
 

Partial bisimulation

Citation for published version (APA):
Baeten, J. C. M., Beek, van, D. A., Luttik, S. P., Markovski, J., & Rooda, J. E. (2010). Partial bisimulation. (SE
report; Vol. 2010-04). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b0ec042c-dcfd-4872-8b28-4125f08a8f60


Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2010-04

Partial Bisimulation
J.C.M. Baeten D.A. van Beek B. Luttik

J. Markovski J.E. Rooda 1

ISSN: 1872-1567

SE Report: Nr. 2010-04
Eindhoven, April 2010

SE Reports are available via http://se.wtb.tue.nl/sereports





Abstract

We investigate partial bisimulation preorder, a behavioral preorder that is coarser than bisim-
ulation equivalence and finer than simulation preorder. Partial bisimulation preorder is pa-
rameterized with a subset of actions; if two processes are related, then transitions labeled
with an action in this subset need to be simulated in both directions, whereas transitions
labeled with an action outside the subset need to be simulated in one direction only. The
parameter is employed to define a notion of controllability, and discuss the supervisory con-
trol synthesis problem in a process-theoretic setting. Our notion of controllability improves
on the current definition of controllability of nondeterministic discrete-event systems, which
is given in terms of traces and/or refusal sets. We present a sound and ground-complete
axiomatization of the partial bisimulation preorder and a modal characterization. We also
provide for a partitioning algorithm that computes the partial bisimulation equivalence, and
can serve as a minimization procedure in a supervisory control setting. The algorithm is
based on partition pairs and it employs Paige-Tarjan optimization, which makes it suitable
as a basis for an efficient algorithm for simulation minimization as well.



1 Introduction

To keep products competitive, producers need to optimize development costs and minimize
time-to-market, while satisfying the ever-changing market demands for higher quality, better
performance, new functionalities, improved safety, and ease of use. This puts high demands
on the development of control software. Traditionally, software engineers write control soft-
ware based on specification documents that contain informal requirements. This is a time-
consuming error-prone process, since the requirements are often ambiguous and, moreover,
they constantly change during the product development. This issue in control software de-
sign gave rise to supervisory control theory of discrete-event systems [27, 8], where high-level
supervisory controllers are synthesized automatically based upon formal models of the hard-
ware and control requirements.

The supervisory controller observes the discrete-event behavior of the machine by receiving
control signals from ongoing activities, typically from sensors inside the machine. Based
upon these signals it makes a decision which activities the machine is allowed to carry out
and sends back control signals to the actuators, which control the hardware. This is known
as a feedback loop. Under the assumption that the supervisory controller can react sufficiently
fast on every input from the machine, one can model the feedback loop as a pair of synchro-
nizing processes. The model of the machine, referred to as plant, is restricted by the model of
the controller, referred to as supervisor. Originally, the plant is modeled as a set of observable
traces of events, given as a set of synchronizing automata, whose joint recognized language
corresponds to the observed traces. The events are split into controllable events, which can be
disabled by the supervisor in the synchronous composition, and uncontrollable events, which
must always be allowed. Thus, the supervisor must always comply with the plant by synchro-
nizing with all uncontrollable events. The control requirements specify allowed behavior as
sequences of events, again modeled by automata, leading to event-based supervisory control
theory [27, 8].

1.1 Controllability

In this paper, we model the feedback loop in a process algebraic setting, revisiting the ba-
sic notions in supervisory control theory. The central notion in supervisory control theory
is the property of controllability. It gives sufficient and necessary conditions when given a
plant and control requirements, there exists a supervisor for the plant such that the control
requirements are satisfied.

We introduce some preliminary notions of language theory. Let A = C ∪ U be the set of
events that can be observed in the plant, with C being the set of controllable events and U
the set of uncontrollable events, such that C ∩ U = ∅. We form traces and languages in a
standard manner, i.e., t ∈ A∗ is a trace and L ⊆ A∗ is a language, whereA∗ , {a1a2 . . . an |
ai ∈ A for 0 ≤ i ≤ n, n ∈ N} and ε is the unique empty trace a1 . . . an for n = 0. By t·t′
we denote the concatenation of the traces t, t′ ∈ A∗ and by L·L′ , {t·t′ | t ∈ L, t′ ∈ L′} the
concatenation of languages. We say that a language is prefix closed if L = L, where L , {t |
t·t′ ∈ L}. Suppose that P = (S,A, 7−→, s0) is a standard discrete-event automaton, where S
is a set of states,A set of events, 7−→ ∈ S×A×S the transition relation, and s0 an initial state.
We define 7−→∗ ∈ S ×A∗×S as s

ε7−→∗ s for all s ∈ S, and s
at7−→∗ s′ for a ∈ A and t ∈ A∗, if

there exists s′′ ∈ S such that s
a−→s′′ t7−→∗s′. By s

t7−→∗ we denote that there exists s′ ∈ S such

that s
t7−→∗ s′. Now, the recognized prefix-closed language of automaton P = (S,A, 7−→, s0)

is given by L(P ) , {t | s0
t7−→∗ }. By P1 | P2 , (S1 × S2,A, 7−→, (s1, s2)) we denote

the synchronous parallel composition of P1 = (S1,A, 7−→1, s1) and P2 = (S2,A, 7−→2, s2),

2



where (s′, s′′) a7−→ (s′, s′′) if s′
a−→1 s

′ and s′
a−→1 s

′ for s′, s′ ∈ S1, s′′, s′′ ∈ S2, and a ∈ A.
We have that L(P1 | P2) = L(P1) ∩ L(P2).

Now, we can define the property of controllability for prefixed closed languages. Suppose that
the plant is given by automaton P and the control requirements by R. An automaton S is a
supervisor for P and R if L(P | S) = L(R), where we refer to P | S as the supervised plant.
We ensure that S does not disable uncontrollable events by requesting that R is controllable
with respect to P , expressed as L(R)·U ∩ L(P ) = L(R) [27, 8]. Controllability is interpreted
as follows. If we observe a desired trace in the plant followed by an uncontrollable event, then
the control requirements cannot request that this event should be disabled after allowing that
trace, as the supervisor does not have control over uncontrollable events. In this case, one
can guarantee existence of a supervisor, such that by restricting the plant we achieve the de-
sired controlled behavior. If strict equality is not possible, one can find a maximal supervisor
with respect to inclusion, relaxing the requirements to L(R)·U ∩ L(P ) ⊆ L(R). One can
directly observe that language controllability is not intended for nondeterministic systems.
Initial investigations in supervisory synthesis considered additional properties of P | S, e.g.,
existence of deadlock or livelock, and suitable notions of controllability that prevent these
blocking properties. To this end, marked (or terminal) states are added to the automata to
specify nonblocking behavior. In this paper, we do not consider blocking behavior, but we
make preparations for future work by incorporating successful termination options in the
process theory [2]. Partial observability is another important property, where the assumption
is that some events are hidden from the supervisor, e.g., due to lack of sensors [8]. Nonethe-
less, the supervisory controller must synchronize with the plant on unobservable events as
well in order to achieve the desired behavior.

1.2 Related Work

In a way partial observability introduces nondeterminism in supervisory control theory. Note
that nondeterministic automata are not disallowed in [27], but they still have semantics in
terms of accepted languages. Nondeterminism enables ease of modeling and provides for
abstract specifications among else [2]. However, it also introduces a lot of problems, since
the original notion of controllability is given in terms of traces. This spawned a large number
of investigations into the supervisory control of nondeterministic discrete-event systems.

We briefly review and comment on previous work, most of which deals with nondeterminis-
tic plants and nondeterministic control requirements. In general, the supervisor is required
to be deterministic, as it is supposed to give feedback to the plant, i.e., send unambiguous
control signals. An exception is [10], and references therein, where nondeterministic super-
visors are considered, but under strong structural restrictions that require the supervisor to
have the same ready sets for uncontrollable events following the same traces. State control-
lability is one notion tailored for the nondeterministic setting [10, 29] that requires all states
of the control requirements reachable by a given trace to enable all uncontrollable events en-

abled in the plant by following the same trace. Denote by E(s, t) , {a ∈ A | s t7−→∗ s′
a7−→∗}

the enabled events at all states reachable from s by the trace t. Then, a supervisor S with an
initial state sS is state controllable with respect to a plant P with an initial state sP , if for all
t ∈ L(P | S) it holds that E(sP , t) ∩ U ⊆ E(sS , t). Note that state controllability becomes
standard controllability in the deterministic case. However, it is quite a restrictive notion and,
as remarked in [10], some plants are not state controllable with respect to itself, even though
a trivial supervisor that enables all events always exists. Other works tackle nondeterministic
systems as a set of deterministic systems, by requiring controllability of all underlying de-
terministic systems to induce controllability of the nondeterministic system [25]. A proposal
to replace nondeterminism with a choice between unobservable events is given in [17]. State
controllability seems to originate from partial observability as well.

3 Introduction



The earliest idea to apply process theory to supervisory synthesis is given in [18], where fail-
ure trajectories are employed and a CSP-like axiomatization of a prioritized synchronization
operator is given. Failure trajectories are extensions of failure semantics on whole traces,
supporting compositionality of the specialized synchronization that is employed to define
controllability [18]. It is tailored to model the plant-supervisor communication and ensures
that the supervisor cannot disable uncontrollable events. Followup works [17, 19] focus on
deepening the understanding of the failure trajectories model and the prioritized synchro-
nization. An alternative path is taken in [23], where instead of a new operator, a refinement
relation � based on failure semantics characterizes nondeterministic supervised behavior.
For the automata P1 and P2 from above, P1 � P2 holds, if L(P1) ⊆ L(P2), and for all
t ∈ L(P1) it holds that A \ E(s1, t) ⊆ A \ E(s2, t), where A \ E(s1, t) and A \ E(s2, t) are
the refusal sets of all states reachable in P1 and P2, respectively, following a trace t. Now, in
addition to imposing language controllability [23] requires that P | S � R as well. In [29, 20]
the refinement� is given in terms of bisimulation and simulation, respectively, relying on
the notion of state controllability.

1.3 Motivation and Contributions

A coalgebraic approach to supervisory control theory introduced partial bisimulation as a suit-
able behavioral relation to define controllability [28]. In essence, it suggests that controllable
events should be simulated, whereas uncontrollable events should be bisimulated, hence
the term partial bisimulation. It serves as a refinement relation between the supervised plant
and the control requirements, similar to the approach of [23], but for bisimulation semantics.
Even though some research suggests that refinements for failure and bisimulation semantics
have mostly the same properties [9], we consider bisimulation as a more appropriate notion
to capture nondeterministic behavior of uncontrollable transitions [2, 14]. The refinements in
failure semantics are given in terms of traces and inclusion of refusal sets, as in [23], whereas
our notion of refinement that characterizes controllability is in terms of simulation-like rela-
tions.

Partial bisimulation is closely related to the notion of modal transition systems [21], where
from each state there are so-called may and must transitions, corresponding to controllable
(simulated) and uncontrollable (bisimulated) transitions in the context of this paper. The
problem of synthesizing a supervisor can also be seen as solving a process algebraic equation
in the modal transition systems realm [22]. However, refinement by partial bisimulation is
a special type of modal refinement, where the labels of the may and must transitions are
fixed, admitting elegant process algebraic characterization. Finally, there exist efficient par-
titioning algorithms for minimization by bisimulation and simulation, which are actually
already employed in the deterministic setting to optimize the supervisor synthesis by impos-
ing bisimulation over uncontrollable events [6].

