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Introduction

1. Comparative concurrency semantics. This thesis is about comparative con-
currency semantics.

Concurrency is the study of concurrent systems. Often concurrency as area
of scientific research is located in computer science. In that case the systems
which are the subject of study are taken to be computers or computer pro-
grams. However, much theory in the field of concurrency applies equally well
to other systems, like machines, elementary particles, protocols, networks of
falling dominoes or human beings. Concurrent or parallel systems - as opposed
to sequential systems - are systems capable of performing different activities at
the same time.

Semantics is the study of the meaning of words. In concurrency, one often
employs formal languages for the description of concurrent systems. These I
call system description languages. Like all formal languages, system description
languages are usually introduced to avoid the ambiguities of natural languages
and to gain accuracy of expression. Therefore their semantics tends to be
easier than the semantics of natural languages. Moreover the meaning of the
words in a formal language should to some extent be given by the one who
defines the language, rather than to be discovered by linguists.

Since system description languages tend to describe abstractions of systems
rather than concrete systems, the meaning of an expression in a system
description language is in general given by an equivalence class of systems (i.e.
a class of systems which are considered to be equivalent on a chosen level of
abstraction). Thus the meaning of the entire language is determined by a par-
tition of a set of systems into equivalence classes and an allocation of one such
equivalence class to each expression. For this reason it is convenient to divide
the semantics of system description languages into two subfields, namely the
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study of equivalence relations on sets of concurrent systems, and the study of
allocating equivalence classes to expressions in particular languages. The first
field deals with the establishment of criteria, determining when two systems are
sufficiently alike to be collected in the same equivalence class. It can be stu-
died independently of a particular system description language. Therefore it
can be simply referred to as semantics of concurrent systems or concurrency
semantics for short.

In concurrency semantics a criterion, determining when two systems are
sufficiently alike to be collected in the same equivalence class, is called a
semantics, and the induced equivalence relation a semantic equivalence. In the
literature on concurrency semantics many semantics have been proposed and
most likely also a multitude of sensible semantics have never been proposed.
The classification of these semantics is called comparative concurrency semantics
and will be the primary subject of this thesis.

2. Design and verification. Much work in concurrency is motivated by an
interest in design problems for concurrent systems. A fruitful method to
design concurrent systems is by means of stepwise refinement. Here one starts
with a description S of the system one has in mind. This initial description is
called a specification of the desired system. It abstracts from all the details of
the desired system that are not essential in its behaviour and leaves open many
design decisions that have to be taken later on. Then one starts refining the
specification by adding step for step the details one needs to know when the
system is going to be built. In this way one obtains a sequence

So—=8S1—> - 55,

of system descriptions of which the last one says exactly how the system will

look like. This final state in the design process describes the implementation of

the desired system.

Roughly one can distinguish two different kinds of refinement steps in such
a sequence of system descriptions. First of all there are steps in which infor-
mation is added about what the system ought to do. These steps concern the
goal of the entire exercise and can therefore not be proven correct in terms of
this goal. Secondly there are steps that add information about how the system
is going to do it. It is one of the tasks of concurrency theory to prove the
correctness of such steps.

When considering only one step from a stepwise refinement sequence, the
left-hand side of this step is called specification and the right-hand side imple-
mentation. Let S — I be a ‘how’-step. The question is now to find criteria for
determining whether or not this step is correct. Here at least two situations
can be distinguished:

1. Although I describes much more activities of the desired system than S,
all these extra activities can be considered as internal actions in which the
user of the system is not interested. After abstraction from all these
details, / and S are equivalent according to some suitable semantic
equivalence.
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2. Some choices about how the final system should behave, that were left
open in S, are resolved in I. Therefore I and S cannot be equivalent.
Here one needs a partial order between equivalence classes of concurrent
systems, specifying when one system is a correct implementation of the
other.

In order to tackle both cases one needs to define a suitable semantic

equivalence and a partial order on the equivalence classes. Together these

ingredients can be coded as a preorder, a reflexive and transitive relation, on
system descriptions.

In this thesis, for reasons of convenience, attention is restricted to
equivalences rather than arbitrary preorders. However, there exists a close
correspondence between semantic equivalences and preorders. Most semantic
equivalences are defined, or can be characterized, in terms of the properties
that are shared by equivalent systems. For each system p, a set of properties
O(p) is defined, such that two systems p and g are equivalent iff O(p) = O(g).
Often O (p) describes the observable behaviour of p according to some testing
scenario. Now a corresponding preorder < can be defined by p <gq iff
O(p) C O(q). Most preorders encountered in the literature on concurrency
are of that form. I expect that using this insight, much work on classifying
semantic equivalences can be generalized to preorders.

Above I argued that semantic equivalences (and preorders) can be relevant
for the design of concurrent systems. However, in fact they are more often
employed for verification purposes. In this case one is offered a specification
and an implementation of a certain system and is asked to determine if the
implementation is correct. In such applications the distance between the
specification and the implementation tends to be larger than in one step in a
design process. Therefore it is even more important to have solid criteria for
deciding on the correctness of the implementation.

When semantic equivalences are used in the design of concurrent systems, or
for verification purposes, they should be chosen in such a way that two system
descriptions are considered equivalent only if the described behaviours share
the properties that are essential in the context in which the system will be
embedded. It depends on this context and on the interests of a particular user
which properties are essential. Therefore it is not a task of concurrency
semantics to find the ‘true’ semantic equivalence, but rather to determine
which equivalence is suitable for which applications. It is the intention of this
thesis to carry out a bit of this task. In particular it addresses the question
which semantic equivalences are suitable for dealing with action refinement.

3. Refinement of actions. In this thesis concurrent systems are represented by
expressions in a system description language or by elements of some
mathematical model. The basic building block in the languages and models
that occur in this thesis are the actions which may occur in a system. By an
action here any activity is understood which is considered as a conceptual
entity on a chosen level of abstraction. This allows design steps, in which
actions are replaced by more complex system descriptions. Such a step in the
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design of a system is referred to as refinement of actions. Action refinement is
a design step that adds information about what the system ought to do (a
‘what’-step), at least if the refined actions are not considered to be internal.
Therefore the ‘correctness’ of such refinement steps cannot be proven. How-
ever, the possibility of doing such steps puts some restrictions on the kind of
equivalences that can be used for proving the correctness of ‘how’-steps occur-
ring in the same design process.

ExaMpLE: Consider the following specification of a concurrent system: ‘The
actions a and b should in principle be performed independently on different
processors, but if one of the processors happens to be ready with a before the
other starts with b, b may also be executed on this processor instead of the
other one’. This system description is represented by the Petri net K below.

An introduction to Petri nets and the way they model concurrent systems can
be found in REISIG [110].

Suppose that someone comes up with an implementation in which first it is
determined whether the actions a and b will happen sequentially or indepen-
dently, and subsequently one of these alternatives will take place, as
represented by the Petri net L. Although this implementation does not seem
very convincing, it will be considered ‘correct’ by many equivalences occurring
in the literature.

Let the next step in the design process consist of refining the action a in the
sequential composition of two actions a@; and a,. From L one thereby obtains
the net L’ on the right. If L’ is going to be placed in an environment where
a, becomes causally dependent on b - it may be the case that b is an output
action, a, is an input action, and the environment needs data from b in order
to compute the data that are requested by a, - then deadlock can occur.
However, if the refinement step splitting a in a, and a, is carried out on K
already, the resulting system K’ is deadlock free in the environment sketched
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above.
Thus the possibility of refining a somehow invalidates the correctness of the
design step from K to L. O

A semantic equivalence is said to be preserved under refinement of actions if two
equivalent processes remain equivalent after replacing all occurrences of an
action a by a more complicated process r(a). The example above indicates
that for certain applications is may be fruitful to employ equivalences that are
preserved under refinement of actions. It is one of the topics of this thesis to
find out which equivalences have this property.

4. About the contents of this thesis. This thesis consists of seven chapters which
are all based on separate papers and have their own introduction. This gen-
eral introduction is only meant to give an indication of their contents and their
role in the thesis.

In the first chapter several semantic equivalences for concrete sequential sys-
tems are presented, and motivated in terms of the observable behaviour of sys-
tems, according to some testing scenario. Here concrete means that no internal
actions or internal choice is considered. These semantics are partially ordered
by the relation ‘makes strictly more identifications than’, thus constituting a
complete lattice. For ten of these semantic equivalences complete axiomatiza-
tions are provided. As in the rest of my thesis, stochastic and real-time aspects
of concurrent systems are completely neglected. Furthermore the actions of
which concurrent systems are considered to be composed, are left uninter-
preted. Chapter I serves partly to give an overview of the literature on
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semantic equivalences for concrete sequential processes. The various notions
that can be found elsewhere can easily be compared, since they are all
presented in the same style, and using the same formalism. In order for the
semantics of this chapter to be applicable for design and verification purposes,
they have to be generalized to a setting with internal moves, and with parallel-
ism. This can be done in many ways. In the last two chapters the two
extreme points on the semantic lattice, trace semantics and bisimulation
semantics, are generalized to a setting with parallelism and in Chapter III,
bisimulation semantics is generalized to a setting with internal moves.

In the second chapter it is shown how semantic notions can be used in pro-
tocol verification and other applications. This chapter is entirely algebraic in
style and employs axiom systems of which only classes of models are con-
sidered, rather than a particular model. It is based on the Algebra of Com-
municating Processes of BERGSTRA & Kirop [19,22]. In order to combine
axiom systems representing semantic notions that are difficult to combine a
new notion of ‘proof’ is developed.

The third chapter is devoted to the generalization of bisimulation
equivalence to a setting with silent moves. It is argued that the solution of
MILNER [92] (observation equivalence) does not respect the branching structure
of processes and hence lacks an important feature of bisimulation semantics
without internal moves. A finer equivalence is proposed which indeed respects
branching structure. This new branching bisimulation equivalence turns out to
have some practical advantages as well. In particular, we show that in a set-
ting without parallelism it is preserved under refinement of actions, whereas
observation equivalence is not.

In the fourth chapter an operator for refinement of actions is defined on
four causality based models for concurrent systems, namely on three kinds of
event structures and on Petri nets, and in the remaining three chapters it is
investigated which of the ‘linear time’ and ‘branching time’ semantic
equivalences proposed in the literature are preserved under refinement of
actions and which are not. Chapter V can be regarded as an informal sum-
mary of the Chapters VI and VII. It uses Petri nets rather than event struc-
tures and contains no technicalities like definitions and proofs. Instead more
attention has been paid to the examples.

All chapters in this thesis can be read independently, although for motiva-
tion it may be helpful to read the introduction to Chapter IV before Chapters
V-VII, and depending on the taste of the reader it may be fruitful to consult
Chapter V before or simultaneously with the last two chapters. Furthermore
Chapter VI depends on Section 1 or 2 of Chapter IV. Conceptually Chapter
VII follows Chapter VI, and it recalls its results.
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Chapter |

The Linear Time - Branching Time Spectrum

R.J. van Glabbeek

In this chapter various semantics in the linear time - branching time spectrum
are presented in a uniform, model-independent way. Restricted to the domain
of finitely branching, concrete, sequential processes, only twelve of them turn
out to be different, and most semantics found in the literature that can be
defined uniformly in terms of action relations coincide with one of these twelve.
Several testing scenarios, motivating these semantics, are presented, phrased
in terms of ‘button pushing experiments’ on generative and reactive machines.
Finally ten of these semantics are applied to a simple language for finite, con-
crete, sequential, nondeterministic processes, and for each of them a complete
axiomatization is provided.

