ⊕ρ

nondeterministic choice, the actions of the environment cannot be known at the time the
probabilistic choice has to be resolved, so the probabilistic choice cannot depend on them
as is necessary for a conditional choice.

The conditional interpretation of probabilistic choice is not considered in this section.
This leaves two possible interpretations, an unconditional interpretation of probabilistic
choice combined with either a local or a global interpretation of nondeterminism. Both
interpretations are dealt with in the same framework.

Making a probabilistic choice or nondeterministic choice can be represented by a transition
in the transition system. If this is done, the choice is said to be resolved explicitly. If
resolving a choice is always directly followed by the execution of an action, one can combine
the transition for resolving the choice with the transition for executing the action. The
single transition that resolves the choice and executes the action is said to implicitly
resolve the choice by executing the action.

When giving priority to nondeterminism, the probabilistic choice is made right before
executing an action. The probabilistic choice is, therefore, a choice between actions to
execute. The making of the probabilistic choice and the execution of the action can be
combined by associating a probability with the action. In this way the probabilistic choice
is resolved implicitly when executing the action.

In contrast, if priority is given to probabilistic choice, a probabilistic choice may have
to be made between alternatives which still have to make nondeterministic decisions before
it is clear which action will be executed. The probabilistic choice is not a choice between
actions but a choice between programs. The probabilistic choice cannot be made implicitly
combined with the execution of an action, as the choice has to be made before the next
action is decided. Instead of choosing from actions to execute, the probabilistic choice is
a choice between programs to execute.

In chapter 3 the notions generative and stratified were introduced and in sections 3.3
and 4.2 generative transition systems were given. A generative transition system uses an
implicit probabilistic choice between actions whereas a stratified transition system uses
a probabilistic choice between programs. In this section a stratified transition system

T
(2)

pnd with priority for probabilistic choice is given. As the probabilistic choice cannot

be made implicitly, it will be modeled explicitly in the transition system by introducing
an auxiliary step labeled with the probability that this step is taken. With priority for
probability, the nondeterminism is resolved right before the execution of the action. The
nondeterminism can be resolved implicitly with the execution of an action, removing the
need for the auxiliary ν step used to resolve the nondeterminism in the transition system
Tpnd of the previous section.

In the next subsection the stratified transition system T
(2)

pnd with priority for prob-

abilistic choice is given. After deriving some properties of the transition system T
(2)

pnd

in subsection 4.3.2 the operational semantics for the local and global interpretation of
nondeterminism are defined in subsection 4.3.3. The operational domain is a branching
domain. In subsection 4.3.4 a denotational model is constructed, which is compared with
both operational models in subsection 4.3.5. How the branching operational domain can
be linearized is shown in subsection 4.3.6.

4.3. PRIORITY FOR PROBABILITY 97

4.3.1 A transition system with priority for probabilistic choice:

T
(2)

pnd

To describe systems offering resources, the same syntax is used as for programs describ-
ing games. The programs in the language Lpnd may contain both nondeterminism and
probabilistic choice. The interpretation of statements of the language is adapted to fit
the ‘resource oriented’ description of systems.

Example 4.3.1 Consider a vending machine offering both tea and coffee. Using atomic
actions tea, coffee to describe receiving a cup of beverage, the following describes a machine
offering both tea and coffee

tea 2 coffee

Adding the atomic action coin to describe the insertion of a coin into the machine, one
can also describe that one must first pay for the tea or coffee.

coin; (tea 2 coffee)

Note that this is a different machine than the machine described by

(coin; tea) 2 (coin; coffee)

where one first has to choose for tea or coffee before inserting the coin.

coffee

tea

coffee tea

$$$

coin; (tea 2 coffee) (coin; tea) 2 (coin; coffee)

The program

coin; ((tea⊕ρ coin
′) 2 (coffee⊕σ coin

′))

describes a vending machine that may have run out of beverages: Tea is only available
with probability ρ and coffee with probability σ. If a beverage is not available, the machine
offers a refund modeled by the atomic action coin′.

All of these machines only deliver a beverage once. Recursion can be used to describe
that, after providing the beverage, the machine returns to its original state. The program
x with the body of x given by D(x) = s;x where s is any of the programs above, describes
such a machine.

98 CHAPTER 4. COMBINING 2 AND ⊕ρ

As explained in the introduction of this section, resolving the probabilistic choice is made
explicit. Resolving a probabilistic choice will lead to an auxiliary probabilistic step in the
transition system. The label associated with an auxiliary probabilistic step will be the
probability that this step is taken. Thus, the set of probabilities [0, 1] is part of the set
of transition labels. As the probability is resolved explicitly, there is no need to assign a
probability to actions. The set Act of actions is also part of the set of transition labels.

These are the only two types of labels used in T
(2)

pnd. No auxiliary label for resolving

nondeterminism is required as nondeterminism is resolved implicitly in T
(2)

pnd.

Lab = [0, 1] ∪Act

Transitions with a label in [0, 1] are called probabilistic transitions and transitions with
a label in Act are called action transitions. Recall that the set of actions Act is divided
into the set of observable actions OAct ranged over by b and the set of synchronization
action Sync ranged over by c.

In the previous section the set of statements was extended to Stat+ by including the
auxiliary operators ‖− and |. There is no need to extend Stat with these operators here.

The nondeterminism is not resolved explicitly, so the program s‖s′ will produce actions
directly without first resolving into s ‖− s

′, s′ ‖− s, or s|s
′.

The information required to describe the state of an execution of a program in Lpnd is
the part of the program that remains to be executed. As before, a resumption describes
the remainder of a program. A resumption is either a statement or the empty resumption
E:

r ::= s | E

Configurations are also defined as before. A configurations in T
(2)

pnd is a resumption to-

gether with a declaration, i.e. Conf = Decl × Res. The declaration part is dropped from
the notation as a single declaration is assumed to be fixed.

In section 4.2 the nondeterminism has to be resolved first and probabilistic choices and
actions are only possible for (nondeterministically) resolved statements. The situation in
this section is similar, except that first all probabilistic choices have to be made and non-
deterministic choices and actions are only possible for probabilistically resolved statements.
The following definition makes the notion of a probabilistically resolved statement precise.

Definition 4.3.2 The following statements are called probabilistically resolved: The state-
ment a is probabilistically resolved. The statement s1; s2 is probabilistically resolved exactly
when s1 is probabilistically resolved. The statement x is probabilistically resolved if and
only if D(x) is probabilistically resolved. The statements s1 2 s2 and s1‖s2 are proba-
bilistically resolved if both s1 and s2 are probabilistically resolved. The set of all resolved
statements is denoted by Statres.

Well-definedness of Statres is clear by weight induction using the function wgt introduced
in definition 4.2.9. In the remainder of this section, the term resolved refers to proba-
bilistically resolved. That a is resolved is clear. For s = s1; s2 the first action must come
from s1, so it is sufficient to resolve the probability in s1 to find the possible first actions

4.3. PRIORITY FOR PROBABILITY 99

of s. For s = s1 2 s2 and s = s1‖s2 both s1 and s2 may produce the first action that is
executed. Both s1 and s2 must be resolved for s to be resolved. The statement s1 ⊕ρ s2
is clearly not resolved (for any statements s1 and s2). Other examples of statements that
are not resolved are (a⊕ρ b); c, (a⊕ρ b) 2 c and x with D(x) = a⊕ρ b.

Having introduced the configurations Conf, transition labels Lab and the notion of a

resolved statement, the transition system T
(2)

pnd can be given.

Definition 4.3.3 The transition system T
(2)

pnd is given by T
(2)

pnd = (Conf, Lab, → , Spec).

A transition (r, θ, r′) ∈ → is written as r
θ
→ r′. Spec is given in parts below.

The first part of the specification consists of the axioms and rules dealing with actions,
recursion and sequential composition.

• a
a
→E (Act)

•

s1
θ
→ r

s1; s2
θ
→ r; s2 (Seq)

•

D(x)
θ
→ r

x
θ
→ r (Rec)

where r; s2 in rule (Seq) should be read as s2 if r = E.

Only the transition for the statement a has changed compared to the definition of Tpnd in
section 4.2. The statement a results in the action a after which the execution is finished.
No probability is added to a as probabilities are resolved explicitly and are no longer
associated with actions. To execute a procedure x, the body of the procedure D(x) has to
be executed. The statement s1 ; s2 behaves like s1 until s1 is done (the case that r = E)
after which it behaves like s2.

The second part of the specification consists of the axioms and rules dealing with the
resolving of probabilistic choices.

• s1 ⊕ρ s2
ρ
→ s1 (Chance 1)

s1 ⊕ρ s2
1−ρ
−→ s2 (Chance 2)

•

s1
ρ
→ s′

s1 2 s2
ρ
→ s′ 2 s2 (Choice ρ 1)

s1‖s2
ρ
→ s′‖s2 (Merge ρ 1)

•

s1
ρ
→ s′ s2 resolved

s2 2 s1
ρ
→ s2 2 s′ (Choice ρ 2)

s2‖s1
ρ
→ s2‖s

′ (Merge ρ 2)

100 CHAPTER 4. COMBINING 2 AND ⊕ρ

A probabilistic choice is resolved explicitly by a transition labeled with a probability,

giving s ⊕ρ s
′ ρ
→ s and s ⊕ρ s

′ 1−ρ
−→ s′. As probability has priority, it is resolved before

resolving any nondeterminism. In a statement s2 s′, the probabilistic choices in s and s′

are resolved before making the nondeterministic choice. The probability in s is resolved
first by use of the rule (Choice ρ 1) followed by the probability in s′ by use of rule
(Choice ρ 2). The last part of example 4.3.4 below illustrates that by first resolving the
probability in s and then in s′ gives the probabilistic options one would expect. The choice
to first resolve the probability in the first component and then in the second component is
an arbitrary one. Reversing the order or combining probabilistic steps of both components
into a single probabilistic step would yield the same options with the same probability.

To be exact, the notion
ρ
; to be introduced in definition 4.3.6 below would be the same.

The last statement in example 4.3.4 below illustrates the use of the rules (Choice ρ 1)
and (Choice ρ 2).

The last part of the specification contains the rules for the action transitions of the
nondeterministic constructs 2 and ‖.

•

s1
a
→ r s2 resolved

s1 2 s2
a
→ r (Choice 1)

s2 2 s1
a
→ r (Choice 2)

•

s1
a
→ r s2 resolved

s1‖s2
a
→ r‖s2 (Merge 1)

s2‖s1
a
→ s2‖r (Merge 2)

•

s1
c
→ r1 s2

c̄
→ r2

s1‖s2
τ
→ r1‖r2 (Sync)

where r‖s2 and s2‖r in rules (Merge 1) and (Merge 2) should be read as s2 if r = E
and r1‖r2 in rule (Sync) should be read as r1 if r2 = E and as r2 if r1 = E.

If all probabilistic choices have been resolved, the actions possible for s2s′ are the actions
possible for s and the actions possible for s′. As there may be more than one action
possible for a statement, the execution of an action implicitly resolves nondeterminism.
Only probabilistically resolved statements can produce actions, so there is no need to
separately require that s1 is resolved.

A parallel composition of two statements can either start with an action of one of the
statements as described by rules (Merge 1) and (Merge 2) or it may synchronize if the
statements are able to produce complementary synchronization actions as described by
rule (Sync).

The following example shows the transition trees for several statements.

4.3. PRIORITY FOR PROBABILITY 101

Example 4.3.4 As c
c
→E and c̄

c̄
→E by axiom (Act) and both c and c̄ are resolved, there

are three transitions for c‖c̄

c‖c̄
c
→ c̄ by rule (Merge 1)

c‖c̄
c̄
→ c by rule (Merge 2)

c‖c̄
τ
→E by rule (Sync)

c̄

E

c

E

c‖c̄

c c̄

c̄ cE

τ

The two parallel components c and c̄ may synchronize to give τ or one may take an
independent step, allowing synchronization with other components in the environment.

The transitions for b⊕ 1
2
c̄ are b⊕ 1

2
c̄

1
2→ b and b⊕ 1

2
c̄

1
2→ c̄. As c is resolved we have

c‖(b⊕ 1
2
c̄)

1
2→ (c‖b) by rule (Merge ρ 1)

c‖(b⊕ 1
2
c̄)

1
2→ (c‖c̄) by rule (Merge ρ 2)

c‖(b⊕ 1
2
c̄)

c‖c̄

E

τ

cc̄

c‖b

cb

c

E

b

E

c

E

c̄

E

1
2

1
2

c bc̄c

Probabilistic choices are made before nondeterminism is resolved. The
1
2→ step needs to

be taken before it is possible to see if the components can synchronize. Synchronization is
only possible if the outcome of the probabilistic choice is c̄, not if the outcome is b.

c ; (b⊕ 1
2
c̄)

c
→ (b⊕ 1

2
c̄) by axiom (Act) and rule (Seq)

(b⊕ 1
2
c̄)

1
2→ b by axiom (Chance 1)

(b⊕ 1
2
c̄)

1
2→ c̄ by axiom (Chance 2)

b

E

b

1
2

1
2

c ; (b⊕ 1
2
c̄)

c

b⊕ 1
2
c̄

c̄

c̄

E

The first action produced is always c. The probabilistic choice b ⊕ 1
2
c̄ is made after the

first action is produced.

The transitions for b1⊕ρb2 are b1⊕ρb2
ρ
→ b1 and b12b2

1−ρ
−→ b2. The transitions for b3⊕σ b4

are b3 ⊕σ b4
σ
→ b3 and b3 ⊕σ b4

1−σ
−→ b4. Combining this gives

(b1 ⊕ρ b2) 2 (b3 ⊕σ b4)
ρ
→ b1 2 (b3 ⊕σ b4) by rule (Choice ρ 1)

(b1 ⊕ρ b2) 2 (b3 ⊕σ b4)
1−ρ
−→ b2 2 (b3 ⊕σ b4) by rule (Choice ρ 1)

b1 2 (b3 ⊕σ b4)
σ
→ b1 2 b3 by rule (Choice ρ 2)

b1 2 (b3 ⊕σ b4)
1−σ
−→ b1 2 b4 by rule (Choice ρ 2)

102 CHAPTER 4. COMBINING 2 AND ⊕ρ

ρ (1− ρ)

b3b1 b1 b4 b2 b3 b2 b4

σ (1− σ) σ (1− σ)

The two probabilistic choices are resolved first resulting in four options, b1 2 b3 with
probability ρσ, b12b4 with probability ρ(1−σ), b22b3 with probability (1−ρ)σ and b22b4
with probability (1− ρ)(1− σ).

4.3.2 Properties of the transition system T
(2)

pnd

In this subsection some notation is introduced and several properties of the transition
system are shown. Structural induction is not applicable for the proofs of these properties.
Induction on the complexity of a resumption is used instead of induction on its syntactical
structure. The complexity of a resumption is expressed by a weight function wgt. The
weight function is the same as the weight function used in the previous section except
that it is restricted to the resumptions used in this section.

Resolving probability is done by taking probabilistic
ρ
→ steps. The notion of a state-

ment being resolved is supposed to describe that all probabilistic choices before taking the
first action have been resolved. Resolved statements should therefore, be exactly those

statements that do not take any probabilistic
ρ
→ steps. The following lemma states that

this is indeed the case.

Lemma 4.3.5 A statement s can take a probabilistic step exactly when it is not resolved:

s is not resolved ⇐⇒ ∃r ∈ Res, ρ ∈ [0, 1] : s
ρ
→ r.

Proof Clear by induction on the weight of the statement. 2

The lemma states that being able to take a probabilistic step is the same as not be-
ing resolved, in other words, being resolved is the same as not being able to take any
probabilistic steps.

The explicit resolving of the probabilistic choices is not assumed to be part of the
observable behavior of a program. In the observable behavior of a program, the proba-
bilistic steps are combined so that only the resulting probabilities can be seen and not the

probabilistic steps themselves. To allow combining probabilistic steps the notation
ρ
;

is introduced. For two statements s, s′ ∈ Stat, s
ρ
; s′ is also referred to as a (probabilis-

tic) transition. This transition denotes that s′ is a resolved probabilistic alternative of s
which is selected with probability ρ. As for all probabilistic transitions, the multiplicity

of a transition s
ρ
; s′ is also important, therefore

ρ
; is a multiset.

Definition 4.3.6 For statements s, s′, s′′ in Stat the following notation is introduced

s
ρ
→+ s′ ⇐⇒ ∃s′′, σ, σ′ : ρ = σ · σ′ ∧ s

σ
→ s′′ ∧ s′′

σ′
→∗ s′

s
ρ
→∗ s′ ⇐⇒ (s = s′ ∧ ρ = 1) ∨ s

ρ
→+ s′

s
ρ
; s′ ⇐⇒ s

ρ
→∗ s′ ∧ s′ resolved

4.3. PRIORITY FOR PROBABILITY 103

Each transition s
ρ
→ s′ with multiplicity n contributes n to the multiplicity of s

ρ
→+ s′. Sim-

ilarly each pair of transitions s
σ
→ s′′ and s′′

σ′
→+ s′ with multiplicities n and m contributes

n times m to the multiplicity of s
σσ′
−→+ s′.

The multiplicity of s
1
→∗ s is one, and the multiplicity of s

ρ
→∗ s′ for s 6= s′ is the

multiplicity of s
ρ
→+ s′.

When s
ρ
; s′ holds, the multiplicity of this transition is the same as the multiplicity of

s
ρ
→∗ s′.

That s can reach s′ by a number of probabilistic transitions, with accumulated probability

ρ, is denoted by s
ρ
; s′. The addition of probabilistic information is the main difference

between the definition of
ρ
; and that of

ν
; given in definition 4.2.11. The probabilistic

information that is added consists of a probability label and of the multiplicity of a

transition s
ρ
; s′.

The definitions of
ρ
→+ and

ρ
→∗ are recursive but can easily be shown to be correct

by weight induction using part (a) of lemma 4.3.10 below.

Example 4.3.7 The multiplicity of the transition a
1
; a is one.

The multiplicity of the transition a⊕ 1
2
a

1
2→ a is two so the multiplicity of the transition

a⊕ 1
2
a

1
2
; a is also two.

For (a⊕ 1
2
a)⊕ 2

3
a there are two transitions: (a⊕ 1

2
a)⊕ 2

3
a

2
3→ (a⊕ 1

2
a) and (a⊕ 1

2
a)⊕ 2

3
a

1
3→ a

both with multiplicity one. As seen above the multiplicity of the transition a ⊕ 1
2
a

1
2
; a is

two, therefore, the first transition contributes two to the multiplicity of (a⊕ 1
2
a)⊕ 2

3
a

1
3
; a.

The second transition contributes one to the multiplicity of (a⊕ 1
2
a)⊕ 2

3
a

1
3
; a. The total

multiplicity of (a⊕ 1
2
a)⊕ 2

3
a

1
3
; a is three.

For the statement (a⊕ 1
2
a)⊕ 1

2
(a⊕ 1

2
a) the only transition is (a⊕ 1

2
a)⊕ 1

2
(a⊕ 1

2
a)

1
2→ (a⊕ 1

2

a) with multiplicity two. The multiplicity of the transition a ⊕ 1
2
a

1
2
; a is also two. The

product of these multiplicities is the multiplicity of the transition (a⊕ 1
2
a)⊕ 1

2
(a⊕ 1

2
a)

1
4
; a.

In other words the multiplicity of (a⊕ 1
2
a)⊕ 1

2
(a⊕ 1

2
a)

1
4
; a is four.

This example already shows that by counting the multiplicities, the total probability
remains one. Part (d) of lemma 4.3.10 below states that is always the case.

Now that we have introduced a way to combine probabilistic transitions, the notion
of a successor set can be given.

Definition 4.3.8 The nondeterministic successor set Suc′(s) of a (probabilistically) re-
solved statement s is given by

Suc′(s) = { 〈a, r〉 | s
a
→ r }

104 CHAPTER 4. COMBINING 2 AND ⊕ρ

The successor set Suc(s) of a statement s is given by

Suc(s) = {| ρ · Suc′(s′) | s
ρ
; s′ |}

Note that the definition of Suc uses the notation of multisets introduced in definition 3.2.5
part (c). As a result the pair ρ ·Suc′(s′) is included n times in the successor set for a tran-

sition s
ρ
; s′ with multiplicity n. An action transition for a statement can be described by

a pair consisting of the action taken and the resulting resumption. All transitions for a
resolved statement can be described by a set of such pairs, the nondeterministic successor
set. For a general statement the nondeterministic successor sets for all probabilistic al-
ternatives of the statement are included in its successor set. Note that if the statement s
happens to be resolved this gives Suc(s) = {| 1 · Suc′(s) |}: The successor set of a resolved
statement is a multiset containing one element.

Example 4.3.9 Using the transitions derived in examples 4.3.4 and 4.3.7 we have

Suc(a⊕ 1
2
a) = {| 12 · { 〈a,E〉 } ,

1
2 · { 〈a,E〉 } |}

Suc(c‖c̄) = {| 1 · { 〈c, c̄〉, 〈τ,E〉, 〈c̄, c〉 } |}
Suc(c‖(b⊕ 1

2
c̄)) = {| 12 · { 〈c, b〉, 〈b, c〉 } ,

1
2 · { 〈c, c̄〉, 〈τ,E〉, 〈c̄, c〉 } |}

Suc(c ; (b⊕ 1
2
c̄)) = {| 1 · { 〈c, b⊕ 1

2
c̄〉 } |}

Suc((b1 ⊕ρ b2) 2 (b3 ⊕σ b4)) =
{| ρσ · { 〈b1,E〉, 〈b3,E〉 } , ρ(1− σ) · { 〈b1,E〉, 〈b4,E〉 } ,
(1− ρ)σ · { 〈b2,E〉, 〈b3,E〉 } , (1− ρ)(1− σ) · { 〈b2,E〉, 〈b4,E〉 } |}

The following lemma states some properties of the transition system T
(2)

pnd. The first

property is very useful for proofs which use weight induction and is an important part in
proving the other properties. The other properties are general properties of the transition
system which are useful when defining the semantics.

Lemma 4.3.10

(a) If s
ρ
→ s′ then wgt(s′)< wgt(s), with wgt as in definition 4.2.9.

(b) No infinite sequence s
ρ1
→ s1

ρ2
→ . . . exists.

(c) The transition system T
(2)

pnd is finitely branching, that is, for all s ∈ Lpnd:

1. Suc(s) is a finite multiset and,

2. Suc′(s) is a finite set for each resolved statement s.

(d) The sum of probabilities of all probabilistic alternatives for each statement is one

∑
{| ρ | s

ρ
; s′ |}= 1

4.3. PRIORITY FOR PROBABILITY 105

The first property is directly clear by inspecting the rules of the transition system. A
formal proof can be given by induction on the weight of the statement s or by induction

on the height of the proof tree for s
ρ
→ s′. The second property is a direct consequence of

the first property and states that the transition system is free of internal divergence. It it
not possible to keep taking auxiliary ρ steps. At some point the system will either stop or

produce a real action. The facts that T
(2)

pnd is finitely branching and that the probabilities

always sum up to one can easily be shown to hold by weight induction.

4.3.3 Operational semantics

The transition system contains information which is not considered to be observable be-
havior. For example the auxiliary probabilistic transition steps do not correspond to
actual observable behavior. To obtain the operational semantics this additional informa-
tion is removed. The domain of all possible behaviors is denoted by Po. The elements of
Po are called processes.

Giving priority to probabilistic choice over nondeterminism corresponds to a ‘resource
oriented’ view of nondeterminism, as mentioned in the introduction of this chapter. When
it is clear for the user of a system which resources are offered at which time, the moment
of nondeterministic choice can be deduced. In such a case the operational model should
be a branching model.

Example 4.3.11 Consider the following two statements which both describe a vending
machine

s1 = coin; (tea 2 coffee)

s2 = (coin; tea) 2 (coin; coffee)

The sequences produced by these two statements are the same: coin coffee and coin tea.
However, the vending machines they describe are different (see example 4.3.1). The dif-
ference in the moment of choice is observable for the user of the vending machine.

The operational domain Po is a branching domain. In subsection 4.3.6 it is shown how a
model on a linear domain can be obtained by removing the branching information from
processes in the operational domain Po.

Definition 4.3.12 The operational domain Po is given as the unique solution of the
following domain equations

Po ' MPf ([0, 1]×Qo) + { pε }

Qo ' Pnco(Ro)

Ro ' OAct× id 1
2
(Po) + { δ }

where pε is the empty process and δ represents deadlock as before.

AsMPf and Pnco are locally nonexpansive, the functor { pε }+MPf ([0, 1]×Pnco(OAct×
id 1

2
(•)+{ δ })) is locally contractive. Using lemma 2.2.10 gives that the domain equations

106 CHAPTER 4. COMBINING 2 AND ⊕ρ

have a unique solution. The elements of the domain Po are called processes. The elements
of the domain Qo are called subprocesses. Similar to the processes in the domain Pd,
introduced in definition 4.2.25, the processes in the domain Po can be represented as
trees.

Example 4.3.13 Let in this example tea, coffee and coin be observable actions in OAct.
The pair 〈tea, pε〉 is an element of Ro and the set { 〈tea, pε〉, 〈coffee, pε〉 } is a subprocess

in Qo. The processes p1 and p2 given by

p1 = {| 1 · { 〈coin, {| 1 · { 〈tea, pε〉, 〈coffee, pε〉 } |}〉 } |}

p2 = {| 1 · { 〈coin, {| 1 · { 〈tea, pε〉 } |}〉, 〈coin, {| 1 · { 〈coffee, pε〉 } |}〉 } |}

are elements of Po. They can be represented by the following trees

p1 p2

1

coffeetea

1

coin

1

1

coffee

coin coin

1

tea

In these trees the trailing pε at each leave of the tree is omitted.
For b an action in OAct, the process p3 which satisfies p3 = {| 12 · { δ },

1
2 · { 〈b, p3〉 } |}

is an element of Po. This process can be represented by the following tree
1
2

1
2

b δ

1
2

1
2

b δ

. . .

p3

Even if it can be observed at any moment which resources are offered, the abstract transi-
tion trees still contain information which is not observable. In an operational process this
information is no longer present. There are two main differences between the processes in
Po and the abstract transition trees for programs (cf. example 4.3.4). As it is impossible to
tell how many probabilistic choices are made before a resource is offered, all probabilistic
choices before an action are combined into a single choice in the domain Po. Secondly,
only observable actions are present in processes in Po. Unmatched synchronization actions
are not present. Each failed synchronization leads to deadlock and it cannot be observed
which synchronization action caused the deadlock. Instead the symbol δ is used to model
deadlock.

4.3. PRIORITY FOR PROBABILITY 107

Example 4.3.14 Consider a vending machine which requires a component that supplies
coffee beans. This machine can be modeled by sc = cbean;xcoffee where cbean in Sync and
the procedure xcoffee describes the further operation of the machine. A similar machine
requiring tea leaves to serve tea can be described by st = cleaf;xtea where cleaf in Sync and
the procedure xtea describes the further operation of the machine.
Without the components that provide the beans and the leaves these machines behave

the same: They do nothing. In the domain Po this is modeled by δ.

Recall from the introduction that two different interpretations of nondeterminism are
considered: a local interpretation and a global interpretation. For probabilistic choice
only the unconditional interpretation is used. Therefore, two operational models are
given on the operational domain Po.

Example 4.3.15 Consider the following part of a vending machine sct that uses the two
components sc and st of the previous example

sct = coin; ((cbean;xcoffee 2 cleaf;xtea) 2 coin′)

where coin′ is an action in OAct modeling a refund. If the nondeterministic choice is
local, then this machine will deadlock if coffee is selected when there are no coffee beans
available. With a global interpretation of nondeterminism the machine will allow the
selection of tea or a refund instead.

The operational models Ol and Og give the meanings of statements using the local and
global interpretation of nondeterminism respectively.

Definition 4.3.16 The operational models Oi : Res → Po and the auxiliary functions
Ôi : Statres → Qo are given by

Oi(E) = pε

Oi(s) = {| ρ · Ôi(s
′) | s

ρ
; s′ |}

Ôl(s) = { 〈b,Ol(r)〉 | s
b
→ r }∪{ δ | s

c
→ r }

Ôg(s) =

{
{ 〈b,Og(r)〉 | s

b
→ r } if ∃b, r : s

b
→ r

{ δ } otherwise

where i = l for the local interpretation of nondeterminism or i = g for the global inter-
pretation of nondeterminism.

The operational models Ol and Og differ in the way they deal with potential deadlock.
In the local model each unmatched synchronization action will indeed lead to deadlock.
In the global model, the synchronization will only be selected if it is successful. Deadlock
is only obtained if all alternatives fail.

Example 4.3.17 Let D(x) = (c̄⊕ 1
2
b);x then

Ol(x) = {| 12 · Ôl(c̄;x),
1
2 · Ôl(b;x) |}

= {| 12 · { δ },
1
2 · { 〈b,Ol(x)〉 } |}

108 CHAPTER 4. COMBINING 2 AND ⊕ρ

A tree representation of the unique process in Po that satisfies this equation is given in
example 4.3.13.
Let s = (cbean;xcoffee 2 cleaf;xtea) 2 coin′ then

Ol(s‖c̄bean) = {| 1 · Ôl(s‖c̄bean) |}

= {| 1 · { 〈τ,Ol(xcoffee)〉, δ, 〈coin
′, {| 1 · { δ } |}〉 } |}

Og(s‖c̄bean) = {| 1 · Ôg(s‖c̄bean) |}

= {| 1 · { 〈τ,Og(xcoffee)〉, 〈coin
′, {| 1 · { δ } |}〉 } |}

With a local interpretation of nondeterminism, deadlock is possible. Deadlock cannot
occur (in the first step) with the global interpretation of nondeterminism as there are
other options available.

The operational semantics for Lpnd should be given for programs. The functions Oi, how-
ever, give the meaning of resumptions. To remove this small discrepancy we define O[[•]].

Definition 4.3.18 The operational semantics Oi[[•]] : Lpnd → Po for Lpnd is given by
Oi[[s]] = Oi(s), where i = l for the local interpretation of nondeterminism or i = g for the
global interpretation of nondeterminism.

By restricting to statements instead of resumptions the operational semantics Oi[[•]] is
obtained from the operational model Oi.

Example 4.3.19 The statements st and sc given by

st = (cleaf;xtea) 2 coin′

sc = (cbean;xcoffee) 2 coin′

are equivalent, Oi(st) = Oi(sc). The vending machines described by these statements can
be interchanged; they offer the same services. (In this case, only a refund as no coffee
beans or tea leaves are available.)
The statement s0 = coin′ is equivalent to sc using the global interpretation of nonde-

terminism but not using the local interpretation, Og(sc) = Og(s0) and Ol(sc) 6= Ol(s0).
Using the global interpretation both statements describe a machine that can only give a
refund. Using the local interpretation, the machine sc will deadlock when coffee is selected,
no longer offering a refund.

4.3.4 Denotational semantics

As with the models with priority for nondeterminism a model based on the composi-
tionality principle is useful for simplifying the task of checking properties of a program.
The denotational semantics, introduced below, gives the meaning of statements in a com-
positional way. The meaning of a statement is given as an element of the domain of
denotational meanings, denoted by Pd, and several semantical operations are introduced
to compose these meanings.

The operational semantics is not compositional as can be seen from example 4.3.20.
This means that the operational behavior does not contain sufficient information to be able

4.3. PRIORITY FOR PROBABILITY 109

to compose meanings. For the denotational model extra information about a statement
is maintained.

Example 4.3.20 Recall the vending machine components sc = cbean; s and st = cleaf; s
′

from example 4.3.14 requiring components that supply coffee beans and tea leaves respec-
tively. Without these components the two machine behave the same: They do nothing,
Oi[[sc]] = { 1 · { δ } }= Oi[[st]]. If, however, a component that supplies coffee beans (but not
tea leaves) is added, the two machines behave differently: Oi[[sc‖c̄bean]] 6= { 1 · { δ } } =
Oi[[st‖c̄bean]].
Two operationally equivalent machines, i.e. two machines with the same operational

behavior, can be interchanged as a whole, but to replace a single component of a ma-
chine with another component, the two components should have the same denotational
semantics.

In the denotational meaning, unmatched synchronization actions are visible and do not
result in deadlock. The denotational domain which contains all denotational meanings is
given in the following definition.

Definition 4.3.21 The denotational domain Pd is given as the unique solution of the
following domain equations

Pd ' MPf ([0, 1]×Qd)

Qd ' Pnco(Rd)

Rd ' Act+Act× id 1
2
(Pd)

Again the existence of a unique solution is guaranteed by lemma 2.2.10. The elements of
Pd are called (denotational) processes and the elements of Qd are called nondeterministic
subprocesses or simply subprocesses. Recall that multisets are used to model probabilis-
tic choices in a branching domain. A process in Pd gives a (finite) number of possible
subprocesses, each with the probability that the subprocess is selected. A subprocess in
Qd gives a set consisting of the actions that are possible. After an action the execution
can be finished or continue with another process in Pd. As a denotational meaning may
still be composed with another process, it is not possible to see if a synchronization action
will fail or not. Therefore, in a denotational process, unmatched synchronization actions
are not interpreted as deadlock but are included as part of the outcome.

Example 4.3.22 The process {| ρ · { a, 〈c, p〉 }, (1− ρ) · { b, 〈c, p〉 } |} contains two subpro-
cesses. The first subprocess is selected with probability ρ and will offer action a and action
c. With probability 1 − ρ the second subprocess is selected and b and c are the available
alternatives. If c is selected in either of these subprocesses, this action is followed by
another process p.

ca cb

p p

ρ (1− ρ)

110 CHAPTER 4. COMBINING 2 AND ⊕ρ

Note the similarity between the tree representation of a denotational process and the ab-
stract transition trees as in e.g. example 4.3.4.

For each of the syntactical constructs 2, ⊕ρ, ; and ‖, a semantical operation on processes
is defined. The semantical operation specifies how processes should be combined to obtain
the meaning of a statement built with the corresponding syntactical operator.

To have a single notation for all elements of Rd an action a is identified with 〈a, pε〉
and the (meta-)variables p̂ and p̂′ are used to range over Pd+{ pε }. Using this convention,
〈a, p̂〉 ranges over Rd.

Definition 4.3.23 All denotational operations are elements of Op = Pd × Pd
1
→ Pd,

i.e. they are nonexpansive functions that take a pair of processes and yield a single pro-
cess.

(a) The operator ⊕ρ ∈ Op is defined by

p1 ⊕ρ p2 = ρp1 t (1− ρ)p2

where ρp is equal to {| ρσ · q | σ · q ∈ p |}.

(b) The operator 2 ∈ Op is defined by

p1 2 p2 = {| ρσ · (q1 ∪ q2) | ρ · q1 ∈ p1, σ · q2 ∈ p2 |}

(c) The operator ; ∈ Op and the auxiliary function ;′ : Qd × Pd → Qd are defined by

p1 ; p2 = {| ρ · q ;′ p2 | ρ · q ∈ p1 |}

q ;′ p = { 〈a, p̂ ; p〉 | 〈a, p̂〉 ∈ q }

where p̂ ; p = p if p̂ = pε.

(d) The operator ‖ ∈ Op and the auxiliary functions ‖ ′ : Qd ×Qd → Qd, ‖− : Qd ×Qd →

Qd, ‖
′′
: Pd ×Qd → Pd and | : Qd ×Qd → (Qd ∪ { ∅ }) are defined by:

p1‖p2 = {| ρσ · (q1 ‖
′
q2) | ρ · q1 ∈ p1, σ · q2 ∈ p2 |}

q1 ‖
′
q2 = q1 ‖− q2 ∪ q2 ‖− q1 ∪ q1|q2

q1 ‖− q2 = { 〈a, p̂ ‖′′ q2〉 | 〈a, p̂〉 ∈ q1 }

p1 ‖
′′
q2 = {| ρ · (q1 ‖

′
q2) | ρ · q1 ∈ p1 |}

q1|q2 = { 〈τ, p̂‖p̂′)〉 | 〈c, p̂〉 ∈ q1, 〈c̄, p̂
′〉 ∈ q2 }

where p̂ ‖′′ q = {| 1 · q |} for p̂ = pε and also p̂‖p̂
′ = p̂′‖p̂ = p̂′ when p̂ = pε.

Except for the reversal of the levels of nondeterministic choice and probabilistic choice,
this definition closely resembles definition 4.2.27 in the previous section. The recursive
definitions can again be justified by showing that an operation op satisfies the equations
in this definition exactly when the operation is a fixed point of a contractive higher order

4.3. PRIORITY FOR PROBABILITY 111

operation Ωop. Uniqueness of the fixed point of this higher order operation gives that
there is exactly one function satisfying these equations.

In the process p ⊕ρ p
′, the process p is chosen with probability ρ. A subprocess q

that is chosen with probability σ in process p is, therefore, chosen with probability ρσ in
p⊕ρ p

′. Similarly a subprocess q that is chosen with probability σ in process p′ is chosen
with probability (1− ρ)σ in p⊕ρ p

′.
The subprocess q ∪ q′ offers the actions offered by q and the actions offered by q′. To

obtain a probabilistic alternative of p2p′ an alternative q for p and an alternative q′ for p′

are selected and combined to q ∪ q′. The probability of this alternative is the probability
that q and q′ are selected, i.e. the product of the probability of q1 and the probability of
q2.

Sequential composition is as usual. For the sequential composition the actions of the
first process are taken until it is finished (the case p̂ = pε) after which the second process
is executed. (Recall the convention that a is identified with 〈a, pε〉.)

A probabilistic alternative of a parallel composition p1‖p2 is obtained by combining
an alternative q1 of p1 with an alternative q2 of p2 to give q1 ‖

′
q2. The probability of the

combined subprocess is the probability that q1 and q2 are selected. The first step of the
combined subprocess q1 ‖

′
q2 can come from the subprocess q1 (q1 ‖−q2), from q2 (q2 ‖−q1)

or from the synchronization between these two subprocesses (q1|q2). After the first step
the remaining process is the parallel composition of what remains of q1 and what remains
of q2. If the first action is produced by q1 the remainder of q1 will be some process p̂ while
the remainder of q2 will be the subprocess q2 itself. To give the parallel composition of a
process and a subprocess, the operator ‖ ′′ is used. Note that p ‖′′ q = p‖{| 1 · q |}.

Example 4.3.24 Let cbean, c̄bean, xcoffee and coin′ be as before and let no beans be an
additional atomic action in OAct. The action no beans models a light that burns to
indicate that the component of the vending machine that supplies the coffee beans is empty.
The process {| 1 · { c̄bean } |} describes a component that is able to supply coffee beans.

The process {| 1 · { no beans } |} describes a similar component that is empty. By using the
operation ⊕ρ these two processes can be combined to a process describing a component
that still has coffee beans with probability ρ

{| 1 · { c̄bean } |} ⊕ρ {| 1 · { no beans } |} = {| ρ · { c̄bean }, (1− ρ) · { no beans } |}

The process {| 1·{ cbean } |} that checks for coffee beans and the process pcoffee that makes the
coffee can be combined using the operation ; resulting in the process {| 1·{ 〈cbean, pcoffee〉 } |}
that first checks for beans and then makes coffee. Note that the exact form of the process
pcoffee does not influence the way these processes are composed. The operator 2 can be
used to allow a choice. For example the process {| 1 · { 〈cbean, pcoffee〉 } |}2 {| 1 · { coin′ } |}=
{| 1 · { 〈cbean, pcoffee〉, coin

′ } |} offers the choice between coffee and a refund.

The operator ‖ is used to compose separate components. We have that

{| ρ · { c̄bean }, (1−ρ) · { no beans } |}‖{| 1 · { 〈cbean, pcoffee〉, coin
′ } |}

= {| ρ · ({ c̄bean }‖
′{ 〈cbean, pcoffee〉, coin

′ }),
(1−ρ) · ({ no beans }‖′{ 〈cbean, pcoffee〉, coin

′ }) |}

112 CHAPTER 4. COMBINING 2 AND ⊕ρ

= {| ρ · { 〈c̄bean, {| 1 · { 〈cbean, pcoffee〉, coin
′ } |}〉, 〈cbean, pcoffee ‖

′′ { c̄bean }〉,
〈coin′, {| 1 · { c̄bean } |}〉, 〈τ, pcoffee〉 },

(1−ρ) · { 〈no beans, {| 1 · { 〈cbean, pcoffee〉, coin
′ } |}〉,

〈cbean, pcoffee ‖
′′ { no beans }〉, 〈coin′, {| 1 · { no beans } |}〉 } |}

because

{ c̄bean }‖
′{ 〈cbean, pcoffee〉, coin

′ }

= { c̄bean } ‖−{ 〈cbean, pcoffee〉, coin
′ } ∪ { 〈cbean, pcoffee〉, coin

′ } ‖−{ c̄bean }

∪ { c̄bean } | { 〈cbean, pcoffee〉, coin
′ }

= {
〈
c̄bean, {| 1 · { 〈cbean, pcoffee〉, coin

′ } |}
〉
,
〈
cbean, pcoffee ‖

′′ { c̄bean }
〉
,〈

coin′, {| 1 · { c̄bean } |}
〉
,
〈
τ, pcoffee

〉
}

and
{ no beans }‖′{ 〈cbean, pcoffee〉, coin

′ }

= { no beans } ‖−{ 〈cbean, pcoffee〉, coin
′ }

∪ { 〈cbean, pcoffee〉, coin
′ } ‖−{ no beans }

∪ { no beans } | { 〈cbean, pcoffee〉, coin
′ }

= { 〈no beans, {| 1 · { 〈cbean, pcoffee〉, coin
′ } |}〉,

〈cbean, pcoffee ‖
′′ { no beans }〉, 〈coin′, {| 1 · { no beans } |}〉 }

p′′coffee
1

no beans

pcoffee

pcoffee

1

cbean coin′

pcoffee

cbean coin′

1
p′coffee

1

c̄bean

ρ (1− ρ)

coin′no beans

Denotational process describing the vending machine

with p′coffee = pcoffee ‖
′′ { c̄bean } and p′′coffee = pcoffee ‖

′′ { no beans }

τ
cbeancbean

coin′

c̄bean

Note that in this composition the possibility is left open that other components may be
added which supply or use coffee beans.

The operations introduced above are nonexpansive. For the operation ‘ ; ’ this can be
strengthened. The operator ‘ ; ’ is nonexpansive in its first component and contractive in
its second, i.e.

d(p1 ; p2, p
′
1 ; p

′
2) ≤ max{ d(p1, p

′
1),

1
2d(p2, p

′
2) }

4.3. PRIORITY FOR PROBABILITY 113

The proof of this fact is again a straightforward extension of results in chapter 3 (lem-
ma 3.4.11) and known results (cf. [38]). The justification of the following definition of
the denotational model D below can be based on the usual fixed point method (see
e.g. lemma 3.4.13). Contractiveness of ; in its second argument is required for contrac-
tiveness of the higher-order mapping used in this method.

The definition of the denotational semantics uses the compositionality principle. The
meaning of a basic statement consisting of a single action is given. For a statement built
with a certain syntactical operation the corresponding semantical operation is used to
find the meaning of the statement from the meanings of the parts of the statement.

Definition 4.3.25 The denotational model D:Lpnd → Pd is given by

D(a) = {| 1 · { a } |}

D(x) = D(D(x))

D(s1 op s2) = D(s1) op D(s2)

where op is 2, ⊕ρ, ; or ‖.

A single action a acts like a with probability one. Recursion is handled by body replace-
ment and to give the meaning of any statement built using the syntactic operator op the
corresponding denotational operation op is used.

Example 4.3.26 The meaning D(coin) of the atomic action coin is given by D(coin) =
{| 1 · { coin } |}. The processes obtained for atomic actions can be composed as in exam-
ple 4.3.24 to obtain

D(c̄bean ⊕ρ no beans) = {| ρ · { c̄bean }, (1− ρ) · { no beans } |}

D(cbean;xcoffee 2 coin′) = {| 1 · { 〈cbean, pcoffee〉, coin
′ } |}

D((c̄bean ⊕ρ no beans)‖(cbean;xcoffee 2 coin′)) =

{| ρ · { 〈c̄bean, {| 1 · { 〈cbean, pcoffee〉, coin
′ } |}〉, 〈cbean, pcoffee ‖

′′ { c̄bean }〉,
〈coin′, {| 1 · { c̄bean } |}〉, 〈τ, pcoffee〉 } ,

(1−ρ) · { 〈no beans, {| 1 · { 〈cbean, pcoffee〉, coin
′ } |}〉,

〈cbean, pcoffee ‖
′′ { no beans }〉, 〈coin′, {| 1 · { no beans } |}〉 } |}

where pcoffee = D(xcoffee).

To obtain the operational semantics O[[•]] from the operational model O a restriction to
programs was required. As the denotational model D is already defined on programs, this
restriction is not required here. We separately defined the denotational semantics D[[•]],
which coincides with the model D, only to maintain symmetry with the definition of the
operational semantics and with definitions of denotational semantics in later chapters.

Definition 4.3.27 The denotational semantics D[[•]]:Lpnd → Pd is given by D[[s]] = D(s).

Having given two operational models and a denotational model, a natural question to ask
is how the models are related. In the following subsection, the operational models are
compared with the denotational model.

114 CHAPTER 4. COMBINING 2 AND ⊕ρ

4.3.5 Comparing the operational and denotational semantics

The denotational semantics contains more information than the operational semantics. As
explained above, this information is needed to achieve compositionality. The unmatched
synchronization actions are still present in the denotational processes. In this subsection
it is shown that both operational models are abstractions from the denotational model.
The operational meaning can be obtained from the denotational meaning by removing
the extra information.

A similar approach to that of section 4.2 is used to show that the operational models
are abstractions of the denotational model. An operational-like model O∗ yielding deno-
tational processes is introduced and shown to coincide with the denotational model D.
Next two abstraction functions are introduced and both operational models are shown
to be abstractions of the operational-like model O∗. The nondeterminism in processes in
the denotational domain, can still be interpreted as local or global. Different abstraction
functions are needed for the local and global interpretations of nondeterministic choice.
Both the operational domain Po and the denotational domain Pd are branching domains,
allowing for relatively simple abstraction functions (compared to the abstraction functions
absi from section 4.2) from the denotational to the operational domain. An abstraction
which removes the branching information from processes in Po is given in subsection 4.3.6
below. The following graph shows the steps involved in the comparison of the operational
and denotational semantics.

PbPd + { pε }

Og

Olabsl

absg

D = O∗

To be able to assign a meaning to all resumptions, and not only to statements, the
denotational domain Pd is extended with the empty process giving Pd + { pε }. The
denotational model is extended to resumptions by assigning the empty process as the
meaning of the empty resumption, D(E) = pε.

Definition 4.3.28 The model D : Res→ Pd + { pε } is given by

D(E) = pε

D(a) = {| 1 · { a } |}

D(x) = D(D(x))

D(s1 op s2) = D(s1) opD(s2)

for op ∈ { ; ,⊕ρ,2, ‖ }.

Next the operational-like model O∗ with values in the extended denotational domain is
given.

4.3. PRIORITY FOR PROBABILITY 115

Definition 4.3.29 The operational-like model O∗ : L+pnd → Pd + { pε } and the auxiliary
function Ô

∗
: Statres → Qd are given by

O∗(E) = pε

O∗(s) = {| ρ · Ô
∗
(s′) | s

ρ
; s′ |}

Ô
∗
(s) = { 〈a,O∗(r)〉 | s

a
→ r }

where 〈a, pε〉 is identified with a.

As usual this definition can be justified by showing that O∗ is the unique fixed point of a
higher-order operator. The higher-order operator Φ∗ is assumed to be clear.

Example 4.3.30 Let, as in previous examples (see e.g. 4.3.26), c̄bean be a synchroniza-
tion action in Sync and no beans an observable action in OAct.

O∗(c̄bean ⊕ρ no beans) = {| ρ · Ô
∗
(c̄bean), (1− ρ) · Ô

∗
(no beans) |}

= {| ρ · { c̄bean }, (1− ρ) · { no beans } |}

Although the process that is assigned to the statement c̄bean ⊕ρ no beans is calculated in
a different way, the operational-like model O∗ yields the same process as D (cf. exam-
ple 4.3.26). This is the case for all statements.

Lemma 4.3.31 The operational-like model O∗ and the denotational model D coincide.

Proof The denotational model D is shown to be a fixed point of the contractive higher-
order operator Φ∗ that can be used to justify the definition of O∗. As O∗ is the unique
fixed point of this operator, the two models coincide. That Φ∗(D)(r) = D(r) is shown by
induction on the weight of the resumption r. A few cases are given below.

• For the basic resumptions E and a, we have

Φ∗(D)(E) = pε = D(E)

and
Φ∗(D)(a) = {| 1 · { a } |} = D(a)

• The axioms (Chance 1) and (Chance 2) give the transitions s ⊕ρ s
′ ρ
→ s and s ⊕ρ

s′
1−ρ
−→ s′. Inspection of the transition system T

(2)

pnd shows that these are the only

transitions for s ⊕ρ s
′. This means that s ⊕ρ s

′ σ
; s′′ exactly when s

σ′
; s′′ and

σ = ρσ′ or s′
σ′
; s′′ and σ = (1− ρ)σ′. Using this gives

Φ∗(D)(s⊕ρ s
′) = [def. Φ∗] {|σ · Φ̂∗(D)(s′′) | (s⊕ρ s

′)
σ
; s′′ |}

= [def.
ρ
;] {| ρσ′ · Φ̂∗(D)(s′′) | s

σ′
; s′′ |}

t{| (1− ρ)σ′ · Φ̂∗(D)(s′′) | s′
σ′
; s′′ |}

= [def. Φ∗] Φ∗(D)(s)⊕ρ Φ
∗(D)(s′)

= [ind. hyp.] D(s)⊕ρ D(s
′)

= [def. D] D(s⊕ρ s
′)

116 CHAPTER 4. COMBINING 2 AND ⊕ρ

• When s
ρ
; s′′, and s′

σ
; s′′′, then repeatedly using rule (Choice 1) followed by re-

peatedly using rule (Choice 2) gives that s2 s′
ρσ
; s′′2 s′′′. Inspection of T

(2)

pnd shows

that all probabilistic alternatives of s 2 s′ are obtained in this way.

For resolved statements s′′ and s′′′ we have that

Φ̂∗(D)(s′′ 2 s′′′) = { 〈a,D(r)〉 | s′′ 2 s′′′
a
→ r }

= { 〈a,D(r)〉 | s′′
a
→ r ∨ s′′

a
→ r }

= { 〈a,D(r)〉 | s′′
a
→ r }∪{ 〈a,D(r)〉 | s′′′

a
→ r }

= Φ̂∗(D)(s′′) ∪ Φ̂∗(D)(s′′′)

Using these observations gives

Φ∗(D)(s 2 s′)

= [def. Φ∗] {| ρ · Φ̂∗(D)(s′′) | (s 2 s′)
ρ
; s′′ |}

= [def.
ρ
;] {| ρσ · Φ̂∗(D)(s′′ 2 s′′′) | s

ρ
; s′′, s′

σ
; s′′′ |}

= {| ρσ · (Φ̂∗(D)(s′′) ∪ Φ̂∗(D)(s′′′)) | s
ρ
; s′′, s′

σ
; s′′′ |}

= [def. 2] {| ρ · Φ̂∗(D)(s′′) | s
ρ
; s′′ |}2 {|σ · Φ̂∗(D)(s′′′) | s′

σ
; s′′′ |}

= [def. Φ∗] Φ∗(D)(s) 2 Φ∗(D)(s′)
= [ind. hyp.] D(s) 2D(s′)
= [def. D] D(s 2 s′)

2

The lemma above uses the usual fixed point approach to show that the models O∗ and
D are the same. The following abstraction functions absl and absg can be used to obtain
the local and the global operational meaning from the processes given by O∗. Depending
on the interpretation of nondeterminism, the unmatched synchronization actions, present
in a denotational process but not in an operational process, are replaced by deadlock or
simply removed.

Definition 4.3.32 The abstraction functions absi : Pd + { pε }→ Po and the auxiliary
functions abs′i : Qd → Qo are given by

absi(pε) = pε

absi(p) = {| ρ · abs′i(q) | ρ · q ∈ p |}

abs′l(q) = { 〈b, absl(p̂)〉 | 〈b, p̂〉 ∈ q } ∪ { δ | 〈c, p̂〉 ∈ q }

abs′g(q) =

{
{ 〈b, absg(p̂)〉 | 〈b, p̂〉 ∈ q } if ∃〈b, p̂〉 ∈ q
{ δ } otherwise

where i is l for the local interpretation of nondeterminism or g for the global interpretation
of nondeterminism. Recall the convention that p̂ ranges over Pd + { pε }, that b ranges
over observable actions only and that 〈b, pε〉 is identified with b.

The abstraction functions absl and absg from the denotational to the operational domain
remove unmatched synchronization actions and introduce deadlock when needed. The

4.3. PRIORITY FOR PROBABILITY 117

abstraction for the local interpretation of nondeterminism replaces each unmatched syn-
chronization action by deadlock. The abstraction for the global interpretation of nonde-
terminism removes each unmatched synchronization action and only introduces deadlock
if no other options remain.

The following lemma relates the operational models Ol and Og with the model O∗.
This lemma can be proven using the usual fixed point reasoning (see e.g. lemma 3.4.13).

Lemma 4.3.33 The operational models Ol and Og are abstractions of the operational-
like model O∗

Oi = absi ◦ O
∗

where i is l for the local interpretation of nondeterminism or g for the global interpretation
of nondeterminism.

As the operational models Ol and Og are abstractions from the operational-like model
O∗ they identify all the statements identified by O∗. The reverse does not hold, Ol and
Og identify strictly more statements than O∗.

Example 4.3.34 The programs cbean and cleaf are identified by Ol and Og but not by O
∗

Oi(cbean) = {| 1 · { δ } |} = Oi(cleaf)
O∗(cbean) = {| 1 · { cbean } |} 6= {| 1 · { cleaf } |} = O∗(cleaf)

Combining the results in this subsection gives that both operational models are abstrac-
tions of the denotational model.

Theorem 4.3.35 The operational semantics Oi[[•]] are abstractions of the denotational
semantics D, Oi[[•]] = absi◦D[[•]], where i is l for the local or g for the global interpretation
of nondeterminism.

Proof
Oi[[s]] = [lemma 4.3.18] O(s)

= [lemma 4.3.33] absi(O
∗(s))

= [lemma 4.3.31] absi(D(s))
= [definition 4.3.27] absi(D[[s]]) 2

The operational models Ol replaces unmatched synchronization actions by deadlock. By
removing the deadlock from the processes given by Ol if other options exists, one ob-
tains the processes given by Og. The reverse is not possible, Og identifies strictly more
statements than Ol.

Example 4.3.36 The programs cbean 2 coin′ and coin′ are identified by Og but not by
Ol.

Ol(cbean 2 coin′) = {| 1 · { coin′, δ } |} 6= {| 1 · { coin′ } |} = Ol(coin
′)

Og(cbean 2 coin′) = {| 1 · { coin′ } |} = Og(coin
′)

118 CHAPTER 4. COMBINING 2 AND ⊕ρ

The following graph summarizes the results of this subsection.

ex. 4.3.36ex. 4.3.34

absl

absg

D = O∗

Og

Ol

PoPd + { pε }

4.3.6 Linearizing the operational domain Po

In subsection 4.3.3 it was argued that a branching domain is more appropriate for the
operational domain if it is visible which actions, i.e. which resources, are available at any
point. If, however, the user cannot check the resources which are available at a given
time, for example because the selection of the available resources is not entirely up to the
user, a linear model is useful. In this subsection it is shown how a linear process can be
obtained from the branching processes in Po. The domain of linear processes is called PL.

Definition 4.3.37 The linear operational domain PL is given by

PL = Meas(QL)

QL = Pnco(RL)

RL = OAct∞δ

with OAct∞δ = OAct? +OAct? · { δ }+OActω.

A sequence in RL gives the actions produced during a single run of the system. The
sequence can terminate normally (sequences in OAct?), deadlock after executing a number
of actions (sequences in OAct? · { δ }), or not terminate at all (sequences in OActω).

A linear subprocess in QL offers a choice between possible runs of the system in
RL. Compared to processes Qo, all nondeterministic choices are combined into a single
nondeterministic choice at the start of the process.

The linear operational domain PL combines all probabilistic choices in a process into
a single choice at the start of the process. As the number of options in the resulting
choice may be infinite, this choice cannot be modeled by a finite multiset of labeled
subprocesses. A measure over subprocesses is used instead. Recall that a measure gives
the probability for all observable events. An observable event is a Borel set over Qo, i.e. a
set of subprocesses.

Example 4.3.38 The sequences b, bb′, bδ and bω are all elements of RL. The first
sequence corresponds to the execution of a single b followed by normal termination. The
second sequence corresponds to the execution of the action b followed by the execution of
the action b′ followed by normal termination. The sequence bδ corresponds to the execution

4.3. PRIORITY FOR PROBABILITY 119

of the action b followed by deadlock of the system. The sequence bω corresponds to forever
repeating the execution of the action b.

The sets q1 = { b }, q2 = { b, b′ } and q3 = { b, bb, bbb, . . . , bω } are elements of QL. The
subprocess q1 offers only a single action b, q2 offers both a single b and a single b

′ and q3
offers the choice between any (positive) number of b’s, including infinitely many b’s. Note
that the set { b, bb, bbb, . . . } without the possibility for infinitely many actions b is not in
QL. For closedness and hence for compactness of the set, the possibility of infinitely many
actions b must be included.
The set q4 = { b, b′ }ω is also a subprocess in QL. The subprocess q4 offers the choice

of any infinite sequence of actions b and b′.

The measures p1 = ∆q1 and p2 = 1
4∆{ δ } +

3
4∆{ b′,bω } are both processes in Po. The

process p1 behaves like q1 with probability 1, i.e. the process always offers a single ac-
tion b. The process p2 deadlocks with probability

1
4 and offers the choice between the

single action b′ or infinitely many actions b with probability 3
4 .

The measure p3 with p3({w }QL) =
1
2

length of w
for all w ∈ { b, b′ }∗, is also an element of

PL. Note that {w }QL is a collection of subprocesses, i.e. a collection of subsets of RL. A
subprocess q is in {w }QL if all sequences in q start with w. For example { bb

′b }∈ { bb′ }QL

and also { bb′b, bb′bb, bb′bbb, . . . }∈ { bb′ }QL.
The support of measure p3 consist of the subprocesses which contain a single infinite

sequence spt(p3) = { {w }| w ∈ OActω }. For each of these subprocesses separately the
probability that the subprocess is obtained is 0, in other words p3({ {w } }) = 0 for each
infinite sequence w. The probability for the set containing all those subprocesses that offer
a sequence which starts with e.g. bb′b, is 1

8 (as p3({ bb
′b }QL) =

1
8).

That no finite sequence is offered by any subprocess in the support of p3 can be derived
as in example 4.2.18. That only a single sequence is offered and not, for example, the
choice between two sequences, can be seen as follows: Take Sn to be the collection of
all subprocesses which contain two sequences with differ in the first n places (n ∈ N).
Then Sn ∩ {w }QL = ∅ holds for all words w of length greater than n implying that
p3(Sn) = 0. The collection S of all subprocesses offering 2 or more sequences is equal
to
⋃
{Sn | n ∈ N }. By countable additivity we obtain p3(S) = 0.

Having given the domain PL the next step is to give an abstraction function that removes
the branching information from processes in Po. In the previous section the moment of
nondeterministic choice was abstracted away from by applying the abstraction function
abs2 introduced in definition 4.2.42. This abstraction function combines all nondeter-
ministic choices into a single choice at the beginning.of the process. The fact that this
may lead to an infinite number of options for the choice presents no problem, because the
nondeterministic choices are modeled using the functor Pnco which allows infinite choices
(of a restricted but sufficient form).

In the branching domain Po the probabilistic choice is modeled byMPf which allows
for choices between finitely many options. The program x with D(x) = (a ⊕ 1

2
b);x (see

example 3.3.12) shows that infinitely many options are also possible for the probabilistic
choice and that multisets are insufficient to model them. In chapter 3 and in the previous
section this was dealt with by using the functor Meas to model nondeterminism instead.

120 CHAPTER 4. COMBINING 2 AND ⊕ρ

A problem that arises in this section is that it is not clear how to combine measures over
sets in the way needed for a fixed point definition of the abstraction from the branching
to the linear domain: In chapter 3 and in the previous section the measures used were
measures over action sequences. The observable events were sets of action sequences. The
notion of prefixing with an action could be defined on measures by using the operation
•/a on sets of sequences. In this section the measure is a measure over subprocesses. An
observable event is, therefore, a set of subprocesses. Also, a step is not a single action,
but a set of possible actions. In is not clear how to define a notion of prefixing with a
set of actions on a measure over subprocesses. The solution to this problem is to only
give the probability of special kinds of observable events: The open balls. To find the
probability of other events, the properties of a measure are used. For the open balls only
a finite part of the branching process is relevant. Restricting to a finite part of a process
allows using multisets to model the probability. Unlike with measures, the composition
of multisets of subprocesses is possible.

A process p in Po which describes the meaning of some program is finitely branching.
By truncating the process at depth n, a finite tree which contains all information about
the first n actions of the process is obtained. In this finite process it is easy to linearize
the probability. The process that is obtained this way called the nth finite approxima-
tion appn(p) of p. The finite approximations of processes are elements of the set Pf .
Example 4.3.40 below shows finite approximations of several processes.

Definition 4.3.39 The domain Pf is given by Pf = ∪n∈N Pn with Pn given by

Pn = MPf ([0, 1]×Q∗n)
Q∗n = Pf (OAct×Q∗n−1 ∪ { δ }) + { pε }
Q∗0 = { pε }

The domain Pf is ranged over by P and the domain Q∗n ranged over by Q. The function
appn : Po → Pn gives the n-th finite approximation of a process and âppn : Qo → Pn gives
the n-th finite approximation of a subprocess. These two functions are defined by

app0(p) = {| 1 · pε |}

appn(pε) = {| 1 · pε |}

appn(p) = {| ρσ · q′ | σ · q′ ∈ âppn(q), ρ · q ∈ p |} for p 6= pε

âppn({ 〈b1, p1〉, . . . , 〈bm, pm〉 }) =

{|
(∏m

i=1 ρi
)
· { 〈b1, Q1〉, . . . 〈bm, Qm〉 } | ρ1 ·Q1 ∈ appn−1(p1), . . . ,

ρm ·Qm ∈ appn−1(Qm) |}
âppn({ δ, 〈b1, p1〉, . . . , 〈bk, pk〉 }) =

{|
(∏k

i=1 ρi
)
· { δ, 〈b1, Q1〉, . . . 〈bk, Qk〉 } | ρ1 ·Q1 ∈ appn−1(p1), . . . ,

ρk ·Qk ∈ appn−1(pk) |}

where m> 0 and k ≥ 0 and the empty product
∏0

i=1 is 1 by definition.

Note that the finite approximation functions are only well-defined for finitely branching
processes. This is not a problem, as all processes of interest, i.e. processes corresponding

4.3. PRIORITY FOR PROBABILITY 121

to the meaning of some program, are finitely branching. To make the functions well-
defined for all processes, an arbitrary element of Pf is assigned to processes that are not
finitely branching.

Example 4.3.40 The branching process p1 given by p1 = Og((b1; (b2 ⊕ 1
2
b3)) 2 b4) =

{| 1 · { 〈b1, {|
1
2 · { 〈b2, pε〉 },

1
2 · { 〈b3, pε〉 } |}〉, 〈b4, pε〉 } |} can be represented by the tree below.

The nth approximation appn(p1) (for n ≥ 2) of this process is also given.

b2

1

b4b1

b3

1
2

1
2

b4b1

b2 b3

b4b1

1
2

1
2

p1 appn(p1)

In this picture the trailing pε at each leaf of the trees is omitted. The process p1 contains
a single subprocess. This subprocess offers two choices: Execute action b1 followed by the
process Og(b2⊕ρb3) or to execute action b4 followed by nothing. If action b1 is selected this
is followed by b2 with probability ρ and by b3 with probability 1−ρ. Both these possibilities
are combined with { 〈b4, pε〉 } which is obtained if action b4 is chosen. This results in
appn(p1) = {| ρ · { 〈b1, { 〈b2, pε }〉, 〈b4, pε〉 }, (1− ρ) · { 〈b1, { 〈b3, pε〉 }〉, 〈b4, pε〉 } |} as the nth
finite approximation for p1 (for n ≥ 2).

Let D(x) = (b⊕ 1
2
b′);x. The nth approximation for Og(x) contains 2

−n · {w } for every

word w in { b, b′ }n.

b

b

b

b

b′

b

b′

b′

b′

b b′

1
2

1
2

p2 p2

b

b′

b′

1
2

n 1
2

n

appn(Og(x))p2 = Og(x)

...
...

...
...

. . .

Let D(x′) = (b12b2)⊕ 1
2
(b32b4);x

′. The nth approximation for Og(x
′) contains 1

2

2n−1
·Q

where Q is a complete n-deep binary tree where at each node either b1 and b2 are offered
or b3 and b4.

122 CHAPTER 4. COMBINING 2 AND ⊕ρ

b2b1

b2b1 b2b1

b4b3

b4b3 b4b3

b2b1

b2b1 b4b3

b4b3

b4b3 b2b1

app2(p3)

. . .

1
2

3 1
2

3

b2b1

p3p3 p3p3

b4b3

p3

1
2

1
2

The abstraction function absL from the branching domain to the operational domain is
defined based on the finite approximations.

Definition 4.3.41 The abstraction function absL : Po → PL is the unique function sat-
isfying

absL(p)(On) =
∑
{| ρ∆abs′

L
(Q)(On) | ρ ·Q ∈ appn(p) |}

where On is an open ball with radius 2
−n and abs′L : (∪n∈NQ∗n)→ Qo is given by

abs′L(pε) = { ε }

abs′L(Q) = ∪{ b abs′L(Q
′) | 〈b,Q′〉 ∈ t } ∪ { δ | δ ∈ Q }

The probability of an open ball On of radius of 2−n is given by summing the probabilities
of all alternatives in the nth finite approximation of the processes that end up in On.
Recall from chapter 3 (lemma 3.3.15) that it is sufficient to give the probability of the
open balls. By giving absL(p)(On) for all open balls On the measure absL(p) is fully
determined.

To see if an alternative will end up in the set On, the function abs′L is used. The
function abs′L linearizes all nondeterminism to give a set of sequences in RL, i.e. an
subprocess in QL. The open ball with radius 2−n around a subprocess q contains all
processes which behave the same as q in the first n steps. To check whether a subprocess
will end up in the open ball it is sufficient to check the first n steps as done in the nth
approximation of a process, i.e. appn(p) can be used instead of p.

Example 4.3.42 Let the process p1 be given by p1 = Og((b1; (b2 ⊕ρ b3))2 b4). Using the
finite abstraction for p1 derived in example 4.3.40 gives

absL(p1) = ρ∆{ b1b2,b4 } + (1− ρ)∆{ b1b3,b4 }

Let D(x) = b;x and put p = Og(x). We will show that the process absL(p) is equal to
∆{ bω }. Using the definition of Og gives that p = {| 1 · 〈b, p〉 |} holds. For the n-th finite

4.3. PRIORITY FOR PROBABILITY 123

approximation this gives appn(p) = {| 1 ·Qn |} with Q0 = pε and Qn+1 = 〈b,Qn〉 for n ∈ N.
The function abs′L linearizes Qn

abs′L(Qn) = { bn }

As { bn }QL is an open ball with radius 2
−n in QL the abstraction of p satisfies

absL(p)({ b
n }QL) = ∆Qn

({ bn }QL) = ∆{ bn }({ b
n }QL) = 1

Using similar reasoning as in example 4.3.38 gives that absL(p)(S) = 0 where S is the col-
lection of all subprocesses in QL which contain more than one element. In other words any
subprocess in the support of absL(p) offers a single sequence. For all n ∈ N we have that
any sequence that does not start with bn is clearly not possible as absL(p)({ b

n }QL) = 1.
The only sequence that starts with bn for all n is bω. With probability 1 the process absL(p)
delivers the subprocess { bω }.
Let D(x′) = b⊕ 1

2
b′. Using the finite approximation of Og(x) given in example 4.3.40

it is easy to see that the process absL(Og(x)) coincides with the process p3 from exam-
ple 4.3.38.

The operational semantics can be linearized by applying the abstraction function absL.

Definition 4.3.43 The linear operational semantics OiL[[•]] : Lpnd → PL is given by
OiL[[s]] = absL(Oi[[s]]) where i is l for the local interpretation of nondeterminism or g for
the global interpretation of nondeterminism.