The contributions of this paper are as follows. We give a sound and ground-complete ax-
iomatization, and a modal characterization of the preorder induced by the notion of par-
tial bisimulation and we show some interesting properties of the induced equivalence. We
define a notion of controllability using the partial bisimilarity preorder as a refinement be-
tween the supervised plant and the control requirements and we characterize the existence
of a deterministic supervisor. The partial bisimilarity equivalence serves as a minimization
procedure for the plant that preserves controllability, a notion lacking in previous work. We
develop a partitioning algorithm for computing the partial bisimulation equivalence quotient
in the vein of [13, 15] using the splitting technique of [24, 11]. The algorithm has improved
complexity over previous work in minimization by simulation, while retaining comparable
spatial requirements. For technical details and proofs we refer to the supporting technical
report [4].

4



2 Process Algebra

In this section we define a basic sequential process algebra BSP|(A,B) with complete syn-
chronization and a partial bisimilarity preorder. We also give a modal characterization of the
preorder. The parameters of the process algebra are a finite set of actions A and a bisimu-
lation set B ⊆ A, which plays a role in the behavioral relation relation that will be revealed
shortly. The nomenclature follows the approach of [2]. The partial bisimilarity preorder has
been proposed in [28] as a relational characterization of controllability in a language-theoretic
setting. It seamlessly caters for nondeterminism of the specifications as well. First, we deal
with the non-recursive part of the process algebra and, afterwards, we extend it with guarded
recursion.

2.1 Signature

The following definition gives the signature of the process terms.

Definition 2.1. The signature of the terms of the process algebra BSP|(A,B) is given by:

P ::= 0 | 1 | a.P | P + P | P |P,
where a ∈ A. The set of (closed) process terms induced by P is denoted by T .

The constant process 0 denotes inaction, i.e., it cannot execute any action and it can only
deadlock. The constant process 1 denotes the option to successfully terminate. For each
action a ∈ A, the process corresponding to the term a.p is capable of executing the action a
and it continues behaving as p. The binary operator _ + _ denotes alternative composition.
The process corresponding to the term p+ q makes a non-deterministic choice and behaves
as p or as q. The binary operator _ | _ denotes synchronous parallel composition. The process
p | q synchronizes all actions of p and q and if no actions can be synchronized, it deadlocks.

2.2 Operational Semantics

We give structural operational semantics for each process term p ∈ T . The semantics is given
in terms of labeled graphs with successful termination, labeled graphs for short, modulo a
behavioral equivalence. A labeled graph, defined byG = (N ,L, ↓,−→), has a set of nodesN ,
which are connected by transitions labeled byL and defined by the relation−→ ⊆ N×L×N .
Some nodes are marked by the predicate ↓ ⊆ N as having the successful termination option.
For a process term p ∈ T we have a labeled graph of the form (T ,A, ↓,−→), where ↓ and
−→ are defined using by the structural operational rules given in Fig. 1. We will use infix
notation and write p↓ for p ∈ ↓ and p

a−→ p′ for (p, a, p′) ∈ −→.

1
1↓

2
p↓

p+ q↓
3

q↓
p+ q↓

4
p↓, q↓
p | q↓

5
a.p

a−→ p
6

p
a−→ p′

p+ q
a−→ p′

7
q

a−→ q′

p+ q
a−→ q′

8
p

a−→ p′, q
a−→ q′

p | q a−→ p′ | q′

Figure 1: Operational rules for the operators

We briefly comment on the operational rules. Rule 1 states that the constant process 1 enables
successful termination. Rules 2 and 3 show that if one component of the alternative compo-
sition has a termination option, then the alternative composition has a termination option

5 Process Algebra



as well. Rule 4 states that the synchronous parallel composition has a termination option
only if both components have a termination option. Rule 5 states that action prefixes induce
outgoing transitions with the same label. Rules 6 and 7 enable a nondeterministic choice be-
tween the alternatives of the parallel composition. Rule 8 states that in a synchronous parallel
composition both components execute in lock-step always executing the same actions.

We use the predicates p
a−→ and p

aY−→ to denote that p has or does not have an outgoing

transition labeled by a, respectively. Let π = a1a2 . . . an ∈ A∗. By p
π
−� p′, we denote that

there exist p1, p2, . . . , pn−1 ∈ T such that p
a1−→ p1

a2−→ p2
a3−→ . . . pn−1

an−→ p′ for some trace
(path) π = a1a2 . . . an ∈ A∗. Standardly, by ε we denote the empty trace and by π1π2 we
denote the concatenation of the traces π1, π2 ∈ A∗. By T(p) we denote the set of traces of p,

i.e., T(p) = {π | p
π
−�}.

2.3 Partial Bisimilarity

In this section we revisit the notion of the partial bisimilarity preorder of [28] and we show
that it is a precongruence for the given operations.

Definition 2.2. Let R be a relation on T . Then R is a partial bisimulation with respect to the
bisimulation set B if for all p, q ∈ T such that (p, q) ∈ R the following holds:

1. if p↓, then q↓;

2. for all p′ ∈ T and a ∈ A such that p
a−→ p′, there exists q′ ∈ T such that q

a−→ q′ and
(p′, q′) ∈ R; and

3. for all q′ ∈ T and b ∈ B such that q
b−→ q′, there exists p′ ∈ T such that p

b−→ p′ and
(p′, q′) ∈ R.

We say that the process term p is partially bisimilar to q with respect to the bisimulation
set B, notation p �B q, if there exists a partial bisimulation R with respect to B such that
(p, q) ∈ R. If p �B q and q �B p, then we say that p and q are mutually partially bisimilar
(with respect to B) and we write p↔B q. When clear from the context, we will omit B.

It can be easily shown that partial bisimilarity is a preorder relation [28]. Also, it is not dif-
ficult to prove that mutual partial bisimilarity is an equivalence relation [28]. Note that if
the bisimulation set B is empty, i.e., B = ∅, then the partial bisimilarity preorder coincides
with the standard (strong) similarity preorder and the partial bisimilarity equivalence coin-
cides with standard similarity equivalence [14, 12]. When B = A, the partial bisimilarity
preorder becomes strong bisimilarity provided that condition 1. is strengthened to “p↓ if and
only if q↓", whereas mutual partial bisimilarity always turns into standard (strong) bisimilar-
ity [14, 2].

We have the following property that characterizes the dependence on the bisimulation set B.

Theorem 2.3. If p�B q, then p�C q for every C ⊆ B.

Proof. Straightforward from Definition 2.2 as condition 3. holds for every b ∈ C as it holds
for b ∈ B.

6



The following property states that for two process terms to be mutually partially bisimilar
with respect to B it is sufficient that partial bisimulation holds in one direction and simula-
tion in the other.

Theorem 2.4. If p�B q and q �∅ p, then p↔B q for all p, q ∈ T and B ⊆ A.

Proof. Let R1 be a partial bisimulation with respect to B such that (p, q) ∈ R1 and let R2 be
a simulation such that (q, p) ∈ R2. We will show that R = R−1

1 ∩R2 is a partial bisimulation
with respect to B. It is clear that (q, p) ∈ R. Suppose that (r, s) ∈ R. Then, (r, s) ∈ R1 and
(s, r) ∈ R2.

Suppose that s↓. Since (s, r) ∈ R2, we have that r↓. Suppose that there exist s′ ∈ T and
a ∈ A are such that s

a−→ s′. Then, there exists r′ such that r
a−→ r′ and (s′, r′) ∈ R2.

As r
a−→ r′ and (r, s) ∈ R1, there exists s′′′ such that s

a−→ s′′′ and (r′, s′′′) ∈ R1. We
repeat this process finitely many times coming to r̂ and ŝ such that r

a−→ r̂ and s
a−→ ŝ with

(r̂, ŝ) ∈ R1 and (ŝ, r̂) ∈ R2 implying that (ŝ, r̂) ∈ R. The case when r
b−→ r′ for some b ∈ B

is analogous.

The following theorem states that partial bisimilarity �B is a precongruence with respect to
the prefix, alternative composition, and synchronization operations.

Theorem 2.5. Let p, q ∈ T and suppose p�B q for some B ⊆ A. Then:

• a.p�B a.q, for all a ∈ A.

• p+ r �B q + r and r + p�B r + q , for all r ∈ T .

• p | r �B q | r and r | p�B r | q, for all r ∈ T .

Proof. Suppose p � q. Then there exists a partial bisimulation relation R such that pRq as
given by Definition 2.2. We define for each case a separate partial bisimulation relation R′

based on R. We only show one of the symmetrical cases for the alternative and parallel
composition, as the other holds by symmetry of the operational rules.

• Define R′ = {(a.p, a.q)} ∪ R. The terms a.p and a.q cannot terminate and have the
outgoing transitions a.p

a−→ p and a.q
a−→ q with (p, q) ∈ R.

• DefineR′ = {(p+r, q+r)}∪{(r, r) | r ∈ T }∪R. The relationR′′ = {(r, r) | r ∈ T } is
a partial bisimulation relation. The term p+ r terminates due to a termination options
of p or due to a termination option of r. In the former situation q + r terminates due
to a termination option of q and in the latter due to a termination option of r. After the
initial transition, the remaining terms are related by R′′, if r is chosen, or by R, if p
and q are chosen.

• Define R′ = {(p | r, q | r) | (p, q) ∈ R, r ∈ T }. The terms p | r and q | r either have
termination options due to coinciding termination of p, q, and r or do not terminate.
According to the operational semantics p | r a−→ only if p

a−→ for some a ∈ A. As (p, q)
are related by R, it follows directly that R′ is a partial bisimulation relation.

We have the following immediate corollary by taking into account Definition 2.2.

7 Process Algebra



Corollary 2.6. Partial bisimilarity ↔ is a congruence for T with respect to the operators a._ for
a ∈ A, _ + _, and _ | _.

Theorem 2.5 and Corollary 2.6 provide for substitution rules in the equational reasoning.

Now, we can build the standard term model [2] for the process algebra BSP|(A,B) by using
partial bisimilarity as the underlying behavioral congruence.

Definition 2.7. The term algebra P(BSP|(A,B)) is given by

P(BSP|(A,B)) = (T , 0, 1, a._ for a ∈ A, _ + _, _ | _).

The term model of BSP|(A,B) is given by the quotient algebra P(BSP|(A,B))/↔.

2.4 Axiomatization

We give a sound and ground-complete axiomatization of the precongruence �. When we
write p= q we mean that the axioms p≤ q and q≤ p are both included in the axiomatization.
The axiomatization is given in Fig. 2.

p+ q = q + p A1 (p+ q) + r = p+ (q + r) A2
p+ p= p A3 p+ 0 = p A6
p | q = q | p S1 0 | p= 0 S2
1 | 1 = 1 S3 1 | a.q = 0 S4
a.p | a.q = a.(p | q) S5 a.p | b.q = 0, if a 6= b S6
(p+ q) | r = p | r + q | r S7
p≤ p+ 1 P1 q ≤ a.p+ q, if a 6∈ B P2

Figure 2: Axiomatization of � over T

We briefly comment on the axioms. We note that the numbering of the axioms follows [2].
Axioms A1 and A2 express commutativity and associativity of the alternative composition,
respectively. Axiom A3 shows that the alternative composition is idempotent. Axiom A6
states that deadlock does not contribute to any behavior. Axiom S1 shows that the parallel
composition is commutative. Deadlock cannot synchronize with any process as expressed by
axiom S2. Axioms S3 and S4 state that the successful termination option persists only if it is
enabled by both processes. Axiom S5 states that processes with the same prefix synchronize,
whereas axiom S6 states that no synchronization is possible between processes with different
prefixes. The distribution law of the synchronous parallel composition with respect to the
alternative composition is stated by axiom S7. Axiom P1 enables elimination of the successful
termination option for partially bisimulated terms. Axiom P2 enables elimination of terms
that are prefixed by actions that do not have to be bisimulated.