TABLE OF CONTENTS
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1. Semantic equivalences on labelled transition systems 18
2, The semantic lattice 33
3. Complete axiomatizations 46
Concluding remarks 48
INTRODUCTION

Process theory. A process is the behaviour of a system. The system can be a
machine, an elementary particle, a communication protocol, a network of fal-
ling dominoes, a chess player, or any other system. Process theory is the study
of processes. Two main activities of process theory are modelling and
verification. Modelling is the activity of representing processes, mostly as ele-
ments of a mathematical domain or as expressions in a system description
language. Verification is the activity of proving statements about processes, for
instance that the actual behaviour of a system is equal to its intended
behaviour. Of course, this is only possible if a criterion has been defined,
determining whether or not two processes are equal, i.e. two systems behave
similarly. Such a criterion constitutes the semantics of a process theory. (To
be precise, it constitutes the semantics of the equality concept employed in a
process theory.) Which aspects of the behaviour of a system are of importance
to a certain user depends on the environment in which the system will be run-
ning, and on the interests of the particular user. Therefore it is not a task of
process theory to find the ‘true’ semantics of processes, but rather to determine
which process semantics is suitable for which applications.
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Comparative concurrency semantics. This thesis aims at the classification of
process semantics.' The set of possible process semantics can be partially
ordered by the relation ‘makes strictly more identifications on processes than’,
thereby becoming a complete lattice®. Now the classification of some useful
process semantics can be facilitated by drawing parts of this lattice and locat-
ing the positions of some interesting process semantics, found in the literature.
Furthermore the ideas involved in the construction of these semantics can be
unraveled and combined in new compositions, thereby creating an abundance
of new process semantics. These semantics will, by their intermediate posi-
tions in the semantic lattice, shed light on the differences and similarities of the
established ones. Sometimes they also turn out to be interesting in their own
right. Finally the semantic lattice serves as a map on which it can be indicated
which semantics satisfy certain desirable properties, and are suited for a partic-
ular class of applications.

Most semantic notions encountered in contemporary process theory can be
classified along four different lines, corresponding with four different kinds of
identifications. First there is the dichotomy of linear time versus branching
time: to what extent should one identify processes differing only in the branch-
ing structure of their execution paths? Secondly there is the dichotomy of
interleaving semantics versus partial order semantics: to what extent should
one identify processes differing only in the causal dependencies between their
actions (while agreeing on the possible orders of execution)? Thirdly one
encounters different treatments of abstraction from internal actions in a pro-
cess: to what extent should one identify processes differing only in their inter-
nal or silent actions? And fourthly there are different approaches to infinity:
to what extent should one identify processes differing only in their infinite
behaviour? These considerations give rise to a four dimensional representation
of the proposed semantic lattice.

However, at least three more dimensions can be distinguished. In this
thesis, stochastic and real-time aspects of processes are completely neglected.
Furthermore it deals with wuniform concurrency® only. This means that
processes are studied, performing actions* a,b,c,... which are not subject to
further investigations. So it remains unspecified if these actions are in fact
assignments to variables or the falling of dominoes or other actions. If also
the options are considered of modelling (to a certain degree) the stochastic and
real-time aspects of processes and the operational behaviour of the elementary
actions, three more parameters in the classification emerge.

1. This field of research is called comparative concurrency semantics, a terminology first used by
MEYER in [90].

2. The supremum of a set of process semantics is the semantics identifying two processes whenev-
er they are identified by every semantics in this set.

3. The term uniform concurrency is employed by DE BAKKER et al [14].

4. Strictly speaking processes do not perform actions, but systems do. However, for reasons of
convenience, this thesis sometimes uses the word process, when actually referring to a system of
which the process is the behaviour.
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Process domains. In order to be able to reason about processes in a mathemat-

ical way, it is common practice to represent processes as elements of a

mathematical domain. Such a domain is called a process domain. The relation

between the domain and the world of real processes is mostly stated infor-

mally. The semantics of a process theory can be modelled as an equivalence

on a process domain, called a semantic equivalence. In the literature one finds

among others:

- graph domains, in which a process is represented as a process graph, or
State transition diagram,

- net domains, in which a process is represented as a (labelled) Perri net,

- event structure domains, in which a process is represented as a (labelled)
event structure,

- explicit domains, in which a process is represented as a mathematically
coded set of its properties,

- projective limit domains, which are obtained as projective limits of series of
finite term domains,

- and term domains, in which a process is represented as a term in a system
description language.

Action relations. Write p - q if the process p can evolve into the process g,

while performing the action a. The binary predicates <> are called action
relations. The semantic equivalences which are treated in this chapter will be
defined entirely in terms of action relations. Hence these definitions apply to
any process domain on which action relations are defined. Furthermore they
will be defined uniformly in terms of action relations, meaning that all actions
are treated in the same way. For reasons of convenience, even the usual dis-
tinction between internal and external actions is dropped in this chapter.

Finitely branching, concrete, sequential processes. Being a first step, this chapter
limits itself to a very simple class of processes. First of all only sequential
processes are investigated: processes capable of performing at most one action
at a time. Moreover the main interest is in finitely branching processes:
processes having in each state only finitely many possible ways to proceed.
Finally, instead of dropping the usual distinction between internal and external
actions, one can equivalently maintain to study concrete processes in which no
internal actions occur (and also no internal choices as in CSP [76]). For this
simple class of processes, when considering only semantic equivalences that
can be defined uniformly in terms of action relations, the announced semantic
lattice collapses in six out of seven dimensions and covers only the linear time
- branching time spectrum.
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Literature. In the literature on uniform concurrency 11 semantics can be
found, which are uniformly definable in terms of action relations and different

on the domain of finitely branching, sequential processes (see Figure 1).

bisimulation semantics

2-nested simulation semantics

\

ready simulation semantics

possible-futures semantics

Y

\ ready trace semantics

readiness semantics failure trace semantics

\ / simulation semantics

failure semantics

\
completed trace semantics

trace semantics

FIGURE 1. The linear time - branching time spectrum

The coarsest one (i.e. the semantics making the most identifications) is trace
semantics, as presented in HOARE [75]. In trace semantics only partial traces
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are employed. The finest one (making less identifications than any of the oth-
ers) is bisimulation semantics, as presented in MILNER [94]. Bisimulation
semantics is the standard semantics for the system description language CCS
(MILNER [92]). The notion of bisimulation was introduced in PARrRk [103].
Bisimulation equivalence is a refinement of observational equivalence, as intro-
duced by HENNESSY & MILNER in [72]. On the domain of finitely branching,
concrete, sequential processes, both equivalences coincide. Also the semantics
of DE BAKKER & ZUCKER, presented in [15], coincides with bisimulation
semantics on this domain. Then there are nine semantics in between. First of
all a variant of trace semantics can be obtained by using complete traces
besides (or instead of) partial ones. In this chapter it is called completed trace
semantics. Failure semantics is introduced in BROOKES, HOARE & ROSCOE [33],
and used in the construction of a model for the system description language
CSP (HOARE [76]). It is finer than completed trace semantics. The semantics
based on festing equivalences, as developed in DE Ni1coLA & HENNESsy [43],
coincides with failure semantics on the domain of finitely branching, concrete,
sequential processes, as do the semantics of KENNAWAY [79] and DARONDEAU
[38]. This has been established in DE NicoLA [42]. In OLDEROG & HOARE
[102] readiness semantics is presented, which is slightly finer than failure
semantics. Between readiness and bisimulation semantics one finds ready trace
semantics, as introduced independently in PNUELI [106] (there called barbed
semantics), BAETEN, BERGSTRA & Kuiror [10] and PoMELLO [107] (under the
name exhibited behaviour semantics). The natural completion of the square,
suggested by failure, readiness and ready trace semantics yields failure trace
semantics. For finitely branching processes this is the same as refusal seman-
tics, introduced in PHILLIPS [105]. Simulation equivalence, based on the classi-
cal notion of simulation (see e.g. PARK [103]), is independent of the last five
semantics. Ready simulation semantics was introduced in BLOOM, ISTRAIL &
MEYER [28] under the name GSOS trace congruence. It is finer than ready
trace as well as simulation equivalence. In LARSEN & SkouU [86] a more opera-
tional characterization of this equivalence was given under the name %-
bisimulation equivalence. This characterization resembles the one used in this
chapter. Finally 2-nested simulation equivalence, introduced in GROOTE &
VAANDRAGER [68], is located between ready simulation and bisimulation
equivalence, and possible-futures semantics, as proposed in ROUNDS & BROOKES
[112], can be positioned between 2-nested simulation and readiness semantics.
Among the semantics which are not definable in terms of action relations and
thus fall outside the scope of this chapter, one finds semantics that take sto-
chastic properties of processes into account, as in VAN GLABBEEK, SMOLKA,
STEFFEN & TOFTS [58] and semantics that make almost no identifications and
are hardly used for system verification.

About the contents. In the first section of this chapter all semantics are defined,
and motivated by several testing scenarios, which are phrased in terms of but-
ton pushing experiments. In Section 2 the semantics are partially ordered by
the relation ‘makes at least as many identifications as’. This yields the
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infinitary linear time - branching time spectrum. Counterexamples are pro-
vided, showing that on a graph domain this ordering cannot be further
expanded. However, for deterministic processes the spectrum collapses, as was
first observed by PARK [103]. Finally, in Section 3, nine of these semantics are
applied to a simple language for finite, concrete, sequential, nondeterministic
processes, and for each of them a complete axiomatization is provided.

1. SEMANTIC EQUIVALENCES ON LABELLED TRANSITION SYSTEMS

1.1. Labelled transition systems. In this thesis processes will be investigated,
that are capable of performing actions from a given set Acz. By an action any
activity is understood that is considered as a conceptual entity on a chosen
level of abstraction. Actions may be instantaneous or durational and are not
required to terminate, but in a finite time only finitely many actions can be
carried out. Any activity of an investigated process should be part of some
action aeAct performed by the process. Different activities that are indistin-
guishable on the chosen level of abstraction are interpreted as occurrences of
the same action aeAct.

A process is sequential if it can perform at most one action at the same time.
In this chapter only sequential processes will be considered. A domain of
sequential processes can often be conveniently represented as a labelled transi-
tion system. This is a domain A on which infix written binary predicates

—> are defined for each action acAct. The elements of A represent

processes, and p 5 q means that p can start performing the action a and
after completion of this action reach a state where ¢ is its remaining behaviour.

In a labelled transition system it may happen that p S q and p 25/ for
different actions a and b or different processes p and ¢q. This phenomena is
called branching. It need not be specified how the choice between the alterna-
tives is made, or whether a probability distribution can be attached to it.

NoTATION: For any alphabet 2, let 2° be the set of strings over Z. Write € for
the empty string, op for the concatenation of 6 and peZ’, and a for the string,
consisting of the single symbol a € Z.

DEFINITION: A labelled transition system is a pair (A,—) with A a class and

— CA XAct XA, such that for peA and aeAct the class {geA |p —> g} is
a set.

Let for the remainder of this section (A,—) be a labelled transition system,
ranged over by p,gr,.... Write p —> g for (p,a,g)e—. The binary predicates
<> are called action relations.
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DEFINITIONS (Remark that the following concepts are defined in terms of
action relations only):

- The generalized action relations > for oedct® are defined inductively
by:
. p - p, for any process p.
2. (p,a,q)e— with aeAct implies p —> ¢ with acAet”.
3. p L)q L)rimpljesp %
In words: the generalized action relations —> are the reflexive and tran-

sitive closure of the ordinary action relations = . p —> ¢ means that p
can evolve into g, while performing the sequence o of actions. Remark

that the overloading of the notion p —> g is quite harmless.
- The set of initial actions of a process p is defined by:

I(p)={acdct|3q: p > q}-
- A process peA is finitely branching if for each geA with p —> ¢ for
some o€Act”, the set {(a,r)|q RLIN r, acAct, reA} is finite.