As the linear operational models are abstractions from the branching operational models,
they are also abstractions of the denotational semantics. The branching model for the
global interpretation of nondeterminism can be obtained from the branching model for
the local interpretation of nondeterminism. For the linear models this is not the case.
The following example shows that OlL[[•]] and OgL[[•]] are incomparable in that there
are programs identified by OlL[[•]] but not by OgL[[•]] and, conversely, programs that are
identified by OgL[[•]] but not by OlL[[•]]. The example also shows that the abstraction
to the linear domain cannot be reversed, OiL[[•]] identifies strictly more statements than
Oi[[•]]

Example 4.3.44 The programs s1 and s2 given by s1 = coin; (tea ⊕ρ coffee) and s2 =
(coin; tea)⊕ρ (coin; coffee) are identified by OiL[[•]] but not by Oi[[•]] (cf. example 4.3.11)

OiL[[s1]] = ρ∆{ coin tea } + (1− ρ)∆{ coin tea }

= OiL[[s2]]

Oi[[s1]] = {| 1 · { 〈coin, {| 1 · { 〈tea, pε〉, 〈coffee, pε〉 } |}〉 } |}

6= {| 1 · { 〈coin, {| 1 · { 〈tea, pε〉 } |}〉, 〈coin, {| 1 · { 〈coffee, pε〉 } |}〉 } |}

= Oi[[s2]]

where i is l for the local interpretation of nondeterminism or g for the global interpretation
of nondeterminism.

124 CHAPTER 4. COMBINING 2 AND ⊕ρ

The programs s3 = cbean 2 coin′ and s4 = coin′ are identified by OgL[[•]] but not by OlL[[•]]

OlL[[s3]] = ∆
{ δ,coin′ } 6= ∆

{ coin′ } = OlL[[s4]]

OgL[[s3]] = ∆
{ coin′ } = OgL[[s4]]

The programs s5 = coin; (cbean 2 coin′) and s6 = (coin; cbean) 2 (coin; coin′) are identified
by OlL[[•]] but not by OgL[[•]]

OlL[[s5]] = ∆
{ coin coin′,coin δ }

= OlL[[s6]]

OgL[[s5]] = ∆
{ coin coin′ } 6= ∆

{ coin coin′,coin δ }
= OgL[[s6]]

The following combines the results of this subsection and that of the previous subsection

ex. 4.3.44ex. 4.3.36

ex. 4.3.44

ex. 4.3.44

Og
absL OgL[[•]]

Pd + { pε } Po

Ol OlL[[•]]

PL

absl

absg

absL

D = O∗

4.4 Combining probabilistic choice and nondetermin-

istic choice without using priorities

Giving priority to either nondeterministic choice or probabilistic choice, as done in sec-
tion 4.2 and section 4.3 respectively, solves the problem of interpreting programs which
contain both of these operators. Being able to interpret these programs, the resulting
models given in these sections are relatively simple extensions of the model for Lp given
in chapter 3.

A disadvantage of granting priority to nondeterministic choice or probabilistic choice
is that it fixes the interpretation of a nondeterministic choice. In either case the models
are only suitable for specific types of nondeterminism. As the model with priority for the
nondeterministic choice implies an opponent oriented view of nondeterminism, this model
cannot be used to describe a selection of available resources. Similarly, as the model with
priority for probabilistic choice implies a resource oriented view of nondeterminism, this
model does not fit well with a game-like interpretation.

Another disadvantage of giving priority to one type of choice is that only the other type
of choice can avoid deadlock: With priority for the nondeterministic choice, probabilistic
choice can be conditional, however, nondeterministic choice must be local. With priority
for the probabilistic choice, nondeterministic choice can be global, however, probabilistic
choice must be unconditional. Global nondeterministic choice cannot be used in a setting
with an ‘opponent oriented’ view of nondeterminism and can also not be combined with
conditional probabilistic choice.

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 125

A more unified approach is developed in this section, as we want to be able to use the
global and local interpretation of nondeterministic choice and the unconditional and con-
ditional interpretation of probabilistic choice independently of what the nondeterminism
is supposed to describe (like available resources or choices of a user). Instead of forcing
all choices of one type to be made first, each choice is made as it is encountered. This
means that a choice higher in the parse tree of a statement is made before any choice
below it, independent of whether the choice is a nondeterministic or probabilistic choice.
With this approach it is possible to choose for a local or global interpretation of non-
deterministic choice and an unconditional or a conditional interpretation of probabilistic
choice as desired, within a single framework. (It would even be possible to mix different
interpretations in a single language by introducing different operators for e.g. local non-
deterministic choice and global nondeterministic choice.) A single transition system gives
the transitions possible for each program independent of the interpretations of nondeter-
ministic choice and probabilistic choice. Based on this transition system the operational
models for each combination of the interpretations are given.

In the previous two sections, the structure of the operational domain of processes
which is used to give the operational meaning of a program was dictated by the type
of nondeterministic choice. In this section the structure of the operational domain can
still be freely selected. The domain chosen in this section is one which fits well within
a verification setting: The structure of the domain is such that it can easily be used to
check whether certain properties hold. The properties that one can check concern the
probability of given events. Examples of such properties are property 1: “the chance that
a sequence is produced that starts with ab is not more than 1

2” and property 2: “the
chance that a sequence is produced that starts with ab may be less than 1

2”. The first
property is an example of a bound on the probability of starting with ab that must be met,
independent of the nondeterministic behavior. The second property is also a a bound on
the probability of starting with ab but this time this bound only needs to be met for one
way of making the nondeterministic choices.

The operational domain used in this section will consist of sets of measures over
sequences of actions as this domain is suitable for checking properties like property 1 and
property 2 above: For a set of measures, one can check, for example, check property 2 by
checking whether the property “the chance that a sequence is produced that starts with ab
is less than 1

2” holds for a measure in the set. For a measure over sequences of actions, µ ∈
Meas(Act∞), this property can easily be checked by looking at the probability µ(abAct∞)
of the set of all sequences starting with ab.

In the remainder of this section we will concentrate on finding a model that allows
checking probabilistic properties instead of on describing and checking these properties.
In this section describing a probabilistic property is done by looking at probabilities
of suitable observable events. No formal way of expressing properties like for example
property 1 above is given. Instead property 1 is checked by looking at the probability of
the event abAct∞. Describing and deriving probabilistic properties of programs is treated
more extensively in a setting which also deals with data in chapter 6.

Having given the structure of the operational domain, the question is how the operational
models for the different interpretations on nondeterministic and probabilistic choice are
obtained from the transition system. In section 4.2 the transitions for each program follow

126 CHAPTER 4. COMBINING 2 AND ⊕ρ

the approach, first make some nondeterministic choices then make some probabilistic
choices then take an action. With these transition systems it is easy to interpret the
probabilistic choice as a conditional choice. The approach in section 4.3 reverses the
order of the choices but is similar, first make some probabilistic choices then make some
nondeterministic choices then take an action. With these transition systems it is easy to
interpret the nondeterministic choice as a global choice. Transition systems that follow
this approach of separating the nondeterministic and probabilistic choices are referred to
as alternating models (see e.g. [103, 105]). Here the structure of the transition trees is
more complicated. Nondeterministic choices and probabilistic choices are not separated
but can be mixed arbitrarily. The more complex structure of the trees makes interpreting
these trees and dealing with global nondeterministic choice and conditional probabilistic
choice more difficult. Instead of simply removing alternatives that fail to produce actions
a mechanism for backtracking through the transition tree is used. Within this setting
parallel composition gives additional complications as described in subsection 4.4.7. To

separate these two concerns a basic language L
(3a)

pnd without parallel composition is treated

first, after which parallel composition is added to the language.

The constructs of the basic language are atomic actions, sequential composition, non-
deterministic choice, probabilistic choice, recursion and the new construct fail, called
failure, which describes failure to produce an action. The construct fail replaces failure
by unsuccessful synchronization. The language allows studying the effects of combining
the different interpretations of nondeterministic choice and probabilistic choice in a simple

setting. In the language L
(3b)

pnd the notion of parallel composition is added. The addition of

parallel composition does not affect the way the nondeterministic choice and probabilistic
choice are dealt with.

The remainder of this section is organized as follows: In the next subsection the syn-

tax of the basic language L
(3a)

pnd is given. In subsection 4.4.2 the transition system T
(3a)

pnd

for L
(3a)

pnd is introduced. Some properties of this transition system are derived in sub-

section 4.4.3. The operational domain and the operational models which depend on the
interpretation of nondeterministic choice and probabilistic choice are defined in subsec-
tion 4.4.4. In subsection 4.4.5 a notion of bisimulation is introduced. Why bisimulation
is used instead of giving a denotational model is also explained there. In section 4.4.6 a
conditional congruence result for the notion of bisimulation introduced in subsection 4.4.5

is derived. In subsection 4.4.7 the language L
(3b)

pnd which also contains parallel composition

is given along with its operational semantics. Subsection 4.4.8 is devoted to extending

the notion of bisimulation to L
(3b)

pnd.

4.4.1 The language L
(3a)
pnd : choice, chance and failure

As explained in the introduction, we first look at a basic language with failure, recur-
sion, sequential composition, nondeterministic choice and probabilistic choice. As before
atomic actions in the set Act are used to describe the basic steps of the computation and
procedure variables in PVar are used for recursion. In the previous sections only binary
probabilistic and nondeterministic choice were present in the language. This was suffi-
cient as an n-ary probabilistic or nondeterministic choice could easily be modeled by using

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 127

multiple binary choices. With the models in this section an n-ary choice is not always
equivalent with multiple binary choices (cf. example 4.4.2). Therefore, n-ary probabilistic

and nondeterministic choices are part of the syntax of the language L
(3a)

pnd .

Definition 4.4.1

(a) The set of statements Stat, ranged over by s, is given by

s ::= a | fail | x | s ; s | 2n
i=1 si | ⊕

n
i=1 ρi · si

where n ≥ 2, 0< ρi < 1, (i = 1, . . . , n) and ρ1 + · · ·+ ρn = 1.

(b) The set of guarded statements GStat, ranged over by g, is given by

g ::= a | fail | g ; s | 2n
i=1 gi | ⊕

n
i=1 ρi · gi

where n ≥ 2, 0< ρi < 1, (i = 1, . . . , n) and ρ1 + · · ·+ ρn = 1.

(c) The set of declarations Decl, ranged over by D, is given by

Decl = PVar→ GStat

(d) The language L
(3a)

pnd is given by

L
(3a)

pnd = Decl× Stat

A program in L
(3a)

pnd is a declaration with a statement s. As before a fixed declaration D

is assumed and D is dropped from the notation.
Actions a in Act, procedure variables x in PVar and sequential compositions s1; s2

are as usual. The declaration D gives the body D(x) for each procedure variable x. The
recursion is restricted to guarded recursion, i.e. the statement D(x) must be a guarded
statement. The fail-statement fail embodies abnormal inaction or failure. There will be
no activity after its execution. The statement 2

n
i=1 si denotes nondeterministic choice.

The bound n should be at least 2. The statement acts like one of the si, for any i with
1 ≤ i ≤ n. For a binary nondeterministic choice, i.e. when n is 2, the notation s1 2 s2 is
employed.

The statement ⊕n
i=1 ρi · si denotes probabilistic choice or chance. Again the bound n

is at least 2. Each number ρi is strictly between 0 and 1 and the sum of all the ρi’s
equals 1. For the execution of the statement ⊕n

i=1 ρi · si a probabilistic choice is made:
With probability ρi the statement si is selected and executed (with 1 ≤ i ≤ n). For the
binary probabilistic choice we write s1 ⊕ρ s2 which executes s1 with probability ρ and s2
with probability 1− ρ.

Example 4.4.2 The statement 2
3
i=1 si with s1 = a, s2 = b and s3 = (c⊕ρ fail) describes

a system with three options. The first two options consist of actions a and b respectively.
The third option describes a probabilistic component that may produce an action or may
fail. If this component fails, both a and b are available as nondeterministic alternatives.
The statement a 2 (b 2 (c ⊕ρ fail)) describes a different system. This system has the

same three options, however, if the third option fails, alternative b will always be used
before trying the alternative a.

128 CHAPTER 4. COMBINING 2 AND ⊕ρ

Example 4.4.3 As an example of a situation that cannot be modeled using the models in
the previous two sections consider a probabilistic strategy in a game against an opponent.
Choices of the opponent are modeled by nondeterministic choices, the strategy of the player
by probabilistic choices. At some point in the game some of the options may not be valid
and the choice has to be made between the remaining options. For example in the very
simple game described by the program (a 2 fail); (b ⊕ 1

2
fail) the opponent has to choose

between a or an invalid option after which the strategy of the player is to choose either
option with equal probability. Clearly the only valid execution of this game results in the
sequence ab. To obtain this sequence with probability 1, the nondeterministic choice has
to be global and at the same time the probabilistic choice has to be conditional.

The example above shows a simple situation in which the combination of global nonde-
terministic choice and conditional probabilistic choice is needed. This combination was
not possible in the models in section 4.2 and section 4.3 but a model for this combination
will be developed this section.

4.4.2 The transition system T
(3a)

pnd

In this subsection the transition system T
(3a)

pnd is given for the language L
(3a)

pnd . Based on

the transition system T
(3a)

pnd the operational model O will be defined in subsection 4.4.4.

As in the previous two sections a single transition system is used to give the transitions of
a program. The distinction between the different interpretations of nondeterminism and
probabilistic choice is made when defining the operational model O (cf. definition 4.4.15).

A resumption, which describes the part of the program which remains to be executed,
is a statement or the empty resumption E denoting a finished computation

r ::= s | E

The configurations of the transition system are resumptions together with a declaration,
Conf = Decl × Res. As a fixed declaration is assumed, the declaration is omitted from
the notation.

In section 4.2 the nondeterminism was resolved first and a nondeterministic choice
had to be made between programs instead of just between actions. To be able to do this
the nondeterminism was resolved explicitly, i.e. making a nondeterministic choice was
represented by a transition with an auxiliary label ν in the transition system. Similarly in
section 4.3 the probabilistic choice was resolved by an explicit transition in the transition
system. In this section either choice may be made first.

Example 4.4.4 In a 2 (b⊕ 1
2
c) the nondeterministic choice occurs first and is therefore

made first. One of the arguments of the nondeterministic choice is the probabilistic pro-
gram (b⊕ 1

2
c). In (a2 b)⊕ 1

2
c the probabilistic choice occurs first. (Recall that (a2 b)⊕ 1

2
c

is short for ⊕2
i=1 ρi · si with ρ1 = 1

2 , s1 = (a 2 b) and ρ2 = 1
2 , s2 = c.) The probabilis-

tic choice is therefore made first. One of the arguments of the probabilistic choice is the
nondeterministic program b 2 c.

To be able to deal with both nondeterministic choices between probabilistic programs and
probabilistic choices between nondeterministic programs, both nondeterministic choices

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 129

and probabilistic choices are resolved explicitly in the transition system T
(3a)

pnd . As a

result the labels used in T
(3a)

pnd consist of the atomic actions in Act, the auxiliary label ν

for resolving nondeterministic choice and the auxiliary labels ρ in (0, 1) for resolving
probabilistic choice, thus

Lab = Act ∪ { ν } ∪ (0, 1)

Recall that θ is used to range over the set of labels. Additionally we use λ to range over
non action labels, i.e. λ ∈ { ν } ∪ (0, 1).

Definition 4.4.5 The transition system T
(3a)

pnd for L
(3a)

pnd is given by T
(3a)

pnd = (Conf,Lab,

→ ,Spec). The specification Spec contains the following axioms and rules

a
a
→ E (Act)

D(x)
θ
→ r

x
θ
→ r

(Rec)
s1

θ
→ r

s1; s2
θ
→ r; s2

(Seq)

2
n
i=1 si

ν
→ si (Choice) ⊕n

i=1 ρi · si
ρi
→ si (Chance)

where r; s2 in rule (Seq) should be read as s2 if r = E.

A statement consisting of a single action a performs the action a and then terminates.
Recursion is handled by unfolding. The transitions for a procedure variable x are precisely
those of its body, i.e. the statement D(x). If the first component s1 of a sequential
composition s1; s2 can do a θ-transition, the statement s1; s2 itself can do a θ-transition
as well. After s1 is finished (the case r = E) execution continues with s2. Selection
of an alternative in a nondeterministic choice is made explicit by taking a ν-transition.
Likewise, the selection of a component of a probabilistic choice which has probability ρ is
signaled by a ρ-transition. Note that for the fail-statement there is no axiom or rule. As
a consequence, fail has no transitions.

Example 4.4.6 The statement s = 2
3
i=1 si with s1 = a, s2 = b and s3 = (c⊕ρ fail) has

three transitions, s
ν
→ a, s

ν
→ b and s

ν
→ (c⊕ρ fail) The statement s

′ = a 2 (b2 (c⊕ρ fail))

has two transitions, s
ν
→ a and s

ν
→ (b2 (c⊕ρ fail)). The abstract transition trees for these

two statements are

ν
νν

δ

a2 b2 (c⊕ρ fail)

δ

a

a2 (b2 (c⊕ρ fail))

ν ν

ν ν

(1−ρ)ρ

(1−ρ)ρ

b

b

b

ba

The statement fail; a has no transitions.

130 CHAPTER 4. COMBINING 2 AND ⊕ρ

The statement fail 2 a has two transitions, fail 2 a
ν
→ fail and fail 2 a

ν
→ a.

νν

δ a

fail 2 a

4.4.3 Properties of the transition system T
(3a)

pnd

In the previous two sections the statements were split into nondeterministically resolved
or probabilistically resolved statements and statements that can take a nondeterministic
or probabilistic step. A similar distinction can be made here. There are four possible
‘modes’ for a statement.

Definition 4.4.7

(a) The statement s is said to be deterministic if s has precisely one transition which is

of the form s
a
→ r

(b) The statement s is said to be nondeterministic if s has at least one transition and all

transitions of s are of the form s
ν
→ s′ for some statement s′. If s is nondeterministic

we write s⇒n S where S is the multiset {| s
′ | s

ν
→ s′ |}.

(c) The statement s is said to be probabilistic if s has at least one transition and all

transitions of s are of the form s
ρ
→ s′ for some probability ρ and some statement s′.

If s is probabilistic we write s⇒p T where T is the multiset {| ρ · s
′ | s

ρ
→ s′ |}.

(d) The statement s is said to fail if s has no transitions.

For nondeterministic statements the nondeterminism has to be resolved and for proba-
bilistic statements the probabilistic choices have to be resolved. The notation s⇒n S is
used to collect all nondeterministic alternatives of a nondeterministic statement. Similarly
the notation s⇒p T collects all probabilistic alternatives of a probabilistic statement. A
deterministic statement corresponds to a statement that is both probabilistically resolved
and nondeterministically resolved. A new type of statement, i.e. a failing statement is
introduced by the explicit modeling of failure.

Each statement in L
(3a)

pnd is in exactly one of these modes, i.e. a statement is either

deterministic, nondeterministic, probabilistic or failing. This can be shown using weight
induction. The definition of the weight of a statement is similar to the definition given

in 4.2.9. For statements which occur in both L
(3a)

pnd and Lpnd the weight functions coincide.

Definition 4.4.8 The function wgt:L
(3a)

pnd → N is given by

wgt(a) = 1 wgt(s1; s2) = wgt(s1) + 1

wgt(fail) = 1 wgt(2n
i=1 si) = 1 +

∑n
i=1 wgt(si)

wgt(x) = wgt(D(x)) + 1 wgt(⊕n
i=1 ρi · si) = 1 +

∑n
i=1 wgt(si)

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 131

One can show, using the guardedness of the procedure bodies D(x), that the function wgt
is well-defined. The following lemma can be proven straightforwardly by induction on the
weight of a statement.

Lemma 4.4.9 For each statement s in L
(3a)

pnd exactly one of the following holds: s is

deterministic, s is nondeterministic, s is probabilistic or s fails.

Based on the transition system, different operational models for the different interpre-
tations of nondeterministic choice 2 and probabilistic choice ⊕, are defined in the next
subsection. The mode of a statement is used in the definition of the different operational
models. For well-definedness of these operational models, the following properties are
important. They can easily be shown to hold by weight induction.

Lemma 4.4.10 The transition system T
(3a)

pnd is finitely branching and has no internal

divergence, i.e., there are no statements s0, s1, s2, . . . and λ1, λ2, . . . in { ν }∪(0, 1) such

that s0
λ1→ s1

λ2→ s2 · · · is an infinite computation.

4.4.4 The operational semantics O

The nondeterministic choice can be local or global. For the local case any component si of
a nondeterministic choice 2

n
i=1si can be selected. The other options, s1, . . . , si−1, si+1, . . . ,

sn, are dispensed with. For the global case also any component of a nondeterministic
choice can be selected. However, if the computation for si fails before executing any
action, i.e. before performing an a-step, the execution will backtrack to the choice and
select one of the other alternatives which then takes over control. This backtracking
behavior is obtained by storing the other alternatives s1, . . . , si−1, si+1, . . . , sn, when si
is selected. In the previous sections, alternatives were not stored. Instead deadlock
was removed by simply removing δ from the output if other options exist. This simple
approach cannot be used here.

Example 4.4.11 In the program (a⊕ρ fail)2 b the option a⊕ρ fail may fail but only with
probability 1 − ρ. If nondeterminism is global, the option b should not replace the whole
option a⊕ρ fail but only be used in case this option fails. For global nondeterministic choice
and unconditional probabilistic choice, this statement behaves the same as (a⊕ρ b) 2 b.

δa

1
2

1
2

(a⊕ 1
2
fail) 2 b

b

ν ν

a

1
2

1
2

(a⊕ 1
2
b) 2 b

b

b

ν ν

At the moment the nondeterministic choice has to be made in the program (a⊕ρ fail) 2 b
it is unknown whether the first component will fail or not. Therefore, selection of this
alternatives is allowed, even for the global interpretation of choice. The global behavior of
the choice is obtained by backtracking to alternative b if the option a⊕ρ fail fails.

132 CHAPTER 4. COMBINING 2 AND ⊕ρ

The probabilistic choice can either be unconditional or conditional. The unconditional
probabilistic is similar to the local nondeterministic choice; a component is selected and
other options are dispensed with. Conditional probability is similar to global nondeter-
minism. In the conditional interpretation of the probabilistic choice the other options are
stored along with their probability when exploring a certain branch and reinvoked later
when this exploration fails to perform any a-step.

Either interpretation of the nondeterministic choice can be combined with either in-
terpretation for the probabilistic choice, which thus results in four different semantical
models.

In order to be able to handle global nondeterministic choice and conditional probabilistic
choice, the other alternatives should be stored when selecting an option in order to recover
from a deadlock. To this end we introduce alternatives, which are essentially stacks of
multisets of statements and of multisets of probability statement pairs.

Definition 4.4.12 The collection Alt of alternatives, with typical element A, is given by
the clause A ::= ⊥ | S . A | T . A where ⊥ is a fresh symbol, S is a nonempty multiset of
statements s, and T is a nonempty multiset of probability-statement pairs ρ · s.

The empty alternative is denoted by the new symbol ⊥. The two other cases are S . A
and T . A. Here S consists of statements which remain from the resolution of some
nondeterministic choice 2

n
i=1 si. Likewise, T consists of the alternatives still open for the

resolution of a probabilistic choice ⊕n
i=1 ρi · si. Since this also depends on the probability

with which the branch is taken pairs ρ · s are used for this. Below we will employ the
constructions (S\s) . A and (T\ρ · s) . A of deletion of one element from the topmost
multiset. The convention ∅ . A = A will be employed in case S\s or T\ρ · s becomes the
empty multiset, so that the resulting stacks are still of the proper format.

That the alternatives of a probabilistic choice need to be described by a multiset in-
stead of a set was also seen in previous sections. Here the alternatives of a nondeterministic
choice also need to be described by a multiset.

Example 4.4.13 Consider the program (a ⊕ 1
2
fail) 2 (a ⊕ 1

2
fail) with the global inter-

pretation of nondeterministic choice and the unconditional interpretation of probabilistic
choice. If the first alternative a⊕ 1

2
fail is selected then this component will fail with proba-

bility 1
2 . However, if this happens, the second component will be tried instead. The second

component will also fail with probability 1
2 making the total probability of failure

1
4 .

The number of copies of the nondeterministic alternative (a⊕ 1
2
fail) is important as it

influences the probability of failure. (See also example 4.4.16.)

Given a program and an alternative the operational model O yields a process that de-
scribes the observable behavior of the program with this alternative. The domain of all
processes is denoted by Po.

Definition 4.4.14 The operational domain Po, ranged over by p, is given by

Po = Pnco(Qo)

Qo = Meas(Ro)

Ro = OAct∞δ

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 133

where OAct∞δ = OAct? ∪OAct? · { δ }∪OActω.

To obtain the operational semantics for a statement any information in the transition
tree of the program that is not considered to be observable behavior is removed and the
alternatives are dealt with. For example, the auxiliary ν and ρ steps do not correspond
to actual observable behavior.

Definition 4.4.15 For i = l for the local interpretation of nondeterminism or i = g for
the global interpretation of nondeterminism and j = u for the unconditional interpretation
of probabilistic choice or j = c for the conditional interpretation of probabilistic choice the
mapping Oi,j :Res→ Alt→ Po is defined as follows:

Oi,j(E)[A] = {∆ε }

Oi,j(s0)[A] = Oi,j(r)[⊥]/a s0
a
→ r

Ol,j(s0)[A] =
⋃
{Ol,j(s)[A] | s0

ν
→ s } s0⇒n S

Og,j(s0)[A] =
⋃
{Og,j(s)[(S\s) . A] | s0

ν
→ s } s0⇒n S

Oi,u(s0)[A] = ⊕{| ρ · Oi,u(s)[A] | s0
ρ
→ s |} s0⇒p T

Oi,c(s0)[A] = ⊕{| ρ · Oi,c(s)[(T \ ρ · s) . A] | s0
ρ
→ s |} s0⇒p T

Oi,j(s0)[⊥] = {∆δ } s0 6→

Oi,j(s0)[S . A] =
⋃
{Oi,j(s)[(S \ s) . A] | s ∈ S } s0 6→

Oi,j(s0)[T . A] = ⊕{| ρ
R(T) · Oi,j(s)[(T \ ρ · s) . A] | ρ · s ∈ T |} s0 6→

with ⊕ :MPf ([0, 1]× Po)→ Po given by

⊕{| ρ1 · p1, . . . , ρn · pn |} = {
∑n

k=1 ρkµk | µ1 ∈ p1, . . . , µn ∈ pn }

Recall that ∆w denotes the Dirac measure on the sequence w which assigns probability one
to a given Borel set B exactly when w is an element of B. The operation ⊕ is introduced
for ease of notation and to show the symmetry with the clauses for a nondeterministic
statement. This operation combines several probabilistic options into a single process
like the operation union combines several nondeterministic options: Given a multiset
of probability process pairs, the operation ⊕ yields an operational process, i.e. a set of
measures. The use of a multiset as the argument of ⊕ is needed to prevent the ‘loss of
probability’ by multiple occurrences of the same (probability, process) pair.

The definition of the four operational models Oi,j above can be justified as usual by
giving a contractive higher-order function Φi,j that has Oi,j as its unique fixed point (see
for example definition 3.3.20 and lemma 3.3.21). The empty resumption E terminates
immediately without producing any actions giving the empty sequence ε with probability
1 as the only possible behavior. For a deterministic statement s which takes an a step to
a resumption r, the function ‘prefix along a’, denoted •/a, is used to prefix the meaning
of r with the action a. Note that the process Oi,j(r)[⊥] is a set of measures and that
{µ1, . . . , µn }/a = {µ1/a, . . . , µn/a } with µ/a as given in definition 3.3.18. The meaning

134 CHAPTER 4. COMBINING 2 AND ⊕ρ

of a nondeterministic statement depends on the interpretation of nondeterministic choice.
If the nondeterministic choice is local, one of the options of the nondeterministic choice is
selected and the other options are discarded. If the nondeterministic choice is global, any
option may be selected, however, the other options are remembered by adding them to the
stack of alternatives. The distinction between unconditional and conditional probabilistic
choice is made in a similar manner. For the unconditional choice the other alternatives of
a choice are discarded. For a conditional choice the other alternatives together with their
probabilities are added to the stack of alternatives.

The role of the alternatives becomes clear when looking at a failing statement. If no
alternative exists, a failing statement will lead to deadlock, described by δ. However, if
there are still alternatives available from some global choice or some conditional choice,
one of these alternatives is taken instead of producing deadlock. If the alternatives belong
to some probabilistic choice then the associated probabilities are renormalized before
selecting one of these alternatives.

Example 4.4.16 Using the global interpretation of nondeterminism and the uncondi-
tional interpretation of probabilistic choice, the program s = 2

3
i=1 si with s1 = a, s2 = b

and s3 = (c⊕ρ fail) and the program s′ = a2 (b2 (c⊕ρ fail)) have a different operational
meanings.
For the program s with no additional alternatives we can find its operational meaning,

Og,u(s)[⊥], as follows:

Og,u(s)[⊥] = Og,u(a)[{| b, (c⊕ρ fail) |} .⊥] ∪ Og,u(b)[{| a, (c⊕ρ fail) |} .⊥] ∪

Og,u((c⊕ρ fail))[{| a, b |} .⊥]

= {∆a } ∪ {∆b } ∪

ρ · Og,u(c)[{| a, b |} .⊥]⊕ (1− ρ) · Og,u(fail)[{| a, b |} .⊥]

= {∆a,∆b } ∪

ρ · {∆c } ⊕ (1− ρ) · (Og,u(a)[{| b |} .⊥] ∪ Og,u(b)[{| a |} .⊥])

= {∆a,∆b } ∪ ρ · {∆c } ⊕ (1− ρ) · {∆a,∆b }

= {∆a,∆b, ρ∆c + (1− ρ)∆a, ρ∆c + (1− ρ)∆b }

For the program s′, also without any additional alternatives, we get

Og,u(s
′)[⊥] = Og,u(a)[{| b 2 (c⊕ρ fail) |} .⊥] ∪ Og,u(b2 (c⊕ρ fail))[{| a |} .⊥]

= {∆a } ∪ Og,u(b)[{| (c⊕ρ fail) |} . {| a |} .⊥] ∪

Og,u((c⊕ρ fail))[{| b |} . {| a |} .⊥]

= {∆a,∆b } ∪ ρ · {∆c } ⊕ (1− ρ) · (Og,u(fail)[{| b |} . {| a |} .⊥]

= {∆a,∆b } ∪ ρ · {∆c } ⊕ (1− ρ) · (Og,u(b)[{| a |} .⊥]

= {∆a,∆b } ∪ ρ · {∆c } ⊕ (1− ρ) · ({∆a }

= {∆a,∆b, ρ∆c + (1− ρ)∆b }

In the process obtained for s′, as compared to the process for s, the option ρ∆c+(1−ρ)∆a

is not present as failure is always replaced by b before the alternative a is considered.

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 135

Using the transitions derived in example 4.4.6 the operational meaning of the programs
fail; a and fail 2 a is found as follows. The program fail; a has no transitions, i.e. this
statement is failing. Hence

Oi,j(fail; a)[⊥] = {∆δ }

The program fail 2 a has two nondeterministic transitions. The operational behavior de-
pends on the interpretation of nondeterministic choice. We have

Ol,j(fail 2 a)[⊥] = Ol,j(fail)[⊥] ∪ Ol,j(a)[⊥]

= {∆δ,∆a }

Og,j(fail 2 a)[⊥] = Og,j(fail)[{| a |} .⊥] ∪ Og,j(a)[{| fail |} .⊥]

= Og,j(a)[⊥] ∪ {∆a }

= {∆a }

That the multiplicity of an option in the alternative stack does matter is shown by the
following two examples which use a global interpretation on nondeterministic choice and
an unconditional interpretation of probabilistic choice. In the program fail 2 (a ⊕ 1

2
fail)

the option fail, if selected, has one alternative (a⊕ 1
2
fail). The total probability of failure

is 1
2 . In the program fail 2 (a⊕ 1

2
fail)2 (a⊕ 1

2
fail) there are two alternatives for fail, both

equal to a⊕ 1
2
fail. The total probability of failure is 1

4 .

Og,u(fail 2 (a⊕ 1
2
fail))[⊥]

= Og,u(fail)[{| a⊕ 1
2
fail |} .⊥] ∪ Og,u(a⊕ 1

2
fail)[{| fail |} .⊥]

= Og,u(a⊕ 1
2
fail)[⊥] ∪ (12 · Og,u(a)[{| fail |} .⊥]⊕

1
2 · Og,u(fail)[{| fail |} .⊥])

= (12 · Og,u(a)[⊥]⊕
1
2 · Og,u(fail)[⊥]) ∪ (12 ·∆a ⊕

1
2 · Og,u(fail)[⊥])

= { 1
2∆a +

1
2∆δ }

Using the global interpretation of nondeterminism and the unconditional interpretation of
probabilistic choice, the probability that the program fail 2 (a⊕ 1

2
fail) fails is 1

2 .

Og,u(fail 2 (a⊕ 1
2
fail) 2 (a⊕ 1

2
fail))[⊥]

= Og,u(fail)[{| (a⊕ 1
2
fail), (a⊕ 1

2
fail) |} .⊥] ∪

Og,u((a⊕ 1
2
fail))[{| fail, (a⊕ 1

2
fail) |} .⊥]

= { 3
4∆a +

1
4∆δ }

because

Og,u(fail)[{| (a⊕ 1
2
fail), (a⊕ 1

2
fail) |} .⊥]

= Og,u((a⊕ 1
2
fail))[{| (a⊕ 1

2
fail) |} .⊥]

= 1
2 · Og,u(a)[{| (a⊕ 1

2
fail) |} .⊥]⊕ 1

2 · Og,u(fail)[{| (a⊕ 1
2
fail) |} .⊥]

= 1
2 · {∆a } ⊕

1
2 · Og,u((a⊕ 1

2
fail))[⊥]

= 1
2 · {∆a } ⊕

1
2 · {

1
2∆a +

1
2∆δ }

= { 3
4∆a +

1
4∆δ }

136 CHAPTER 4. COMBINING 2 AND ⊕ρ

And similarly Og,u((a ⊕ 1
2
fail))[{| fail, (a ⊕ 1

2
fail) |} . ⊥] = { 3

4∆a + 1
4∆δ }. Using the

global interpretation of nondeterminism and the unconditional interpretation of proba-
bilistic choice, the probability that the program fail 2 (a⊕ 1

2
fail) 2 (a⊕ 1

2
fail) fails is 1

4 .

Using the global interpretation of nondeterminism and the conditional interpretation of
probabilistic choice, one available action is sufficient to avoid failure.

Og,c(a2 (fail⊕ 1
2
fail))[⊥]

= Og,c(a)[{| fail⊕ 1
2
fail |} .⊥] ∪ Og,c(fail⊕ 1

2
fail)[{| a |} .⊥]

= {∆a } ∪ (12 · Og,c(fail)[{|
1
2 · fail |} . {| a |} .⊥]⊕

1
2 · Og,c(fail)[{|

1
2 · fail |} . {| a |} .⊥])

= {∆a } ∪ (12 · Og,c(fail)[{| a |} .⊥]⊕
1
2 · Og,c(fail)[{| a |} .⊥])

= {∆a } ∪ (12 · Og,c(a)[⊥]⊕
1
2 · Og,c(a)[⊥])

= {∆a } ∪ (12 · {∆a } ⊕
1
2 · {∆a })

= {∆a }

If multiple alternatives are available, the “closest one” is always used.

Og,c(a2 (b⊕ 1
2
fail))[⊥]

= Og,c(a)[{| b⊕ 1
2
fail |} .⊥] ∪ Og,c(b⊕ 1

2
fail)[{| a |} .⊥]

= {∆a } ∪ (12 · Og,c(b)[{|
1
2 · fail |} . {| a |} .⊥]⊕

1
2 · Og,c(fail)[{|

1
2 · b |} . {| a |} .⊥])

= {∆a } ∪ (12 · {∆b } ⊕
1
2 · {∆b })

= {∆a,∆b }

and similarly we have Og,c((a 2 fail)⊕ρ b)[⊥] = {
1
2∆a +

1
2∆b }.

The operational semantics should give the meaning of programs. The model Oi,j gives
the meaning of resumptions instead of programs and an extra argument containing alter-
natives is used. No alternatives are available when the execution of a program starts, so
for a closed system the empty alternative ⊥ should be used. The operational semantics
Oi,j [[•]] restricts to programs and uses the empty alternative ⊥ for the alternatives.

Definition 4.4.17 The operational semantics Oi,j [[•]]:L
(3a)

pnd → Po, for i = l for the local

interpretation of nondeterminism or i = g for the global interpretation of nondeterminism
and j = u for the unconditional interpretation of probabilistic choice or j = c for the
conditional interpretation of probabilistic choice is given by

Oi,j [[s]] = Oi,j(s)[⊥]

The various interpretations of nondeterministic and probabilistic choice give rise to four
models with incomparable distinguishing power. Examples similar to those used in sec-
tion 4.2 and section 4.3 can be used to show this.

Example 4.4.18 The operational semantics Oi,j with i = l for the local interpretation
of nondeterminism or i = g for the global interpretation of nondeterminism and j = u
for the unconditional interpretation of probabilistic choice or j = c for the conditional

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 137

interpretation of probabilistic choice are four incomparable models for L
(3a)

pnd, i.e. for each

of pair of models there are programs identified by the first but not by the second model.

The programs a and a2 fail are identified by the models with a global interpretation of
nondeterministic choice but not by the models with a local interpretation.

Ol,j [[a]] = {∆a } 6= {∆a,∆δ } = Ol,j [[a2 fail]]

Og,j [[a]] = {∆a } = Og,j [[a2 fail]]

The programs a; (b 2 fail) and (a; b) 2 (a; fail) are identified by the models with a local
interpretation of nondeterministic choice but not by the models with a global interpretation.

Ol,j [[a; (b 2 fail)]] = {∆ab,∆aδ } = Ol,j [[(a; b) 2 (a; fail)]]

Og,j [[a; (b 2 fail)]] = {∆ab } 6= {∆ab,∆aδ } = Og,j [[(a; b) 2 (a; fail)]]

The programs a and a⊕ 1
2
fail are identified by the models with a conditional interpretation

of probabilistic choice but not by the models with an unconditional interpretation.

Oi,u[[a]] = {∆a } 6= { 1
2∆a +

1
2∆δ } = Oi,u[[a⊕ 1

2
fail]]

Oi,c[[a]] = {∆a } = Oi,c[[a⊕ 1
2
fail]]

The programs a; (b ⊕ 1
2
fail) and (a; b) ⊕ 1

2
(a; fail) are identified by the models with an

unconditional interpretation of probabilistic choice but not by the models with a conditional
interpretation.

Oi,u[[a; (b⊕ 1
2
fail)]] = { 1

2∆ab +
1
2∆aδ } = Oi,u[[(a; b)⊕ 1

2
(a; fail)]]

Oi,c[[a; (b⊕ 1
2
fail)]] = {∆ab } 6= { 1

2∆ab +
1
2∆aδ } = Oi,c[[(a; b)⊕ 1

2
(a; fail)]]

The backtracking within the transition trees that is caused by the global nondeterministic
choice and the conditional probabilistic choice is modeled by alternatives. The alternatives
are only used in giving the operational models Oi,j . It is also possible to describe the
backtracking behavior with a lifted transition relation on extended configurations which
contain alternatives (see definition 4.4.19 below). As the way alternatives are used depends
on the interpretation of nondeterministic choice and the interpretation of probabilistic
choice, the extended transition relation will also depend on these interpretations.

In the next subsection, an extended transition relation which deals with the alterna-
tives according to the interpretation that is being considered is exactly what is needed.
One of the results obtained in the next subsection (cf. lemma 4.4.24) is that defining the
operational semantics using this extended transition relation gives the same result as the
direct definition used here.

138 CHAPTER 4. COMBINING 2 AND ⊕ρ

4.4.5 Bisimulation for L
(3a)
pnd : First step bisimulation

In chapter 3 and sections 4.2 and 4.3 a denotational model was given. As a denota-
tional model is compositional, it provides an easier way of checking that programs are
equivalent. Correctness of the denotational model then gives that denotationally equiva-
lent programs, i.e. programs with the same denotational semantics, are also operationally
equivalent, i.e. they have the same operational semantics. In both the sections 4.2 and
4.3 a single denotational model is used, independent of the interpretation of nondeter-
ministic choice and probabilistic choice. A denotational model in this vain can also be
given here. Such a model, however, identifies very few statements and as such is not very
useful in showing equivalence of programs. Instead bisimulation is used here. Defining
a notion of bisimulation is a commonly used way of obtaining equivalence of programs.
The reason why bisimulation has not been used in this thesis up till now is that in the
metric approach an equivalence relation obtained from a notion of bisimulation usually
coincides with equality in a denotational model making also giving a notion of bisimu-
lation redundant. (See [91, 38] for a result on strong bisimulation and [190] for a result
on probabilistic bisimulation.) This is not the case here. A denotational model is always
necessarily a congruence for all operators. The notion of bisimulation defined in this
subsection will turn out to be only a conditional congruence for sequential composition
(see subsection 4.4.6). As such no denotational model giving the same equivalence rela-
tion exists. Usually a notion of bisimulation also results in a full congruence. The result
obtained at the end of subsection 4.4.7 (example 4.4.62 and theorem 4.4.63) explain why
one does not obtain a congruence relation in this setting.

A first attempt in giving a notion of bisimulation for L
(3a)

pnd is simply ignoring the

meaning of the auxiliary labels ν and ρ dealing with resolution of nondeterminism and
probabilistic choice. However, the multiset character of the transition relation should
be taken into account: One would expect statements s and s′ to be bisimilar precisely

when there exists a one-one correspondence between the transitions s
θ
→ r of s and the

transitions s′
θ
→ r′ of s′ where r is bisimilar to r′. For example, the statements s =

1
3a⊕

1
3a⊕

1
3b versus s

′ = 1
3a⊕

1
3b⊕

1
3b are not identified by any operational model model

so they should not be bisimilar either. As s
1
3→ a twice and s′

1
3→ a only once there can be

no bijection between their transitions.

Dealing with multisets in this way one obtains an equivalence relation. It is also not

difficult to check that the equivalence is a congruence for L
(3a)

pnd . However, this equivalence

turns out to be too fine to be interesting. In general, s2 s and s should not be identified
(and indeed s 2 s and s will turn out not to be bisimilar in general), but separation of,
e.g., a 2 a and a seems unreasonable.

To find a more interesting notion of bisimulation we aim for a notion which extends the
familiar notion of strong bisimulation for nondeterministic systems [171, 159] and the often
used notion of Larsen-Skou bisimulation for probabilistic system [149]. In order to obtain
this notion of bisimulation we abstract away from the auxiliary labels ν and ρ which are,
in the end, not real actions of the system. When doing so the possible interpretations
of nondeterminism and probability, which are the parameters for the models Oi,j , have
to be dealt with. We aim, for example, at identification of a 2 fail and a for the global

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 139

interpretation of nondeterministic choice, but not for the local one.
Our interpretations vary in the way alternatives for possible failure are handled. We

now make this explicit by considering pairs of resumptions and alternatives as config-
urations in a ‘lifted’ transition system. Alternatives will be invoked upon failure (see
clause (d)).

Definition 4.4.19 Put Conf ′ = Decl× (Res×Alt), and let t range over Conf ′. As usual
the declaration part is suppressed. The notation r × A is used for a pair in Res × Alt.
The lifted transition relation → on Conf ′×Lab×Conf ′ is defined as follows (with A any
alternative in Alt):

(a) If s is deterministic with s
a
→ r then

s×A
a
→ r ×⊥

(b) If s is nondeterministic with s⇒n S then, for all statements s
′ in S

s×A
ν
→ s′ ×A if the nondeterministic choice is local

s×A
ν
→ s′ × ((S\s′) . A) if the nondeterministic choice is global

(c) If s is probabilistic with s⇒p T then, for all ρ · s
′ ∈ T

s×A
ρ
→ s′ ×A if the probabilistic choice is unconditional

s×A
ρ
→ s′ × ((T\ρ · s′) . A) if the probabilistic choice is conditional

(d) If s is failing, s 6→ , then

s× (S . A)
ν
→ s′ × ((S\s′) . A) for all s′ ∈ S

s× (T . A)
ρ/R(T)
−→ s′ × ((T\ρ · s′) . A) for all ρ · s′ ∈ T

where R(T) =
∑

ρ·s′∈T ρ.

The transition labels are as before. As for configurations (cf. definition 4.4.9 and lem-
ma 4.4.9) the extended configurations of the form s × A can be classified as either de-
terministic, nondeterministic, probabilistic or failing. We write t⇒p T for a probabilistic

extended configuration, where T = {| ρ · t′ | t
ρ
→ t′ |}. A similar notion t⇒n S for nondeter-

ministic extended configuration is not needed. Note that definition 4.4.19 is parameterized
by the interpretation of nondeterminacy and probabilistic choice. As a consequence, us-
age of → for extended configurations assumes a fixed interpretation of the two operators.
Having this fixed interpretation in mind we will write O, for short, instead of Oi,j (see
definition 4.4.15).

The technical advantage of maintaining a stack of current alternatives for each model
at the transition system level (replacing the different alternative-passing mechanisms in
the definition of the Oi,j ’s) is that this information is made local. This enables a ‘first
step’ analysis for extended configurations.

140 CHAPTER 4. COMBINING 2 AND ⊕ρ

Definition 4.4.20 The set of first steps R, ranged over by R, and the set of first step
elements E, ranged over by e, are given by

R = MPf ([0, 1]× E)

E = (Act× Conf ′) ∪ { δ }

The first step relation ; on Conf ′×R, which gives the first steps possible for an extended
configuration, is defined as follows:

(a) If t
a
→ t′ then t ; {| 1 · 〈a, t′〉 |}.

(b) If t
ν
→ t′ and t′ ; R then t ; R.

(c) If t⇒p {| ρ1 · t1, . . . , ρn · tn |} and ti ; Ri for all i ∈ { 1, . . . , n } then t ; tn
i=1 ρiRi

where ρR = {| ρσ · e | σ · e ∈ R |}.

(d) If t 6→ then t ; {| 1 · δ |}.

For a deterministic extended configuration t with t
a
→ t′, only one possible first step exists:

An a step to t′ with probability 1. Any possible first step of a nondeterministic extended
configuration t is a first step of one of the nondeterministic alternatives for t. The first
steps of a probabilistic extended configuration t are found by combining the first steps
of the probabilistic alternatives of t. For each alternative ti a first step Ri is taken and
multiplied with the probability of ti, giving ρiRi. In ρiRi the probability of each element
of Ri is multiplied by ρi. The union of the multisets obtained in this way gives a first
step for t. For a failing extended configuration, there is only a single first step: Failure,
described by the element δ, is obtained with probability 1.

Note that for any first step element of the form 〈a, t〉 in a first step R the alternative
in t is always ⊥, as the alternatives are no longer available after an action is produced.

Example 4.4.21 Using the local interpretation of nondeterministic choice, the first steps
of the extended configuration ((a ⊕ 1

2
b; s) 2 fail) × ({| 12 · c |} . ⊥) are {|

1
2 · 〈a,E×⊥〉,

1
2 ·

〈b, s×⊥〉 |} and {| 1 · 〈c,E×⊥〉 |}. This can be derived as follows:

As ((a ⊕ 1
2
b; s) 2 fail) × ({| 12 · c |} . ⊥)

ν
→ (a ⊕ 1

2
b; s) × ({| 12 · c |} . ⊥) any first step of

the second extended configuration is also a first step of the first extended configuration.

The transitions of (a⊕ 1
2
b; s)× ({| 12 · c |} .⊥) are (a⊕ 1

2
b; s)× ({| 12 · c |} .⊥)

1
2→ a×A and

(a ⊕ 1
2
b; s) × ({| 12 · c |} . ⊥)

1
2→ (b; s) × A′ where the exact form of A and A′ is irrelevant.

The transitions for these extended configurations are a×A
a
→E×⊥ and b; s×A

b
→ s×⊥

Combining these transitions into a first step gives {| 12 · 〈a,E×⊥〉,
1
2 · 〈b, s×⊥〉 |}.

The second first step can be obtained from the transition sequence ((a⊕ 1
2
b; s)2 fail)×

({| 12 · c |} .⊥)
ν
→ fail× ({| 12 · c |} .⊥)

1
→ c×⊥

c
→E×⊥. Note that the scaling of probabilities

in the second clause of part (d) of definition 4.4.19 gives fail× ({| 12 ·c |}.⊥)
1
→ c×⊥ rather

than fail× ({| 12 · c |} .⊥)
1
2→ c×⊥.

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 141

The operational meaning of an extended configuration is given by the O′. The defini-
tion of O′ is based on the first step relation. The function O′ is consistent with O of
definition 4.4.15, that yields, given a statement and an alternative, a process in Po.

Definition 4.4.22 The mappings O′:Conf ′ → Po, O
′
:R → Po and Ô

′
: E → Po are given

by

O′(E×A) = {∆ε }

O′(s×A) =
⋃
{O

′
(R) | s×A ; R }

O
′
({| ρ1 · e1, . . . , ρn · en |})

= { ρ1 µ1 + . . .+ ρn µn | µ1 ∈ Ô
′
(e1), . . . , µn ∈ Ô

′
(en) }

Ô
′
(〈a, t〉) = O′(t)/a

Ô
′
(δ) = {∆δ }

Note that for any multiset {| ρ1 · e1, . . . , ρn · en |} which is actually the first step of some
extended configuration, the sum of ρ1, . . . , ρn is equal to 1. Therefore, the summation

ρ1 Ô
′
(e1) + . . . ρn Ô

′
(en) indeed yields a set of measures.

From the definition of the first step relation ; and the construction of O′ it is clear
that O and O′ are closely related. To be able to show this, the complexity measure wgtc
is introduced.

Definition 4.4.23 The function wgtc : Conf
′ → N is defined using the auxiliary function

wgtAlt : Alt→ N and the weight function wgt for statements introduced in definition 4.4.8.

wgtc(s×A) = wgt(s) + wgtAlt(A)

wgtAlt(⊥) = 0

wgtAlt({| s1, . . . , sn |} . A) = wgtAlt(A) +
∑n

i∈1 wgt(si)

wgtAlt({| ρ1 · s1, . . . , ρn · sn |} . A) = wgtAlt(A) +
∑n

i∈1 wgt(si)

Note that the weight function wgtc satisfies the following property: If t
λ
→ t′ then wgtc(t)>

wgtc(t
′) for any label λ other than actions.

Lemma 4.4.24 For s ∈ L
(3a)

pnd and A ∈ Alt: O(s)[A] = O′(s×A).

Proof The function λs.λA.O′(s × A) is shown to be a fixed point of the higher-order
operator Φ implicitly used to define O. This is done by weight induction on s × A
distinguishing the given interpretation of nondeterministic choice and probabilistic choice
and the cases s is deterministic, nondeterministic, probabilistic and failing. (The case for
E ×A is immediate.) Only a single case is given below

• Assume that the nondeterminism is global and s is nondeterministic with s⇒n S.

Then s×A
ν
→ s′×S\s′.A for all s′ ∈ S. As a result O′(s×A) = ∪{O

′
(R) | s×A ;

R }= ∪ {O
′
(R) | s′ × A ; R, s′ ∈ S }. As ∪{O

′
(R) | s′ × A ; R }= O′(s′ × A)

142 CHAPTER 4. COMBINING 2 AND ⊕ρ

we have O′(s × A) = ∪{O′(s′ × A) | s′ ∈ S }. As the weight of s′ × A is less than
that of s × A for every s′ in S this gives O′(s × A) = ∪{Φ(O′)(s′ × A) | s′ ∈ S }
but this exactly corresponds to Φ(O′)(s×A) 2

Example 4.4.25 Using the first steps obtained in example 4.4.21, the process O′(((a⊕ 1
2

b; s) 2 fail)× ({| 12 · c |} .⊥)) can be found as follows:

O′(((a⊕ 1
2
b; s) 2 fail)× ({| 12 · c |} .⊥))

= O
′
({| 12 · 〈a,E×⊥〉,

1
2 · 〈b, s×⊥〉 |}) ∪ O

′
({| 1 · 〈c,E×⊥〉 |})

= { 1
2 µ1 +

1
2 µ2 | µ1 ∈ Ô

′
(〈a,E×⊥〉), µ2 ∈ Ô

′
(〈b, s×⊥〉) }

∪ Ô
′
(〈c,E×⊥〉)

= {∆c,
1
2∆a +

1
2 (µ/b) | µ ∈ O

′(s×⊥) }

The definition of first steps paves the way for an adequate notion of bisimulation. Com-
parison of two configurations is based on comparison of their first steps. First a way of
lifting a relation on configurations to a relation on first steps is required. The main idea
is that a first step R is related to a first step R′ if the elements of R can be ‘linked’ to
related elements of R′ such that the probabilities of linked elements sum up correctly.
For example if the configuration t1 is related to t′1 and to t′2 and t2 is related to t′3
then the lifted relation will relate the first step {| 12 · 〈a, t1〉,

1
2 · 〈b, t2〉 |} with the first step

{| 14 · 〈a, t
′
1〉,

1
4 · 〈a, t

′
2〉,

1
2 · 〈b, t

′
3〉 |}. The element 1

2 · 〈a, t1〉 can be linked to both 1
4 · 〈a, t

′
1〉

and 1
4 · 〈a, t

′
2〉 giving probability 1

2 for an a step to the equivalence class of t1 in both
cases. (See the linking C2 in the example 4.4.27 below.) An extra complication is caused
by the fact that there may be elements in R which cannot be split into several parts.
These elements may only be linked to a single element of R′. To formalize the idea of
linking elements in a first step the notion of a linking is defined on finite sequences of
probabilities.

Definition 4.4.26 A relation C ⊆ { 1, . . . , n }×{ 1, . . . ,m } is called a linking of the
sequences of numbers ρ1, . . . ρn and σ1, . . . σm if for all i0, j0 there exist i, j such that
(i0, j) ∈ C and (i, j0) ∈ C and (i0, j0) ∈ C implies that

∑
(i,j0)∈C

ρi =
∑

(i0,j)∈C
σj. The

linking C is said to split on the left at an index i if (i, j) ∈ C and (i, j ′) ∈ C for different
j, j′. Similarly, C is said to split on the right at an index j if (i, j) ∈ C and (i′, j) ∈ C
for different i, i′.

Each element must be linked to some other element and the probabilities for linked ele-
ments must sum up correctly.

Example 4.4.27 The following pictures show two different linkings. The linking C1, in
the left part of the picture, splits at every index. The linking C2, in the right part, splits
only at index 1 on the left.

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 143

2

C2 1

2

3

11
2

1
2

1
4

1
4

1
2

2

C1

1

2

3

1
2

1
2

1

1
3

1
3

1
3

When comparing first steps, instead of requiring a one on one correspondence between
elements of the first steps, an single element in one first step may correspond to several
elements in the other first step. Without this, the first steps of the programs a and
a ⊕ 1

2
a can not be related and thus the programs would not be bisimilar. To divide a

first step element with probability 1
2 into two first step elements both with probability 1

4 ,
as needed for the linking C2 in the example above, it must be possible to divide the
probability of the first step element. For the first step element δ this is possible. For an
element of the form 〈a, t〉 this is possible if the extended configuration t is splittable. An
extended configuration t is called splittable if the process O′(t) is splittable. A process p
is called splittable if p = p ⊕ρ p for all probabilities ρ in (0, 1). A statement s is called
splittable when the extended configuration s×⊥ is splittable. For a splittable extended
configuration having one copy with probability 1

2 is the same as having two copies both
with probability 1

4 .
One would prefer a syntactical characterization of the notion of splittable instead of

the semantical one employed here. It is easy to define suitable subclasses of splittable
statements, e.g. the sublanguage Lp introduced in theorem 4.4.63. It is currently an open
question if a full syntactical description of splittable statements and extended configura-
tions is possible.

With the notions of linking and splittable extended configurations in place the first
step lifting of a relation can be defined.

Definition 4.4.28 For a relation ≈ on extended configurations, the first step lifting ≈fs

of this relation is such that a first step R1 = {| ρ1 · 〈a1, t1〉, . . . , ρn · 〈an, tn〉, ρn+1 · δ, . . .,
ρn+n′ · δ |} is related to a first step R2 = {|σ1 · 〈b1, t

′
1〉, . . . , σm · 〈bm, t

′
m〉, ρm+1 · δ, . . .,

ρm+m′ · δ |}, denoted R1 ≈fs R2, exactly when there exists a linking C between ρ1, . . . , ρn
and σ1, . . . , σm satisfying: (i) if (i, j) ∈ C then ai = bj and ti ≈ t′j, (ii) if C splits on the
left at i then ti is splittable, and (iii) if C splits on the right at j then t

′
j is splittable.

Two first step elements in Act×Conf ′ can only be linked if they start with the same action
and the resulting extended configurations are related. The first step element δ can only be
linked to δ. If the linking splits at some index i the corresponding extended configuration
should be splittable. The linking C can only exist if ρ1, . . . , ρn and σ1, . . . , σm sum up to
the same value. This means that also ρn+1, . . . , ρn+n′ and σm+1, . . . , σm+m′ sum up to
the same value.

Definition 4.4.29 The relation ∼ on Conf ′, called first step bisimulation or fs-bisimu-
lation is the greatest equivalence relation on Conf ′ satisfying

t1 ∼ t2 ⇐⇒ if t1 ; R1 then t2 ; R2 and R1 ∼fs R2 for some R2 and

144 CHAPTER 4. COMBINING 2 AND ⊕ρ

if t2 ; R2 then t1 ; R1 and R1 ∼fs R2 for some R1.

Well-definedness of the above definition can by shown by the usual fixed point argu-
ment. The notion of fs-bisimulation can also be given via fs-bisimulation relations, i.e.
equivalence relations on Conf ′ satisfying the transfer properties of definition 4.4.29. Only
transitivity of fs-bisimulation requires some care.

Example 4.4.30 The configurations a 2 fail and a are not bisimilar if nondeterminism
is local, but they are bisimilar if nondeterminism is global.

a
E a×⊥

global choice

E

fail× {| a |} .⊥a× {| fail |} .⊥

(a2 fail)×⊥

a

ν ν

ν

a

both

a×⊥

E fail×⊥

(a2 fail)×⊥

a×⊥

E

local choice

a

ν ν

∼ ¿

With local nondeterminism, the first steps of a2 fail are {| 1 · a |} and {| 1 · δ |}. The second
first step, obtained by making the nondeterministic choice as indicated by the thick arrow
in the figure above, is not related to any first step of a.

Before going into the definition of fs-bisimulation for statements we first establish the
correctness of fs-bisimulation on extended configurations. Using the correctness of fs-
bisimulation, one can characterize ∼fs on first steps as follows. For non-splittable ex-
tended configurations, there has to be a one-one correspondence. For splittable extended
configurations, the probabilities may be combined.

To be able to prove the last part of the lemma below, it is important to create a
one-one correspondence for all extended configurations. For the non-splittable extended
configurations this already exists. It is possible to create a one-one correspondence for
the splittable extended configurations by splitting the appropriate probabilities.

Lemma 4.4.31

(a) [Splitting Lemma] Let C be a linking of ρ1, . . . ρn and σ1, . . . σm. There exists real
numbers κ(1,1) . . . κ(n,m) such that if κ(i,j) > 0 then (i, j) ∈ C and

∑m
j=1 κ(i0,j) = ρi0

and
∑n

i=1 κ(i,j0) = σj0 .

(b) d(
∑n

k=1 ρk pk,
∑n

k=1 ρk p
′
k) ≤ max{ d(pk, p

′
k) | 1 ≤ k ≤ n }

(c) Let C be a linking of ρ1, . . . , ρn and σ1 . . . σm. Then it holds that

d(
∑n

i=1 ρi pi,
∑m

j=1 σj p
′
j) ≤ max{ d(pi, p

′
j) | (i, j) ∈ C }

provided that pi is splittable whenever C splits at i on the left, and p
′
j is splittable

whenever C splits at j on the right.

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 145

Proof

(a) This general graph theoretical result can be obtained using the max-flow min-cut
theorem (see, e.g., [47, chapter 3, theorem 1]).

(b) Straightforward calculation of the distances (cf. definition 3.3.14).

(c) Direct consequence of part (a) and part (b). 2

The last part of this lemma is used in the correctness proof of bisimulation for extended
configuration (cf. lemma 4.4.33).

Example 4.4.32 The following pictures show how the probabilities in the linkings of
example 4.4.27 can be split to obtain a one on one correspondence. For the linking C2

there is only one option. For the linking C1 the picture gives one of many possibilities.

(2, 1)

(2, 1)

(3, 1)

(1, 1)

C2 (1, 1)
1
4

(1, 2)1
4

1
2

1
4

1
4

1
2

(1, 2)

C1

(2, 2)

(2, 1)

(2, 2)

(3, 1)

(2, 1)

(1, 1)
1
6

1
3

1
6
1
3

(1, 1) 1
3

1
6
1
6

1
3

The splitting lemma is used to create, given a linking for two first steps R and R′, a one on
one correspondence between the extended configurations within the first steps. Using this
one on one correspondence it is not difficult to see that the two first steps yield the same
processes, i.e. O′(R) = O′(R′). From this correctness of fs-bisimulation follows directly.

Lemma 4.4.33 If t ∼ t′ then O′(t) = O′(t′).

Proof Define ε ≥ 0 by ε = sup{ d(O′(t),O′(t′)) | t ∼ t′ }. We show that ε = 0.
Suppose R = {| ρ1 · 〈a1, t1〉, . . . , ρn · 〈an, tn〉, ρn+1 · δ, . . . , ρn+n′ · δ |}, R

′ = {|σ1 ·

〈b1, t
′
1〉, . . . , σm · 〈bm, t

′
m〉, ρm+1 · δ, . . . , ρm+m′ · δ |} and R ∼fs R

′. Put ρ0 =
∑n+n′

i=n+1 ρi

and σ0 =
∑m+m′

i=m+1 σi. As R ∼fs R
′ there exists a linking C between ρ1, . . . , ρn and

σ1, . . . , σm such that (i, j) ∈ C ⇒ ai = bj ∧ ti ∼ t′j . Also ρ0 must be equal to σ0. We then
have

d(O′(R),O′(R′))

= d(
∑n

i=1 ρi (O
′(ti)/ai) + ρ0{∆δ },

∑m
j=1 σj (O

′(t′j)/bj) + σ0{∆δ })

≤ [lemma 4.4.31(c)] max{ d(O′(ti)/ai,O
′(t′j)/bj) | (i, j) ∈ C }

≤ [(i, j) ∈ C ⇒ ai = bj ∧ ti ∼ t′j] max{ 1
2d(O

′(ti),O
′(t′j)) | ti ∼ t′j }

146 CHAPTER 4. COMBINING 2 AND ⊕ρ

≤ [definition ε] 1
2ε

Using this fact we obtain, for any t, t′ with t ∼ t′ that

d(O′(t),O′(t′))

= d(
⋃
{O′(R) | t ; R },

⋃
{O′(R′) | t′ ; R′ })

≤ [t ∼ t′] max{ d(O′(R),O′(R′)) | t ; R, t′ ; R′, R ∼fs R
′ }

≤ 1
2ε

We therefore conclude that ε = sup{ d(O′(t),O′(t′)) | t ∼ t′ } ≤ 1
2ε. Hence ε = 0, and

t ∼ t′ implies d(O′(t),O′(t′)) = 0 or, equivalently, t ∼ t′ implies O′(t) = O′(t′). 2

Finally we have arrived at the definition of fs-bisimulation on statements.

Definition 4.4.34 Two statements s, s′ ∈ L
(3a)

pnd are called fs-bisimilar, denoted s ∼ s′, if

s×A ∼ s′ ×A for all A ∈ Alt.

Note that for specific models this can be weakened by requiring only bisimilarity for
alternatives A of a special form and still obtain both correctness and the congruence results
of the next subsection. For example, when using local nondeterminism, alternatives of
the form S . A will never be produced starting from an empty alternative. In this case
one only needs to require that s × A ∼ s′ × A for alternatives A given by the clause
A ::= ⊥ | T . A.

Example 4.4.35 In the transition trees given below the thick arrows indicate one way
of resolving the nondeterminism to obtain a first step. The alternative A can be any
alternative in Alt.

1
4

νν

((a⊕ 3
4
b) 2 (a⊕ 1

2
c))×A

caba

3
4

1
2

1
2

c

1
2

1
2

νν

(a⊕ 1
2
((a⊕ 1

2
b) 2 c))×A

1
2

a b

a
1
2

∼

The first step {| 34 · 〈a,E〉,
1
4 · 〈b,E〉 |} of the first extended configuration is related to the

first step {| 12 · 〈a,E〉,
1
4 · 〈a,E〉,

1
4 · 〈b,E〉 |} of the second extended configuration and the

first step {| 12 · 〈a,E〉,
1
2 · 〈c,E〉 |} of the first extended configuration is also a first step of

the second extended configuration. As bisimilarity holds for every A ∈ Alt, we have,
(a⊕ 3

4
b) 2 (a⊕ 1

2
c) ∼ a⊕ 1

2
((a⊕ 1

2
b) 2 c).

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 147

1
2

1
2

1
2

1
2

νν

ν

ν ν

ν

a ab c

(a⊕ 1
2
b) 2 (a⊕ 1

2
c)×⊥

a

b c

a⊕ 1
2
(b2 c)×⊥

¿

The first step {| 12 · 〈a,E〉,
1
2 · 〈c,E〉 |} of (a 2 b) ⊕ (a 2 c) × ⊥ obtained by making the

nondeterministic choices as indicated by the thick lines cannot be matched by a similar
first step from a 2 (b⊕ c)×⊥.

As a consequence of the definitions and our earlier results, correctness of fs-bisimulation
at the statement level is easily obtained.

Theorem 4.4.36 The notion of fs-bisimulation is correct with respect to the operational

semantics, that is if two programs s and s′ in L
(3a)

pnd are bisimilar s ∼ s′ then they have

the same meaning O[[s]] = O[[s′]].

Proof Pick s, s′ ∈ L
(3a)

pnd with s ∼ s′. From s ∼ s′ we get s × ⊥ ∼ s′ × ⊥ by definition

of ∼ on L
(3a)

pnd . Thus O
′(s×⊥) = O′(s′ ×⊥) by lemma 4.4.33 and O(s)[⊥] = O(s′)[⊥] by

lemma 4.4.24, i.e., O[[s]] = O[[s′]]. 2

In the next subsection a conditional congruence result is presented. We will use the name
prefixing for placement into a context of the form ‘s; •’ and postfixing when the context
has the form ‘• ; s’. The condition required for ∼ to be a congruence is that postfixing is
limited to postfixing with a splittable statement s.

4.4.6 Congruence results for first step bisimulation

First step bisimulation is a conditional congruence: First step bisimulation is a congruence
for probabilistic and nondeterministic choice and for prefixing. First step bisimulation is
not generally a congruence for postfixing as the following example show. It is easy to
check that a ∼ (a⊕ρ a), however, a; (b2 c) ¿ (a⊕ρ a); (b2 c), as these statements are not
operationally equal. Postfixing with the statement b2 c makes the resulting configuration
after the a step non-splittable. This means that, in the context of postfixing (b 2 c), the
element 1 · 〈a, t〉 can no longer be split into ρ · 〈a, t〉 and (1− ρ) · 〈a, t〉. When adding the
condition that only splittable statements may be postfixed, one does obtain a congruence.

First we will show the congruence result for nondeterministic and probabilistic choice,
then the conditional postfixing congruence result is presented. Finally these results are
combined with the fact that first step bisimulation is a congruence for prefixing to obtain
the conditional congruence result.

Extra alternatives A′ can be added to a stack of alternatives A by replacing the final ⊥
in A by A′.

148 CHAPTER 4. COMBINING 2 AND ⊕ρ

Definition 4.4.37 The operation of adding additional alternatives from A′ to A, denoted
A . A′, is given by

⊥ . A′ = A′

(S . A) . A′ = S . (A . A′)

(T . A) . A′ = T . (A . A′)

In order to obtain a congruence result for fs-bisimulation we need the following technical
properties.

Lemma 4.4.38 If s ∼ s′ for s, s′ ∈ L
(3a)

pnd then, for any s
′′ ∈ L

(3a)

pnd and A,A
′ ∈ Alt,

s′′ × (A′ . ({| s |} t S) . A) ∼ s′′ × (A′ . ({| s′ |} t S) . A)
s′′ × (A′ . ({| ρ · s |} t T) . A) ∼ s′′ × (A′ . ({| ρ · s′ |} t T) . A)

Proof The relation ∼ with these pairs added is shown to be a bisimulation relation
by showing by induction on the weight of the lefthand side that for each first step of
the extended configuration on the lefthand side a related first step of the righthand side
exists. The reverse holds by symmetry.

The proof is straightforward but requires many case distinctions. Only the cases for
nondeterministic extended configurations are given.

Put t = s′′ × (A′ . ({| s |} tS) .A) and t′ = s′′ × (A′ . ({| s′ |} tS) .A) and assume that
t is nondeterministic. There are three possibilities: Either s′′ is nondeterministic with
s′′⇒nS

′′ or s′′ is failing and A′ = S′ .A′′ for some S′ and A′′, or s′′ is failing and A′ = ⊥.
For the first case we have s′′⇒n S

′′ and t ; R exactly when for some s0 ∈ S
′′ we have

that t0 ; R where t0 is defined by t0 = s0× (S′′ \ s0) .A
′ . ({| s |}tS) .A. Let t′0 be given

by t′0 = s0 × (S′′ \ s0) . A
′ . ({| s′ |} t S) . A. As wgtc(t0) < wgtc(t) induction gives that

t′0 ; R′ for some R′ related with R. But t′0 is one of the nondeterministic alternatives of
t′ so also t′ ; R′.