We note that when the bisimulation set B = ∅ axiom P2 is valid for every possible prefix,
effectively replacing axioms P1 and P2 with q ≤∅ p + q. Thus, BSP|(A, ∅) reduces to the
sound and ground-complete process theory for standard similarity preorder [14, 12]. When
B = A axiom P2 becomes inapplicable, as there are no actions in ∅ = A \ B. Then, the
remaining axioms minus axiom P1, which allows elimination of the successful termination
option, form a sound and ground-complete process theory for standard bisimulation [2, 14]
of a process algebra with action prefix, alternative composition, and synchronous parallel
composition. The following theorem states the axiomatization is sound and ground-complete
for the partial bisimilarity preorder.

8



Theorem 2.8. The axioms of BSP|(A,B) given in Fig. 2 are sound and ground-complete for
partial bisimilarity, i.e., p≤B q is derivable if and only if p�B q.

Proof. Axioms A1, A2, A3, A6, S1, S2, S3, S4, S5, S6, and S7 make a sound and ground-
complete axiomatization for strong bisimilarity, i.e., for ≤A [2]. Thus, from now on, we can
assume that B 6= A.

The soundness of axioms P1 and P2 follows directly by application of the operational rules
and Definition 2.2 for partial bisimilarity. It is sufficient to take R = {(p, p + 1)} ∪ {(p, p) |
p ∈ T } and R′ = {(q, a.p + q)} ∪ {(q, q) | q ∈ T } as partial bisimulations between the
terms for axiom P1 and P2, respectively. For axiom P1 it is clear that p + 1 terminates if p
terminates and they have the same outgoing labeled transitions. For axiom P2, if q

c−→ q′ for
some q′ ∈ T and c ∈ A, a.p+ q

c−→ q′ and (q′, q′) ∈ R. Vice versa, the outgoing transitions
labeled by b ∈ B of a.p + q must originate from q as a.p has only one outgoing transition

labeled by a 6∈ B. Therefore, if a.p+ q
b−→ q′ for some q′ ∈ T and b ∈ B, then q

b−→ q′ and
(q′, q′) ∈ R.

In order to show ground-completeness, we turn to normal forms as outlined, e.g., in [1, 2].
By using the axioms (for strong bisimilarity) every term p ∈ T can be rewritten as p =A∑
i∈I ai.pi[+1], where ai ∈ A and pi ∈ T for i ∈ I , and [+1] denotes successful termination

as an optional summand [2].

Now, suppose the normal forms of p and q are:

p=A
∑
i∈I

ai.pi[ + 1] and q =A
∑
j∈J

cj .qj [ + 1],

where ai, cj ∈ A \ B and pi, qj ∈ T , for i ∈ I and j ∈ J . We denote the normal forms
of p and q by p′ and q′, respectively. From p↔A p′ and Theorem 2.3 it follows that p↔B p

′.
Analogously, we have q↔B q′, so we can conclude that p′ �B q′ if and only if p �B q. We
note that there are no idempotent summands in the normal forms. Now, the proof can
be performed using induction on the total number of symbols, i.e., constants and action
prefixes, of the terms.

The base cases are p′ =B 0≤B 0 =B q
′ and p′ =B 1≤B 1 =B q

′, which hold directly by using
the substitution rules in an empty context, and p′ =B 0 ≤B 1 =B q′, which is obtained by
applying 0≤B 0 + 1 =B 1.

As p′�B q′, there exists a partial bisimulationR such that (p′, q′) ∈ R. It is clear that if p′ con-
tains the optional summand 1, then q′ contains it as well. If q′ comprises the summand 1 and
p′ does not contain it, then we use axiom P1 to eliminate it. Suppose that p′

a−→ p′′ for some
a ∈ A and p′′ ∈ T . Then, according to the operational rules there exists a summand ak.pk
of p′ for some k ∈ I such that ak = a and pk = p′′. Analogously, by Definition 2.2 there
exists a summand c`.q` of q′, such that c` = a and (pk, q`) ∈ R for some ` ∈ J . So, pk �B q`
and, hence, by the induction hypothesis, pk ≤B q`. Thus, there exists L ⊆ J such that for
every i ∈ I there exists ` ∈ L such that ai.pi ≤B c`.q`. Vice versa, for every j ∈ J such that
cj ∈ B there exists k ∈ I such that ak.pk ≤B cj .qj .

Denote by K = L ∪ {j | cj ∈ B, j ∈ J}. Now, we split q′ to q′ = q′′ + q′′′ such that q′′

contains the summands that are prefixed by an action in B or that have an index in L and q′′′

comprises the remaining summands, i.e., q′′ =
∑
k∈K ck.qk and q′′′ =

∑
`∈J\K c`.q`. Note

that p′′′ contains only summands prefixed by actions that are not in B. Now, we have that
p=B p

′ ≤B q′′. By applying Axiom P2 for the summands c`.q` of q′′′ for ` ∈ J \K we obtain
q′′ ≤B q′′ + q′′′ =B q

′ =B q, leading to p≤B q, which completes the proof.

9 Process Algebra



We conjecture that the partial bisimilarity equivalence does not admit a finite axiomatization
when ∅ ⊂ B ⊂ A. To illustrate this, we consider the set of equations E = {a.bn.0 +
a.bn.a.0 =B a.b

n.a.0 | a 6∈ B, b ∈ B,n ∈ N}, where bn.p is defined recursively as b0.p , p

and bn+1.p , b.bn.p. It is not difficult to check that a.bn.0 + a.bn.a.0↔B a.b
n.a.0 for every

n ∈ N. However at depth greater than 1, we have b.p + b.q↔B b.q, which holds only when
p↔B q, which is not the case for p , bn.0 and q , bn.a.0. This insinuates that E is a set of
axioms.

In the literature the summand a.bn.0 is also known as the ‘little brother summand’ of a.bn.a.0.
Little brother summands occur when dealing with similarity-like equivalences and have a
very important role in their characterization [7, 13, 5]. Two similar terms that do not contain
little brother summands are actually strongly bisimilar. This claim holds immediately for
partial bisimilarity as well, having in mind Theorem 2.3.

Definition 2.9. Let p=B a.p
′ + a.p′′ + p′′′ for some a ∈ A such that a.p′ ≤B a.p′′ holds, but

a.p′′ ≤B a.p′ does not hold. Then, we say that a.p′ is the little brother of a.p′′.

The following properties show the nature of mutual partial bisimilarity.

Theorem 2.10. Suppose that p≤ q ≤ r. Then, the following equations hold:

a.p+ a.q = a.q if a 6∈ B P3 b.p+ b.q + b.r = b.p+ b.r if b ∈ B P4.

Proof. We show that the equations are sound by showing the inequalities in both directions.
For equation P3 we have that a.p+a.q≤a.p holds directly by axiom P2. For the other direction
we calculate a.p = a.p + a.p ≤ a.p + a.q using axiom A3 and the premise, respectively. For
equation P4 we have the following derivation, calculated by using axiom A3 and the premise,
accordingly:

b.p+ b.q + b.r ≤ b.p+ b.r + b.r = b.p+ b.r

b.p+ b.r = b.p+ b.p+ b.r ≤ b.p+ b.q + b.r,

which completes the proof.

These equations show how to eliminate little brother summands. We note that idempotency
of the alternative composition, given by axiom A3, is used in the situation when p≤q and q≤p,
even though we do not distinguish this in the conditions of the equations above. Equation P3
is actually a more general form of the known characteristic equation of the (strong) similarity
equivalence stated in the form a.(p + q) + a.q = a.(p + q) in [14]. As for strong similarity
the prefix action does not play any role the axiom is always applicable. To establish partial
bisimilarity when the little brothers are prefixed by an action in the bisimulation set B, the
‘littlest’ and the ‘biggest’ brother must be preserved. The equations given by Theorem 2.10
set the rules for elimination of little brothers when deriving the minimal mutual partially
bisimilar quotient.

2.5 Modal Characterization

We give a modal characterization of the partial bisimilarity preorder in the vein of [14]. The
following definition gives the partial bisimilarity formulas.

Definition 2.11. The partial bisimilarity modal formulas are given by F defined as follows:

N ::= > | ¬> | ¬1 | ¬〈a〉F | ¬(F ∧ F ) | 〈b〉N
F ::= > | ¬> | 1 | 〈a〉F | F ∧ F | ¬N,

10



where a ∈ A and b ∈ B. The set of all partial bisimilarity modal formulas with respect to a
bisimulation set B is denoted by F(B). The satisfaction relation |=⊆ T × F(B) is defined
recursively by:

• p |= > for all p ∈ T ;

• p |= 1 if and only if p↓;

• p |= 〈a〉f if there exists p′ ∈ T such that p
a−→ p′ and p′ |= f ;

• p |= ¬f if not p |= f ;

• p |= f ∧ g if p |= f and p |= g.

Note that formulas given by N are negations of formulas defined by F . It preserves that the
negation, which characterizes bisimilar behavior, is enabled only for actions in the bisimu-
lation set B. The partial bisimilarity modal formulas are a superset of the modal formulas
for similarity and a subset of the ones for bisimilarity because negation is not present in the
former and allowed for all formulas in the latter. When B = ∅, the modal formulas given
by F minus the successful termination predicate 1 reduce to the ones for similarity [14], i.e.,
F reduces to F ::= > | ¬> | 〈a〉F | F ∧ F . When B = A and, again, provided that we
ignore the termination predicate 1, F reduces to F ::= > | 〈a〉F | F ∧ F | ¬F , i.e., the
Hennessy-Milner formulas over A that identify bisimulation [14]. The following theorem
shows that a process p is partially bisimilar to a process q if and only if all partial bisimilarity
modal formulas that are satisfied by p are also satisfied by q.

Theorem 2.12. Let p, q ∈ T . Then, p�B q if and only if for every f ∈ F(B) it holds that if p |= f
then q |= f .

Proof. First we show the implication from left to right. Suppose that p �B q and p |= f for
some f ∈ F(B). We will show that q |= f by structural induction on f .

• Suppose f ≡ 1. According to Definition 2.11 p↓. As p �B q, we have that q↓. Thus,
q |= 1.

• Suppose f ≡ 〈a〉f ′. Then p
a−→ p′ with p′ |= f ′. We have that q

a−→ q′ and p′ �B q′. By
the hypothesis q′ |= f ′ and, thus, q |= f .