In the following, several semantic equivalences on A will be defined in terms
of action relations. Most of these equivalences can be motivated by the
observable behaviour of processes, according to some testing scenario. (Two
processes are equivalent if they allow the same set of possible observations,
possibly in response on certain experiments.) I will try to capture these
motivations in terms of button pushing experiments (cf. MILNER [92], pp. 10-12).

1.2. Trace semantics. o€Act” is a trace of a process p, if there is a process g,

such that p => ¢. Let T(p) denote the set of traces of p- Two processes p
and g are trace equivalent if T(p)=T(q). In trace semantics two processes are
identified iff they are trace equivalent.

Trace semantics is based on the idea that two processes are to be identified
if they allow the same set of observations, where an observation simply con-
sists of a sequence of actions performed by the process in succession.

1.3. Completed trace semantics. oc€Act” is a complete trace of a process p, if

there is a process g, such that p —> g and 1(g)= @. Let CT(p) denote the set
of complete traces of p. Two processes p and g are completed trace equivalent if
T(p)=T(gq) and CT(p)=CT(g). In completed trace semantics two processes
are identified iff they are completed trace equivalent.

Completed trace semantics can be explained with the following (rather
trivial) completed trace machine. The process is modelled as a black box that
contains as its interface to the outside world a display on which the name of
the action is shown that is currently carried out by the process. The process
autonomously chooses an execution path that is consistent with its position in
the labelled transition system (A,—). During this execution always an action
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FIGURE 2. The completed trace machine

name is visible on the display. As soon as no further action can be carried
out, the process reaches a state of deadlock and the display becomes empty.
Now the existence of an observer is assumed that watches the display and
records the sequence of actions displayed during a run of the process, possibly
followed by deadlock. It is assumed that an observation takes only a finite
amount of time and may be terminated before the process stagnates. Two
processes are identified if they allow the same set of observations in this sense.

The trace machine can be regarded as a simpler version of the completed
trace machine, were the last action name remains visible in the display if
deadlock occurs (unless deadlock occurs in the beginning already). On this
machine traces can be recorded, but stagnation can not be detected, since in
case of deadlock the observer may think that the last action is still continuing.

1.4. Failure semantics. The failure machine contains as its interface to the out-
side world not only the display of the completed trace machine, but also a
switch for each action a€Act (as in Figure 3).

FIGURE 3. The failure trace machine

By means of these switches the observer may determine which actions are free
and which are blocked. This situation may be changed any time during a run
of the process. As before, the process autonomously chooses an execution
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path that fits with its position in (A,—), but this time the process may only
start the execution of free actions. If the process reaches a state where all ini-
tial actions of its remaining behaviour are blocked, it can not proceed and the
machine stagnates, which can be recognized from the empty display. In this
case the observer may record that after a certain sequence of actions o, the set
X of free actions is refused by the process. X is therefore called a refusal set
and <o,X> a failure pair. The set of all failure pairs of a process is called its
failure set, and constitutes its observable behaviour.

DEFINITION: <0,X >€Act” XP(Act) is a failure pair of a process p, if there is

a process ¢, such that p S q and I(9)NX=@. Let F(p) denote the set of
failure pairs of p. Two processes p and g are failure equivalent if F(p)=F(q).
In failure semantics two processes are identified iff they are failure equivalent.

This version of failure semantics is taken from HOARE [76]. In BROOKES,
HOARE & ROSCOE [33], where failure semantics was introduced, the refusal sets
are required to be finite. It is not difficult to see that for finitely branching
processes the two versions yield the same failure equivalence. In fact this fol-
lows immediately from the following proposition, that says that, for finitely
branching processes, the failure pairs with infinite refusal set are completely
determined by the ones with finite refusal set.

PROPOSITION 1.1: Let peA and 6T (p). Put Cont(o)={acAct|oacT(p)}.

i.  Then, for XCAct, <o,X>€F(p) & <o,XNCont(c)>ecF(p).

ii. If p is finitely branching then Cont (o) is finite.

PrOOF: Straightforward. O

In DE NicoLA [42] several equivalences, that were proposed in KENNAWAY
[79], DARONDEAU [38] and DE NicoLA & HENNEsSY [43], are shown to coin-
cide with failure semantics on the domain of finitely branching transition sys-
tems without internal moves. For this purpose he uses the following alterna-
tive characterization of failure equivalence.

DEFINITION: Write p after 0 MUST X if for each geA with p —> g there is

an r€A and aeX such that ¢ S Put p~gq if for all ceAct” and X CAct:
p after c MUST X < q after o MUST X.

PROPOSITION 1.2: Let p,geA. Then p~q < F(p)=F(q).
PROOF: p after 0 MUST X < (0,X)&F(p) [42]. O

In HENNESSY [70], a model for nondeterministic behaviours is proposed in
which a process is represented as an acceptance tree. An acceptance tree of a
finitely branching process p without internal moves or internal nondeterminism
can be represented as the set of all pairs <o,X>eAct” XP(Act) for which

there is a process ¢, such that p —> ¢ and X CI(g). It follows that for such
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processes acceptance tree equivalence coincides with failure equivalence.

1.5. Failure trace semantics. The failure trace machine has the same layout as
the failure machine, but is does not stagnate permanently if the process cannot
proceed due to the circumstance that all actions it is prepared to continue with
are blocked by the observer. Instead it idles - recognizable from the empty
display - until the observer changes its mind and allows one of the actions the
process is ready to perform. What can be observed are traces with idle periods
in between, and for each such period the set of actions that are not blocked by
the observer. Such observations can be coded as sequences of members and
subsets of Act.

ExampLE: The sequence {a,b}cdb{b,c}{b,c,d}a(Act) is the account of the
following observation: At the beginning of the execution of the process p, only
the actions a and b were allowed by the observer. Apparently, these actions
were not on the menu of p, for p started with an idle period. Suddenly the
observer canceled its veto on ¢, and this resulted in the execution of ¢, fol-
lowed by d and b. Then again an idle period occurred, this time when b and ¢
were the actions not being blocked by the observer. After a while the observer
decided to allow 4 as well, but the process ignored this gesture and remained
idle. Only when the observer gave the green light for the action a, it happened
immediately. Finally, the process became idle once more, but this time not
even one action was blocked. This made the observer realize that a state of
eternal stagnation had been reached, and disappointed he terminated the
observation.

A set X CAct, occurring in such a sequence, can be regarded as an offer
from the environment, that is refused by the process. Therefore such a set is
called a refusal set. The occurrence of a refusal set may be interpreted as a
‘failure’ of the environment to create a situation in which the process can
proceed without being disturbed. Hence a sequence over Act UP(Act), result-
ing from an observation of a process p may be called a failure trace of p. The
observable behaviour of a process, according to this testing scenario, is given
by the set of its failure traces, its failure trace set. The semantics in which
processes are identified iff their failure trace sets coincide, is called failure trace
semantics.

DEFINITIONS:

- The refusal relations X5 for X CAct are defined by: p Xy q iff p=g¢q
and Ip)NX=2.
p X g means that p can evolve into g, while being idle during a period
in which X is the set of actions allowed by the environment.

- The failure trace relations <> for oe(Act UP(Act))" are defined as the
reflexive and transitive closure of both the action and the refusal relations.
Again the overloading of notation is harmless.

- o€(ActUP(Act))" is a failure trace of a process p, if there is a process g,

such that p > g. Let FT(p) denote the set of failure traces of p- Two
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processes p and g are failure trace equivalent if FT (p)=FT(q).

EXERCISES:

1. Explain why a{a,b}a can never be a failure trace of a process peA.

2. Can {a}b and {b}a be two failure traces of such a process? And a{a}b
and a{b}a?

3. A{ab}cc, {a}c{b}c, {b}c{a}c, c{a,b}c, c{a}{b}c and c are failure traces
of a process peA. Which selections from this series provide the same
information about p?

1.6. Ready trace semantics. The Ready trace machine is a variant of the failure
trace machine that is equipped with a lamp for each action a€Act.

-0- -o- -0"
® ® v b
a b Zz

FIGURE 4. The ready trace machine

Each time the process idles, the lamps of all actions the process is ready to
engage in are lit. Of course all these actions are blocked by the observer, oth-
erwise the process wouldn’t idle. Now the observer can see which actions
could be released in order to let the process proceed. During the execution of
an action no lamps are lit. An observation now consists of a sequence of
members and subsets of A, the actions representing information obtained from
the display, and the sets of actions representing information obtained from the
lights. Such a sequence is called a ready trace of the process, and the subsets
occurring in a ready trace are referred to as menus. The information about the
free and blocked actions is now redundant. The set of all ready traces of a
process is called its ready trace set, and constitutes its observable behaviour.

DEFINITIONS:

- The ready trace relations *> for oe(Act UN(Act))' are defined induc-
tively by:
1. p < p, for any process p.
2. p <> g implies p s q.
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3. p o> q with X CAct whenever p =q and 1(p)=X.
4. p*(a—)'q*L)rimpliespg&)r.
The special arrow *> had to be used, since further overloading of —>

would cause confusion with the failure trace relations.
- o€(Act UP(Act))" is a ready trace of a process p, if there is a process g,

such that p - g. Let RT(p) denote the set of ready traces of p. Two
processes p and q are ready trace equivalent if RT (p)=RT(gq). In ready
trace semantics two processes are identified iff they are ready trace
equivalent.

In BAETEN, BERGSTRA & Kiror [10], PNUELI [106] and PoMELLO [107] ready
trace semantics was defined slightly differently. By the proposition below,
their definition yields the same equivalence as mine.

DEFINITION: Xoa X a; * * - a, X, €P(Act) X (Act XP(Act))" is a normal ready

trace of a process p, if there are processes p,,---,p, such that
p5py 2> E5p and I(p)=X; for i=1, - ,n. Let RTy(p) denote

the set of normal ready traces of p. Two processes p and ¢ are ready trace
equivalent in the sense of [10, 106, 107] if RTy(p)=RTy(q).

PropoOsSITION 1.3: Let p,geA. Then RTy(p)=RTyN(q) < RT(p)=RT(q).

ProoF: The normal ready traces of a process are just the ready traces which
are an alternating sequence of sets and actions, and vice versa the set of all
ready traces can be constructed form the set of normal ready traces by means
of doubling and leaving out menus. a

1.7. Readiness semantics. The readiness machine has the same layout as the
ready trace machine, but, like the failure machine, can not recover from an
idle period. By means of the lights the menu of initial actions of the remain-
ing behaviour of an idle process can be recorded, but this happens at most
once during an observation of a process, namely at the end. An observation
either results in a trace of the process, or in a pair of a trace and a menu of
actions by which the observation could have been extended if the observer
wouldn’t have blocked them. Such a pair is called a ready pair of the process,
and the set of all ready pairs of a process is its ready set.

DEFINITION: <0,X >€Act” XP(Act) is a ready pair of a process p, if there is a

process ¢, such that p > g and I(g)=X. Let R(p) denote the set of ready
pairs of p. Two processes p and q are ready equivalent if R(p)=R(q). In
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readiness semantics two processes are identified iff they are ready equivalent.