The second case is similar. For the third case, t = s′′× (({| s |}tS).A) with s′′ failing,
note that the nondeterministic alternatives of t are s0 × A for s0 ∈ S and s× A. A first
step of t must come from one of these alternatives. The nondeterministic alternatives of
t′ are the same except that s′ ×A replaces s×A. As s is bisimilar with s′ a related first
step of s′ ×A exists for every first step of s×A. 2

Using lemma 4.4.38, the proof of the following lemma is straightforward.

Lemma 4.4.39 First step bisimulation is a congruence for nondeterministic choice and
probabilistic choice.

Showing that bisimulation is a conditional congruence for postfixing requires some more
work. First we extend the notion of postfixing to extended configurations and first steps.
Next we introduce a different formulation of bisimulation which is then used to obtain
the conditional congruence result.

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 149

Definition 4.4.40 For ease of notation we introduce postfixing on alternatives ; : Alt×
Stat → Alt, extended configurations ; : Conf ′ × Stat → Conf ′, and first steps ; : R ×
Stat→ R.

⊥; s = ⊥

(S . A); s = {| s′; s | s′ ∈ S |} . (A; s)

(T . A); s = {| ρ · (s′; s) | ρ · s′ ∈ T |} . (A; s)

(s′ ×A); s = (s′; s)× (A; s)

R; s = {| (ρ, a, r; s) | (ρ, a, r) ∈ R |} t {| (ρ, δ) | (ρ, δ) ∈ R |}

The first steps of an extended configuration after postfixing can be found from the first
steps prior to postfixing, in a simple manner. By analyzing the transition rules it is easy
to check that t; s ; R exactly when R = R′; s and t ; R′. A formal proof can be given
by induction on the weight of t.

If R ∼fs R
′ and s′′ is splittable then R; s′′ ∼fs R

′; s′′. This already implies that if
s ∼ s′ then s; s′′×A; s′′ ∼ s′; s′′×A; s′′. The problem is accounting for alternatives which
are not of the form form A; s′′. To deal with this problem we now introduce an equivalent
formulation of bisimilarity.

Consider the adapted first step lifting of a relation obtained by considering δ to be non-
splittable. We use ≈+

fs to denote this adjusted first step lifting of ≈. Define bisimulation
∼+ on extended configuration as before, but now using this new first step lifting. An
equivalent formulation of first step bisimulation on statements is obtained by taking s ∼ s′

exactly when s×⊥ ∼+ s′ ×⊥.

Lemma 4.4.41 Two statements s and s′ are fs-bisimilar exactly when s×⊥ ∼+ s×⊥.

This formulation has the technical advantage that we need only consider the empty alter-
native to show bisimilarity of statements. Lemma 4.4.41 can be established by examining
the first steps using lemma 4.4.43 below.

The first steps of an extended configuration s×A can be found from the first steps of
s×⊥ by adding the additional alternatives in A. The operations of adding alternatives to
a configuration, a first step element and a first step is defined based on the same notion
for alternatives given in definition 4.4.37.

Definition 4.4.42 Define the operations of adding additional alternatives •. • : (Conf ′×
Alt)→ Conf ′, • . • : (E ×Alt)→ P(R) and • . • : (R×Alt)→ P(R) by

(s×A′) . A = s× (A′ . A)

〈a, t〉 . A = { {| 1 · 〈a, t〉 |} }
δ . A = {R | fail×A ; R }

{| ρ1 · e1, . . . ρn · en |}.A =
{ ρ1R1 t . . . t ρnRn | R1 ∈ e1 . A, . . . , Rn ∈ en . A }

150 CHAPTER 4. COMBINING 2 AND ⊕ρ

To add alternatives to an extended configuration s×A, the alternatives are added to A.
A first step element 〈a, t〉 always takes an a step. Any additional alternatives, therefore,
do not play a role. Failure, i.e. δ, is replaced by a first step of fail×A, i.e. by failure with
alternatives remaining. Since fail × A may have more than one possible first step, δ . A
is not a single first step but a set of first steps. To add alternatives to a first step R, the
alternatives are added to each element of the R.

First finding the first steps of an extended configuration t and then adding the alter-
native A is the same as first adding the alternative A to t and then finding the first steps.
A proof can be given by induction on wgt(t).

Lemma 4.4.43 If t ; R then t . A ; R′ for R′ ∈ R . A and if t . A ; R′, R′ ∈ R . A
then t ; R′.

The first steps of t . A can be found from the first steps of t by replacing any occurrence
of δ in a first step of t by a first step of fail×A as described in definition 4.4.42.

Example 4.4.44 The first steps

{| 12 · 〈a,E×⊥〉,
1
2 · 〈b,E×⊥〉 |} and {| 12 · 〈a,E×⊥〉,

1
2 · 〈c,E×⊥〉 |}

of the extended configuration (a⊕ 1
2
fail)× ({| b, c |} .⊥) can be obtained from the first step

{| 12 · 〈a,E×⊥〉,
1
2 ·δ |} of (a⊕ 1

2
fail)×⊥ by replacing 1

2 ·δ by
1
2 · 〈b,E×⊥〉 and

1
2 · 〈c,E×⊥〉

respectively.
The first step {| 12 ·〈a,E×⊥〉,

1
4 ·〈b,E×⊥〉,

1
4 ·〈c,E×⊥〉 |} of the extended configuration

(a⊕ 1
2
fail)× ({| 12 · b,

1
2 · c |} .⊥) can be obtained from the first step {|

1
2 · 〈a,E×⊥〉,

1
2 · δ |}

of (a⊕ 1
2
fail)×⊥ by replacing 1

2 · δ by the two elements
1
4 · 〈b,E×⊥〉 and

1
4 · 〈c,E×⊥〉.

Using the equivalent formulation of bisimulation we now obtain a conditional congru-
ence result for postfixing. We show that a relation S which contains (s; s′′, s′; s′′) is a
bisimulation.

Lemma 4.4.45 The relation S = { (s; s′′, s′; s′′) | s ∼ s′, s′′splittable } ∪ ∼ is a first step
bisimulation.

Proof Assume that s ∼ s′ and that s′′ is a splittable statement. If s; s′′ ×⊥; R0 then
s × ⊥ ; R and R0 = R; s (for some R). Using the second formulation of bisimilarity
(lemma 4.4.41) gives that there exists a first step R′ with s′ × ⊥ ; R′ and R ∼+ R′.
But then s′; s′′ ×⊥ ; R1 = R; s′′. It is easy to see that if R ∼+

fs R
′ then R; s′′ S+fs R

′; s′′

which gives that R0 S
+
fs R1 holds. For every first step of s; s′′ a related first step of s′; s′′

can be found. The opposite direction holds by symmetry. 2

Now we have all the ingredients for the announced conditional congruence result.

Theorem 4.4.46

(a) First step bisimulation is a congruence for prefixing, nondeterministic choice and
probabilistic choice.

(b) First step bisimulation is a congruence for postfixing with splittable statements.

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 151

Proof Lemma 4.4.39 gives the congruence result for nondeterministic choice and prob-
abilistic choice. Lemma 4.4.45 gives a conditional postfixing result. If s ∼ s′ and s′′ is
splittable then s; s′′ ∼ s′; s′′.

Clearly, ∼ is a congruence for action prefixing, since s ∼ s′ implies {| 1 · 〈a, s×⊥〉 |}∼fs

{| 1 · 〈a, s′ ×⊥〉 |} and these are exactly the first steps of a; s×A and a; s′ ×A. The proof
for general prefixing proceeds by induction on the weight of the prefixed statement. 2

As we have already seen, the requirement that a postfixed statement is splittable cannot
be dropped.

In the next subsections the results obtained for L
(3a)

pnd are extended to a language L
(3b)

pnd

which additionally contains parallel composition.

4.4.7 The language L
(3b)
pnd: Adding parallel composition

In this subsection the language L
(3b)

pnd is obtained by adding parallel composition to the

language L
(3a)

pnd introduced in subsection 4.4.1. As before the operator ‖ called merge

is used to introduce parallelism into the language. The statement s‖s′ describes the
parallel execution of the statements s and s′. A distributed interpretation of parallelism
is adopted in the sense that there will be progress if either statement is able to make
progress. Failure of one statement does not directly cause failure of the system as a
whole. Unlike in the previous sections, synchronization of parallel components will not
be allowed. The operation merge with no synchronization is also referred to as free merge
in literature. The complications that synchronization between components causes in this
setting are discussed in section 4.5.

The syntax of L
(3b)

pnd is obtained by adding the operator ‖, called merge, to the syntax

of L
(3a)

pnd . As no synchronization is present, the set of atomic action Act does not contain

any synchronization actions but only observable actions.

Definition 4.4.47

(a) The set of statements Stat, ranged over by s, is given by

s ::= a | fail | x | s ; s | 2n
i=1 si | ⊕

n
i=1 ρi · si | s‖s

where n ≥ 2, 0< ρi < 1, (i = 1, . . . , n) and ρ1 + · · ·+ ρn = 1.

(b) The set of guarded statements GStat, ranged over by g, is given by

g ::= a | fail | g ; s | 2n
i=1 gi | ⊕

n
i=1 ρi · gi | g‖g

where n ≥ 2, 0< ρi < 1, (i = 1, . . . , n) and ρ1 + · · ·+ ρn = 1.

(c) The set of declarations Decl, ranged over by D, is given by

Decl = PVar→ GStat

152 CHAPTER 4. COMBINING 2 AND ⊕ρ

(d) The language L
(3b)

pnd is given by

L
(3b)

pnd = Decl× Stat

As usual a fixed declaration D is assumed, and the declaration is dropped from the no-
tation. The interpretation of the atomic actions, the statement fail, procedure variables
and the operators for sequential composition nondeterministic choice and probabilistic
choice is as in the previous subsections. The statement s‖s′ denotes the parallel com-
position of the statements s and s′. To be able to deal with parallel composition in the
transition system the auxiliary operator leftmerge ‖− is used as before. Note that, as no

communication is allowed between the parallel components the auxiliary operator |, used
in section 4.2, is not needed here. The extended set of statements obtained by adding the
operator ‖− is denoted by Stat+. The set Stat+ is also ranged over by s.

s ::= . . . | s ‖− s

In s‖s′ either s or s′ can produce the first action. The statement s ‖−s
′ denotes a parallel

composition where the first action will come from s, provided that s can indeed produce
an action. In this statement, the component s is called the primary component. A new
auxiliary label π is used to signal selection of the primary component in the transition
system. Why the label ν cannot be used for this is explained after example 4.4.54.

A distributed view of parallelism is used: If the primary component in a parallel com-
position cannot produce an action, this is assumed not to affect the other components. As
a result, if the primary component fails, another component that at some point produces
an action takes over the computation. In the transition system this event will be signaled
by the new auxiliary label tt, called take-over. Determining whether a component can
produce an action and if so executing this action is assumed to be done instantly. As a
result, a take-over event can only occur if the primary component fails.

As before the atomic actions in Act, the auxiliary label ν and the probabilities in (0, 1)

may also be used as transition labels. The set of labels Lab for the transition system T
(3b)

pnd

is thus given by

Lab = Act ∪ { ν, π, tt } ∪ (0, 1)

As a take-over transition is only possible for statements for which the primary component
fails, the rule for take-over in the transition system uses the condition that the primary
component fails. In the previous subsections a statement was defined to be failing if it has
no transitions. To avoid the use of negative premises in the transition system a syntactical
characterization of failing statements is given instead of using this definition. After giving
the transition system it is easy to check that the failing statements as defined here are
exactly the statements which have no transitions.

Definition 4.4.48 The statement fail fails. The statement x fails whenever D(x) fails.
The statement s; s′ fails for all failing statements s. All other statements are not failing.

Well-definedness of the set of failing statements can be shown by weight induction. To
this end the weight function wgt introduced in definition 4.4.8 is extended as follows.

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 153

Definition 4.4.49 . The function wgt : Stat+ → N is defined by adding the following
clauses to the clauses given in definition 4.4.8.

wgt(s‖s′) = wgt(s ‖− s
′) + wgt(s′ ‖− s) + 1

wgt(s ‖− s
′) = wgt(s) + wgt(s′) + 1

Well-definedness of weight is clear by structural induction, first on guarded statements
and then on all statements.

The transition system T
(3b)

pnd is obtained from T
(3a)

pnd by adding the axioms and rules for

merge, leftmerge and take-over.

Definition 4.4.50 The transition system T
(3b)

pnd for L
(3b)

pnd is given by T
(3b)

pnd = (Res, Lab,

→ , Spec) where Spec contains the axioms and rules of T
(3a)

pnd given in definition 4.4.5 and

additionally

s1‖s2
π
→ s1 ‖− s2

s1‖s2
π
→ s2 ‖− s1

(Merge)
s1

a
→ r

s1 ‖− s2
a
→ r‖s2

(Leftmerge 1)

s1
λ
→ s

s1 ‖− s2
λ
→ s ‖− s2

(Leftmerge 2)
s1 fails

s1 ‖− s2
tt
→ s2; fail

(Take Over)

with λ ∈ { ν, π, tt } ∪ (0, 1). In rule (Leftmerge 1) r‖s2 should be read as s2 if r = E.

The rules from T
(3a)

pnd are included unchanged, however, the statements within these rules

now refer to statements in L
(3b)

pnd. The axioms (Merge) express that either component of

the parallel composition is allowed to begin first. By selection of a primary component the
‖ is resolved into ‖−. The statement s1 ‖−s2 will behave like s1 until s1 has taken an action

or fails. The rule (Leftmerge 1) describes the situation in which the primary component s1
takes an action. Rule (Leftmerge 2) describes the situation in which primary component
s1 has to resolve choice, chance or parallelism or do a take-over. The primary component
still has to do an action so the ‖− remains on the right-hand side of the conclusion in rule

(Leftmerge 2).
If, in s1 ‖− s2, the primary component s1 cannot take any steps, i.e. fails, the compo-

nent s2 will take over. This event is made explicit in the transition system by the use
of a tt-transition as described by rule (Take Over). Of course, if a component fails, the
parallel composition cannot terminate normally. After all other components terminate or
fail, the parallel system as a whole will fail.

Clearly the new axioms and rules do not play a role for programs without parallel

composition, i.e. for programs from L
(3a)

pnd , so for these programs the transition trees remain

the same.

154 CHAPTER 4. COMBINING 2 AND ⊕ρ

Using the transition system different operational semantics can be defined depending
on the interpretation of the nondeterministic choice and the probabilistic choice. The
definitions are mostly extensions of a corresponding definition in the previous section.

In L
(3a)

pnd a statement was either failing, deterministic, non-deterministic or probabilis-

tic. In L
(3b)

pnd two new types of statements are present. A statement s is said to be parallel

if it has at least one transition and all transitions are of the form s
π
→ s′ for some statement

s′. A statement s is called take-over if it has at least one transition and all transitions

are of the form s
tt
→ s′. It is easy to check that again each statement is of exactly one of

these types.

Alternatives for choices that are made have to be remembered in the global and conditional

models. In L
(3b)

pnd there is an extra complication compared to L
(3a)

pnd . An alternative from

within the component will prevent the component from failing and should therefore take
precedence over a take-over action. An alternative from outside the parallel composition
should only be used if the whole parallel composition fails. As the parallel composition
will only fail if all components fail, the take-over action should be tried before reverting
to any top level alternative.

Example 4.4.51 For the statement (a ⊕ 1
2
fail)‖b either component can become the pri-

mary component as described by the two transitions, (a ⊕ 1
2
fail)‖b

π
→ (a ⊕ 1

2
fail) ‖− b and

(a⊕ 1
2
fail)‖b

π
→ b ‖− (a⊕ 1

2
fail), of this statement. If (a⊕ 1

2
fail) becomes the primary com-

ponent, then the fail is selected with probability 1
2 . With a conditional interpretation of

probabilistic choice, the alternative a is available to prevent failure. The alternative a is
an alternative within the component. The statement (a⊕ 1

2
fail)‖b is equivalent with a‖b.

In the statement a⊕ 1
2
(fail‖b) the option fail‖b will never fail in the first step; a b-step

(from the second component) is always possible. The action a is, therefore, not available
to replace failure. The alternative a is an alternative from outside the current component.
The program a⊕ 1

2
(fail‖b) is equivalent with the program a⊕ 1

2
(b; fail).

In order to be able to make the distinction between ‘inside’ and ‘outside’ alternatives
the notion of an alternative is extended. The use of the extended alternatives for the
statements in the example above is illustrated in example 4.4.54.

Definition 4.4.52 The collection Alt of alternatives, ranged over by A, is given by A ::=
⊥ | S . A | T . A | ∗A, where ⊥, S, T are as in definition 4.4.12.

Compared to the definition of alternatives for L
(3a)

pnd the only addition is ∗A. The symbol ∗

indicates that the alternatives in A are disabled because they are from outside the current
parallel composition. A take-over action will be tried before options from ∗A.

Definition 4.4.53 For i = l for the local interpretation of nondeterminism or i = g for
the global interpretation of nondeterminism and j = u for the unconditional interpretation
of probabilistic choice or j = c for the conditional interpretation of probabilistic choice the
mapping Oi,j :Res → Alt → Po is given as before (cf. definition 4.4.15 for E and for s0

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 155

deterministic, nondeterministic or probabilistic. For s0 failing, parallel or take-over it is
given by

Oi,j(s0)[⊥] = {∆δ } s0 6→

Oi,j(s0)[S . A] =
⋃
{Oi,j(s)[(S \ s) . A] | s ∈ S } s0 6→

Oi,j(s0)[T . A] = ⊕{| ρ
R(T) · Oi,j(s)[(T \ ρ · s) . A] | ρ · s ∈ T |} s0 6→

Oi,j(s0)[∗A] = {∆δ } s0 6→

Oi,j(s0)[A] =
⋃
{Oi,j(s)[∗A] | s0

π
→ s } s0

π
→

Oi,j(s0)[⊥] = Oi,j(s1)[⊥] s0
tt
→ s1

Oi,j(s0)[S . A] =
⋃
{Oi,j(s)[(S \ s) . A] | s ∈ S } s0

tt
→ s1

Oi,j(s0)[T . A] = ⊕{| ρ
R(T) · Oi,j(s)[(T \ ρ · s) . A] | ρ · s ∈ T |} s0

tt
→ s1

Oi,j(s0)[∗A] = Oi,j(s1)[A] s0
tt
→ s1

with R(T) =
∑

ρ·s∈T ρ and ⊕ :MPf ([0, 1]× Po)→ Po given by

⊕{| ρ1 · p1, . . . , ρn · pn |} = {
∑n

k=1 ρkµk | µ1 ∈ p1, . . . , µn ∈ pn }

The well-definedness of Oi,j can be shown using the usual fixed point reasoning (cf def-
inition 3.3.20, lemma 3.3.21). Compared with definition 4.4.15 the clauses for parallel
statements and take-over statements are new and an extra case is added for the failing
statements.

The parallel statement allows selection of any of the parallel alternatives. This corre-
sponds to taking one of the parallel components as the primary component. Any alter-
natives that exist are disabled as they are from outside the parallel composition. These
alternatives should only be used if all components of the parallel composition fail.

A take-over statement is similar to a failing statement because a take-over action is
caused by failure of the primary component of the take-over statement. The definition
of Oi,j is the same for a take-over statement as for a failing statement when there are
alternatives available, i.e. for S . A and T . A. The alternatives in S or T are from
within the current component and can be used to avoid failure of the component. The
other component does not need to take over the computation. If there are no alternatives
available, i.e. for ⊥ and ∗A, the behavior of a take-over statement is different from a
failing statement. A failing statement will produce ∆δ, i.e. failure with probability 1. A
take-over statement will instead allow the other component to take over the computation.
If there are disabled alternatives, i.e. ∗A, these alternatives will no longer be disabled
after the take-over action. If failure occurs after the take-over action this means that
both alternatives of the parallel composition fail and therefore the parallel composition
as a whole may be replaced by an alternative from outside the parallel composition.

Example 4.4.54 The processes given by the operational model for the statements (a⊕ 1
2

fail)‖b and a⊕ 1
2
(fail‖b) (see also example 4.4.51) can be found as follows:

Oi,c((a⊕ 1
2
fail)‖b)[⊥]

= Oi,c((a⊕ 1
2
fail) ‖− b)[∗⊥] ∪ Oi,c(b ‖− (a⊕ 1

2
fail))[∗⊥]

156 CHAPTER 4. COMBINING 2 AND ⊕ρ

= (12 · Oi,c(a ‖− b)[{|
1
2 · (fail ‖− b) |}. ∗ ⊥]⊕

1
2 · Oi,c(fail ‖− b)[{|

1
2 · (a ‖− b) |}. ∗ ⊥])

∪ Oi,c(a⊕ 1
2
fail)[⊥]/b

= (12 · Oi,c(b)[⊥]/a⊕
1
2 · Oi,c(a ‖− b)[∗⊥]) ∪ {∆a/b }

= (12 · {∆ab } ⊕
1
2 · {∆ab }) ∪ {∆ba }

= {∆ab,∆ba }

Oi,c(a⊕ 1
2
(fail‖b))[⊥]

= 1
2 · Oi,c(a)[{|

1
2 · (fail‖b) |}.⊥]⊕

1
2 · Oi,c(fail‖b)[{|

1
2 · a |}.⊥]

= 1
2 · {∆a } ⊕

1
2 · (Oi,c(fail ‖− b)[∗{|

1
2 · a |}.⊥] ∪ Oi,c(b ‖− fail)[∗{| 12 · a |}.⊥])

= 1
2 · {∆a } ⊕

1
2 · (Oi,c(b; fail)[{|

1
2 · a |}.⊥] ∪ Oi,c(fail)[⊥]/b)

= 1
2 · {∆a } ⊕

1
2 · (Oi,c(fail)[⊥]/b ∪ {∆bδ })

= { 1
2∆a +

1
2∆bδ }

In the second program, the action a is not available as an alternative for failure. If, how-
ever, the whole parallel composition fails, an alternative from outside the parallel compo-
sition can be used.

Oi,c(a⊕ 1
2
(fail‖fail))[⊥]

= 1
2 · Oi,c(a)[{|

1
2 · (fail‖fail) |}.⊥]⊕

1
2 · Oi,c(fail‖fail)[{|

1
2 · a |}.⊥]

= 1
2 · {∆a } ⊕

1
2 · Oi,c(fail ‖− fail)[∗{| 12 · a |}.⊥]

= 1
2 · {∆a } ⊕

1
2 · Oi,c(fail; fail)[{|

1
2 · a |}.⊥]

= 1
2 · {∆a } ⊕

1
2 · Oi,c(a)[⊥]

= {∆a }

By a similar calculation one can find Og,u((a ⊕ 1
2
fail)‖fail)[⊥] = { 1

2∆aδ +
1
2∆δ } while

Og,u(((a⊕ 1
2
fail) ‖− fail) 2 (fail ‖− (a⊕ 1

2
fail)))[⊥] = { 3

4∆aδ +
1
4∆δ }. The two alternatives

(a ⊕ 1
2
fail) ‖− fail and fail ‖− (a ⊕ 1

2
fail) both fail in the first step with probability 1

2 . Due

to the global interpretation of the nondeterministic choice, the other option will be tried
if this happens. As a result the probability of failure in the first step is 1

2 ·
1
2 . (See also

example 4.4.16.)

The last two statements in the example above show that the selection of the primary
component in a parallel composition is a form of choice that cannot be described using a
nondeterministic choice. In the statement s′2s (see also example 4.4.16) the statements s
and s′ can be seen as ‘separate resources’ in that failure of s will not affect s′. If nonde-
terministic choice is global, and both s and s′ fail with probability 1

2 then s2 s′ only fails
with probability 1

4 . The statement s‖s′ is a choice between s ‖− s
′ and s′ ‖− s. However,

if the component s fails, this not only affects s ‖− s
′ but also s′ ‖− s. If the component

s = a ⊕ 1
2
fail fails then even if another component s′ takes over, the probabilistic choice

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 157

between a and fail is already made. The alternative for s ‖− s
′ is not s′ ‖− s, as it is in

(s ‖−s
′)2 (s′ ‖−s), but s

′ ‖− fail. This difference shows the need for distinguishing between

making a nondeterministic choice from choosing a primary component as is done by using
separate labels, ν and π, in the transition system.

The operational semantics should give the meaning of programs. The model Oi,j gives
the meaning of resumptions instead of programs and uses an extra argument containing
alternatives. The operational semantics Oi,j [[•]] is obtained by restricting to programs and
using the empty alternative ⊥ for the extra argument.

Definition 4.4.55 The operational semantics Oi,j [[•]]:L
(3b)

pnd → Po, for i = l for the local

interpretation of nondeterminism or i = g for the global interpretation of nondeterminism
and j = u for the unconditional interpretation of probabilistic choice or j = c for the
conditional interpretation of probabilistic choice is given by

Oi,j [[s]] = Oi,j(s)[⊥]

For a statement from L
(3a)

pnd the transition tree given by T
(3a)

pnd is the same as that given

by T
(3b)

pnd and the adjustments made to the definition of the operational models Oi,j are

all caused by take-over and parallel steps. For a statement that does not contain any
parallelism, and, therefore, no take-over, the definition is the same as definition 4.4.15.
The operational models, and therefore also the operational semantics, of a statement

from L
(3a)

pnd remains the same. In the theorem below the operational semantics for L
(3a)

pnd

given in subsection 4.4.4 is denoted by O
(fail)
i,j [[•]] and the operational semantics from this

subsection by O
(par)
i,j [[•]].

Theorem 4.4.56 The operational semantics of L
(3b)

pnd is a consistent extension of the

operational semantics of L
(3a)

pnd, i.e. O
(par)
i,j [[s]] = O

(fail)
i,j [[s]] for all s ∈ L

(3a)

pnd.

A direct consequence of theorem 4.4.56 is that the results from example 4.4.18 also hold

for L
(3b)

pnd.

Corollary 4.4.57 The four operational semantics Oi,j [[•]] with i = l for the local inter-
pretation of nondeterminism or i = g for the global interpretation of nondeterminism
and j = u for the unconditional interpretation of probabilistic choice or j = c for the
conditional interpretation of probabilistic choice each have different distinguishing power.

4.4.8 Bisimulation for L
(3b)
pnd

As for L
(3a)

pnd , a denotational model can be given but is quite uninformative. A notion

of bisimulation is given instead. As in subsection 4.4.5 we aim for a notion of bisimula-
tion that extends the familiar notions of strong bisimulation [171, 159] and probabilistic
bisimulation [149]. The notion of bisimulation depends on the interpretation of the non-
deterministic and probabilistic choice. In this way we can have that, for example, a2 fail

158 CHAPTER 4. COMBINING 2 AND ⊕ρ

is bisimilar with a for the global models but not for the local models. The approach of

subsection 4.4.5 is extended by interpreting the statements as statements of L
(3b)

pnd instead

of L
(3a)

pnd and possibly by adding new cases which are similar to the existing cases.

As in subsection 4.4.5 the transition relation has to be lifted to configurations in Res×Alt
to be able to define the first step relation.

Definition 4.4.58 The lifted transition relation → ⊆ Conf × Lab × Conf is given by
(with A any alternative in Alt):

(a) As before (definition 4.4.19) if s is deterministic, nondeterministic, probabilistic or
failing.

(b) If s is parallel then for all s′ with s
π
→ s′ we have

s×A
ν
→ s′ × (∗A)

(c) If s is overtaking, s
tt
→ s′, then

s×⊥
θ
→ t if s′ ×⊥

θ
→ t

s× (S . A)
ν
→ s′′ × ((S\s′′) . A for all s′′ ∈ S

s× (T . A)
ρ/R(T)
−→ s′′ × ((T\ρ · s′′) . A) for all ρ · s′′ ∈ T

s× (∗A)
θ
→ t if s′ ×A

θ
→ t

where R(T) =
∑

ρ·s0∈T
ρ. Note that θ ranges over all labels, but only labels in

Act ∪ { ν } ∪ (0, 1) can actually occur.

The lifted transition relation → assumes a fixed interpretation of nondeterministic choice
and probabilistic choice. With this fixed interpretation in mind we write O for the oper-
ational model instead of Oi,j .

Unlike the transition relation given in T
(3b)

pnd , the lifted transition relation does not

need to distinguish between nondeterminism caused by nondeterministic choice and non-
determinism caused by parallelism. Resolving either type of nondeterminism is modeled
by a ν step. The fact that the options from outside the parallel composition need to be
disabled can be incorporated in the configuration and no longer need to be signaled by a
special label π.

The effect of a take-over is also dealt with in the lifted transition system. The take-
over step tt is no longer needed: If there are alternatives available, these will be taken. If
there are no alternatives available as in s×⊥ or s× ∗A the steps of the statement after
take-over s′ ×⊥ or s′ ×A can be taken directly.

Showing well-definedness of the lifted transition relation is straightforward by using
weight induction with the weight function wgtc given below.

Definition 4.4.59 The function wgtc : Stat × Alt → N is defined using the function
wgt : Stat → N given in definition 4.4.49 and the auxiliary function wgtAlt : Alt → N.
The auxiliary function wgtAlt extends wgtAlt as given in definition 4.4.23.

wgtc(s×A) = wgt(s) + wgtAlt(A)

wgtAlt(∗A) = wgtAlt(A)

4.4. COMBINING ⊕ρ AND 2 WITHOUT PRIORITIES 159

When s
tt
→ s′ then the weight wgt(s) of s is greater than the weight of s′. As a result the

inequalities

wgtc(s×⊥) > wgtc(s
′ ×⊥)

wgtc(s× ∗A) > wgtc(s
′ ×A)

hold, justifying the first and last clause of part (c) of definition 4.4.58 above.

The first step relation for configurations based on L
(3b)

pnd is defined as the first step relation

on L
(3a)

pnd (see definition 4.4.20) except that the extended configurations in Conf ′ now refer

to extended configurations for L
(3b)

pnd instead of for L
(3a)

pnd .

The semantics of an extended configuration is also defined literally as for L
(3a)

pnd in

definition 4.4.22, but now with statements, alternatives and first steps as in this section.
The relationship between the semantics of configurations s × A and the operational

semantics of s given A is again clear by weight induction.

Lemma 4.4.60 For s ∈ L
(3b)

pnd and A ∈ Alt: O(s)[A] =
⋃
{O

′
(R) | s×A ; R }.

With the first step relation in place, bisimulation (on configurations and statements) can
be defined as expected.

Definition 4.4.61 Bisimulation on Conf is the greatest equivalence relation on Conf sat-
isfying

t1 ∼ t2 ⇐⇒ if t1 ; R1 then t2 ; R2 and R1 ∼fs R2 for some R2 and

if t2 ; R2 then t1 ; R1 and R1 ∼fs R2 for some R1.

Two statements s, s′ ∈ L
(3b)

pnd are bisimilar if s×A ∼ s′ ×A for each alternative A ∈ Alt.

The above definition can be justified as usual. Correctness of the bisimulation relation ∼

on L
(3b)

pnd with respect to O can be obtained from the correctness of the first step relation

along the same lines as in subsection 4.4.5.

The congruence results obtained for the operators of L
(3a)

pnd carry over to the present

setting of L
(3b)

pnd. For sequential composition we considered in subsection 4.4.5 the derived

notion of prefixing and of conditional postfixing. (These restrictions where triggered by
the interplay between nondeterminacy on the one hand and probability on the other.)
However, for the merge operator neither component is a prefix. In a parallel construct
both components can become primary, and, consequently, both components may initiate
the computation. Therefore a full congruence result cannot be expected. The following
example shows that the parallel operator is ‘too nondeterministic’ to obtain even a con-
ditional congruence result similar to that for sequential composition. Adding a parallel
component s′ to a statement s has the effect, among others, that the first step of s can
postfixed with a nondeterministic combination of the remaining steps of s and the steps
of s′.

160 CHAPTER 4. COMBINING 2 AND ⊕ρ

Example 4.4.62 Consider the statements (a; b)‖c and ((a ⊕ 1
2
a); b)‖c. In this example

we choose for unconditional probabilistic choice and omit the alternative from the notation.
(The alternative is always empty.)
It is easy to check that O[[(a; b)‖c]] = {∆abc,∆acb,∆cab }. However,

O[[((a⊕ 1
2
a); b)‖c]] = O(((a⊕ 1

2
a); b) ‖− c) ∪ O(c ‖− ((a⊕ 1

2
a); b))

= 1
2 · O((a; b) ‖− c)⊕

1
2 · O((a; b) ‖− c) ∪ O((a⊕ 1

2
a); b)/c

= 1
2 · {∆abc,∆acb } ⊕

1
2 · {∆abc,∆acb } ∪ {∆cab }

= {∆abc,∆acb,∆cab,
1
2∆abc +

1
2∆acb }

The statements a; b and (a⊕ 1
2
a); b are bisimilar but (a; b)‖c and ((a⊕ 1

2
a); b)‖c are not,

because their semantics differ. This show that even parallel composition with the simple
statement c can destroy the bisimilarity. The point is that parallel composition introduces
non-determinism not only in the first step, but at every step while both its components
are running. In contrast, the nondeterministic choice operator induces nondeterminism
at the first step only.

In the key paper [149] a notion of probabilistic bisimulation is introduced for a proba-
bilistic process language including synchronous product as parallel operator. Larsen-Skou
bisimulation relates two statements exactly when the probability to take a step and to
end up in any set of statements closed under probabilistic bisimulation, is equal for both
statements.

Theorem 4.4.63 Let the sublanguages Lnd and Lp of L
(3b)

pnd be given by s ::= a | x | s; s |

2
n
i=1 si | s‖s and s ::= a | x | s; s | ⊕n

i=1 ρi · si, respectively. Two statements s, s
′ ∈ Lnd

are strongly bisimilar iff s ∼fs s
′. Two statements s, s′ ∈ Lp are probabilistically bisimilar

in the sense of [149] iff s ∼fs s
′.

On the probabilistic part Lp our notion of first step bisimulation specializes to probabilistic
bisimulation. This is clear from the definition of fs-bisimulation when one considers that
all statements in Lp are splittable and have exactly one first step. Note that example 4.4.62

above shows that it is not possible to obtain a notion of bisimulation on L
(3b)

pnd that is correct

with respect to O, a congruence for ‖ and which extends Larsen-Skou bisimulation.
Focusing on the non-probabilistic part Lnd we recover from fs-bisimulation the familiar

notion of strong bisimulation (cf. [171, 159]). This is because for statements in Lnd the
first steps always consist of exactly one element, as can be established straightforwardly
by weight-induction. A further analysis of the first step s ; {| 1 · 〈a, r〉 |}, for s ∈ Lnd,
shows that the first step relation ; coincides with the standard transition system, i.e.
s ; {| 1 · 〈a, r〉 |} precisely when s

a
→ r. Equality of fs-bisimulation and strong bisimulation

on the nondeterministic fragment of L
(3b)

pnd then follows immediately.

4.5 Conclusions and bibliographical remarks

In this chapter three different settings for the combination of nondeterminism and prob-
ability have been studied. All have their advantages and disadvantages. The main con-
clusion that can be drawn is that the issue of combining nondeterminism and probability

4.5. CONCLUSIONS AND BIBLIOGRAPHICAL REMARKS 161

is complex and that there does not exist one model for all cases. Instead the choice of a
model has to be made depending on the interpretation of the nondeterminism.

The models in section 4.2 and section 4.3 gave priority to nondeterminism respectively
probability. In section 4.4 nondeterminism and probability were treated ‘on an equal
level’. The notion of first step bisimulation introduced in section 4.4 extends the well
known notions of strong bisimulation for nondeterministic processes and probabilistic
(Larsen-Skou) bisimulation for probabilistic processes. It was also shown that no relation
on programs which is a congruence relation can be correct with respect to the operational
semantics and extend both strong and probabilistic bisimulation. Indeed, the notion of
first step bisimulation is only a conditional congruence for sequential composition.

The operational model of section 4.4 distinguishes many statements, to allow as many
interpretations of the nondeterministic choice as possible. For example the statements
(a⊕ 1

2
b)2 (a2 b) and a2 b are not identified. If the nondeterministic choice, for example,

is known to be consistent given some additional information then these statements can
indeed be distinguished. This can be the case if nondeterministic choice is used for un-
derspecification. For the first statement, it would still be possible for different outcomes
to occur in multiple runs, while in the second statement this is not possible. If, however,
the additional assumption is made that one can only see the worst and best case proba-
bilities for events then it is possible to identify these statements. Making this assumption
imposes a restriction on the type of nondeterministic phenomena that can be modeled
with the nondeterministic choice, but does have the advantage that by using the extra
identification allowed by this assumption, the notion of first step bisimulation becomes
a full congruence (as all statements become splittable). More work, not reported in this
thesis, needs to be done on the instantiation of the setting of this chapter (especially
section 4.4) with specific types of nondeterminism for which such extra assumptions can
be made.

The approach of [181] is similar: Two different probabilistic automata can be given
describing (a ⊕ 1

2
b) 2 (a 2 b) and a 2 b respectively. However, in the verification of

properties only worst and best case probabilities are considered and the two automata
will satisfy exactly the same properties. Note that for the approach of section 4.3 and
other alternating approaches which first resolve the probability (see e.g. [8]) the programs
a2 b and (a⊕ 1

2
b)2 (a2 b) are always the same. The first program offers the resources a

and b. Additionally offering either a or b with probability 1
2 each does not change anything

as both are already available.

More further work consists of the addition of synchronization to the parallel composi-

tion of language L
(3b)

pnd of section 4.4. In this setting many different possible assumptions on

how deadlock is avoided are possible and give different results. For example the strategy
‘directly use an alternative if synchronization is not possible’ leads to different probabili-
ties than the strategy ‘use an alternative only when the system is deadlocked.’ Practical
examples should be studied to see which assumptions are reasonable in which settings.
Another problem is the question of the status of choices after backtracking: If a choice
has been made but needs to be retracted because of a failure to synchronize then what
should happen with the choice if another component selects an alternative. Should the
choice use the same outcome or can it be made again? The safest approach seems to be to
allow as much freedom as possible in the resolving of nondeterministic choices, i.e. allow

162 CHAPTER 4. COMBINING 2 AND ⊕ρ

each choice to be remade. In this way the most nondeterministic options are generated.
Correctness in this model thus guarantees correctness for cases where there is less freedom
for the nondeterministic choice. If additional assumptions can be made, an identification
of processes as indicated above can again be used to obtain additional identifications.

The work in this chapter extends the work done in chapter 3 by adding the construct of
nondeterminism. Quite some work on the combination of nondeterminism and probability
exists. Most of this work, however, concentrates on a single class or type of nondetermin-
ism and does not provide the extensive overview of different modelings for different types
of nondeterminism presented here.

As explained above three main approaches are considered. The first approach, given
in section 4.2 is suited for interpretation of nondeterminism as a choice for an opponent
or adversary. This approach is based on the report [107].

The probabilistic automata treated by Segala in his thesis [181] also combine prob-
ability and nondeterminism. For the verification of properties of probabilistic automata
the nondeterminism present in the automata is assumed to be resolved by some malicious
adversary, which chooses the worst possible option for the given property. Restricted ad-
versaries that have only partial information or which must satisfy some constraints such
as e.g. fairness conditions are also considered. The verification then becomes a matter of
checking the probabilities for the desired executions in a completely probabilistic system.

The probabilistic automata used by Segala fit in the interpretation of nondeterminism
given in section 4.2. Other work that deals with the combination of nondeterminism and
probability that falls into this category can be found in [142, 154]. The model in [142] uses
a reactive form of probabilistic choice, the probabilistic choice is between end states after
the execution of an action. Nondeterminism is present in the selection of which action
to execute. Each nondeterminism option, however, must have a different starting action.
In [154] Lowe treats reactive probabilistic and nondeterministic processes. Although the
transition systems obtained are closer to those given in section 4.3, the trace semantics
given fits within the setting of section 4.2. Besides this trace semantics several other
semantical models are also given in [154].

The second approach, considered in section 4.3, is suited for an available resources
interpretation of nondeterministic choice. This approach is also based on [107]. Work
done by Andova on the probabilistic extension of process algebra in [10, 8, 9] fits in this
category. This work studies process algebras for languages with both probabilistic choice
and nondeterminism. The operational meaning of programs, used to justify the axioms of
the process algebra, is captured by giving transition systems using the same strategy as in
section 4.3: All probabilistic choices are resolved to find which nondeterministic alterna-
tives are available. A difference with the approach of section 4.3 is that the probabilities
are not included in the transition system but calculated separately. The paper [19] deals
with process algebras for different interpretations of nondeterministic choice in a setting
without probability, showing that different interpretations of nondeterministic choice are
already present in this setting.

In [200] may and must testing, i.e. worst and best case behavior, is studied for processes
in an extension of CCS which contains probabilistic choice as well as nondeterminism in
the form of nondeterministic choice and parallel composition. In the nondeterministic or
parallel composition of two programs, the probability is synchronously resolved until one

4.5. CONCLUSIONS AND BIBLIOGRAPHICAL REMARKS 163

of the processes can produce an action. This action is then taken. This is similar to the
approach of section 4.3 except that in section 4.3 the probability in both programs is first
resolved completely before deciding an action.

The final approach, considered in section 4.4, does not enforce a specific interpretation
of nondeterminism. However, due to the form of the processes obtained, it is closer to the
first approach than to the second. This approach is based on [109, 110].

The transitions systems used in sections 4.2 and 4.3 can be characterized as alternating
models [103, 105]. Nondeterminism and probability are resolved in two distinct stages
after which an action is produced. The transition system in section 4.4 is not alternating;
an arbitrary sequence of nondeterministic and probabilistic choices can be taken before
an action is produced.

In [23] Baier treats fully probabilistic systems as well as nondeterministic and prob-
abilistic systems, which are referred to as concurrent probabilistic systems. The process
language PCCS with reactive probabilistic choice, nondeterministic choice and interleav-
ing parallel composition, the language PSCCS with generative probabilistic choice and
synchronize product and the language PSLCCS with a less restrictive form of synchronize
product are studied. Transition systems are given which use finite probability distribu-
tions to describe the probabilistic steps and an alternating approach when nondeterminism
is also present.

The work of Mislove [161] also deals with the combination of probabilistic choice and
nondeterministic choice. In this work a different point of view is taken: A set of equational
laws which should hold is taken as the starting point. A domain theoretic approach is
then used to find models that satisfy these laws.

To deal with nondeterministic and probabilistic systems Jonsson and Larsen [135]
introduce transition systems where sets of probabilities are used as labels to indicate the
possible probabilities for taking this transition. The work of Seidel in [183] exploits the
measure theoretical apparatus of stochastic kernels, referred to as conditional probability
measures in [183], for the modeling of CSP-style parallelism and synchronization. A model
using measures instead of kernels is developed for a purely probabilistic sublanguage. An
axiom system is also given and a self stabilizing token ring is treated as an example.

In section 4.4, a notion of bisimulation is defined rather than giving a denotational
model. For nondeterministic systems strong or Park-Milner bisimulation [171, 159] is a
standard notion. The most standard definition for bisimulation on probabilistic systems
is due to Larsen and Skou [149].

The papers [190] exploits the general coalgebraic approach of [179] to show that proba-
bilistic bisimulation of Larsen and Skou coincides with equality in a denotational domain.
In [23] denotational domains specified by domain equations, using either a metric or a
complete partial order approach, are investigated and also shown to capture bisimulation.

Algorithms and tools have been developed to actually calculate probabilistic bisimu-
lation equivalence classes [24, 122, 185, 26]. Probabilistic process algebra [8, 21, 9] also
uses probabilistic bisimulation as the notion of equivalence of processes. The process al-
gebra provides a way to use equational reasoning to obtain equivalence of probabilistic
processes, thus finding equivalences without having to find the semantics of the processes
or calculating the actual bisimulation relation.

Extensions of probabilistic bisimulation, to deal with language constructs not consid-
ered in [149], have also been studied [33, 182, 191]. In [76] an extension of probabilistic

164 CHAPTER 4. COMBINING 2 AND ⊕ρ

bisimulation to continuous probabilities is reported. In [190] another definition of bisim-
ulation is given that extends probabilistic bisimulation and can deal with non-discrete
probabilistic choice.

In [26, 23] a notion of weak bisimulation for purely probabilistic processes is treated.
Another notion of weak bisimulation for probabilistic processes, which is designed to be
extendable with nondeterminism, is given in [11]. The paper [172] introduced a notion of
weak bisimulation for probabilistic and nondeterministic systems by using schedulers to
resolve the nondeterminism. In this thesis no results on weak bisimulation are reported.

Chapter 5

Action Refinement

5.1 Introduction

In this chapter we study the combination of action refinement and probabilistic choice. A
language Lpr is introduced which contains both these constructs. First, however, action
refinement is treated in a setting without probability by studying the language Lref . The
language Lref contains, besides action refinement, the basic constructs recursion, sequen-
tial composition, nondeterministic choice and parallel composition. The language Lpr
includes probabilistic choice instead of the nondeterministic constructs nondeterminis-
tic choice and parallel composition. In the treatment of action refinement the metric
techniques are exploited both in the definition of the operational semantics and the de-
notational semantics as well as in the comparison of these models. The strong similarity
between the treatment of Lref and Lpr shows that probability and action refinement can
be treated orthogonally in the metric setting. Also the applicability of compact support
measures to this setting is shown.

In section 5.2 both an operational and a denotational model for the language Lref are given
in the interleaving framework. The interpretation of action refinement is non-atomic. It
is shown that the denotational semantics is fully abstract with respect to the operational
one. It follows that the notion of action refinement in itself, as was not perceived so far,
does not enforce a truly concurrent interpretation.

Previously, it has been argued by several authors that interleaving semantics is not the
appropriate model when dealing with non-atomic action refinement. For example, in [56]
it is noted that in an interleaving interpretation the two statements a‖b and a; b 2 b; a have
the same meaning, viz. { ab, ba }, whereas, when the action a is refined to the sequential
composition a1; a2, the two respective refinements (a‖b)〈a ; a1; a2〉 and (a; b2 b; a)〈a ;

a1; a2〉 have different meanings, viz. { a1a2b, a1ba2, ba1a2 } and { a1a2b, ba1a2 }, respec-
tively. The point is that for (a‖b)〈a ; a1; a2〉 it is allowed for b to be scheduled in
between a1 and a2; for (a; b2 b; a)〈a ; a1; a2〉 the action b will be taken either before or
after both of a1 and a2. Consequently, Castellano et al. conclude that no compositional
interleaving model exists for a language combining the operators of sequential, alternative
and parallel composition used in the statements above with the notion of action refine-

165

166 CHAPTER 5. ACTION REFINEMENT

ment. Section 5.2 argues that this point of view might be reconsidered: We shall propose
to consider two programs semantically equivalent whenever their meanings coincide under
all refinements, be it syntactic refinements for the operational semantics, or semantic re-
finements for the denotational semantics. We feel that, in the framework of schematic (or
process-description) languages customarily employed to study concurrency semantics, the
fact that the elementary actions are uninterpreted induces as a natural counterpart that
the semantic equivalence of two programs requires equality of their associated meanings
under all interpretations of the elementary actions, or equivalently, under all their possible
refinements.

The operational semantics of Lref yields sets of sequences of actions and is based on
a transition system. In the configurations of the transition system a stack of refinements
is maintained. This component plays the role of a syntactic refinement sequence. The
denotational model for Lref employs the notion of a semantic refinement. An auxiliary
argument of the semantic function mirrors the syntactic refinement sequence used for
the operational semantics. The denotational semantics also yields sets of sequences of
actions, but with a semantical refinement as an additional argument. Two statements
are identified by this compositional model exactly when their meanings coincide for all
semantic refinements. The denotational model distinguishes more programs than the
operational model. However, the denotational model is fully abstract with respect to the
operational one: The denotational model only distinguishes statements that need to be
distinguished to be able to have a compositional model that is correct with respect to the
operational model.

The parallel composition in Lref does not allow communication between parallel com-
ponents. In [112] an extension of Lref is treated that does allow for this communication.
The communication takes the form of synchronization of parallel components by the simul-
taneous execution of special, synchronization actions. The same communication method
was used in sections 4.2 and 4.3. As done here for the language Lref , an operational
semantics and a denotational semantics are given in [112] based on sequences of actions.
The denotational model is built on failure sets (see also [178, 38, 50]) and is shown to
be fully abstract with respect to the operational model. Due to the need for the use of
failure sets in the denotational model, the definition of the denotational model and the
full abstractness proof are much more technically involved than the corresponding items
for the language Lref presented here.

In section 5.3 the results of section 5.2 are extended to the language Lpr . An operational
and a denotational model are given for Lpr and the denotational model is again shown
to be fully abstract with respect to the operational one. Unlike the denotational domains
used in chapter 3 and chapter 4 the domain used by the denotational model for Lpr is a
linear domain. To allow the definition of the denotational model on the linear domain the
sequential composition of measures on sequences of actions is defined. This composition is
defined specifically for compact support measures over action sequences. A more general
form of composition of measures is treated in chapter 7.

The similarity of the definitions and the proofs used in sections 5.2 and 5.3 shows that
the metric machinery is unaffected by the addition of probabilistic choice. The metric
approach makes the problem of adding action refinement and obtaining full abstractness
results orthogonal to other issues like adding probabilistic choice to the language.

5.1. INTRODUCTION 167

The language Lpr does not contain the constructs of nondeterministic choice and par-
allel composition. There is no intrinsic need to remove the nondeterministic constructs
from the language Lref when adding probabilistic choice. However, combining proba-
bilistic choice and action refinement, as discussed in section 5.3, on the one hand and
combining probabilistic choice and nondeterminism, as discussed in chapter 4, on the
other hand seem to be orthogonal issues which can be dealt with separately. Note that
the denotational models given in chapter 4 are not fully abstract with respect to the
corresponding operational models. An extension with action refinement similar to the
work done in section 5.3 is unlikely to change this. For a full abstractness result like
theorem 5.3.27 one should start with a different denotational model.

Some related investigations dealing with full abstractness for action refinement are given
below. In a chapter of the handbook of process algebra [97] devoted to action refinement,
Gorrieri and Rensink provide an extensive discussion of action refinement and the work
done on this subject. A comprehensive overview of further related work may be found
there. An early result concerning full abstraction and action refinement is the work of
Nielsen, Engberg and Larsen [165]. Their work is based on a special kind of series-parallel
pomsets and falls in the linear-time true concurrency framework, since operationally at
a given moment in time several actions may be observed simultaneously. In the disserta-
tional work of Engberg [80] additionally adequate logics and axiomatizations are discussed
in this context. A minor difference, related to the other aspects stressed there, is the usage
of set-based pre-orders and the role played by termination.

In [192, 193] a full abstractness result is obtained for safe Petri nets. In this work Vogler
takes language equivalence as a starting point and uses a notion of interval semiwords,
ordered structures in which ‘timing information’ of actions can be encoded. The resulting
notion of equivalence is finer than step semantics and yields the coarsest congruence
contained in failure semantics. Also this research falls in the true concurrency framework.
In [194] the results are extended to event structures with silent moves, in particular
for history-preserving bisimulation. Related work in the setting of Petri-nets is the full
abstractness result of Jategaonkar and Meyer [132] with respect to testing-equivalence.

Other semantical investigations for action refinement, driven by concrete process lan-
guages are, e.g., that of Aceto and Hennessy (cf. [1, 2]) and of Gorrieri et al. [95, 74].
The former is based on a syntactic interpretation of action refinement, a point of view
not adopted here. In the approach considered here the syntactic interpretation applies to
the operational semantics only, whereas in the denotational semantics action refinement
is handled using so-called semantic refinements. (For a discussion on the relationship
between syntactic and semantic action refinement we refer to [94] where also sufficient
conditions are proposed for the coincidence of these notions.) The work of Gorrieri con-
siders atomized action refinement in an interleaving setting on the one hand (an approach
followed in [37] as well, see also [106]) and, on the other hand, arbitrary action refinement
exploiting the causal trees of Darondeau and Degano [72, 73], thus taking place in the
true concurrency framework. Other key differences between [37] and the work presented
in section 5.2, both following the interleaving approach, are

– [37] is not based on the ‘equivalence under all refinements’ approach; moreover, both
the transition system for O, and the definitions of the semantic operators for D, are
radically different

168 CHAPTER 5. ACTION REFINEMENT

– [37] uses a branching (or ‘bisimulation’) model for the denotational semantics; below,
linear denotational models are used

– [37] has a considerably more complicated proof of the correctness of D versus O for
the linear case

– [37] does not feature a full abstractness result.

Further work on the semantics of action refinement in a true concurrency setting includes
[63] in the context of LOTOS, and [176] based on Rensink’s PhD thesis [175]. Further
applications of metric techniques for true concurrency semantics, though not dealing with
action refinement, can be found in [40, 152, 30].

Another body of the extensive literature related to action refinement deals with lan-
guage independent semantical equivalences. A comprehensive taxonomy of semantical
equivalences, referred to as the linear-time branching-time spectrum is proposed by Van
Glabbeek et al. (cf. [88, 89, 90]). In the context of this chapter the linear-time notions
of splitn and ST-bisimulation are relevant. Split semantics goes back at least to [115];
two statements or structures are identified if they cannot be distinguished by splitting up
their actions in sequences of actions up to length n. In ST -bisimulation, as introduced
in [93], the current state of a process distinguishes between the actions that have been
completed and the actions that have been started but not completed as yet. (See [193, 90]
for a further discussion of these notions.) In the denotational model we propose here we
quantify over all semantic refinements. Hence the resulting semantical equivalence is at
least as fine as splitn-semantics. In [96] and [195] the limit of splitn-equivalence is studied
in a branching time and language-equivalence setting, respectively. Vogler conjectures
in [195] that ‘on the level of failure semantics full abstractness for splitting is different
from full abstractness for general action refinement’. The results presented in [112] (see
discussion above) support this conjecture. For the language with synchronization general
refinements are needed for the construction of the critical context which is used to obtain
the full abstractness result.

5.2 An interleaving model for action refinement

This section provides an introduction to action refinement by treating the language Lref .
As mentioned in the introduction to this chapter, the language Lref does not contain
probabilistic constructs but only action refinement and the basic constructs of recursion,
sequential composition, nondeterministic choice and parallel composition. This section
also illustrates the advantage of exploiting the metric machinery underlying the seman-
tical models to obtain a full abstractness result. The main idea is the following: the
denotational semantics D has functionality D:Stat → SemRef → Pd, where Stat is the
syntactic class of statements, SemRef is the collection of semantical refinements given
by SemRef = Act → Pd, i.e. the mappings from actions to processes, and Pd is a com-
plete metric space of sets of sequences of actions. Now, if two statements s1 and s2
differ according to the denotational semantics, then —since denotations are elements
of a metric space— the distance d(D(s1)(η),D(s2)(η)) differs from 0, for some partic-
ular semantical refinement η. We then can construct from η, using metric considera-
tions, a finitary semantical refinement η′ such that d(D(s1)(η

′),D(s2)(η
′)) 6= 0. This

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 169

function η′ is finitary in the sense that η′ is nontrivial for finitely many actions a only
and for these actions, η′(a) is a finite set of finite sequences. The special property of
such a finitary η′ is that it corresponds to a finite sequence of syntactical refinements
〈ai ; s′i〉

k
i=1. By the correctness of the denotational model D with respect to the oper-

ational model O, we then obtain that d(O[[s1〈ai ; s′i〉
k
i=1]],O[[s2〈ai ; s′i〉

k
i=1]]) 6= 0, or,

equivalently O[[s1〈ai ; s′i〉
k
i=1]] 6= O[[s2〈ai ; s′i〉

k
i=1]]. Hence the context (·)〈ai ; s′i〉

k
i=1

is a context in which the statements s1 and s2 yield different observational behavior.
The layout of the remainder of this section is as follows: Subsection 5.2.1 introduces the

language Lref and its transition system and related operational model. In subsection 5.2.2
the denotational semantics for Lref is constructed employing the notion of a semantic
refinement. Subsection 5.2.3 treats the comparison of the operational and denotational
model and presents the full abstractness result.

5.2.1 Syntax and operational semantics

In this subsection the syntax for the language Lref with action refinement is given. Using
configurations which can store so called refinement sequences, the notion of action refine-
ment can be captured intuitively by a transition system. The operational semantics is
based on the transition system. As usual a set of atomic actions Act ranged over by a is
used to describe the basic steps of the computation. Action refinement may be used to
further specify the behavior of an action but otherwise the actions remain without any
further interpretation. The set Act is assumed to be infinite. (The full abstractness result
presented in subsection 5.2.3 requires that we can always pick a fresh action outside some
given finite set of actions.) A set of procedure variable PVar ranged over by x is used for
recursion.

Definition 5.2.1

(a) The set of statements Stat, ranged over by s, is given by

s ::= a | x | s ; s | s 2 s | s‖s | s〈a ; s〉

(b) The set of guarded statements GStat, ranged over by g, is given by

g ::= a | g ; s | g 2 g | g‖g | g〈a ; g〉

(c) The set of declarations Decl, ranged over by D, is given by

Decl = PVar→ GStat

(d) The language Lref is given by

Lref = Decl× Stat

The actions in Act represent the basic steps of the computation and are left uninterpreted
except that the computation that an action a describes may be further refined by use of
the refinement construct as in s1〈a ; s2〉. The statement s1〈a ; s2〉 is read as “s1 where

170 CHAPTER 5. ACTION REFINEMENT

a is refined by s2”. In s1〈a ; s2〉 the interpretation of any action a in s1 is no longer
simply the action a itself but is instead given by the statement s2.

The procedure variables and the constructs sequential composition, nondeterministic
choice and parallel composition are as usual. Again a fixed declaration D is assumed and
the declaration is suppressed in the notation.

The operational semantics for Lref is based on the transition system Tref. As usual
resumptions are used in the transition system to describe the part of a program that still
remains to be executed. To be able to deal with refinements, the resumptions are more
complicated then just statements and the empty resumption. Instead there are three
types of resumptions.

• The empty resumption E, denoting a finished computation.

• Resumptions of the format s : 〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉 where n ≥ 0,
s, s1, s2, . . . , sn are statements, and a1, a2, . . . , an are, not necessarily distinct, ac-
tions. Such a resumption describes a statement s in which first a1 has to be re-
fined by s1, then a2 has to be refined by s2, and so on. We call 〈a1 ; s1〉〈a2 ;

s2〉 · · · 〈an ; sn〉, also denoted as 〈ai ; si〉
n
i=1, a refinement sequence.

• The third type of resumption consists of a combination of resumptions involving the
binary operators ; , 2, and ‖, that are available in Lref . We thus have resumptions
of the form r1; r2, r1 2 r2, and r1‖r2, respectively.

To describe the refinements that apply for a statement s a refinement sequence 〈a1 ;

s1〉〈a2 ; s2〉 · · · 〈an ; sn〉 is added to the statement. A single refinement sequence is
insufficient because different refinements may apply to different part of the statement as
in e.g. s1〈a ; s〉‖s2 where the refinement 〈a ; s〉 should be used in s1 but not in s2.
Instead, a separate stack is needed for each part of a statement. To be able to describe
a situation with different refinement stacks for different components, the resumptions,
which contain refinement stacks, can be combined with the operators of the languages. In
this way one can form e.g. s1 : 〈a ; s〉〈b ; s′〉‖s2 : 〈b ; s′〉 where 〈a ; s〉 only applies
to the first component of the parallel composition.

Definition 5.2.2

(a) The class RefSeq of refinement sequences, ranged over by R, is given by

R ::= ε | 〈a ; s〉R

(b) The class Res of resumptions, ranged over by r, is given by

r ::= E | s : R | r op r

where the operator op is either ; , 2, or ‖.

A refinement sequence R is either the empty sequence ε or R = 〈a ; s〉R′ for some
a ∈ Act, s ∈ Stat and R′ ∈ RefSeq. Alternatively, an element R of RefSeq can be written
as

R = 〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 171

for suitable n ≥ 0, a1, a2, . . . , an ∈ Act, s1, s2, . . . , sn ∈ Stat. In case n = 0 we have
R = ε.

A configuration in the transition system is a resumption together with a declaration.
As a fixed declaration D is assumed, the declaration is suppressed in the notation.

Conf = Decl× Res

The labels used in the transition systems Tref are only the atomic actions.

Lab = Act

The following form of rule, which describes that the resumption r1 has the same steps as
the resumption r2, is used a lot in the transition system.

r2
a
→ r3

r1
a
→ r3

The notation r1→0 r2, called a zero-step, is therefore used as a shorthand for this rule.

Definition 5.2.3 The transition system Tref is given by Tref = (Conf, Lab, → , Spec)
where the specification Spec consists of the following axioms and rules

• a : ε
a
→ E (Act 1)

a : 〈a′ ; s′〉R →0 s
′ : R if a = a′ (Act 2)

a : 〈a′ ; s′〉R →0 a : R if a 6= a′ (Act 3)

• x : R →0 D(x) : R (Rec)

• (s1 op s2) : R →0 (s1 : R) op (s2 : R) for op ∈ { ; ,2, ‖ } (Op)

• s〈a′ ; s′〉 : R →0 s : 〈a
′ ; s′〉R (Ref)

•

r1
a
→ r′1

r1; r2
a
→ r′1; r2

(Seq)

where r′1; r2 should be read as r2 is r
′
1 = E.

• r1 2 r2 →0 r1 r1 2 r2 →0 r2 (Choice 1,2)

•

r1
a
→ r′1

r1‖r2
a
→ r′1‖r2

r2
a
→ r′2

r1‖r2
a
→ r1‖r

′
2

(Par 1,2)

where r′1‖r2 in rule (Par 1) should be read as r2 when r
′
1 = E and r1‖r

′
2 in rule

(Par 2) should be read as r1 when r
′
2 = E.

172 CHAPTER 5. ACTION REFINEMENT

Axiom (Act 1) states that a single action onto which no refinement needs to be applied
further, just executes the action and then terminates. The rules (Act 2) and (Act 3) handle
the nonempty sequences of refinements from left to right. For all other resumptions of the
format s : R exactly one of the zero-step rules (Rec), (Op) or (Ref) applies. (Rec) is the
usual rule formalizing body replacement. The (Op)-rule distributes the operator (either
; , 2, or ‖) hence reducing the complexity of the statement component. Refinements are
dealt with by adding the particular refinement in front of the current refinement sequence.
The five remaining rules are the familiar structural rules, in our setting triggered by the
earlier rule (Op).

Example 5.2.4

(a) The resumption (a 2 (b; c)) : 〈a ; d〉〈b ; e〉 has two transitions which are derived as
follows.

Taking the first option for the nondeterministic choice gives

(a2 (b; c))〈a ; d〉 : 〈b ; e〉

→0 (a2 (b; c)) : 〈a ; d〉〈b ; e〉 (Ref)

→0 (a : 〈a ; d〉〈b ; e〉) 2 ((b; c) : 〈a ; d〉〈b ; e〉) (Op)

→0 a : 〈a ; d〉〈b ; e〉 (Choice 1)

→0 d : 〈b ; e〉 (Act 2)

→0 d : ε (Act 3)

and d : ε
d
→E by (Act 1). Therefore

(a2 (b; c))〈a ; d〉 : 〈b ; e〉
d
→E

Taking the other choice option,

(a2 (b; c))〈a ; d〉 : 〈b ; e〉

→0 (a2 (b; c)) : 〈a ; d〉〈b ; e〉 (Ref)

→0 (a : 〈a ; d〉〈b ; e〉) 2 ((b; c) : 〈a ; d〉〈b ; e〉) (Op)

→0 (b; c) : 〈a ; d〉〈b ; e〉 (Choice 2)

→0 (b : 〈a ; d〉〈b ; e〉); (c : 〈a ; d〉〈b ; e〉) (Op)

Using axioms (Act 3) and (Act 2) gives

b : 〈a ; d〉〈b ; e〉→0 b : 〈b ; e〉→0 e : ε

and e : ε
e
→E follows by axiom (Act 1). Thus, b : 〈a ; d〉〈b ; e〉

e
→E and by

application of (Seq)

(b : 〈a ; d〉〈b ; e〉); (c : 〈a ; d〉〈b ; e〉)
e
→ c : 〈a ; d〉〈b ; e〉

and therefore
(a2 (b; c))〈a ; d〉 : 〈b ; e〉

e
→ c : 〈a ; d〉〈b ; e〉

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 173

(b) As another example consider

((a; b)〈a ; b; c〉)〈b ; d; e〉 : 〈b ; f〉

→0 (a; b)〈a ; b; c〉 : 〈b ; d; e〉〈b ; f〉 (Ref)

→0 (a; b) : 〈a ; b; c〉〈b ; d; e〉〈b ; f〉 (Ref)

→0 (a : 〈a ; b; c〉〈b ; d; e〉〈b ; f〉);

(b : 〈a ; b; c〉〈b ; d; e〉〈b ; f〉) (Op)

For use with the (Seq)-rule we observe the following

a : 〈a ; b; c〉〈b ; d; e〉〈b ; f〉

→0 (b; c) : 〈b ; d; e〉〈b ; f〉 (Act 2)

→0 (b : 〈b ; d; e〉〈b ; f〉); (c : 〈b ; d; e〉〈b ; f〉) (Op)

Since

b : 〈b ; d; e〉〈b ; f〉

→0 (d; e) : 〈b ; f〉 (Act 2)

→0 (d : 〈b ; f〉); (e : 〈b ; f〉) (Act 3)

and d : 〈b ; f〉→0 d : ε
d
→E we obtain, using rule (Seq) gives

b : 〈b ; d; e〉〈b ; f〉
d
→ e : 〈b ; f〉

So a : 〈a ; b; c〉〈b ; d; e〉 : 〈b ; f〉
d
→ (e : 〈b ; f〉); (c : 〈b ; d; e〉〈b ; f〉) and

((a; b)〈a ; b; c〉)〈b ; d; e〉 : 〈b ; f〉
d
→ ((e : 〈b ; f〉); (c : 〈b ; d; e〉〈b ; f〉));

(b : 〈a ; b; c〉〈b ; d; e〉〈b ; f〉)

The example above illustrates, among others, how the rules (Ref), (Act 2) and (Act 3)
deal with the addition and removal of refinements from the refinement sequence within a
configuration. To show several properties of the transition system, such as the fact that
the addition and removal of refinements to the refinement sequence does not create a loop
in the transition system, weight induction is used. To this end the complexity function
wgt is defined, first for programs and then for configurations.

174 CHAPTER 5. ACTION REFINEMENT

Definition 5.2.5

(a) The function wgt:Lref → N is given by

wgt(a) = 1

wgt(x) = wgt(D(x)) + 1

wgt(s1; s2) = wgt(s1) + 1

wgt(s1 op s2) = wgt(s1) + wgt(s2) + 1 for op ∈ {2, ‖ }

wgt(s1〈a ; s2〉) = wgt(s1) + wgt(s2) + 1.

(b) The function wgt:Conf→ N is given by

wgt(E) = 0
wgt(s : 〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉)

= wgt(s) + wgt(s1) + wgt(s2) + · · · + wgt(sn)
wgt(r1; r2) = wgt(r1) + 1

wgt(r1 op r2) = wgt(r1) + wgt(r2) + 1 for op ∈ {2, ‖ }.

Well-definedness of these weight functions can be shown by structural induction, first on
guarded statements, then on general statements and finally on resumptions. The following
properties are easy to check by using weight induction.

Lemma 5.2.6

(a) A zero step decreases the weight of the configuration, i.e. if r→0 r
′ then wgt(r) >

wgt(r′).

(b) The transition system Tref is finitely branching, i.e. the set { 〈a, r
′〉 | r

a
→ r′ } is finite

for each configuration r.

The operational meaning of a program consists of all possible sequences of actions that
the program can produce. Because the transition system is finitely branching, these se-
quences form a compact set. The domain Po of operational processes contains all possible
operational meanings.

Definition 5.2.7 The domain Po of operational processes is given by

Po = Pnco(Act
∞)

The operational model O yields the operational meaning of a given configuration.

Definition 5.2.8 The operational model O:Conf→ Po is given by

O(E) = { ε }

O(r) = { aw | r
a
→ r′, w ∈ O(r′) }

where r is any resumption not equal to E.

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 175

The empty resumption E yields the empty sequence ε. For other resumptions r, the
possible sequences are found by looking at the transitions of r. If r takes an a step to r′,
r

a
→ r′ then any possible sequence for r′ prefixed with a is a possible sequence for r.
The well-definedness of O needs further comment as the definition is recursive. Justi-

fication of the definition of O is given after some examples.

Examples 5.2.9

(a) Since (a2 (b; c))〈a ; d〉〈b ; e〉
d
→E and (a2 (b; c))〈a ; d〉〈b ; e〉

e
→ c : 〈a ; d〉〈b ;

e〉
c
→E are the computations for (a 2 (b; c))〈a ; d〉〈b ; e〉 we get

O((a 2 (b; c))〈a ; d〉〈b ; e〉)

= dO(E) ∪ eO(c : 〈a ; d〉〈b ; e〉)

= d { ε } ∪ e cO(E)

= { d } ∪ e c { ε }

= { d } ∪ { ec }

= { d, ec }

(b) Suppose D(x) = a〈b ; c〉. Then O((x 2 b) : ε) = O(x : ε) ∪ O(b : ε) = O(a〈b ; c〉 :
ε) ∪ bO(E) = . . . = { a } ∪ { b }= { a, b }.