• Suppose f ≡ ¬〈b〉f ′. Then for all p′ ∈ T such that p
b−→ p′, it holds p′ |= ¬f ′. Note

that ¬f ′ ∈ F(B). As p�B q, we have that q
b−→ . Suppose that q

b−→ q′. We will show
that q′ |= ¬f ′ by contradiction. Suppose that q′ |= f ′. Then, there exists p′′ ∈ T such

that p
b−→ p′′. From above, p′′ |= ¬f ′, so by the hypothesis q |= ¬f ′, which leads to

contradiction. Thus, q′ |= ¬f ′ implying that q |= f .

• Suppose f ≡ f ′ ∧ f ′′. Then p |= f ′ and p |= f ′′ implying that q |= f ′ and q |= f ′′ by
the induction hypothesis, so q |= f .

Next, we show the implication to left. Suppose that for every f ∈ F such that p |= f it holds
q |= f as well. We will show that there exists a partial bisimulation by induction on the
number of constants and action prefixes in p.

The base cases are: (1) If p ≡ 0, then p |= ¬〈b〉> for all b ∈ B are all non-trivial formulas

satisfied by p leading to q |= ¬〈b〉>. So, q
bY−→ implying p�B q. (2) If p ≡ 1, then we have (1)

and p |= 1 implying that q |= 1. So, p↓ implies that q↓.

11 Process Algebra



Now, suppose that p↓. Then p |= 1, so q |= 1 as well, implying q↓. Suppose that p
a−→ p′ and

p′ |= f ′. Then, p |= 〈a〉f ′, so q |= 〈a〉f ′, i.e., q
a−→q′ and q′ |= f ′. By the induction hypothesis

we have that p′ �B q′. Finally, suppose that q
b−→ q′ and q′ |= f ′ for some f ′ ∈ F . We will

show that p
b−→p′ and p′�B q′ by contradiction. It must be that p

b−→ because in the opposite

case p |= ¬〈b〉> implying q |= ¬〈b〉> which leads to contradiction. Suppose that p
b−→p′ and

p′ |= ¬f ′. Note that it must be that ¬f ′ ∈ F . Then, p |= ¬〈b〉f ′, implying that q |= ¬〈b〉f ′.
So, we have that for all q′ such that q

b−→ q′ it holds that q′ |= ¬f ′ leading to contradiction.
Thus, p′ |= f ′, so p′ �B q′ implying that p�B q, which completes the proof.

2.6 Recursion

We introduce recursion by means of guarded essentially finite state recursive specifications,
which induce finite state transition systems [3] to obtain BSP|(A,B,R), where R is the set
of recursion variables. We restrict only to such specifications as every finite state transition
system can be specified as a guarded essentially finite state recursive specification [3]. The
restriction is given by forcing seriality of recursive variables [3], i.e., no free occurrence of a
recursive variable is in the scope of the parallel composition, as well as requiring that they are
guarded, i.e., every recursive variable is encapsulated by the action prefix operator. Processes
given as solutions to the recursive specifications have the following signature:

µX.{X = G | X ∈ R,R ⊆ R},
which is added to the existing signature of the process algebra, where

G ::= P | a.T | G+G, T ::= X | G | T + T,

and P is given by Definition 2.1. We will denote the set of guarded essentially finite state
recursive specifications by S.

Before we introduce the standard operational rules, we give a useful notation [2]. By tX we
will denote the term defining variable X . Also, we generalize µX.S, for S ∈ S , to µp.S, for
p ∈ T using the following inductive definition:

Definition 2.13. Define µpS, for p ∈ T and S ∈ S, using structural induction, as follows:

µ0.S = 0
µ1.S = 1
µ(a.q).S = a.(µq.S)
µ(q + r).S = µq.S + µr.S

µ(µX.S).S = µX.S

Note that in p all free occurrences of X are replaced by µX.S.

Now, the standard operational rules for solutions of recursive specifications can be stated as
given in Fig. 3.

9
µtX .S↓
µX.S↓

10
µtX .S

a−→ p

µX.S
a−→ p

Figure 3: Operational rules for the solutions of the recursive specifications

The axioms in Fig. 4 capture the recursive definition and recursive specification principles,

12



which state that every recursive specification has a solution and that the guarded recursive
specifications have at most one solution [3, 2].

µX.S ] {Y = tY } = µ(µX.S).{Y = tY } if X 6= Y A1

µX.{X = t} = µt.{X = t} A2

if t{p/X} ≤ p then µX.{X = t} ≤ p A3

if p≤ t{p/X} then p≤ µX.{X = t} A4

Figure 4: Axioms for manipulation with recursive specifications

Axiom A1 enables decomposition of the recursive specification to only one equation. This
provides for head normal forms which contain only recursive specification of the form µX.X =
t [3]. Axiom A2 is the standard unfolding axiom, recall Definition 2.13 for the extended syntax.
Axioms A3 and A4 are the folding axioms, which originate from [12], where it is shown that
they hold for simulation. The combination of axioms A3 and A4 gives rise to the standard
folding axiom

if t{p/X}= p then µX.{X = t}= p.

Next, we develop a partitioning algorithm for computing the mutual partial bisimilarity quo-
tient.

3 Controllability

We define controllability from a process algebraic perspective in terms of partial bisimilarity
preorder. Standardly, we split A into a set of uncontrollable actions U ⊆ A, and a set of
controllable actions C = A \ U . The plant, the control requirements, and the supervisor
are specified as process terms, relying on BSP|(A,U). Intuitively, outgoing uncontrollable
transitions of the plant should be bisimilar to the ones of the supervised plant, so that the
reachable uncontrollable part of the former is indistinguishable from the one of the latter.
The outgoing controllable transitions of the supervised plant may only be simulated by the
ones of the original plant, since some undesired controllable transitions are suppressed by
the supervisor. We use p ∈ T to denote the plant, r ∈ T for the control requirements,
and s ∈ T to denote the supervisor. Consequently, the supervised plant is given by p | s.
First, we introduce the control problem and, afterwards, we characterize the existence of a
deterministic supervisor.

Definition 3.1. Let p ∈ T be the plant and r ∈ T be the control requirements. The control
problem is to find a supervisor s ∈ T such that p | s≤U p and p | s≤∅ r.

As expected, Definition 3.1 ensures that no uncontrollable actions have been disabled in the
supervised plant, by including them in the bisimulation set. Moreover, it takes into account
the nondeterministic behavior of the system. It suggests that the plant is modeled as is,
whereas the control requirements are modeled as desired behavior, independent of the plant.
This is in contrast with much work done in this area, where the aim is to satisfy a given de-
sired controllable behavior. Still, we opt for an ‘external’ specification in process algebraic
spirit, where, e.g., one wants to show that a given protocol behaves like a buffer when ab-
stracted from the internal protocol communication. In this context, the control requirement

13 Controllability



is the buffer, whereas the protocol is treated as a plant. Following this approach we only
require that the supervised plant has a behavior that can be simulated by the control require-
ments. The setting described above is also a preparation for future work, where we intend
to relax this condition in the vein of [29, 20], abstracting from irrelevant internal actions in
the control requirements, an approach advocated from process algebraic perspective as well.
Nonetheless, hiding in [29, 20] is performed in trace semantics, whereas abstraction should
preserve branching behavior. Moreover, in [29, 20] the goal is to achieve bisimilarity and
similarity with the control requirements, respectively, again insinuating that the control re-
quirements are seen as the abstracted behavior of the supervised plant. The approach of [10]
couples the requirements with the plant even more closely, requiring that they play the role
of the supervisor as well. Note that if we assume that r represents the desired behavior of the
supervised plant, then we require that r ≤U p, since r ≤∅ r, as in the original setting of [27].
When p and r are deterministic that this amounts to standard language controllability [28].

As argued above, we choose bisimilarity as an appropriate behavioral equivalence that cap-
tures nondeterminism. Therefore, one expects that when we take the plant as a control
requirement, the resulting controllability conditions p | s ≤U p and p | s ≤∅ p will amount
to bisimilarity. The conditions collapse to p | s ≤U p, as p | s ≤U p implies p | s ≤∅ p. Now,
we can seek the largest possible supervised plant, i.e., p≤U p | s, leading to p | s=U p. Note
that the plant can have redundant behavior in the form of little brothers, which prevents a
bisimilarity between p and p | s to be established. Nevertheless, under the assumption that
no little brothers are present, p | s =U p implies p | s =A p, as shown in [5] for similarity
equivalence, further justifying the choice of partial bisimilarity preorder.

According to Definition 3.1, the minimal possible supervisor is the initial uncontrollable
reach of the plant, given by the topmost subterm of p comprising only uncontrollable pre-
fixes. For example, the minimal supervisor of p , µX.{X = u.X+c.u.X+v.c.0}, assuming
that p =U r, u, v ∈ U , and c ∈ C, is the process s , µX.{X = u.X + v.0}. According to
Definition 3.1, every plant becomes controllable with respect to itself, i.e., every plant can
accept itself as control requirement. This is a downside of the notion of state controllabil-
ity, used in the nondeterministic setting of [10, 29, 20]. As an illustration, let p =U r with
p , u.v.0 + u.w.0, where u, v, w ∈ U . Then, the plant is not state controllable with respect
to itself, which is directly checked using the definition from the introduction. However, a
non-restricting supervisor s , µX.{X = u.X + v.X + w.X}, which enables all transitions,
always exists. Another supervisor is the determinized version of the control requirements,
given by s′ , u.(v.0 + w.0).

As illustrated above, a usual suspect for a deterministic supervisor is the determinized ver-
sion of a desired supervised behavior. First, we define a determinized version det(p) of a
process p ∈ T . By Tar(p a−→ ) , {p′ ∈ T | p a−→ p′} denote all target processes that are
reachable from p ∈ T by an outgoing transition labeled by a ∈ A. The determinized version
of p is defined as follows:

11
p↓

det(p)↓
12

p
a−→

det(p) a−→ det(
∑
p′∈Tar(p

a−→)
p′)

Rule 11 states that the original and determinized process have the same termination options.
Rule 12 merges a nondeterministic choice over equally labeled transitions to a single tran-
sition which target is the alternative composition of all original target processes. It is not
difficult to observe that p | det(p) =B p for all p ∈ T and B ⊆ A, as det(p) does not disable
any transition of p.

14



Suppose that a desired behavior of the supervised plant is given by q ∈ T such that q ≤U p
and q ≤∅ r. The control problem is to find a supervisor s ∈ T , such that p | s =U q. A good
candidate is s , det(q), since from q ≤U p we have that q | det(q) ≤U p | det(q), implying
q ≤U p | det(q). Now, we need a characterization when p | det(q)≤U p, as it does not hold in
general.

Theorem 3.2. For all p, q ∈ T , p|det(q)≤U p if and only if det(p)|det(q)≤U det(p).