Two preliminary versions of readiness semantics were proposed in ROUNDS &
BROOKES [112]. In possible-futures semantics the menu consists of the entire
trace set of remaining behaviour of an idle process, instead of only the set of
its initial actions; in acceptance-refusal semantics a menu may be any finite
subset of initial actions, while also the finite refusal sets of Subsection 1.4 are
observable.

DEFINITION: <o0,X >€Act" XP(Act”) is a possible-future of a process p, if

there is a process ¢, such that p > g and T(g9)=X. Let PF(p) denote the set
of possible futures of p. Two processes p and g are possible-futures equivalent if
PF(p)=PF(g).

DEFINITION: <0,X,Y >€Act” XP(Act) X P(Act) is a acceptance-refusal triple of

a process p, if X and Y are finite and there is a process g, such that p =
XCI(q)and YNI(q)=@. Let AR(p) denote the set of acceptance-refusal tri-
ples of p. Two processes p and g are acceptance-refusal equivalent if
AR(p)=AR(q).

It is not difficult to see that for finitely branching processes acceptance-refusal
equivalence coincides with readiness equivalence: <o,X > is a ready pair of a
process p iff p has an acceptance-refusal triple <o, X,Y> with
XU Y =Cont (o) (as defined in the proof of Proposition 1.1).

1.8 Infinite observations. All testing scenarios up till now assumed that an
observation takes only a finite amount of time. However, they can be easily
adapted in order to take infinite behaviours into account.

DEFINITION:
- For any alphabet Z, let Z° be the set of infinite sequences over 2.
- ayap - €Act® is an infinite trace of a process peA, if there are

processes pi,p2, - - - such that p a—')p, Zy ..., Let T“(p) denote the
set of infinite traces of p.

- Two processes p and g are infinitary trace equivalent if T(p)=T(q) and
T“(p)=T*(q).

- p and q are infinitary completed trace equivalent if CT(p)=CT(gq) and
T“(p)=T“(q). Note that in this case also T'(p)=T(q).

- p and q are infinitary failure equivalent if F(p)=F(q) and T“(p)=T"(q).

- p and q are infinitary ready equivalent if R(p)=R(q) and T“(p)=T%(q).

- Infinitary failure traces and infinitary ready traces oe(4Act UP(Act))” and
the corresponding sets FT“(p) and RT“(p) are defined in the obvious
way. Two processes p and g are infinitary failure trace equivalent if
FT“(p)=FT*(q), and likewise for infinitary ready trace equivalence.

With Konigs lemma one easily proves that for finitely branching processes all
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infinitary equivalences coincide with the corresponding finitary ones.

1.9. Simulation semantics. The testing scenario for finitary simulation seman-
tics resembles that for trace semantics, but in addition the observer is, at any
time during a run of the investigated process, capable of making arbitrary (but
finitely) many copies of the process in its present state and observe them
independently. Thus an observation yields a tree rather than a sequence of
actions. Such a tree can be coded as an expression in a simple modal

language.

DEFINITIONS:
- The set £ of simulation formulas over Act is defined inductively by:
1. TekLs.
2. If ¢,yel then pN\Yels.
3. If ¢ and acAct then apely.
- The satisfaction relation ¥ CA X £ is defined inductively by:
1. peTforallpeA.
2. pe¢/A\yifprdand pry.
3. pekag¢ if for some geA: p <> gand g*¢.
- Let S(p) denote the set of all simulation formula that are satisfied by the
process p:
S(p)={¢els|preo}. Two processes p and g are finitary simulation
equivalent if S(p)=S(q).

The following concept of simulation, occurs frequently in the literature (see e.g.
PARK [103]). The derived notion of simulation equivalence coincides with
finitary simulation equivalence for finitely branching processes.

DEFINITION: A simulation is a binary relation R on processes, satisfying, for
a€cAct:

- if pRqg and p <> p/, then 3¢”: ¢ > q’ and p'Rq’.

Process p can be simulated by g, notation s C ¢, if there is a simulation R with

PRg.
p and q are similar, notation p g, if p C g and g C p.

PROPOSITION 1.4: Similarity is an equivalence on the domain of processes.

PROOF: It has to be checked that pCp, and pC g & qgCr = pCyg.

- The identity relation is a simulation with pRp.

- If R is a simulation with pRq and S is a simulation with ¢Sr, then the
relation ReS, defined by x (ReS)z iff Iy: xRy & ySz, is a simulation with
p(ReS)r. Od

Hence the relation will be called simulation equivalence.
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PropPOSITION 1.5: Let p,geA be finitely branching processes. Then

PSq = SEP)=S(9).
PrROOF: See HENNESSY & MILNER [73]. O

The testing scenario for simulation semantics differs from that for finitary
simulation semantics, in that both the duration of observations and the
amount of copies that can be made each time are not required to be finite.

1.10. Ready simulation semantics. Of course one can also combine the copying
facility with any of the other testing scenarios. The observer can then plan
experiments on one of the generative machines from the Subsections 1.3 to 1.7
together with a duplicator, an ingenious device by which one can duplicate the
machine whenever and as often as one wants. In order to represent observa-
tions, the modal language from the previous subsection needs to be slightly
extended.

DEFINITIONS:
- The completed simulation formulas and the corresponding satisfaction rela-
tion are defined by means of the extra clauses:
4. 0Oe ECS S
4. pe0ifI(p)=2.
- For the failure simulation formulas one needs:
4. If XCAct then X elpg.
4. peXifIp)NX=0.
- For the ready simulation formulas:
4. If X CAct then X elgq.
4. peXifI(p)=X.
- For the failure trace simulation formulas:
4. If ¢€lrrs and X CAct then X$peLprs.
4. peXoif Ip)NX=0 and pko.
- And for the ready trace simulation formulas:
4. If ¢EE’RTS and X CAct then X¢€ERTS-
4. peX¢if I(p)=Xand pk¢.

Note that traces, complete traces, failure pairs, etc. can be obtained as the
corresponding kind of simulation formulas without the operator /.

By means of the formulas defined above one can define the finitary versions of
completed simulation equivalence, ready simulation equivalence, etc. It is obvious
that failure trace simulation equivalence coincides with failure simulation
equivalence and ready trace simulation equivalence with ready simulation
equivalence (pkX¢ < pEX/A\¢). Also it is not difficult to see that failure
simulation equivalence and ready simulation equivalence coincide. So two
different equivalences remain. For finitely branching processes the finitary ver-
sions of these two equivalences coincide with the following infinitary versions.
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DEFINITION: A complete simulation is a binary relation R on processes, satisfy-
ing, for acAct:

- if pRgand p L)p’, then 3¢": ¢ e q’' and p'Rq’;

- ifpRgthen I(p)=90 < I(q)=52.

Two processes p and q are completed simulation equivalent if there exists a com-
plete simulation R with pRq and a complete simulation S with gSp.

DEFINITION: A ready simulation is a binary relation R on processes, satisfying,
for aeAct:

- if pRgand p =5 p’, then 3¢": ¢ e q’' and p'Rq’;

- if pRq then I(p)=1(q).

Two processes p and g are ready simulation equivalent if there exists a ready
simulation R with pRq and a ready simulation S with ¢Sp.

An alternative and maybe more natural testing scenario for finitary ready
simulation semantics (or simulation semantics) can be obtained by exchanging
the duplicator for an undo-button on the (ready) trace machine (Figure 5).

-Io\- -IO\- -IO\-
P v ® C )
a b z undo

FIGURE 5. The ready simulation machine

It is assumed that all intermediate states that are past through during a run of
a process are stored in a memory inside the black box. Now pressing the
undo-button causes the machine to shift one state backwards. In case the but-
ton is pressed during the execution of an action, this execution will be inter-
rupted and the process assumes the state just before this action began. In the
initial state pressing the button has no effect. An observation now consists of
a (ready) trace, enriched with undo-actions. Such observations can easily be
translated in (ready) simulation formulas.
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1.11. Refusal (simulation) semantics. In the testing scenarios presented so far, a
process is considered to perform actions and make choices autonomously. The
investigated behaviours can therefore be classified as generative processes. The
observer merely restricts the spontaneous behaviour of the generative machine
by cutting off some possible courses of action. An alternative view of the
investigated processes can be obtained by considering them to react on stimuli
from the environment and be passive otherwise. Reactive machines can be
obtained out of the generative machines presented so far by replacing the
switches by buttons and the display by a green light.

_/O\- -IO\. -IO\.
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FIGURE 6. The reactive ready simulation machine

Initially the process waits patiently until the observer tries to press one of the
buttons. If the observer tries to press an a-button, the machine can react in
two different ways: if the process can not start with an a-action the button will
not go down and the observer may try another one; if the process can start
with an g-action it will do so and the button goes down. Furthermore the
green light switches on. During the execution of @ no buttons can be pressed.
As soon as the execution of a is completed the light switches off, so that the
observer knows that the process is ready for a new trial. Reactive machines as
described above originate from MILNER [92, 93].

Next I will discuss the equivalences that originate from the various reactive
machines. First consider the reactive machine that resembles the failure trace
machine, thus without menu-lights and undo-button. An observation on such
a machine consists of a sequence of accepted and refused actions. Such a
sequence can be modelled as a failure trace where all refusal sets are single-
tons. For finitely branching processes the resulting equivalence is exactly the
equivalence that originates from PHILLIPS notion of refusal testing [105]. There
it is called refusal equivalence. The following proposition shows that for
finitely branching processes refusal equivalence coincides with failure
equivalence.
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PROPOSITION 1.6: Let peA, 0 FT (p) and Cont (0)={acAct |6acFT (p)}.

i.  Then, for XCAct, 0XpeFT(p) < o(XNCont(0))pcFT(p).

ii. If p is finitely branching then Cont (o) is finite.

iii. o(XUY)eFT(p) & oXYpeFT(p).

PrOOF: Straightforward. a

If the menu-lights are added to the reactive failure trace machine considered
above one can observe ready trace sets, and the green light is redundant. If
the green light (as well as the menu-lights) are removed one can only test trace
equivalence, since any refusal may be caused by the last action not being ready
yet. Reactive machines seem to be unsuited for testing completed trace and
failure equivalence. If the menu-lights and the undo-button are added to the
reactive failure trace machine one gets ready simulation again and if only the
undo-button is added one obtains an equivalence that may be called refusal
simulation equivalence and coincides with ready simulation equivalence on the
domain of finitely branching processes. The following refusal simulation formu-
las originate from BLOOM, ISTRAIL & MEYER [28].

DEFINITION: The refusal simulation formulas and the corresponding satisfaction
relation are defined by adding to the definitions of Subsection 1.9 the follow-
ing extra clauses:

4. If aeAct then —a€efcs.

4. pr—aifael(p).

1.12. 2-nested simulation semantics. 2-nested simulation equivalence popped up
naturally in GROOTE & VAANDRAGER [68] as the coarsest congruence with
respect to a large and general class of operators that is finer than completed
trace equivalence. In order to obtain a testing scenario for this equivalence
one has to introduce the rather unnatural notion of a lookahead [68): The 2-
nested simulation machine is a variant of the ready trace machine with duplica-
tor, where in an idle state the machine not only tells which actions are on the
menu, but even which simulation formulas are satisfied in the current state.

DEFINITION: A 2-nested simulation is a simulation contained in simulation
equivalence (S). p and q are 2-nested simulation equivalent if there exists a 2-
nested simulation R with pRq and a 2-nested simulation S with ¢Sp.