(c) Suppose D(x) = (a;x)2 b. We show that the process O(x〈a ; c; d〉 : ε) is equal to the
process { (cd)nb | n ≥ 0 }∪{ (cd)ω } by showing that their distance equals 0.

O(x〈a ; c; d〉 : ε)

= O(((a;x) 2 b) : 〈a ; c; d〉)

= O((a;x) : 〈a ; c; d〉) 2 b : 〈a ; c; d〉)

= O((a : 〈a ; c; d〉); (x : 〈a ; c; d〉)) ∪ O(b : 〈a ; c; d〉)

= O(((c; d) : ε); (x : 〈a ; c; d〉)) ∪ bO(E)

= cO((d : ε); (x : 〈a ; c; d〉)) ∪ b { ε }

= c dO(x : 〈a ; c; d〉) ∪ { b }

Since x〈a ; c; d〉 : ε→0 x : 〈a ; c; d〉 we have that O(x〈a ; c; d〉 : ε) = O(x : 〈a ;

c; d〉). Therefore we obtain O(x〈a ; c; d〉 : ε) = c dO(x〈a ; c; d〉 : ε) ∪ { b }. On the
other hand, for the set X = { (cd)nb | n ≥ 0 }∪{ (cd)ω } we have that

X = c dX ∪ { b }.

From these equations we derive that the distance of O(x〈a ; c; d〉 : ε) to the set X is
zero.

d(O(x〈a ; c; d〉 : ε), X)

= d(c dO(x : 〈a ; c; d〉) ∪ { b }, c dX ∪ { b })

≤ max{ d(c dO(x : 〈a ; c; d〉), c dX), d({ b }, { b }) }

176 CHAPTER 5. ACTION REFINEMENT

= max{ 1
4d(O(x : 〈a ; c; d〉), X), 0 }

= 1
4d(O(x : 〈a ; c; d〉, X)

= 1
4d(O(x〈a ; c; d〉 : ε,X)

Note that 0 is the only non-negative real number α such that α ≤ 1
4α. We conclude

O(x〈a ; c; d〉 : ε) = { (cd)nb | n ≥ 0 } ∪ { (cd)ω }.

The recursive definition of the operational model O can be justified by showing that it is
the unique fixed point of a higher-order transformation Φ. The proof is omitted as it is
similar to the proof of lemma 4.2.21. (Or see [38], definition 2.32 and lemma 2.33.)

Lemma 5.2.10 Put Sem = Conf → Pnc(Act
∞). Use S for a typical element of Sem.

Let the higher-order transformation Φ:Sem→ Sem be given by

Φ(S)(E) = { ε }

Φ(S)(r) =
⋃
{ aS(r′) | r

a
→ r′ }

Then Φ has a unique fixed point, and therefore there is exactly one function O in Sem
which satisfies the equations in definition 5.2.8.

The operational model O gives the meaning of resumptions instead of programs in Lref .
In a resumptions a refinement sequence is always included. For a closed system, there are
no more refinements to execute, so one can start with an empty sequence of refinements.
The operational semantics O[[•]] is obtained by using the empty refinement sequence.

Definition 5.2.11 The operational semantics O[[•]]:Lref → Po is given by

O[[s]] = O(s : ε)

Note that the operational semantics satisfies the following two properties

a1a2 · · · an ∈ O[[s]] ⇐⇒ s : ε = r0
a1→ r1

a2→ · · ·
an→ rn = E

for some r0, r1, . . . , rn ∈ Res

a1a2 · · · ∈ O[[s]] ⇐⇒ s : ε = r0
a1→ r1

a2→ · · ·

for some r0, r1, r2, . . . ∈ Res

The operational semantics O[[•]] collects the sequences of actions of all the computations
that are possible for a given statement. For this the resumption s : ε is used as starting
configuration for a computation for s.

5.2.2 Semantical refinements and denotational semantics

In this subsection a denotational model for Lref is given. The notion of a semantical re-
finements η is introduced that correspond to the refinement sequences R discussed in the
previous section. The semantical refinements mimic the role of environments for proce-
dure variables as usually employed in the traditional approach to programming language

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 177

semantics. In this setting one commonly encounters in the definition for a denotational
semantics D a clause such as

D(x)(µ) = µ(x) (2.1)

where the so-called environment µ is a function µ:PVar→ Pd used to store and retrieve the
meaning of a procedure variable (see e.g. [187]). To determine which mapping µ0:PVar→
Pd is the proper one an additional fixed point argument is necessary. In the metric
methodology the application of environments for the modeling of recursion is generally
avoided. As originally proposed by Kok and Rutten [139], one can simply state

D(x) = D(D(x))

provided sufficient contractiveness for the underlying fixed point characterization can be
guaranteed. This is achieved here by restricting to guarded recursion.

The use of environments for procedure variables is, in our approach, replaced by the
use of environments for actions. That is, the environment now holds the meanings of all
actions, taking into account the refinements which they are subject to. Accordingly, for
the semantic environment η:Act→ Pd we have

D(a)(η) = η(a)

as a clause of our denotational semantics. Note the correspondence with equation (2.1)
above. Additionally we will put

D(s1〈a ; s2〉)(η) = D(s1)(η[D(s2)(η)/a])

where, as it were, the binding of a in s1 is dynamically set to the meaning of s2 with respect
to the current refinement η. The construct η[p/a] is called a variant of η, which only differs
from η in the action a for which the element p is delivered. The refinement statements thus
effect the interpretation of actions. Clearly, as initial semantical refinement the ‘identity
refinement’ ηid , i.e., the mapping λa.{ a }, is the only option, so no fixed point argument
is required for this.

Elaboration of the plan as sketched above starts with the definition of the semantical
domain Pd and the semantical operations. For technical reasons explained below we
will exclude the empty string of actions and only consider nonempty sets of nonempty
sequences.

Definition 5.2.12 Let Pd = Pnco(Qd) where Qd = Act∞ \ { ε } be the domain of denota-
tional processes. The semantical operations ; ,2, ‖:P2 → P are given as follows, employing
the auxiliary operations ;′ :Q2 → Q and ‖′, ‖−

′
:Q2 → P

(a) p1; p2 = { q1 ;
′ q2 | q1 ∈ p1, q2 ∈ p2 }

a ;′ q = a q
(a q′) ;′ q = a (q′ ;′ q)

(b) p1 2 p2 = p1 ∪ p2

178 CHAPTER 5. ACTION REFINEMENT

(c) p1‖p2 =
⋃
{ q1 ‖

′
q2 | q1 ∈ p1, q2 ∈ p2 }

q1 ‖
′
q2 = q1 ‖−

′
q2 2 q2 ‖−

′
q1

a ‖−
′
q = { a q }

(a q′) ‖−
′
q = a (q′ ‖′ q)

Proof of the well-definedness and nonexpansiveness of these operations can be found in
[38]. The proof proceeds along the usual way: Each operation is shown to be the unique
fixed point of a contractive higher order operation (cf. definition 3.4.9).

Lemma 5.2.13

(a) The semantical operations ; , 2, and ‖ are are well-defined and nonexpansive.

(b) The mapping ; is contractive in its second argument, i.e. d(p; p1, p; p2) ≤
1
2d(p1, p2).

The second property relies on the fact that the empty sequence is excluded from denota-
tional processes. If the empty sequence had not been excluded one can, for example, take
p = { ε }, p1 = { a } and p2 = { b } which gives d(p; p1, p; p2) = d(p1, p2) 6≤

1
2d(p1, p2).

Using the semantical operations the definition of the denotational model D is given.
As mentioned at the start of this subsection the model D uses an intermediate layer of
semantical refinements SemRef.

Definition 5.2.14

(a) Put SemRef = Act → Pd. The set SemRef has typical element η. The denotational
model D:Lref → SemRef→ Pd is given by

D(a)(η) = η(a)

D(x)(η) = D(D(x))(η)

D(s1 op s2)(η) = D(s1)(η) opD(s2)(η) for op ∈ { ;,2, ‖ }

D(s1〈a ; s2〉)(η) = D(s1)(η[D(s2)(η)/a])

(b) The denotational semantics D[[•]]:Lref → Pd is given by D[[s]] = D(s)(ηid).

The denotational model D passes actions as argument to the given semantical refinement.
Recursion is handled via body replacement. For the various syntactical constructions
the usual compositionality principle applies. As discussed above, a refinement statement
s1〈a ; s2〉 amounts to an update of the current semantical refinement for the action a.
It is in the resulting semantical refinement that the statement s1 should be evaluated.

The denotational semantics D[[•]] gives the meaning of a program be evaluating the
program starting with the identity refinement ηid . The identity refinement, which assigns
{ a } to an action a, corresponds to the situation where no refinements need to be done.

Example 5.2.15

(a) Note that D(d)(ηid) = ηid(d) = { d } and similar for the action e. Also, by definition
of variants, (ηid [{ e }/b])(d) = ηid (d) = d, thus we have

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 179

D((a 2 (b; c))〈a ; d〉〈b ; e〉)(ηid)

= D((a 2 (b; c))〈a ; d〉)(ηid [{ e }/b])

= D(a 2 (b; c))(ηid [{ e }/b][{ d }/a])

= D(a)(ηid [{ e }/b][{ d }/a]) 2D(b; c)(ηid [{ e }/b][{ d }/a])

= ηid [{ e }/b][{ d }/a](a) ∪

(D(b)(ηid [{ e }/b][{ d }/a]);D(c)(ηid [{ e }/b][{ d }/a]))

= { d } ∪ (ηid [{ e }/b][{ d }/a](b); ηid [{ e }/b][{ d }/a](c))

= { d } ∪ ({ e }; { c })

= { d } ∪ { ec }

= { d, ec }

(b) Suppose D(x) = a〈b ; c〉. We then have

D(x 2 b)(ηid)

= D(x)(ηid) 2D(b)(ηid)

= D(a〈b ; c〉)(ηid) ∪ ηid (b)

= D(a)(ηid [{ c }/b]) ∪ { b }

= . . .

= { a, b }

(c) Suppose D(x) = (a;x)2b. We argue that D[[x〈a ; c; d〉]] = { (cd)nb | n ≥ 0 }∪{ (cd)ω}
following the same example for the operational semantics. Note D(c; d)(ηid)= { cd }.
We have

D(x〈a ; c; d〉)(ηid)

= D(x)(ηid [{ cd }/a])

= D((a;x) 2 b)(ηid [{ cd }/a])

= D(a;x)(ηid [{ cd }/a]) 2D(b)(ηid [{ cd }/a])

= (D(a)(ηid [{ cd }/a]);D(x)(ηid [{ cd }/a])) ∪ { b }

= ({ cd };D(x)(ηid [{ cd }/a])) ∪ { b }

= c dD(x)(ηid [{ cd }/a]) ∪ { b }

Thus D(x〈a ; c; d〉)(ηid) = D(x)(ηid [{ cd }/a]) and

D(x)(ηid [{ cd }/a]) = c dD(x)(ηid [{ cd }/a]) ∪ { b }

Therefore we obtain

D[[x〈a ; c; d〉]] = { (cd)nb | n ≥ 0 } ∪ { (cd)ω }

by a similar argument as in the previous subsection (see example 5.2.9).

180 CHAPTER 5. ACTION REFINEMENT

As usual the well-definedness of the denotational model D is obtained by showing that D
is the unique fixed point of a contractive higher-order transformation. The higher-order
transformation Ψ is a function on Sem, Ψ:Sem→ Sem, where Sem is the function space

Lref → SemRef
1
→ Pd. Recall that

1
→ indicates a restriction to nonexpansive mappings.

This restriction is needed to obtain contractivity of Ψ.
The next lemma gives the transformation Ψ and states that this function is contractive

and thus has a unique fixed point. Note that the restriction to the function space Lref →

SemRef
1
→ Pd is essential for the proof of part (b), in particular the induction step for

statements s1〈a ; s2〉.

Lemma 5.2.16 Put Sem = Lref → SemRef
1
→ Pd and let S be a typical element. The

transformation Ψ:Sem→ Sem is given by

Ψ(S)(a)(η) = η(a)

Ψ(S)(x)(η) = Ψ(S)(D(x))(η)

Ψ(S)(s1; s2)(η) = Ψ(S)(s1)(η);S(s2)(η)

Ψ(S)(s1 op s2)(η) = Ψ(S)(s1)(η) opΨ(S)(s2)(η) for op ∈ {2, ‖ }

Ψ(S)(s1〈a ; s2〉)(η) = Ψ(S)(s1)(η[p/a]) where p = Ψ(S)(s2)(η)

(a) The mapping Ψ is well-defined, i.e., for all S ∈ Sem and s ∈ Lref the mapping
Ψ(S)(s):SemRef→ Pd is nonexpansive.

(b) The mapping Ψ is a 1
2 -contraction.

Proof The definition of Ψ(S)(s)(η) is by the induction on wgt(s). Note that Ψ is not
applied to the s2-component in the right-hand side of the clause for the sequential com-
position. That Ψ(S)(s)(η) is in Pd for all arguments, can be straightforwardly established
by weight-induction using the well-definedness of the semantical operations as given in
lemma 5.2.13.

(a) Let S ∈ Sem, s ∈ Lref . We check

d(Ψ(S)(s)(η1),Ψ(S)(s)(η2)) ≤ dF (η1, η2)

for all η1, η2 ∈ SemRef, by weight-induction. We only present the more interesting
cases of sequential composition and action refinement. Note that, by definition, Sem =

Lref → SemRef
1
→ Pd. Thus we have for each S ∈ Sem, s ∈ Lref , and η1, η2 ∈ SemRef,

that d(S(s)(η1), S(s)(η2)) ≤ dF (η1, η2).

[s1; s2] d(Ψ(S)(s1; s2)(η1),Ψ(S)(s1; s2)(η2))

= d(Ψ(S)(s1)(η1);S(s2)(η1),Ψ(S)(s1)(η2);S(s2)(η2))

≤ [; nonexpansive]
max{ d(Ψ(S)(s1)(η1),Ψ(S)(s1)(η2)),

d(S(s2)(η1), S(s2)(η2)) }

≤ [induction hypothesis for s1, restriction on Sem]
max{ dF (η1, η2), dF (η1, η2) }

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 181

= dF (η1, η2)

[s1〈a ; s2〉] d(Ψ(S)(s1〈a ; s2〉)(η1),Ψ(S)(s1〈a ; s2〉)(η2))

= d(Ψ(S)(s1)(η1[p1/a]),Ψ(S)(s1)(η2[p2/a]))

where pi = Ψ(S)(s2)(ηi), i = 1, 2

≤ [induction hypothesis] dF (η1[p1/a], η2[p2/a])

By definition of dF as supremum (see lemma 2.1.7) it is clear that

dF (η1[p1/a], η2[p2/a]) ≤ max{ dF (η1, η2), d(p1, p2) }

Now, since

d(p1, p2) = d(Ψ(S)(s2)(η1),Ψ(S)(s2)(η2)) ≤ dF (η1, η2)

by the induction hypothesis, it follows that dF (η1[p1/a], η2[p2/a]) ≤ dF (η1, η2)
and, combining this with the inequation derived above

d(Ψ(S)(s1〈a ; s2〉)(η1),Ψ(S)(s1〈a ; s2〉)(η2)) ≤ dF (η1, η2)

(b) Let S1, S2 ∈ Sem. Using the result from part (a) we prove by weight-induction that

d(Ψ(S1)(s)(η),Ψ(S2)(s)(η)) ≤
1
2dF (S1, S2)

for all s ∈ Lref , η ∈ SemRef. From this we get dF (Ψ(S1),Ψ(S2)) ≤
1
2dF (S1, S2) by

definition of dF . Again we only discuss the cases of sequential composition and action
refinement.

[s1; s2] d(Ψ(S1)(s1; s2)(η),Ψ(S2)(s1; s2)(η))

= d(Ψ(S1)(s1)(η);S1(s2)(η),Ψ(S2)(s1)(η);S2(s2)(η))

≤ [; nonexpansive in 1st, contractive in 2nd argument]
max{ d(Ψ(S1)(s1)(η),Ψ(S2)(s1)(η)),

1
2d(S1(s2)(η), S2(s2)(η)) }

≤ [induction hypothesis, definition dF]
1
2dF (S1, S2).

[s1〈a ; s2〉] d(Ψ(S1)(s1〈a ; s2〉)(η),Ψ(S2)(s1〈a ; s2〉)(η))

= d(Ψ(S1)(s1)(η[p1/a]),Ψ(S2)(s1)(η[p2/a]))

where pi = Ψ(Si)(s2)(η), i=1,2

≤ [ultrametricity]
max{ d(Ψ(S1)(s1)(η[p1/a]),Ψ(S2)(s1)(η[p1/a])),

d(Ψ(S2)(s1)(η[p1/a]),Ψ(S2)(s1)(η[p2/a])) }

≤ [induction hypothesis, part (a) for Ψ(S2)(s1)]
max{ 1

2dF (S1, S2), dF (η[p1/a], η[p2/a]) }

By definition of dF it follows that

dF (η[p1/a], η[p2/a]) = d(Ψ(S1)(s2)(η),Ψ(S2)(s2)(η)) ≤
1
2dF (S1, S2)

by the induction hypothesis for s2. Therefore

d(Ψ(S1)(s1〈a ; s2〉)(η),Ψ(S2)(s1〈a ; s2〉)(η)) ≤
1
2dF (S1, S2)

182 CHAPTER 5. ACTION REFINEMENT

Conclusion: Ψ is a 1
2 -contraction.

2

It is clear that the fixed point of Ψ satisfies the equations given for D in definition 5.2.14.
This means that these equations have a solution. In previous applications of the higher-
order transformation Ψ (cf. lemma 3.4.13) it was also obvious that any model satisfying
the equations for D must be a fixed point of Ψ. This gives uniqueness of the solution as
Ψ has only one fixed point. Here we have only shown that the equations for D have a

unique solution within the space Lref → SemRef
1
→ Pd. It remains to be shown that any

solution D for the equations in definition 5.2.14 must be within this space, i.e. that the
model D is nonexpansive in its second argument.

Lemma 5.2.17 For s ∈ Lref , the mapping D(s):SemRef→ Pd is nonexpansive.
Proof Let us write D̃ = fix(Ψ) for short. Note that, by definition of Ψ, D̃ is nonexpansive
in its second argument. Put ε = dF (D, D̃) where dF is the distance on the function space
Lref → SemRef→ Pd. We first check

∀η ∈ SemRef: d(D(s)(η), D̃(s)(η)) ≤ 1
2ε (2.2)

by weight-induction on s. We only exhibit the two nontrivial cases.

[s1; s2] d(D(s1; s2)(η), D̃(s1; s2)(η))

= [def. 5.2.14(a); D̃ = fix(Ψ)] d(D(s1)(η);D(s2)(η), D̃(s1)(η); D̃(s2)(η))

≤ [lem. 5.2.13(c)] max{ d(D(s1)(η), D̃(s1)(η)),
1
2d(D(s2)(η), D̃(s2)(η)) }

≤ [ind. hyp. for s1; def. ε]
1
2ε

[s1〈a ; s2〉] d(D(s1〈a ; s2〉)(η), D̃(s1〈a ; s2〉)(η))

= [def. 5.2.14(a); D̃ = fix(Ψ)]

d(D(s1)(η[D(s2)(η)/a]), D̃(s1)(η[D̃(s2)(η)/a]))

≤ [ultrametricity]

max{ d(D(s1)(η[D(s2)(η)/a]), D̃(s1)(η[D(s2)(η)/a])),

d(D̃(s1)(η[D(s2)(η)/a]), D̃(s1)(η[D̃(s2)(η)/a])) }

≤ [ind. hyp. for s1; D̃(s1) nonexp., def. dF]

max{ 1
2ε, d(D(s2)(η), D̃(s2)(η)) }

= [ind. hyp. for s2]
1
2ε

Having established equation (2.2) it follows that dF (D, D̃) ≤
1
2ε by definition of dF .

Therefore ε ≤ 1
2ε and since ε ≥ 0 we obtain ε = 0, D = D̃ and D = fix(Ψ). We conclude

that, for s ∈ Lref , the mapping D(s):SemRef→ Pd is nonexpansive, as was to be shown.
2

This completes the justification of the definition of operational model D. The nonexpan-
siveness result for D(s) for all programs s is also used in the proof of lemma 5.2.23 in the
next section.

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 183

5.2.3 Correctness and full abstractness of D

Having developed both an operational and a denotational model for Lref we will now
address the question about their relationship. We will show:

(1) The denotational model D[[•]] is correct with respect to the operational model O[[•]],
i.e., D[[s1]] = D[[s2]] =⇒ O[[s1]] = O[[s2]].

(2) The denotational model D:Lref → SemRef → Pd is fully abstract for O[[•]], i.e.,
D(s1) = D(s2) ⇐⇒ O[[C[s1]]] = O[[C[s2]]] for all contexts C[•].

Note that in (1) only the semantical refinement ηid plays a role, albeit hidden by the
definition of D[[•]]. However, in (2) the equality D(s1) = D(s2) is equality of functions,
and hence amounts to D(s1)(η) = D(s2)(η) for all η in SemRef. The latter result thus
supports the point of view that two statements should be identified precisely when they
have the same computations under all refinements.

Our first result will be shown using Banach’s theorem 2.1.9 stating uniqueness of fixed
points of contractions. In fact we will prove the stronger O[[•]] = D[[•]]. In subsection 5.2.1
we have shown O = fix(Φ) where Φ:Sem→ Sem is a contraction based on the transition
system for Lref , and, Sem = Res → Pnc(Act

∞). The idea is to extend the denotational
semantics D acting on Stat to a function E acting on Res, and to show that Φ(E) = E . By
the uniqueness of fixed points the equality O = E is obtained and D[[•]] = O[[•]] follows.

A technical lemma, that helps with converting syntactical refinements into semantical
ones, will be discussed first.

Lemma 5.2.18 Let the function • . •:RefSeq × SemRef → SemRef be inductively given
by

ε . η = η

(R 〈a ; s〉) . η = R . η[D(s)(η)/a]

Then the following equations hold

(a) D(s〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉)(η)
= D(s)(〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉 . η)

(b) D(s1〈a ; s2〉)(R . η) = D(s1)((〈a ; s2〉R) . η)

Proof

(a) Induction on n.

[0] Clear, since ε . η = η by definition.

[n+ 1] D(s〈a1 ; s1〉 · · · 〈an ; sn〉〈an+1 ; sn+1〉)(η)

= [definition D] D(s〈a1 ; s1〉 · · · 〈an ; sn〉)(η[D(sn+1)(η)/an+1])

= [ind. hyp.] D(s)((〈a1 ; s1〉 · · · 〈an ; sn〉) . (η[D(sn+1)(η)/an+1]))

= [definition .] D(s)((〈a1 ; s1〉 · · · 〈an ; sn〉〈an+1 ; sn+1〉) . η)

184 CHAPTER 5. ACTION REFINEMENT

(b) By application of part (a), first for R then for 〈a ; s2〉R. 2

We are now ready to introduce the extension of the semantical mapping D to resumptions
and to show its coincidence with O.

Lemma 5.2.19 Define the mapping E :Res→ Po as follows:

E(E) = { ε }

E(s : R) = D(s)(R . ηid)

E(r1 op r2) = E(r1) op E(r2) for op ∈ { ;,2, ‖ }.

Then it holds that Φ(E) = E.

Proof Notice that in the third clause for E the occurrence of op at the right-hand side is
a semantical operation given for Pd (which excludes the empty sequence ε). By structural
induction one easily verifies that E(r) ∈ Pd for r 6= E, so E(r1 op r2) is properly defined.
The lemma is proven by weight-induction for configurations. We only exhibit a few typical
cases here.

[a : 〈a ; s〉R] Φ(E)(a : 〈a ; s〉R)

= [by (Act 2)] Φ(E)(s : R)

= [induction hypothesis] E(s : R)

= D(s)(R . ηid)

= [η[p/a](a) = p] D(a)((R . ηid)[D(s)(R . ηid)/a])

= [definition D] D(a〈a ; s〉)(R . ηid)

= [lemma 5.2.18] D(a)((〈a ; s〉R) . ηid)

= E(a : 〈a ; s〉R)

[s1〈a ; s2〉 : R] Φ(E)(s1〈a ; s2〉 : R)

= Φ(E)(s1 : 〈a ; s2〉R)

= [induction hypothesis] E(s1 : 〈a ; s2〉R)

= D(s1)((〈a ; s2〉R) . ηid)

= [lemma 5.2.18] D(s1〈a ; s2〉)(R . ηid)

= E(s1〈a ; s2〉 : R)

[r1; r2] Φ(E)(r1; r2)

=
⋃
{ a E(r) | r1; r2→ ar }

= [inspection of definition 5.2.3]
⋃
{ a E(r′; r2) | r1→ ar′ }

=
⋃
{ a (E(r′); E(r2)) | r1→ ar′ } (putting { ε }; p = p for r′ = E)

= [definition ;]
⋃
{ (a · E(r′)); E(r2) | r1→ ar′ }

= [property ;] (
⋃
{ a · E(r′) | r1→ ar′ }); E(r2)

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 185

= Φ(E)(r1); E(r2)

= [induction hypothesis] E(r1); E(r2)

= E(r1; r2) 2

From lemma 5.2.19 and lemma 5.2.10 we get O = E by Banach’s theorem. From this the
equivalence of the semantical models O[[•]] and D[[•]] can readily be derived.

Theorem 5.2.20 O[[•]] = D[[•]] on Lref .

Proof We have O[[s]] = O(s : ε) = E(s : ε) = D(s)(ηid) = D[[s]] for any s ∈ Lref . 2

The previous theorem will be used for the full abstractness result that we discuss in the
remainder of this section. Equality of D[[•]] and O[[•]] implies correctness of D:Lref →
SemRef → Pd with respect to O[[•]] as will be shown in theorem 5.2.29. So, for any two
statements s′, s′′ ∈ Lref ,

D(s′) = D(s′′)⇒ O[[C[s′]]] = O[[C[s′′]]] for all contexts C[•]. (2.3)

We will show the reverse of equation (2.3) by contraposition: for any two statements s′, s′′

in Lref ,

D(s′) 6= D(s′′)⇒ O[[C[s′]]] 6= O[[C[s′′]]] for some context C[•]. (2.4)

The proof of this implication is rather technical. The first observation is that D(s′) 6=
D(s′′) implies D(s′)(η) 6= D(s′′)(η) for some semantical refinement η. It is from this se-
mantical refinement η that we shall construct the context C[•] indicated in equation (2.4).
The main point is to identify a finite part of the semantical entity η on which we can base
the syntactical object C[•].

A second observation pertains to the distance between D(s′)(η) and D(s′′)(η). Since
this distance is non-zero (for otherwise D(s′)(η) and D(s′′)(η) would be equal which they
are not), we have that d(D(s′)(η),D(s′′)(η)) = 2−n for some n ∈ N. We will show that
only actions occurring in the finite sequences of the finite sets D(s′)(η)[n] and D(s′′)(η)[n]
are of interest for this. As a consequence only a finite number of actions a as argument
for η have to be considered and of their outcomes η(a) only a finite initial segment is
important.

Below we will introduce the notion of a finitary semantical refinement which incorpo-
rates these properties. We will argue that for a finitary semantical refinement η there exists
a sequence of action refinements 〈ai ; si〉

k
i=1 which captures sufficiently the role of η. In

fact, it will be the case that the distance between D(s′)(η) and D(s′〈ai ; si〉
k
i=1)(ηid) is

small, and likewise for s′′. On this we will base our further analysis.

First we introduce a means to denote the actions that may occur in a prefix up to a
certain position n in the behavior of a statement s. This is actn(s). The union act(s)
over all positions n is similar to the notion of syntactic sort (see e.g. [160]).

186 CHAPTER 5. ACTION REFINEMENT

Definition 5.2.21 For n ∈ N and s ∈ Stat, the subset actn(s) of Act is inductively given
by

act0(s) = ∅

actn+1(a) = { a }

actn+1(x) = actn+1(g) where g = D(x)

actn+1(s1; s2) = actn+1(s1) ∪ actn(s2)

actn+1(s1 op s2) = actn+1(s1) ∪ actn+1(s2) for op = {2, ‖ }

actn+1(s1〈a ; s2〉) = (actn+1(s1) \ { a }) ∪ actn+1(s2).

The set act(s) ⊆ Act, for s ∈ Stat, is given by act(s) =
⋃

n actn(s).

The idea behind the definition of actn(s) is that it contains at least the actions that occur
in the first n positions in the meaning of s, viz. in O[[s]] or equivalently in D(s)(ηid).
In fact actn(s) contains the alphabet of (O[[s]])[n] but maybe more. The clause for
actn+1(s1; s2) illustrates this most clearly. For example, we have act2((a; b); c) = { a, b, c }
but (O[[(a; b); c]])[2] = { abc }[2] = { ab } which has { a, b } as its alphabet. One can easily
verify by induction on n and wgt(s) that actn(s) is a finite set.

The next lemma states that if two semantical refinements η1, η2 do not differ too
much on the n-th action set of a statement s, the denotational meanings with respect to
the respective semantical refinement do not differ much either. For easier readability we
introduce for n ∈ N the notation p1 =n p2 to denote d(p1, p2) ≤ 2−n and, similarly, η1 =n

η2 on A to denote ∀a ∈ A: d(η1(a), η2(a)) ≤ 2−n for η1, η2 ∈ SemRef and A ⊆ Act. (Note
that by ultrametricity of d, the relation =n is transitive and, moreover, an equivalence
relation.)

Lemma 5.2.22 Let n ∈ N and s ∈ Stat. If η1 =n η2 on actn(s) then D(s)(η1) =n

D(s)(η2), for all η1, η2 ∈ SemRef.

Proof Induction on n.

[0] Trivial. We have that 0 ≤ d(p1, p2) ≤ 1 for all processes p1, p2 in Pd

[n+ 1] Sub-induction on wgt(s). We only present the cases for sequential composition
and action refinement. The other cases are similar or simpler.

[s1; s2] By definition of actn+1(s1; s2) we obtain from the assumption of the lemma

η1(a1) =n+1 η2(a1) and η1(a2) =n+1 η2(a2), hence η1(a2) =n η2(a2)

for any a1 ∈ actn+1(s1) and any a2 ∈ actn(s2). So, by the induction hypotheses
for s1 and n, respectively, we have

D(s1)(η1) =n+1 D(s1)(η2) and D(s2)(η1) =n D(s2)(η2) (2.5)

Therefore

d(D(s1; s2)(η1),D(s1; s2)(η2))

= d(D(s1)(η1);D(s2)(η1),D(s1)(η2);D(s2)(η2))

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 187

≤ [lemma 5.2.13]
max{ d(D(s1)(η1),D(s1)(η2)),

1
2d(D(s2)(η1),D(s2)(η2)) }

≤ [equation (2.5)] max{ 2−(n+1), 12 · 2
−n }

= 2−(n+1)

[s1〈a ; s2〉] Since, by the definition of actn+1(s1〈a ; s2〉), the assumptions imply
that d(η1(a

′), η2(a
′)) ≤ 2−(n+1) for a′ ∈ actn+1(s2), we have

d(D(s2)(η1),D(s2)(η2)) ≤ 2−(n+1)

by the induction hypothesis for s2. From this and the condition on each η1, η2,
we obtain,

d(η1[D(s2)(η1)/a](a
′), η2[D(s2)(η2)/a](a

′)) ≤ 2−(n+1)

for any a′ ∈ actn+1(s1) ⊆ actn+1(s1〈a ; s2〉) ∪ { a }. Therefore, by the induc-
tion hypothesis for s1, we conclude

d(D(s1〈a ; s2〉)(η1),D(s1〈a ; s2〉)(η2))

= d(D(s1)(η1[D(s2)(η1)/a]),D(s1)(η2[D(s2)(η2)/a]))

≤ 2−(n+1)
2

The next two lemmas, viz. lemmas 5.2.23 and 5.2.24, and their immediate consequence
corollary 5.2.25 provide conditions for the interchange of a syntactical refinement se-
quence 〈ai ; si〉

n
i=1 and a variant [pi/ai]

n
i=1 of the current semantical refinement. Lem-

ma 5.2.23 paves the way for an inductive argument based on the number of syntactical
refinements in the sequence 〈ai ; si〉

n
i=1 for lemma 5.2.24. In the situation of lemma 5.2.23

we consider D(s)(η1) versus D(s)(η2) in the metric space Pd. For the proof we make use of
the nonexpansiveness/contractiveness result for the semantical operations as established
in subsection 5.2.2.

Lemma 5.2.23 It holds that D(s)(η1) = D(s)(η2), for s ∈ Stat and η1, η2 ∈ SemRef such
that η1 = η2 on act(s).

Proof Put

ε = sup{ d(D(s)(η1),D(s)(η2)) | η1 = η2 on act(s), s ∈ Stat, η1, η2 ∈ SemRef }

We show, by weight-induction, that d(D(s)(η1),D(s)(η2)) ≤
1
2ε for any s, η1, η2 such that

η1, η2 coincide on act(s). Hence we have that 0 ≤ ε ≤ 1
2ε and thus ε = 0 from which the

lemma follows.
The case for a is trivial. The case for x is straightforward from the induction hy-

pothesis for D(x), the cases s1; s2 and s1 op s2 (with op ∈ {2, ‖ }) can be checked using
lemma 5.2.13. We focus on the refinement statement. Note that act(s1) \ { a }, act(s2) is
a subset of act(s1〈a ; s2〉).

d(D(s1〈a ; s2〉)(η1),D(s1〈a ; s2〉)(η2))

188 CHAPTER 5. ACTION REFINEMENT

≤ [ultrametricity]
max{ d(D(s1)(η1[D(s2)(η1)/a]),D(s1)(η1[D(s2)(η2)/a])),

d(D(s1)(η1[D(s2)(η2)/a]),D(s1)(η2[D(s2)(η2)/a])) }

≤ [D nonexpansive in η, induction hypothesis for s1]
max{ dF (η1[D(s2)(η1)/a], η1[D(s2)(η2)/a]),

1
2ε }

= max{ d(D(s2)(η1),D(s2)(η2)),
1
2ε }

≤ [induction hypothesis for s2] max{ 1
2ε,

1
2ε }

= 1
2ε

2

Recall that the notation 〈ai ; si〉
n
i=1 is used to abbreviate the syntactical refinement

sequence 〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉. In general, for a statement s〈ai ; si〉
n
i=1,

i.e. for s〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉, the order in which the constituent refine-
ments 〈ai ; si〉 occur cannot be changed without altering the meaning of s〈ai ; si〉

n
i=1.

Lemma 5.2.24 provides sufficient conditions to ensure that such interchanging does not
matter. In fact, under the restriction of the lemma, we have that syntactical iterated
refinement coincides with semantical simultaneous refinement. The result will be used for
the transition from a syntactical refinement s〈āi ; s̄i〉

`
i=1 with respect to some η to a

semantical refinement η[p̄i/āi]
`
i=1 for the statement s.

Lemma 5.2.24 Suppose a1, . . . , an ∈ Act are pairwise distinct, and s1, . . . , sn ∈ Stat are
such that act(si) ∩ { a1, . . . , an }= ∅ for 1 ≤ i ≤ n. Then it holds that

D(s〈ai ; si〉
n
i=1)(η) = D(s)(η[pi/ai]

n
i=1)

where pi = D(si)(η) for 1 ≤ i ≤ n.

Proof Induction on n. The case [0] is trivial.

[n+ 1] We have

D(s〈ai ; si〉
n
i=1〈an+1 ; sn+1〉)(η)

= D(s〈ai ; si〉
n
i=1)(η[pn+1/an+1])

= [ind. hyp.] D(s)(η[pn+1/an+1][D(si)(η[pn+1/an+1]/ai]
n
i=1)

Since the action an+1 is not an element of act(si), we have that the refinements
η[pn+1/an+1] and η coincide on act(si). Therefore, by lemma 5.2.23, it follows that
D(si)(η[pn+1/an+1]) = D(si)(η) = pi for 1 ≤ i ≤ n. So

D(s〈ai ; si〉
n
i=1〈an+1 ; sn+1〉)(η)

= D(s)(η[pn+1/an+1][pi/ai]
n
i=1)

= [an+1 6= a1, . . . , an] D(s)(η[pi/ai]
n+1
i=1) 2

As a special case of lemma 5.2.24 we have the following result.

5.2. AN INTERLEAVING MODEL FOR ACTION REFINEMENT 189

Corollary 5.2.25 Suppose āi, a
′
j (1 ≤ i, j ≤ n) are pairwise distinct. Then it holds that

D(s〈āi ; a′i〉
n
i=1)(η) = D(s)(η[η(a

′
i)/āi]

n
i=1).

Proof Since a′j /∈ { ā1, . . . , ān }, 1 ≤ j ≤ n, and ā1, . . . , ān are pairwise distinct we obtain
the result directly from lemma 5.2.24. 2

To facilitate the syntactical representation of a semantical refinement that essentially
involves only finitely many actions we have the following definition. In the case where we
can focus on a fixed and finite set of actions we can assure for any semantical refinement η
the existence of a so-called finitary semantical refinement, say η′, arbitrarily close to η on
this fixed set of actions. This does not hold in general, as the set Act is assumed to be
infinite. (In case the set Act is finite one has to introduce auxiliary actions in order to
deal with iterated versus simultaneous refinements.)

Definition 5.2.26 A semantical refinement η ∈ SemRef is called finitary if the following
conditions are fulfilled:

• for all a ∈ Act it holds that η(a) ⊆ Pf (Act
∗), i.e. η(a) is a finite set of finite

sequences over Act;

• η(a) 6= { a } for finitely many a ∈ Act.

For a finitary semantical refinement η its domain dom(η) is given by

dom(η) = { a ∈ Act | η(a) 6= { a } }

For the full abstractness result (cf. lemma 5.2.28 and theorem 5.2.29) we want to exploit
the relationship between D[[•]] and O[[•]] already established in theorem 5.2.20. As the
definition of D[[•]] is based on the identity refinement ηid the next lemma is useful for the
translation of an arbitrary (finitary) refinement to this origin.

Lemma 5.2.27 Let η ∈ SemRef be a finitary semantical refinement and A ⊆ Act a finite
set of actions. Then there exists, for all n ∈ N, a refinement sequence 〈ai ; si〉

k
i=1 such

that
D(s)(η) =n D(s〈ai ; si〉

k
i=1)(ηid)

for all s ∈ Stat with actn(s) ⊆ A.

Proof For any finite set p = { q1, . . . , qn } of non-empty finite sequences over Act we can
construct a statement stat(p) such that

D(stat(p))(ηid) = p (2.6)

as follows: Put stat(p) = stat′(q1)2· · ·2stat
′(qn) (with association to the right say) where,

for q ∈ Act+, the statement stat′(q) is given by stat′(a) = a and stat′(a q) = a; stat′(q). It
is straightforward (e.g., by simultaneous induction on the number and length of the qi’s)
to show that stat(p) satisfies equation (2.6).

Now let η be a finitary semantical refinement, A a finite set of actions and n a number
in N. Suppose dom(η) = { ā1, . . . , ā` } and η(āi) = p̄i, 1 ≤ i ≤ `. Let B be any finite

190 CHAPTER 5. ACTION REFINEMENT

set of actions such that p̄1, . . . , p̄` ⊆ B∗. Pick a′1, . . . , a
′
` ∈ Act \ (dom(η) ∪ A ∪ B). Note

that Act is infinite whereas dom(η), A and B are finite. Put s̄i = stat(p̄i) for 1 ≤ i ≤ `.
Claim: for s ∈ Stat such that actn(s) ⊆ A it holds that

D(s)(η) =n D(s〈āi ; a′i〉
`
i=1〈a

′
i ; s̄i〉

`
i=1)(ηid)

Proof of the claim: We have

D(s〈āi ; a′i〉
`
i=1〈a

′
i ; s̄i〉

`
i=1)(ηid)

= [lemma 5.2.24] D(s〈āi ; a′i〉
`
i=1)(ηid [p̄i/a

′
i]
`
i=1)

= [corollary 5.2.25, note D(a)(η[p/a]) = p] D(s)(ηid [p̄i/a
′
i]
`
i=1[p̄i/āi]

`
i=1)

= [dom(η) = { ā1, . . . , ā` }] D(s)(η[p̄i/a
′
i]
`
i=1)

Note that { a′1, . . . , a
′
` } ∩ actn(s) = ∅. So, by lemma 5.2.22,

D(s)(η) =n D(s)(η[p̄i/a
′
i]
`
i=1)

and, consequently,

D(s)(η) =n D(s〈āi ; a′i〉
`
i=1〈a

′
i ; s̄i〉

`
i=1)(ηid)

This proves the claim.
So, if we put k = 2` and define ai = āi, a`+i = a′i, si = a′i, s`+i = s̄i for 1 ≤ i ≤ `, we

obtain from the claim
D(s)(η) =n D(s〈ai ; si〉

k
i=1)(ηid)

which was to be shown. 2

By now we have gathered sufficient technical results to prove that two statements that
differ semantically for the model D:Lref → SemRef → Pd can also be distinguished by
the model O[[•]] in some context C[•].

Lemma 5.2.28 If s′, s′′ ∈ Stat satisfy D(s′) 6= D(s′′) then O[[C[s′]]] 6= O[[C[s′′]]] for some
context C[•].

Proof Suppose s′, s′′ are statements with D(s′) 6= D(s′′). Pick η ∈ SemRef such that
D(s′)(η) 6= D(s′′)(η). Let n be such that d(D(s′)(η),D(s′′)(η)) = 2−n. Define the finitary
semantical refinement η′ by

η′(a) =

{
η(a)[n+ 1] if a ∈ actn(s

′, s′′)
{ a } otherwise

Then dom(η′) ⊆ actn(s
′, s′′) and, using lemma 5.2.22, we have

D(s′)(η) =n+1 D(s
′)(η′) and D(s′′)(η) =n+1 D(s

′′)(η′)

Therefore, by ultrametricity, we get

d(D(s′)(η′),D(s′′)(η′)) = 2−n

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 191

Now let, using lemma 5.2.27, 〈ai ; si〉
k
i=1 be a refinement sequence such that

D(s′)(η′) =n+1 D(s
′〈ai ; si〉

k
i=1)(ηid) and

D(s′′)(η′) =n+1 D(s
′′〈ai ; si〉

k
i=1)(ηid)

Again we obtain by ultrametricity

d(D(s′〈ai ; si〉
k
i=1)(ηid),D(s

′′〈ai ; si〉
k
i=1)(ηid)) = 2−n

So, in particular, D(s′〈ai ; si〉
k
i=1)(ηid) 6= D(s

′′〈ai ; si〉
k
i=1)(ηid). By definition of D[[•]]

we thus have
D[[s′〈ai ; si〉

k
i=1]] 6= D[[s

′′〈ai ; si〉
k
i=1]]

from which O[[s′〈ai ; si〉
k
i=1]] 6= O[[s′′〈ai ; si〉

k
i=1]] follows by theorem 5.2.20. Hence,

O[[C[s′]]] 6= O[[C[s′′]]]

if we put C[•] = (•)〈ai ; si〉
k
i=1. 2

Finally we are in a position to finish the plan set out earlier, in order to establish full
abstractness of D.

Theorem 5.2.29 D:Lref → SemRef→ Pd is fully abstract with respect to O[[•]].

Proof Let s1, s2 ∈ Stat and C[•] a Lref -context. If we have D(s1) = D(s2) then by
compositionality D(C[s1]) = D(C[s2]) holds. This means that D(C[s1])(η) = D(C[s2])(η)
holds for all semantical refinements η and in particular for ηid . Thus we have D[[C[s1]]] =
D(C[s1])(ηid) = D(C[s2])(ηid) = D[[C[s2]]], and, by theorem 5.2.20, O[[C[s1]]] = O[[C[s2]]].
If D(s1) 6= D(s2), then, by lemma 5.2.28, it follows that O[[C[s1]]] 6= O[[C[s2]]] for some
context C[•]. Therefore we have, for all s1, s2 ∈ Stat,

D(s1) = D(s2) ⇐⇒ O[[C[s1]]] = O[[C[s2]]] for all Lref -contexts C[•]

Thus D:Lref → SemRef→ Pd is fully abstract with respect to O[[•]]. 2

5.3 Action refinement and probabilistic choice

In this section the applicability of metric techniques for dealing with probability in the
development of an operational and a denotational semantics in the setting of a language
with discrete probabilistic choice and action refinement is studied. The previous section
illustrated how the metric machinery can be used for construction of an operational and
a denotational semantics, establishing correctness of the denotational model with respect
to the operational one and obtaining a full abstractness result. The aim of this section
is to investigate the flexibility of this metric machinery as well as the metric tools for
modeling probabilistic choice developed in chapter 3. To this end the results of chapter 3
and section 5.2 are combined and adapted. It turns out that the various techniques are
indeed orthogonal: replacing nondeterminacy by probability does not affect the proof
methods.

192 CHAPTER 5. ACTION REFINEMENT

In the previous section the language Lref with action refinement and nondeterministic
and parallel composition was treated. The domain of meanings consists of compact sets
of sequences of actions. The denotational semantics given for Lref was shown to be fully
abstract with respect to the operational semantics presented there. The present section,
devoted to the process language Lpr , seeks to adapt these results from a nondeterministic
framework to a probabilistic one. The constructs of nondeterministic and parallel com-
position of Lref are removed and probabilistic choice is added in Lpr . Now, probability
measures of compact support over sequences of actions are used as semantical objects,
but the results in this section show that essentially the metrical instruments, such as the
use of Banach’s fixed point theorem, obtaining equality by reasoning about distances and
the method of proving full abstraction as introduced in [112] and used in the previous
section, remain the same. Moreover, our analysis illustrates that the techniques used in
the previous section to deal with action refinement may be mixed with other elements of
the metric approach.

In chapter 1 related work in the area of probabilistic choice was discussed. Several
papers deal with full abstractness in a setting with probabilistic choice. In [147], extending
the earlier [142], a full abstractness result is obtained for a metric denotational model with
respect to a variant of probabilistic bisimulation as proposed by [149]. The semantical
interpretation of probability in [147] is based on a different quantitative paradigm than
the one of the present section, namely worst-case best-case intervals. Moreover, the
denotational semantics is developed ad hoc and does not appeal to a general methodology
of constructing operational and denotational semantics. In [28] a metric denotational
semantics for an extension of CCS with action guarded probabilistic choice is shown to be
fully abstract with respect to probabilistic bisimulation. The present section establishes
full abstraction with respect to an operational model. Identification of bisimilar processes
(here for probabilistic bisimulation à la Larsen and Skou) is automatic when working with
metric domains obtained as final coalgebras of contracting functors (cf. [180, 191, 110]).
The domains in this section can be obtained in this way. The papers [57, 168, 99] deal
with fully abstract models for probabilistic choice in the setting of testing semantics.

The remainder of this section is organized as follows. The language Lpr and its
operational semantics are introduced in subsection 5.3.1, while subsection 5.3.2 is devoted
to the denotational semantics D for Lpr . The correctness of the model D with respect to
the semantics O is subject of subsection 5.3.3, while the full abstraction result is discussed
in subsection 5.3.4.

5.3.1 Syntax and operational semantics of Lpr

In this subsection we introduce the process language Lpr and present its operational
semantics O. The model O will serve as a point of reference for our understanding
of Lpr and for the semantical considerations in later subsections. We start with the
syntax for Lpr . As usual Act and PVar denote the set of actions and procedure variables
respectively. Again the set Act is assumed to be infinite. (As in the previous section, the
full abstractness result requires that a fresh action from outside some given finite set of
actions can always be picked.)

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 193

Definition 5.3.1

(a) The set of statements Stat, ranged over by s, is given by

s ::= a | x | s; s | s⊕ρ s | s〈a ; s〉

with 0< ρ < 1.

(b) The set of guarded statements GStat, ranged over by g, is given by

g ::= a | g; s | g ⊕ρ g | g〈a ; g〉

with 0< ρ < 1.

(c) The set of declarations Decl, ranged over by D, is given by

Decl = PVar→ GStat

(d) The language Lpr is given by

Lpr = Decl× Stat

The language Lpr contains the usual ingredients of abstract, uninterpreted actions a, se-
quential composition s1; s2 and recursion via procedure variables. More specific construc-
tions in Lpr are the construction of probabilistic choice s1 ⊕ρ s2 and of action refinement
s1〈a ; s2〉.

The intuition behind the construct s1⊕ρ s2 (see chapter 3) is that upon its execution,
with probability ρ the alternative s1 is taken, and with the complementary probability 1−ρ
the alternative s2 is executed. The idea underlying action refinement (see section 5.2) is
that in s1〈a ; s2〉 the actions of s1 are performed, but with the execution of s2 replacing
the execution of actions a of s1. So, for example, a ⊕ 1

4
(b; c) delivers, on the average, in

25% of the cases a and in 75% the sequence bc. Instead ((a⊕ 1
4
(b; c))〈a ; b; d〉)〈c ; d〉

will yield bd for all of its executions.
The body of a procedure variable is given by a declaration in Decl. As usual a fixed

declaration D is assumed and dropped from the notation.

As in the transition system Tref, the transition system for Lpr makes use of refinement
sequences in order to keep track of the relevant action refinements. Refinement sequences
are as in the previous section but are now based on statements in Lpr . Resumptions are
also similar.

Definition 5.3.2

(a) The class RefSeq of refinement sequences, ranged over by R, is given by

R ::= ε | 〈a ; s〉R

(b) The class Res of resumptions, ranged over by r, is given by

r ::= E | s : R | r; r | r ⊕ρ r

194 CHAPTER 5. ACTION REFINEMENT

Below we also employ the notation 〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉 for arbitrary
refinement sequences, and the notion R 〈a ; s〉 for nonempty refinement sequences. A
configuration of the transition system is a resumption with a declaration, thus Conf =
Decl×Res. The declaration part is suppressed in the notation. A transition label is either
an action in Act or a ratio in (0, 1), i.e. Lab = Act ∪ (0, 1).

Recall that r1→0 r2 is a shorthand notation for the rule

r2
λ
→ r

r1
λ
→ r

Definition 5.3.3 The transition system Tpr is given by Tpr = (Conf, Lab, → , Spec)
where Spec contains the following axioms and rules:

• a : ε
a
→ E (Act 1)

a : 〈a′ ; s′〉 ·R →0 s
′ : R if a = a′ (Act 2)

a : 〈a′ ; s′〉 ·R →0 a : R if a 6= a′ (Act 3)

• x : R →0 D(x) : R (Rec)

• (s1 op s2) : R →0 (s1 : R) op (s2 : R) for op ∈ {; ,⊕ρ} (Op)

• s〈a′ ; s′〉 : R →0 s : 〈a
′ ; s′〉 ·R (Ref)

•

r1
λ
→ r′1

r1; r2
λ
→ r′1; r2

(Seq)

where r′1; r2 should be read as r2 if r
′
1 = E.

• r1 ⊕ρ r2
ρ
→ r1 r1 ⊕ρ r2

1−ρ
−→ r2 (PChoice 1,2)

The axiom and rules dealing with action refinement, recursion and sequential composition
are as in the previous section but now referring to configurations and labels for Tpr. The
axiom (Act 1) and rules (Act 2) and (Act 3) reflect the stack-like bookkeeping for action
refinement. The leftmost component of a refinement sequence applies, if the action to be
refined, viz. a′, matches the action in the control part of the resumption, viz. a; otherwise
the action refinement is skipped. If no action refinement is left on the stack, i.e. the
refinement sequence in the resumption is the empty sequence ε, the action a itself is
executed as indicated by the label a ∈ Act ⊆ Lab of the axiom (Act 1).

Procedure variables are handled by means of body replacement. Sequential and prob-
abilistic composition in the control part of a resumption, i.e. for resumptions of the
format (s1 op s2) : R, distribute over the pair-constructor : of resumptions ‘yielding’
(s1 : R) op (s2 : R). Similarly, an action refinement s〈a′ ; s′〉 in the control part of
a resumption s〈a′ ; s′〉 : R amounts to an update of the refinement sequence of the

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 195

resumption, where the action refinement 〈a′ ; s′〉 is prefixed to the sequence R. A
sequential composition of resumptions is handled as usual.

A probabilistic choice between resumptions is resolved by selection of one of the prob-
abilistic alternatives while delivering the probability of the alternative as a label ρ or 1−ρ
in the open interval (0, 1) ⊆ Lab. A similar treatment of probabilistic choice can be found
in sections 4.3 and 4.4.

Examples 5.3.4 Consider the resumption (a⊕ 1
4
(b; c)) : ε. Since

(a : ε)⊕ 1
4
((b; c) : ε)

1
4→ (a : ε)

by (PChoice 1), we have

(a⊕ 1
4
(b; c)) : ε

1
4→ a : ε.

Similarly, since

(a : ε)⊕ 1
4
((b; c) : ε)

3
4→ ((b; c) : ε)

by (PChoice 2), we have

(a⊕ 1
4
(b; c)) : ε

3
4→ (b; c) : ε

For the resumption (((a⊕ 1
4
(b; c))〈a ; b; d〉)〈c ; d〉) : ε we have, applying the shorthand

of the →0 -notation, for example

(((a⊕ 1
4
(b; c))〈a ; b; d〉)〈c ; d〉) : ε

→0 ((a⊕ 1
4
(b; c))〈a ; b; d〉) : 〈c ; d〉 by (Ref)

→0 (a⊕ 1
4
(b; c)) : 〈a ; b; d〉〈c ; d〉 by (Ref)

→0 (a : 〈a ; b; d〉〈c ; d〉)⊕ 1
4
((b; c) : 〈a ; b; d〉〈c ; d〉) by (Op)

1
4→ a : 〈a ; b; d〉〈c ; d〉 by (PChoice 1)

In turn, considering the resumption a : 〈a ; b; d〉〈c ; d〉 we have

a : 〈a ; b; d〉〈c ; d〉

→0 (b; d) : 〈c ; d〉 by (Act 2)

→0 (b : 〈c ; d〉); (d : 〈c ; d〉) by (Op)

→0 (b : ε); (d : 〈c ; d〉) by (Act 3),(Seq)

b
→ d : 〈c ; d〉 by (Act 1),(Seq)

The complexity function wgt is defined for statements and resumptions.

196 CHAPTER 5. ACTION REFINEMENT

Definition 5.3.5

(a) The function wgt:Lref → N is given by

wgt(a) = 1

wgt(s1; s2) = wgt(s1) + 1

wgt(s1 ⊕ρ s2) = wgt(s1) + wgt(s2) + 1

wgt(s1〈a ; s2〉) = wgt(s1) + wgt(s2) + 1

wgt(x) = wgt(D(x)) + 1

(b) The function wgt:Res→ N is given by

wgt(E) = 0
wgt(s : 〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉)

= wgt(s) + wgt(s1) + wgt(s2) + · · · + wgt(sn)
wgt(r1; r2) = wgt(r1) + 1

wgt(r1 ⊕ρ r2) = wgt(r1) + wgt(r2) + 1

Below we will adopt the notation r ⇒ ρr1 + (1 − ρ)r2 in case both r
ρ
→ r1 and r

1−ρ
−→ r2.

Here it is not necessarily the case that r equals r1 ⊕ρ r2 (cf. examples 5.3.4). Note that
this notation expresses a property similar to the property expressed by s⇒ T introduced
in chapter 4 (see definition 4.4.7). For ease of notation, the fact that a probabilistic choice
in Tpr always has two options is exploited here.

A first application of wgt-induction is the following structural property of the transition
system.

Lemma 5.3.6 For all r ∈ Res exactly one of the following cases holds:

• r = E

• r
a
→ r′ for some a ∈ Act, r′ ∈ Res

• r ⇒ ρr′ + (1− ρ)r′′ for some r′, r′′ ∈ Res and ρ ∈ (0, 1)

Proof We only consider the cases for a sequential composition of resumptions. The other
cases are straightforward. Suppose r = r1; r2. Note, r1 6= E. As wgt(r1) < wgt(r) we

have by the induction hypothesis that either r1
a
→ r′1 or r1 ⇒ ρr′1⊕ (1− ρ)r′′1 . Therefore,

by (Seq), r1; r2
a
→ r′1; r2 or r1; r2 ⇒ ρ(r′1; r2) + (1 − ρ)(r′′1 ; r2). From inspection of the

transition system we obtain that, for a resumption of the format of r only rule (Seq)

of the transition system applies. Hence, if r
λ
→ r′ then there exist r1, r2, r

′
1 such that

r = r1; r2, r1
λ
→ r′1 and r′ ≡ r′1; r2 from which it follows that exactly one of the three cases

above holds for a sequential composition of resumptions. 2

The lemma above states that a resumption is either a terminating resumption (i.e. r ≡

E), a deterministic resumption (i.e. ∃a, r′: r
a
→ r′), or a probabilistic resumption (i.e.

∃ρ, r′, r′′: r ⇒ ρr′ + (1 − ρ)r′′). This fact is exploited in the definition of the opera-
tional model O for Lpr .

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 197

Definition 5.3.7

(a) The operational domain Po is given by Po =M(Act∞).

(b) The semantical mapping O:Res→ Po is given by

O(E) = ∆ε

O(r) = O(r′)/a if r
a
→ r′

O(r) = ρO(r′) + (1− ρ)O(r′′) if r ⇒ ρr′ + (1− ρ)r′′

(c) The operational semantics O[[•]]:Stat→ Po is given by

O[[s]] = O(s : ε)

The meaning of a program in Lpr is given as a probability measure over finite and infinite
sequences of actions. This is the same domain as used in chapter 3. The operational
model O is defined based on Tpr split in the three cases of terminating, deterministic and
probabilistic transitions. The operational semantics O[[•]] gives the process corresponding
to the execution starting with the empty refinement sequence.

Examples 5.3.8

(a) O((a⊕ 1
4
(b; c)) : ε)

= 1
4O(a : ε) + 3

4O((b; c) : ε)

as (a⊕ 1
4
(b; c)) : ε ⇒ 1

4 (a : ε) + 3
4 ((b; c) : ε)

= 1
4 (O(E)/a) + 3

4 (O(c : ε)/b) as a : ε
a
→E and (b; c) : ε

b
→ c : ε

= 1
4 (∆ε/a) +

3
4 ((∆ε/c)/b) as O(E) = ∆ε and c : ε

c
→E

= 1
4∆a +

3
4∆bc

(b) O((((a⊕ 1
4
(b; c))〈a ; b; d〉)〈c ; d〉) : ε)

= 1
4O(a : 〈a ; b; d〉〈c ; d〉) + 3

4O((b; c) : 〈a ; b; d〉〈c ; d〉)

as (a⊕ 1
4
(b; c))〈a ; b; d〉〈c ; d〉 ⇒

1
4 (a : 〈a ; b; d〉〈c ; d〉) + 3

4 ((b; c) : 〈a ; b; d〉〈c ; d)〉

= 1
4 (O(d : 〈c ; d〉)/b) + 3

4 (O(c : 〈a ; b; d〉〈c ; d〉)/b)

as a : 〈a ; b; d〉〈c ; d〉
b
→ d : 〈c ; d〉

and (b; c) : 〈a ; b; d〉〈c ; d〉
b
→ c : 〈a ; b; d〉〈c ; d〉

= 1
4 ((O(E)/d)/b) + 3

4 ((O(E)/d)/b)

as d : 〈c ; d〉
d
→E and c : 〈a ; b; d〉〈c ; d〉

d
→E

= 1
4∆bd +

3
4∆bd

= ∆bd

198 CHAPTER 5. ACTION REFINEMENT

(c) Next we compute O(x : ε) where D(x) = a ⊕ 1
2
(a;x). For this it turns out to be

convenient to exploit the metric foundation of O. On the one hand we have

O(x : ε) = 1
2 (O(ε)/a) + 1

2 (O(x : ε)/a) (3.7)

On the other hand we have for the probability measure p ∈ M(Act∞) given by p =
1
2∆a +

1
4∆aa +

1
8∆aaa + · · · =

∑∞
n=1

1
2

n
∆an that p satisfies

p = 1
2∆a +

1
2 (p/a) (3.8)

We claim that O(x : ε) = p. This can be shown by the following metric argument:

d(O(x : ε), p)

= [equations (3.7), (3.8)] d(12∆a +
1
2 (O(x : ε)/a), 12∆a +

1
2 (p/a)

= max{ d(∆a,∆a), d(O(x : ε)/a, p/a) }

= 1
2d(O(x : ε), p)

We conclude that d(O(x : ε), p) = 0 and hence, since M(Act∞) is a metric space,
that O(x : ε) = p.

Due to its recursive nature, definition 5.3.7 needs further justification. As usual this is
done using a contractive higher-order transformation Φ:Sem→ Sem.

Lemma 5.3.9 Put Sem = Res→ Po and let S range over Sem. The higher-order trans-
formation Φ:Sem→ Sem is given by

Φ(S)(E) = ∆ε

Φ(S)(r) = S(r′)/a if r
a
→ r′

Φ(S)(r) = ρΦ(S)(r′) + (1− ρ)Φ(S)(r′′) if r ⇒ ρr′ + (1− ρ)r′′

Then Φ has a unique fixed point, and therefore there is exactly one function O in Sem
which satisfies the equations in definition 5.2.8.

Proof Well-definedness of Φ follows from the fact that wgt(r′),wgt(r′′)<wgt(r) if r ⇒
ρr′ + (1− ρ)r′′. In order to show 1

2 -contractiveness of Φ we check

d(Φ(S1)(r),Φ(S2)(r)) ≤
1
2d(S1, S2)

for arbitrary S1, S2 ∈ Sem by distinguishing three cases. The case for E is clear.

[r
a
→ r′] d(Φ(S1)(r),Φ(S2)(r))

= d(S1(r
′)/a, S2(r

′)/a)

= 1
2d(S1(r

′), S2(r
′))

≤ [definition d on Sem] 1
2d(S1, S2)

[r ⇒ ρr′ + (1− ρ)r′′] d(Φ(S1)(r),Φ(S2)(r))

= d(ρΦ(S1)(r
′) + (1− ρ)Φ(S1)(r

′′), ρΦ(S2)(r
′) + (1− ρ)Φ(S2)(r

′′))

= max{ d(Φ(S1)(r
′),Φ(S2)(r

′)), d(Φ(S1)(r
′′),Φ(S2)(r

′′)) }

≤ [induction hypothesis on r′, r′′] 1
2d(S1, S2)

2

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 199

5.3.2 Denotational semantics

In this subsection a denotational semantics for Lpr is developed. As in the previous
section, the denotational model is constructed using semantical operations ; and ⊕ρ

to find the meaning of programs built with the syntactical operators ; and ⊕ρ. As in
the previous section semantical refinements are used to deal with action refinement. A
semantical refinement yields, for a given action, a process representing the meaning of the
action. The process representing an action is a denotational process in the domain Pd.
First the domain Pd and the operations on this domain are introduced. Then the notion
of semantical refinement is given along with the definition of the denotational model D
and denotational semantics D[[•]].

Definition 5.3.10 The domain of denotational processes Pd is given by Pd = M(Qd)
where Qd = Act∞ \ {ε}.

The meta variables p and q are used to range over Pd and Qd, respectively. Like the
operational domain Po, the domain Pd is based on sequences of actions. The only difference
is that the empty sequence is excluded. This restriction to measures over nonempty words
is necessary for proving lemma 5.3.15 which is in turn crucial for the justification of the
model D trough the fixed point characterization. We have that every element in Pd can
be written in one of the following three forms:

• the indicator function ∆a for some a ∈ Act

• p/a for some a ∈ Act, p ∈ P

•

∑m
i=1 ρipi for ρi ∈ (0, 1), pi = ∆ai or pi = p′i/ai with ai ∈ Act, p′i ∈ P and∑m
i=1 ρi = 1

The fact that a finite combination in the third clause for the representation of elements
in Pd suffices, follows from the observation that in Pd only measures of compact support
are considered.

Next we provide semantical counterparts of the syntactical construction of the sequen-
tial and probabilistic compositions ; and ⊕ρ.

Definition 5.3.11

(a) The semantical operation ; :Pd × Pd → Pd is given by

∆a; p = p/a

(p/a); p′ = (p; p′)/a

(
∑m

i=1 ρipi); p
′ =

∑m
i=1 ρi(pi; p

′)

(b) The semantical operation ⊕ρ:Pd × Pd → Pd, for ρ ∈ (0, 1), is given by

p⊕ρ p
′ = (ρp) + ((1− ρ)p′)

200 CHAPTER 5. ACTION REFINEMENT

Note that the definition of ; in the first clause of this definition uses the characterization
of processes introduced in 5.3.2 above. The definition of ⊕ρ in the second clause simply
uses scalar multiplication and addition of functions. (Recall that a measure p is a function
to [0, 1].)

The recursive definition of ; is justified by showing that ; is the unique fixed point of
a higher-order transformation Ω;.

Lemma 5.3.12 Put Op = Pd × Pd → Pd. Define the higher-order transformation
Ω;:Op→ Op by

Ω;(φ)(∆a, p
′) = p′/a

Ω;(φ)(p̄/a, p
′) = φ(p̄, p′)/a

Ω;(φ)(
∑m

i=1 ρipi, p
′) =

∑m
i=1 ρiΩ;(φ)(pi, p

′)

Then Ω; is well-defined and
1
2 -contractive and thus has a unique fixed point. There is,

therefore, exactly one function ; ∈ Op which satisfies the equations in definition 5.3.11.

Proof Well-definedness of Ω; is clear. In the third clause each pi is either of the format
pi = ∆ai or pi = p̄i/ai, which are covered by the other clauses.

To show that Ω; is contractive we prove, for arbitrary φ1, φ2 ∈ Op, p, p′ ∈ Pd,

d(Ω;(φ1)(p, p
′),Ω;(φ2)(p, p

′)) ≤ 1
2d(φ1, φ2)

from which, by the definition of d on Op, it follows that d(Ω;(φ1),Ω;(φ2)) ≤
1
2d(φ1, φ2).

We distinguish three cases:

[a] d(Ω;(φ1)(a, p
′),Ω;(φ2)(a, p

′)) = d(p′/a, p′/a) = 0

[p̄/a] d(Ω;(φ1)(p̄/a),Ω;(φ2)(p̄/a))

= d(φ1(p̄, p
′)/a, φ2(p̄, p

′)/a)

= 1
2d(φ1(p̄, p

′), φ2(p̄, p
′))

≤ 1
2d(φ1, φ2)

[
∑m

i=1 ρipi] d(Ω;(φ1)(
∑m

i=1 ρipi, p
′),Ω;(φ2)(

∑m
i=1 ρipi, p

′))

= d(
∑m

i=1 ρiΩ;(φ1)(pi, p
′),
∑m

i=1 ρiΩ;(φ2)(pi, p
′))

≤ max{ d(Ω;(φ1)(pi, p
′),Ω;(φ2)(pi, p

′) | i ∈ { 1, . . . n } }

≤ [previous cases] 1
2d(φ1, φ2) 2

A semantical refinement specifies how an action should be refined by giving the meaning
of an action as a denotational process. The denotational model D uses a semantical refine-
ment as an extra argument. The denotational semantics D[[•]] does not use this additional
argument but instead starts with the ‘identity refinement’. The identity refinement yields,
for a given action a, the processes that executes only the action a with a probability of 1.

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 201

Definition 5.3.13 Let the collection SemRef of semantical refinements, ranged over by η,
be given by SemRef = Act → Pd. In particular we distinguish ηid ∈ SemRef such that
ηid (a) = ∆a for all a ∈ Act. The semantical mapping D:Lpr → SemRef→ Pd is given by

D(a)(η) = η(a)
D(s; s′)(η) = D(s)(η);D(s′)(η)

D(s⊕ρ s
′)(η) = D(s)(η)⊕ρ D(s

′)(η)
D(s〈a ; s′〉)(η) = D(s)(η[D(s′)(η)/a])

D(x)(η) = D(D(x))(η)

The denotational semantics D[[•]]:Lpr → Pd is given by D[[s]] = D(s)(ηid).

Note that definition 5.3.13 does not go by structural induction (cf. the clause for x) nor
does it go by wgt-induction (cf. the clause for s; s′). We first provide some examples of D
before delving into the well-definedness of D.

Examples 5.3.14

(a) D(a⊕ 1
4
(b; c))(ηid)

= D(a)(ηid)⊕ 1
4
D(b; c)(ηid)

= 1
4ηid(a) +

3
4 (D(b)(ηid);D(c)(ηid))

= 1
4∆a +

3
4 (ηid (b); ηid (c))

= 1
4∆a +

3
4 (∆b;∆c)

= 1
4∆a +

3
4 (∆bc)

(b) D(((a⊕ 1
4
(b; c))〈a ; b; d〉)〈c ; d〉)(ηid)

= D((a⊕ 1
4
(b; c))〈a ; b; d〉)(ηid [D(d)(ηid)/c])

= D((a⊕ 1
4
(b; c))〈a ; b; d〉)(ηid [∆d/c])

= D((a⊕ 1
4
(b; c))(ηid [∆d/c][D(b; d)(ηid [∆d/c])/a]))

= . . .