Proof. Suppose that p | det(q) ≤U p. Then, there exists a partial bisimulation R such that

(p | det(q), p) ∈ R. By p
t
−� p′ denote that there exist p1, p2, . . . , pn−1 ∈ T such that

p
a1−→ p1

a2−→ p2
a3−→ . . . pn−1

an−→ p′ for some trace t = a1a2 . . . an ∈ A∗ with p
ε
−� p. By

Tar(p
t
−� ) , {p′ ∈ T | p

t
−� p′} denote the target processes reachable from p follow-

ing a trace t. Now, define R′ = {(det(
∑
p′∈Tar(p

t
−�)

p′) | q′,det(
∑
p′∈Tar(p

t
−�)

p′)) | (p′′ |

q′, p′′′) ∈ R and there exists t ∈ A∗ such that p
t
−� p′′ and p

t
−� p′′′}. We will show that

R′ is a partial bisimulation. Note that det(p)
t
−� det(

∑
p′∈Tar(p

t
−�)

p′) for every t ∈ A∗.
For t = ε, we have that (det(p) | det(q),det(p)) ∈ R′. Suppose that (r′ | q′, r′) with
r′ , det(

∑
p′∈Tar(p

t′
−�)

p′) for some t′ ∈ A∗. If r′ | q′↓ then, r′↓ and q′↓. Suppose that

r′ | q′ a−→ r′′ | q′′ for some a ∈ A and r′′, q′′ ∈ T . Then, r′
a−→ r′′ and there exist p′1, q

′
1 ∈ T

such that p
t
−� p′1 and q

t
−� q′1 with p′1

a−→ p′2 and q′1
a−→ q′2. Note that q′1 is uniquely de-

termined. Then, (p′1 | q′1, p′′1) ∈ R for some p′′1 ∈ T such that p
t
−� p′′1 and p′′1

a−→ p′′2 with

(p′2 | q′2, p′′2) ∈ R, implying that (r′′ | q′′, r′′) ∈ R′. The proof when r′
b−→ r′′ for some b ∈ B

and r′′ ∈ T is analogous.

Suppose that det(p)|det(q)≤Udet(p). Then there exists a partial bisimulation relationR such

that (det(p)|det(q),det(p)) ∈ R. Define R′ = {(p′ | q′, p′) | p
t
−� p′,det(q)

t
−� q′ and (p′′ |

q′, p′′) ∈ R where det(p)
t
−� p′′ for t ∈ A∗}. Then, R′ is a partial bisimulation relating

p | det(q) and p. The proof follows the same lines as above.

Relying on Theorem 3.2 and Theorem 2.4, we characterize when desired behavior given by
q ∈ T is controllable with respect to plant p ∈ T and control requirements r ∈ T .

Definition 3.3. Process q ∈ T is controllable with respect to plant p ∈ T and control require-
ments r ∈ T , a if q ≤U p, p | det(q)≤∅ r, det(q)≤U det(p), and p | det(q)≤∅ q.

The definition requires that (1) the plant partially bisimulated and the requirements simu-
late the behavior of the supervised plant, so that Definition 3.1 is satisfied, i.e., it is ensured
that the supervised behavior satisfies the requirements and it is compatible with the plant
on the uncontrollable events; (2) the deterministic behavior of the supervised plant, i.e., its
language, is partially bisimulated by the plant, implying that the deterministic version of
the desired behavior of the supervised plant can be used as a supervisor; and (3) the super-
vised behavior should simulate the supervised plant, implying that they are mutually partially
bisimilar. We note that if equivalence is not desired, i.e., the supervised plant should only
contain the desired behavior, then we can eliminate the third condition.

The following theorem states the existence of a supervisor.

Theorem 3.4. If q ∈ T is controllable with respect to a plant p ∈ T and control requirements
r ∈ T , then det(q) is a supervisor for p with respect to r.

15 Controllability



Proof. From det(q) ≤U det(p) and Theorem 3.2 we have that p | det(q) ≤U p. Then, from
p | det(q)≤∅ q and Theorem 2.4 we have that p | det(q) =U q. Finally, from q≤U p and q≤∅ r
we have that p | det(q)≤U p and p | det(q)≤∅ r, which completes the proof.

We note that the minimal deterministic supervisor of the plant p such that the supervised
plant contains the behavior of q, i.e., q ≤U p, is det(q). So, for any other supervisor s ∈ T
that satisfies the above relation, we must have that q ≤∅ s and det(p)|det(s)≤U det(p).

We can also demand that the control requirements r are controllable, i.e., we wish that the
desired behavior of the plant is the same as the control requirement. This amounts to r≤U p,
det(r) ≤U det(p), and p | det(r) ≤∅ r. It is directly observed that the first requirements
ensured compatibility of the control requirements with the plant, the second requirement is
equivalent to language controllability, whereas the third requirement induces a refinement
relation of the behavior of the supervised and the control requirements, respectively, compa-
rable to the approaches of [23, 29, 20]. We note that for deterministic systems, we the first
and the second condition coincide. The requirements can be efficiently checked using the
algorithm presented in the following section. Finally, note that the plant p can be replaced by
any p′ such that p′=U p, providing for a minimization procedure that preserves controllability.

4 Partial Bisimulation Algorithm

We give a partitioning algorithm for computing the mutual partial bisimilarity quotient of
a given labeled graph. With small adjustments the algorithm can be used to check whether
two labeled graphs are partially bisimilar, as for the similarity equivalence [13]. The algorithm
exploits the idea that partial bisimilarity equivalence can be presented as a partition pair, as
it was done for the similarity equivalence in [13, 26]. The algorithm presented in [13] was
mended in [15]. An extended version with proofs concerning the stability conditions for
similarity can be found in [26]. We improve upon these works by employing the efficient
splitting technique of [24, 11].

Let G = (N ,L, ↓,−→) be a labeled graph. A set P is a partition over N if P ⊂ 2N such that⋃
P∈P P = N and for all P,Q ∈ P if P ∩ Q 6= ∅, then P = Q. A partition pair over G is

a pair (P,v) where P is a partition over N and the (little brother) relation v ⊆ P × P is a
partial order, i.e., a reflexive, antisymmetric, transitive relation. We note that our definition is
stronger in the sense that we require v to be antisymmetric and transitive, opposed to only
acyclic as originally defined in [13].

For all P ∈ P , by P ↓ and P 6 ↓ we denote that p↓ and p 6 ↓, respectively, for all p ∈ P . For
P ′ ∈ P by p

a−→P ′ we denote that there exists p′ ∈ P ′ such that p
a−→p′. We distinguish two

types of (Galois) transitions between the partition classes [13, 16]: P
a−→∃ P ′, which denotes

that there exists p ∈ P such that p
a−→ P ′, and P

a−→∀ P ′, which denotes that for every
p ∈ P it holds that p

a−→ P ′. It is straightforward that P
a−→∀ P ′ implies P

a−→∃ P ′. Also, if
P

a−→∀ P ′, then Q
a−→∀ P ′ for every Q ⊆ P . By p

aY−→∃ P and p
aY−→∀ P we denote that there

are no transitions p
a−→∃ P and p

aY−→∀ P , respectively. The following definition gives the
stability conditions for partial bisimilarity of a partition pair with respect to the termination
predicate and the transition relation.

Definition 4.1. Let G = (N ,L, ↓,−→) be a labeled graph. We say that a partition pair (P,v)
over G is stable with respect to B, ↓, and −→ if the following conditions are fulfilled:

16



a. For all P ∈ P it holds that P ↓ or P 6 ↓.

b. For all P,Q ∈ P such that P vQ if P ↓, then Q↓.

c. For every P,Q, P ′ ∈ P and a ∈ A such that P v Q and P
a−→∃ P ′ there exists Q′ ∈ P

such that P ′ vQ′ and Q
a−→∀ Q′.

d. For every P,Q,Q′ ∈ P and b ∈ B such that P vQ and Q
b−→∃ Q′ there exists a P such

that P vQ and P
b−→∀ P ′.

Note that when B = A, from P v Q we can straightforwardly deduce that Q v P by in-
terchanging stability conditions c and d. Therefore, stability conditions c and d become: for
every P ∈ P and a ∈ A, if P

a−→∃ P ′, then P
a−→∀ P ′, which is the stability condition for

the bisimulation equivalence [11]. When B = ∅, stability condition d is inapplicable, whereas
stability condition c is the stability condition for the simulation preorder [13, 26].

Given a relation R ∈ S × T , define R−1 ∈ T × S as R−1 = {(t, s) | (s, t) ∈ R}. If R is a
preorder, then R ∩ R−1 is an equivalence relation. The following theorem shows that every
partial bisimulation preorder induces a stable partition pair.

Theorem 4.2. Let G = (N ,A, ↓,−→) with N ⊂ T and let R be a partial bisimulation preorder
over N with respect to B. Let ↔ , R ∩ R−1. If P = T /↔ and for all p, q ∈ N it holds if
(p, q) ∈ R, then [p]↔ v [q]↔, then the partition pair (P,v) is stable with respect to B, ↓, and
−→.

Proof. Let P = [p]↔, P ′ = [p′]↔, P ′′ = [p′′]↔, Q = [q]↔, Q′ = [q′]↔, and Q′′ = [q′′]↔
for p, p′, p′′, q, q′, q′′ ∈ N . First, we show that v is a partial order. Reflexivity holds as for
all p′ ∈ [p]↔ it holds that (p, p′) ∈ R implying P v P . To show antisymmetry, suppose that
P vQ and QvP . Then (p, q) ∈ R and (q, p) ∈ R, implying (q, p), (p, q) ∈ R−1 and P = Q.
Finally, suppose that P v P ′ and P ′ v P ′′. Then (p, p′), (p′, p′′) ∈ R. As R is a preorder, we
have (p, p′′) ∈ R implying that P v P ′′. So, (P,v) is a partition pair.

Next, we show that the stability conditions of Definition 4.1 hold.

1. Suppose that p↓. For every p′ ∈ [p]↔ it holds that p↔ p′, so p′↓ implying P ↓. Analo-
gously for p 6 ↓.

2. Let P,Q ∈ P be such that P vQ. Now, if P ↓, then p↓, which implies that q↓ and also
Q↓.

3. Suppose that P v Q and P
a−→∃ P ′. Then, there exist p ∈ P and p′ ∈ P ′ such that

p
a−→ p′. As (p, q) ∈ R and v is a partial order, there exists Q′ ∈ P such that q

a−→ q′

and (p′, q′) ∈ R, and for all q′′′ ∈ N if q
a−→ q′′′ and (p′, q′′′) ∈ R then Q′′′ v Q′ or

Q′′′ and Q′ are unrelated. Now, let q̄ ∈ Q. As (q, q̄) ∈ R there exists q̄′ ∈ Q̄′ such
that q̄

a−→ q̄′ and (q′, q̄′) ∈ R. Then Q′ v Q̄′. As (q̄, q) ∈ R then exists q′′ ∈ Q′′ such
that q

a−→ q′′ and (q̄′, q′′). Then Q′ v Q̄′ v Q′′ implying that Q′ = Q̄′ = Q′′. Thus,
Q

a−→∀ Q′.

4. Suppose that P v Q and Q
b−→∃ Q′. The proof that there exists P ′ v Q′ such that

P
b−→∀ P ′ is analogous to 2.

17 Partial Bisimulation Algorithm



Vice versa, every stable partition pair induces a partial bisimulation preorder.

Theorem 4.3. Let G = (N ,A, ↓,−→) with N ⊂ T and let (P,v) be a partition pair. Define
R = {(p, q) | P vQ, p ∈ P, q ∈ Q}. If (P,v) is stable with respect to B, ↓, and −→, then R is
a partial bisimulation preorder.

Proof. Let P = [p]↔, P ′ = [p′]↔, P ′′ = [p′′]↔, Q = [q]↔, Q′ = [q′]↔, and Q′′ = [q′′]↔ for
p, p′, p′′, q, q′, q′′ ∈ N . Suppose (p, q) ∈ R. In that case P vQ. We will show that the stability
conditions of Definition 2.2 hold for R.