1.13. Bisimulation semantics. The testing scenario for bisimulation semantics,
as presented in MILNER [92] is the oldest and most powerful testing scenario,
from which most others have been derived by omitting some of its features. It
was based on a reactive failure trace machine with duplicator, but additionally
the observer is equipped with the capacity of global testing. Global testing is
described in ABRAMSKY [1] as: “the ability to enumerate all (of finitely many)
possible ‘operating environments’ at each stage of the test, so as to guarantee
that all nondeterministic branches will be pursued by various copies of the
subject process”. MILNER [92] implemented global testing by assuming that
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(i) It is the weather which determines in each state which a-move will occur
in response of pressing the a-button (if the process under investigation is
capable of doing an a-move at all);

(i) The weather has only finitely many states - at least as far as choice-
resolution is concerned;

(iii) We can control the weather.

Now it can be ensured that all possible moves a process can perform in reac-

tion on an a-experiment will be investigated by simply performing the experi-

ment in all possible weather conditions. Unfortunately, as remarked in

MILNER [93], the second assumption implies that the amount of different a-

moves an investigated process can perform is bounded by the number of possi-

ble weather conditions; so for general application this condition has to be
relaxed.

A different implementation of global testing is given in LARSEN & SkoU [86].
They assumed that every transition in a transition system has a certain positive
probability of being taken. Therefore an observer can with an arbitrary high
degree of confidence assume that all transitions have been examined, simply by
repeating an experiment many times.

As argued among others in BLOOM, ISTRAIL & MEYER [28], global testing in
the above sense is a rather unrealistic testing ability. Once you assume that
the observer is really as powerful as in the described scenarios, in fact more
can be tested then only bisimulation equivalence: in the testing scenario of
Milner also the correlation between weather conditions and transitions being
taken by the investigated process can be recovered, and in that of Larsen &
Skou one can determine the relative probabilities of the various transitions.

An observation in the global testing scenario can be represented as a for-
mula in Hennessy-Milner logic [12] (HML). An HML formula is a simulation
formula in which it is possible to indicate that certain branches are not
present.

DEerFINITION: The HML-formulas and the corresponding satisfaction relation
are defined by adding to the definitions in Subsection 1.9 the following extra
clauses:

4. If ¢l then —¢pel

4. pe—gpifp¥é.

Let HML(p) denote the set of all HML-formula that are satisfied by the pro-
cess p: HML(p)={¢€Ll|pk¢}. Two processes p and g are HML-equivalent if
HML(p)=HML(q).

For finitely branching processes HENNESSY & MILNER [72] provided the follow-
ing characterization of this equivalence.

DEFINITION: Let p,g€A be finitely branching processes. Then:
- p~o4 is always true.
- pr~n+1qifforallaedct:

- p £ p’ implies 3¢”: ¢q 5 q' and p’ ~, q’;
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- q s q’ implies 3p”: p L)p’ and p' ~, ¢q'.
- p and g are observational equivalent, notation p ~ ¢, if p~,q for every
nelN.

ProposITION 1.7: Let p,geA be finitely branching processes. Then
p~q < HML(p)=HML(q).
PROOF: In HENNESSY & MILNER [73]. O

As observed by PArRk [103], for finitely branching processes observation
equivalence can be reformulated as bisimulation equivalence.

DEFINITION: A bisimulation is a binary relation R on processes, satisfying, for
a€Act:

- if pRgand p - p’, then 3¢”: ¢ > ¢’ and p'Rq’;

- if pRgand ¢ - g’ then 3p”: p > p’ and p’Ryq’.

Two processes p and g are bisimilar, notation p < g, if there exists a bisimula-
tion R with pRq.

The relation < is again a bisimulation. As for similarity, one easily checks

that bisimilarity is an equivalence on A. Hence the relation will be called
bisimulation equivalence. Finally note that the concept of bisimulation does

not change if in the definition above the action relations ——> were replaced

by generalized action relations —> .

ProposiTION 1.8: Let p,geA be finitely branching processes. Then

peq o p~g
PrOOF: "=": Straightforward with induction. ”<" follows from Theorem 5.6
in MILNER [92]. O

For infinitely branching processes ~ is coarser then < and will be called
finitary bisimulation equivalence.

Another characterization of bisimulation semantics can be given by means
of AcCzeL’s universe V of non-well-founded sets [4]. This universe is an exten-
sion of the Von Neumann universe of well-founded sets, where the axiom of
foundation (every chain xy3x,3 --- terminates) is replaced by an anti-
foundation axiom.

DEFINITION: Let B denote the wunique function B:A—-%V satisfying

Bp)={<a, B(q)>|p s g} for all peA. Two processes p and ¢ are
branching equivalent if B(p)=B(q).

It follows from Aczel’s anti-foundation axiom that such a solution exists. In
fact the axiom amounts to saying that systems of equations like the one above
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have unique solutions. In [4] there is also a section on communicating sys-
tems. There two processes are identified iff they are branching equivalent.

A similar idea underlies the semantics of DE BAKKER & ZUCKER [15], but
there the domain of processes is a complete metric space and the definition of
B above only works for finitely branching processes, and only if = is inter-
preted as isometry, rather then equality, in order to stay in well-founded set
theory. For finitely branching processes the semantics of De Bakker and
Zucker coincides with the one of Aczel and also with bisimulation semantics.
This is observed in VAN GLABBEEK & RUTTEN [57], where also a proof can be
found of the next proposition, saying that bisimulation equivalence coincides
with branching equivalence.

PROPOSITION 1.9: Let p,geA. Then p € q < B(p)=B(q).
PrROOF: ”"<”. Let B be the relation, defined by pBgq iff B(p)=B(g), then it

suffices to prove that B is a bisimulation. Suppose pBg and p > p’. Then
<a,B(p’)>€B(p)=B(gq). So by the definition of B(gq) there must be a pro-
cess ¢’ with B(p’)=B(q’) and ¢ s q’. Hence p’Bg’, which had to be proved.
The second requirement for B being a bisimulation follows by symmetry.

”=". Let B" denote the unique solution of

B P)={<a, B'()>|Ir:rep&r-Sr).
As for B it follows from the anti-foundation axiom that such a unique solution
exists. From the symmetry and transitivity of < it follows that
peq = B (p)=B(g). *)
Hence it remains to be proven that B" =B. This can be done by showing that

B satisfies the equations B(p)={<a, B(¢)>|p — ¢}, which have B as
unique  solution. So it has to be  established  that
B'(p)={<a, B(9)>|p = ¢}. The direction ” 2" follows directly from the
reflexivity of <. For ”C”, suppose <a,X>eB'(p). Then Ir:r < p,
r=>r and X=B'(r'). Since < is a bisimulation, 3p": p —> p’ and
r'ep’. Now from (*) it follows that X =B"(r')=B"(p’). Therefore
<a,X>e{<a, B'(q)>|p = ¢}, which had to be established. a

2. THE SEMANTIC LATTICE

2.1. Ordering the equivalences for finitely branching processes. In Section 1
twelve semantics were defined that are different for finitely branching
processes. These will be abbreviated by 7, CT, F, R, FT, RT, S, CS, RS, PF,
2S and B. Write § < J if semantics S makes at least as much identifications
as semantics 9. This is the case if the equivalence corresponding with § is
equal to or coarser than the one corresponding with 9.
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THEOREM 2.1: T <X CT < FS R <X RT, F <X FT < RT < RS < 2§ < B,
T<S<CS<RS, CT<CS and R < PF =<2S.

PrOOF: The first statement is trivial. For the next five statements it suffices to
show that CT'(p) can be expressed in terms of F(p), F(p) in terms of R(p),
R(p) in terms of RT(p), F(p) in terms of FT(p) and FT (p) in terms of RT (p).
- CT(p)={o€AdA’|<o0,A>€F(p)}.
- <0,X>€F(p) © IYCA: <0,Y>€R(p) & XNY=0.
- <6,X>€R(p) © oXeRT(p).
- <o0,X>€eF(p) & oXeFT(p).
- 0=010; " 0,€FT(p) (6,€AUPA)) &

3p=p1p2 - - - Pn€RT(p) (p;i€AUP(A)) such that for i=1,..,n either

o,=p,€A oro;,p;CA and 0, Np,= D

The remaining statements are (also) trivial. d

Theorem 1 is illustrated in Figure 1. There, however, completed trace seman-
tics is missing, since it did not occur in the literature.

2.2. Ordering the equivalences for infinitely branching processes. When the res-
triction to finitely branching processes is dropped, there exists a finitary and
an infinitary variant of each of these semantics, depending on whether or not
infinite observations are taken into account. These versions will be notation-
ally distinguished by means of superscripts “*’ and ‘w’ respectively; the unsub-
scripted abbreviation will, for historical reasons, refer to the infinitary versions
in case of ‘simulation’-like semantics and to the finitary versions otherwise.
For the semantics that are based on refusal sets, there exists even a third ver-
sion, namely when also the refusal sets are required to be finite. These will be
denoted by means of a superscript ‘“—’. So F~ denotes failure semantics as
defined in [33] (see Subsection 1.4), R~ denotes acceptance-refusal semantics
[112] (Subsection 1.7), FT~ denotes refusal semantics (Subsection 1.11), RS~
denotes refusal simulation semantics (also Subsection 1.11) and B~ denotes
HML-semantics (Subsection 1.13). Now the =<-relation is represented by

arrows in Figure 7.

THEOREM 2.2: Let §,9 be any two of the semantics mentioned above. Then
5=<J whenever this is indicated in Figure 7.

Again the proof is straightforward. If the labelled transition system A on
which these semantic equivalences are defined is large enough, then they are all
different and & < ¥ holds only if this follows from Theorem 2.2 (and the fact
that < is a partial order), as will be shown in Subsection 2.8. However, for
certain labelled transition systems much more identifications can be made. Is
has been remarked already that for finitely branching processes all semantics
that are connected by dashed arrows in Figure 7 coincide. This result will be
slightly strengthened in the next subsection. In the subsequent subsection a
class of processes will be defined on which all the semantics coincide.
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FIGURE 7. The infinitary linear time - branching time spectrum

2.3. Image finite processes.

DEFINITION: A process peA is image finite if for each oeAct™ the set
{geA |p = ¢} is finite.

Note that finitely branching processes are image finite, but the reverse does not
hold.

THEOREM 2.3: On a domain of image finite processes, semantics that are con-
nected with a dashed arrow in Figure 7 coincide.

ProOF: For the upper two arrows, connecting HML-semantics with finitary
bisimulation semantics and finitary bisimulation semantics with bisimulation
semantics, the proof has been given in HENNESSY & MILNER [73]. For the
other simulation-like semantics the proof goes likewise. For the trace-like
semantics the correspondence between the finitary and infinitary versions (the
arrows on the right) follows directly from Konigs lemma. Here I only prove
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the correspondence between F~ and F; the remaining cases can be proved
likewise.

It has to be established that, for image finite processes p and g€A,
F~(p)=F (q9) = F(p)=F(q), where F~ (p) denotes the set of failure pairs
<0,X > of p with finite refusal set X. The reverse implication is trivial. For
finitely branching processes F(p) is completely determined by F~ (p) (Proposi-
tion 1.1), from which the implication follows. For arbitrary image finite
processes this is no longer the case, but the implication still holds.