= D(a⊕ 1
4
(b; c))(ηid [∆d/c,∆bd/a])

= 1
4D(a)(ηid [∆d/c,∆bd/a]) +
3
4D(b; c)(ηid [∆d/c,∆bd/a])

= . . .

= 1
4∆bd +

3
4 (∆b;∆d)

= 1
4∆bd +

3
4∆bd

= ∆bd

(c) Suppose D(x) = a⊕ 1
2
(a;x). On the one hand we have

D(x)(ηid)

202 CHAPTER 5. ACTION REFINEMENT

= D(a⊕ 1
2
(a;x))(ηid)

= 1
2D(a)(η) +

1
2 (D(a)(ηid);D(x)(ηid))

= 1
2∆a +

1
2 (D(x)(ηid)/a)

On the other hand we have for p =
∑∞

i=1 (
1
2)

n
∆an that p =

1
2∆a +

1
2 (p/a). Hence, as

for the same example in the context of subsection 5.3.1, we have

d(D(x)(ηid), p)

= d(12∆a +
1
2 (D(x)(ηid)/a),

1
2∆a +

1
2 (p/a))

≤ max{ d(∆a,∆a), d(D(x)(ηid)/a, p/a) }

= 1
2d(D(x)(ηid), p)

Therefore, d(D(x)(ηid), p) = 0 and D(x)(ηid) =
∑∞

i=1 (
1
2)

n
∆an .

We first establish some nonexpansiveness/contractivity properties and distributivity re-
sults of the semantical operations that are needed for the justification of the definition
of D in the sequel.

Lemma 5.3.15

(a) The semantical operation ⊕ρ is nonexpansive for all ρ ∈ (0, 1).

(b) The semantical operation ; is nonexpansive in its first argument and 1
2 -contractive in

its second argument.

Proof Nonexpansiveness of the operation ⊕ρ is straightforward. For the sequential
composition we use the same approach as in lemma 3.4.11. Define the subset Op0 ⊆ Op
by φ ∈ Op0 ⇐⇒ d(φ(p, p′′), φ(p′, p′′)) ≤ d(p, p′) ∧ d(φ(p, p′), φ(p, p′′)) ≤ 1

2d(p
′, p′′).

Note that Op0 ⊆ Op is a nonempty and closed subset. We check that φ ∈ Op0 implies
Ω;(φ) ∈ Op0. This implies that the fixed point ; of Ω; must also be in Op0.

Pick any φ ∈ Op0 and choose arbitrary p, p′, p′′ ∈ Pd. We verify the inequality
d(Ω;(φ)(p, p

′′),Ω;(φ)(p
′, p′′)) ≤ d(p, p′). Without loss of generality (leaving the details to

the reader) we can assume d(p, p′)< 1
2 . We distinguish three cases.

[p = ∆a, p
′ = ∆a] Clear.

[p = p̄/a, p′ = p̄′/a] We have that d(p, p′) = 1
2d(p̄, p̄

′).

d(Ω;(φ)(p, p
′′),Ω;(φ)(p

′, p′′))

= d(φ(p̄, p′)/a, φ(p̄′, p′′)/a)

= 1
2d(φ(p̄, p

′′), φ(p̄′, p′′))

≤ [property φ] 1
2d(p̄, p̄

′)

= d(p, p′)

[p =
∑m

i=1 ρipi, p
′ =

∑m
i=1 ρip

′
i] Note that, for i, 1 ≤ i ≤ m, pi, p

′
i are either both of the

format pi = ∆ai , p
′
i = ∆ai or both of the format pi = p̄i/ai, p

′
i = p̄′i/ai.

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 203

d(Ω;(φ)(p, p
′′),Ω;(φ)(p

′, p′′))

= d(
∑m

i=1 ρiΩ;(φ)(pi, p
′′),
∑m

i=1 ρiΩ;(φ)(p
′
i, p

′′))

= max{ d(Ω;(φ)(pi, p
′′),Ω;(φ)(p

′
i, p

′′)) | i = 1, . . .m }

≤ [earlier cases] d(p, p′)

We conclude that d(Ω;(φ)(p, p
′′),Ω;(φ)(p

′, p′′)) ≤ d(p, p′). Similarly, one can prove that
d(Ω;(φ)(p, p

′),Ω;(φ)(p, p
′′)) ≤ 1

2d(p
′, p′′). 2

The results gathered so far are sufficient to justify the denotational model D by showing
that D it is the unique fixed point of a contractive higher order transformation Ψ. This
justification is omitted, see e.g. lemmas 3.4.13 and 5.2.16 for similar results. Next we
establish that the operation probabilistic composition distributes over the operation se-
quential composition. This fact will be used in the next subsection to show the correctness
of the denotational model.

Lemma 5.3.16 For all p, p′, p′′ ∈ Pd it holds that (p⊕ρ p
′); p′′ = (p; p′′)⊕ρ (p

′; p′′).

Proof Suppose p =
∑m

i=1 ρipi, p
′ =

∑n
j=1 σjp

′
j . Then, for any ρ ∈ (0, 1),

(p⊕ρ p
′); p′′

= ((
∑m

i=1(ρρi)pi) + (
∑n

j=1((1− ρ)σj)p
′
j)); p

′′

= (
∑m

i=1(ρρi)(pi; p
′′)) + (((1− ρ)σj)(p

′
j ; p

′′))

= ρ(
∑m

i=1 ρi(pi; p
′′)) + (1− ρ)(

∑n
j=1 σj(p

′
j ; p

′′))

=
(
ρ(p; p′′)

)
+
(
(1− ρ)(p′; p′′)

)

= (p; p′′)⊕ρ (p
′; p′′) 2

5.3.3 Correctness

In this subsection we will establish the correctness of the denotational semantics D for Lpr
with respect to its operational model O[[•]]. As the functionality of D differs form that
of O, viz. D:Lpr → SemRef → M(Act∞ \ {ε}) versus O:Res → M(Act∞) we will use
an intermediate function E that is based on D for its definition, but agrees with O for
its functionality. The main lemma of this section, lemma 5.3.18, exploits Banach’s fixed
point theorem to show that O and E in fact coincide.

As in the previous section a mechanism to combine syntactical refinement sequences
R ∈ RefSeq and semantical refinements η ∈ SemRef is given.

Lemma 5.3.17 Let the function • . •:RefSeq × SemRef → SemRef be inductively given
by

ε . η = η

(R 〈a ; s〉) . η = R . η[D(s)(η)/a]

Then it holds that

204 CHAPTER 5. ACTION REFINEMENT

(a) D(s〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉)(η)
= D(s)(〈a1 ; s1〉〈a2 ; s2〉 · · · 〈an ; sn〉 . η)

(b) D(s1〈a ; s2〉)(R . η) = D(s1)((〈a ; s2〉R) . η)

Next we present the intermediate semantical mapping E and prove that E is a fixed point
of the higher order transformation Φ of lemma 5.3.9. Since, by Banach’s fixed point
theorem, Φ has exactly one fixed point —which is O— it follows that O = E . The
definition of E makes both use of the denotational semantics D, for resumptions of the
format s : R, and of the semantical operations defined on the domain Pd, for resumptions
of the format r1 op r2 where op is either a sequential or a probabilistic operator.

Lemma 5.3.18 Let the mapping E :Res→M(Act∞) be given as follows:

E(E) = ∆ε

E(s : R) = D(s)(R . ηid)

E(r1 op r2) = E(r1) op E(r2) for op ∈ {;,⊕ρ}

Then it holds that Φ(E) = E.

Proof It is straightforwardly checked that E(r) ∈ Pd for r 6= E, hence E is well-defined.
We prove that Φ(E) = E by weight-induction for resumptions. We only treat the cases
for sequential composition and probabilistic choice. The other cases are the same as in
lemma 5.2.19.

[r1; r2] Suppose r1
a
→ r′1. Then r1; r2

a
→ r′1; r2.

Φ(E)(r1; r2)

= [transition rule (Seq)] E(r′1; r2)/a

=
(
E(r′1); E(r2)

)
/a

= [definition ;] (E(r′1)/a); E(r2)

= [definition Φ] Φ(E)(r1); E(r2)

= [induction hypothesis for r1] E(r1); E(r2)

= [definition E] E(r1; r2)

Suppose r1 ⇒ ρr′1 + (1− ρ)r′′1 . Then r1; r2 ⇒ ρ(r′1; r2) + (1− ρ)(r′′1 ; r2).

Φ(E)(r1; r2)

= [definition Φ] ρΦ(E)(r′1; r2) + (1− ρ)Φ(E)(r′′1 ; r2)

= [induction hypothesis] ρE(r′1; r2) + (1− ρ)E(r′′1 ; r2)

= [definition of E] ρ
(
E((r′1); E(r2)

)
+ (1− ρ)

(
E(r′′1); E(r2)

)

= [lemma 5.3.16]
(
ρE(r′1) + (1− ρ)E(r′′1)

)
; E(r2)

= [definition Φ] Φ(E)(r1); E(r2)

= [induction hypothesis for r1] E(r1); E(r2)

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 205

= [definition E] E(r1; r2)

[r1 ⊕ρ r2] Φ(E)(r1 ⊕ρ r2)

= [transition rules (PChoice)] ρE(r1) + (1− ρ)E(r2)

= E(r1)⊕ρ E(r2)

= E(r1 ⊕ρ r2) 2

From the lemma we immediately obtain the correctness result for the denotational se-
mantics D for Lpr .

Theorem 5.3.19 For all s ∈ Lpr ,O[[s]] = D(s)(ηid) on Lpr .

Proof We have O[[s]] = O(s : ε) = E(s : ε) = D(s)(ηid) for any s ∈ Lpr . 2

5.3.4 Full abstractness

In this subsection we establish for the semantical mapping D:Lpr → SemRef → Pd full
abstraction with respect to O[[•]], i.e. we will show, for any s1, s2 ∈ Lpr , that

D(s1) = D(s2) ⇐⇒ O[[C[s1]]] = O[[C[s2]]]for all contexts C[•]

The approach is the same as in subsection 5.2.3. The discussion here is restricted to the
general outline of the technique and to the particularities for the probabilistic setting
of Lpr . The route to the main technical lemma of this section, namely lemma 5.3.26,
passes the following ideas:

• If a statement s has denotations with respect to the semantical refinements η1, η2
of distance 2−(n+1) then the semantical refinements η1, η2 have a distance of at
least 2−(n+1) on the collection of the first n actions occurring in any run of s.

• A finitary semantical refinement, i.e. a semantical refinement which delivers ∆a for
all actions a except for finitely many actions for which a measure is returned which
assigns all probability to a finite set of finite sequences, can be represented by a
syntactical refinement sequence.

We start with a definition for actn(s) which indicates the first n actions that may occur
in a run of a statement s.

Definition 5.3.20 For n ∈ N and s ∈ Stat, the subset actn(s) of Act is inductively given
as in definition 5.2.21 except for

actn+1(s1 ⊕ρ s2) = actn+1(s1) ∪ actn+1(s2)

The set act(s) ⊆ Act is given by act(s) =
⋃

n actn(s).

The next lemma handles the first idea for the full abstractness theorem below.

Lemma 5.3.21 Let n ∈ N and s ∈ Stat. If d(η1, η2) ≤ 2−n on actn(s) then it holds that
d(D(s)(η1),D(s)(η2)) ≤ 2−n, for all η1, η2 ∈ SemRef.

206 CHAPTER 5. ACTION REFINEMENT

Proof Induction on n and subinduction on wgt(s). In order to illustrate a typical
argument, we exhibit the subcase for s1⊕ρ s2 in the case for n+1: If d(η1, η2) ≤ 2−(n+1)

on actn+1(s1 ⊕ρ s2), then, since actn+1(s1 ⊕ρ s2) = actn+1(s1) ∪ actn+1(s2), we have
that d(η1, η2) ≤ 2−(n+1) on actn+1(s1, s2). Thus, it follows that d(D(si)(η1),D(si)(η2)) ≤
2−(n+1) for i = 1, 2, by the induction hypothesis for s1 and s2. By compositionality of D
and nonexpansiveness of ⊕ρ, we obtain

d(D(s1 ⊕ρ s2)(η1),D(s1 ⊕ρ s2)(η2))

≤ max{ d(D(s1)(η1),D(s1)(η2)), d(D(s2)(η1),D(s2)(η2)) }

≤ 2−(n+1)
2

The following lemma prepares for the second idea for theorem 5.3.27 as reflected by
lemma 5.3.25 by showing that only the refinement of actions in act(s) matters in finding
the denotational meaning of a program s.

Lemma 5.3.22 For all s ∈ Stat and η1, η2 ∈ SemRef such that η1 = η2 on act(s) we
have D(s)(η1) = D(s)(η2).

Proof Define ε = sup{ d(D(s)(η1),D(s)(η2)) | η1 = η2 on act(s) }. One shows by in-
duction on wgt(s) that d(D(s)(η1),D(s)(η2)) ≤

1
2ε. From this it follows that ε = 0.

Hence d(D(s)(η1),D(s)(η2)) = 0 and D(s)(η1) = D(s)(η2) for s, η1, η2 such that η1 = η2
on act(s). By way of example we provide the case for s1; s2:

d(D(s1; s2)(η1),D(s1; s2)(η2))

≤ [; nonexpansive/contractive]
max{ d(D(s1)(η1),D(s1)(η2)),

1
2d(D(s2)(η1),D(s2)(η2)) }

= [ind. hyp. for s1, act(s2) ⊆ act(s1; s2), def. ε]
1
2ε 2

The properties given in lemma 5.2.24 and corollary 5.2.25, dealing with technicalities
having to do with iterated refinement versus simultaneous substitution, also hold in this
setting.

Lemma 5.3.23

(a) Suppose a1, . . . , an ∈ Act are pairwise distinct, and s1, . . . , sn ∈ Stat are such that
act(si) ∩ { a1, . . . , an }= ∅ for 1 ≤ i ≤ n. Then it holds that

D(s〈ai ; si〉
n
i=1)(η) = D(s)(η[pi/ai]

n
i=1)

where pi = D(si)(η) for 1 ≤ i ≤ n.

(b) Suppose āi, a
′
j (1 ≤ i, j ≤ n) are pairwise distinct. Then it holds that

D(s〈āi ; a′i〉
n
i=1)(η) = D(s)(η[η(a

′
i)/āi]

n
i=1)

5.3. ACTION REFINEMENT AND PROBABILISTIC CHOICE 207

We have now arrived at the second idea on our way to the full abstractness of D. First
we need a definition.

Definition 5.3.24 A semantical refinement η ∈ SemRef is called finitary if the following
conditions are fulfilled:

• for all a ∈ Act it holds that η(a) is a finitary probability measure (the support of the
measure is finite) over Act+

• η(a) 6= ∆a for finitely many a ∈ Act

The crux underlying the proof of lemma 5.3.25 is that any finitary probability measure
over finite words can be syntactically represented. For example, the measure 1

2∆a +
1
3∆bc+

1
6∆ade can be represented by the statement a⊕ 1

2

(
(b; c)⊕2/3 (a; d; e)), in the sense

that D(a⊕ 1
2

(
(b; c)⊕2/3 (a; d; e)))(ηid) =

1
2∆a +

1
3∆bc +

1
6∆ade.

Lemma 5.3.25 Let η ∈ SemRef be a finitary semantical refinement and A ⊆ Act a finite
set of actions. Then there exists, for all n ∈ N, a refinement sequence 〈ai ; si〉

k
i=1 such

that

d(D(s)(η),D(s〈ai ; si〉
k
i=1)(ηid)) ≤

1
2

n

for all s ∈ Stat with actn(s) ⊆ A.

Proof If p is a finitary probability measure over Act+, say p =
∑m

i=1 ρiqi for m ≥ 1,
ρ1, . . . , ρm > 0 such that ρ1 + · · · + ρm = 1, q1, . . . , qm ∈ Act+, the statement stat(p) is
given by stat(p) =

∑m
i=1 ρistat

′(qi) where stat′(∆a) = a, stat′(q/a) = a; stat′(q). (Note
that Lpr provides binary probabilistic composition only. Further details on transforming
arbitrary finite probabilistic composition into repeated binary probabilistic are omitted
here.) It is straightforwardly checked that D(stat(p))(ηid) = p by simultaneous induction
on m and the lengths of the qi’s.

Suppose ā1, . . . , ā` are all actions a such that η(s) 6= a. We are done if we show

d(D(s)(η),D(s〈āi ; stat(η(āi))〉
`
i=1)(ηid)) ≤

1
2

n

(Some caution has to be taken though, in order to prevent clashes of actions. See 5.2.27.)
As η is finitary, only finitely many actions are involved. The lemma then follows using
lemma 5.3.21 and lemma 5.3.23. 2

We have now arrived at the main technical result of this section.

Lemma 5.3.26 If s′, s′′ ∈ Stat satisfy D(s′) 6= D(s′′) then O[[C[s′]]] 6= O[[C[s′′]]] for some
context C[•].

Proof Suppose D(s′) 6= D(s′′). We can choose η ∈ SemRef and n ∈ N such that
d(D(s′)(η),D(s′′)(η)) = 2−n. Let η′ be finitary such that d(η, η′) ≤ 2−(n+1) on actn(s

′) ∪
actn(s

′′). By lemma 5.3.21 and ultrametricity we then obtain

d(D(s′)(η′),D(s′′)(η′) = 2−n

208 CHAPTER 5. ACTION REFINEMENT

Pick, applying lemma 5.3.25 and again ultrametricity, a refinement sequence 〈ai ; si〉
k
i=1

such that

d(D(s′〈ai ; si〉
k
i=1)(ηid),D(s

′′〈ai ; si〉
k
i=1)(ηid)) = 2−n

hence D[[s′〈ai ; si〉
k
i=1]] 6= D[[s

′′〈ai ; si〉
k
i=1]]. Define the context C[•] = (•)〈ai ; si〉

k
i=1.

Then, by theorem 5.3.19, it follows that O[[C[s′]]] 6= O[[C[s′′]]]. 2

Lemma 5.3.26 and the correctness result obtained in theorem 5.3.19 have paved the way
for a proof of the full abstractness of the semantical mapping D with respect to the
operational semantics O[[•]] of Lpr .

Theorem 5.3.27 D:Lref → SemRef→ Pd is fully abstract with respect to O[[•]].

Proof Suppose that D(s1) 6= D(s2) for two statements s1, s2 ∈ Stat. By lemma 5.3.26
there exists a context C[•] such that O[[C[s1]]] 6= O[[C[s2]]]. Suppose D(s1) = D(s2) for two
statements s1, s2 ∈ Stat. By definition of D we have, for any context C[•] and semantical
refinement η, that D(C[s1])(η) = D(C[s2])(η). In particular D[[C[s1]]] = D[[C[s2]]], hence
O[[C[s1]]] = O[[C[s2]]] by theorem 5.3.19. We conclude that, for any s1, s2 ∈ Stat,

D(s1) = D(s2) ⇐⇒ O[[C[s1]]] = O[[C[s2]]] for any context C[•]

i.e., D:Stat→ SemRef→ Pd is fully abstract with respect to O[[•]]. 2

5.4 Conclusions and bibliographical remarks

For both the abstract process languages Lref with nondeterministic choice, parallel com-
position and action refinement and Lpr with probabilistic choice and action refinement we
have developed an operational semantics O using refinement sequences and a denotational
semantics D using semantical refinements. In both cases the denotational model is shown
to be fully abstract with respect to the operational model; the denotational semantics
identifies exactly those statements that have the same operational meaning in all con-
texts. The work on Lref in section 5.2 is mainly based on the paper [112]. It shows that
the modeling of action refinement does not enforce a true concurrency setting. Instead an
interleaving setting with identification of statements which coincide under all refinements
can also be used. Also the advantages of the metric setting in the definition of operational
and denotational semantics and in obtaining the full abstractness result are illustrated.

The language Lref contains parallel composition but does not allow communication
between parallel components. Synchronization of parallel processes, can however be added
at the cost of complicating the denotational model and the full abstractness proof. The
paper [112] provides this addition of synchronization to the language Lref by extending
work reported in [178, 38, 50]. Failure sets are employed to obtain a fully abstract model
for the extended language (cf. [192, 193, 195] for a similar result for a CSP-style process
language).

Related work in the area of action refinement was already discussed in the introduction
of this chapter 5.1. An extensive overview of work done in the area of action refinement
may also be found in [97].

5.4. CONCLUSIONS AND BIBLIOGRAPHICAL REMARKS 209

The work on Lpr in section 5.3 comes mainly from [113]. This work shows that the general
techniques for metric operational and denotational semantics remain in place in the setting
of probabilistic programming. In fact, the domain of probability measures of compact
support is a suitable complete ultrametric space for the modeling of discrete probabilistic
choice, also in the presence of a specific construct such as action refinement. In particular,
the method for proving full abstractness of the denotational model of section 5.2 —based
on the distance of two statements that have different meanings in the denotational model—
carries over to the setting of the probabilistic domain. This also shows the suitability of
the domain of compact support measures in the metric modeling of discrete probabilistic
choice.

Several papers deal with full abstractness in a setting with probabilistic choice. In [147],
extending the earlier [142], a full abstractness result is obtained for a metric denotational
model with respect to probabilistic bisimulation from [149]. In [28] a metric denotational
semantics for an extension of CCS with action guarded probabilistic choice is shown to
be fully abstract with respect to probabilistic bisimulation. The papers [57, 58, 168, 99]
deal with fully abstract models for probabilistic choice in the setting of testing semantics.

For a discussion on related work in the area of probabilistic languages the reader is
referred to the beginning of section 5.3 as well as the discussion in section 3.6.

210 CHAPTER 5. ACTION REFINEMENT

Chapter 6

A probabilistic Hoare-style

logic

6.1 Introduction

Probabilistic elements in a program usually presents additional problems in understanding
and testing of the program. Additional tools, such as formal verification techniques, are
useful in monitoring and directing the software development process. Several approaches,
discussed in the introduction of this thesis, exist that start from a mathematical recon-
struction of the system under consideration. Models that are often used are Markov
chains and Markov decision processes (see, e.g., [117, 29]) and probabilistic input-output
automata (cf. [181, 199], for example). Model checking based techniques provide a logical
language to characterize program properties and exploit automated tools to exhaustively
search the state space (consult, e.g., [174, 129, 3, 114]).

For a wide range of programs the construction of the mathematical model can already
be problematic. A systematic approach to simplify the program, or to obtain properties
without having to actually calculate the semantics is useful. Approaches in this area are
probabilistic process algebra and stochastic process algebra (see, for example, [19, 168,
8, 70, 64]) where equivalences of programs can be checked syntactically by equational
reasoning.

Another approach is to introduce a calculus or a proof system as a vehicle to reason
about the probabilistic programs directly. Earlier work on the proof theory for prob-
abilistic programs that has inspired the present work, can be found in e.g. [141, 133].
In [141] Kozen proposes a probabilistic dynamic logic in which arithmetical laws govern
the program analysis. The thesis work of Jones [133], presents a proof system for proba-
bility in a state-less setting. An important strand of research in the syntactic approach
(cf. [162, 163]) is focused on predicate transformers. In [162], extending the predicate
transformer work of [163], a calculus of greatest pre-expectations is given for a language
with both probabilistic choice and nondeterminism. This calculus is illustrated by its
application to the examples of an erratic ‘sequence accumulator’, an example recurring
here, and Rabin’s ‘choice coordination’ algorithm.

211

212 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

The main contribution of this thesis on this topic is the proposal of a sound proof sys-
tem for reasoning about a probabilistic extension of sequential programming. The asser-
tion language, because of the introduction of probabilistic predicates, allows for expression
of probabilities of deterministic predicates, which includes the possibility to state that a
program variable has a certain standard probability distribution. For a fragment of the
language a weakest precondition calculus and a proof of completeness are also provided.
In some examples the relative strength of the probabilistic Hoare logic is illustrated.

The main difference between the work of Morgan et al. and ours is that we take Hoare
logic with probabilistic predicates as our starting point. We are therefore in a position
to justify the proof rules with respect to a denotational semantics. Moreover, from a
correctness point of view, our probabilistic predicates seem intuitively more attractive.
The expectation based calculus on the other hand provides a way to generate useful
quantitative information, whereas the emphasis in our approach is on the verification
of given quantitative information. Further study should shed more light on the relative
merits of the two methods.

In general Hoare logic is a system to derive (partial) correctness formulae, also known
as Hoare triples (see [126, 34]). A formula { p } s { q } states that the predicate p is a
sufficient precondition for the program s to guarantee that predicate q holds after termi-
nation. What the values of the variables in a program, i.e. the (deterministic) state of
the program, will be, cannot be fully determined if the program is probabilistic. Only
the probability of being in a certain state can be given, thus yielding the notion of a
probabilistic state. In a probabilistic state, a deterministic predicate will no longer be
either true or false, but it is true with a certain probability. This can, for example,
be dealt with by changing the interpretation of validity of a predicate to a function to
[0, 1] or R instead of a function to { true, false } as in [141, 162]. The approach chosen
here is to extend the syntax of predicates to allow making claims about the probability
that a certain deterministic predicate holds. We refer to the extended form of predicates
as probabilistic predicates. A proof system for probabilistic programs should take these
probabilistic predicates into account.

After mathematical preliminaries in section 6.2, the language Lpif with conditional and
probabilistic choice is introduced in section 6.3. Additionally, a denotational semantics
for Lpif is provided. Section 6.4 discusses probabilistic predicates and presents the Hoare-
logic for Lpif. The relationship with weakest preconditions and the completeness of the
Hoare-logic is the subject of section 6.5. Section 6.6 extends Lpif with the construct
of iteration, yielding Lpw. Furthermore a denotational semantics for Lpw and a proof
system are included. Section 6.7 extends Lpif with an operator for nondeterministic
choice. Section 6.8 finishes this chapter with concluding remarks and indicates further
work.

6.2 Mathematical preliminaries

In previous chapters the semantical models were given using a metrical approach. In the
metric setting it is easy to deal with infinite behavior. The metric setting also provides
techniques for the comparison of different models, in particular the operational and de-
notational semantics. In this chapter we are dealing with a functional, input-output view

6.3. SYNTAX AND SEMANTICS OF Lpif 213

of programs, not with the control flow of the programs. As such we are not interested
in infinite behavior (as this produces no final output). Furthermore only a denotational
semantics will be considered. As such the advantages of the metric approach mentioned
above do not apply. A complete partial order based approach is used instead of a metric
approach.

A complete partially ordered set (cpo) is a set with a partial ordering ≤ that has a
least element and for which each ascending chain has a least upper bound within the set.
The least upperbound of a chain (xi)i∈N is denoted by limi→∞ xi. A function f from a
cpo X to a cpo Y is called monotone if for all x, x′ ∈ X we have that x ≤ x′ implies
f(x) ≤ f(x′). A monotone function f : X → X on a cpo X has a least fixed point
fix(f) ∈ X.

An ordering on Y is extended pointwise to functions from X to Y (for f, g : X → Y
we have f ≤ g if f(x) ≤ g(x) for all x ∈ X). The support of a function f : X → [0, 1] is
defined as those x ∈ X for which f(x) 6= 0. The set of all functions from X to [0, 1] with
countable support is denoted by X →cs [0, 1]. Given a function f : X →cs [0, 1] and a
set Y ⊆ X the sum

∑
f [Y] =

∑
y∈Y f(y) is well-defined (allowing the value ∞). The set

of (pseudo) probabilistic distributions Dist(X) over a set X is defined as the subset of
functions in X →cs [0, 1] with sum at most 1, i.e.,

Dist(X) = { f ∈ X →cs [0, 1] |
∑
f [X] ≤ 1 }

For a distribution f ∈ Dist(X) and an element x ∈ X, f(x) is interpreted as the proba-
bility that x occurs. The sum

∑
f [X] is called the total probability of the distribution

f . The set Dist(X) endowed with the ordering induced by ≤ on [0, 1] is a cpo. The
minimal element of Dist(X) is 0, the function that assigns 0 to each element of X. For
each ascending sequence in Dist(X) the limit exists within Dist(X) and corresponds to
the least upper bound of the sequence. A distribution with total probability less than
one, indicates a situation with partial information. Intuitively, part of the distribution
is not known; either because it is calculated elsewhere or because it is not reached at all
(due to non-termination).

For elements x ∈ X and y ∈ Y and a function f : X → Y , the function f [y/x], called
a variant of f , is defined by

f [y/x](x′) =

{
y if x = x′

f(x′) otherwise

6.3 Syntax and semantics of Lpif

In this section the language Lpif is introduced and a denotational semantics D for Lpif is
given. The language Lpif is a basic programming language containing skip, assignment,
sequential composition, conditional choice and probabilistic choice.

Programs in the language Lpif are interpreted as state transformers, where the state
is comprised of the data stored in the variables. The value of a variable can be changed
by executing an assignment. An assignment, written as x := e, can change the value
belonging to the variable x to the value represented by the expression e. Each variable
has a data type associated with it. Each data type has its own syntax for the expressions.

214 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

Assignments are assumed to be type correct, i.e. only expressions of the right type are
assigned to a variable. For readability, the definitions will be given only for a single type
of data, the integers. The notation Int is used for the set of all integers. In the examples
other types, like arrays of integers, will also be used.

The variables used in the programs in Lpif are from a given set PVar, called the set of
program variables. For a deterministic program, the values of all the variables form the
state of the computation, i.e. a deterministic state is a function which assigns an integer
to each program variable.

Definition 6.3.1 The set of program variables is denoted by PVar and ranged over by x
and y. The set of integers, denoted by Int is extended with the element ⊥ to the set Int⊥.
The ordering on the integers is extended by putting ⊥< n for each integer n.
The set of deterministic states S, ranged over by σ, is given by

S = PVar→ Int⊥

The set Int⊥ is the collection of integers to which ⊥ is added. The symbol ⊥ is used
for undefinedness. Operations on the integers yield ⊥ when the operation is not defined,
e.g. for division by zero, and when any of the arguments is undefined. To avoid many
technical complications associated with undefined expressions, the symbol ⊥ is treated as
an ordinary value which is smaller than any integer n ∈ Int thus extending the ordinary
ordering on Int. The choice to make ⊥ the smallest element of Int⊥ is an arbitrary one.

The conditional choice uses boolean conditions to choose between statements. Below the
syntax for integer expressions and boolean conditions is given, followed by the syntax of
the language Lpif.

As expressions are needed over several sets of variables, the definition of expressions
uses a general set of variables. Given a set of variables, say Var, the set of integer
expressions over Var is denoted by Exp〈Var〉. The value of an expression can be found
using the evaluation function V .

Definition 6.3.2 Let Var denote a set of variables and let v range over Var. The set of
integer expressions over Var, denoted by Exp〈Var〉 and ranged over by e, is given by

e = n | v | e + e | e − e | e · e | e div e | e mod e | . . .

where n denotes any element of Int⊥. The evaluation function V : Exp〈Var〉 → (Var →
Int⊥) → Int⊥ that computes the value of an expression given the values of the variables
is defined by:

V(n)(f) = n V(v)(f) = f(v) V(e op e′)(f) = V(e)(f) op V(e′)(f)

for f ∈ Var→ Int⊥ and op ∈ {+,−, ·, div, mod }.

A basic integer expression is a constant n or a variable v. Integer expressions can be
combined with the usual operators on integers. Basically any function on integers that
is deemed useful could also be added. The evaluation function calculates the value of
an expression given the value of the variables. A function f supplies the values of the
variables. In the special case that Var = PVar the function f is exactly a state in S.

6.3. SYNTAX AND SEMANTICS OF Lpif 215

Example 6.3.3 Let f denote a function giving the values of the variables, f : Var →
Int⊥. The value of the expression (1 div 0) + 1 is V((1 div 0) + 1)(f) = ⊥+ 1 = ⊥. The
value of the expression v−2 depends on the value of v given by f : V(v−2)(f) = f(v)−2.

Conditional choices in the program are based on boolean conditions. As with integer
expressions the boolean conditions over a set of variables are given for a general set of
variables Var. The set of all boolean conditions over the set of variables Var is denoted
by BC〈Var〉 and a typical boolean condition is denoted by c. True, false and relational
expressions are the basic conditions. Conditions can be combined using the standard
logical operators.

Definition 6.3.4 The set of boolean conditions over Var, denoted by BC〈Var〉 and ranged
over by c, is given by

c = true | false | e = e | e < e | . . . | c ∧ c | c ∨ c | ¬c | c→ c

where e is an expression in Exp〈Var〉. The value of a boolean condition is a boolean in
Bool = { true, false }. The evaluation function B : BC〈Var〉 → (Var → Int⊥) → Bool,
that computes the value of a boolean condition given the values of the variables provided
by f , is defined by:

B(true)(f) = true B(e rel e′)(f) = V(e)(f) rel V(e′)(f)
B(false)(f) = false B(c op c′)(f) = B(c)(f) op B(c′)(f)
B(¬c)(f) = ¬B(c)(f)

where f is a function in Var→ Int⊥, rel is =, <, . . . and op is ∧, ∨ or →.

The meaning of true, false and the logical connectives is clear. The value of the variables
is needed to evaluate the expressions that occur in the boolean conditions. The boolean
condition e = e′ is true when e and e′ evaluate to the same value. The condition e < e′ is
true when the value e evaluates to is smaller than the value that e′ evaluates to.

Example 6.3.5 For x, y ∈ Var, the boolean condition (x > 0) states that x is positive,
(x mod y = 0) expresses that x can be divided by y and ¬ (x = y) expresses that x and
y are different. Note that (x div 0) ≤ y is always true, as ⊥ is the smallest element of
Int⊥.

Having defined expressions and boolean conditions, the syntax of the language Lpif can
now be made precise. As mentioned, the language Lpif contains skip, assignment, sequen-
tial composition, conditional choice and probabilistic choice.

Definition 6.3.6 The programs in Lpif, ranged over by s, are given by:

s ::= skip | x := e | s ; s | if c then s else s fi | s⊕ρ s

where x is a program variable in PVar, e is an expression in Exp〈PVar〉, c is a condition
in BC〈PVar〉 and ρ is a ratio in the open interval (0, 1).

216 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

The program skip does nothing. The program x := e assigns the value of the expression
e to the variable x. The program s ; s′ is executed by first executing s and then executing
s′. The program if c then s else s′ fi is executed by evaluating the condition c and
executing s if the condition is true and s′ if the condition is false. The program s ⊕ρ s

′

denotes the probabilistic choice between the programs s and s′; with probability ρ the
program s is chosen and the program s′ is chosen with probability 1− ρ.

For a deterministic program that is interpreted as a state transformer, the state of the
computation is given by the values of the variables. This is why the state space for
deterministic programs S (see definition 6.3.1) was chosen as S = PVar → Int⊥. For a
probabilistic program, the values of the variables are no longer determined. For example,
after executing x := 0 ⊕ 1

2
x := 1, the value of x could be zero but it could also be one.

Instead of giving the value of a variable, a distribution over possible values should be
given. A first idea may be to take as a state space PVar → Dist(Int⊥). This does give,
for each variable x, the chance that x takes a certain value but it does not describe the
possible dependencies between the variables.

Let us, in order to clarify this matter, consider the following example. In the left
situation (see below), a fair coin is thrown and a second coin is put beside it with the
same side up. In the right situation, two fair coins are thrown. The two situations are
indistinguishable if the dependency between the two coins is not known; the probability of
heads or tails is 1

2 for both coins in both situations. The difference between the situations
is important, e.g. if the next step is comparing the coins. In the first situation the coins
are always equal, in the second situation they are equal with probability 1

2 only.

coin 1
heads tails

heads 1
2

0
coin 2

tails 0 1
2

coin 1
heads tails

heads 1
4

1
4coin 2

tails 1
4

1
4

Clearly the dependencies between the variables must also be expressed in the probabilistic
state. Therefore, the more general state space Θ = Dist(PVar → Int⊥) is required. In
θ ∈ Θ, instead of giving the distributions for the variables separately, the probability of
being in a certain deterministic state is given. The chance that a variable x takes value n
can be found by summing the probabilities of all deterministic states which assign n to x.

Definition 6.3.7 The set of probabilistic states Θ, ranged over by θ, is given by

Θ = Dist(S)

As a program is interpreted as a state transformer, the meaning of a program is a func-
tion from states to states. This function returns the end state after execution of the
program given a start state. The meaning of a program in Lpif is given by a denotational
semantics D.

A key step in the definition of the denotational semantics is to give the meaning of a
basic program consisting of a single assignment, x := e. For a deterministic state σ, the
state resulting from executing the program x := e in state σ is a variant of the state σ
where the value of e is assigned to the variable x: σ[V(e)(σ)/x]. In a deterministic state
σ the value of an integer expression e can be found by using the evaluation function V .

6.3. SYNTAX AND SEMANTICS OF Lpif 217

One would also like to define a notion of a variant of a probabilistic state which can be
used to define the effect of assignment in a probabilistic state. Simply using a construction
[v/x] where a (fixed) value is assigned to the variable, however, is not sufficient. In a
probabilistic state θ the values of the variables are, in general, not fixed and a single value
cannot be found for an integer expression.

The variant of a probabilistic state should be the probabilistic state after assignment
of an expression e to a variable x. To find the probabilistic state after executing an
assignment, the assignment has to be done in each deterministic state which has a positive
probability. For each of these deterministic states, the assignment is done by taking a
variant of the state. The value assigned to x depends on the deterministic state. This
gives the form the variant of a probabilistic state should have: a variant of a probabilistic
state should assign a new value to a variable, depending on the deterministic states being
considered.

Definition 6.3.8 Let f : S → Int⊥ and let θ be a probabilistic state in Θ. The variant
of θ, denoted by θ[f/x], is given by: θ[f/x](σ) =

∑
σ′∈V θ(σ

′), with V = {σ′ ∈ Θ |
σ′[f(σ′)/x] = σ }.

The function f gives the value to use for a given deterministic state. To find the probability
of ending up in a deterministic state σ, the probability of all deterministic states σ ′ that
become σ after taking the variant using the value f(σ′), have to be added. Straightforward
calculation shows that θ[f/x] is again a pseudo probabilistic distribution in Θ. In fact,
θ[f/x] has the same total probability as θ. The following example shows how the variant
of a probabilistic state can be used to calculate the effect of assignment on a probabilistic
state.

Example 6.3.9 As we have

〈x = 1〉[V(x mod 2)(〈x = 1〉)/x] = 〈x = 1〉[1/x] = 〈x = 1〉
〈x = 2〉[V(x mod 2)(〈x = 2〉)/x] = 〈x = 2〉[0/x] = 〈x = 0〉
〈x = 3〉[V(x mod 2)(〈x = 3〉)/x] = 〈x = 3〉[1/x] = 〈x = 1〉

assigning x mod 2 to x in the probabilistic state θ = 1
2 〈x = 1〉+ 1

4 〈x = 2〉+ 1
4 〈x = 3〉 gives the

probabilistic state θ[V(x mod 2)/x] = 1
2 〈x = 1〉+ 1

4 〈x = 0〉+ 1
4 〈x = 1〉 = 3

4 〈x = 1〉+ 1
4 〈x = 0〉.

x = 1

1
2

x = 1

3
4

1
4

x = 0x = 2

1
4

x = 3

1
4

x := 1 mod 2

θ θ[V(x mod 2)/x]x := x mod 2

x := 2 mod 2

x := 3 mod 2

218 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

The evaluation function V for a fixed expression e is a function V(e) from S to Int⊥; V(e)
is a function of the right type for use in the variant of a probabilistic state.

Having described the meaning of the basic assignment statement, the next step in giv-
ing the denotational semantics for Lpif is defining the effect of the operations in Lpif. Se-
quential composition is not difficult to deal with. The following operations on probabilistic
states are used to define the effect of the operators probabilistic choice and conditional
choice.

Definition 6.3.10 The operations probabilistic choice ⊕ρ : Θ×Θ→ Θ for ρ ∈ (0, 1) and
unscaled conditional c? : Θ→ Θ for c ∈ BC〈PVar〉 are defined as follows:

θ1 ⊕ρ θ2 = ρθ1 + (1− ρ)θ2

c?θ(σ) =

{
θ(σ) if c is true in σ i.e. B(c)(σ) = true
0 otherwise

where + is standard addition of functions and ρ· is scalar multiplication.

Recall that θ ∈ Θ is a function from S to [0, 1]. The value θ(σ) returned by θ is the
probability of being in the deterministic state σ. The operation ⊕ρ simply combines
two probabilistic states with the appropriate probabilities. The probabilistic state c?θ is
obtained from θ by removing any probability for deterministic states not satisfying c. As
straightforward calculations show, for any probabilistic state θ the equations θ ⊕ρ θ = θ
and c?θ + ¬c?θ = θ hold.

Example 6.3.11 Using the notation of example 6.3.9 the effect of the operators ⊕ρ and
c? is easy to see:

1〈x = 1〉 ⊕ 1
2

(12 〈x = 2〉+ 1
2 〈x = 3〉) = 1

2 〈x = 1〉+ 1
4 〈x = 2〉+ 1

4 〈x = 3〉

(x mod 2 = 1)?
(
1
2 〈x = 1〉+ 1

4 〈x = 2〉+ 1
4 〈x = 3〉

)
= 1

2 〈x = 1〉+ 1
4 〈x = 3〉

The denotational semantics D for Lpif gives, for each program s in Lpif and state θ in Θ,
the state D(s)(θ) resulting from executing s starting in state θ.

Definition 6.3.12 The denotational semantics D : Lpif → (Θ→ Θ) is given by

D(skip)(θ) = θ

D(x := e)(θ) = θ[V(e)/x]

D(s ; s′)(θ) = D(s′)(D(s)(θ))

D(s⊕ρ s
′)(θ) = D(s)(θ)⊕ρ D(s

′)(θ)

D(if c then s else s′ fi)(θ) = D(s)(c?θ) +D(s′)(¬c?θ)

The clause for skip is clear; the execution of skip leaves the state unchanged. The clause
for assignment uses the notion of a variant of a probabilistic state introduced above. The
evaluation function for the expression e is assigned to the variable x. The clause for
sequential composition is as usual. To find the state after executing s ; s′ in state θ, s′

is executed in the state resulting from executing s, i.e. in the state D(s)(θ). The clause
for the probabilistic choice between s and s′ uses the probabilistic choice between states

6.4. PROBABILISTIC PREDICATES AND HOARE LOGIC 219

as introduced in definition 6.3.10. To execute the program if c then s else s′ fi, the
program s is executed in the part of the state satisfying c and the program s′ is executed
in the part of the state satisfying ¬c.

Example 6.3.13 Using definition 6.3.12 and examples 6.3.9 and 6.3.11:

D((x := 1⊕ 1
2
skip); x := x mod 2)(12 〈x = 2〉+ 1

2 〈x = 3〉)

= D(x := x mod 2)(12 〈x = 1〉+ 1
4 〈x = 2〉+ 1

4 〈x = 3〉)

= 3
4 〈x = 1〉+ 1

4 〈x = 0〉

The following property of the denotational semantics can easily be checked by structural
induction.

Lemma 6.3.14 The denotational semantics is linear in the probabilistic state:

D(s)(θ + θ′) = D(s)(θ) +D(s)(θ′) and D(s)(ρθ) = ρD(s)(θ)

In contrast we have that in general D(s)(c?θ) 6= c?D(s)(θ) as the execution of s may
influence the value of the condition c. Note that θ + θ′ is only a state in Θ if the total
probability of the two states combined does not exceed 1. For all cases considered here
this will be the case. To make + well-defined for all pairs of states, one can define θ + θ′

to be 0 for all pairs of states θ, θ′ which have a combined total probability greater than
one.

The denotational semantics can be used to check properties of programs and to check
whether two programs have the same semantics, i.e. whether two programs are equiva-
lent. In the next section probabilistic predicates are introduced to express probabilistic
properties and a proof system is introduced to be able to deduce properties of programs
without having to calculate the semantics of the program.

6.4 Probabilistic predicates and Hoare logic

The denotational semantics gives the meaning of programs in Lpif. One would like to be
able to check claims about a program like “after executing the program property p will
hold”. In this section a probabilistic logic is given. The predicates in the logic specify
properties of probabilistic states. The claim above becomes “the predicate p holds in
the state resulting from executing the program”. The state resulting from the execution
of the program may depend on the state at the start of the program. A more precise
claim about the behavior of a program is therefore “if the state before execution satisfies
the predicate q then after executing the program, the state will satisfy the predicate p”.
Hoare triples, also known as correctness formulae, express exactly such claims.

To deduce which claims, i.e. which Hoare triples, are valid, a proof system pH is
introduced. The proof system pH is based on standard Hoare logic for non-probabilistic
programs. The rules known from Hoare logic are adapted to fit the probabilistic setting
and several new rules are added. The proof system is shown to be sound (with respect to
the denotational semantics) by showing that any Hoare triple that can be deduced from
the proof system is valid.

220 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

For a deterministic state a basic property that one wants to check is e.g. “variable x has
value n”. For a probabilistic state, an example of a basic property is “variable x has value
n with probability at least 1

2”. Below the exact syntax of deterministic predicates and
Hoare triples are given after which the probabilistic predicates are introduced.

The property “variable x has value n” can be captured by the boolean condition x = n.
The deterministic predicates extend the boolean conditions by adding the quantifies ∀ and
∃ ranging over the integers. A set of integer valued variables is used to introduce these
quantifiers.

Definition 6.4.1 Let IVar be a set of integer valued variables ranged over by i. The set
of deterministic predicates, denoted by DPred and ranged over by dp, is given by

dp ::= true | false | e = e | e < e | . . . | dp ∧ dp | dp ∨ dp |¬ dp |

dp→ dp | ∀i : dp | ∃i : dp

where e ∈ Exp〈PVar ∪ IVar〉 is an expression over program variables and integer valued
variables. The set I of all interpretations of integer valued variables is given by I =
IVar → Int⊥. A typical interpretation is denoted by I. The satisfaction relation for
deterministic predicates, |=, works as expected

(σ, I) |= true

(σ, I) 6|= false

(σ, I) |= e rel e′ when V(e)(σ, I) rel V(e′)(σ, I)
(σ, I) |= dp ∧ dp′ when (σ, I) |= dp and (σ, I) |= dp′

(σ, I) |= dp ∨ dp′ when (σ, I) |= dp or (σ, I) |= dp′

(σ, I) |= ¬ dp when (σ, I) 6|= dp
(σ, I) |= dp→ dp′ when (σ, I) |= dp implies (σ, I) |= dp′

(σ, I) |= ∀i : dp when (σ, I[i/n]) |= dp for all n ∈ Int
(σ, I) |= ∃i : dp when (σ, I[i/n]) |= dp for some n ∈ Int

where rel is =, <,

As mentioned the deterministic predicates are the boolean conditions extended with the
quantifiers ∀ and ∃. The interpretation of deterministic predicates is as usual. Because
both integer valued variables and program variables may be used, both a deterministic
state σ and an interpretation of the integer valued variables I are required to evaluate a
deterministic predicate.

Example 6.4.2 As (i < 4) ∧ (i > x) holds in (〈x = 2〉, 〈i = 3〉), we have that for any
interpretation I: (〈x = 2〉, I) |= ∃i : (i < 4) ∧ (i> x).

Substituting an expression e for the variable x in the predicate is denoted by [e/x]. An
important property of substitution on deterministic predicates is given by the substitution
lemma (cf. [34]) which states that (σ, I) |= dp[e/x] holds exactly when (σ[V(e)(σ)/x], I) |=
dp holds. This property is essential for the soundness of the assignment rule in Hoare
logic and for the completeness of Hoare logic. Note that here [e/x] is substitution in a
predicate, while [V(e)(σ)/x] is taking a variant of a state.

6.4. PROBABILISTIC PREDICATES AND HOARE LOGIC 221

A deterministic Hoare triple or correctness formula, { dp } s { dp′ } , describes that dp is
a precondition and dp′ is a postcondition of program s. The Hoare triple is said to be
correct or valid, denoted by |= { dp } s { dp′ } , if execution of s in any state that satisfies
dp will lead to a state satisfying dp′. The execution of the program s can change the
value of the program variables, i.e. can change the state. The integer valued variables are
not affected by the execution of the program, so their interpretation remains the same.
Therefore we have for any program s, using σ′ to denote the state resulting from executing
the program s starting in some state σ,

|= { dp } s { dp′ } when (σ, I) |= dp⇒ (σ′, I) |= dp′ (for all σ ∈ S, I ∈ I)

To extend the Hoare triples to probabilistic programs, a notion of probabilistic predicate
has to be introduced. One option is to use the same predicates as for deterministic
programs but to change the interpretation of a predicate. A deterministic predicate can
be seen as a function from states to { 0, 1 }, returning 1 if the state satisfies the predicate
and 0 otherwise. The predicates can be made probabilistic by making them into functions
to [0, 1], returning the probability that the predicate is satisfied in a probabilistic state
(see e.g. [141, 163]). This approach is useful to describe the arithmetical aspects of the
probabilities involved in a probabilistic program. There are however two drawbacks. The
predicates cannot express claims about the probability, only the value of the predicate
gives information about the probabilities. Secondly, to be able to give a compositional
definition of the semantics of predicates, the normal logical operators like ∧ have to be
extended to work on [0, 1]. There seems to be no way to do this which, at the same time,
preserves the logical aspects of these operators and does not make assumptions about
dependencies between the predicates. This issue is further illustrated in example 6.4.8
below.

The key observation that the chance that a deterministic predicate holds in a proba-
bilistic state is a real number in [0, 1] is also used here, but only as the basis for building
probabilistic predicates. Probabilistic predicates as used here are predicates in the usual
sense and can only have a truth value, i.e. true or false. The extension to probabilistic
predicates is made in the syntax where constructs are added to express claims about
probabilities.

Comparison of (integer) expressions forms the basis for deterministic predicates. For
probabilistic predicates, comparison of real expressions is used as a starting point.

Definition 6.4.3 Let RVar be a set of a real valued variables, ranged over by r. The set
of real expressions RealExp, ranged over by er is given by

er ::= ρ | r | P(dp) | er + er | er − er | er ∗ er | er/er | er
e | . . .

where ρ is a real number and e is an integer expression over integer valued variables,
e ∈ Exp〈IVar〉.

A basic real expression is a constant ρ, a real valued variable r or the probability P(dp)
of a deterministic predicate dp. The expressions can be combined using functions on
real numbers like +, −, ∗ and /. Integer expressions over integer valued variables are
introduced in the real expressions when using operators which take an integer argument
as in er

e. Other operators can be added as needed.

222 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

Example 6.4.4 The expressions 1
4 ,

1
2 ∗ P(x = i) and P(x < 5) + ri are all correct real

expressions but 1
2

x
is not, as program variables cannot be used in real expressions, except

within a deterministic predicate in the P(dp) construct.

To evaluate a real expression, like P(x<5)+ri, one needs to know the values of the integer
valued and real valued variables that are used in the expression. For a program variable,
not the value but rather its distribution is required. The values of the integer valued and
real valued variables are given by an interpretation function J . The distribution of the
program variables is given by a probabilistic state θ. This also explains why a program
variable cannot be used outside of the P(dp) construct; the value of a program variable
is not fixed in a probabilistic state θ, only its distribution.

Definition 6.4.5

(a) An interpretation J of integer valued and real valued variables is a function which
assigns an element of Int⊥ to each integer valued variable and an element of R⊥ to
each real valued variable. The set R⊥ is the reals extended with the element ⊥ denoting
undefined. The restriction of J to integer valued variables is denoted by JI . The set
of all interpretations is denoted by J .

(b) The evaluation function for real expressions Vr : RealExp→ (Θ× J)→ R⊥ is given
by

Vr(ρ)(θ, J) = ρ

Vr(r)(θ, J) = J(r)

Vr(P(dp))(θ, J) =
∑

(σ,JI)|=dp θ(σ)

Vr(er op e
′
r)(θ, J) = Vr(er)(θ, J) op Vr(e

′
r)(θ, J)

Vr(er
e′)(θ, J) = Vr(er)(θ, J)

V(e′)(JI)

with op ∈ {+,−, ∗, / }.

(c) The meta variable j is used to range over the union of the set of integer valued variables
and the set of real valued variables: j ::= i | r.

The value of the constant ρ is ρ. The value of the variable r is given by the interpretation
J . The value of P(dp) is the probability that dp holds in the given state θ. This probability
is found by summing the probabilities of all deterministic states which satisfy dp. The
operations +, −, ∗ and / are the normal operations on the reals where ⊥ is used again
to denote that the operation or one of its arguments is undefined, e.g. when dividing by
zero.

Example 6.4.6 In the state 1
4 〈x = 1〉 + 1

4 〈x = 2〉 + 1
2 〈x = 3〉 and with interpretation J

which assigns 1 to i, the expression 1
2 ∗ P(x > i) evaluates to 1

2 (
1
4 + 1

2) =
3
8 .

The real expressions already show how chances are incorporated. The chance on a de-
terministic predicate holding is simply used as part of the expressions. Using the real
expressions, real based conditions are built similarly to the way boolean conditions were
built using integer expressions.

6.4. PROBABILISTIC PREDICATES AND HOARE LOGIC 223

Definition 6.4.7 The set of real based conditions, denoted by RC and ranged over by cr,
is given by

cr ::= c | er = er | er < er | . . . | cr ∨ cr | cr ∧ cr | ¬cr | cr → cr

where c is a condition over integer valued variables; c ∈ BC〈IVar〉. The evaluation func-
tion Br : RC → (Θ × J) → Bool that computes the value of a real based condition given
the values of the variables is given by

Br(c)(θ, J) = B(c)(JI)

Br(er rel e
′
r)(θ, J) = Vr(er)(θ, J) rel Vr(e

′
r)(θ, J)

Br(cr op c
′
r)(θ, J) = Br(cr)(θ, J) op Br(c

′
r)(θ, J)

Br(¬cr)(θ, J) = ¬Br(cr)(θ, J)

where rel is =, <, . . . and op is ∧, ∨ or →.

The evaluation of real based conditions is very similar to the evaluation of boolean con-
ditions. The following example shows that real based conditions can express both claims
about the distribution of variables as well as claims about the dependencies between
variables.

Example 6.4.8 Examples of real based conditions are
(
P(x = 1) = 1

2

)
∧
(
P(y = 1) =

P(x = 1)
)
and P(x = 1 ∧ y = 1) = 1

2 . The first condition gives information about the

distributions of x and y and is equivalent with
(
P(x = 1) = 1

2

)
∧
(
P(y = 1) = 1

2

)
while the

second condition also gives information about the dependency between x and y.
In the state 1

2 〈x = 1, y = 1〉 + 1
2 〈x = 2, y = 2〉 both of these conditions are satisfied.

In the state 1
2 〈x = 1, y = 2〉+ 1

2 〈x = 2, y = 1〉 only the first condition holds. In the state
1
2 〈x = 1, y = 1〉+ 1

2 〈x = 1, y = 2〉 only the second condition is true.

The operator ∧ is used in two different contexts. In the real condition
(
P(x = 1) = 1

2

)
∧(

P(y = 1) = 1
2

)
the operator ∧ is used to combine claims about the distribution of x and

the distribution of y. In the real condition P(x = 1 ∧ y = 1) = 1
2 . the operator ∧ is used

to express a claim about the simultaneous distribution of x and y.
Consider again the approach of extending the deterministic predicates to functions to

[0, 1] mentioned in the introduction to probabilistic predicates given before definition 6.4.3.
The two different uses of the operator ∧ are not incorporated within that approach. Only
the second use of the operator, i.e. the use within the construct P(•), is available. This
also shows why a compositional definition of the meaning of such predicates cannot be
given without additional assumptions: To find the probability of x = 1 ∧ y = 1 one needs
the simultaneous distribution of x and y. Knowing the probability that x = 1 holds and
the probability that y = 1 holds is insufficient to find this probability. In [163] assumptions
about dependencies are made to solve this problem , assumptions that are not satisfied
(and also not needed) in our setting.

Real based conditions can be used to express claims about probabilities. The conditions
also capture the logical combinations of such claims. Probabilities, however, also have an
arithmetical aspect which prompts the interpretation of predicates as real numbers. If

224 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

interpreted as real numbers, the predicates can be added and scaled, which are typical
operations one wants to use when calculating probabilities. These operations are possible
on real expressions, but not on the conditions. To allow for arithmetical manipulation
of conditions themselves, arithmetical operators are incorporated in the syntax of proba-
bilistic predicates. Nevertheless, probabilistic predicates are still interpreted as functions
to truth values.

Definition 6.4.9 The set of probabilistic predicates Pred, ranged over by p and by q, is
given by

p ::= cr | p ∧ p | p ∨ p | ∃j : p | ∀j : p | ρ · p | p+ p | p⊕ρ p | c?p

where c is a boolean condition over program variables; c ∈ BC〈PVar〉. The satisfaction
relation for probabilistic predicates |= is given by

(θ, J) |= cr when Br(cr)(θ, J) = true

(θ, J) |= ρ · p when ∃θ′ : θ = ρ · θ′ and (θ′, J) |= p

(θ, J) |= p+ p′ when ∃θ1, θ2 : θ1 + θ2 = θ, and (θ1, J) |= p and (θ2, J) |= p′

(θ, J) |= p⊕ρ p
′ when ∃θ1, θ2 : θ1 ⊕ρ θ2 = θ and (θ1, J) |= p and (θ2, J) |= p′

(θ, J) |= c?p when ∃θ′ : θ = c?θ′ and (θ′, J) |= p

The other operators are as usual (cf. definition 6.4.1).

The operator + is used for addition of predicates, the operator ρ· performs scaling. A
weighted sum⊕ρ combines scaling and addition. Finally c?p gives conditional probabilities
without normalizing. A state satisfies the predicate ρ · p if it is a scaled version of a state
satisfying p. A state θ satisfies the predicate p+ p′ if it can be split into parts satisfying
p and p′. The operators ⊕ρ and c? are similar.

Two predicates which specify the same property are called equivalent. Formally pred-
icates p and q are called equivalent if for all states θ in Θ and interpretations J in J we
have that (θ, J) |= p exactly when (θ, J) |= q.

As with deterministic predicates, substitution is denoted by [e/x]. As program vari-
ables can only occur within the deterministic predicate in the P(dp) construct, only the
deterministic predicates that occur in a probabilistic predicate are affected by the substi-
tution.

Example 6.4.10 The predicate ∀i : (i ≤ 0)∨(P(x = i) = 1
2

i
), states that the variable x is

geometrically distributed. In subsection 6.6.1 a program that results in a variable having
a geometric distribution will be discussed.

The predicate (P(x = 1) = 1
2) + (P(x = 1) = 1

2) is equivalent with the predicate P(x =

1) = 1, but addition is not always so straightforward: The predicate (P(x = 1) = 1
2)+(P(y =

2) = 1
2) means that the state can be split into two parts. One part where x is one with

probability 1
2 and one part where y is two with probability

1
2 . This predicate is satisfied by

1
2 〈x = 1, y = 1〉 + 1

2 〈x = 2, y = 2〉 but also by 1〈x = 1, y = 2〉 = 1
2 〈x = 1, y = 2〉 + 1

2 〈x =
1, y = 2〉. The state 1

2 〈x = 1, y = 2〉+ 1
2 〈x = 3, y = 3〉 does not satisfy the predicate.

6.4. PROBABILISTIC PREDICATES AND HOARE LOGIC 225

When reasoning about probabilistic predicates, caution is advised. Some equivalences
which may seem true at first sight do not hold. The most important of these is that in
general p ⊕ρ p does not imply p. Take for example P(x = 1) = 1 ∨ P(x = 2) = 1 for p.
Then the state 1

2 〈x = 1〉 + 1
2 〈x = 2〉 satisfies the predicate p ⊕ 1

2
p but not the predicate

p. This does not only occur for predicates of the form q ∨ q′. More complicated examples
involving the other operators can also be constructed.

That p ⊕ρ p is not equivalent with p is not a shortcoming of the predicates, it is a
general phenomenon when mixing nondeterminism and probability (see e.g. chapter 4,
[109]). A predicate has an intrinsic nondeterminism, as it describes a set of states which
satisfy a property. In the combination p⊕ρ p selection of an element from the set of states
that satisfy p acts as a nondeterministic choice. Different elements can be selected for the
left and right side, possibly resulting in a combination which no longer satisfies p.

Using probabilistic predicates the Hoare triples as introduced for deterministic programs,
can be extended to probabilistic programs. The Hoare triple { p } s { q } indicates that
p is a precondition and q is a postcondition for the probabilistic program s. The Hoare
triple is said to hold, denoted by |= { p } s { q } , if the precondition p guarantees that
postcondition q holds after execution of s:

|= { p } s { q } if ∀θ ∈ Θ, J ∈ J : (θ, J) |= p⇒ (D(s)(θ), J) |= q.

For example |= { p } skip { p } and |= {P(x = 0) = 1 } x := x + 1 {P(x = 1) = 1 } .
Also, we have |= { i = 5 } s { i = 5 } for any program s, as i is an integer valued variable
remaining unaffected by any program s.

To prove the validity of Hoare triples, a proof system called pH is introduced. The
proof system consists of the axioms and rules as given below.

{ p } skip { p } (Skip)
{ c?p } s { q } {¬c?p } s′ { q′ }

{ p } if c then s else s′ fi { q + q′ }

(If)

{ p[e/x] } x := e { p } (Assign)
{ p } s { q } { p } s′ { q′ }

{ p } s⊕ρ s′ { q ⊕ρ q
′ }

(Prob)

{ p } s { p′ } { p′ } s′ { q }

{ p } s ; s′ { q }

(Seq)
p′ ⇒ p { p } s { q } q ⇒ q′

{ p′ } s { q′ }

(Cons)

{ p } s { q } { p′ } s { q }

{ p ∨ p′ } s { q }

(Or)
{ p } s { q } j not free in q

{ ∃j : p } s { q }

(Exists)

{ p } s { q } { p } s { q′ }

{ p } s { q ∧ q′ }

(And)
{ p } s { q } j not free in p

{ p } s { ∀j : q }

(Forall)

226 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

{ p } s { q }

{ ρ · p } s { ρ · q }

(Lin ·)
{ p } s { q } { p′ } s { q′ }

{ p + p′ } s { q + q′ }

(Lin +)

The rules (Skip), (Assign), (Seq) and (Cons) are as for standard Hoare logic but now
dealing with probabilistic predicates. The rule (If) has changed and the rules (Prob),
(Or), (And), (Exists), (Forall), (Lin +) and (Lin ·) are new.

For a predicate p to hold after the execution of skip, it should hold before the execution
since skip does nothing. The predicate p holds after an assignment x := e exactly when
p with e substituted for x holds before the assignment, as the effect of the assignment
is exactly replacing x with the value of e. The rule (Seq) states that p is a sufficient
precondition for q to hold after execution of s;s′ if there exists an intermediate predicate p′

which holds after the execution of s and which implies that q holds after the execution of s′.
The rule (Cons) states that the precondition may be strengthened and the postcondition
may be weakened. The premise p ⇒ p′ holds if for states θ and all interpretations J for
which (θ, J) |= p holds we also have (θ, J) |= p′. For each pair of predicates p, p′ for which
this condition holds p⇒ p′ is assumed to be included as an axiom in the proof system pH.
One would prefer to have a deduction system to obtain p⇒ p′. Although some rules that
can be included in such a deduction system are clear, a complete deduction system is not
available and may not even exist. The completeness result presented in the next section,
therefore is a ‘relative completeness’ result [62]. See section 6.8 for a further discussion of
this issue.

The rule (Prob) states that the result of executing s⊕ρ s
′ is obtained by combining the

results obtained by executing s and s′ with the appropriate probabilities. The necessity
for the (Or), (And), (Exists), (Forall) and (Lin) rules becomes clear when one recalls that
p ⊕ρ p does not imply p. Proving correctness of e.g. { p ∨ q } skip ⊕ρ skip { p ∨ q } is,
in general, not possible without the (Or)-rule. Similar examples show the need for the
other rules. The soundness of these rules is intuitively clear as they closely resemble the
natural deduction rules for ∨ and ∃ elimination and ∧ and ∀ introduction.

The rule (If) has changed with respect to the (If) rule of standard Hoare logic. In a
probabilistic state the value of the boolean condition c may not be determined. Therefore,
the probabilistic state is split into two parts, a part in which c is true and a part in which
c is false. After splitting the state, the effect of the corresponding program, either s or s′,
can be found after which the parts are recombined using the + operator.

A Hoare triple { p } s { q } is said to be deducible from the system pH, denoted by

` { p } s { q }

if there exists a proof tree for { p } s { q } in pH.

Example 6.4.11 The picture below gives an example of a proof tree in the system pH.
The proof tree shows how the Hoare triple {P(x = 1) = 1 } (x := x + 1) ⊕ 1

2
(x := x +

2) {P(x = 2) = 1
2 ∧ P(x = 3) = 1

2 } can be deduced using the rules in pH. For several
deterministic predicates dp the shorthand [dp] is used for the predicate P(dp) = 1.

6.5. WEAKEST PRECONDITIONS AND COMPLETENESS 227

{ [x + 1 = 2] } x := x + 1 { [x = 2] }
(Assign)

{ [x + 2 = 3] } x := x + 2 { [x = 3] }
(Assign)

{ [x = 1] } x := x + 1 { [x = 2] }
(Cons)

{ [x = 1] } x := x + 2 { [x = 3] }
(Cons)

{ [x = 1] } (x := x + 1)⊕ 1
2

(x := x + 2) { [x = 2]⊕ 1
2

[x = 3] }
(Prob)

{ [x = 1] } (x := x + 1)⊕ 1
2

(x := x + 2) {P(x = 2) = 1
2
∧ P(x = 3) = 1

2
}
(Cons)

As a basic result we have soundness of the proof system pH.

Theorem 6.4.12 The proof system pH is sound, i.e. for all predicates p and q and pro-
grams s, ` { p } s { q } implies |= { p } s { q } .

Proof It is sufficient to show that if (θ, J) |= p and ` { p } s { q } then (D(s)(θ), J) |= q,
for all predicates p, q, states θ, and interpretations J . This is shown by induction on the
depth of the proof tree for { p } s { q } , by looking at the last rule used. The proof follows
the standard approach. Only a few typical cases are given.

• As in non-probabilistic Hoare logic one can show that (σ[V(e)(σ)/x], I) |= dp exactly
when (σ, I) |= dp[e/x]. By induction on the structure of the probabilistic predicate
p this extends to (θ[V(e)/x], J) |= p exactly when (θ, J) |= p[e/x]. Soundness of the
(Assign) rule follows directly.

• If rule (Prob) is used to deduce ` { p } s ⊕ρ s
′ { q ⊕ρ q

′ } from ` { p } s { q } and
` { p } s′ { q′ } then by induction |= { p } s { q } and |= { p } s′ { q′ } . This means that
if (θ, J) |= p then (D(s)(θ), J) |= q and (D(s′)(θ), J) |= q′. But then (D(s⊕ρ s

′)(θ), J) =
(D(s)(θ)⊕ρ D(s

′)(θ), J) |= q ⊕ρ q
′.

6.5 Weakest preconditions and completeness

Theorem 6.4.12 shows that the proof system pH is sound. This means that any Hoare
triple deduced with the proof system is valid. The next question is whether the proof
system is complete: Can any Hoare triple that is valid be deduced with the proof system?
In this section it is shown that all valid Hoare triples with a slight restriction on the
postcondition can be deduced with the proof system.

Note that the language Lpif does not contain constructs for recursion or iteration. In
a setting without probability the completeness proof is usually straightforward in absence
of these constructs. The addition of probability, however, complicates the completeness
proof even without these constructs.

Completeness of the proof system is shown by using weakest preconditions. For a
postcondition q and a program s the weakest precondition p that yields a valid Hoare
triple { p } s { q } is found. Next it is shown that the Hoare triple { p } s { q } can be
deduced in the proof system. Using the rule of consequence (Cons) this gives that any
valid Hoare triple with q as a postcondition can be deduced.

Before finding the weakest precondition, the form of the postconditions is restricted in
two ways. The first restriction does not influence the expressiveness of the predicates.

228 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

For the second restriction this is not clear. The restricted probabilistic predicates used in
the remainder of this section are defined by

p ::= true | false | c | P(dp) = r | er = er | er < er | . . . | p ∧ p | p ∨ p

| ∀j : p | ∃j : p | ρ · p | p+ p | p⊕ρ p

er ::= ρ | r | er + er | er − er | er ∗ er | er/er | er
e

where c is a boolean condition on integer valued variables in BC〈IVar〉 and e is an (integer)
expression on integer valued variables in Exp〈IVar〉.

Compared to the predicates used in the previous section, this definition restricts the
real expressions by disallowing the use of P(dp) as part of a real expression. Instead P(dp)
may only be used in the construct P(dp) = r. The predicates are further restricted by
disallowing the use of the operator c?p.

The restriction of the real expression implies that the comparison of unrestricted real
expressions using P(dp) is no longer possible in the restricted probabilistic predicates.
The construct P(dp) may only be used in the form P(dp) = r where r is a real valued
logical variable. This restriction does not apply for real expressions not containing the
construct P(dp). It is easy to adapt a predicate so that it satisfies this restriction by
introducing additional real valued variables (see the example below). The restriction of
the real expressions, therefore, does not influence the expressiveness of the probabilistic
predicates.