1. If p↓, then P ↓. So, Q↓ implying q↓.

2. Suppose p
a−→ p′ for some a ∈ A. Then, P

a−→∃ P ′ implying that there exists Q′ ∈ P
such that Q

a−→∀ Q′. It follows that there exists q′ such that q
a−→ q′ and (p′, q′) ∈ R.

3. Suppose q
b−→ q′ for some b ∈ B. Then, Q

b−→∃ Q′ implying that there exists P ′ ∈ P
such that P

b−→∀ P ′. It follows that there exists p′ such that p
b−→ p′ and (p′, q′) ∈ R.

Next, lets us define a partial order C on the partition pairs as follows.

Definition 4.4. Let (P,v) and (P ′,v′) be partition pairs. We say that (P,v) is finer than
(P ′,v′), notation (P,v) C (P ′,v′), if and only if for all P,Q such that P v Q there exist
P ′, Q′ ∈ P ′ such that P ⊆ P ′, Q ⊆ Q′, and P ′ v′ Q′.

Now, it is not difficult to observe that finding the C-maximal stable partition pair over a
labeled graph G coincides with the problem of finding the coarsest partial bisimulation pre-
order over G. This is expressed by the following theorem.

Theorem 4.5. LetG = (N ,A, ↓,−→) withN ⊂ T . TheC-maximal partition pair (P,v) stable
with respect to B, ↓, and −→ is induced by the partial bisimilarity preorder �B , i.e., P = N/↔B

and [p]↔B
v [q]↔B

if and only if p�B q.

Proof. By Theorem 4.2, the partition pair (P,v) is stable with respect to B, ↓, and −→.
Suppose that (P ′,v′) is another partition pair that is stable with respect to B, ↓, and −→.
Then by Theorem 4.3 it induces a partial bisimulation preorder R′ with respect to B. It is
straightforward that R′ ⊆ �B . We will show that (P ′,v′) C (P,v). Suppose that P ′ v′ Q′
for some P ′, Q′ ∈ P ′. Let p′ ∈ P ′ and q′ ∈ Q′. Then, (p′, q′) ∈ R′, implying that p′ �B q′. It
follows that [p′]↔B

v [q′]↔B
, which completes the proof.

The algorithm iteratively refines the partition pair (P ′0,v′0) = ({N}, {(N ,N )}) over G =
(N ,A, ↓,−→) until it reaches the C-maximal stable partition pair. We refine the partition
by choosing splitters, which represent subsets of nodes that do not adhere to the stability
conditions in combination with other nodes from the same class and, therefore, must be
placed in a separate class. This induces a refinement of the partition, since a larger class,
referred to as parent, is split into two or more classes. We manipulate with the splitters in
the vein of [24, 11], which optimizes the computation of the refinements. For that reason, we
need an initial set of splitters, which is computed according to the termination options and
the outgoing labeled transitions of the states as follows.

18



Condition a of Definition 4.1 requires that all states in a class have or, alternatively, do not
have termination options. Thus, we can immediately split N to P0 and P1 such that P0↓
and P1 6 ↓ with P0 v P1. Note that at this point the relation v denotes the potential of P0

being the little brother of P1. We are certain that P1 v P0 is not possible for any refinement
of the partition {P0, P1} because of stability condition b of Definition 4.1. Moreover, as any
further refinement will actually refine (P00,v00) , ({P0, P1}, {(P0, P0), (P0, P1), (P1, P1)}
stability conditions a and b will always be satisfied, so we no longer have to take them into
consideration during refinement. Next, let the set of outgoing labels OL(p) , {a ∈ A | p a−→}
denote the set of labels of all outgoing transitions of the node p ∈ N . We refine (P00,v00)
as follows.

Suppose that the partition pair (P0,v0) such that (P0,v0) C (P00,v00) is the desired par-
tition pair of splitters. The partition P0 is defined as for every P ∈ P0, p, q ∈ P if and only
if OL(p) = OL(q), since if p and q do not have the same sets of outgoing labels, then they
cannot be mutually partially bisimilar. This induces the sets OL(P ) , OL(p) with p ∈ P . We
define the little brother relation by looking into the sets of outgoing labels. Recall that partially
bisimilar terms must have the same sets of outgoing labels that are also in the bisimulation
set. The set of remaining outgoing labels of the little brother, which transitions only have to
be simulated, is a subset of the corresponding set of outgoing labels of the other term. So,
we put P v0Q if and only if (1) OL(P ) \B ⊆ OL(Q) \B, and (2) OL(P )∩B = OL(Q)∩B.
As (P0,v0) C (P00,v00), we have that if P ∈ P1 then Q ∈ P1. The initial little brother
relation v0 satisfies the conditions of Definition 4.1, i.e., it is a partial order.

It is easily observed that the stability conditions are not necessarily satisfied for (P0,v0).
However, if we consider (P0,v0) with respect to the partition pair (P ′0,v′0) we see that the
stability conditions are satisfied. For example, for all P,Q ∈ P0, P ′ ∈ P ′0, and a ∈ A it
holds that if P

a−→ P ′, then there exists Q′ ∈ P ′0 such that P ′ vQ′ and Q
a−→Q′. It is clear

that (P0,v0) C (P ′0,v′0). Now, the idea behind the partitioning algorithm is to iteratively
refine (P ′0,v′0) to (P ′n,v′n) and (P0,v0) to (Pn,vn) for some n ∈ N. For all 0 ≤ i ≤ n
we have that (Pi,vi) C (P ′i,v′i) and the stability conditions are satisfied for (Pi,vi) with
respect to (P ′i,v′i). Moreover, (Pn,vn) and (P ′n,v′n) is a fix point of the algorithm, i.e.,
(Pn,vn) = (P ′n,v′n). The refinement of (P ′,v′) and (P,v) employs the splitters, which are
initially formed of classes, which nodes cannot be combined as they contravene the stability
conditions. The C-maximality is achieved by showing that if a splitter contains nodes from
two different classes, then it is unstable, e.g., as it was done for the initial classes above,
implying that the resulting partition is the coarsest possible refinement.

Now, suppose that the partition pair (P,v) has (P ′,v′) as parent with (P,v)C (P ′,v′). For
convenience, we rewrite the stability conditions c and d of Definition 4.1 for the partition pair
(P,v) with respect to (P ′,v′) and the bisimulation set B:

1. For all P ∈ P , a ∈ A, and P ′ ∈ P ′ such that P
a−→∃ P ′ there exists Q′ ∈ P ′ such that

P ′ v′ Q′ and P
a−→∀ Q′.

2. For all P,Q ∈ P , a ∈ A, and P ′ ∈ P ′ such that P v Q and P
a−→∀ P ′ there exists

Q′ ∈ P ′ such that P ′ v′ Q′ and Q
a−→∀ Q′.

3. For all P ∈ P , Q′ ∈ P ′, and b ∈ B such that P
b−→∃ Q′ there exists P ′ ∈ P ′ such that

P ′ v′ Q′ and P
b−→∀ P ′.

4. For all P,Q ∈ P , Q′ ∈ P ′, and b ∈ B such that P v Q and Q
b−→∀ Q′ there exists

P ′ ∈ P ′ such that P ′ v′ Q′ and P
b−→∀ P ′.

19 Partial Bisimulation Algorithm



It is not difficult to observe that stability conditions 1 and 2 replace stability condition c of
Definition 4.1, where as stability conditions 3 and 4 replace stability condition d of Defini-
tion 4.1. They are equivalent when (P,v) = (P ′,v′). From now on, we refer to the stability
conditions above instead of the ones in Definition 4.1. The form of stability conditions as
given above is useful as stability conditions 1 and 3 can be used to split the classes, whereas
stability conditions 2 and 4 can be used to adjust the little brother relation.

We proceed in the vein of [24, 11], and we define the function cnt : N × A × 2N → N to
optimize the splitting process, where cnt(p a−→ P ′) ≥ 0 denotes the number of transitions
labeled by a ∈ A from the node p ∈ N to the parent P ′ ∈ P ′. Suppose that we refine
the partition pair (P ′,v′) that is a parent of (P,v) C (P ′,v′), where P ′ ∈ P ′ is such that
S′ ⊂ P ′. The refinement step splits P ′ to S′ and P ′ \ S′ and subsequently splits every class
in P with respect to the splitter S′ in order to satisfy the stability conditions. If one knows
cnt(p a−→ P ′) and cnt(p a−→ S′) has been computed for every node p ∈ N and action a ∈ A,
then this information can be used to update the function cnt for P ′ \ S′ and deduce the
following:

0. If cnt(p a−→P ′) = cnt(p a−→S′) = 0, then p
aY−→S′, p aY−→P ′\S′, and cnt(p a−→P ′\S′) =

0.

1. If cnt(p a−→P ′) > 0 and cnt(p a−→S′) = 0, then p
aY−→S′, p

a−→P ′ \S′, and cnt(p a−→
P ′ \ S′) = cnt(p a−→ P ′).

2. If cnt(p a−→P ′) = cnt(p a−→S′) > 0, then p
a−→S′, p aY−→P ′\S′, and cnt(p a−→P ′\S′) =

0.

3. If cnt(p a−→ P ′) > 0, cnt(p a−→ S′) > 0, and cnt(p a−→ S′) 6= cnt(p a−→ P ′), then
p

a−→ S′, p
a−→ P ′ \ S′, and cnt(p a−→ P ′ \ S′) = cnt(p a−→ P ′)− cnt(p a−→ S′).

The advantage of this approach is that in order to decide where the node belongs after the
splitting of P one has to compute cnt(p a−→ S′) only for the nodes of S′, which are less
than the nodes of P ′, optimally as close to half as possible. Thus, in our initialization step
we also need to compute cnt(p a−→ N ) for every node p ∈ N and action a ∈ A. This
finishes the initialization phase, which delivers an initial partition pair (P0,v0) with a parent
(P ′0,v′0) = (N , {N ,N}), and a corresponding cnt function. The time complexity of this
phase is O(|N ||A|) [5].

We proceed with the description of the refinement steps of the algorithm. Suppose that we
want to split P ′ ∈ P ′ to S′, P ′ \ S′ ∈ P ′ for some ∅ ⊂ S′ ⊂ P ′. The splitters P ′ \ S′ and S′

should be chosen consistently, i.e., S′ ∩Q = Q or S′ ∩Q = ∅ for all Q ∈ P ′, |S′| ≤ |P
′|

2 , and
both S′ v′ P ′ \ S′ and P ′ \ S′ v′ S′ should not hold. One can always choose the v-minimal
orv-maximal class of P with parent P ′ as such a splitter. We have to ensure that the stability
conditions hold for P ′ \ S′ and S′. If P

aY−→∃ P ′, then P
aY−→∃ P ′ \ S′ and P

aY−→∃ S′, which
trivially satisfies the stability conditions. Suppose that P

a−→∃P ′ for some P ∈ P and a ∈ A.
Then there exists Q′ ∈ P ′ such that P ′ v′ Q′ and P

a−→∀ Q′. If, in addition, a ∈ B, then
there exists Q′′ ∈ P ′ such that Q′′ v P ′ and P

a−→∀ Q′′. Note that the above relations do not
necessarily hold for P ′ \S′ and S′. We distinguish the following situations. If P

a−→∃P ′ \S′,
then there must exist a Q′ ∈ P ′, such that P ′ \ S′ v′ Q′, P ′ \ S′ 6= Q′, and P

a−→∀ Q′, so
that P is stable, dependent on P ′ \ S′ v′Q′. Note that we treat the case when P

a−→∀ P ′ \ S′
below, as a splitting of P to P1 or P3. If a ∈ B, then additionally there must exist a Q′′ ∈ P ′,
such that Q′′ v′ P ′ \ S′, Q′′ 6= P ′ \ S′, and P

a−→∀ Q′′, implying that stability of P in this
situation depends on Q′′ v′ P ′ \ S′. Again, we treat the case when P

a−→∀ P ′ \ S′ below, as

20



a splitting of P to P1 or P3. When P
a−→∃ S′ we have a similar situation that the splitting of

P depends on some T ′ ∈ P ′ such that S′ v′ T ′, S′ 6= T ′, and P
a−→∀ T ′ and, moreover, if

a ∈ B, there must also exist T ′′ ∈ P ′ such that T ′′ v′ S′, T ′′ 6= S′, and P
a−→∀ T ′′. When

P
a−→∀ S′, we treat it as splitting of P to P2 or P3 below. In the opposite case, P has to be

split as discussed below.