Let p and geA be two image finite processes with F(p)7%F(q). Say there is
a failure pair <o,X >€F(p)—F(q). By image finiteness of q there are only

finitely many processes r; with g <> r;, and for each of those there is an
action ag; €1 (r;)N X (otherwise <o,X > would be a failure pair of g). Let Y be
the set of all those g;’s. then Y is a finite subset of X, so <o,Y>€F™ (p).
On the other hand q;€l(r;)NY for all »;, so <o,Y >eF ™ (q). O

2.4. Deterministic processes.
DEFINITION: A process p is deterministic ifp ~—> q & p —>r = gq=r.

REMARK: If p is deterministic and p - p’ then also p' is deterministic. Hence
any domain of processes on which action relations are defined, has a sub-
domain of deterministic processes with the inherited action relations. (A simi-
lar remark can be made for image finite processes.)
PrROOF: Suppose p’ £ q and p’ = Then p 2 q and p 2> r,s0q=r.

d

THEOREM 2.4 (PARK [103]): On a domain of deterministic processes all semantics
on the infinitary linear time - branching time spectrum coincide.

PrOOF: Because of Theorem 2.2 it suffices to show that BS<XTS. This is the
case if T(p)=T(q) = p < q for any two deterministic processes p and q.
Let R be the relation, defined by pRq iff T(p)=T(q), then it suffices to prove

that R is a bisimulation. Suppose pRq and p —> p’. Then oeT(p)=T(q).
So there is a process ¢’ with ¢ —> q’. Now let peT(p’). Then 3r: p’ =
Hence p 25 r and opeT(p)=T(q). So there must be a process s with
q % s By the definition of the generalized action relations

dr: g - 1 5 5, and since q is deterministic, t =¢’. Thus peT(¢’), and from
this it follows that T (p")CT'(¢’). Since also p is deterministic the converse can
be established in the same way, and together this yields T'(p’)=T(q’), or p’Rq’.
This finishes the proof. O
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2.5. Process graphs. In process theory it is common practice to represent
processes as elements in a mathematical domain. The semantics of a process
theory can then be modelled as an equivalence on such a domain. In Section
1 several semantic equivalences were defined on any domain of sequential
processes which is provided with action relations. Such a domain was called a
labelled transition system. In Section 3 a term domain P with action relations
will be presented for which these definitions apply. The present subsection
introduces one of the most popular labelled transition systems: the domain G
of process graphs or state transition diagrams.

DEFINITION: A process graph over a given alphabet Act is a rooted, directed

graph whose edges are labelled by elements of Act. Formally, a process graph

g is a triple (NODES (g),EDGES (g),ROOT (g)), where

- NODES(g) is a set, of which the elements are called the nodes or states of
8

- ROOT (g)ENODES (g) is a special node: the root or initial state of g,

- and EDGES (g) CNODES (g) X Act X NODES (g) is a set of triples (s,a,t) with
s,t ENODES (g) and a € Act: the edges or transitions of g.

If e =(s,a,t)€EDGES (g), one says that e goes from s to t. A (finite) path  in a
process graph is an alternating sequence of nodes and edges, starting and end-
ing with a node, such that each edge goes from the node before it to the node
after it. If 7=s¢(50,a1,51)51(51,a2,52) " * * (S, —1,8,,5,)S,, also denoted as
T So a—')s, a—z> B i a—")s,,, one says that = goes from s to s,; it starts in s
and ends in end(m)=s,. Let PATHS (g) be the set of paths in g starting from
the root. If s and ¢ are nodes in a process graph then ¢ can be reached from s if
there is a path going from s to z. A process graph is said to be connected if all
its nodes can be reached from the root; it is a tree if each node can be reached
from the root by exactly one path. Let G be the domain of connected process
graphs over a given alphabet Act.

DErFINITION: For geG and s eNODES (g), let g, be the process graph defined
by

- NODES (g;)={t ENODES (g) | there is a path going from s to t},

- ROOT (g;) =S ENODES (g;),

- and (t,a,u)€EDGES (g;) iff t,u eNODES (g;) and (¢,a,u)EEDGES (g).

Of course g,€G. Remark that ggoor(s) =g Now on G action relations s

for acAct are defined by g —> h iff (ROOT (g),a,5)€EDGES (g) and h =g,.
This makes G into a labelled transition system. Hence all semantic
equivalences of Section 1 are well-defined on G. Below the sets of observa-
tions O(g) for Oe{T, CT, R, F, RT, FT}i= and geG, are characterized in
terms of the paths of g, rather than the generalized action relations between
graphs.
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a;

DEFINITION: Let geG and let 7: s ﬂ->s| = n a—")s,, €PATHS (g). Con-
sider the following notions:
- the trace associated to w: T(m)=a,a, - - - a,€Act’;
- the menu of a node s eNODES (g): I(s)={acAct |3t: (s,a,t)EEDGES (g)};
- the ready pair associated to m: R(m)=<T(m),I(s,)>;
- the failure set of m: F(m)={<T(m),X>|I(s,)NX =3},
- the ready trace set of m: RT(m) is the smallest subset of (ActUP(Act))
satisfying
- A(so)a\I(sy)ay - - - a,1(s,)€RT(m),
- oXpeRT(m) = opeRT(m),
-  0XpeRT(m) = oXXpeRT(m),
- the failure trace set of m: FT () is the smallest subset of (Act UP(Act))
satisfying
- (A —I(so)ar(A —1I(sy))ay - - an(A —1(s,)€FT(m),
-  o0XpeFT(m) = opeFT(n),
- o0XpeFT(n) = oXXpeFT(m),
- oXpeFT(m)ANYCX = oYpeFT(n),

PROPOSITION 2.5:
T(g)={T(m)| mPATHS (g)}
CT(g)={T(w)| mePaTHS (g) I (end(m))= 2 )
R(g)={R(m)| mePATHS (g)}

F@= U F(m)
mEPATHS (g)
RTg)= U RT(m)
MEPATHS (g)
FT@)= U FT(m)
mEPATHS (g)
PrROOF: Straightforward. a

Analogously, the simulation-like equivalences can be characterized by means of
simulation relations between the nodes of two process graphs, rather than
between process graphs themselves. Below this is done for bisimulation
equivalence.

DEFINITION: Let g,heG. A bisimulation between g and h is a binary relation

R CNODES (g) X NODES (h), satisfying:

1. ROOT (g)RROOT (h).

2. If sRt and (s,a,s’)€EDGES (g), then there is an edge (t,a,t’)€EDGES (h)
such that s’Rt’.

3. If sRt and (t,a,t’)€EDGES (h), then there is an edge (s,a,5")EEDGES (g)
such that s'R¢’.

This definition is illustrated in Figure 8. Now it follows easily that two graphs
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g and h are bisimilar iff there exists a bisimulation between them.

FIGURE 8

Proposition 2.5 yields a technique for deciding that two process graphs are
ready trace equivalent, c.q. failure trace equivalent, without calculating their
entire ready trace or failure trace set.

a, a, a,
Let gheG, w59 —>S; —> -+ —>s5,EPATHS and
a, a; a, . ; ’
'ty —>t, —> -+ —>t,€PATHS. Path 7’ is a failure trace augmentation of

m, notation 7<<prw’, if FT(m)CFT(7’). This is the case exactly when n =m
and I(4;)CI(s;) for i =1,...,n. Write w= g7’ for #<<prn’ A7’ <ppm. It follows
that 7=prn’ & FT(m)=FT(n’) < RT(w)=RT(7’). From this the follow-
ing can be concluded.

COROLLARY 2.5: Two process graphs g.,h €G are ready trace equivalent iff

- for any path mPATHS (g) in g there is a w €PATHS (h) such that = grm’

- and for any path mePATHS(g) in h there is a m €PATHS(g) such that
T=pr7’.

They are failure trace equivalent iff

- for any path mEPATHS (g) in g there is a ' €PATHS (h) such that 7<prm’

- and for any path mePATHS(g) in h there is a w' €PATHS (g) such that
T<prm.

If g and h are moreover without infinite paths, then it suffices to check the

requirements above for maximal paths.

2.6. Drawing process graphs.

DErFINITION: Let g,h€G. A graph isomorphism between g and h is a bijective
function f :NODES (g)—>NODES (k) satisfying

- f(ROOT (g))=ROOT (g) and

- (s,a,t)€EDGES (g) < (f(s),a,f(1))€EDGES (h).
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Graphs g and h are isomorphic, notation g=h, if there exists a graph isomor-
phism between them.

In this case g and 4 differ only in the identity of their nodes. Remark that
graph isomorphism is an equivalence on G.

PROPOSITION 2.6: For g,h€G, g=h iff there exists a bisimulation R between g
and h, satisfying
4. If sRt and uRv then s=u < t=v.

PROOF: Suppose g=h. Let f:NODES (g)—NODES (k) be a graph isomorphism.
Define R CNODES (g) XNODES (h) by sRt iffl f(s)=¢ Then it is routine to
check that R satisfies clauses 1, 2, 3 and 4. Now suppose R is a bisimulation
between g and h, satisfying 4. Define f :NODES (g)—NODES (k) by f(s)=t iff
sRt. Since g is connected it follows from the definition of a bisimulation that
for each s such a ¢ can be found. Furthermore direction "=" of clause 4
implies that f (s) is uniquely determined. Hence f is well-defined. Now direc-
tion ”<" of clause 4 implies that f'is injective. From the connectedness of 4 if
follows that f'is also surjective, and hence a bijection. Finally clauses 1, 2 and
3 imply that f'is a graph isomorphism. O

COROLLARY: If g=h then g and h are equivalent according to all semantic
equivalences of Section 1.

Finitely branching connected process graphs can be pictured by using open
dots (°) to denote nodes, and labelled arrows to denote edges, as can be seen
in Subsection 2.8. There is no need to mark the root of such a process graph
if it can be recognized as the unique node without incoming edges, as is the
case in all my examples. These pictures determine process graphs only up to
graph isomorphism, but usually this suffices since it is virtually never needed to
distinguish between isomorphic graphs.

2.7. Embedding labelled transition systems in G. Let A be an arbitrary labelled
transition system and let peA. The canonical graph G(p) of p is defined as
follows:

- NODES(G(p))={qeA|Ioed*: p > g},

- ROOT (G (p))=p €NODES (G (p)),

- and (¢,a,r)€EDGES (G (p)) iff ¢,r eNODES (G (p)) and ¢ —> r.

Of course G(p)eG. This means G is a function from A to G.

ProposiTION 2.7: G:A—G is an injective function, satisfying, for acAct:
G(p) = Gg) = p =g

PROOF: Trivial. O
COROLLARY: For peA and O€{T, CT, F, R, FT, RT, S, CS, RS, PF, 28, B},
o0GEN=0@).
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Proposition 2.7 says that G is an embedding of A in G. It implies that any
labelled transition system over Act can be represented as a subclass
G(A)={G(p)eG|peA} of G.

Since G is also a labelled transition system, G can be applied to G itself.
The following proposition says that the function G:G—G leaves its arguments
intact up to graph isomorphism.

PROPOSITION 2.8: For geG, G(g)=g.
PrOOF: Remark that NODES (G(g))={g; | s €NODES (g)}. Now the function
f :NODES (G (g))—>NODES (g) defined by f(g;)=s is a graph isomorphism. O

2.8. Counterexamples. In this subsection a number of examples will be
presented, showing that on G all semantic notions mentioned in Theorem 2.2
are different and § < 9 holds only if this follows from that theorem. More-
over, apart from the examples needed to show the difference between seman-
tics that are connected by a dashed arrow in Figure 7, all examples will use
finite processes only. Thus it follows that neither the ordering of Theorem 2.1
nor the ordering of Theorem 2.2 can be further expanded. Let H be the set of
finite connected process graphs. Here a process graph g is finite if PATHS (g) is
finite. Finite graphs are acyclic and have only finitely many nodes and edges.
They represent finite processes.

THEOREM 2.9: Let & and I be semantics on H from the series T, CT, F, R, FT,
RT, S, CS, RS, PF, 2S, B. Then S<9 only if this follows from Theorem 2.1.
(and the fact that < is a partial order).