Example 6.5.1 The predicate (12
i
+ P(x = 1)) > 1

2 is not of the restricted form used in

this section, however the equivalent predicate ∃r : P(x = 1) = r ∧ (12
i
+ r)> 1

2 is.

The second restriction that applies to the predicates allowed as postconditions is that
the operation c? may not be used. It is not clear whether for every predicate of the
form c?p, an equivalent predicate without use of the c? operator exists. The omission of
the c? operator may restrict the postconditions which can be checked. The operator c? is
more an auxiliary operator for use in the proof system than something that has a clear
use in specification of properties. It is therefore not considered a severe restriction that
the completeness result obtained in this section does not consider specifications of the
postcondition that use the operator c?.

The restrictions on the probabilistic predicates make it possible to find the weakest pre-
condition. Formally a weakest precondition is defined as follows: A predicate p is a
weakest precondition for postcondition q after program s when

1. p is a sufficient precondition, i.e. for all states θ and interpretations J (θ, J) |= p
implies that (D(s)(θ), J) |= q

and

2. if p′ satisfies condition 1 then p′ implies p.

If a predicate p can be found which for all interpretations J satisfies (θ, J) |= p ⇐⇒
(D(s)(θ), J) |= q, then the predicate p captures exactly those states which will satisfy q
after executing the program s. Clearly p is the weakest precondition and will stay the

6.5. WEAKEST PRECONDITIONS AND COMPLETENESS 229

weakest precondition even if additional predicates are added. (In general it may be pos-
sible to add a weaker predicate that is still a precondition.) In particular if a predicate p
in the set of restricted predicates used in this section, satisfies the property above then it
is also the weakest precondition among all predicates in Pred.

Below a predicate ℘(s)(q) is defined for each program s and predicate q. The proof sys-
tem is shown to be general enough to be able to deduce the Hoare triple {℘(s)(q) } s { q } .
By soundness of the proof system this also means that {℘(s)(q) } s { q } is a valid Hoare
triple. Next it is shown that ℘(s)(q) satisfies the stronger property mentioned above:
θ |= ℘(s)(q) ⇐⇒ D(s)(θ) |= q.

Definition 6.5.2 For a program s and predicate q, the predicate ℘(s)(q) is defined by
induction on the structure of the program s and the predicate q as follows

℘(skip)(q) = q
℘(x := e)(q) = q[e/x]
℘(s ; s′)(q) = ℘(s)(℘(s′)(q))

℘(s⊕ρ s
′)(q op q′) = ℘(s⊕ρ s

′)(q) op ℘(s⊕ρ s
′)(q′) op ∈ {∨,∧,+,⊕ρ′}

℘(s⊕ρ s
′)(op q) = op ℘(s⊕ρ s

′)(q) op ∈ {∃j,∀j, ρ · }
℘(s⊕ρ s

′)(P(dp) = r) = ∃r1, r2 :
(
ρ ∗ r1 + (1− ρ) ∗ r2 = r) ∧
℘(s)(P(dp) = r1) ∧ ℘(s′)(P(dp) = r2)

)

℘(s⊕ρ s
′)(q) = q for all other predicates q

℘(if c then s else s′ fi)(q op q′) = ℘(if c then s else s′ fi)(q) op
℘(if c then s else s′ fi)(q′) op ∈ {∨,∧,+,⊕ρ′ }

℘(if c then s else s′ fi)(op q) = op ℘(if c then s else s′ fi)(q)
op ∈ {∃j,∀j, ρ · }

℘(if c then s else s′ fi)(P(dp) = r) = ∃r1, r2 :
(
(r1 + r2 = r) ∧

((℘(s)(P(dp) = r1) ∧ P(¬c) = 0) + (℘(s′)(P(dp) = r2) ∧ P(c) = 0))
)

℘(if c then s else s′ fi)(q) = q for all other predicates q

The predicate ℘(s)(q) is meant to be the weakest precondition for postcondition q after
program s. For skip, the weakest precondition is the postcondition itself. The weakest
precondition for assignment can be found by substituting the expression for the variable
in the postcondition. To find the weakest precondition for a sequential composition s ; s′,
the weakest precondition for s′ is found and used as postcondition to be satisfied after s.

The weakest precondition for the probabilistic choice is harder to find. The rule (Prob)
does not give a clear precondition for every postcondition, only for postconditions which
are of the form q⊕ρ q

′ and even for this postcondition, ℘(s)(q)∧℘(s′)(q′) is a precondition
for s⊕ρ s

′, but in general not the weakest precondition.

Example 6.5.3 The weakest precondition for the predicate q = (P(y = 1) = 1) after the
program s = x := 1 is given by ℘(s)(q) = (P(y = 1) = 1) as the execution of s does not
change the value of the variable y. Similarly the weakest precondition for the predicate
q′ = (P(y = 2) = 1) after the program s′ = x := 2 is q′ itself, ℘(s′)(q′) = (P(y = 2) = 1).
The weakest precondition for the predicate q ⊕ 1

2
q′ and the program s⊕ 1

2
s′ is q ⊕ 1

2
q′

which is weaker than ℘(s)(q) ∧ ℘(s′)(q′) = (P(y = 1) = 1) ∧ (P(y = 2) = 1) = false

230 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

A different approach is needed. Instead of trying to give the weakest precondition for
general postconditions directly, the weakest precondition is built by combining the weakest
preconditions for the parts of the predicate.

For a simple predicate of the form P(dp) = r the weakest precondition can be found.
If the chance that dp holds must be r after executing s⊕ρ s

′, then combining the chance
that dp holds after executing s, say r1, and the chance that dp holds after executing s′,
say r2, should yield exactly r, thus r = ρ ∗ r1 + (1 − ρ) ∗ r2. Basic predicates that do
not use the P(dp) construct are not effected by the execution of a program; the weakest
precondition is the predicate itself. The weakest precondition for combined predicates can
be found by combining the weakest preconditions for the basic predicates.

To find the weakest precondition for postcondition P(dp) = r after a conditional choice,
one can reason as follows: To execute if c then s else s′ fi the state is split into a
part satisfying c and a part satisfying ¬c. That a state can be split into two parts can be
described in a predicate by using the operator +. A predicate (p∧P(¬c) = 0)+(q∧P(c) =
0) holds in a state θ exactly when p holds in c?θ and q holds in ¬c?θ. Using this similar
reasoning as for the probabilistic choice leads to the weakest precondition as given in
definition 6.5.2.

Example 6.5.4 For r1 and r2 real valued variables in RVar we have that ℘(x := x +
1)(P(x = 3) = r1) is equal to P(x + 1 = 3) = r1 which is equivalent with P(x = 2) = r1
and similarly that ℘(x := x + 2)(P(x = 3) = r2) is equivalent to P(x = 1) = r2. Using
this gives

℘(x := x + 1⊕ρ x := x + 2)(P(x = 3) = 1
2) =

∃r1, r2 : (ρ ∗ r1 + (1− ρ) ∗ r2 = 1
2) ∧ ℘(x := x + 1)(P(x = 3) = r1) ∧

℘(x := x + 2)(P(x = 3) = r2) =
∃r1, r2 : (ρ ∗ r1 + (1− ρ) ∗ r2 = 1

2) ∧ P(x = 2) = r1 ∧ P(x = 1) = r2
This predicate can be simplified to ρ ∗ P(x = 2) + (1− ρ) ∗ P(x = 1) = 1

2 . For the simpli-
fied predicate the restrictions imposed in this section are no longer satisfied so if further
calculation of weakest preconditions is required, as e.g. for the sequential composition
s ; (x := x + 1⊕ρ x := x + 2), the simplification cannot be used.

The first part in proving that ℘, as given by definition 6.5.2, does indeed give the weakest
precondition is to show that the postcondition q can be deduced from ℘(s)(q) by the proof
system pH. By soundness of the proof system (theorem 6.4.12) this gives that ℘(s)(q) is
a sufficient precondition.

Lemma 6.5.5 For any program s and predicate q (of the restricted form used in this
section), ` {℘(s)(q) } s { q } .

Proof As with the definition of ℘ this proof uses induction on the structure of the program
s and subinduction on the structure of the predicate p if the program is a probabilistic
choice or conditional choice. Each case uses the corresponding rule from the proof system
pH. Only the case for probabilistic choice with the predicate P(dp) = r is given.

• Using the induction assumption ` {℘(s)(p) } s { p } for p = (P(dp) = r1) and `
{℘(s′)(p′) } s′ { p′ } for p′ = (P(dp) = r2) and rules (Cons) and (Prob) gives that
` {℘(s)(P(dp) = r1) ∧ ℘(s′)(P(dp) = r2) } s⊕ρ s

′ { (P(dp) = r1)⊕ρ (P(dp) = r2) } . The
postcondition implies P(dp) = ρ ∗ r1 + (1− ρ) ∗ r2.

6.5. WEAKEST PRECONDITIONS AND COMPLETENESS 231

As cr⊕ρcr is equivalent with cr for any condition that does not use the P(dp) construct,
we have ` { r = ρ ∗ r1 + (1 − ρ) ∗ r2 } s ⊕ρ s

′ { r = ρ ∗ r1 + (1 − ρ) ∗ r2 } . Using rules
(And) and (Cons) gives ` {℘(s)(P(dp) = r1)∧ ℘(s′)(P(dp) = r2)∧ r = ρ ∗ r1 + (1− ρ) ∗
r2 } s⊕ρ s

′ {P(dp) = r } . Applying rule (Exists) for r1 and r2 yields the desired result.

2

Having shown that ℘ gives a sufficient precondition, it remains to be shown that ℘ gives
the weakest precondition. To show that ℘ yields the weakest precondition the following
stronger property is shown: For any program s and predicate q, (D(s)(θ), J) |= q ⇐⇒
(θ, J) |= ℘(s)(q). The implication (θ, J) |= ℘(s)(q) ⇒ (D(s)(θ), J) |= q is direct from
the property |= {℘(s)(q) } s { q } shown above. The following lemma shows the reverse
implication.

Lemma 6.5.6 For any program s ∈ Lpif and predicate q of the restricted form used in
this section, (D(s)(θ), J) |= q implies (θ, J) |= ℘(s)(q).

Proof The proof again uses induction on the structure of s and subinduction on the struc-
ture of q if s is a probabilistic choice or conditional choice. Only the case for probabilistic
choice with the predicate P(dp) = r is given.

• Assume that (D(s ⊕ρ s′)(θ), J) |= P(dp) = r. By writing out the definition, it is
easy to check that this is exactly the case when there exist real numbers ρ1 and
ρ2 such that: ρρ1 + (1 − ρ)ρ2 is equal to J(r), (D(s)(θ), J [r1/ρ1]) |= P(dp) = r1
and (D(s′)(θ), J [r2/ρ2]) |= P(dp) = r2. By induction this gives that (θ, J [r1/ρ1]) |=
℘(s)(P(dp) = r1) and (θ, J [r2/ρ2]) |= ℘(s′)(P(dp) = r2). Combining this with ρρ1 +
(1−ρ)ρ2 = J(r) immediately gives (θ, J) |= ∃r1, r2 : ρ∗r1+(1−ρ)∗r2 = r∧℘(s)(P(dp) =
r1) ∧ ℘(s

′)(P(dp) = r2), i.e. (θ, J) |= ℘(s⊕ρ s
′)(P(dp) = r). 2

This lemma together with lemma 6.5.5 above gives all the ingredients needed for the
completeness result.

Theorem 6.5.7 Let s be any program in Lpif, p any predicate and q a predicate that does
not contain the c? operator then

|= { p } s { q } if and only if ` { p } s { q }

Proof Soundness of the proof system (theorem 6.4.12) already gives the ‘if’ part. For
the ‘only if’ part assume that |= { p } s { q } . For a predicate q which does not contain
any c? operator, an equivalent predicate q′ of the restricted form used in this section
can be found as in e.g. example 6.5.1. Lemma 6.5.5 shows that for such a predicate q ′

the property ` {℘(s)(q′) } s { q′ } holds. It is therefore sufficient to show that p implies
℘(s)(q′) because then ` { p } s { q } follows by rule (Cons).

For any state θ satisfying p, i.e. (θ, J) |= p, D(s)(θ) satisfies q′ because |= { p } s { q }
and because q′ is equivalent with q. But then by lemma 6.5.6, (θ, J) |= ℘(s)(q′) holds. So
any state satisfying p also satisfies ℘(s)(q′), i.e. p implies ℘(s)(q′). 2

232 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

6.6 Extending Lpif: Adding iteration

The language Lpif, discussed above, lacks a construct for iteration. In this section we
extend Lpif, obtaining a new language Lpw in which a while-construct is present. We
add a proof rule for while to our Hoare logic and establish its soundness. In contrast to
the setting of the language Lpif, for which a completeness result with minor restrictions
has been obtained, the completeness of the Hoare logic for Lpw is an open issue. In
subsection 6.6.1 the usage of the proof rule is illustrated in the context of the example of
an erratic sequence summer and of a geometrically distributed program variable.

The syntax of the language Lpw is a straightforward extension of the syntax of the
language Lpif. The constructs remain the same except for the addition of a clause for
the while construct.

Definition 6.6.1 Let PVar be a set of program variables and let x range over PVar. The
programs in Lpw, ranged over by s, are given by:

s ::= skip | x := e | s ; s | s⊕ρ s | if c then s else s fi | while c do s od

with e ∈ Exp〈PVar〉, c ∈ BC〈PVar〉 and ρ ∈ (0, 1).

The program while c do s od is interpreted as “repeatedly execute s as long as the con-
dition c holds”. The while construct introduces the possibility of arbitrarily many rep-
etitions as well as the possibility of non-termination; the program while true do s od,
for example, will never finish.

The denotational semantics D for Lpw gives, for each program s, and state θ, the
state D(s)(θ) resulting from executing s starting in state θ. The denotational semantics
is also an extension of the denotational semantics for the language Lpif given in section
6.3. A clause is added for programs built with while. This clause uses a least fixed point
construction. The cpo structure on Θ (See section 6.2) guarantees that this least fixed
point exists.

Definition 6.6.2

(a) For a condition c in BC〈PVar〉 and a program s in Lpw, the higher-order operator
Ψ〈c,s〉 : (Θ→ Θ)→ (Θ→ Θ) is given by

Ψ〈c,s〉(ψ)(θ) = ψ(D(s)(c?θ)) + ¬c?θ

This operator is monotone and therefore has a least fixed point fix(Ψ〈c,s〉).

(b) The denotational semantics D : Lpw → (Θ→ Θ) is given by

D(skip)(θ) = θ

D(x := e)(θ) = θ[V(e)/x]

D(s ; s′)(θ) = D(s′)(D(s)(θ))

D(s⊕ρ s
′)(θ) = D(s)(θ)⊕ρ D(s

′)(θ)

D(if c then s else s′ fi)(θ) = D(s)(c?θ) +D(s′)(¬c?θ)

D(while c do s od)(θ) =
(
fix(Ψ〈c,s〉)

)
(θ)

6.6. EXTENDING Lpif: ADDING ITERATION 233

For a while program while c do s od, one would like to use the familiar unfolding to
if c then s ; while c do s od else skip fi. In the present setting this cannot be
done directly, as the second program is more complex than the first. Instead, the fact
that D(while c do s od) is a fixed point of the higher-order operator Ψ〈c,s〉 can be used

D(while c do s od)(θ)
= Ψ〈c,s〉(D(while c do s od))(θ)
= D(while c do s od)(D(s)(c?θ)) + ¬c?θ
= D(s ; while c do s od)(c?θ) +D(skip)(¬c?θ)
= D(if c then s ; while c do s od else skip fi)(θ)

The first equality uses the fact that D(while c do s od) is a fixed point of Ψ〈c,s〉 and the
second equality is direct from the definition of Ψ〈c,s〉. The last two equalities are direct
from the definition of the semantics D for sequential composition, skip and conditional
choice.

The total probability of D(while c do s od)(θ) may be less than that of θ. The
‘missing’ probability is caused by non-termination; if a possible computation does not
terminate, it does not contribute to the probabilities in the final state.

The semantics of the while construction is given as the least fixed point of the higher-
order operator Ψ〈c,s〉. The set of probabilistic states Θ consists of the distributions over the
set of deterministic states and as such it forms a cpo. Given this it is not difficult to check
that Ψ〈c,s〉 indeed has a least fixed point. (One only needs to check monotonicity which is
straightforward.) A more constructive description of the state D(while c do s od)(θ),
however, is also useful. Below the least fixed point of Ψ〈c,s〉 is constructed by giving a
chain which converges to this least fixed point fix(Ψ〈c,s〉).

Definition 6.6.3 For a program s define s0 = skip and sn+1 = s ; sn. The functions
if n〈c,s〉 and L〈c,s〉 from probabilistic states to probabilistic states are given by

if n〈c,s〉(θ) = D((if c then s else skip fi)n)(θ)

L〈c,s〉(θ) = lim
n→∞

¬c?if n〈c,s〉(θ)

The function if n〈c,s〉 is merely a shorthand notation. The function L〈c,s〉 characterizes the

least fixed point of Ψ〈c,s〉 and is thus equal to D(while c do s od).

Lemma 6.6.4 The least fixed point of Ψ〈c,s〉 is given by L〈c,s〉.

Proof Note that if n〈c,s〉(¬c?θ) = ¬c?θ for any n so also L〈c,s〉(¬c?θ) = ¬c?θ. Using this
straightforward calculation shows that L〈c,s〉 is a fixed point of Ψ〈c,s〉. Any fixed point,
say ξ, not larger or equal to L〈c,s〉 would have to be smaller on a certain θ, ξ(θ)<L〈c,s〉(θ).
But then ξ(θ) < if n〈c,s〉(θ) for some n. By using that ξ is a fixed point and working out
Ψn
〈c,s〉(ξ)(θ) one gets: ξ(θ) = Ψn

〈c,s〉(ξ)(θ) = if n〈c,s〉(θ) + ξ(. . .) ≥ if n〈c,s〉(θ) which gives a
contradiction.

Note that this lemma can also be obtained from the easily checked fact that Ψ〈c,s〉 is
continuous (Ψ〈c,s〉 applied to the least upper bound of any chain (ψi)i∈N is the same as

234 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

the least upper bound of the sequence (Ψ〈c,s〉(ψi))i∈N) and applying more general results
available for cpo’s.

To reason about programs in Lpw, an extension of the proof system pH given in section
6.4 is used. The semantics of Lpw is a consistent extension of the semantics of Lpif. It is,
therefore, not surprising that the existing rules of the proof system pH remain valid. To
deal with programs containing the while construct, the following rule is added.

p invariant for 〈c, s〉

{ p } while c do s od { p ∧ P(c) = 0 }
(While)

The extended system, including the rule (While), is also referred to as pH. The rule
(While) has the same form as the rule used in (non-probabilistic) Hoare logic, however
the notion of invariant is more complicated. Simply replacing p invariant for 〈c, s〉 by
{ p ∧ c } s { p } does not work here.

To use the (While) rule, an invariant p should be found. In non-probabilistic Hoare
logic, a predicate p is said to be an invariant if the Hoare triple { p ∧ c } s { p } is
valid or, equivalently, when { p } if c then s else skip fi { p } is valid. This con-
dition is also included here: For an assertion p to be an invariant, it should satisfy
{ p } if c then s else skip fi { p } . As in Hoare logic, this condition is sufficient to
obtain partial correctness. If the program s is terminating and { p } s { q } can be de-
duced from pH, then |= { p } s { q } holds. A probabilistic program is terminating, if
the program terminates for all possible outcomes of the probabilistic choices. Formally, a
while loop is said to terminate for start state θ when D(while c do s od)(θ) = if n〈c,s〉(θ)
holds for some n. The loop is said to be terminating if it terminates for all states θ. A
program s is said to be terminating if all while loops in s are terminating.

Partial correctness, however, is not sufficient for probabilistic programs. Many prob-
abilistic programs do not satisfy the termination condition, they may for instance only
terminate with a certain probability. To deduce valid Hoare triples for programs that
need not terminate, a form of unconditional correctness is required. This requires some-
how adding termination conditions to the rules. To obtain this unconditional correct-
ness the notion of invariant is strengthened by imposing the extra condition of so called
〈c, s〉-closedness. The main idea of 〈c, s〉-closedness for a predicate p is that any sequence
of states satisfying the predicate p that could correspond to the states obtained from
repeated iterations of the while loop must have a limit also satisfying p. Before this can
be made precise, some auxiliary definitions are needed.

Definition 6.6.5 Assume some fixed interpretation J .

(a) For a predicate p the n-step termination ratio, denoted by rn〈c,s〉, is the minimum
probability that, starting from a state satisfying p, the while loop “ while c do s od”
terminates within n steps.

r(θ)n〈c,s〉 =
∑

(¬c?if n〈c,s〉(θ))[S]

rn〈c,s〉 = inf{ r(θ)n〈c,s〉 | (θ, J) |= p }

6.6. EXTENDING Lpif: ADDING ITERATION 235

(b) A sequence of states (θn)n∈N is called a 〈c, s〉-sequence within p if (¬c?θn)n∈N is an

ascending chain and for each n in N the state θn satisfies p and
∑

(¬c?θn)[S] ≥ rn〈c,s〉
holds.

(c) A 〈c, s〉-sequence (θn)n∈N within p is said to terminate within p if the least upper bound
of the sequence (¬c?θn)n∈N satisfies p.

Recall from the preliminaries of this chapter that
∑
θ[S] denotes the total probability of

the probabilistic state θ. For a given state θ, the ratio r(θ)n〈c,s〉 expresses the probability
that the while loop “ while c do s od” terminates within n steps. The state after n-
iterations of the loop is if n〈c,s〉(θ). The part of this state ¬c?if n〈c,s〉(θ) that does not satisfy
the loop condition c has terminated. By taking the infimum over all states that satisfy
the predicate p, the n-step termination ratio is obtained.

Consider a sequence of states that starts from a state satisfying the predicate p and
in which each following state is obtained by executing another iteration of the while loop
“ while c do s od”. Clearly such a sequence must satisfy the following properties: In
the first place the terminated part of the state, i.e. the part of the state not satisfying
the condition c, does not change. Secondly, the total probability of this terminated part
of the state must be at least the n-step termination ratio. Any sequence satisfying these
two properties is referred to as a 〈c, s〉-sequence.

In the formulation of the main idea of the notion of 〈c, s〉-closedness given above
definition 6.6.5 we referred to “sequences of states that could correspond to the states
obtained from repeated iterations of the while loop”. Using the observation above that any
such a sequence must be a 〈c, s〉-sequence, we can strengthen this to “all 〈c, s〉-sequences”.

Definition 6.6.6

(a) A predicate p is called 〈c, s〉-closed if each 〈c, s〉-sequence within p terminates within
p.

(b) A predicate p is called an invariant for 〈c, s〉 when p is 〈c, s〉-closed and
{ p } if c then s else skip fi { p } .

The notion of 〈c, s〉-closedness is meant to express that a sequence that can be obtained by
repeated iterations of the loop while c do s od will have a least upper bound satisfying p.
However, one does not want to have to find and check exactly these sequences. Needing to
do this makes the checking of 〈c, s〉-closedness too difficult. Requiring arbitrary sequences
to have a least upper bound satisfying p, however, is clearly to strong a property making
it impossible to find useful invariants. As a compromise, we require this property only
for 〈c, s〉-sequences. In this way, we obtain a notion of 〈c, s〉-closedness that can be shown
to hold, gives a valid while rule (see theorem 6.6.7 below) and does not restrict the
predicates that can be used as invariants too much.

Combining the definition of invariant with the rule (While) given above gives

{ p } if c then s else skip fi { p } p is 〈c, s〉-closed

{ p } while c do s od { p ∧ P(c) = 0 }
(While)

236 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

Note that, for a loop while c do s od that is terminating, every predicate p automati-
cally satisfies 〈c, s〉-closedness. Therefore, for a terminating program, there is no need to
check any 〈c, s〉-closedness conditions. Two examples of programs using the while con-
struct are given in subsection 6.6.1. The first program is terminating and no closedness
conditions need to be checked. The second program shows a situation where the closedness
condition is essential to guarantee soundness.

With addition of the rule (While) the proof system still remains sound, i.e. only valid
Hoare triples can be deduced from pH.

Theorem 6.6.7 The proof system pH is sound, i.e. for all predicates p and q and pro-
grams s, ` { p } s { q } implies |= { p } s { q } .

Proof A fixed interpretation J is assumed and θ satisfies p is written for (θ, J) |= p. It
is sufficient to show that if θ satisfies p and ` { p } s { q } then D(s)(θ) satisfies q. This is
shown by induction on the depth of the proof tree for { p } s { q } , by looking at the last
rule used. The only new case, compared to theorem 6.4.12, is that of rule (While).

• Assume rule (While) is used with program s, condition c and invariant p. We need to
show that D(while c do s od)(θ) satisfies p ∧ P(c) = 0.

We have D(while c do s od)(θ) = L〈c,s〉(θ) = limn→∞ ¬c?if n〈c,s〉(θ). Clearly, for each
n, the state ¬c?if n〈c,s〉(θ) assigns probability 0 to any deterministic state which satisfies
c. The limit L〈c,s〉(θ) therefore also assigns probability 0 to any state which satisfies c.
In other words we have D(while c do s od)(θ) |= P(c) = 0.

The induction assumption gives that |= { p } if c then s else skip fi { p } holds.
For each state θ that satisfies p it follows by induction on n that if n〈c,s〉(θ) also sat-
isfies p and, as

∑
¬c?if n〈c,s〉(θ)[S] = r(θ)n〈c,s〉 ≤ rn〈c,s〉, the sequence (if n〈c,s〉(θ))n∈N is a

〈c, s〉-sequence within p. By 〈c, s〉-closedness of p the least upper bound of this sequence,
i.e. the state D(while c do s od)(θ) also satisfies p. 2

In this section a way has been given to check properties of programs containing while

loops by using invariants. The two example programs in the next subsection illustrates
this technique. For these two programs the invariant is clear but as for non-probabilistic
programs, and maybe even more so, finding an invariant for a loop for probabilistic pro-
grams can, in general, be far from trivial.

In the non-probabilistic setting, finding a weakest precondition formula for the while-
construct and showing completeness of the extended proof system is significantly more
involved than for other constructs like assignment, sequential composition and alternative
composition, see e.g. [34]. Although some preliminary results are available on the issue of
finding a complete logic for Lpw, a completeness result for pHw is not pursued in this thesis
and would likely require extensive further work, including a study of the expressiveness
of probabilistic predicates.

6.6.1 Two example programs

In this subsection two programs are studied. The first program adds an array of numbers,
but some elements may inadvertently get skipped. This program is an adapted version of
the ‘erratic sequence accumulator’ example from [162].

6.6. EXTENDING Lpif: ADDING ITERATION 237

Int ss[1 . . . N], k, t;

t := 0; k := 1;

while (k ≤ N) do t := t+ ss[k]⊕ρ skip; k := k+ 1 od

A lower bound on the probability that the answer will still be correct is deduced. Instead
of giving complete proof trees a proof outline is given. In a proof outline the rules (Cons)
and (Seq) are implicitly used by writing predicates within the program and some basic
steps are skipped. A predicate inserted at some point in the program gives a condition
that the intermediate states at this point in the computation must satisfy. The shorthand
∃i ≤ e : p is used for ∃i : (i ≤ e) ∧ p. Similarly ∀i ≤ e : p is short for ∀i : (i> e) ∨ p.

Int ss[1 . . . N], k, t;

{P(true) = 1 } ⇒ {P(0 = 0 ∧ 1 = 1) = 1 }

t := 0; k := 1;

{P(t = 0, k = 1) = 1 } ⇒

{P(k = N + 1 ∧ t =
∑N

i=1 ss[i]) ≥ ρN ∨ ∃n ≤ N : P(k = n, t =
∑k−1

i=1 ss[i]) ≥ ρn−1}

while (k ≤ N) do

{ ∃n ≤ N : P(k = n, t =
∑k−1

i=1 ss[i]) ≥ ρn−1 } ⇒

{∃n ≤ N : P(k = n, t + ss[k] =
∑k

i=1
ss[i]) ≥ ρn−1 }

t := t + ss[k]⊕ρ skip;

{ ∃n ≤ N : P(k = n, t + ss[k] =
∑k

i=1
ss[i]) ≥ ρn−1 ⊕ρ true } ⇒

{∃m ≤ N + 1 : P(k + 1 = m, t =
∑k−1

i=1
ss[i]) ≥ ρm−1 }

k := k + 1

{ ∃m ≤ N + 1 : P(k = m, t =
∑k−1

i=1
ss[i]) ≥ ρm−1 }

od

{P(k ≤ N) = 0 ∧ ∃n ≤ N + 1 : P(k = n, t =
∑k−1

i=1
ss[i]) ≥ ρn−1 } ⇒

{P(t =
∑N

i=1
ss[i]) ≥ ρN }

The second implication used in this proof outline,
(
P(t = 0, k = 1) = 1

)
⇒
(
P(k =

N + 1 ∧ t =
∑N

i=1 ss[i]) ≥ ρN ∨ ∃n ≤ N : P(k = n, t =
∑k−1

i=1 ss[i]) ≥ ρn−1
)
, is clear by

taking n = 1, for which value the right part of the conclusion becomes P(k = 1, t = 0) = 1.
For the first program statement within the while loop the rule (Assign) is used for the
program t := t + ss[k]. The result of this rule is combined with the conclusion true for
the program skip by using the rule (Prob). The derivation step for the second program
statement in the loop is obtained by using the rule (Assign). The final implication is clear

from the fact that for any value n <N + 1 the predicate P(k = n, t =
∑k−1

i=1 ss[i]) ≥ ρn−1

implies a positive probability for k ≤ N Note that there is no need to check a closedness
condition for the invariant as the program is terminating.

238 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

In the second program, a coin is tossed until heads is thrown.

Bool done; Int x;

done := false; x := 0;

while ¬done do x := x + 1;done := true⊕ 1
2
skip od

The number of required throws is shown to be geometrically distributed. For ease of
notation the following shorthands are used.

p = q∞ ∨ ∃i : q

q = P(x = i, done = false) = 1
2

i
∧ ∀j ∈ {1, . . . , i} : P(x = j, done = true) = 1

2

j

q∞ = ∀j> 0 : P(x = j, done = true) = 1
2

j

Assuming p is an invariant and using rule (While) gives

{P(true) = 1 }
done := false; x := 0;
{P(x = 0, done = false) = 1 } ⇒ { p }
while ¬done do x := x + 1; done := true⊕ 1

2
skip od

{ p ∧ P(¬done) = 0 } ⇒ {∀n > 0 : P(x = n) = 1
2

n
}

To show that p is an invariant the rule (Or) is used to split the proof into two parts, the
first of which is trivial. For the second part the rule (Exists) is used to give:

{ q }
while ¬done do

{ (¬done)?q } ⇒

{P(x = i, done = false) = 1
2

i
}

x := x + 1;

{P(x = i + 1, done = false) = 1
2

i
}

done := true ⊕ 1
2

skip

{P(x = i + 1, done = false) = 1
2

i+1
∧ P(x = i + 1, done = true) = 1

2

i+1
}

od

{P(x = i + 1, done = false) = 1
2

i+1
∧ P(x = i + 1, done = true) = 1

2

i+1
∧

∀j ∈ { 1, . . . , i }: P(x = j, done = true) = 1
2

j
} ⇒ { q[i + 1/i] } ⇒ { p }

What remains to be shown is that the predicate p is 〈¬done, x := x + 1;done := true⊕ 1
2

skip〉-closed.
Assume some fixed interpretation J . First we find the n-step termination ratio. For

states satisfying q∞, the termination ratio is clearly 1. For a state satisfying q we use the
the Hoare triple { q } if c then s else skip fi { q[i + 1/i] } deduced above. This
gives that if (θ, J) |= q then (if n〈c,s〉(θ), J) |= q[i + n/i] for all n. As q[i + n/i] implies

that P(done) ≥ 1 − 1
2

n
we have (θ, J) |= q ⇒ r(θ)n〈c,s〉 ≥ 1 − 1

2

n
. So for all states that

satisfy the predicate p, the n-step termination ratio is at least 1− 1
2

n
, rn〈c,s〉 ≥ 1− 1

2

n
.

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 239

Next we show that any 〈c, s〉-sequence within p terminates in a state satisfying q∞.
The predicate p is divided in pn = q∞ ∨ ∃i ≥ n : q and ∃i < n : q. Clearly p is equivalent
with pn ∨ (∃i < n : q). A state satisfying ∃i < n : q cannot have a termination ratio
of 1 − 1

2

n
. This means that if (θn)n∈N is a 〈c, s〉-sequence within p then θn satisfies

pn. All states θn with n ≥ j satisfy P(x = j,done = true) = 1
2

j
. The probability

P(x = j,done = true) cannot change in the least upper bound point of the sequence. The

sequence must therefore terminate in a state satisfying P(x = j,done = true) = 1
2

j
. This

holds for all possible values of j.
Note that the predicate p would not be closed without the term q∞.

6.7 Another extension of Lpif: Adding nondeterminism

In chapter 4 it is shown that not all choices can be adequately described by probabilistic
choices. A choice can be a probabilistic choice for which the probability is not known. It
is also possible that a choice does not satisfy the properties of a probabilistic choice at
all.

One type of choice which cannot be described by probabilistic choice is the choice of
an opponent in a game, or the choices of a user of a system. In this section an operator
2, used to denote nondeterministic choice, is added to the language Lpif to be able to
describe this type of choice. The resulting language is called Lpnif. The program s 2 s′

can be interpreted as a choice for the user to either execute s or to execute s′. The user
can also be seen as an opponent from the point of the verification of the algorithm. The
algorithm has to work correctly, no matter which choices the user makes.

The verification of a single program is seen as a single player game. It is also possible
to analyze a game between two players. In a two player game a probabilistic strategy
for one player can be described by a program. The nondeterministic choices in such a
program describe the choices for the other player.

In the situations given above the question one wants to answer is which properties
are sure to hold, for all possible choices of the opponent. In other words one is interested
in the worst case behavior for the nondeterministic choice. It is also possible to look
at a best case behavior for the nondeterminism. In such a case one looks for properties
which can be made to hold by making the nondeterministic choices in the right way. This
section will mainly deal with investigating the worst case behavior of an algorithm. The
best case behavior, however, can be dealt with in the same framework.

In chapter 4 the choice of an opponent is referred to as one type of ‘information-oriented’
nondeterminism. The choice has to be made with the right amount of information. As
the probabilistic choice is unpredictable, the nondeterministic choice cannot depend on
the outcome of probabilistic choices which have not yet been made. This is not a re-
striction on the way the nondeterminism is decided but a consequence of the assumption
of unpredictability of the probabilistic choice. If the result of a choice can somehow be
known beforehand, the choice is not probabilistic.

The nondeterministic choice can also not depend on information which is not available
for the opponent, for example the value of a variable that the opponent cannot access.
The opponent is assumed not to be able to see the value of any of the variables. Any

240 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

observation that the user can make based on the value of the variables is made explicit in
the program.

In subsection 6.7.1 the language Lpnif is defined. To describe the meaning of a program
in Lpnif a denotational semantics D is also given in this subsection. The denotational
semantics gives the set of all possible meanings, depending on how the nondeterminism
is resolved. The elements of the set are distributions as used in section 6.3.

In subsection 6.7.2 the Hoare-style logic pH introduced in section 6.4 is extended to
deal with nondeterministic programs from Lpnif. The extended proof system, denoted by
pHnd, is shown to be sound. In subsection 6.7.3 weakest preconditions are introduced.
The conjecture that the logic pHnd is complete is also discussed in this subsection.

In subsection 6.7.4 the “3 doors problem”, introduced in section 4.2 is again considered.
The problem is translated into programs in Lpnif and the logic pHnd is used to derive
some properties of these programs.

6.7.1 The syntax and semantics of the language Lpnif

The language Lpnif extends the language Lpif introduced in definition 6.3.6 by adding
the operator 2 describing nondeterministic choice. Expressions and boolean conditions
are as defined in section 6.3. Note that the language Lpnif extends Lpif and not Lpw.
The language Lpnif does not contain the while-construct. Further study, not reported
upon in this thesis, is required before a Hoare-style logic can be given for the language
which adds a while-construct to the language Lpnif. The complications in giving the
semantics for such a language seem only to be of a technical nature. It is, however, not
clear how to extend the notion of invariant used in the (While) rule of the Hoare-style logic
introduced in section 6.6 to a nondeterministic setting. (Recall that the notion of invariant
in the probabilistic setting is more involved than in the non-probabilistic setting because
probabilistic predicates can also express claims about the probability of termination.)

Definition 6.7.1 Let PVar be a set of program variables and let x range over PVar. The
language Lpnif, ranged over by s, is given by

s ::= skip | x := e | s ; s | s⊕ρ s | if c then s else s fi | s 2 s

where e ∈ Exp〈PVar〉, c ∈ BC〈PVar〉 and ρ is a ratio in the open interval (0, 1).

The program s2 s′ is new compared to the setup of the language Lpif, the other programs
are interpreted as before. The program s2 s′ makes a nondeterministic choice. The only
thing known is that at this point a choice will be made and the program will execute
either s or s′. There is no probabilistic information available about the choice. It is not
even known whether the choice is determined in a probabilistic fashion.

To describe the state of computation of a deterministic program the values of the program
variables have to be given. A deterministic state in S gives the value for each program
variable. It is not known what the value of the variables will be after executing, e.g. the
probabilistic program (x := 1 ⊕ 1

2
x := 3), but a distribution in Θ gives the probabilities

for each value. What the value of the variable x will be after executing the program
(x := 1 ⊕ 1

2
x := 3) 2 x := 2 is not known, it can be 1, 2 or 3. Different than for the

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 241

purely probabilistic program (x := 1 ⊕ 1
2
x := 3), however, the probability for each of

these values is also not known. The probability that x becomes 1 is 1
2 if the program

(x := 1 ⊕ 1
2
x := 3) is chosen and zero if x := 2 is chosen. The state of a program

in Lpnif is not a distribution over deterministic states as for programs in Lpif. Instead
both nondeterminism and probability have to be resolved before the actual value of the
variables can be found.

In chapter 4 the combination of nondeterminism and probabilistic choice has been
studied and several interpretations for the nondeterminism have been proposed. In this
section the approach of sections 4.2 and 4.4 is followed. The situation in these sections
is as follows: The nondeterminism described can be interpreted as a user’s or opponent’s
choice (as opposed to the resource oriented view of nondeterminism used in section 4.3).
Delaying a probabilistic choice until after a nondeterministic choice has been made gives
the same outcome as not delaying the choice. This fact, illustrated in example 6.7.2 below,
is used to give a meaning to programs with both nondeterminism and probabilistic choice.
Such programs are treated as a nondeterministic choice between probabilistic programs.
The meaning of a nondeterministic program is given by a process consisting of a set of
probabilistic subprocesses.

For a program in Lpnif it is also possible to delay a probabilistic choice and interpret the
program as a nondeterministic choice between probabilistic programs. A nondeterministic
choice, on the other hand, cannot be delayed. As the choice is made at this point in
the execution, it cannot depend on the outcome of future probabilistic choices. The
probabilistic choice is assumed to be unpredictable; the outcome of the choice cannot be
known before it is made.

Example 6.7.2 The programs in this example are interpreted as games. The nondeter-
ministic choices in a program describe the choices of the user who plays the game. The
value of the program variable x at the end of the program is the amount the user won by
playing the game.
The games described by the programs (x := 1 2 x := 2)⊕ 1

2
x := 3 and (x := 1⊕ 1

2
x :=

3) 2 (x := 2 ⊕ 1
2
x := 3) are equivalent. In the first program the user may get to choose

between 1 and 2 for x. In the second program the user has to decide for 1 or 2 before
the probabilistic choice is made. This choice will not influence the probabilistic choice, so
exactly the same results can be obtained. Delaying the probabilistic choice until after the
nondeterministic choice does not change the behavior.
In the game described by the program (x := 1⊕ 1

2
x := 3) 2 x := 2 the user can choose

for a certain value of two or gamble between the values one and three. This is clearly a
different situation than for the program (x := 1 2 x := 2)⊕ 1

2
(x := 3 2 x := 2) where the

nondeterministic choice is made after the probabilistic choice. In the second program the
user always has an easy choice as the exact value obtained for either option is known. The
user can simply select the higher of the two values. As a result the user can obtain higher
expected winnings (2 1

2 versus 2) in the game described by the second program. Allowing
the nondeterministic choice to be made when the result of the probabilistic choice is known
results in a different behavior.

These examples are the same as the examples in the introduction of chapter 4 except that
the uninterpreted atomic actions used there are replaced by assignment statements. The

242 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

examples show that the interpretation of nondeterminism corresponds to an ‘information-
oriented’ view of nondeterminism. A nondeterministic choice has to be made with the
correct amount of information.

The programs in Lpif are interpreted as transformers of probabilistic states. The denota-
tional semantics of a program gives, for each probabilistic state, the result of executing the
program starting in this state. The programs in Lpnif are interpreted as transformers of
nondeterministic states. A program in Lpnif is seen as a nondeterministic choice between
probabilistic programs. This means that the state after running a program can be one of
several probabilistic states. A nondeterministic state, therefore, is a set of probabilistic
states. The set of all nondeterministic states is denoted by Π.

Definition 6.7.3 The set of nondeterministic states Π, ranged over by π, is given by

Π = Pf (Θ)

A nondeterministic state π is a finite set containing probabilistic states in Θ. The proba-
bilistic states in a nondeterministic state are referred to as (probabilistic) substates. Each
probabilistic substate gives the probabilities associated with one of the nondeterministic
alternatives of the state.

Example 6.7.4 Assuming that the only program variable is x the following sets are non-
deterministic states in Π, { 1〈x = 0〉 }, { 1

2 〈x = 1〉+ 1
2 〈x = 3〉, 1〈x = 2〉 }. By running the

program (x := x + 1⊕ 1
2
x := 3) 2 x := 2 in the first state, the second state is obtained.

The example shows the state resulting from executing a program starting in another state.
To give the effects of the execution of a program in general, a denotational semantics is
defined. The denotational semantics can be used to give a formal justification for the
claim in the example above. To be able to define the denotational semantics, the meaning
of a program consisting of a single assignment is given and the operations ⊕ρ and +
introduced below are used to find the meaning of programs starting with a probabilistic
choice and a conditional choice respectively. Taking the union of nondeterministic states
is used to give the meaning of a program built with 2.

In section 6.3 the variant of a probabilistic state is introduced and used to give the effect
on a probabilistic state of the execution of an assignment. The notion of a variant of a
nondeterministic state is introduced here to find the effect of the execution of an assign-
ment on a nondeterministic state. The value of a variable is not necessarily determined in
a nondeterministic state. As with probabilistic states, an expression cannot be evaluated
in a nondeterministic state. Instead, the notion of variant of a probabilistic state is lifted
to nondeterministic states.

Definition 6.7.5 The variant π[f/x] of a state π is given by

π[f/x] = { θ[f/x] | θ ∈ π }

where x ∈ PVar and f : S → Int⊥.

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 243

The variant of a nondeterministic state is obtained by using the variant of a probabilistic
state as introduced in section 6.3. The variant of a state π is the set consisting of the
variants of the probabilistic states in π.

Example 6.7.6 For the following probabilistic states taking the variant where 3 is sub-
stituted for x gives

(1〈x = 1, y = 1〉)[3/x] = 1〈x = 3, y = 1〉

(13 〈x = 1, y = 1〉+ 2
3 〈x = 1, y = 2〉)[3/x] = 1

3 〈x = 3, y = 1〉+ 2
3 〈x = 3, y = 2〉

(13 〈x = 2, y = 1〉+ 2
3 〈x = 2, y = 2〉)[3/x] = 1

3 〈x = 3, y = 1〉+ 2
3 〈x = 3, y = 2〉

As will be seen below, the effect of the assignment x := 3 on a state corresponds to taking
the variant [3/x] of the state. Taking the variant [3/x] in the state π given by

π = { 1〈x = 1, y = 1〉, 1
3 〈x = 1, y = 1〉+ 2

3 〈x = 1, y = 2〉,
1
3 〈x = 2, y = 1〉+ 2

3 〈x = 2, y = 2〉 }

results in the state

π[3/x] = { 1〈x = 3, y = 1〉, 1
3 〈x = 3, y = 1〉+ 2

3 〈x = 3, y = 2〉 }

The effect of an assignment can be easily found by taking the variant of a state. In
section 6.3 the operations ⊕ρ and + are used to find the effect of executing a probabilistic
choice or a conditional choice. The operations ⊕ρ and + can be lifted to work on Π in
the same way as we lifted the notion of a variant of a state in definition 6.7.5 above.

Definition 6.7.7 The probabilistic combination ⊕ρ and the sum + of two nondetermin-
istic states are given by ⊕ρ,+ : Π×Π→ Π

π ⊕ρ π
′ = { θ ⊕ρ θ

′ | θ ∈ π, θ′ ∈ π′ }

π + π′ = { θ + θ′ | θ ∈ π, θ′ ∈ π′ }

The substates in the probabilistic combination of two nondeterministic states are obtained
by combining each substate of the first nondeterministic state with each substate of the
second nondeterministic state. Similarly for the sum of two nondeterministic states.

Example 6.7.8 The lifting of the operations ⊕ρ and + to sets is obtained by taking all
possible combinations: { 1〈x = 1〉, 1〈x = 2〉 }⊕ 1

2
{ 1〈x = 2〉, 1〈x = 3〉 }= { 1

2 〈x = 1〉+ 1
2 〈x =

2〉, 12 〈x = 1〉+ 1
2 〈x = 3〉, 1〈x = 2〉, 12 〈x = 2〉+ 1

2 〈x = 3〉 } and { 1
3 〈x = 1〉, 13 〈x = 2〉 }+{ 2

3 〈x =

2〉 }= { 1
3 〈x = 1〉+ 2

3 〈x = 2〉, 1〈x = 2〉 }.

All substates in the sum of { 1
3 〈x = 1〉, 13 〈x = 2〉 } and { 2

3 〈x = 2〉 } have a total probability
of 1. As programs in Lpnif always terminate, no ‘missing’ probability will be introduced
as in section 6.6. If the total probability of each substate before the execution of the
program is 1 then the total probability of each substate after the execution of a program
will also be 1.

The denotational semantics D for Lpnif gives, for each program s and state π, the state
D(s)(π) resulting from executing the program s starting in state π.

244 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

Definition 6.7.9 The denotational semantics D : Lpnif → (Π→ Π) is given by

D(skip)(π) = π
D(x := e)(π) = π[V(e)/x]
D(s ; s′)(π) = D(s′)(D(s)(π))
D(s⊕ρ s

′)(π) = ∪ {D(s)({ θ })⊕ρ D(s
′)({ θ }) | θ ∈ π }

D(if c then s else s′ fi)(π)
= ∪ {D(s)({ c?θ }) +D(s′)({¬c?θ }) | θ ∈ π }

D(s 2 s′)(π) = D(s)(π) ∪ D(s′)(π)

The first three clauses have changed little compared to definition 6.3.12. The program
skip does nothing, so the start state is also the end state. The result of a single assignment
x := e in a state π is given by the variant π[V(e)/x] of the state π. To execute the program
s;s′ the program s is executed and in the resulting stateD(s)(π) the program s′ is executed.

To find the meaning of the programs s ⊕ρ s
′ and if c then s else s′ fi the op-

erations ⊕ρ and + are used respectively. At first sight it may seem sufficient to use
D(s)(π) ⊕ρ D(s

′)(π) as the definition of D(s ⊕ρ s
′)(π). This definition, however, would

not give the correct result. The start state π is a nondeterministic state. Each element
of this nondeterministic state belongs to one way of resolving the nondeterminism of the
execution up till now. A nondeterministic choice cannot depend on the outcome of a
probabilistic choice which has not yet been made. In π the nondeterministic choices made
in the past are collected. These choices have therefore been fixed at this point. The same
probabilistic substate from π has to be used for both of the two possible outcomes of
the probabilistic choice. In D(s)(π) ⊕ρ D(s

′)(π) different probabilistic substates from π
can be selected for s and s′. This means that it would be possible to take different op-
tions for previously made nondeterministic choices depending on the result of the current
probabilistic choice.

For a conditional choice a similar remark can be made as for the probabilistic choice.
As the nondeterministic choices collected in the state π have already been made, the same
probabilistic substate of π has to be used for both alternatives of the conditional choice.

The nondeterministic alternatives available after execution of s 2 s′ are the alterna-
tives available after the execution of s together with the alternatives available after the
execution of s′.

Example 6.7.10 In the program (x := 1 2 x := 2) ; (y := 1 ⊕ 1
2
y := 2) the user has to

choose between 1 and 2 for x first, after which a probabilistic choice is made between 1
and 2 for y. As the user has no way of knowing the outcome of the probabilistic choice,
the probability that x equals y should be 1

2 no matter what choices the user makes. This
can be checked by looking at the denotational semantics of the program. Clearly the values
of x and y at the start of execution are irrelevant. Without loss of generality both x and
y are assumed to be 0. The denotational semantics can be found as follows.

D((x := 1 2 x := 2) ; (y := 1⊕ 1
2
y := 2))({ 1〈x = 0, y = 0〉 })

= D(y := 1⊕ 1
2
y := 2)(D(x := 1 2 x := 2)({ 1〈x = 0, y = 0〉 }))

= D(y := 1⊕ 1
2
y := 2)({ 1〈x = 1, y = 0〉, 1〈x = 2, y = 0〉 })

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 245

= D(y := 1)({ 1〈x = 1, y = 0〉 })⊕ 1
2
D(y := 2)({ 1〈x = 1, y = 0〉 })

∪ D(y := 1)({ 1〈x = 2, y = 0〉 })⊕ 1
2
D(y := 2)({ 1〈x = 2, y = 0〉 })

= ({ 1〈x = 1, y = 1〉 }⊕ 1
2
{ 1〈x = 1, y = 2〉 })

∪ ({ 1〈x = 2, y = 1〉 }⊕ 1
2
{ 1〈x = 2, y = 1〉 })

= { 1
2 〈x = 1, y = 1〉+ 1

2 〈x = 1, y = 2〉, 12 〈x = 2, y = 1〉+ 1
2 〈x = 2, y = 2〉 }

For both possible choices the probability that x equals y is indeed 1
2 .

In the program (y := 1 ; (x := 1 2 x := 2)) ⊕ 1
2
(y := 2 ; (x := 1 2 x := 2)) the user

can choose different options for the two different possible outcomes of the probabilistic
choice. As a result, in one of the nondeterministic options the probability that x equals y
is 1. Assuming again that both x and y are 0 at the start of execution the denotational
semantics can be found as follows.

D((y := 1 ; (x := 1 2 x := 2))
⊕ 1

2
(y := 2 ; (x := 1 2 x := 2)))({ 1〈x = 0, y = 0〉 })

= D(y := 1 ; (x := 1 2 x := 2))({ 1〈x = 0, y = 0〉 })
⊕ 1

2
D(y := 2 ; (x := 1 2 x := 2))({ 1〈x = 0, y = 0〉 })

= { 1〈x = 1, y = 1〉, 1〈x = 2, y = 1〉 }
⊕ 1

2
{ 1〈x = 1, y = 2〉, 1〈x = 2, y = 2〉 }

= { 1
2 〈x = 1, y = 1〉+ 1

2 〈x = 1, y = 2〉, 12 〈x = 1, y = 1〉+ 1
2 〈x = 2, y = 2〉,

1
2 〈x = 2, y = 1〉+ 1

2 〈x = 1, y = 2〉, 12 〈x = 2, y = 1〉+ 1
2 〈x = 2, y = 2〉 }

For the option 1
2 〈x = 1, y = 1〉+ 1

2 〈x = 2, y = 2〉 the probability that x equals y is 1.

In the second example the user can select the value 1 for x when y equals 1 and select
value 2 for x when y is 2. This allows the user to make a selection in which the probability
that x equals y is 1. As mentioned in the introduction to this section, the user is assumed
not to be able to observe the state, which means that the user cannot see the value of y.
The reason the user can select different values for the two possible values of y is because
there are two different nondeterministic choices. The first choice is always made with a
value of 1 for y, while the other is always made with a value of 2 for y. Because the user
does know which choice is being made, the value of y can be deduced.

In the program (y := 1⊕ 1
2
y := 2) ; (x := 1 2 x := 2) the probabilistic choice is made

before the nondeterministic choice. However, as there is no way for the user to observe the
outcome of the choice, the value of y is not known to the user and the nondeterministic
choice cannot depend on this value.

Example 6.7.11 For the program (y := 1⊕ 1
2
y := 2);(x := 12x := 2) there are only two

nondeterministic alternatives. For both alternatives the probability that x equals y is 1
2 .

D((y := 1⊕ 1
2
y := 2) ; (x := 1 2 x := 2))({ 1〈x = 0, y = 0〉 })

= D(x := 1 2 x := 2)(D(y := 1⊕ 1
2
y := 2)({ 1〈x = 0, y = 0〉 }))

= D(x := 1 2 x := 2)({ 1
2 〈x = 0, y = 1〉+ 1

2 〈x = 0, y = 2〉 })

= D(x := 1)({ 1
2 〈x = 0, y = 1〉+ 1

2 〈x = 0, y = 2〉 })
∪ D(x := 2)({ 1

2 〈x = 0, y = 1〉+ 1
2 〈x = 0, y = 2〉 })

= { 1
2 〈x = 1, y = 1〉+ 1

2 〈x = 1, y = 2〉, 12 〈x = 2, y = 1〉+ 1
2 〈x = 2, y = 2〉 }

246 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

If the user can observe something about the state, this has to be made explicit in the
program. This can be done by introducing a conditional choice.

Example 6.7.12 The situation where the user is able to observe the value of y after
running the program (y := 1 ⊕ 1

2
y := 2) and use this value in the decision for the value

of x can be described by the program

sif = if y = 1 then x := 1 2 x := 2 else x := 1 2 x := 2 fi

The choices which are available to the user are the same for both branches of the condi-
tional choice but the fact that the choice in the left branch or the choice in the right branch
is being made provides extra information to the user.

D((y := 1⊕ 1
2
y := 2) ; sif)({ 1〈x = 0, y = 0〉 })

= D(sif)({
1
2 〈x = 0, y = 1〉+ 1

2 〈x = 0, y = 2〉 })

= D(x := 1 2 x := 2)({ 1
2 〈x = 0, y = 1〉 })

+D(x := 1 2 x := 2)({ 1
2 〈x = 0, y = 2〉 })

= { 1
2 〈x = 1, y = 1〉, 12 〈x = 2, y = 1〉 }+{ 1

2 〈x = 1, y = 2〉, 12 〈x = 2, y = 2〉 }

= { 1
2 〈x = 1, y = 1〉+ 1

2 〈x = 1, y = 2〉, 12 〈x = 1, y = 1〉+ 1
2 〈x = 2, y = 2〉,

1
2 〈x = 2, y = 1〉+ 1

2 〈x = 1, y = 2〉, 12 〈x = 2, y = 1〉+ 1
2 〈x = 2, y = 2〉 }

The program (y := 1 ; (x := 1 2 x := 2)) ⊕ 1
2
(y := 2 ; (x := 1 2 x := 2)) is not

equivalent to (y := 1 ⊕ 1
2
y := 2) ; (x := 1 2 x := 2) but is equivalent to (y := 1 ⊕ 1

2

y := 2);if y = 1 then x := 1 2 x := 2 else x := 1 2 x := 2 fi. This again shows that
an ‘information-oriented’ view of nondeterminism is used: The amount of information
available to the user is important for the possible outcomes of the choice.

The language Lpnif is an extension of the language Lpif. The meaning of a program in Lpnif
is given as a function from nondeterministic states to nondeterministic states whereas the
meaning of a program in Lpif is given as a function from probabilistic states to probabilistic
states. The semantics of Lpnif, therefore, cannot be an direct extension of the semantics
of Lpif. A probabilistic state, however, can be interpreted as a nondeterministic state
containing only a single option. Using this interpretation, the semantics of Lpnif is a
conservative extension of the semantics for Lpif. Part (a) of the following lemma makes
this statement precise.

Lemma 6.7.13

(a) Using Dpif to denote the denotational semantics introduced in definition 6.3.12 we
have

D(s)({ θ }) = {Dpif(s)(θ) }

for all programs s in Lpif and probabilistic states θ in Θ.

(b) The denotational semantics is ‘linear’ in the nondeterministic state, i.e.

D(s)(π ∪ π′) = D(s)(π) ∪ D(s)(π′)

for all programs s in Lpnif and states π, π
′ in Π.

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 247

(c) For a program s and a state π the denotational semantics D(s)(π) can be obtained for
each probabilistic substate θ in π separately, meaning

D(s)(π) = ∪ {D(s)({ θ }) | θ ∈ π }

Proof

(a) The proof proceeds by structural induction on the program s from Lpif. Only two
typical cases are given.

• D(x := e)({ θ }) = { θ }[V(e)/x] = { θ[V(e)/x] }= {Dpif(x := e)(θ) }

• D(s1 ; s2)({ θ }) = [def. 6.7.9] D(s2)(D(s1)({ θ }))

= [ind. hyp.] D(s2)({Dpif(s1)(θ) })

= [ind. hyp.] {Dpif(s2)(Dpif(s1)(θ)) }

= [def. 6.3.12] {Dpif(s1 ; s2)(θ) }

(b) This proof also proceeds by induction on the structure of the program s, but now for
programs s in Lpnif. Again only a few typical cases are treated.

• D(x := e)(π ∪ π′) = [def. 6.7.9] (π ∪ π′)[V(e)/x]

= [def. 6.7.5] π[V(e)/x] ∪ π′[V(e)/x]

= [def. 6.7.9] D(x := e)(π) ∪ D(x := e)(π′)

• D(s1 ; s2)(π ∪ π
′)

= [def. 6.7.9] D(s2)(D(s1)(π ∪ π
′))

= [ind. hyp.] D(s2)(D(s1)(π) ∪ D(s1)(π
′))

= [ind. hyp.] D(s2)(D(s1)(π)) ∪ D(s2)(D(s1)(π
′))

= [def. 6.7.9] D(s1 ; s2)(π) ∪ D(s1 ; s2)(π
′)

• D(s1 2 s2)(π ∪ π
′)

= [def. 6.7.9] D(s1)(π ∪ π
′) ∪ D(s2)(π ∪ π

′)

= [ind. hyp.] D(s1)(π) ∪ D(s1)(π
′) ∪ D(s2)(π) ∪ D(s2)(π

′)

= [def. 6.7.9] D(s1 2 s2)(π) ∪ D(s1 2 s2)(π
′)

(c) As there are only finitely many options in a nondeterministic state this is a direct
consequence of part (b). 2

The first part of this lemma states that the semantics of Lpnif is a conservative extension
of the semantics for Lpif. The second part states that the denotational semantics is
‘linear’ in the nondeterministic state. If the nondeterministic start state is the union of
the other states π and π′, the end state given by the semantics can be split into the end
state for π and the end state for π′. The last part of the lemma states that only the
currently selected option is relevant for the semantics of the program to be executed. Any
other nondeterministic options that could have been nondeterministically selected in the
execution so far do not influence the computation for the currently selected option.

248 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

6.7.2 A Hoare-style logic for Lpnif

The goal of this subsection is to develop a Hoare-style logic pHnd to reason about the
nondeterministic programs in Lpnif, similar to the logic pH introduced in section 6.4. The
logic allows verification of programs in Lpnif. The verification addresses the question:
“Given that property p holds before executing the program, does property q hold after
the execution of a program, no matter how the nondeterministic choices are made ?”.
This is the usual interpretation of nondeterminism in Hoare logic (see e.g. [126, 34]). This
corresponds to looking at the worst case behavior of a program. It is also possible to
study the best case behavior of a program by looking at questions of the form “can the
nondeterministic choices be made in a way such that property p holds after the execution
of the program ?”. These questions could also be treated in this framework but require a
different definition of validity of the predicates, and a straightforward adaptation of the
rule for nondeterminism in the logic.

The properties that are to be checked in the verification of the nondeterministic pro-
grams in Lpnif are the same properties as for the programs without nondeterminism in
Lpif and Lpw. The same predicates can therefore be used to express these properties.
Recall that the set of predicates, denoted by Pred and ranged over by p and q, is given
by

p = cr | p ∧ p | p ∨ p | ∃j : p | ∀j : p | ρ · p | p+ p | p⊕ρ p | c?p

with cr a real condition in RC, j an integer valued or real valued variable in IVar∪RVar,
ρ a ratio in (0, 1) and c a boolean condition in BC〈PVar〉.

As we are interested in properties which hold for all possible ways of making the non-
deterministic choices, a property is said to hold in some nondeterministic state exactly
when the property holds for all the probabilistic substates in the nondeterministic state.

Definition 6.7.14 A nondeterministic state π with an interpretation J is said to satisfy
the predicate p, denoted (π, J) |= p, when all substates of π (with interpretation J) satisfy
p, i.e.

(π, J) |= p when (θ, J) |= p for all θ ∈ π

When one is interested in the best case behavior of a program, this definition should
be adapted. In that case one should check that the predicate p holds for some substate
instead of for all substates.

Note that the claim “(π, J) |= p ∨ q” is weaker than the claim “(π, J) |= p or (π, J) |=
q”. In the second case, all elements of π must satisfy p or all elements must satisfy q. For
the first case it is also possible that some states satisfy p but not q and some satisfy q but
not p.

Example 6.7.15 Let J be any interpretation. The probabilistic state 1〈x = 1〉 satisfies
the predicate P(x = 1) = 1 and therefore also the predicate P(x = 1) = 1 ∨ P(x = 2) = 1.
Thus we have

(1〈x = 1〉, J) |= P(x = 1) = 1 ∨ P(x = 2) = 1

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 249

The probabilistic state 1〈x = 2〉 satisfies the predicate P(x = 2) = 1 and therefore also the
predicate P(x = 1) = 1 ∨ P(x = 2) = 1, i.e.

(1〈x = 2〉, J) |= P(x = 1) = 1 ∨ P(x = 2) = 1

The nondeterministic state π = { 1〈x = 1〉, 1〈x = 2〉 } satisfies P(x = 1) = 1 ∨ P(x = 2) =
1 as all substates of π satisfy this predicate, therefore

({ 1〈x = 1〉, 1〈x = 2〉 }, J) |= P(x = 1) = 1 ∨ P(x = 2) = 1

The state π = { 1〈x = 1〉, 1〈x = 2〉 } does not satisfy P(x = 1) = 1 as the substate 1〈x = 2〉
does not satisfy this predicate. The state π also does not satisfy P(x = 2) = 1 as the
substate 1〈x = 1〉 does not satisfy this predicate:

({ 1〈x = 1〉, 1〈x = 2〉 }, J) 6|= P(x = 1) = 1

({ 1〈x = 1〉, 1〈x = 2〉 }, J) 6|= P(x = 2) = 1

Recall from section 6.4 that a Hoare triple { p } s { q } states that p is a precondition
and q is a postcondition for the program s. A Hoare triple is valid if execution of the
program starting from any state that satisfies the precondition leads to a state satisfying
the postcondition. The formal definition of validity of a Hoare triple is as in section 6.4,
but now using nondeterministic states in Π.

Definition 6.7.16 A Hoare triple, { p } s { q } , is said to be valid, denoted |= { p } s { q } ,
when

(π, J) |= p⇒ (D(s)(π), J) |= q

holds for all states π in Π and interpretations J in J .

The observation that (π, J) |= p ∨ q is not equivalent with (π, J) |= p or (π, J) |= q shows
that one needs to be careful when reasoning about predicates over nondeterministic states.
For instance the rule (Or), which is obviously true in the purely probabilistic setting,
requires more attention in the nondeterministic setting. That the rule remains valid is
because the computation can be done for each probabilistic substate separately. This also
means that for validity of a Hoare triple it is possible to restrict the start state to a set
containing a single probabilistic substate.

Lemma 6.7.17 A Hoare triple { p } s { q } is valid if and only if for all probabilistic
states θ in Θ and interpretations J in J : (θ, J) |= p⇒ (D(s)({ θ }), J) |= q.

Proof As (θ, J) |= p holds exactly when ({ θ }, J) |= p holds and { θ } is a nondeterministic
state, the ‘only if’ part of this lemma is immediately clear.

For the ‘if’ part of this lemma assume that (θ, J) |= p⇒ (D(s)({ θ }), J) |= q holds for
all θ in Θ. If (π, J) |= p then (θ, J) |= p for all θ in π. But then (D(s)({ θ }), J) |= q for
all θ in π. As D(s)(π) = ∪ {D(s)({ θ }) | θ ∈ π } (see lemma 6.7.13) this means that also
(D(s)(π), J) |= q. 2

This lemma is used in theorem 6.7.20 below to show the soundness of the Hoare-style logic
pHnd for Lpnif. This logic is obtained from the logic pH given in section 6.4, by adding a
rule to deal with programs built with the nondeterministic operator 2.

250 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

Definition 6.7.18 The proof system pHnd contains the rules of the proof system pH given
in section 6.4 and additionally the rule

{ p } s { q } { p } s′ { q }

{ p } s 2 s′ { q }
(Nd)

The rule (Nd) has the same form as the rule for nondeterminism in standard Hoare logic.
If a start state satisfying p leads to an end state satisfying q for both the execution of
the program s and the program s′ then it will also lead to an end state satisfying q after
executing the program s 2 s′ because the execution of s 2 s′ will either be the execution
of s or the execution of s′.

Example 6.7.19 Figure 6.7.19 below shows a proof tree in the system pH. This proof
tree deduces the Hoare triple {P(true) = 1 } x := 1 2 (x := 2 2 x := 3) { (P(x = 1) =
1) ∨ (P(x = 2) = 1) ∨ (P(x = 3) = 1) } .

As another example we consider the program s = (x := 1⊕ 1
2
x := 2)2 (x := 2⊕ 1

2
x := 3).

Using rules (Assign) and (Cons) (as in figure6.7.19) gives

` {P(true) = 1 } x := n {P(x = n) = 1 }

for n = 1, 2, 3. By applying rules (Prob) and rule (Cons) next one obtains

{P(true) = 1 } x := 1⊕ 1
2
x := 2 { (P(x = 1) = 1

2) ∧ (P(x = 2) = 1
2) }

and
{P(true) = 1 } x := 2⊕ 1

2
x := 3 { (P(x = 2) = 1

2) ∧ (P(x = 3) = 1
2) }

Again using rule (Cons) gives both

{P(true) = 1 } x := 1⊕ 1
2
x := 2 {P(x = 2) = 1

2 }

and
{P(true) = 1 } x := 2⊕ 1

2
x := 3 {P(x = 2) = 1

2 }

From these Hoare triples we obtain for the program s the triple

{P(true) = 1 } s {P(x = 2) = 1
2 }

by using rule (Nd).
By similar reasoning we can deduce the triples {P(true) = 1 } s {P(x ≥ 2) ≥ 1

2 } and
{P(true) = 1 } s {P(x ≥ 1) = 1 } using the proof system pHnd.

It is also possible to give the rule (Nd) more in the style of rule (Prob). It is not necessary
to extend the predicates with an operator 2 similar to the operator ⊕ρ. Such an operator
2 is equivalent with the operator ∨ which is already present. Replacing the rule (Nd)
with the rule (Nd’) below gives an equivalent logic.

{ p } s { q } { p } s′ { q′ }

{ p } s 2 s′ { q ∨ q′ }
(Nd’)

6.7.
A
N
O
T
H
E
R
E
X
T
E
N
S
IO

N
O
F
L

p
if :

A
D
D
IN
G

N
O
N
D
E
T
E
R
M
IN
IS
M

251

{ P(2 = 2) = 1 } x := 2 { P(x = 2) = 1 }
(Assign)

{ P(3 = 3) = 1 } x := 3 { P(3 = 3) = 1 }
(Assign)

{ P(1 = 1) = 1 } x := 1 { P(x = 1) = 1 }
(Assign)

{ P(true) = 1 } x := 1 { p }
(Cons)

{ P(true) = 1 } x := 2 { p }
(Cons)

{ P(true) = 1 } x := 1 { p }
(Cons)

{ P(true) = 1 } x := 2 2 x := 3 { p }
(Nd)

{ P(true) = 1 } x := 1 2 (x := 2 2 x := 3) { p }
(Nd)

with p =
(

P(x = 1) = 1
)
∨
(

P(x = 2) = 1
)
∨
(

P(x = 3) = 1
)
.

Figure 6.7.19, a proof tree in pHnd

252 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

This rule is similar to the rule (Prob), with the only difference being that the operator ∨
is used instead of the operator ⊕ρ. Not only is the form of the rules the same, but the
operator ∨ can be linked to the operation for nondeterministic choice in the semantics
(union) in the same way the operator ⊕ρ in the logic is linked to the semantical operation
⊕ρ: A probabilistic state satisfies the predicate p⊕ρ p

′ when the state can be written as
the probabilistic sum of two states, the first satisfying p and the second satisfying p′. A
nondeterministic state satisfies the predicate p ∨ p′ when the state can be written as the
union of two states the first satisfying p and the second satisfying p′.