Suppose that some P ∈ P is not split due to a dependence on P ′v′Q′ for some P ′, Q′ ∈ P ′.
Suppose that P

a−→∃P ′ and P
a−→∀Q′ for some a ∈ A in order to satisfy stability condition 2.

If we have to split P ′ to P ′ \ S′ and S′ for some S′ ∈ P ′, the dependence on P ′ v′ Q′ is no
longer necessary, as we will consider P

a−→∃ P ′ \ S′ and P
a−→∃ S′. However, if we have to

split Q′ to Q′ \ T ′ and T ′ for some T ′ ∈ P ′, then the stability condition 2 for P no longer
holds. In this case, we have to find some Q′′ ∈ P ′ such that Q′v′Q′′ and P

a−→∀Q′′. If such
Q′′ does not exist, then we have to split P accordingly. We have an analogous discussion
when Q′ v′ P ′.

Suppose that P ∈ P does not conform to the stability conditions for some action a ∈ A. We
can potentially split P into four disjoint subsets P0, P1, P2, and P3 such that P = P0 ] P1 ]
P2 ] P3, where ] denotes disjoint union. The classes P0, P1, P2, and P3 contain nodes that
satisfy the splitting conditions 0–3 from above, respectively, i.e., P0

aY−→∃ P ′ \S′, P0
aY−→∃ S′,

P1
a−→∀ P ′ \ S′, P1

aY−→∃ S′, P2
aY−→∃ P ′ \ S′, P2

a−→∀ S′, P3
a−→∀ P ′ \ S′, and P3

a−→∀ S′.
Note that P

a−→∀ P ′ if and only if P0 = ∅.

Suppose that a 6∈ B and suppose that P ′ \ S′ and S′ are not related. Then we have to split P
to P0, P1, P2, and P3 as the stability condition 1 is not satisfied for P . Note that it is directly
checked that stability condition 1 is satisfied for P0, P1, P2, and P3. Also, it should be clear
that if we mix states from the classes, we obtain a subset of P , sayQ, such thatQ

a−→∃P ′ \S′
and Q

aY−→∀ P ′ \ S′, or Q
a−→∃ S′ and Q

aY−→∀ S′. We show that the stability condition 1 does
not hold for Q. Suppose that stability condition 1 holds and take Q

a−→∃ S′ and Q
aY−→∀ S′.

The discussion when Q
a−→∃ P ′ \ S′ is analogous. If Q is stable, then there exists T ′ ∈ P ′

such that S′ v′ T ′ and Q
a−→∀ T ′. Note that T ′ 6= S′ and T ′ 6= P ′ \ S′. As Q ⊆ P , we have

that P
a−→∃ T ′. As the stability condition for P holds for parents that are not P ′ \ S′ or S′,

it follows that there exists Q′ ∈ P such that T ′ v′ Q′, implying S′ v′ Q′, and P
a−→∀ Q′.

However, having in mind that a similar results is obtained when Q
a−→∃ P ′ \ S′, we obtain

a contradiction with the assumption that P is not stable with respect to P ′ \ S′ and S′. The
classes are related as follows according to the stability condition 2: P0vP0, P0vP1, P0vP2,
P0 v P3, P1 v P1, P1 v P3, P2 v P2, P2 v P3, and P3 v P3. When some of the classes
are empty, the corresponding pairs are omitted. Now, suppose that P ′ \ S′ v S′. Recall that
P2

aY−→∃P ′\S′ and P2
a−→∀S′, and P3

a−→∀P ′\S′ and P3
a−→∀S′. Consequently, we have that

P2vP3 and P3vP2, i.e., P should be split to P0, P1, and P2]P3, dependent on P ′ \S′vS′,
with P0 v P0, P0 v P1, P0 v P2 ] P3, P1 v P1, P1 v P2 ] P3, and P2 ] P3 v P2 ] P3. Finally,
suppose that a ∈ B. Then, P is split to P0, P1, P2, and P3, where the classes are unrelated
with each other, since the stability condition 4 is not satisfied for the pairs from above, i.e., it
holds only that P0 v P0, P1 v P1, P2 v P2, and P3 v P3.

After the the refinement of P due to the splitting of P ′ to P ′ \S′ and S′, we have to adjust the
little brother relation between the newly obtained classes. Suppose that P v Q held before
the splitting of P ′ ∈ P ′ to P ′ \ S′ and S′ and P was not split. Then for all Q′ ∈ P ′ such
that P ′ \ S′ 6= Q′ and S′ 6= Q′, if P

a−→∀ Q′ for some a ∈ A, then Q
a−→∀ Q′′ for some

Q′′ ∈ P ′ such that Q′ vQ′′, implying that Q is not split as well. Similarly, for a ∈ B. When
P

a−→∀ P ′ \ S′ or P
a−→∀ S′, then this is treated as P being split to P1 or P3, or P2 or P3,

respectively. If P was split, and Q remained intact, then P v Q holds still if P
a−→∃ P ′ \ S′

21 Partial Bisimulation Algorithm



implies that Q
a−→∃ P ′ \ S′ and if P

a−→∃ S′ implies that Q
a−→∃ S′. Suppose that for some

P,Q ∈ P , it held that P v Q, before the splitting of P to P0, P1, P2, and P3, and Q to Q0,
Q1, Q2, and Q3 with respect to action a ∈ A. It should be clear that it is only possible that
PivQj for some i, j ∈ {0, 1, 2, 3}. Following the reasoning from above, provided that a 6∈ B,
and P ′ \S′ and S′ are unrelated, we will have the following pairs: P0vQ0, P0vQ1, P0vQ2,
P0vQ3, P1vQ1, P1vQ3, P2vQ2, P2vQ3, and P3vQ3, for which the stability condition 2 is
satisfied. To show this, it is sufficient to show that PivQi for i ∈ {0, 1, 2, 3}. As the stability
condition 2 holds for P and Q, we have that if P

a−→∀ P ′′ for some P ′′ ∈ P ′, then Q
a−→∀Q′

for some Q′ ∈ P ′ such that P ′′ v′ Q′. As Pi ⊆ P and Qi ⊆ Q for all i ∈ {0, 1, 2, 3}, we have
that this is satisfied for all P ′′ 6= P ′ \ S′ and P ′′ 6= S′. Moreover, Pi and Qi have the same
a−→∀ transitions to P ′ \ S′ and S′, in which case the stability condition 2 is clearly satisfied.

When P ′ \ S′ v S′, then we have P2 ] P3 v Q2 ] Q3 as expected. When a ∈ B, then we
have only that Pi vQi for all i ∈ {0, 1, 2, 3}. Again if some of the classes are empty, then the
corresponding pairs are omitted. This finishes the splitting phase, which has complexity of
O(| −→ | log |N |) for the splitting of P and O(|P|3) for updating the little brother relation.
The former is well known [11, 5], whereas the latter is obtained by observing that there are
|P| refinements in total, and for each the updating costs O(|P|2) [13, 26].

Note that after the splitting, the stability of (P,v) with respect to the parent partition pair
(P ′,v′) is dependent on the little brother relation v′ between the parents. In return, recall
that v′ is dependent on the relation between the classes of P , since for all P ′, Q′ ∈ P ′, it
holds that P ′ v′ Q′ if and only if there exist P,Q ∈ P with P ∈ P ′, Q ∈ Q′, and P v Q.
So, after the refinement of the classes and the update of the little brother relation, we have
to validate that all dependencies still hold. If they do not, then we need to split the classes,
which depend on them accordingly, and repeat this procedure until no dependencies are
conflicted. Suppose that P ∈ P has not been split due to a dependence of P ′ v′ Q′ for some
P ′, Q′ ∈ P ′, and P vQ for someQ ∈ P . Then, either P

a−→∃P ′ and P
a−→∀Q′, or P

a−→∃Q′
and P

a−→∀ P ′. Recall that if P is not split, then Q is not split as well, due to a dependence
P ′v′Q′′ or Q′′v′ P ′, respectively, for some Q′′ ∈ P ′ with Q′v′Q′′ or Q′′vQ′, respectively.
If there exists T ′ ∈ P ′ such that P ′ v′ T ′ or T ′ v Q′, respectively, with P

a−→∀ T ′, then P
should not be split, and the dependence has to change. Since P v Q, Q will not be split
as well, for the same reasons as in the discussion above. In the opposite case, P needs to
be split, implying that Q possibly has to be split as well, and in this case the little brother
relation v is updated as above. The cost of the validation is again O(|P|3) [15].

Finally, when the stable partition pair (P,v) of the labeled graph G = (N ,L, ↓,−→) is
reached, we have to construct the quotient transition system. For that purpose we use the
properties of the partial bisimilarity equivalence of Theorem 2.10. The quotient is the label
graph H = (P,L, ↓,−→′), where the set of states are the classes of the partition, the set of
labels is the same as for the original graph, the termination predicate is defined per class as
above, and the transitions relation is defined as follows. For all P,Q ∈ P and a ∈ A \ B we

put P
a−→
′
Q if and only if there does not exist Q′ ∈ P such that QvQ′ and P

a−→∀ Q′. For

all P,Q ∈ P and b ∈ B we put P
b−→
′
Q if and only if there does not exist Q′ ∈ P such that

QvQ′ and P
b−→∀ Q′ or Q′ vQ and P

b−→∀ Q′. In other words, if the action transition has
to be bisimulated, then we have to retain the littlest and the biggest brother, whereas if the
action transitions needs to be only simulated, it is sufficient to retain the biggest brother, as
in [13, 15]. The cost of the final step isO(|P|3). The spatial requirements areO(|−→|) log |N |
for the labeled graph and O(|A||P|2) for the little brother relation and the dependencies, as
there can be at most |A||P| dependencies per class. The algorithm has time complexity of
O((|A| + log |N |)| −→ | + |P|3), which is better than O(| −→ ||P|2) for similarity [15]. The
spatial requirements are comparable with O(|A||P|2), needed for the little brother relation
and the dependencies, compared to O(|P|2) of [15] needed for the little brother relation.

22



We summarize the algorithm for minimization by mutual partial bisimulation as follows.