Proor: The following counterexamples provide for any statement S<9, not
following from Theorem 2.1 and the fact that <X is a partial order, two finite
connected process graphs that are identified in 9, but distinguished in §.

a a ==
a
Fcr
b _ b
—s
ab+a ab
FIGURE 9

1. T#CT. For the graphs of Figure 9, T (left)=T (right)={e, a, ab}, whereas
CT (left)=CT (right) (since a € CT (left)— CT (right)). Hence they are identified
in trace semantics but distinguished in completed trace semantics.
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Furthermore the two graphs are simulation equivalent (the construction of the
two simulations is left to the reader). Since =< is a partial order, the same
example shows that §<X9J for Se{CT, CS, F, R, FT, RT, RS, PF, 28, B}
and 9€(T, S}.

cT a
FF
b c
=5
ab+a((b+c) a(b+c)
FIGURE 10

2. CT*#F. For the graphs of Figure 10, CT(left)=CT (right)={ab, ac},
whereas F(left)7=F (right) (since <a,{b}>eF(left)— F(right)). Hence they
are identified in completed trace semantics but distinguished in failure seman-
tics. Furthermore the two graphs are completed simulation equivalent (the
construction of the two completed simulations is again left to the reader).
Since < is a partial order, the same example shows that §<XJ for
Se(F, R, FT, RT, RS, PF, 28, B} and 9e{CT, CS}.

ab +ac ab +a(b +c)+ac

FIGURE 11

3. FT#R. For the graphs of Figure 11, FT(left)=FT(right), whereas
R (left)5R (right). The first statement follows from Corollary 2.5, since the
new maximal paths at the right-hand side are both failure trace augmented by
the two maximal paths both sides have in common. The second one follows
since <a, {b,c}>e€R(right)—R(left). Hence these processes are identified in
failure trace semantics but distinguished in readiness semantics. Since < is a
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partial order, the same example shows that $# 9 for any S<FT and 9>R, so
in particular F# R and FT# RT.

a(b+cd)t+a(f +ce) a(b+ce)+a(f +cd)
FIGURE 12

4. R¥FT. For the graphs of Figure 12, R(left)=R(right), whereas
FT (left)7FT (right). The first statement follows since in the second graph
only 4 ready pairs swopped places. The second one follows since
a{b}cecFT (left)— FT (right). Hence these processes are identified in readiness
semantics but distinguished in failure trace semantics. Since < is a partial
order, the same example shows that $# 9 for any S<R and 9> FT, so in par-
ticular F#FT and R* RT. Since PF(left)PF (right) this example does not
show that PF# FT. 1t it left as an exercise to the reader to adapt the example
so that also that is established.

a a
a
—RT
b b b b
Fs
c d c d
abc +abd a(bc +bd)
FIGURE 13

5. RT*#S. For the graphs of Figure 13, RT(left)=RT(right), whereas
S (left)=S (right). The first statement follows immediately from Corollary 2.5.



44 I. The linear time - branching time spectrum

The second one follows since a(bcT /A\bdT)eS (right)—S (left). Hence these
processes are identified in ready trace semantics but distinguished in simula-
tion semantics. Since < is a partial order, the same example shows that $* J
for any S<RT and 9=, so in particular T# S, CT# CS and RT# RS.

a
—RS
b b
Fas
c d
abc +a(bc +bd) a(bc +bd)
FIGURE 14

6. RS*#2S. The graphs of Figure 14 are ready simulation equivalent, but not
2-nested simulation equivalent. There exists exactly one simulation from right
by left, namely the one mapping right on the right-hand side of left, and this
simulation is a ready simulation as well as a 2-nested simulation. There also
exists exactly one simulation from left by right, which maps the black node on
the left on the black node on the right. This simulation is a ready simulation
(related nodes have the same menu of initial actions) but not a 2-nested simu-
lation (the two subgraphs originating from the two black nodes are not simula-
tion equivalent). Hence RS#2S. Furthermore PF(left)#PF (right), since
<a,{¢, b, bc}> e PF(left)— PF(right). Hence $# PF for any S<RS.

28

Ea

abc +a(bc +b) a(bc +b)

FIGURE 15
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7. 2S#B. The graphs of Figure 15 are 2-nested simulation equivalent, but
not bisimulation equivalent. There now exists 2-nested simulations in both
directions since the two subgraphs originating from the two black nodes are
simulation equivalent. However, a—~b—cT € HML (left)— HML (right). O

THEOREM 2.10: Let S and 9§ be semantics on G mentioned in Subsection 2.2.
Then =<9 only if this follows from Theorem 2.2. (and the fact that < is a partial
order).

Proor: The following counterexamples provide for any statement $<9, not
following from Theorem 2.2 and the fact that < is a partial order, two con-
nected process graphs that are identified in J, but distinguished in 8.

8. B'#T“. The graphs of Figure 4 in Chapter 3 are finitary bisimulation
equivalent (as follows straightforward with induction) but not infinitary trace
equivalent (since only the graph at the right has an infinite trace). Since <X is
a partial order it follows that $* 9 for S<B" and 9> T*.

FIGURE 16

9. B™ R CT. For the graphs of Figure 16, HML (left)=HML (right), whereas
CT (left)7#CT (right). The first statement follows since by means of HML-
formulas one can only say that a finite set of actions can not take place in a
certain state. The second one follows since a € CT (left)— CT (right). Since <
is a partial order it follows that 5% J for S<B~ and 9>CT. O

One could say that a semantics S respects deadlock behaviour iff $>CT. The
example above then shows that non of the semantics on the left in Figure 7
respects deadlock behaviour; only the left-hand process of Figure 16 can
deadlock after an a-move.
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3. COMPLETE AXIOMATIZATIONS

3.1. A language for finite, concrete, sequential processes. Consider the following
basic CCS- and CSP-like language BCCSP for finite, concrete, sequential
processes over a finite alphabet Act:

inaction : 0 (called nil or stop) is a constant, representing a process that refuses
to do any action.

action: a is a unary operator for any action a€Act. The expression ap
represents a process, starting with an g-action and proceeding with p.

choice: + is a binary operator. p +gq represents a process, first being
involved in a choice between its summands p and g, and then
proceeding as the chosen process.

The set P of (closed) process expressions or terms over this language is defined
as usual:

- 0eP,

- apeP for any aeAct and peP,

- p+qeP for any p,qeP.

Subterms a0 may be abbreviated by a.

On P action relations —> for aeAct are defined as the predicates on P gen-
erated by the action rules of Table 1. Here a ranges over Act and p and g over
P.

aﬁ ’ L) ’
a 2> p _e___P_ __q_q_
prq—=p pte—=¢
TABLE 1

Now all semantic equivalences of Section 1 are well-defined on P, and for each
of the semantics it is determined when two process expressions denote the
same process.

3.2. Axioms. In Table 2, complete axiomatizations can be found for ten of the
twelve semantics of this chapter that differ on BSSCP. Axioms for 2-nested
simulation and possible-futures semantics are more cumbersome, and the
corresponding testing notions are less plausible. Therefore they have been
omitted. In order to formulate the axioms, variables have to be added to the
language as usual. In the axioms they are supposed to be universally
quantified. Most of the axioms are axiom schemes, in the sense that there is
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one axiom for each substitution of actions from Acz for the parameters a,b,c.
Some of the axioms are conditional equations, using an auxiliary operator I.
Thus provability is defined according to the standards of either first-order logic
with equality or conditional equational logic. I is a unary operator that calcu-
lates the set of initial actions of a process expression, coded as a process
expression again.

THEOREM 3.1: For each of the semantics O€{T, S, CT, CS, F, R, FT, RT, RS,
B} two process expressions p,qeP are O-equivalent iff they can be proved equal
from the axioms marked with ‘+’ in the column for O in Table 2. The axioms
marked with ‘v’ are valid in O-semantics but not needed for the proof.

BIRSRT|IFT|R|FICSCT|S|T
x+y = y+x ++ |+ |+ |+ |+ [+
(x+y)tz = x+( +2) + |+ [+ || |+ ||+
x +x = x +|+ |+ |+ |+ |+ |H+
x +0 = x +|+ |+ |+ |+ |+ |H]+
I(x) =1(y) = a(x+y) = ax+a(x+y) +|(v|v|vlv|v|v]|v|v
I(x) = I(y) = ax+ay = a(x+y) +|+|v|v v| |v
ax +ay = ax +ay +a(x +y) +| |v| |v] |V
a(bx +u)+a(by +v) = a(bx +by +u)+a(bx +by +v +|+ v| |v
ax +a(y +z) = ax +a(x +y)+a(y +z) +| (V] |V
a(bx +u+y) = a(bx +u)+a(bx +u-+y) +|v|v|v
a(bx +u)+a(cy +v) = a(bx +cy +u+v) +| |V
a(x +y) = ax +a(x +y) +|v
ax +ay = a(x +y) +
1(0) =0 ||| ]+ [+
I(ax) = a0 + |+ |+ ||+ [+
I(x+y) = I(x)+1(y) [+ |+ |+ |||+ [+

TABLE 2

PrOOF: For F, R and B the proof is given in BERGSTRA, KLOP & OLDEROG
[24] by means of graph transformations. A similar proof for RT can be found
in BAETEN, BERGSTRA & KrLoP [10]. For the remaining semantics a proof can
be given along the same lines. O
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CONCLUDING REMARKS

In this chapter various semantic equivalences for concrete sequential processes
are defined, motivated, compared and axiomatized. Of course many more
equivalences can be given then the ones presented here. The reason for select-
ing just these, is that they can be motivated rather nicely and/or play a role in
the literature on semantic equivalences. In ABRAMSKY & VICKERS [2] the
observations which underly many of the semantics in this chapter are placed in
a uniform algebraic framework, and some general completeness criteria are
stated and proved.

It is left for a future occasion to give (and apply) criteria for selecting
between these equivalences for particular applications (such as the complexity
of deciding if two finite-state processes are equivalent, or the range of useful
operators for which they are congruences). The work in this direction reported
so far, includes [28] and [68].

An interesting topic is the generalization of this work to a setting with silent
moves and/or with parallelism. In Chapter III the generalization of bisimula-
tion semantics to a setting with silent steps is considered; in Chapters IV-VII
bisimulation and trace semantics will be considered in a setting with parallel-
ism. In both cases there turn out to be many interesting variations. General-
izing the entire spectrum to a setting with both silent actions and parallelism
remains as of yet to be done. However, in many papers parts of a
classification can be found already (see for instance [107]).

A generalization to preorders, instead of equivalences, can be obtained by
replacing conditions like O(p)=0(g) by O(p)CO(g). Since preorders are
often useful for verification purposes, it seems to be worthwhile to have to
classify them as well.

Furthermore it would be interesting to give explicit representations of the
equivalences, by representing processes as sets of observations instead of
equivalence classes of process graphs, and defining operators like action
prefixing and choice directly on these representations, as has been done for
failure semantics in [33] and for readiness semantics in [102].