It is easy to check that the the logic pHnd and the logic pH′nd, where rule (Nd) is
replaced by rule (Nd’), are equivalent. By taking q′ = q in rule (Nd’) the rule (Nd) is
obtained, so clearly anything deduced with rule (Nd) can be deduced with rule (Nd’). Any
Hoare triple deduced with rule (Nd’) can be deduced by using q ∨ q′ as the postcondition
in rule (Nd) and using rule (Cons).

When looking at the best case behavior of programs, the rule (Nd) needs to be split
into two rules. Both rules derive { p } s 2 s′ { q } . The first rule from the validity of
{ p } s { q } , the second from the assertion { p } s′ { q } . For the alternative rule (Nd’) it
is sufficient to change the operator used to represent nondeterministic choice from ∨ to
∧.

The notation ` { p } s { q } is again used to denote that the Hoare triple { p } s { q } can
be deduced in the logic. Although only the rule (Nd) is added and all other rules remain
the same, the validity of the other rules needs to be rechecked as they are now used for
predicates on nondeterministic states instead of predicates on probabilistic states. The
following theorem states that the extended proof system pHnd is sound, i.e. that only
valid Hoare triples can be obtained from this system.

Theorem 6.7.20 The proof system pHnd is sound, i.e. for each program s in Lpnif and
for all predicates p and q, ` { p } s { q } implies |= { p } s { q } .

Proof The proof uses induction on the depth of the proof tree for the Hoare triple
{ p } s { q } . A few typical cases are given below. In the reasoning below a fixed interpre-
tation J is assumed and a state will be said to satisfy a predicate instead of saying that
the state together with the interpretation J satisfies the predicate.

• If the rule (Nd) is used to derive ` { p } s2s′ { q } from ` { p } s { q } and ` { p } s′ { q }
then |= { p } s { q } and |= { p } s′ { q } by induction.

If π satisfies p then both D(s)(π) and D(s′)(π) satisfy q. But then D(s 2 s′)(π) =
D(s)(π) ∪ D(s′)(π) also satisfies q.

• If the rule (Assign) is used to derive ` { p[e/x] } x := e { p } and θ satisfies p[e/x] then
the state θ[V(e)/x] satisfies p (see lemma 6.4.12). But then also D(x := e)({ θ }) =
{ θ[V(e)/x] } satisfies p. Using lemma 6.7.17 this is sufficient for the validity of the
Hoare triple { p[e/x] } x := e { p } .

• If the rule (Or) is used to derive ` { p ∨ p′ } s { q } from ` { p } s { q } and ` { p′ } s { q }
then |= { p } s { q } and |= { p′ } s { q } by induction.

If a probabilistic state θ satisfies p ∨ p′ then it satisfies p or it satisfies p′. (Note
that this is not always the case for a nondeterministic state.) As |= { p } s { q } and

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 253

|= { p′ } s { q } , in both cases D(s)({ θ }) will satisfy q. The validity of the Hoare triple
{ p ∨ p′ } s { q } now follows by lemma 6.7.17.

• If rule (Prob) is used to derive ` { p } s ⊕ρ s
′ { q ⊕ρ q

′ } from ` { p } s { q } and
` { p } s′ { q′ } then by induction |= { p } s { q } and |= { p } s′ { q′ } .

If θ satisfies p then D(s)({ θ }) satisfies q and D(s′)({ θ }) satisfies q′. But then D(s⊕ρ

s′)({ θ }) = D(s)({ θ })⊕ρ D(s
′)({ θ }) satisfies q ⊕ρ q

′ as clearly each probabilistic state
in D(s)({ θ })⊕ρ D(s

′)({ θ }) can be written as the probabilistic combination of a prob-
abilistic state satisfying q and a probabilistic state satisfying q′. Using lemma 6.7.17
this is sufficient for the validity of the Hoare triple { p } s⊕ρ s

′ { q ⊕ρ q
′ } . 2

As the proof system is sound, Hoare triples deduced with the system are valid. Without
soundness the proof system is, of course, useless. Soundness gives that the proof system
is at least useful for Hoare triples which can be deduced. The next question is whether
the proof system is also complete. Can all valid Hoare triples be deduced using the proof
system? The following subsection addresses this question.

6.7.3 Weakest preconditions and completeness

In this subsection the conjecture that all valid Hoare triples, with a slight restriction
on the postcondition, can be obtained using the proof system pHnd is discussed. The
restriction is the same as the restriction introduced in section 6.5.

The completeness of the proof system is shown by using weakest preconditions. For
a postcondition q and a program s the weakest precondition p that yields a valid Hoare
triple { p } s { q } is found. Next it is shown that the Hoare triple { p } s { q } can be
deduced in the proof system. Using the rule of consequence (Cons) this gives that any
valid Hoare triple with q as a postcondition can be deduced.

It is not clear how to define the weakest precondition for a general nondeterministic
program in Lpnif directly. Instead, the weakest precondition is only given directly for a
subset of Lpnif and for each program an equivalent program in this subset is given. Recall
that two programs are called equivalent if they have the same denotational semantics.
Clearly the weakest precondition for two equivalent programs is the same.

In section 6.5 the function ℘ was introduced and shown to give the weakest precondition
for programs in Lpif. To be able to give the weakest precondition of a program of the form
s = s1 ⊕ρ s2, the equivalence ℘(s)(q ∨ q′) = ℘(s)(q) ∨ ℘(s)(q′) was used in the definition
of ℘ in section 6.5. For predicates over a nondeterministic state, however, the weakest
precondition does not satisfy this equation in general. The weakest precondition for q
after s or the weakest precondition for q′ after s is a precondition for q ∨ q′ after s, but
not the weakest.

Example 6.7.21 Let the program s be given by x := 1 2 x := 2 and the predicates p
and p′ by P(x = 1) = 1 and P(x = 2) = 1 respectively, then the weakest precondition for
p ∨ p′ after s is P(true) = 1. (See definition 6.7.9 and example 6.7.19.) The weakest
precondition for p after s is false as the option x := 2 can be selected. Similarly the
weakest precondition for p′ after s is also false as the option x := 1 can be selected. The
predicate false ∨ false is not the weakest precondition for p ∨ p′ after s.

254 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

Not being able to use the same construction as in section 6.5, it is not clear how to give
a weakest precondition for all nondeterministic programs directly. Instead a structural
definition of the weakest precondition is only given for nondeterministic programs in
a specific form. Other programs are reduced to an equivalent program of this form.
The equivalence with the reduced program is then used to give the weakest precondition
indirectly.

In sections 4.2 and 4.4 linear models are given where all nondeterministic choices are
made at the start of the execution, leaving only purely probabilistic programs, i.e. pro-
grams in which all nondeterminism is caused by probabilistic choices. The same idea of
moving nondeterministic choices to the start of the program is used here. By moving all
nondeterministic choices to the start of the program, the execution will consist of first
making all nondeterministic choices, referred to as resolving the nondeterminism, and then
executing a purely probabilistic program. The weakest precondition for a purely proba-
bilistic program can be found using the approach of section 6.5. The weakest precondition
for the nondeterministic choice between several programs s is simply the disjunction of the
weakest preconditions for all of these programs: A property holds for a nondeterministic
program if it holds for all ways of making the nondeterministic choices in the program.
For a program s which is the nondeterministic choice between several purely probabilistic
programs sk (k = 1, . . . n) this means that the weakest precondition p for s must imply the
weakest precondition pk of each of the programs sk. The weakest predicate that satisfies
this property is the disjunction of the predicates pk.

The approach to giving the weakest precondition of a nondeterministic program is,
thus, as follows. First find an equivalent program with all nondeterministic choices at the
start of the program. Find the weakest precondition for all purely probabilistic alterna-
tives and take the disjunction of these preconditions.

The function red returns for every program an equivalent program with all nonde-
terministic choices at the start of the program. A program s in Lpnif is called purely
probabilistic when there are no nondeterministic choices in s, i.e. when s is also a program
in Lpif. Note that if s is not purely probabilistic then red(s) = s1 2 s2 for some programs
s1, s2.

Definition 6.7.22 The reduction function red : Lpnif → Lpnif is given by

red(skip) = skip

red(x := e) = x := e

red(s 2 s′) = red(s) 2 red(s′)

when red(s) = s1 2 s2 then

red(s ; s′) = red(s1 ; s
′) 2 red(s2 ; s

′)
red(s⊕ρ s

′) = red(s1 ⊕ρ s
′) 2 red(s2 ⊕ρ s

′)
red(if c then s else s′ fi) = red(if c then s1 else s′ fi)

2 red (if c then s2 else s′ fi)

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 255

when s is purely probabilistic and red(s′) = s1 2 s2 then

red(s ; s′) = red(s ; s1) 2 red(s ; s2)
red(s⊕ρ s

′) = red(s⊕ρ s1) 2 red(s⊕ρ s2)
red(if c then s else s′ fi) = red(if c then s else s1 fi)

2 red (if c then s else s2 fi)

finally when both s and s′ are purely probabilistic

red(s ; s′) = s ; s′

red(s⊕ρ s
′) = s⊕ρ s

′

red(if c then s else s′ fi) = if c then s else s′ fi

The execution of a program red(s) starts with a number of nondeterministic choices. After
the nondeterministic choices at the start of the program have been made, the remaining
program is a purely probabilistic program in Lpif.

Lemma 6.7.23 The function red is well-defined.

Proof By induction on the weight function wgt given by

wgt(skip) = 2

wgt(x := e) = 2

wgt(s ; s′) = wgt(s) · wgt(s′)

wgt(s⊕ρ s
′) = wgt(s) · wgt(s′)

wgt(if c then s else s′ fi) = wgt(s) · wgt(s′)

wgt(s 2 s′) = wgt(s) + wgt(s′) + 1

one shows that

• red(s) is well-defined,

• red(s) = s1 2 s2 or s is in Lpif and

• wgt(red(s))< wgt(s) whenever red(s) 6= s.

We only consider two representative cases

[s 2 s′] As wgt(s) and wgt(s′) are less than wgt(s 2 s′) we have that red(s) and red(s′)
and therefore also red(s 2 s′) are well-defined. Clearly the second point mentioned
above holds as red(s 2 s′) = red(s) 2 red(s′) Finally we check the weight of red(s).
We have wgt(red(s2s′)) = wgt(red(s)2red(s′)) = wgt(red(s))+wgt(red(s′))+1. As
wgt(s2 s′) = wgt(s) +wgt(s′) + 1 we are done by applying the induction hypothesis
for s and s′.

[s ; s′] We only treat the case that s is purely probabilistic, i.e. s ∈ Lpif, and red(s′) =
s1 2 s2. We have that wgt(s ; s1) = wgt(s) ·wgt(s1)<wgt(s) ·wgt(s1 ; s2) ≤ wgt(s) ·
wgt(s′) = wgt(s ; s′) by applying the third property in the induction hypothesis for
s′ and similarly wgt(s ; s2) < wgt(s ; s′). From this well-definedness is clear. Note
that the fact that each weight is at least 2 is essential here. The second property is
clear leaving only the checking of the weight of red(s ; s′).

256 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

wgt(s ; s′)

= wgt(s) · wgt(s′)

≥ [ind. hyp. s′] wgt(s) · wgt(red(s′))

= wgt(s) · wgt(s1 2 s2)

= wgt(s) · (wgt(s1) + wgt(s2) + 1)

> wgt(s) · wgt(s1) + wgt(s) · wgt(s2) + 1

= wgt(s ; s1) + wgt(s ; s2) + 1

≥ [ind. hyp. s ; si] wgt(red(s ; s1)) + wgt(red(s ; s2)) + 1

= wgt(red(s ; s1) 2 red(s ; s2))

= wgt(red(s ; s′)) 2

The program red(s) describes a situation where the user or opponent, who makes the
nondeterministic choices, has to choose a strategy ahead of time. The choices available
for the user are the same as in s, only the moment at which they are made are different.
As probabilistic choices in the program are not affected by any other choices in the pro-
gram, the different moments of nondeterministic choice in red(s) and s will not affect the
probabilistic choices. For the end state, the moment a nondeterministic choice is made is
also irrelevant. The programs s and red(s) are, therefore, equivalent.

Lemma 6.7.24 For each program s, the denotational semantics of s is equal to the de-
notational semantics of red(s).

Proof This property is shown by induction on structure of red(s). The analysis is split
into the different cases possible for s. The cases skip and x := e are directly clear and
the case s1 2 s2 is immediate from the induction assumption. The remaining cases for
sequential composition, probabilistic choice and conditional choice are similar. Only the
case s1 ⊕ρ s2 is given.

• If red(s1) = s′1 2 s′′1 then

D(red(s1)) = D(red(s′1 ⊕ρ s2) 2 red(s′′1 ⊕ρ s2))

= D(red(s′1 ⊕ρ s2)) ∪ D(red(s
′′
1 ⊕ρ s2))

[ind. hyp.] = D(s′1 ⊕ρ s2) ∪ D(s
′′
1 ⊕ρ s2)

= (D(s′1)⊕ρ D(s2)) ∪ (D(s′′1)⊕ρ D(s2))

[straigthforw. calc.] = (D(s′1) ∪ D(s
′′
1))⊕ρ D(s2)

= (D(s′1 2 s′′1))⊕ρ D(s2)

= D(red(s1))⊕ρ D(s2)

[ind. hyp.] = D(s1)⊕ρ D(s2)

= D(s1 ⊕ρ s2)

If s1 is purely probabilistic and red(s2) = s′2 2 s′′2 then symmetrically D(red(s1 ⊕ρ

s2)) = D(s1⊕ρs2), and if both s1 and s2 are purely probabilistic then red(s1⊕ρs2) =
s1 ⊕ρ s2 so clearly D(red(s1 ⊕ρ s2))(π) = D(s1 ⊕ρ s2)(π). 2

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 257

As an immediate consequence of this lemma we have that, by the definition of validity, s
and red(s) form valid Hoare triples with the same predicates: For all programs s in Lpnif
and all predicates p, q in Pred

|= { p } s { q } if and only if |= { p } red(s) { q }

This also means that the weakest precondition for program s and postcondition q is the
same as the weakest precondition for the program red(s) and postcondition q. Hence,
the weakest precondition needs to be defined only for programs which are the nondeter-
ministic choice between programs in Lpif. For a program s not of this form, the weakest
precondition is defined as the weakest precondition of red(s).

Definition 6.7.25 The weakest precondition ℘nd(s)(q) for a postcondition q and a pro-
gram s in Lpnif is given by

℘nd(s)(q) = ℘′nd(red(s))(q)

℘′nd(s 2 s′)(q) = ℘′nd(s)(q) ∧ ℘
′
nd(s

′)(q)

℘′nd(s)(q) = ℘(s)(q) if s purely probabilistic

with ℘ as introduced in definition 6.5.2.

The function ℘nd gives the weakest precondition for any program s and postcondition q.
For a program which is a nondeterministic choice between purely probabilistic programs
in Lpif, the function ℘′nd gives the weakest precondition. To be certain that q holds
after executing s 2 s′ one must know that it holds after executing s and after executing
s′ as either of these two programs may be selected. For programs in Lpif the weakest
precondition has already been given in section 6.5.

Lemma 6.7.26 For each program s and predicate q, the predicate p = ℘nd(s)(q) is the
weakest predicate for which { p } s { q } is a valid Hoare triple.

Proof For each program s, state π, interpretation J and predicate q the following property
is shown: (π, J) |= ℘nd(s)(q) ⇐⇒ (D(s)(π), J) |= q. This implies that ℘nd gives the
weakest precondition.

By virtue of lemma 6.7.13 part (c) and the equivalence of red(s) and s it is sufficient to
show the property (θ, J) |= ℘′nd(s)(q) ⇐⇒ (D(s)({ θ }), J) |= q. for s of the form s1 2 s2
and s ∈ Lpif. Using the results from section 6.5 for ℘ (lemma 6.5.6) together with part
(a) of lemma 6.7.13 gives this property for all programs in Lpif. If the property holds for
s and s′ then

({ θ }, J) |= ℘′nd(s 2 s′)(q)

⇐⇒ ({ θ }, J) |= ℘′nd(s)(q) ∧ ℘
′
nd(s

′)(q)

⇐⇒ (θ, J) |= ℘′nd(s)(q) ∧ ℘
′
nd(s

′)(q)

⇐⇒ (θ, J) |= ℘′nd(s)(q) and (θ, J) |= ℘′nd(s
′)(q)

⇐⇒ ({ θ }, J) |= ℘′nd(s)(q) and ({ θ }, J) |= ℘′nd(s
′)(q)

⇐⇒ (D(s)({ θ }), J) |= q and (D(s′)({ θ }), J) |= q

⇐⇒ (D(s)({ θ }) ∪ D(s′)({ θ }), J) |= q

⇐⇒ (D(s 2 s′)({ θ }), J) |= q

258 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

so the property also holds for s 2 s′. 2

The function ℘nd,thus, gives the weakest precondition for any program and postcondi-
tion. To show completeness of the logic pHnd it is sufficient to show that the weakest
precondition can be deduced from pHnd.

Lemma 6.7.27 For each program s in Lpnif, predicate p and restricted predicate q

|= { p } s { q } ⇒ ` { p } red(s) { q }

Proof As ℘nd gives the weakest precondition, it is sufficient to show that we have that `
{℘nd(s)(q) } red(s) { q } holds. By using rule (Cons) this gives that any valid Hoare triple
can be deduced. For a purely probabilistic program this follows from lemma 6.5.5. For
programs of the form s2s′ the rule (Nd) and the definition of weakest precondition can be
used to reduce the problem to ` {℘nd(s)(q) } red(s) { q } and ` {℘nd(s

′)(q) } red(s′) { q }
which will lead to only purely probabilistic programs in finitely many steps. 2

This lemma shows that any valid Hoare triple can be deduced by first reducing the program
using the function red. Although we believe that all valid Hoare triples can also be deduced
without reducing the program, no proof of this fact is available. An approach that can be
followed is to try to show that ` { p } red(s) { q } implies that ` { p } s { q } . The main
problem is showing this property for programs s of the form s = s1 ⊕ρ s2.

Conjecture 6.7.28 The logic pHnd is complete, i.e. for each program s in Lpnif, predi-
cate p and restricted predicate q

|= { p } s { q } ⇒ ` { p } s { q }

Note that, due to property derived in the lemma 6.7.27, we do know that the proof system
pHnd extended with the rule

{ p } red(s) { q }
(Reduce)

{ p } s { q }

is complete. Rules that change the structure of the program step by step, such as a rule
that derives { p } (s1 2 s2)⊕ρ s3 { q } from { p } (s1 ⊕ρ s3) 2 (s2 ⊕ρ s3) { q } , can also be
added to obtain completeness should the conjecture above be false.

6.7.4 An example: Three doors revisited

In this subsection the ‘three doors problem’, introduced in section 4.2, is studied as an
example of an algorithm with nondeterminism and probability. Several possible strategies
are analyzed using the system pHnd.

In a quiz show a prize is hidden behind one of three doors. The contestant may pick
one of the doors. After selecting a door, the quiz master will open one of the other two
doors. (To show that the prize is not located there.) After this the contestant is again

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 259

allowed to pick a door. The question is what is the best strategy for the contestant, stay
with the first choice or switch doors.

The algorithm which describes the first part of the three doors problem is as follows.
A variable prize describes the location of the prize. No information is available about
where the prize is placed, so nondeterminism is used to describe the selection of the value
of prize. The variable door describes the door selected by the contestant. After this the
quiz master opens one of the other two doors. The doors that the quiz master can choose
from depend on the door opened by the contestant. As the contestant does not know
how the quiz master selects this door, this choice is also described by a nondeterministic
choice.

Int[1 . . . 3] prize,door, open;
(prize := 1 2 (prize := 2 2 prize := 3));
(door := 1⊕ 1

3
(door := 2⊕ 1

2
door := 3));

if door = 1 then open := 2 2 open := 3

else if door = 2 then open := 1 2 open := 3

else open := 1 2 open := 2 fi

fi;

The next step depends on the strategy the contestant uses. The easiest to describe is the
strategy to always stay with the door selected at the start.

door := door

The strategy where the other closed door is always selected, can be described by the
following program.

door := 6 − open − door

The algorithm is different from that given in section 4.2. The most obvious difference
is that the use of variables and values replaces the use of atomic actions. There is also
a more subtle difference which will show up during the analysis. The first part of the
program is the same for all strategies.

As we have
{P(true) = 1 }⇒
{∃i : P(3 = i) = 1 }
prize := 3

{ ∃i : P(prize = i) = 1 }

and similarly ` {P(true) = 1 } prize := 2 { ∃i : P(prize = i) = 1 } , using rule (Nd) gives
` {P(true) = 1 } prize := 2 2 prize := 3 { ∃i : P(prize = i) = 1 } . In the proof outline
below, the rule (Nd) is used implicitly. For j, k ∈ { 1, 2, 3 } the following shorthands are
also used

pj = P(prize = i ∧ door = j) = 1

pj,k = P(prize = i ∧ door = j ∧ open = k) = 1

q = 1
3 · (p1,2 ∨ p1,3) +

1
3 · (p2,1 ∨ p2,3) +

1
3 · (p3,1 ∨ p3,2)

The analysis below shows that the predicate ∃i : q holds after execution of the first
part of the program. Note that the predicate ∃i : q is equivalent with the predicate

260 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

∃i : ∀j : ∃k 6= j : P(prize = i,door = j, open = k) = 1
3 . This second predicate describes

the situation more intuitively: The prize is behind a door i, each door j can be selected
by the contestant with equal probability and a door k that has not been selected by the
contestant, k 6= j, is open. The predicate ∃i : q is used below as it is easier to calculate
with this predicate,

Int[1 . . . 3] prize,door, open;
{P(true) = 1 }
(prize := 1 2 (prize := 2 2 prize := 3));
{ ∃i : P(prize = i) = 1 }

By using the rule (Exists) the analysis can be restricted to some unknown but fixed value
for i.

{P(prize = i) = 1 }
(door := 1⊕ 1

3
(door := 2⊕ 1

2
door := 3));

{ 1
3 · p1 +

1
3 · p2 +

1
3 · p3 }

if door = 1 then

{ 1
3 · (P(prize = i ∧ door = 2) = 1) }

open := 2 2 open := 3

{ 1
3 · (P(prize = i ∧ door = 2 ∧ open = 1) = 1 ∨

P(prize = i ∧ door = 2 ∧ open = 3) = 1) }
else if door = 2 then

{ 1
3 · p2 }

open := 1 2 open := 3

{ 1
3 · (p2,1 ∨ p2,3) }

else

{ 1
3 · p3 }

open := 1 2 open := 2

{ 1
3 · (p3,1 ∨ p3,2) }

fi;

{ q }

After the first part of the program the property ∃i : q is satisfied. Clearly this property will
still hold after executing door := door. Simplifying this property by forgetting the value of
open gives that the predicate ∃i : 1

3 ·(P(prize = i,door = 1) = 1)+ 1
3 ·(P(prize = i,door =

2) = 1) + 1
3 · (P(prize = i,door = 3) = 1) holds. (Note that simply forgetting the value

open in P(prize = i,door = 1, open = 2) = 1 only gives that P(prize = i,door = 1) ≥ 1
holds, but clearly the probability cannot be greater than one.) As exactly one of the three
parts will have that door = i this predicate implies P(prize = door) = 1

3 . In other words,
the probability of winning the prize with the first strategy is 1

3 .

After executing the program door := 6 − open − door, the predicate ∃i : 1
3 · (p3,2 ∨

p2,3) +
1
3 · (p3,1 ∨ p1,3) +

1
3 · (p2,1 ∨ p1,2) holds. This predicate implies ∃.i : 1

3 · (p3 ∨
p2)+

1
3 · (p3 ∨ p1)+

1
3 · (p2 ∨ p1). For each possible value of i, it is always possible to have

the value of door different from i, meaning that the door with the prize is not selected.
The worst case probability for winning the prize is 0.

6.7. ANOTHER EXTENSION OF Lpif: ADDING NONDETERMINISM 261

This result is different from result obtained in section 4.2. The result is different is
because the assumption that the quiz master will not open the door with the prize behind
it is not enforced here. By opening the door with the prize behind it (unless the player
chooses this door) the prize will always be behind the initially selected door or the opened
door, never behind the other closed door. This would of course not work in reality. If the
quiz master opens the door with the prize, the contestant can see where the prize is and
select this door. The strategy for the contestant, however, does not reflect this. There
are several ways to deal with this problem. The assumption can be added as a predicate
at this point. It is also possible to change the program such that it is impossible for the
quiz master to open a door with a prize behind it. The solution that seems most natural,
however, is to correct the strategy of the contestant. A correction of the strategy uses
the fact that, although the contestant can in general not see the prize, i.e. cannot observe
prize, the contestant can observe whether the prize is behind the opened door, i.e. can
observe prize = open. A strategy described by program s can be corrected to include this
possibility by changing the program to if prize = open then door := open else s fi.

For the first strategy, “stay with your door”, the adjustment does not change the worst
case probability. For the second strategy, “switch doors”, however, it does. Because of
the rules (Lin +), (Lin ·) and (And) the analysis can be restricted to predicates of the
form pj,k instead of the more complicated predicate q.

{ p1,2 }
if prize = open then

{ (i = 2)⇒ p1,2 }
prize = open
{ (i = 2)⇒ p2,2 }
⇒ { (i = 2)⇒ P(door = prize) = 1 }

else

{ (i 6= 2)⇒ p1,2 }
door := 6 − open − door
{ (i 6= 2)⇒ p3,2 }

fi

{ ((i = 2)⇒ P(door = prize) = 1) + ((i 6= 2)⇒ p3,2) }
⇒ {P(door = prize) = 1 ∨ (i 6= 2 ∧ p3,2) }
⇒ {P(door = prize) = 1 ∨ (i 6= 2 ∧ p3) }

In the same way one obtains P(door = prize) = 1 ∨ (i 6= 3 ∧ p2) starting from p1,3.
Recombining these two predicates using rule (Or) gives P(door = prize) = 1 ∨ (i 6= 2 ∧
p3) ∨ (i 6= 3 ∧ p2) when starting from from p1,2 ∨ p1,3. Doing the same for the other
two parts of q and using rules (Lin ·) and (Lin +) to recombine the results gives that
1
3 · (P(door = prize) = 1 ∨ (i 6= 2 ∧ p3) ∨ (i 6= 3 ∧ p2)) +

1
3 · (P(door = prize) = 1 ∨

(i 6= 1 ∧ p3) ∨ (i 6= 3 ∧ p1)) +
1
3 · (P(door = prize) = 1 ∨ (i 6= 1 ∧ p2) ∨ (i 6= 2 ∧ p1))

holds when starting from q. This predicate is similar to the postcondition deduced before,
except for the added conditions (i 6= n) and the added possibility P(door = prize) = 1.
The extra conditions make it impossible to choose door different from prize in more than
one of the three parts. In the other two parts the correct door is chosen giving a (worst
case) probability of 2

3 . For example if i = 3 then the first and second part must satisfy

262 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

P(door = prize) = 1. The probability of winning the prize with the corrected “switch
doors” strategy is 2

3 .
We have again solved the “three doors problem”, and come to the same conclusion:

Switching doors is the best strategy.

6.8 Conclusions and bibliographical remarks

The main result of this chapter is the introduction of a Hoare style logic, called pH, for
reasoning about probabilistic programs. The programs are written in a language Lpif and
their meaning is given by the denotational semantics D. Extensions of Lpif with iteration,
Lpw, or with nondeterminism, Lpnif, are also given together with denotational semantics
and extensions of the Hoare style logic pHw and pHnd. The Hoare-style logic for Lpw was
first published in [108]. An adapted version of this work extended with a completeness
result for Lpif can be found in [111]. The work on nondeterminism reported in section 6.7
has not been published previously.

In general, Hoare logic is a system to deduce (partial) correctness formulae, also known
as Hoare triples (see [126, 34]). A Hoare triple links a precondition and a postcondition
with a program, expressing that the given precondition is a sufficient precondition for the
program to guarantee that the postcondition holds after termination. The Hoare logic
provides a proof system to deduce the validity of such a triple. Extensive work exists in
the area of Hoare-style logics. See e.g. [34, 12, 13] for an overview.

Earlier work on the proof theory for probabilistic programs that has inspired the
present work, can be found in e.g. [141, 133]. In [141] Kozen proposes a probabilistic
dynamic logic in which arithmetical laws govern the program analysis. The thesis work of
Jones [133] considers a language similar to the language Lpw of section 6.6. A denotational
semantics for the language is given using evaluations (see also [134]) which are a slight
simplification of measures. (In the setting used in this thesis each evaluation has a unique
extension to a measure, though not necessarily a compact support measure.) Logics for
partial and total correctness are given where distribution functions over states are used
rather than predicates. Both logics are shown to be consistent and complete with respect
to the semantics. The work of Kozen and Jones concentrates on the semantics of programs.
An important strand of research in the syntactic approach (cf. [162, 163]) is focused on
predicate transformers. In [162], extending the predicate transformer work of [163], a
calculus of greatest pre-expectations is given for a language with both probabilistic choice
and nondeterminism.

The paper [174] by Pnueli and Zuck also deals with the verification of probabilistic
processes but only looks at deterministic properties, expressed in a restricted temporal
logic, that are satisfied with probability one. In [153] a deduction system is introduced
which can be used to show a lower bound for the probability that a system satisfies a
given condition.

To describe probabilistic properties, deterministic predicates can be extended to arith-
metical functions yielding the probability that the predicate holds as done in e.g. [163, 141].
Other approaches like e.g. probabilistic modal logic and probabilistic dynamic logic [104,
182, 23] use a construct like e.g. ¦ρ p to indicate either that the property p holds with
exactly probability ρ or holds with at least probability ρ. The method of chapter 6 aims

6.8. CONCLUSIONS AND BIBLIOGRAPHICAL REMARKS 263

at combining both approaches; a deterministic predicate is seen as a function yielding the
probability that the predicate holds. This function is introduced in general real valued
expressions by using the notation P(dp) to refer to the chance that deterministic predicate
dp holds. The comparison of such expressions is the basis for the probabilistic predicates.
Besides the usual logical operators the probabilistic predicates also contain arithmetical
operators to be able to deal with probabilistic combination of predicates. Despite the
presence of these arithmetical operators, the probabilistic predicates used in this thesis
retain their usual truth value interpretation, i.e. they either hold or not. The main ad-
vantage of keeping the interpretation as truth values is that the logical operators do not
have to be extended.

Each of the logics pH, pHw and pHnd is shown to be sound with respect to the
corresponding semantics D. Completeness of pH (with some restriction) has been shown
and pHnd is also conjectured to be complete. A completeness result (unpublished) also
exists for a version of the logic pHw which uses infinite conjuctions. For the current logic
the question of completeness is still open. Especially the expressiveness of the probabilistic
predicates has to be studied further.

The proof system pH assumes that all implications between probabilistic predicates are
included as axioms, following the approach of [34, definition 2.39 and theorem 2.40]. The
completeness result presented in section 6.5 relies on this assumption. In [62] standard
Hoare logic is shown to be incomplete in a setting where a (finite) deduction system is used
to derive the implications instead of including them as axioms. Still one would prefer to
have a deduction system to check the implications. A deduction system for probabilistic
predicates can use (the rules from) a standard deduction system (e.g. natural deduction
for first order predicate logic) to deal with the logical aspects of the probabilistic predi-
cates by seeing real conditions as logical primitives (i.e. primitive logical variables). The
same deduction system can be used to deal with the deterministic predicates incorporated
within the construct P(dp). To deal with the arithmetical aspects of the probabilistic pred-
icates and equivalences of real conditions, however, a deduction system for probabilistic
predicates needs to be extended. This extension of the deduction system needs to be able
to deal with probabilities, and thus needs to support some calculation on real numbers.

To make the logic practically useful, the process of checking the deduction of a Hoare
triple should be tool supported. Some work has been done to embed the logic in the proof
verification system PVS. (See e.g. [128] on non-probabilistic Hoare logic in PVS.) The
system PVS can then be used both to check the applications of the rules and to check
the deduction of the implications between predicates required for the (Cons) rule. The
development of a deduction system for the implications is also an important step in the
development of tool support.

Two different extensions of the basic language Lpif have been considered in this chap-
ter. In section 6.6 iteration is added to the language Lpif by introducing a while loop. In
section 6.7 the operator 2 is introduced to add nondeterministic choice to the language
Lpif. Extending the language Lpif with both of these concepts at the same time creates
several issues. One problem with giving a Hoare-style logic for this combination is that it
is not clear how the notion of invariant, introduced for the language Lpw can be extended
to deal with nondeterminism. Another problem is that with the presence of the while

construct a fixed point construction is required to define its semantics. The usual method
of defining a cpo structure on a nondeterministic domain consisting of sets of determin-

264 CHAPTER 6. A PROBABILISTIC HOARE-STYLE LOGIC

istic states (e.g. using the Egli-Milner ordering, see chapter 7 of [34]) does not extend to
the domain consisting of sets of probabilistic states. This, however, seems to be only a
technical complication that can be circumvented by using metric techniques to define the
semantics.

To be able to describe distributed randomized algorithms, it would also be interesting
to extend the language and the logic with parallelism. However, verification of concurrent
systems in general and more specifically extending Hoare logic to concurrent systems (see
e.g. [14, 84]) is already difficult in the non-probabilistic case.

Another way of checking if systems satisfy properties that are expressed in logical formu-
las is to use model checking. If the system can be represented as a finite state machine
then a formula can be checked by exhaustive search of the state space. An advantage
of this approach is that if the formula fails to hold, a counter example showing why this
is the case is found. The state space explosion is one of the main problems; the size
of the state space can easily become too large. To reduce the amount of work needed,
several techniques are used such as reductions to smaller bisimilar models using process
algebras. An extensive body of work exists in the field of model checking. The thesis work
of Hartonas-Garmhausen [114] reports on applications of model checking for probabilistic
systems. In [129], Huth and Kwiatkowska treat model checking of quantitative properties
of a probabilistic interpretation of model µ-calculus. Probabilistic model checking is ap-
plied in [146] to obtain properties of the probabilistic root contention IEEE1394 FireWire
protocol. See [185, 184] for another approach of showing correctness of root contention in
IEEE1394. A lot of research has also been done in the area of model checking continuous
time Markov chains. A discussion of some of this work is given below.

In [23] Baier treats fully probabilistic systems as well as nondeterministic and prob-
abilistic systems, which are referred to as concurrent probabilistic systems. The process
language PCCS with reactive probabilistic choice, nondeterministic choice and interleav-
ing parallel composition, the language PSCCS with generative probabilistic choice and
synchronize product and the language PSLCCS with a less restrictive form of synchronize
product are studied. Transition systems are given which use finite probability distribu-
tions to describe the probabilistic steps and an alternating approach when nondeterminism
is also present. Methods for calculating bisimilarity of systems are also given in [23] and
a notion of weak bisimilarity is defined. Denotational domains specified by domain equa-
tions, using either a metric or a complete partial order approach, are investigated and
shown to capture bisimulation. Finally [23] considers a probabilistic temporal logic and
model checking of properties expressed in this logic.

In [59] preorders on probabilistic processes are used by I. Christoff to express that
one process is ‘probability better’ i.e. has smaller change of error than another process.
In [61] an alternative characterization of the probabilistic testing preorders is also given
and proof techniques are derived from the alternative characterizations.

Chapter 7

Continuous Probability

7.1 Introduction

This chapter provides an overview of the possibilities of compact support measures and
other metric techniques in modeling non-discrete probabilities. In the preceding chapters
several languages containing a discrete form of probabilistic choice have been introduced.
In these languages the number of alternatives for a single choice is always finite, i.e. the
probability is finitely branching. There are, however, probabilistic processes for which this
is insufficient as the number of alternatives is infinite, possibly even uncountable. One such
process is the number of arrivals in a given time period which may, for example, be modeled
by a geometric distribution. A geometric distribution assigns a positive probability to
infinitely many options. In subsection 6.6.1 of the previous chapter a program resulting
in a geometric distribution for a program variable was given. However, this program
requires unbounded execution time to reach this distribution. The programs that are
considered in this chapter can assign a geometric distribution in a single step. Another
process that may consist of the probabilistic choice between infinitely many options is
the selection of a word in a language. Such a probabilistic choice between words can be
used to describe the execution of a probabilistic automaton. Other important examples
of processes with infinitely many options are those based on continuous distributions. A
distribution on the positive real numbers, such as an exponential distribution, can be used
to model, for instance, the life time of a light bulb. Such ‘infinitely branching’ probabilistic
processes cannot be modeled with the finite probabilistic choice used so far.

In this chapter the language Lc with a notion of random assignment is introduced.
The value assigned in a random assignment is probabilistically selected from a possibly
infinite set of possible values. The applicability to the modeling of infinitely branching
probabilistic processes of compact support measures and other metric techniques such as
definitions and proofs using fixed points and arguments based on distances is studied in
the context of the language Lc. The other constructs present in the language Lc are the
familiar notions of skip, deterministic assignment, conditional choice and iteration.

A problem with modeling a language with infinite probabilistic choices is that the
choices made at different points in the execution of a program have to be combined to

265

266 CHAPTER 7. CONTINUOUS PROBABILITY

obtain probabilities for possible behaviors of the whole program. If only the distribution
for each step is known, this is, in general, not possible. The notion of stochastic kernels
is used in [169, 140] to enable the composition of infinite probabilistic choices. A met-
ric version of these kernels, called O∗-kernels, is introduced in section 7.2 based on the
compact support measures used throughout this thesis.

As with compact support measures, O∗-kernels are based on complete ultrametric
spaces. The space of all kernels is again a complete ultrametric space, allowing the use of
the usual metric techniques. We will see that, using the correct interpretation, O∗-kernels
correspond to nonexpansive functions. This correspondence and several other properties
of O∗-kernels will also be discussed in section 7.2.

In section 7.3 the language Lc with random assignment mentioned above is introduced.
In subsection 7.3.2 a transition system Tc is given for this language. To be able to deal with
the infinite choices, this transition systems uses an extension of the notion of transition
system introduced in chapter 3 in that it allows infinite probabilistic steps described by
measures.

After deriving some properties of the transition system Tc in subsection 7.3.3, the
operational model O is defined in subsection 7.3.4 based on Tc. The usual approach of
justifying the definition of the operational model O by giving a contractive higher-order
operator that has O as its fixed point, is again used.

In section 7.4 the use of O∗-kernels and the modeling of the language Lc is discussed
further and some related work is mentioned.

7.2 Mathematical preliminaries

With a finite choice (or a countably infinite choice), one knows each possible state with
its probability. Two finite choices can be combined by using multiplication and addition.
For example the probability that x equals 2 after running the program (x := 0 ⊕ 1

3
x :=

1); (x := x + 2 ⊕ 1
2
x := x + 1) is 1

3 ·
1
2 + 2

3 ·
1
2 . As mentioned in the introduction of this

chapter, the composition of infinite probabilistic choices requires additional structure. For
an (uncountably) infinite choice, the probabilities for each separate state are not sufficient
to find the probabilities of all events (see example 3.3.12). The probability of events has
to be given directly. A measure is used to describe this type of infinite probabilistic
choice. To combine infinite choices, integration is used instead of addition. Integration
(over the measure) is only possible for measurable functions. The use of stochastic kernels
guarantees that the appropriate functions are indeed measurable.

The notion of kernels used in this chapter is adapted from the notion of stochastic
kernels, given in [169], to fit into the framework of ultrametric spaces and compact support
measures. See section 7.4 for a discussion of further work in the area of modeling continues
probabilistic choice. First some auxiliary notions are defined after which the definition
of an adapted version of a kernel, an O∗-kernel, is given. Finally some properties of
O∗-kernels are shown.

For the remainder of this section let X, Y denote complete ultrametric spaces.

Definition 7.2.1 The set Oε(X) consists of the open subsets O of X which satisfy the
property ∀x ∈ O, x′ ∈ X : d(x, x′)< ε⇒ x′ ∈ O. A set in Oε(X) is called an ε-open set.

7.2. MATHEMATICAL PRELIMINARIES 267

The set O∗(X) is the set of all ε-open sets for ε > 0, i.e.

O∗(X) = ∪ε>0Oε(X)

A finite Oε(X) step function is a function f from X to R of the form

f =
∑

i∈I

ρi χBi

with I a finite index set and Bi ∈ Oε(X) for all i ∈ I. Recall that χB is given by

χB(x) =

{
1 if x ∈ B
0 otherwise

for all x ∈ X.
An Oε(X) approximation sequence for a function f : X → Z is a sequence of finite

Oε(X) step functions converging pointwise to f , thus

f = lim
n→∞

∑

i∈In

ρi χBi

with Bi ∈ Oε(X) for all i ∈ In, n ∈ N. Without loss of generality the index sets In are
assumed to be pairwise disjoint.
A function f is called ε-measurable if there exists an Oε(X) approximation sequence

for f .

The sets Oε(X) and O∗(X) have also been used in lemma 3.3.16. In this lemma we saw
that for µ, µ′ ∈ Meas(X)

d(µ, µ′) ≤ ε ⇐⇒ ∀B ∈ Oε(X) : µ(B) = µ′(B) (2.1)

This property will be used below (cf. 7.2.3). The notion of ε-measurable function is related
to the notion of a measurable function. A measurable function f is the limit of a sequence
of step functions based on Borel sets. An ε-measurable function satisfies the stronger
condition that the step functions are based on Oε(X) sets. In particular, an ε-measurable
function is measurable.

Definition 7.2.2 A function κ : X ×B(Y)→ [0, 1] is called an O∗-kernel (on X and Y)
when

1. κ(x)(•) is a measure on Y for all x ∈ X.

2. The function κ(•)(B) with B ∈ Oε(Y) is ε-measurable.

The space of all O∗-kernels on X and Y is denoted by KER(X,Y). The distance between
two O∗-kernels κ, κ

′ ∈ KER(X,Y) is given by

d(κ, κ′) = sup{ dMeas(κ(x)(•), κ
′(x)(•)) | x ∈ X }

with dMeas the distance on measures as given in definition 3.3.14.

268 CHAPTER 7. CONTINUOUS PROBABILITY

For standard stochastic kernels requirement 1 is also used but requirement 2 is replaced by
κ(•)(B) is measurable for all B ∈ B(Y). Compared to this condition the requirement for
κ(•)(B) with B ∈ O∗(Y) is stronger but no restriction is made on κ(•)(B) for B /∈ O∗(Y).
As the first condition requires that κ(x)(•) is a measure for each x inX one can easily show
that κ(•)(B) is measurable for any open or closed subset B of Y . For general Borel sets
B, however, it is not clear whether this must be the case. This means that an O∗-kernel
is not necessarily a standard stochastic kernel.

To find the distance of two O∗-kernels the kernels are interpreted as functions from X
to Meas(Y). The distance on O∗-kernels also satisfies

d(κ, κ′) = inf{ ε > 0 | ∀y ∈ Y : κ(•)(Bε(y)) = κ′(•)(Bε(y)) }

where = on the right hand side denotes equality of functions. This means that interpreting
the kernels as measures on functions, i.e. elements of Meas(X → Y), gives the same
distance (see definition 3.3.14).

The interpretation of O∗-kernels as functions in X → Meas(Y) satisfies an important
property: The O∗-kernels correspond exactly to the nonexpansive functions.

Lemma 7.2.3 A function f : X → Meas(Y) is nonexpansive exactly when κf : X ×
B(Y)→ [0, 1], given by κf (x)(B) = (f(x))(B), is an O∗-kernel.

Proof Let f : X → Meas(Y) be a nonexpansive function. That κf (x)(•) is a mea-
sure is clear from the definition of κf . Showing that the function κ(•)(B) has an Oε-
approximation sequence uses a similar approach as the proof of the fact that a measur-
able function has an approximation of step functions based on Borel sets. Let ε > 0 and
B ∈ Oε(Y) and define (for n ∈ N, i = 0, . . . , 2n)

En,i = {x | κf (x)(B) ∈ [i 12
n
, (i+ 1) 12

n
) }

then κf (•)(B) = limn→∞

∑2n

i=0(
1
2

n
i)χEn,i

. It remains to be shown that En,i is an ε-open

set. For x ∈ En,i and x′ ∈ X with d(x, x′) < ε we have d(f(x), f(x′)) ≤ d(x, x′) ≤ ε.
Using property (2.1) of distance on measures gives (f(x))(B) = (f ′(x))(B). Therefore,
κf (x

′)(B) = κf (x)(B) ∈ [i 12
n
, (i+ 1) 12

n
) and thus x′ ∈ En,i.

For the reverse implication we assume that κf : X × B(Y) → [0, 1] is an O∗-kernel
and show that for all ε > 0 and x, x′ ∈ X with d(x, x′) < ε we have d(f(x), f(x′)) ≤ ε.
This implies that f is nonexpansive. By property 2.1 d(f(x), f(x′)) ≤ ε holds exactly
when f(x)(B) = f(x′)(B) for all B ∈ Oε(Y). For ε > O, x, x′ ∈ X with d(x, x′) < ε and
B ∈ Oε(Y) there exists an Oε(X) approximation of κf (•)(B) because κf is an O∗-kernel

κf (•)(B) = lim
n→∞

∑

i∈In

ρi χBi

with Bi ∈ Oε(X). As d(x, x′)< ε and Bi ∈ Oε(X) hold we have x ∈ Bi ⇐⇒ x′ ∈ Bi.

f(x)(B) = κf (x)(B)

= lim
n→∞

∑

i∈In

ρiχBi
(x)

7.2. MATHEMATICAL PRELIMINARIES 269

= lim
n→∞

∑

{ i∈In,x∈Bi }

ρi

= lim
n→∞

∑

{ i∈In,x′∈Bi }

ρi

= f(x′)(B) 2

This lemma gives a characterization of O∗-kernels in terms of nonexpansiveness. It also
provides a way of showing that a function κ : X×B(Y)→ [0, 1] is an O∗-kernel. First one
checks that κ defines a function f : X → Meas(Y) by showing that κ(x)(•) is a measure
for each x. Next one shows that κ, interpreted as a function from X to Meas(Y), is
nonexpansive. This approach is used e.g. in lemma 7.2.5 below.

Lemma 7.2.4 If X and Y are complete ultrametric spaces then KER(X,Y) is also a
complete ultrametric space.

Proof As the space X
1
→ Meas(Y) of nonexpansive functions is a complete ultrametric

space, this a direct consequence of lemma 7.2.3. (Note that, for nonexpansive functions

f, f ′ : X
1
→ Meas(Y) we have d(f, f ′) = d(κf , κf ′).) 2

As the space of all O∗-kernels, KER(X,Y), is a complete ultrametric space for complete
ultrametric spaces X and Y , the usual metric techniques can be used.

The composition of two O∗-kernels is again an O∗-kernel. This property is the reason
for introducing O∗-kernels; kernels allow the composition of infinitely branching proba-
bilistic processes.

Lemma 7.2.5 Let κ ∈ KER(X,Y) and κ′ ∈ KER(Y,Z). There is a unique O∗-kernel
(κ ◦ κ′) ∈ KER(X,Z) which satisfies

(κ ◦ κ′)(x)(B) =

∫

Y

κ′(•)(B) dκ(x)(•)

for all x ∈ X and B ∈ O∗. This O∗-kernel is called the composition of κ and κ
′.

Proof Using the fact that a measure is fixed by its behavior on the sets in O∗ it is clear
there is exactly one function fκ,κ′ in X × B(Z)→ [0, 1] which satisfies

fκ,κ′(x)(B) =

∫

Y

κ′(•)(B) dκ(x)(•)

for all x ∈ X and B ∈ O∗ and for which fκ,κ′(x)(•) is a measure for all x ∈ X. It is,
therefore, sufficient to show that this function fκ,κ′ is an O∗-kernel. By lemma 7.2.3 this
coincides with the property that fκ,κ′ , interpreted as a function fκ,κ′ : X → Meas(Z), is
nonexpansive.

Assume x, x′ ∈ X with d(x, x′)< ε and B ∈ Oε(Z). As κ′ is an O∗-kernel there exists
κ′(•)(B) is ε-measurable i.e. there exists an Oε(X) approximation sequence of κ′(•)(B)

κ′(•)(B) = lim
n→∞

∑

i∈In

ρi χBi

270 CHAPTER 7. CONTINUOUS PROBABILITY

Using the definition of the integral we get

fκ,κ′(x)(B) =

∫

Y

κ′(•)(B) dκ(x)(•)

= lim
n→∞

∑

i∈In

ρi κ(x)(Bi)

As d(κ(x), κ(x′)) ≤ d(x, x′)<ε and Bi ∈ Oε(Y) we have that κ(x)(Bi) = κ(x′)(Bi). Using
this gives

fκ,κ′(x)(B) = lim
n→∞

∑

i∈In

ρi κ(x)(Bi)

= lim
n→∞

∑

i∈In

ρi κ(x
′)(Bi)

= fκ,κ′(x
′)(B)

So fκ,κ′(x)(•) and fκ,κ′(x
′)(•) coincide on all sets in Oε(Y). Their distance, therefore, is

less than or equal to ε. 2

One more property of measures is needed in the next section: The continuous image of a
compact support measure is again a compact support measure.

Lemma 7.2.6 For f : X → Y a continuous function and µ ∈ Meas(X) a compact
support measure, the image µ ◦ f of µ under f , given by

(µ ◦ f)(B) = µ(f−1[B])

for all B in B(Y), is a compact support measure in Meas(Y).

Proof As f−1[∪i∈IBi] = ∪i∈If
−1[B] it is clear that µ ◦ f is again a measure. The

set f [spt(µ)] is a compact set as it is the continuous image of a compact set. By using
lemma 3.3.16 property (c) we show that this compact set is the support of µ ◦ f . For
B ∈ O∗ we have

(µ ◦ f)(B) = 0 ⇐⇒ µ(f−1[B]) = 0

⇐⇒ f−1[B] ∩ spt(µ) = ∅

⇐⇒ B ∩ f(spt(µ)) = ∅ 2

7.3 The language Lc with random assignment

In this section the language Lc is introduced. The transition system Tc and the operational
model O for this language use O∗-kernels to allow the composition of multiple infinite
probabilistic choices. The infinite probabilistic choices occur due to the presence of random
assignment in the language Lc. In a random assignment x := µ a value is assigned to the
program variable x according to some measure µ. The support of the measure µ, i.e. the
set of values that can occur, may be infinite. Besides random assignment the language Lc

7.3. THE LANGUAGE Lc WITH RANDOM ASSIGNMENT 271

contains skip, deterministic assignment, sequential composition, conditional choice and
iteration. The syntactic details of expressions used in the deterministic assignment and of
the conditions used in the conditional choice and iteration are omitted. Instead a set of
expressions and a set of boolean conditions are assumed to be given as well as functions
that evaluate these expressions and conditions. Each expression evaluates to some element
of the set of values and a condition evaluates to true or false.

Definition 7.3.1 Let the set of values, denoted Val, be a given ultrametric space. Let
PVar denote a set of program variables. The set PVar is ranged over by x and y.
A (deterministic) state σ assigns a value to each program variable. The set of all

states is denoted by S.
S = PVar→ Val

Note that S is an ultrametric space. The distance on S is obtained from the distance on
Val. For σ, σ′ ∈ S we have

d(σ, σ′) = inf{ d(σ(x), σ′(x)) | x ∈ PVar }

The set Exp is a set of expressions ranged over by e. The evaluation function V gives,
for each expression, a nonexpansive function that assigns a value to an expression in each
state.

V : Exp→ (S
1
→ Val)

The set BC is a set of boolean conditions ranged over by c. The evaluation function B
yields a truth value for each boolean condition and state

B : BC→ (S → { true, false })

The notation σ |= c is used for B(c)(σ) = true and σ 6|= c is used for B(c)(σ) = false.

The granularity gran(c) of a boolean condition c is the largest radius (at most 1) such
that d(σ, σ′)< gran(c) implies that σ |= c exactly when σ′ |= c. Each boolean condition is
assumed to have a granularity larger than zero.

The values form an ultrametric space. Note that the set of real numbers with the usual
Euclidean distance is not an ultrametric space and thus cannot be used as the set of values.
This shows that the requirement of ultrametricity for the values is a significant restriction
on the language Lc. This restriction is required to be able to describe the random assign-
ment using compact support measures. Restrictions on (evaluation of) expressions and
boolean conditions are also required to remain within the realm of O∗-kernels when giving
the operational model for the language Lc below. The restriction that each boolean condi-
tion must have a granularity larger than zero means that the set B = {σ | B(c)(σ) = true }
is an ε-open set, B ∈ Oε(S), for some ε > 0. In words one can express this requirement
as follows: If a state σ satisfies a condition c then all states which are sufficiently close to
σ (less than gran(c) away) also satisfy the condition. To decide a condition c, one does
not need to know the exact value of the variables. An approximation of the values is
sufficient. The granularity of the condition gives how precise the approximation needs to
be.

272 CHAPTER 7. CONTINUOUS PROBABILITY

Example 7.3.2 In this example the granularity for some conditions that one could use
in BC is given. Basic conditions that one would expect in BC are true, false and the
combination of conditions using the usual logical operators.

gran(true) = 1

gran(false) = 1

gran(c op c′) = min{ gran(c), gran(c′) }

gran(¬c) = gran(c)

with op∈ {∧,∨,→ }.

Another type of condition one might use is x ∈ O which restricts the value of the program
variable x to values in the set O. For an ε-open set O, this condition can be used.

gran(x ∈ O) = ε

where ε is the greatest radius (at most 1) for which O is an ε-open set.

When Val = Act∞ one can use a condition of the form x = w. For this condition we have

gran(x = w) = 1
2

length of w

which means that this type of condition is only allowed for finite words w.

We now have all ingredients needed to give the formal definition of the language Lc.

Definition 7.3.3 The programs of the language Lc, ranged over by s, are given by

s ::= skip | x := e | x := µ | s ; s | if c then s else s fi |

while c do s od

with e ∈ Exp, c ∈ BC, µ ∈ Meas(Val)

The program skip does nothing and the program x := e assigns the value of the expres-
sion e from Exp to the program variable x. As the value of the expression e is fixed given
the state, the assignment x := e is referred to as deterministic assignment. As mentioned
above, the evaluation of an expression e must be nonexpansive in the state: For states
which are close, the expressions yield values which are close.

In the random assignment statement x := µ, a measure on values is assigned to the
program variable x instead of a fixed value. To execute x := µ a value is randomly selected
according to the measure µ and this value is assigned to x. For finite measures the random
assignment can also be described by using discrete probabilistic choice. For example when
the measure µ is given by µ = 1

2∆w + 1
2∆w′ , the random assignment x := µ has the same

effect as the program x := w ⊕ 1
2
x := w′ from the language Lpif introduced in chapter 6.

The program s ; s′ executes the program s followed by the program s′. As both s and
s′ may contain infinite probabilistic choices, one needs to be able to compose such choices
to find the operational meaning of programs. The program if c then s else s′ fi
executes s if the condition c holds in the current state and s′ otherwise. As for the

7.3. THE LANGUAGE Lc WITH RANDOM ASSIGNMENT 273

expressions, there are restrictions on the conditions that can be used, as mentioned in
definition 7.3.1 above: It must be possible to decide whether c holds by looking at a
sufficiently close approximation of the values of the variables instead of at the actual
values. The program while c do s od repeatedly executes s until the condition c no
longer holds. The same restriction on the condition c is made as for the conditional
choice.

For a single condition the granularity gives how precisely the values of the variables need
to be known to decide whether the condition is true or not. The precision needed to be
able to decide all conditions that occur in a program is given by the granularity of the
program.

Definition 7.3.4 The granularity of a program s is the minimum of the granularities of
the conditions used in s:

gran(skip) = gran(x := e) = gran(x := µ) = 1

gran(s ; s′) = min{ gran(s), gran(s′) }

gran(if c then s else s′ fi) = min{ gran(c), gran(s), gran(s′) }

gran(while c do s od) = min{ gran(c), gran(s) }

7.3.1 Examples

The natural numbers, together with infinity, can be modeled using a unary description of
the natural numbers: i.e. by taking Val = { 1 }∞ and using the word 1n to denote n. The

measure µg given by µg(wVal) =
1
2

length of w
describes the geometrical distribution.

In the following example the unary description of the natural numbers is used as well as
the measure µg. A patron in a bar plays a game with the barkeeper. The patron has
a sack with 2N − 1 coins (N ≥ 1) and puts up one coin against a beer put in by the
barkeeper. A fair coin is tossed. The patron wins if heads is shown, the barkeeper wins
with tails. The patron keeps playing double or nothing until heads comes up, promising
twice as many coins in each extra round needed. The variable x describes the number of
‘double or nothing’ rounds needed for the player to win a beer. The number of times the
coin is thrown is thus x+1. This part of the game is described by the following program

x := µg

After the patron wins, the barkeeper checks that the player actually had that many coins
to bet. If there are enough coins in the sack, the patron gets and drinks the beer and the
game is repeated, otherwise the patron is thrown out of the bar. The variable y counts
the number of beers drunk by the patron. After ten drinks the patron gets drunk and
gets thrown out.

The whole game can be described as follows.

x := µg ; while ((y< 10) ∧ (x<N)) do y = y + 1 ; x := µg od

In this program the ‘double or nothing’ game is played x := µg after the tenth drink but
no consequences are drawn from the game. For this program one can for instance look at

274 CHAPTER 7. CONTINUOUS PROBABILITY

the probability that the patron goes bankrupt before getting drunk, i.e. the probability
that y is less than 10 at the end of the program or at the expected number of drinks
the patron gets. Note that both these values depend on the number of drinks the patron
has had before starting the game, i.e. the initial value of the program variable y. (See
examples 7.3.8 and examples 7.3.16 below.)

An interval of positive real numbers, [0,MaxReal] can be modeled using the set of values
Val = { 0, 1 }∞. In this modeling, a word w models the number MaxReal ·

∑
n∈N

1
2

n
· wi

where wi is the i’th number in w (0 if no such number exists). In this binary modeling
of the real interval [0,MaxReal] a simulation of any distribution on [0,MaxReal] can be
given. The uniform distribution on [0,MaxReal] for example is given by

µu(wVal) = 1
2

length of w

In general one can put, for a given continuous distribution dist,

µdist(wVal) = Dist(r(w1ω))−Dist(r(w0ω))

with r(w) the number represented by the word w and Dist(x) denoting the chance of
an outcome less than or equal to x. If the distribution also contains a discrete part,
e.g. dist(x) > 0 for some x ∈ [0,MaxReal] then this can also be modeled by putting
µdist(wx) = dist(x) for some selected w that represents x (there may be more than one
such w).

The following example uses the modeling of real numbers by sequences in { 0, 1 }∞ and
the translation of some distribution on R to this setting. A lightbulb factory produces
lightbulbs which have an exponentially distributed lifetime. The expected lifetime is 10
time units, i.e. the rate of the exponential distribution is 1

10 . A fraction ρ of the lightbulbs,
however, are bad. These lightbulbs have an expected lifetime of only 1

5 of a time unit.
Before packing the bulbs in a box of 6 bulbs, the bulbs are tested for 1 time unit. If they
last for this one time unit, then they are found to be good, else they are marked as bad
and discarded. The measure µλ,r has an exponential distribution with rate λ, cut off at
some point r (≤ MaxReal). (All probability for values larger than r is assigned to r.) As
possible values the interval [0, 2] is considered. The following program describes the filling
of one box of bulbs.

while (good< 6) do
x := µ5,1 ⊕ρ x := µ 1

10
,1 ;

if (x < 1) then bad := bad + 1 else good := good + 1 fi

od

This program uses two extensions of the language Lc. In the first place, both real numbers
and integers are used as data types, giving a multi typed system. The other extension is
the use of the operator ⊕ρ. Both these extensions are minor and fit within the setting
developed in this chapter.

For the program above one can, for instance, ask what the expected number of light-
bulbs is that need to be produced to fill a box. After finding the transitions for this

7.3. THE LANGUAGE Lc WITH RANDOM ASSIGNMENT 275

program in examples 7.3.8 the operational semantics of the program is used to answer
this question in examples 7.3.16.

Note that the geometric distribution was also obtained in the previous chapter by using
a while loop, see subsection 6.6.1. This while loop, however, is not sure to terminate.
Although an additional part of the probabilistic end state is generated in each iteration of
the while loop, infinitely many iterations are needed to generate the complete geometric
distribution. A program in Lc can generate the geometric distribution in a single step.

For other distributions, such as the uniform distribution on the reals mentioned above
a generating program in Lpw of the previous chapter will never terminate and not even a
part of the probabilistic end state is generated. As such no no further computations are
possible with this distribution. As the ‘bulb factory’ example above shows, programs in
Lpw can be used to do further computations for any distribution.

7.3.2 The transition system Tc

The operational semantics for Lc is based on a transition system Tc. As usual resumptions
in the set Res are used to describe the past of a program that remains to be executed.
A resumption r is either a program or the empty resumption E describing a finished
computation.

r ::= s | E

A configuration t = 〈r, σ〉 of the transition system consists of the part of the program
that remains to be executed and the value of the program variables. The set of all
configurations is denoted by Conf.

Conf = Res× S

The set of configurations Conf is turned into an ultrametric space by defining the following
distance d on Conf

d(〈s, σ〉, 〈s′, σ′〉) = 1 if s 6= s′

d(〈s, σ〉, 〈s, σ′〉) =

{
1 if d(σ, σ′) ≥ gran(s)
d(σ, σ′) otherwise

The distance between configurations is 1 if the programs are different. If the programs are
the same, the distance is given by the distance between the states, provided that the states
are close enough i.e. the distance of the states is less than the granularity of the program.
The usage of the granularity of the program in this definition is required to obtain non-
expansiveness for the transition function → below. Note that when d(〈s, σ〉, 〈s′, σ′〉)< 1
then the programs s and s′ are the same and σ will satisfy a boolean condition present in
the program s exactly when σ′ satisfies this condition.

For ease of notation, the notion of granularity is extended to configurations. The
granularity of a configuration is the granularity of the statement component of the con-
figuration.

Definition 7.3.5 The granularity of a configuration t is defined as the granularity of the
statement component of the configuration.

gran(〈s, σ〉) = gran(s)

276 CHAPTER 7. CONTINUOUS PROBABILITY

The observation that is made with each step in the transition system consists of the values
of the variables, i.e. the set of transition labels consists of the states.

Lab = S

A transition t
σ
→ t′ in the transition system is called a deterministic step. The infinite

probabilistic choice caused by the random assignment cannot be described by transitions
labeled with the appropriate probability as was done with the finite probabilistic choice
in the transitions systems in previous chapters. Instead a new type of transition, called a
probabilistic step, is introduced. In a probabilistic step t⇒µ the result of taking a step is
not another configuration t′ but a measure µ over configurations. The measure µ gives the
probability µ(B) of ending up within a given set of configurations B after taking the step.
To be able to compose probabilistic steps, the collection of all probabilistic steps,⇒, must
form an O∗-kernel, ⇒ ∈ KER(Confprob,Conf). Here Confprob is the set of configurations
which can take a probabilistic step.

Definition 7.3.6 The set of probabilistic configurations, Confprob ⊆ Conf is the smallest
set satisfying

〈x := µ, σ〉 ∈ Confprob

〈s ; s′, σ〉 ∈ Confprob if 〈s, σ〉 ∈ Confprob

〈if c then s else s′ fi, σ〉 ∈ Confprob if σ |= c ∧ 〈s, σ〉 ∈ Confprob or

σ 6|= c ∧ 〈s′, σ〉 ∈ Confprob

〈while c do s od, σ〉 ∈ Confprob if σ |= c ∧ 〈s, σ〉 ∈ Confprob

The set of deterministic configurations Confdet ⊆ Conf is given by

Confdet = { 〈s, σ〉 | 〈s, σ〉 /∈ Confprob }

Clearly x := µ will produce a probabilistic step. The first step of s ; s′ is obtained from
the first step of s. The first steps of if c then s else s′ fi and while c do s od are
the same as the first step of s if the condition c holds in the current state. If the condition
c does not hold then the first step of if c then s else s′ fi is that of s′.

A zero step from configuration t to configuration t′, denoted t→0 t
′, indicates that t

inherits all transitions of the configuration t′. This includes both the deterministic and
the probabilistic transitions of t′.

The notation t→0 t
′ is used as shorthand for the rules

t′
σ
→ t′′

t
σ
→ t′′

and
t′⇒ µ

t⇒ µ

Because there are two types of transitions, t→0 t
′ denotes a pair of rules instead of a

single rule as in e.g. chapter 5.
We are now ready to give the definition of the transition system Tc. It is easy to

see from the specification of Tc that indeed Confprob consists of exactly those configura-
tions that produce probabilistic steps and the deterministic configurations are exactly the
configurations which produce a deterministic step.

7.3. THE LANGUAGE Lc WITH RANDOM ASSIGNMENT 277

Definition 7.3.7 The transition system Tc is given by Tc = (Conf, Lab, → , ⇒, Spec)
with deterministic transitions → ⊆ Conf × Lab × Conf and probabilistic steps ⇒ ∈
KER(Confprob,Conf) derived from the specification Spec which contains

• 〈skip, σ〉
σ
→〈E, σ〉 (Skip)

• 〈x := e, σ〉
σ[V(e)(σ)/x]
−→ 〈E, σ[V(e)(σ)/x]〉 (Assign)

• 〈x := µ, σ〉 ⇒ [E, σ[µ/x]] (Prob)

where [E, σ[µ/x]](B) = µ({w | 〈E, σ[w/x]〉 ∈ B }).

•

t
σ
→ t′

t; s
σ
→ t′; s (Seq 1)

where 〈r, σ〉; s = 〈r; s, σ〉 with E; s = s.

•

t⇒ µ

t; s⇒ µ; s (Seq 2)

where µ; s(B) = µ({ t | t; s ∈ B }).

• 〈if c then s else s′ fi, σ〉→0 〈s, σ〉 if σ |= c (If)
〈if c then s else s′ fi, σ〉→0 〈s

′, σ〉 if σ 6|= c

• 〈while c do s od, σ〉→0 〈s ; while c do s od, σ〉 if σ |= c (While)
〈while c do s od, σ〉→0 〈skip, σ〉 if σ 6|= c

The program skip terminates without changing the state. The program x := e changes
the value of x in a deterministic step. The program s ; s′ behaves like s until s terminates
(t′ = 〈E, σ0〉 for some state σ0), after which it behaves like s′. Both deterministic and prob-
abilistic steps of s are mimicked by s; s′. That µ ; s is indeed a measure for any statement
s is shown as part of lemma 7.3.11 below. The program if c then s else s′ fi behaves
like s or like s′ depending on the value of the condition c. The program while c do s od

executes the body s and repeats the loop when the condition c holds and skips the body
when the condition c does not hold.

Examples 7.3.8 In this example the transitions for the programs introduced in subsec-
tion 7.3.1 are found. Put

s = x := µg ; s1

s1 = while ((y< 10) ∧ (x<N)) do y = y + 1 ; x := µg od

Axiom (Prob) gives
〈x := µg, σ〉 ⇒ [E, σ[µg/x]]

so by rule (Seq) also
〈s, σ〉 ⇒ [s1, σ[µg/x]]

278 CHAPTER 7. CONTINUOUS PROBABILITY

The next step depends on the value of y and on the value assigned to the variable x. If
the value of y is less than 10 and the value M assigned to x is less than N then we reason
as follows. By axiom (Assign)

〈y := y + 1, σ[M/x]〉
σ[M/x][y+1/y]

−→ 〈E, σ[M/x][y+ 1/y]〉

so by rule (Seq)

〈y := y + 1 ; x := µg ; s1, σ[M/x]〉
σ[M/x][y+1/y]

−→ 〈x := µg ; s1, σ[M/x][y+ 1/y]〉

and thus by rule (While) also

〈s1, σ[M/x]〉
σ[M/x][y+1/y]

−→ 〈x := µg ; s1, σ[M/x][y+ 1/y]〉

When M is greater than or equal to N or the value of y is greater than or equal to 10 we
obtain the conclusion

〈s1, σ[M/x]〉
σ[M/x]
−→ 〈E, σ[M/x]〉

by rule (While) from the premise

〈skip, σ[M/x]〉
σ[M/x]
−→ 〈E, σ[M/x]〉

which in turn is obtained from an application of axiom (Skip).
The following picture shows part of the transition tree obtained for the configuration

〈s, σ〉 with σ(y)< 10.

〈s1, σ[0/x]〉

〈s, σ+0 〉

σ+0

〈s1, σ[1/x]〉

σ+1

〈s, σ+1 〉

〈s1, σ[N/x]〉

σ[N/x]

〈E, σ[N/x]〉

[s1, σ[µg/x]]

. . .

σ+i = σ[i/x][y+ 1/y]

. . .

. . .

〈s, σ〉

.

[s1, σ
+
1 [µg/x]]

The following program s′ was also introduced in subsection 7.3.1.

s′ = while (good< 6) do s′1 od

s′1 = x := µ5,1 ⊕ρ x := µ 1
10

,1 ; s
′
2

s′2 = if (x < 1) then bad = bad + 1 else good = good + 1 fi

7.3. THE LANGUAGE Lc WITH RANDOM ASSIGNMENT 279

Although a general probabilistic choice can also be added easily, this special case can also
be written as x := µ with µ = ρµ5,1 + (1 − ρ)µ 1

10
,1 so the extension is not needed. The

transitions for the program s′ are as follows. When giving a deterministic transition in
the remainder of this example only the part of the state that changes is shown on top of
the arrow instead of the whole state.