Input: Labeled graph G = (N ,L, ↓,−→)

Output: Labeled graph H = (P,L, ↓,−→′)

1. Set (P ′,v′) := ({N}, {(N ,N )}). Compute (P,v) such that for all P,Q ∈ P it holds
that (1) P ↓ or P 6 ↓; (2) if P ↓, then Q↓; and (3) if OL(P ) \B ⊆ OL(Q) \B and OL(P )∩
B = OL(Q) ∩B, then P vQ. For all p ∈ N compute cnt(p a−→N ).

2. Choose a splitter S′ for parent P ′ ∈ P ′ as described above, and update v′ for P ′ \ S′
and S′. If no such splitter exists, go to step 7.

3. For allQ′ ∈ P such thatQ′v′P ′ or P ′v′Q′ and the splitting of P ∈ P depends on this
relation, i.e., P

a−→∃ Q′ and P
a−→∀ P ′, check whether there exists P ′′ ∈ P ′ such that

Q′vP ′′ or P ′′vQ′, respectively, and P
a−→∀ P ′′. If such P ′′ does exists, then transfer

the dependence of splitting P toQ′vP ′′ or P ′′vQ′, respectively. In the opposite case,
split P accordingly.

4. For all P ∈ P and a ∈ A such that P
a−→∃ P ′, compute cnt(p a−→S′) for all p ∈ P and,

otherwise, set cnt(p a−→ P ′ \ S′) := 0 and cnt(p a−→ S′) := 0.

5. For all a ∈ A do the following:

(a) For all P ∈ P such that P
a−→∃ P ′ do the following:

i. If P
a−→∃ P ′ \ S′, then check whether there exists Q′ ∈ P ′ such that P ′ \

S′ v′ Q′, P ′ \ S′ 6= Q′, and P
a−→∀ Q′. If a 6∈ B, then P should not be split,

dependent on P ′ \ S′ v′ Q′. If a ∈ B, then there should also exist Q′′ ∈ P ′
such that Q′′ v′ P ′ \ S′, Q′′ 6= P ′ \ S′, and P

a−→∀ Q′′, making the splitting
of P dependent on Q′′ 6= P ′ \ S′ as well.

ii. If P
a−→∃ S′, then check whether there exists T ′ ∈ P ′ such that S′ v′ T ′,

S′ 6= T ′, and P
a−→∀ T ′. If a 6∈ B, then P should not be split, dependent

on P ′ \ S′ v′ Q′. If a ∈ B, then there should also exist T ′′ ∈ P ′ such that
T ′′ v′ S′, T ′′ 6= S′, and P

a−→∀ T ′′, making the splitting of P dependent on
T ′′ v′ S′ as well.

iii. If the conditions in 5(a)i and 5(a)ii are not satisfied, then compute P0, P1, P2,
and P3 as described above. If P ′ \ S′ 6v S′, then split P to P0, P1, P2, and P3

and, otherwise, split P to P0, P1, P2 ] P3 and update v as described above.

(b) Update the little brother relation for P vQ as described above.

(c) For all P ′, Q′ ∈ P such that P ′ v′ Q′, if there do not exist P ∈ P ′ and Q ∈ Q′
such that P vQ, delete the relation between P ′ and Q′. For all P ∈ P that were
dependent on P ′ v′ Q′ do the following. If P was not split due to dependence
on P ′ v′ Q′, such that P

a−→∃ P ′ and P
a−→∀ Q′, or P

a−→∃ Q′ and P
a−→∀ P ′,

check if there exists Q′′ ∈ P ′ such that P ′ v′ Q′′ or Q′′ v Q′, respectively, with
P

a−→∀ Q′′. If such Q′′ exists, replace the dependency on P ′ v′ Q′ with P ′ v′ Q′′
or Q′′ v P ′, respectively. On the contrary, split P .

(d) Update the little brother relation v as described above. If there are any changes
go back to step 5c to validate the dependencies.

6. If (P,v) 6= (P ′,v′) go to step 2.

7. Construct H = (P,L, ↓,−→′) as described above.

23 Partial Bisimulation Algorithm



In order to check the dependencies efficiently, we introduce a topological order of the classes,
given a partition pair (P,v) [13, 15]. We say that≤⊆ 2N is a topological order over P induced
by v if for all P,Q ∈ P it holds that P ≤ Q if and only if Q 6v P . Thus, if P ≤ Q, then
either P v Q or P and Q are unrelated. We note that the topological order in general is
not uniquely defined. Also, we can represent the topological order as a list P1, P2, . . . , Pn,
for some n ∈ N, where Pi ≤ Pj for 1 ≤ i ≤ j ≤ n. We have the following property
that provides for efficient updating of the topological order. Let (P1,v1) be a partition pair
and let ≤1= P1, P2, . . . , Pn, for some n ∈ N, be a topological order over P1 induced by v1.
Suppose that Pi ∈ P1 is split to Q1, Q2 ∈ P2, i.e., P2 = P1 \ {Pi} ∪ {Q1, Q2} such that
(P2,v2) C (P1,v1). Suppose that Q1 v2 Q2 or Q1 and 2 are unrelated. Then, ≤2 given
by ≤2= P1, . . . , Pi−1, Q1, Q2, Pi+1, . . . , Pn is a topological order over P2 induced by v2.
To show this, recall that from (P2,v2) C (P1,v1), we have for all P ′′, Q′′ ∈ P2 such that
P ′′v2Q

′′, there exist P ′, Q′ ∈ P1 such that P ′′ ⊆ P ′,Q′′ ⊆ Q′, and P ′vqQ′. So, if P ′ ≤1 Q
′

then P ′′ ≤2 Q
′′ or P ′′ and Q′′ are unrelated for all P ′′, Q′′ ∈ P2 such that P ′′ 6= Q1 and

Q′′ 6= Q2. Since Q1 v2 Q2 or Q1 and Q2 are unrelated, we have that ≤2 is a topological
order. This property enables us to update the topological order by replacing each class with
the results of the splitting without having to re-compute it in every iteration, as it is done
in [13, 15]. As a result, the classes whose nodes belong to the same parent are neighboring
with respect to the topological order. Moreover, the topological order gives us a procedure for
searching for a little or a big brother of a given class. All little brothers of a given class are
topologically sorted in descendent to the left, and all the big brothers are topologically sorted
ascendent to the right.

5 Concluding Remarks

We successfully employed the partial bisimilarity preorder to define controllability of nonde-
terministic processes. The definition of controllability is finer than existing notions in the
literature and it reduces to language controllability for deterministic systems. To support
this investigation we characterized the notion of partial bisimulation by means of sound and
complete axiomatization and modal logic. We also developed a partitioning algorithm for
minimization by partial bisimilarity that improves previous work and which is also suitable
as a minimization procedure that preserves controllability.

As future work, we aim look into nonblocking supervisory control, as well as develop synthe-
sis algorithms, and apply them to case studies. Another interesting topic is modular control,
where the supervisor is split on synchronizing components. We also intend to investigate
extensions with time and abstraction.

24



Bibliography

[1] L. Aceto, W. J. Fokkink, A. Ingolfsdottir, and B. Luttik. Processes, Terms and Cycles: Steps
on the Road to Infinity, volume 3838 of Lecture Notes in Computer Science, chapter Fi-
nite Equational Bases in Process Algebra: Results and Open Questions, pages 338–367.
Springer, 2005.

[2] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories of
Communicating Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2010.

[3] J. C. M. Baeten and M. Bravetti. A ground-complete axiomatisation of finite-state
processes in a generic process algebra. Mathematical Structures in Computer Science,
18(06):1057–1089, 2008.

[4] J. C. M. Baeten, D. A. van Beek, B. Luttik, J. Markovski, and J. E. Rooda. Partial bisimu-
lation. SE Report 10-04, Eindhoven University of Technology, 2010.

[5] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[6] G. Barrett and S. Lafortune. Bisimulation, the supervisory control problem and strong
model matching for finite state machines. Discrete Event Dynamic Systems, 8(4):377–429,
1998.

[7] D. Bustan and O. Grumberg. Simulation-based minimization. ACM Transactions on
Compututational Logic, 4(2):181–206, 2003.

[8] C. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer Academic
Publishers, 2004.

[9] R. Eshuis and M. M. Fokkinga. Comparing refinements for failure and bisimulation
semantics. Fundamentae Informaticae, 52(4):297–321, 2002.

[10] M. Fabian and B. Lennartson. On non-deterministic supervisory control. Proceedings of
the 35th IEEE Decision and Control, 2:2213–2218, 1996.

[11] J.-C. Fernandez. An implementation of an efficient algorithm for bisimulation equiva-
lence. Science of Computer Programming, 13(2-3):219–236, 1990.

[12] U. Frendrup and J. N. Jensen. A complete axiomatization of simulation for regular CCS
expressions. BRICKS Report 01-26, University of Aarhus, Denmark, 2001.

[13] R. Gentilini, C. Piazza, and A. Policriti. From bisimulation to simulation: Coarsest
partition problems. Journal of Automated Reasoning, 31(1):73–103, 2003.

[14] R. J. van Glabbeek. The linear time–branching time spectrum I. Handbook of Process
Algebra, pages 3–99, 2001.

[15] R. J. van Glabbeek and B. Ploeger. Correcting a space-efficient simulation algorithm.
In Proceedings of CAV, volume 5123 of Lecture Notes in Computer Science, pages 517–529.
Springer, 2008.

[16] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite
and infinite graphs. In IEEE Symposium on Foundations of Computer Science, pages 453–
462. IEEE Computer Society Press, 1996.

[17] M. Heymann and F. Lin. Discrete-event control of nondeterministic systems. IEEE
Transactions on automatic control, 43(1):3–17, 1998.

[18] M. Heymann and G. Meyer. Algebra of discrete event processes. Technical Report NASA
102848, NASA Ames Research Center, 1991.

25



[19] R. Kumar and M. A. Shayman. Nonblocking supervisory control of nondeterminis-
tic systems via prioritized synchronization. IEEE Transactions on automatic control,
41(8):1160–1175, 1996.

[20] R. Kumar and C. Zhou. Control of nondeterministic discrete event systems for simu-
lation equivalence. IEEE Transactions on Automation Science and Engineering, 4(3):340–
349, 2007.

[21] K. G. Larsen. Modal specifications. In Automatic Verification Methods for Finite State
Systems, volume 407 of LNCS, pages 232–246. Springer, 1990.

[22] K. G. Larsen and L. Xinxin. Equation solving using modal transitions systems. In
Proceedings of LICS, pages 108–117. IEEE, 1990.

[23] A. Overkamp. Supervisory control using failure semantics and partial specifications.
IEEE Transactions on automatic control, 42(4):498–510, 1997.

[24] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal on
Computing, 16(6):973–989, 1987.

[25] S.-J. Park and J.-T. Lim. Nonblocking supervisory control of nondeterministic systems
based on multiple deterministic model approach. IEICE Transactions on Information and
Systems, E83-D(5):1177–1180, 2000.

[26] B. Ploeger. Improved Verification Methods for Concurrent Systems. PhD thesis, Eindhoven
University of Technology, 2009.

[27] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[28] J. J. M. M. Rutten. Coalgebra, concurrency, and control. SEN Report R-9921, Center for
Mathematics and Computer Science, Amsterdam, The Netherlands, 1999.

[29] C. Zhou, R. Kumar, and S. Jiang. Control of nondeterministic discrete-event systems for
bisimulation equivalence. IEEE Transactions on Automatic Control, 51(5):754–765, 2006.

26 Bibliography