〈s′1 , 〈good = 0,bad = 0, x = 0〉〉 ⇒ [s′2 , 〈good = 0,bad = 0, x = µ〉]

with µ the measure on values given by µ = ρ · µ5,1 + (1− ρ) · µ 1
10

,1. As 0< 6 holds, rule

(While) gives

〈s′, 〈good = 0,bad = 0, x = r〉〉 ⇒ [s′2 ; s′, 〈good = 0,bad = 0, x = µ〉]

For a value r < 1 we obtain

〈s′2 ; s′, 〈good = 0,bad = 0, x = r〉〉
bad=1
−→ 〈s′, 〈good = 0,bad = 1, x = r〉〉

from axiom (Assign) and rules (If) and (Seq). For other values for r (due to the context
necessarily r = 1) we obtain

〈s′2 ; s′, 〈good = 0,bad = 0, x = r〉〉
good=1
−→ 〈s′, 〈good = 1,bad = 0, x = r〉〉

also from axiom (Assign) and rules (If) and (Seq).

7.3.3 Properties of the transition system

In this subsection correctness of the definition of transition system Tc is shown as well as
several properties of Tc that are needed for the definition of the operational model O in
the next subsection.

Several of the proofs in this section use induction on the weight wgtc of configurations.
The weight of a configuration 〈r, σ〉 is given by the weight wgt of the resumption r. The
state does not play a role.

Definition 7.3.9 The functions wgtc : Conf→ N and wgt : Res→ N are given by

wgtc(〈r, σ〉) = wgt(r)

wgt(E) = 0

wgt(skip) = 1

wgt(x := e) = 1

wgt(x := µ) = 1

wgt(s ; s′) = wgt(s) + 1

wgt(if c then s else s′ fi) = wgt(s) + wgt(s′) + 1

wgt(while c do s od) = wgt(s) + 2

Well-definedness of wgt and wgtc is clear. The definition of weight of the program
while c do s od is chosen to be wgt(s) + 2 because this gives that the weight of the

280 CHAPTER 7. CONTINUOUS PROBABILITY

left hand side in the rule (While) for the case σ |= c is greater than that of the right hand
side

wgtc(〈while c do s od, σ〉) = wgt(while c do s od) = wgt(s) + 2

wgtc(〈s ; while c do s od, σ〉) = wgt(s ; while c do s od) = wgt(s) + 1

In general we have that if t→0 t
′ then wgtc(t)> wgtc(t

′).

Lemma 7.3.10

(a) For each rule in Spec, the premise is ‘simpler’ than the conclusion of the rule. In this
comparison the complexity of a transition is the complexity (weight) of the configura-
tion at the left hand side of the transition.

(b) Each configuration t in Confprob has a single probabilistic step, i.e. there is exactly
one measure µt ∈ Meas(Conf) such that t⇒ µt holds.

(c) Each configuration t in Confdet has a single deterministic step, i.e. there is exactly

one state σ and one configuration t′ such that t
σ
→ t′ holds.

The second and third property give that for each configuration of the form 〈s, σ〉 there is
exactly one probabilistic or deterministic step. The first property implies that this step
can always be found using finitely many applications of the rules in Spec.

Because each probabilistic configuration has a unique probabilistic step, the collection
of probabilistic steps ⇒ can be seen as a function from Confprob to Meas(Conf). In line
with this interpretation, the notation⇒(t)(B) is used for µ(B) with µ the unique measure
such that t⇒ µ. The definition of the transition system requires that ⇒ is an O∗-kernel.
The following lemma shows that this is indeed the case.

Lemma 7.3.11 ⇒ is a O∗-kernel in KER(Confprob,Conf).

Proof By using lemma 7.2.3 it is sufficient to show that ⇒(t)(•) is a measure for all
t ∈ Confprob and that ⇒, interpreted as a function from Confprob to Meas(Conf), is
nonexpansive.

Assume t, t′ ∈ Confprob with d(t, t′) < ε, ε ∈ (0, 1]. By induction on wgtc(t) we
show that ⇒(t)(•) and ⇒(t′)(•) are two measures with distance at most ε. Only a few
representative cases are given.

[t = 〈x := µ, σ〉] then t′ = 〈x := µ, σ′〉 with d(σ, σ′)< ε. The probabilistic transition for
t is t⇒ [E, σ[µ/x]] and the transition for t′ is t′⇒ [E, σ′[µ/x]].

As the function which takes a state σ to the configuration 〈E, σ[V(e)(σ)/x]〉 is non-
expansive and thus continuous, [E, σ[µ/x]] is indeed a compact support measure by
lemma 7.2.6. Similarly [E, σ′[µ/x]] is also a compact support measure.

Let B be an ε-open set B ∈ Oε(Conf) then, as d(〈E, σ[w/x]〉, 〈E, σ′[w/x]〉) ≤
d(〈E, σ〉, 〈E, σ′〉)< ε holds for every value w

[E, σ[µ/x]](B) = µ({w | 〈E, σ[w/x]〉 ∈ B })

= µ({w | 〈E, σ′[w/x]〉 ∈ B }) = [E, σ′[µ/x]](B)

which means d([E, σ[µ/x]], [E, σ′[µ/x]]) ≤ ε.

7.3. THE LANGUAGE Lc WITH RANDOM ASSIGNMENT 281

[t = 〈s ; s′, σ〉] then t′ = 〈s ; s′, σ′〉 with d(σ, σ′) < ε0 = min{ ε, gran(t) }. By induction
〈s, σ〉⇒ µ for some measure µ. The transition system gives 〈s ; s′, σ〉⇒ µ; s′. As the
function that assigns t0; s

′ to the configuration t0 is continuous, µ; s′ is a compact
support measure by lemma 7.2.6.

Also by induction 〈s ; s′, σ′〉 ⇒ µ′; s′ for some measure µ′ with d(µ, µ′) < ε0. Again
µ′; s′ is a measure. The distance between µ; s′ and µ′; s′ is at most ε: For B ∈ Oε we
have that { t | t; s ∈ B } is an ε0-open set and thus

µ; s′(B) = µ({ t | t; s ∈ B }) = µ′({ t | t; s ∈ B }) = µ′; s′(B)

[t = 〈if c then s else s′ fi, σ〉 with σ |= c, 〈s, σ〉 ∈ Confprob] then we have
t′ = 〈if c then s else s′ fi, σ′〉 with d(σ, σ′) < ε0 = min{ ε, gran(t) }. In par-
ticular d(σ, σ′) < gran(c) so σ′ |= c. By induction there exists a measure µ′ with
〈s, σ′〉 ⇒ µ′ and d(µ, µ′)< ε But then, by rule(If), also t′⇒ µ′. 2

Just like a probabilistic configuration, a deterministic configuration has a single step. The
transition relation → can therefore be seen as a function from Confdet to S×Conf, yielding
the observation and the next configuration for the unique transition of a deterministic
configuration. The function → is nonexpansive. Corollary 7.3.13 states a property which
directly follows from this and is important for the correctness of the definition of the
operational model O in the next subsection.

Lemma 7.3.12 The function → is nonexpansive, i.e. for all ε ∈ (0, 1] if t1
σ
→ t′1 and

d(t1, t2)< ε then t2
σ′
→ t′2 with d(σ, σ

′) ≤ ε and d(t′1, t
′
2) ≤ ε.

Proof The proof is similar to the proof of lemma 7.3.11 above. Only a few cases are
treated. Assume t1, t2 ∈ Confdet with d(t1, t2)< ε

[t1 = 〈x := e, σ1〉] then t2 = 〈x := e, σ2〉 with d(σ1, σ2) < ε. The transition for t1 is

t1
σ′1−→〈E, σ′1〉 with σ′1 = σ1[V(e)(σ1)/x] and the transition for t2 is t2

σ′2−→〈E, σ′2〉
with σ′2 = σ2[V(e)(σ2)/x]. For the states σ′1 and σ′2 we have

d(σ′1, σ
′
2) ≤ max{ d(σ1, σ2), d(V(e)(σ1),V(e)(σ2)) }

≤ [V(e) nonexpansive] d(σ1, σ2)

This also gives d(〈E, σ′1〉, 〈E, σ
′
2〉) ≤ ε.

[t1 = 〈if c then s else s′ fi, σ1〉] then
t2 = 〈if c then s else s′ fi, σ2〉 with d(σ1, σ2) < ε0 = min{ ε, gran(c) }. The

transition for t1 is that of 〈s, σ1〉, i.e. if 〈s, σ1〉
σ′1−→ t′1 then t1

σ′1−→ t′1. By induction

also 〈s, σ2〉
σ′2−→ t′2 for some t′2 with d(t′1, t

′
2) ≤ ε and d(σ′1, σ

′
2) ≤ ε. Because σ2 also

satisfies c we have that the transition of t2 is t2
σ′2−→ t′2. 2

In the proof of this lemma the nonexpansiveness of the evaluation of expressions is used.
In lemma 7.3.11 above we saw that the fact that if a condition c of a conditional choice

282 CHAPTER 7. CONTINUOUS PROBABILITY

in a program is satisfied by the state σ in a configuration t then the state of any configu-
ration t′ close to t also satisfies this condition. The nonexpansiveness of the deterministic
transitions guarantees that if t and t′ are close they will still satisfy the same conditions
after taking a deterministic step. For example if t = 〈x := e;if c then s else s′ fi, σ〉
and t′ = 〈x := e;if c then s else s′ fi, σ′〉 are close then in the second step both will
choose s or both will choose s′.

Nonexpansiveness of → is also needed in a more direct way for the correctness of the
definition of the operational model O. The operational model O is defined as a kernel
(which, by lemma 7.2.3 corresponds to a nonexpansive function to measures). To show
that it is indeed a kernel the following property is used.

Corollary 7.3.13 If f : Conf→ Meas(S∞) is a nonexpansive function then for configu-

rations t1, t2 ∈ Confdet with transitions t1
σ
→ t′1 and t2

σ′
→ t′2 respectively we have

d(f(t′1)/σ, f(t
′
2)/σ

′) ≤ d(t1, t2)

7.3.4 The operational domain and the operational semantics

The observable behavior produced by a deterministic transition in the transition system
Tc is value of the program variables, i.e. the state, at that point of execution. The
observable behavior produced by a single run of a program is a sequence of states. By
using multiple runs the probabilities for ‘observable events’ can be found; the complete
observable behavior produced by a program is described by a measure over sequences of
states.

Definition 7.3.14 The operational domain Po is given by Po = Meas(S∞)

Usually the operational model is a function from configurations to the operational domain
Po. Here more structure is required to be able to define O. The model O is defined as an
O∗-kernel on configurations and sequences of states.

Definition 7.3.15 The operational model O is the O∗-kernel in KER(Conf,S∞) satisfy-
ing

O(〈E, σ〉)(B) = ∆ε(B)

O(t)(B) =

{
O(t′)(B/σ) if t

σ
→ t′∫

λt′.O(t′)(B) dµ if t⇒ µ

for all sets B in O∗.

The empty configuration E represents a finished computation and thus produces an empty
sequence of states with probability 1. For configurations which take a deterministic step,
the operation •/σ is used (see definition 3.3.18). A probabilistic configuration t has a
transition t⇒µ. The probability of ending up in an ε-open set B is found by integration. In
this way the probabilities of ending up after taking the probabilistic transition (O(t′)(B))
are combined. The probabilities are only given for ε-open sets (for any ε > 0). For an
ε-open set B the function λt′.O(t′)(B) is indeed a measurable function. For general Borel

7.3. THE LANGUAGE Lc WITH RANDOM ASSIGNMENT 283

sets B this is not known, so the integral may not be defined. The probabilities for other
Borel sets are fixed by the properties of a measure, so there is no need to give them
directly.

Examples 7.3.16 For the programs introduced in subsection 7.3.1 the transitions were
found in examples 7.3.8. Using these transitions, the operational model O can be found
and used to find the probabilities of given events.
For the ‘bar game’ program, one can for example look at the probability the patron

goes broke before getting a single drink, i.e. at the probability of the set B = {σ1 . . . σn |
σn(y) = 0, n ≥ 1, σ1, . . . , σn ∈ S }. Naturally we assume that the patron has had no drinks
so far, thus for the starting state σ we have σ(y) = 0.
The first transition in the program s describing the bar game (see examples 7.3.8 above)

is a probabilistic transition, 〈s, σ〉⇒µ. The definition of the model O uses integration for
probabilistic configurations.

O(〈s, σ〉)(B) =
∫
O(•)(B) dµ

=
∫
O(〈s1, σ[•/x]〉)(B) dµg

The next step is a deterministic transition taken by s1 which depends on the value of x.
If the value of x is greater or equal to N then the patron gets thrown out and the program
is done, otherwise a drink is served and another round is started.

O(〈s1, σ[n/x]〉)(B)

=

{
O(〈E, σ[n/x]〉)(B/σ[n/x]) if n >N
O(〈s1, σ[n/x][y/y + 1]〉)(B/σ[n/x][y/y + 1]) otherwise

=

{
1 if n ≥ N
0 otherwise

Substituting this in the equation for (〈s, σ〉) above gives

O(〈s, σ〉)(B) =
∫
{n∈Val |n≥N }

1 dµg +
∫
{n∈Val |n<N }

0 dµg

= µg({n ∈ Val | n ≥ N })

= 1
2

N

The probability of the patron going broke without getting a single drink is 1
2

N
.

For the second program describing the lightbulb production, one can look at the expected
number of bulbs that need to be produced to fill a box. To this end the probability of
producing n bad bulbs is found for n = 0, 1, Below the calculation is given in case 5
bulbs have already passed the test. The notation 〈n,m, r〉 is used for the state which assigns
n to good, m to bad and r to x. Also the notation Bn,m is used for the set of outcomes
ending with n good and m bad bulbs, i.e. Bn,m = {w〈n,m, r′〉 | w ∈ Stat∗, r′ ∈ [0, 2] }.
First we note that for the probability of discarding m more bulbs the number of bulbs
already discarded does not matter, thus for any i ∈ N and r ∈ [0, 2] we have

O(〈s′, 〈5, i, r〉〉)(B6,i+m) = O(〈s′, 〈5, 0, r〉〉)(B6,m)

284 CHAPTER 7. CONTINUOUS PROBABILITY

This can be checked by induction on m with a calculation similar to the first part of the
calculation below.

The probability of producing no bad bulbs is found as follows with start value r for x

O(〈s′, 〈5, 0, r〉〉)(B6,0)
=

∫
Conf

O(•)(B6,0) d[s
′
1 , 〈5, 0, µ〉]

=
∫
[0,2]

O(〈s′1 , 〈5, 0, •〉〉)(B6,0) dµ

=
∫
[0,1)

O(〈bad := bad + 1 ; s′, 〈5, 0, •〉〉)(B6,0) dµ

+
∫
[1,2]

O(〈good := good + 1 ; s′, 〈5, 0, •〉〉)(B6,0) dµ

=
∫
[0,1)

0 dµ+
∫
[1,2]

1 dµ

= µ([1, 2])

with µ = ρ · µ5,1 + (1− ρ) · µ 1
10

,1. Thus we get

O(〈s′, 〈5, 0, r〉〉)(B6,0) = ρ · µ5,1([1, 2]) + (1− ρ) · µ 1
10

,1([1, 2])

= ρe−5 + (1− ρ)e−
1
10

Other probabilities can be found using similar calculations.

The definition of the higher order function Φ uses integration over the set Conf < t, the
set of all configurations with a smaller weight than t. Note that Conf< t is a 1-open set.
If t⇒ µ then the measure µ assigns probability 0 to the set of configurations with weight
equal to or higher than the weight of the configuration t. As a result

∫
Conf<t

f dµ =
∫
f dµ

for all measurable functions f .

Lemma 7.3.17 Put SemO = KER(Conf,S∞) and define the higher order mapping Φ :
SemO → SemO by

Φ(S)(〈E, σ〉)(B) = ∆ε(B)

Φ(S)(t)(B) =

{
S(t′)(B/σ) t

σ
→ t′∫

Conf<t
Φ(S)(•)(B) dµ t⇒ µ

for B ∈ O∗(S
∞) and with Conf < t = { t′ ∈ Conf | wgtc(t

′) < wgtc(t) } The function Φ
has a unique fixed point and, therefore, there exists exactly one kernel O in SemO which
satisfies the equations in definition 7.3.15.

Proof It is sufficient to show that Φ is well-defined and contractive.
For well-definedness we need to show that Φ(S) is an O∗-kernel. The function Φ is

split into parts, depending on the weight and the type of the configuration: Define the
sets Conf n, Conf nprob and Conf ndet by

Conf n = { t ∈ Conf | wgtc(t) ≤ n }

Conf nprob = { t ∈ Confprob | wgtc(t) ≤ n }

Conf ndet = { t ∈ Confdet | wgtc(t) ≤ n }

7.3. THE LANGUAGE Lc WITH RANDOM ASSIGNMENT 285

and the functions Φn(S) : Conf n ×B(S∞)→ [0, 1], Φn
prob(S) : Conf

n
prob ×B(S

∞)→ [0, 1]
and Φn

det(S) : Conf
n
det × B(S

∞)→ [0, 1] by

Φ0(S)(t)(B) = ∆ε(B)

Φn(S)(t)(B) = Φn
prob +Φn

det

Φn
prob(S)(t)(B) =

∫
Φn−1(S)(•)(B) dµ t⇒ µ

Φn
det(S)(t)(B) = S(t′)(B/σ) t

σ
→ t′

To show that Φ(S) is an O∗-kernel it is sufficient to show that Φn(S) is an O∗-kernel for
each n ∈ N because then (see lemma 7.2.3)

1. Φ(S)(t)(•) = Φn(S)(t)(•) with n = wgtc(t), so Φ(S)(t) is a measure for each config-
uration t

2. d(Φ(S)(t)(•),Φ(S)(t′)(•)) = d(Φn(S)(t)(•),Φn(S)(t′)(•)) ≤ d(t, t′)
with n = max{wgtc(t),wgtc(t

′) }.

Assume n>0, as Φ0(S) is clearly an O∗-kernel. If the distance between two configurations
in Conf n is less than one, then both are in Conf ndet or both are in Conf nprob. From this
fact it is easy to see that Φn(S) is an O∗-kernel when both Φn

det(S) and Φn
prob(S) are

O∗-kernels.
As S is an O∗-kernel, Φ

n
det(S)(t)(•) = S(t)/σ is a measure for each t in Conf ndet (t

σ
→ t′).

Corollary 7.3.13 gives that Φn
prob(S), seen as a function from configurations to measures,

is nonexpansive. According to lemma 7.2.3 this means that Φn
prob(S) is an O∗-kernel.

As⇒(t) assigns probability 0 to the set of configurations with weight equal to or higher
than the weight of the configuration t, the probabilistic steps⇒, which form an O∗-kernel
in KER(Confprob,Conf), can also be seen as an O∗-kernel in KER(Conf nprob,Conf

n−1) for
each n ∈ N. Lemma 7.2.5 gives that

Φn
prob = ⇒◦ Φn−1

is an O∗-kernel in KER(Conf nprob,S
∞) for each n ∈ N.

It remains to be shown that Φ is contractive. For S, S ′ ∈ SemO with d(S, S′) < ε we
show d(Φ(S)(t),Φ(S′)(t)) is less than or equal to 1

2ε by induction on the weight of the

configuration t. Take B any 1
2ε-open set and configuration t ∈ Confdet with t

σ
→ t′ then

Φ(S)(t)(B) = S(t)(B/σ)

= S′(t)(B/σ)

= Φ(S′)(t)(B)

as B/σ is ε-open and d(S(t), S ′(t)) ≤ d(S, S′)< ε. For a configuration t ∈ Confprob with

t⇒ µ, and again B any 1
2ε-open set

Φ(S)(t)(B) =
∫

Conf<t
Φ(S)(•)(B) dµ

= [ind. hyp.]
∫

Conf<t
Φ(S′)(•)(B) dµ

= Φ(S′)(t)(B) 2

286 CHAPTER 7. CONTINUOUS PROBABILITY

The operational model O is an O∗-kernel. The operational semantics should be a function
that, for a program and a start state, yields a process in Po = Meas(S∞). The definition
of the operational semantics O[[•]] removes this small discrepancy.

Definition 7.3.18 The operational semantics O[[•]] : Lc × S → Po is given by

O[[s, σ]] = λB.O(〈s, σ〉)(B)

The operational semantics yields, given a program and a start state, the probability for
sequences of states that may be observed during the execution of the program i.e. a
measure over sequences of states. The operational semantics is obtained by forgetting the
extra structure imposed on the model O.

7.4 Conclusions and bibliographical remarks

In this chapter we have seen how O∗-kernels, an extension of compact support measures,
can be used to model infinite probabilistic choices. The results in this chapter have not
been previously published. The form of infinite choice considered was a language Lc with
random assignment. In the random assignment a choice is made out of a possibly infinite
set of values according to some measure over these values. As such the modeling of Lc

requires the composition of infinite probabilistic choices. In chapter 3 measures are also
used. There, however, the measures are only used to describe the complete meaning of a
program and there is no need to compose such measures. Likewise in chapter 6 a single
step will only give finitely many options and only a finite form of composition is needed.
In the language Lc a measure is obtained in a single step. To enable the composition of
measures, needed to give the complete processes describing the meaning of a program in
Lc, the O∗-kernels are used.

There are two major restrictions when using O∗-kernels to model infinite probabilistic
choice. The first restriction has to do with the use of ultrametric spaces. As with compact
support measures, O∗-kernels are based on complete ultrametric spaces. The space of
all kernels is again a complete ultrametric space, allowing the use of the usual metric
techniques. The use of (the properties of) nonexpansive functions plays an important
role in metric semantics. The O∗-kernels fit very nicely in the metric setting due to
the correspondence between O∗-kernels and nonexpansive functions (as formalized by
lemma 7.2.3). The disadvantage of using compact support measures as the basis for
O∗-kernels is that the set of values has to be an ultrametric space. In the setting of
continuous probability, the spaces involved are typically metric spaces but not ultrametric
spaces, e.g. the real numbers R with the Euclidean distance. The real numbers are
often used in combination with continuous distributions to describe time based systems
(e.g. CTMCs, see section 1.3) or hybrid systems (e.g. [158, 157]). By using different
modelings, these spaces can be simulated. For example the real numbers can be modeled
using a binary string in { 0, 1 }∞ as was done in subsection 7.3.1. A problem with this
modeling is that the requirements imposed on expressions and conditions in the language
Lc disallow even some of the most elementary operations on real numbers such as addition
of two numbers. A different simulation of the real numbers may not have this restrictions.
Ideally the simulation is also computable [186], allowing the calculation of operations.

7.4. CONCLUSIONS AND BIBLIOGRAPHICAL REMARKS 287

The other restriction is caused by the requirements on expressions and conditions in the
language Lc. To remain within the setting of O∗-kernels, the deterministic assignment has
to be restricted to nonexpansive assignment and boolean conditions have to have a positive
granularity. The requirement that the boolean conditions have a positive granularity
means that an approximation of the value of the variables with some fixed precision is
sufficient to see if a condition is true. The requirement of nonexpansiveness on expressions
guarantees that no precision is lost in a deterministic assignment. In many cases these are
not unreasonable requirements. In the example of the real numbers modeled by { 0, 1 }∞

(see subsection 7.3.1), however, these restrictions have, perhaps unexpected, consequences.
For example the operation of addition cannot be used because it causes loss of precision:
the numbers modeled by 0000 and 0001 are close as they start with the same sequence
000 while 0111 + 0000 = 0111 and 0111 + 0001 = 1000 already differ in the first number.

It may be possible to weaken the requirement on O∗-kernels so that the requirement
of nonexpansiveness of the deterministic assignment is no longer needed. However this is
likely to require measure theoretic investigations falling out of the scope of the research
conducted here. Also one would have to give up the nice correspondence of kernels
and nonexpansive functions. The new requirements on the kernels should satisfy the
two essential properties that make O∗-kernels useful in the metric modeling of infinitely
branching probabilistic processes: The space of all kernels should be a complete metric
space and one should be able to compose kernels (cf. lemma 7.2.5).

The O∗-kernels give a metric version of the stochastic kernels (see [169, 140, 141]) ex-
tending the compact support measures. As the distance of O∗-kernels is based on the
distance of compact support measures, this distance is ‘qualitative on the probabilities’
rather than quantitative as in e.g. [53, 52]. (See the discussion in section 3.6.) We know
of no other approaches that also use a qualitative approach with kernels.

In [170, 169] a simple language is studied which can be extended with random assign-
ment to obtain a language like Lc. The semantics of this language is given using kernels
and gives the input-output behavior of programs. As such it does not provide information
on possible infinite behavior.

In [140] Kozen studies a language with random assignment similar to the language
studied here. Any distribution may be used in the random assignment but the same
distribution is used for every random assignment in the program. The random assignment
is decided by popping the next number of a stack of random numbers that is assumed
to be available. In this way all probability is resolved ahead of time by generation of the
stack of random numbers.

Metric models of continuous probabilistic processes have also been given by Van
Breugel and Worrell in [53, 52]. The general coalgebraic approach used there allows
for an easy combination of the Hutchinson metric to describe distances between labeled
actions and the functor id 1

2
to compose sequential steps in a contractive way. The pseu-

dometric obtained is not an ultra-metric. Another main difference with this work is that
Van Breugel and Worrell use a branching domain while we use a linear domain. The
essential operation •/σ of ‘prefixing on a measure’ is not a contractive operation when
using the Hutchinson metric which makes it less suited for operational models based on
sequences like the function O given in this chapter. For branching domains, however, the
approach of Van Breugel and Worrell results in a very intuitive distance.

288 CHAPTER 7. CONTINUOUS PROBABILITY

An important cause of infinite choices in the modeling of processes is the explicit
modeling of (real) time. The presence of time introduces a continuous component into
the model. Real time is introduced into a process algebra in [18]. The reasoning in [18]
requires checking infinitely many equations for some conclusions. This issue is addressed
in [83]. In [20] a logic for reasoning about real time processes is introduced. These papers
do not deal with probability.

A large body of research where continuous probability is used exists in the field of
performance modeling. A basic formalism used in this setting is that of a continuous
time Markov chain (CTMC). A CTMC is a labeled transitions system where the labels
express the expected delay before taking this transition and with this also the probability
of taking this transition. The delays are always exponentially distributed.

Model checking of properties of CTMCs, for example expressed in continuous stochas-
tic logic (e.g. [27]), suffers from the well known state space explosion problem. To fight
this problem efficient model checking techniques have been developed for CTMCs using
variations on binary decision diagrams (BDDs) [138, 4, 143]. A different approach that
reduces model checking to the analysis of transient state probabilities is given in [25].
Also compositional models have been developed. Initially queuing networks and (gen-
eralized) stochastic Petri nets were used to specify CTMCs. To defined CTMCs on a
higher-level and in a compositional way different formalisms have also been introduced
such as stochastic process algebras [69, 125, 121, 64, 118]. The process algebra EMPA [46]
extends the basic setting of stochastic process algebra with nondeterminism and priority.

The results in the thesis of Hermanns [117] provide the foundation for the development
of the TIPPtool. Starting from the stochastic process algebra TIPP (TImed Processes
for Performance evaluation) introduced by Herzog [124] the TIPPtool has been designed
to allow compositional specification and performance evaluation [119, 123, 120]. In her
thesis [125] Hillston treats performance evaluation using stochastic extensions of Petri
nets as well as probabilistic process algebras.

The restriction in CTMCs that only exponential distributions can be used is removed
in semi-Markov chains where general continuous distributions are allowed. Model checking
in this setting is studied in [3, 130, 144].

In [64] D’Argenio also presents a stochastic process algebra with time called spades
which is used to reason about stochastic automata in a compositional way (see also [68]).
The stochastic automata combine ideas from timed automata and generalized semi-
Markov processes. The stochastic automata can contain nondeterminism. In quantitative
analysis this is removed by use of probabilistic adversaries. Other work in the area of
timed and stochastic automata can be found in [65, 66, 71].

The paper [78] introduces sequences of finite approximations of labeled Markov pro-
cesses that enable the checking of properties expressed in a probabilistic dynamic logic
(which characterizes bisimulation): Any property satisfied by the labeled Markov process
is already satisfied on one of the finite approximations in the sequence.

Bibliography

[1] L. Aceto. Action Refinement in Process Algebras. PhD thesis, University of Sussex,
1990.

[2] L. Aceto and M. Hennessy. Towards action-refinement in process algebras. Infor-
mation and Computation, 103:204–269, 1993.

[3] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997.

[4] L. de Alfaro, M.Z. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Sym-
bolic model checking of concurrent probabilistic processes using MTBDDs and the
Kronecker representation. In S. Graf and M. Schwartzbach, editors, Proc. of the In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems. LNCS 1785, 2000.

[5] N. Alon, J.H. Spencer, and P. Erdös. The Probabilistic Method. Series in Discrete
Mathematics and Optimization. Wiley, 1992.

[6] P. America and J.J.M.M. Rutten. Solving reflexive domain equations in a category
of complete metric spaces. Journal of Computer and System Sciences, 39:343–375,
1989.

[7] S. Andova. Process algebra with interleaving probabilistic parallel composition.
Technical Report CSR 99-04, Eindhoven University of Technology, 1999.

[8] S. Andova. Process algebra with probabilistic choice. In J.-P. Katoen, editor, Proc.
ARTS’99, pages 111–129. LNCS 1601, 1999.

[9] S. Andova. Time and probability in process algebra. In T. Rus, editor, Proc.
AMAST 2000, pages 323–338. LNCS 1816, 2000.

[10] S. Andova. Probabilistic Process Algebra. PhD thesis, Technical University Eind-
hoven, in preparation.

[11] S. Andova and J.C.M. Baeten. Abstraction in probabilistic process algebra. In Proc.
TACAS’01, pages 204–219. LNCS 2031, 2001.

[12] K.R. Apt. Ten years of Hoare’s logic: A survey-part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, 1981.

289

290 BIBLIOGRAPHY

[13] K.R. Apt. Ten years of Hoare’s logic: A survey-part II: nondeterminism. Theoretical
Computer Science, 28:83–109, 1984.

[14] K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Texts and Monographs in Computer Science. Springer-Verlag, 1991.

[15] A. Arnold and M. Nivat. Metric interpretations of infinite trees and semantics of
nondeterministic recursive programs. Theoretical Computer Science, 11(2):181–205,
1980.

[16] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Com-
putation. IOP Publishing Ltd and Oxford University Press, 1997.

[17] T. Baeck, J.M. de Graaf, J.N. Kok, and W.A. Kosters. Theory of genetic algorithms.
Bulletin of the EATCS, 63:161–192, October 1997.

[18] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of
Computing, 3(2):142–188, 1991.

[19] J.C.M. Baeten and J.A. Bergstra. Process algebra with partial choice. In B. Jonsson
and J. Parrow, editors, Proc. CONCUR’94, pages 465–480. LNCS 836, 1994.

[20] J.C.M. Baeten, J.A. Bergstra, and R.N. Bol. A real time process logic. In D.M.
Gabbay and H.J. Ohlbach, editors, Proc. ICTL’94, pages 30–47. LNCS 827, 1994.

[21] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic pro-
cesses: ACP with generative probabilities. Information and Computation, 121:234–
255, 1995.

[22] J.C.M. Baeten and W.P. Weijland. Process algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

[23] C. Baier. On the Algorithmic Verification of Probabilistic Systems. Habilitation,
Universität Mannheim, 1998.

[24] C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimilarity and simi-
larity for probabilistic processes. Journal of Computer and System Sciences, 60:187
– 231, 2000.

[25] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking continuous-
time Markov chains by transient analysis. In Proc. CAV 2000. LNCS 1855, 2000.

[26] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes. In
Proc. CAV’97, pages 119–130. LNCS 1254, 1997.

[27] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. In Proc. CONCUR’99, pages 146–161. LNCS 1664,
1999.

BIBLIOGRAPHY 291

[28] C. Baier and M. Kwiatkowska. Domain equations for probabilistic processes (ex-
tended abstract). In M. Mislove, M. Nivat, C. Papadimitriou, C. Palamidessi, and
J. Parrow, editors, Proc. Express’97. Electronic Notes in Theoretical Computer Sci-
ence 7, 1997.

[29] C. Baier, M. Kwiatkowska, and G. Norman. Computing probability bounds for
linear time formulas over concurrent Markov chains. In Proc. Workshop on Prob-
abilistic Methods in Verification (PROBMIV’98), volume 22 of Electronic Notes in
Theoretical Computer Science, 1999.

[30] C. Baier and M.E. Majster-Cederbaum. The connection between an event structure
semantics and an operational semantics for TSCP. Acta Informatica, 31:81–104,
1994.

[31] C. Baier and M.E. Majster-Cederbaum. Denotational semantics in the CPO and
metric approach. Theoretical Computer Science, 135:171–220, 1994.

[32] C. Baier and M.E. Majster-Cederbaum. Metric semantics from partial order seman-
tics. Acta Informatica, 34:701–735, 1997.

[33] C. Baier and M.I.A. Stoelinga. Norm functions for probabilistic bisimulations with
delays. In J. Tiuryn, editor, Proc. FOSSACS 2000, pages 1–16. LNCS 1784, 2000.

[34] J.W. de Bakker. Mathematical Theory of Program Correctness. Series in Computer
Science. Prentice-Hall International, 1980.

[35] J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, and J.I. Zucker. Transition systems,
metric spaces and ready sets in the semantics of uniform concurrency. Journal of
Computer and System Sciences, 36:158–224, 1988.

[36] J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Concurrency Semantics,
selected papers of the Amsterdam Concurrency Group. World Scientific, 1992.

[37] J.W. de Bakker and E.P. de Vink. Bisimulation semantics for concurrency with
atomicity and action refinement. Fundamenta Informaticae, 20:3–34, 1994.

[38] J.W. de Bakker and E.P. de Vink. Control Flow Semantics. Foundations of Com-
puting Series. The MIT Press, 1996.

[39] J.W. de Bakker and E.P. de Vink. Denotational models for programming languages:
Applications of Banach’s fixed point theorem. Topology and its Applications, 85:35–
52, 1998.

[40] J.W. de Bakker and J.H.A. Warmerdam. Metric pomset semantics for a concurrent
language with recursion. In I. Guessarian, editor, Proc. of the LITP Spring School
on Theoretical Computer Science, pages 21–49. LNCS 469, 1990.

[41] J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of con-
currency. Information and Control, 54:70–120, 1982.

292 BIBLIOGRAPHY

[42] J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the
algebra of regular processes. In J. Paredaens, editor, Proc. ICALP’84, pages 82–95.
LNCS 172, 1984.

[43] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation, 60:109–137, 1984.

[44] J.A. Bergstra, A.J. Ponse, and S.A. Smolka, editors. Handbook of process algebra.
Elsevier, Amsterdam, 2001.

[45] M. Bernardo and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. Foundations of Software Technology and Theoretical Computer
Science, pages 499 – 513. LNCS 1026, 95.

[46] M. Bernardo, L. Donatiello, and R. Gorrieri. A tutorial on EMPA: A theory of
concurrent processes with nondeterminism, priorities, probabilities and time. The-
oretical Computer Science, 202:1–54, 1998.

[47] B. Bollobás. Graph theory. Springer-Verlag, 1979.

[48] M.M. Bonsangue. Topological Dualities in Semantics. PhD thesis, Vrije Universiteit,
November 1996.

[49] M.M. Bonsangue and J.N. Kok. Specifying computations using hyper transition
systems. In Proceedings of the 22nd International Symposium on Mathematical
Foundations of Computer Science (MFCS ’97), pages 169–178, August 1997.

[50] F. C. van Breugel. Failures, finiteness, and full abstraction. Technical Report TR-
97-18, Dipartimento di Informatica, Università degli Studi di Pisa, 1997.

[51] F. C. van Breugel. Comparative Metric Semantics for Programming Languages.
Progress in Theoretical Computer Science. Birkhäuser Verlag, Boston, 1998.

[52] F. C. van Breugel and J. Worrell. An algorithm for quantitative verification of
probabilistic transition systems. In K.G. Larsen and M. Nielsen, editors, Proc.
12th CONCUR’01, Aalborg, pages 336 – 350. LNCS 2154, 2001.

[53] F. C. van Breugel and J. Worrell. Towards quantitative verification of probabilistic
transition systems. In F. Orejas, P.G. Spirakis, and J. van Leeuwen, editors, Proc.
28th ICALP’01, pages 421 – 432. LNCS 2076, 2001.

[54] F.C. van Breugel. Topological Models in Comparative Semantics. PhD thesis, Vrije
Universiteit, September 1994.

[55] F.C. van Breugel. An introduction to metric semantics: Operational and denota-
tional models for programming and specification languages. Theoretical Computer
Science, 258:1–98, 2001.

[56] L. Castellano, G. De Michelis, and L. Pomello. Concurrency vs. interleaving: an
instructive example. Bulletin of the EATCS, 31:12–15, 1987.

BIBLIOGRAPHY 293

[57] I. Christoff. Testing equivalences and fully abstract models for probabilistic pro-
cesses. In Proc. CONCUR’90, pages 126–140. LNCS 458, 1990.

[58] I. Christoff. Testing Equivalences for Probabilistic Processes. PhD thesis, Uppsala
University, 1990.

[59] L. Christoff. Specification and Verification Methods for Probabilistic Processes. PhD
thesis, Uppsala University, 1993.

[60] E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal bi-
nary decision diagrams: An efficient data structure for matrix representation. In
Proc. IWLS’93: International Workshop on Logic Synthesis, 1993.

[61] R. Cleaveland, Z. Dayar, S. Smolka, and S. Yuen. Testing preorders for probabilistic
processes. Information and Computation, 154(2):93–148, November 1999.

[62] S.A. Cook. Soundness and completeness of an axiom system for program verification.
SIAM Journal of Computing, 7(1):70–90, 1978.

[63] J.P. Courtiat and D.E. Saidouni. Relating maximality-based semantics to action re-
finement in process algebras. In D. Hogrefe and S. Leue, editors, Formal Description
Techniques VII, pages 292–308. Chapman & Hall, 1995.

[64] P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD
thesis, University of Twente, 1999.

[65] P.R. D’Argenio. A compositional translation of stochastic automata into timed
automata. Technical Report CTIT 00-08, University of Twente, 2000.

[66] P.R. D’Argenio and E. Brinksma. A calculus for timed automata (Extended ab-
stract). In B. Jonsson and J. Parrow, editors, Proceedings of the 4th International
School and Symposium on Formal Techniques in Real Time and Fault Tolerant Sys-
tems, Uppsala, Sweden, volume 1135 of Lecture Notes in Computer Science, pages
110–129. Springer-Verlag, 1996.

[67] P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel composi-
tion. In Proc. Probmiv’98, pages 105–122. ENTCS 22, 1999.

[68] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. A stochastic automata model and
its algebraic approach. In Proc. PAPM’97, pages 1–16. CTIT Technical Report
no. 97–14, University of Twente, 1997.

[69] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach to the speci-
fication of stochastic systems (extended abstract). In D. Gries and W.-P. de Roever,
editors, Proceedings of the IFIP Working conference on Programming Concepts and
Methods, PROCOMET’98, Shelter Island, New York, USA, IFIP Series, pages 126–
147. Chapman & Hall, 1998.

[70] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. A compositional approach to
generalised semi-Markov processes. In Proc. WODES’98. IEE, 1998.

294 BIBLIOGRAPHY

[71] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. A stochastic process algebra for
discrete event simulation. Technical report, University of Twente, 1998.

[72] P. Darondeau and P. Degano. Causal trees. In G. Ausiello, M. Dezani-Ciancaglini,
and S. Ronchi Della Rocca, editors, Proc. ICALP’89, pages 234–248. LNCS 372,
1989.

[73] P. Darondeau and P. Degano. Refinement of actions in event structures and causal
trees. Theoretical Computer Science, 118:21–48, 1993.

[74] P. Degano and R. Gorrieri. A causal operational semantics of action refinement.
Information and Computation, 122:97–119, 1995.

[75] J. Desharnais, A. Edalat, and P. Panangaden. A logical characterization of bisimu-
lation for labeled Markov processes. In Proc. LICS’98, pages 478–487, Indianapolis,
1998.

[76] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov
processes. Information and Computation, 2001.

[77] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labeled
Markov systems. In J.C.M. Baeten and S. Mauw, editors, Proc. CONCUR’99, pages
258–273. LNCS 1664, 1999.

[78] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating la-
beled Markov processes. In Proc. LICS 2000, pages 95–106, 2000.

[79] J. Dugundji. Topology. Allyn and Bacon, 1976.

[80] U.H. Engberg. Partial Orders and Fully Abstract Models for Concurrency. PhD
thesis, Aarhus University, 1990. Also published as Technical Report DAIMI PB–
307, Computer Science Department, Aarhus University 1990.

[81] R. Engelking. General Topology. Sigma Series in Pure Mathematics 6, Heldermann
Verlag, revised and completed edition, 1989.

[82] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer-Verlag, 2000.

[83] W.J. Fokkink and A.S. Klusener. An effective axiomatization for real time ACP.
Information and Computation, 122(2):286–299, 1995.

[84] N. Francez. Program Verification. International Computer Science Series. Addison-
Wesley, 1992.

[85] H. Gaifman. Modeling concurrency by partial orders and nonlinear transition sys-
tems. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, REX’88,
pages 467–488. LNCS 354, 1989.

BIBLIOGRAPHY 295

[86] A. Giacalone, C. Jou, and S.A. Smolka. Algebraic reasoning for probabilisitic con-
current systems. In M. Broy and C.B Jones, editors, Proc. Working Conference
on Programming Concepts and Methods, pages 443–458. IFIP TC2, Sea of Gallilee,
1990.

[87] W. Gibbs. Software’s chronic crisis. Scientific American, September 1994.

[88] R.J. van Glabbeek. The linear time - branching time spectrum (extended abstract).
In J.C.M. Baeten and J.W. Klop, editors, Proc. CONCUR’90, pages 278–298.
LNCS 458, 1990.

[89] R.J. van Glabbeek. The linear time - branching time spectrum II: the semantics of
sequential systems with silent moves (extended abstract). In E. Best, editor, Proc.
CONCUR’93, pages 66–81. LNCS 715, 1993.

[90] R.J. van Glabbeek. Comparative Concurrency Semantics and Refinement of Ac-
tions. CWI Tract 109. CWI, 1996. Revision of Ph.D thesis of the same title.

[91] R.J. van Glabbeek and J.J.M.M. Rutten. The processes of De Bakker and Zucker
represent bisimulation equivalence classes. In J.W. de Bakker 25 Jaar Semantiek,
Liber Amicorum, pages 243–246. CWI, Amsterdam, 1989.

[92] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified
models of probabilistic processes. Information and Computation, 121:59–80, 1995.

[93] R.J. van Glabbeek and F.W. Vaandrager. Petri net models for algebraic theo-
ries of concurrency. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors,
PARLE’87, volume II, pages 224–242. LNCS 259, 1987.

[94] U. Goltz, R. Gorrieri, and A. Rensink. Comparing syntactic and semantic action
refinement. Information and Computation, 125:118–143, 1996.

[95] R. Gorrieri. Refinement, Atomicity and Transactions for Process Description Lan-
guages. PhD thesis, University of Pisa, 1991. Also available as Technical Report
TD–2/91, Dipartimento di Informatica, Università degli Studi di Pisa.

[96] R. Gorrieri and C. Laneve. Split and ST bisimulation semantics. Information and
Computation, 118:272–288, 1995.

[97] R. Gorrieri and A. Rensink. Action refinement. In J.A. Bergstra, A.J. Ponse, and
S.A. Smolka, editors, Handbook of process algebra, chapter 16. Elsevier, Amsterdam,
2001.

[98] J. Grabowski. On partial languages. Fundamenta Informaticae, 4(1):427–498, 1981.

[99] C. Gregorio-Rodŕıguez and M. Núñez. Denotational semantics for probabilistic
refusal testing. In M. Huth and M.Z. Kwiatkowska, editors, Proc. Probmiv’98.
ENTCS 22, 1998.

[100] R. Gupta, S. Bhaskar, and S.A. Smolka. On randomization in sequential and dis-
tributed algorithms. ACM Computing Surveys, 26(1):7–86, 1994.

296 BIBLIOGRAPHY

[101] Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, Septem-
ber 1990.

[102] P.R. Halmos. Measure Theory. Van Nostrand, 1950.

[103] H. Hansson and B. Jonsson. A calculus for communicating systems with time and
probabilities. In Proc. 11th IEEE Real-Time Systems Symposium, Orlando, Florida,
1990.

[104] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6:512–535, 1994.

[105] H.A. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD
thesis, Uppsala University, 1991.

[106] J.I. den Hartog. Comparative semantics for atomization and action refinement with
synchronization. Master’s thesis, Vrije Universiteit Amsterdam, 1996.

[107] J.I. den Hartog. Comparative semantics for a process language with probabilistic
choice and non-determinism. Technical Report IR–445, Vrije Universiteit, Amster-
dam, February 1998.

[108] J.I. den Hartog. Verifying probabilistic programs using a Hoare like logic. In P.S.
Thiagarajan and R. Yap, editors, LNCS 1742 (ASIAN’99), pages 113–125. Springer,
1999.

[109] J.I. den Hartog and E.P. de Vink. Mixing up nondeterminism and probability:
A preliminary report. In Proc. Workshop on Probabilistic Methods in Verification
(PROBMIV’98), volume 22 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1999.

[110] J.I. den Hartog and E.P. de Vink. Taking chances on ‖ and fail: Extending strong
and probabilistic bisimulation. Technical Report IR–454, Vrije Universiteit, Ams-
terdam, March 1999.

[111] J.I. den Hartog and E.P. de Vink. Verifying probabilistic programs using a Hoare
like logic. International Journal of Foundations of Computer Science, 13(3):315–
340, 2002.

[112] J.I. den Hartog, E.P. de Vink, and J.W. de Bakker. Full abstractness of a metric
semantics for action refinement. Fundamenta Informaticae, 40:335–382, 1999.

[113] J.I. den Hartog, E.P. de Vink, and J.W. de Bakker. Metric semantics and full
abstractness for action refinement and probabilistic choice. In Proc. MFCSIT 2000.
ENTCS 40, 2001.

[114] V. Hartonas-Garmhausen. Probabilistic Symbolic Model Checking with Engineering
Models and Applications. PhD thesis, Carnegie Mellon University, 1998.

[115] M. Hennessy. Axiomatising finite concurrent processes. SIAM Journal on Comput-
ing, 17:997–1017, 1988.

BIBLIOGRAPHY 297

[116] T. Herman. Probabilistic self-stabilization. Information Processing Letters, 35:63–
67, 1990.

[117] H. Hermanns. Interactive Markov Chains. PhD thesis, University of Erlangen-
Nurnberg, July 1998.

[118] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance eval-
uation. Theoretical Computer Science, 274 (1-2):43–87, 2002.

[119] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Composi-
tional performance modelling with the tipptool. Performance Evaluation, 39:5–35,
2000.

[120] H. Hermanns, U. Herzog, U. Klehmet, M. Siegle, and V. Mertsiotakis. Compo-
sitional performance analysis with the tipptool. In LNCS 1469, editor, 10th Int.
PERFORMANCE TOOLS’98 Conference, pages 51–62, 1998.

[121] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic process algebras – between
LOTOS and Markov chains. Computer Networks and ISDN Systems, 30(9-10):901–
924, 1998.

[122] H. Hermanns and J.-P. Katoen. Automated compositional Markov chain generation
for a plain-old telephone system. Science of Computer Programming, 36(1):97 – 127,
2000.

[123] H. Hermanns and M. Siegle. Tipptool: Compositional specification and analysis of
Markovian performance models. In Computer Aided Verification (CAV’99), pages
487–490. LNCS 1633, 1999.

[124] U. Herzog. Formal description, time and performance analysis: A framework. Tech-
nical Report 15/90 IMMD VII, Friedrich-Alexander-University, Erlangen-Nürnberg,
Germany, September 1990.

[125] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis,
Cambridge University Press, 1996. Distinguished Dissertation in Computer Science.

[126] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12:576–580, 1969.

[127] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall International, Englewood Cliffs, NJ, 1985.

[128] J. Hooman. Program design in PVS. In Proceedings Workshop on Tool Support for
System Development and Verification, June 1996.

[129] M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In
Proc. LICS’97, pages 111–122, Warsaw, 1997.

[130] G. G. Infante López, H. Hermanns, and J.-P. Katoen. Beyond memoryless distribu-
tions: Model checking semi-Markov chains. In L. de Alfaro and S. Gilmore, editors,
Proc. PAPM-PROBMIV 2001, pages 23–38. LNCS 2165, 2001.

298 BIBLIOGRAPHY

[131] B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the EATCS, 62, 1997.

[132] L. Jategaonkar and A. Meyer. Testing equivalence for Petri nets with action re-
finement: preliminary report. In R. Cleaveland, editor, Proc. CONCUR’92, pages
17–31. LNCS 630, 1992.

[133] C. Jones. Probabilistic Nondeterminism. PhD thesis, ECS–LFCS–90–105, University
of Edinburgh, 1990.

[134] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Proc.
LICS’89, pages 186–195. Asilomar, 1989.

[135] B. Jonsson and K. Larsen. Specification and refinement of probabilistic processes.
In Proc. LICS’91, pages 266–277, Amsterdam, 1991.

[136] C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatiza-
tions for probabilistic processes. In Proc. CONCUR’90, pages 367–383. LNCS 458,
1990.

[137] J.-P. Katoen. Quantitative and Qualitative Extensions of Event Structures. PhD
thesis, University of Twente, 1996. CTIT PhD-thesis series No. 96–09.

[138] J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
ctmc model checking. In L. de Alfaro and S. Gilmore, editors, Proc. PAPM-
PROBMIV 2001, pages 23–38. LNCS 2165, 2001.

[139] J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency seman-
tics. Theoretical Computer Science, 76:179–222, 1990. Extended abstract in Proc.
ICALP’88, T. Lepistö and A. Salomaa (eds.), LNCS 317, pp. 317–332, 1988.

[140] D. Kozen. Semantics of probabilistic programs. Journal of Computer and System
Sciences, 22:328–350, 1981.

[141] D. Kozen. A probabilistic PDL. Journal of Computer and System Sciences, 30:162–
178, 1985.

[142] M. Kwiatkowska and G. Norman. Probabilistic metric semantics for a simple lan-
guage with recursion. In W. Penczek and A. Szalas, editors, Proc. MFCS’96, pages
419–430. LNCS 1113, 1996.

[143] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking
with prism: A hybrid approach. Technical Report CSR-01-10, School of Computer
Science, University of Birmingham, 2001.

[144] M. Kwiatkowska, G. Norman, R. Segala, and J. Spronston. Verifying quantitative
properties of continuous probabilistic timed automata. In C. Palamadessi, editor,
Proc. CONCUR 2000, pages 123–137. LNCS 1877, 2000.

BIBLIOGRAPHY 299

[145] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. In J.-P. Katoen, editor,
Proc. ARTS’99, pages 75–95. LNCS 1601, 1999.

[146] M. Kwiatkowska, G. Norman, and J. Spronston. Probabilistic model checking of
deadline properties in the IEEE1394 firewire root contention protocol. In S. Ma-
haraj, C. Shankland, and J.M.T. Romijn, editors, Proc. International Workshop on
Application of Formal Methods to IEEE 1394 Standard, 2001.

[147] M.Z. Kwiatkowska and G.J. Norman. A fully abstract metric-space denotational
semantics for reactive probabilistic processes. In Proc. Express’98. ENTCS 13, 1998.

[148] M.Z. Kwiatkowska and G.J. Norman. A testing equivalence for reactive probabilistic
processes. In Ilaria Castellani and Catuscia Palamidessi, editors, Electronic Notes
in Theoretical Computer Science. ENTCS 16(2), 2000.

[149] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94:1–28, 1991.

[150] K.G. Larsen and A. Skou. Compositional verification of probabilisitic processes. In
LNCS 630 (CONCUR’92), pages 456–471. Springer, 1992.

[151] D. Latella and P. Quaglia. Stochastic analysis via a probabilistic process algebra.
In Proc. PAPM’97, pages 187–206. CTIT Technical Report no. 97–14, University of
Twente, 1997.

[152] R. Loogen and U. Goltz. Modelling non-deterministic concurrent processes with
event structures. Fundamenta Informaticae, 14:39–73, 1991.

[153] G. Lowe. Probabilities and Priorities in Timed CSP. PhD thesis, University of
Oxford, 1993.

[154] G. Lowe. Representing nondeterminism and probabilistic behaviour in reactive
processes. Technical Report PRG–TR–11–93, Oxford University Computing Labo-
ratory, 1993.

[155] G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical Com-
puter Science, 138:315–352, 1995. Special issue on the Mathematical Foundations
of Programming Semantics conference, 1992.

[156] N. Lynch. Distributed Algorithms. The Morgan Kaufmann series in data manage-
ment systems. Kaufmann, 1996.

[157] N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid i/o automata revisited.
In M.D. Di Benedetto and A.L. Sangiovanni-Vincetelli, editors, Proc. HSCC’01.
LNCS 2034, 2001.

[158] N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid i/o automata.
Technical report, University of Nijmegen, April 1999.

[159] R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.

300 BIBLIOGRAPHY

[160] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-
Hall International, Englewood Cliffs, NJ, 1989.

[161] M. Mislove. Nondeterminism and probabilistic choice: Obeying the laws. In C. Pala-
madessi, editor, Proc. CONCUR 2000, pages 350–364. LNCS 1877, 2000.

[162] C. Morgan and A. McIver. pGCL: formal reasoning for random algorithms. Proc.
of WOFACS 1998, Special Issue of the South African Computer Journal, 22:14–27,
1999.

[163] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM
Transactions on Programming Languages and Systems, 18(3):325–353, May 1996.

[164] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[165] M Nielsen, U. Engberg, and K.S. Larsen. Fully abstract models for a process lan-
guage with refinement. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg,
editors, Proc. REX Workshop on Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency, pages 523–548. LNCS 354, 1988.

[166] M. Nivat. Infinite words, infinite trees, infinite computations. In J.W. de Bakker
and J. van Leeuwen, editors, Foundations of Computer Science III, part 2: Lan-
guages, Logic, Semantics, volume 109 of Mathematical Centre Tracts, pages 3–52.
Mathematical Centre, Amsterdam, 1979.

[167] G.J. Norman. Metric Semantics for Reactive Probabilistic Systems. PhD thesis,
University of Birmingham, 1997.

[168] M. Núñez, D. de Frutos, and L. Llana. Acceptance trees for probabilistic processes.
In I. Lee and S.A. Smolka, editors, Proc. CONCUR’95, pages 249–263. LNCS 962,
1995.

[169] P. Panangaden. Stochastic techniques in concurrency, 1997. Notes from Aarhus Fall
1996 and EATCS Summer School Udine 1997.

[170] P. Panangaden. Measure and probability for concurrency theorists. Theoretical
Computer Science, 253(2), 2001.

[171] D.M.R. Park. Concurrency and automata on infinite sequences. In Proc. 5th GI
Conference on Theoretical Computer Science, pages 167–183. LNCS 104, 1981.

[172] A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems.
In C. Palamadessi, editor, Proc. CONCUR 2000, pages 334–349. LNCS 1877, 2000.

[173] G.D. Plotkin. A structural approach to operational semantics. Technical report,
Aarhus University, 1981.

[174] A. Pnueli and L.D. Zuck. Probabilistic verification. Information and Computation,
103:1–29, 1993.

BIBLIOGRAPHY 301

[175] A. Rensink. Models and Methods for Action Refinement. PhD thesis, University of
Twente, 1993.

[176] A. Rensink. An event-based SOS for a language with refinement. In J. Desel,
editor, Structures in Concurrency Theory, Workshops in Computing, pages 294–
309. Springer, 1995.

[177] J. Rutten and D.Turi. On the foundation of final semantics: non-standard sets,
metric spaces, partial orders. In LNCS 666 (Proceedings of the REX Workshop on
Semantics: Foundations and Applications), pages 477–530. Springer, 1992.

[178] J.J.M.M. Rutten. Correctness and full abstraction of metric semantics for concur-
rency. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, pages
628–659. LNCS 354, 1989.

[179] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000.

[180] J.J.M.M. Rutten and D. Turi. Initial algebra and final coalgebra semantics for
concurrency. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proc.
REX Workshop ”A Decade of Concurrency”, pages 530–582. LNCS 803, 1994.

[181] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Massachusetts Institute of Technology, June 1995.

[182] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
B. Jonsson and J. Parrow, editors, Proc. CONCUR’94, pages 481–495. LNCS 836,
1994.

[183] K. Seidel. Probabilistic communicating processes. Theoretical Computer Science,
152:219–249, 1995.

[184] M.I.A. Stoelinga. Fun with FireWire: Experiments with verifying the IEEE1394
root contention protocol. In S. Maharaj, C. Shankland, and J.M.T. Romijn, editors,
Proceedings of the International Workshop on Application of Formal Methods to
the IEEE1394 Standard, pages 35–38, 2001. Also, Technical Rapport CSI-R0107,
Computing Science Institute, University of Nijmegen, March 2001.

[185] M.I.A. Stoelinga. Verification of Probabilistic, Real-Time and Parametric Systems.
PhD thesis, University of Nijmegen, 2002.

[186] V. Stoltenberg-Hansen and J.V. Tucker. Effective algebras, volume 4 of Handbook
of Logic in Computer Science. Oxford science publications, 1995.

[187] J.E. Stoy. Denotational Semantics—the Scott-Strachey approach to programming
language theory. MIT Press, 1977.

[188] E.P. de Vink. On a functor for probabilistic bisimulation and preservation of weak
pullbacks. Technical Report IR–444, Vrije Universiteit, Amsterdam, 1998.

302 BIBLIOGRAPHY

[189] E.P. de Vink. A note on the completeness of M1(X).
http://www.win.tue.nl/∼evink/note.ps, 2000.

[190] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems:
a coalgebraic approach. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela,
editors, Automata, Languages and Programming, pages 460–470. LNCS 1256, 1997.
Proc. 24th ICALP’97, Bologna, Italy.

[191] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems:
a coalgebraic approach. Theoretical Computer Science, 221:271–293, 1999.

[192] W. Vogler. Failures semantics based on interval semiwords is a congruence for
refinement. Distributed Computing, 4:139–162, 1991.

[193] W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets.
LNCS 625, 1992.

[194] W. Vogler. Bisimulation and action refinement. Theoretical Computer Science,
114:173–200, 1993.

[195] W. Vogler. The limit of splitn-language equivalence. Information and Computation,
127:41–61, 1996.

[196] J.H.A. Warmerdam. Case studies in true concurrency and logic programming se-
mantics. Master’s thesis, Vrije Universiteit, October 1989.

[197] G. Winskel. The Formal Semantics of Programming Languages. An Introduction.
The MIT Press, 1993.

[198] G. Winskel and M. Nielsen. Models for Concurrency, volume 4 of Handbook of Logic
in Computer Science, pages 1–148. Oxford science publications, 1995.

[199] Sue-Hwey Wu, S.A. Smolka, and E.W. Stark. Composition and behaviors of prob-
abilistic I/O automata. Theoretical Computer Science, 176:1–38, 1997.

[200] W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In
Proc. PSTV XII, pages 47–61. North-Holland, 1992.

Samenvatting

Probabilistische Uitbreidingen

van Semantische Modellen

Het thema van dit proefschrift is het modelleren van en redeneren over probabiliteit in
computer systemen. Kansen spelen een rol in computer systemen met inherent probabilis-
tisch gedrag, zoals bijvoorbeeld een communicatiekanaal dat niet volledig betrouwbaar is,
alsmede in probabilistische algoritmen waarin expliciet kansen worden geintroduceerd.
Een probleem met probabilistische systemen is dat deze vaak lastig te testen zijn en de
intuitie gemakkelijk misleiden, zie e.g. het ‘drie-deuren-probleem’ besproken in hoofd-
stukken 4 en 6, Het gebruik van wiskundige modellen en formeel redeneren helpt fouten
te voorkomen.

Verscheidene semantische modellen voor procestalen met probabiliteit worden in dit
proefschrift gëıntroduceerd in een metrische setting. Ook wordt een Hoare-stijl logica voor
het redeneren over programma’s met probabilistische keuzes gegeven. De metrische eigen-
schappen van de domeinen die gebruikt worden voor de semantische modellen zijn nuttig
in definities van semantiek en operaties alsmede voor het redeneren over (de betekenis)
van programma’s. De basis voor de modellering van probabilistische keuze wordt gelegd
in hoofdstuk 3. In dit hoofdstuk wordt een eenvoudige taal Lp bestudeerd die naast prob-
abiliteit als hoofdconstructies sequentiele compositie en recursie heeft. Een operationeel
model, gebaseerd op een transitiesysteem en een compositioneel denotationeel model wor-
den gegeven en vergeleken. In hoofdstukken 4, 5 en 7 worden verdere uitbreidingen van
de taal Lp bestudeerd met, respectievelijk, de constructies niet-deterministische keuze en
parallellisme, actieverfijning, en niet-discrete probabilistische keuze.

De uitbreiding met niet-deterministiche keuze en parallellisme in hoofdstuk 4 blijkt
subtiel. Verschillende modellen zijn nodig te zijn voor verschillende mogelijke interpre-
taties van de niet-deterministiche keuze als mede de probabilistische keuze. Metrische
modellen voor actieverfijning, zeker in een ‘interleaving’ setting, zijn minder bestudeerd
dan modellen voor niet-deterministiche keuze. In hoofdstuk 5 wordt daarom eerst in sec-
tie 5.2 een metrisch model ontwikkeld voor actieverfijning zonder probabilistische keuze
in een interleaving setting. Vervolgens wordt in sectie 5.3 een model voor actieverfijn-
ing en probabilistische keuze geven door de technieken van hoofdstuk 3 en sectie 5.2 te
combineren.

In hoofdstuk 6 wordt Hoare logica uitgebreid om het direct redeneren over probabilis-

303

304 BIBLIOGRAPHY

tische programma’s en probabilistische programma toestanden mogelijk te maken. In een
deterministische toestand is een eigenschap vervuld of niet. In een probabilistische toe-
stand is een eigenschap vervuld met een bepaalde kans. Een gelaagde constructie wordt
gebruikt voor probabilistische predikaten om over kansen te kunnen redeneren terwijl toch
de waar of niet waar interpretatie van predikaten gehandhaafd blijft.

Hoofdstuk 7 introduceert een taal waarbij mogelijk een keuze gemaakt moet worden
tussen oneindig veel mogelijkheden. Een metrische versie van stochastische kernen wordt
ontwikkeld om voor deze taal een semantisch model te kunnen geven.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Al-

gebra. Faculty of Mathematics and Computing
Science, TUE. 1996-1

A.M. Geerling. Transformational Development

of Data-Parallel Algorithms. Faculty of Mathe-
matics and Computer Science, KUN. 1996-2

P.M. Achten. Interactive Functional Programs:
Models, Methods, and Implementation. Faculty of
Mathematics and Computer Science, KUN. 1996-3

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Science,
TUE. 1996-4

M.H.G.K. Kesseler. The Implementation of

Functional Languages on Parallel Machines with

Distrib. Memory. Faculty of Mathematics and
Computer Science, KUN. 1996-5

D. Alstein. Distributed Algorithms for Hard

Real-Time Systems. Faculty of Mathematics and
Computing Science, TUE. 1996-6

J.H. Hoepman. Communication, Synchroniza-

tion, and Fault-Tolerance. Faculty of Mathemat-
ics and Computer Science, UvA. 1996-7

H. Doornbos. Reductivity Arguments and Pro-

gram Construction. Faculty of Mathematics and
Computing Science, TUE. 1996-8

D. Turi. Functorial Operational Semantics and

its Denotational Dual. Faculty of Mathematics
and Computer Science, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake Cir-

cuits. Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Spec-

ification Formalism. Faculty of Mechanical Engi-
neering, TUE. 1996-11

P. Severi de Santiago. Normalisation in

Lambda Calculus and its Relation to Type Infer-

ence. Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Parti-

tion Refinement for Model Checking. Faculty of
Mathematics and Computing Science, TUE. 1996-
13

M.M. Bonsangue. Topological Dualities in Se-

mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of

Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-

tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data

Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in

Logic and Mathematics. Faculty of Mathematics
and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-

plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.
Faculty of Mathematics and Computing Science,
TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-

proach to Syntax and Typing. Faculty of Mathe-
matics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-

Event Simulator for Systems Engineering. Faculty
of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for

Multiprocessor Computation. Faculty of Mathe-
matics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-

Power 80C51 Microcontroller. Faculty of Mathe-
matics and Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design

with Petri Nets and Process Algebra. Faculty of
Mathematics and Computing Science, TUE. 1998-
05

E. Voermans. Inductive Datatypes with Laws

and Subtyping – A Relational Model. Faculty of
Mathematics and Computing Science, TUE. 1999-
01

H. ter Doest. Towards Probabilistic Unification-
based Parsing. Faculty of Computer Science, UT.
1999-02

J.P.L. Segers. Algorithms for the Simulation of

Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolu-
tionary Search. Faculty of Mathematics and Nat-
ural Sciences, Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study

on Indecisiveness in Sample Selection. Faculty of
Mathematics and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimization

in Real-Time Distributed Databases. Faculty of
Mathematics and Computing Science, TUE. 1999-
06

M.A. Reniers. Message Sequence Chart: Syn-

tax and Semantics. Faculty of Mathematics and
Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfia-
bility problems. Faculty of Mathematics and Com-
puting Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols

with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for

Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fábián. A Language and Simulator for Hy-

brid Systems. Faculty of Mechanical Engineering,
TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts and

Proof Rules. Faculty of Mathematics and Com-
puting Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural

Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation

of Attribute Grammars. Faculty of Mathematics
and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Par-

allel Progam Construction. Faculty of Mathemat-
ics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in
the Dutch Republic. Faculty of Mathematics and
Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified ap-

proach to the verification of distributed algorithms.
Faculty of Mathematics and Computer Science,
UU. 2000-02

W. Mallon. Theories and Tools for the Design of
Delay-Insensitive Communicating Processes. Fac-
ulty of Mathematics and Natural Sciences, RUG.
2000-03

W.O.D. Griffioen. Studies in Computer Aided

Verification of Protocols. Faculty of Science,
KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the Math-

Spad Editor. Faculty of Mathematics and Com-
puting Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and

Packaging Plant. Faculty of Mechanical Engineer-
ing, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving Cor-

rect Programs. Faculty of Mathematics and Com-
puting Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Het-

erogeneous Applications. Faculty of Natural Sci-
ences, Mathematics and Computer Science, UvA.
2000-08

E. Saaman. Another Formal Specification Lan-

guage. Faculty of Mathematics and Natural Sci-
ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search

Discovering and Representing Search Space Struc-

ture. Faculty of Mathematics and Natural Sci-
ences, UL. 2001-01

R. Ahn. Agents, Objects and Events a compu-

tational approach to knowledge, observation and

communication. Faculty of Mathematics and
Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs in
higher order logic using PVS and Isabelle. Faculty
of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes
through Structured Reflection. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax

and semantics. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA. 2001-
05

R. van Liere. Studies in Interactive Visualiza-

tion. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Test-

ing of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes.
Faculty of Mathematics and Natural Sciences, UL.
2001-08

M.H. Lamers. Neural Networks for Analysis of
Data in Environmental Epidemiology: A Case-

study into Acute Effects of Air Pollution Episodes.
Faculty of Mathematics and Natural Sciences, UL.
2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of con-

currency control and recovery protocols. Faculty
of Mathematics and Computing Science, TU/e.
2001-11

M.D. Oostdijk. Generation and presentation of

formal mathematical documents. Faculty of Math-
ematics and Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A

simulation approach using χ. Faculty of Mechan-
ical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction

techniques for model checking. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelli-

gent Data Analysis: theoretical and experimental

aspects. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specifica-

tion and Analysis of Industrial Systems. Faculty
of Mathematics and Computer Science and Fac-
ulty of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding

Legacy Software Systems. Faculty of Natural Sci-
ences, Mathematics and Computer Science, UvA.
2002-03

S.P. Luttik. Choice Quantification in Process Al-
gebra. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction:
Algorithms and Complexity. Faculty of Mathe-
matics and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification

of Probabilistic, Real-time and Parametric Sys-

tems. Faculty of Science, Mathematics and Com-
puter Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.
Faculty of Mathematics and Natural Sciences, UL.
2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and

Cost-Optimality in Model Checking of Timed and

Hybrid Systems. Faculty of Science, Mathematics
and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Pack-

ing. Faculty of Mathematics and Natural Sciences,
UL. 2002-09

D. Tauritz. Adaptive Information Filtering:

Concepts and Algorithms. Faculty of Mathematics
and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for

Process Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA. 2002-
11

J.I. den Hartog. Probabilistic Extensions of Se-
mantical Models. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA. 2002-
12