Chapter I

Modular Specifications in Process Algebra

With Curious Queues

Rob van Glabbeek and Frits Vaandrager

In recent years a wide variety of process algebras has been proposed in the
literature. Often these process algebras are closely related: they can be viewed
as homomorphic images, submodels or restrictions of each other. The aim of
this chapter is to show how the semantical reality, consisting of a large number
of closely related process algebras, can be reflected, and even used, on the
level of algebraic specifications and in process verifications. This is done by
means of the notion of a module. The simplest modules are building blocks of
operators and axioms, each block describing a feature of concurrency in a cer-
tain semantical setting. These modules can then be combined by means of a
union operator +, an export operator [J, allowing to forget some operators in
a module, an operator H, changing semantics by taking homomorphic images,
and an operator S which takes subalgebras. These operators enable us to
combine modules in a subtle way, when the direct combination would be
inconsistent. We show how auxiliary process algebra operators can be hidden
when this is needed. Moreover it is demonstrated how new process combina-
tors can be defined in terms of the more elementary ones in a clean way. As
an illustration of our approach, a methodology is presented that can be used to
specify FIFO-queues, and that facilitates verification of concurrent systems con-
taining these queues.

Notes. This chapter appeared as Report CS-R8821, Centrum voor Wiskunde en
Informatica, Amsterdam 1988, an extended abstract of which has been pub-
lished in Algebraic Methods: Theory, Tools and Applications, LNCS 394,
Springer-Verlag, pp. 465-506. Apart from Sections 4 and 5 it moreover
appeared in the Ph.D. Thesis of Frits Vaandrager [122].

The research of the authors was supported by ESPRIT project no. 432, An
Integrated Formal Approach to Industrial Software Development (METEOR).
The research of the second author was also supported by RACE project no.
1046, Specification and Programming Environment for Communication
Software (SPECS).
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INTRODUCTION

During the last decade, a lot of research has been done on process a._

branch of theoretical computer science concerned with the modelling «
current systems as elements of an algebra. Besides the Calculus of Comm.
cating Systems (CCS) of MILNER [92, 95], several related formalisms have beewn
developed, such as the theory of Communicating Sequential Processes (CSP) of
HOARE [76], the MEUE calculus of AUSTRY & BoupoOL [6] and the Algebra of
Communicating Processes (ACP) of BERGSTRA & KroP [19, 20, 22].

When work on process algebra started, many people hoped that it would be
possible to come up, eventually, with the ‘ultimate’ process algebra, leading to
a ‘Church thesis’ for concurrent computation. This process algebra, one ima-
gined, should contain only a few fundamental operators and it should be
suited to model all concurrent computational processes. Moreover there should
be a calculus for this model making it possible to prove the identity of
processes algebraically, thus proving correctness of implementations with
respect to specifications. As far as we know, the ultimate process algebra has
not yet been found, but we will not exclude that it will be discovered in the
near future.

Two things however, have become clear in the meantime: (1) it is doubtful
whether algebraic system verification, as envisaged in [92], will be possible in
this model, and (2) even if the ultimate process algebra exists, this certainly
does not mean that all other process algebras are no longer interesting. We ela-
borate on this below.

A central idea in process algebra is that two processes which cannot be dis-
tinguished by observation should preferably be identified: the process seman-
tics should be fully abstract with respect to some notion of testing (see [43, 92]
and the first chapter of this thesis). This means that the choice of a suitable
process algebra may depend on the tools an environment has to distinguish
between certain processes. In different applications the tools of the environ-
ment may be different, and therefore different applications may require
different process algebras. A large number of process semantics are not fully
abstract with respect to any (reasonable) notion of testing (bisimulation seman-
tics and partial order semantics, for instance). Still these semantics can be very
interesting because they have simple definitions or correspond to some strong
operational intuition. Our hypothetical ultimate process algebra will make
very few identifications, because it should be resistant against all forms of test-
ing. Therefore not many algebraic laws will be valid in this model and alge-
braic system verification will presumably not be possible (specification and
implementation correspond to different processes in the model).

Another factor which plays a role has to do with the operators of process
algebras. For theoretical purposes it is in general desirable to work with a sin-
gle, small set of fundamental operators. We doubt however that a unique
optimal and minimal collection exists. What is optimal depends on the type of
results one likes to prove. This becomes even more clear if we look towards
practical applications. Some operators in process algebra can be used for a
wide range of applications, but we agree with JIFENG & HOARE [77] that we
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may have to accept that each application will require derivation of specialised
laws (and operators) to control its complexity.

Many people are embarrassed by the multitude of process algebras occurring
in the literature. They should be aware of the fact that there are close rela-
tionships between the various process algebras: often one process algebra can
be viewed as a homomorphic image, subalgebra or restriction of another one.
The aim of this chapter is to show how the semantical reality, consisting of a
large number of closely related process algebras, can be reflected, and even
used, on the level of algebraic specifications and in process verifications.

This chapter is about process algebras, their mutual relationships, and stra-
tegies to prove that a formula is valid in a process algebra. Still, we do not
present any particular process algebra here. In the other chapters of this thesis
several process algebras are discussed. However we neither define all the opera-
tions we use in this chapter nor all the semantical notions that will be con-
sidered here. In this chapter we only define classes of models of process
modules. One reason for doing this is that a detailed description of all partic-
ular process algebras we use would make this thesis too long. Another reason
is that there is often no clear argument for selecting a particular process alge-
bra. In such situations we are interested in assertions saying that a formula is
valid in all algebras satisfying a certain theory. A number of times we need
results stating that some formulas cannot be proven from a certain module. A
standard way to prove this is to give a model of the module where the formu-
las are not true. For this reason we will often refer to particular process alge-
bras which have been described elsewhere in the literature.

The discussion of this chapter takes place in the setting of ACP. We think
however that the results can be carried over to CCS, CSP, MEDE, or any other
process algebra formalism.

Modularisation.

The creation of an algebraic framework suitable to deal with realistic applica-

tions, gives rise to the construction of building blocks, or modules, of operators

and axioms, each block describing a feature of concurrency in a certain

semantical setting. These modules can then be combined by means of a

module combinator +. We give some examples:

i) A kernel module, that expresses some basic features of concurrent
processes, is the module ACP. For a lot of applications however, ACP
does not provide enough operators. Often the use of renaming operators
makes specifications shorter and more comprehensible. These renaming
operators can be defined in a separate module RN. Now the module
ACP+RN combines the specification and verification power of modules
ACP and RN.

ii) The axioms of module ACP correspond to the semantical notion of
bisimulation. For some applications bisimulation semantics does not
make enough identifications. In these cases one would like to deal with
processes on the level of, for example, failure semantics. Now one can
define a module F, corresponding to the identifications made in failure
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semantics on top of the identifications of bisimulation semantics. The
module ACP+F then corresponds to the failure model.

Once a number of modules have been defined, they can be combined in a lot

of ways. Some combinations are interesting (for example the module

ACP+RN+F), for other combinations no interesting applications exist (the

module RN+ F). Didactical aspects aside, a major advantage of the modular

approach is that results which have been proved from a module M, can also be
proved from a module M+N. This means that process verifications become
reusable.

It turns out that certain pairs of modules are incompatible in a very strong
sense: with the combination of two modules strange and counter-intuitive
identities can be derived. In BAETEN, BERGSTRA & KLoP [10], for example, it is
shown that the combination of failure semantics and the priority operator is
inconsistent in the sense that an identity can be derived which says that a par-
ticular process that can do a b-action after it has done an g-action, equals a
process that cannot do this. Another example can be found in BERGSTRA,
Kiopr & OLDEROG [23], where it is pointed out that the combination of failure
semantics and Koomen’s Fair Abstraction Rule (KFAR) is inconsistent.

In the first section of this chapter we present, besides the combinator +,
some other operators on modules. We discuss an export operator [1, allowing
to forget some operators in a module, an operator H, changing semantics by
taking homomorphic images, and an operator S which takes subalgebras.
These operators enable us to combine modules in a subtle way, when the
direct combination would be inconsistent. In Section 2 we describe a large
number of process modules which play a role in the ACP framework. Section
3 contains two examples of applications of the new module operators in pro-
cess algebra:

1. The axiom system ACP contains auxiliary operators || and | (left-merge
and communication-merge) which drastically simplify computations and
have some desirable ‘metamathematical’ consequences (finite axiomatisa-
bility'; greater suitability for term rewriting analysis). These auxiliary
operators can be defined in a large class of process algebras. However, it
turns out that in a setting with the silent step 7 the left-merge cannot be
added consistently to all algebras (for instance not to the usual variants of
failure semantics). Now one may think that this result means that some-
one who is doing failure semantics with 7’s cannot profit from the nice
properties of the left-merge. However, we will show in this chapter that
use of the module approach makes it possible to do failure semantics with
7’s but still benefit from the left-merge in verifications. The idea is that
verifications take place on two levels: the level of bisimulation semantics
where the left-merge can be used, and a level of for instance failure
semantics, where no left-merge is present. The failure model can be

1. Recently, FARON MOLLER [97] from Edinburgh showed that in bisimulation semantics the
merge operator cannot be finitely axiomatised without auxiliary operators.
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obtained from the bisimulation model by removing the auxiliary operators
and taking a homomorphic image. Now we use the observation that cer-
tain formulas (the ‘positive’ ones without auxiliary operators) are
preserved under this procedure. A consequence of this application is that
even if bisimulation semantics is not considered to be an appropriate pro-
cess semantics (since it is not fully abstract with respect to any reasonable
notion of testing), it still can be useful as an expedient for proving formu-
las in failure semantics.

2. As already pointed out above, one would like to have, from a theoretical
point of view, as few operators or combinators as possible. On the other
hand, when dealing with applications, it is often very rewarding to intro-
duce new operators. This paradox can be resolved if the new operators
are definable in terms of the more elementary ones. In that case the new
operators can be considered as notations which are useful, but do not
complicate the underlying theory. A problem with defining operators in
terms of other operators is that often auxiliary atomic actions are needed
in the definition. These auxiliary actions can then not be used in any
other place, because that would disturb the intended semantics of the
operator. In the laws that can be derived for the defined operator, the
auxiliary actions occur prominently. These ‘side effects’ are often quite
unpleasant. One may think that side effects are unavoidable and that
someone who really does not like them should define new operators
directly in the algebras (even though this is in conflict with the desire to
have as few operators as possible). However, we will show that the
module approach can be used to solve also this problem: with the restric-
tion operator we remove the auxiliary actions from the signature and then
we apply the subalgebra operator in order to ‘move’ to algebras where the
auxiliary actions are not present at all.

The concept of hiding auxiliary operators in a module in some formal way is
quite familiar in the literature (see BERGSTRA, HEERING & KLINT [17] for
example), but the use of module operators H and S, and their application in
combining modules that would be incompatible otherwise, is, as far as we
know, new. The H and S operations are in spirit related to the abstract opera-
tion of SANNELLA & WIRSING [114] and SANNELLA & TARLECKI [113], which
also extends the model class of a module.

In previous papers on ACP, the underlying logic used in process
verifications was not made explicit. The reason for this was that a long
definition of the logic would distract the reader’s attention from the more
essential parts of the paper. It was felt that filling in the details of the logic
would not be too difficult and that moreover different options were equivalent.
In this chapter we generalise the classical notion of a formal proof of a for-
mula from a theory to the notion of a formal proof of a formula from a
module. The definition of this last notion is parametrised by the underlying
logic. What is provable from a module really depends on the logic that is used,
and this makes it necessary to consider in more detail the issue of logics. In
an appendix we present three alternatives: (1) Equational logic. This logic is
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suited for dealing with finite processes, but not strong enough for handling
infinite processes; (2) Infinitary conditional equational logic. This is the logic
used in most process verifications in the ACP framework until now; (3) First
order logic with equality.

Our investigations into the precise nature of the calculi used in process alge-
bra, led us to alternative formulations of some of the proof principles in ACP
which fit better in our formal setup. We present a reformulation of the Recur-
sive Specification Principle (RSP) and also an alphabet operator which returns
a process instead of a set of actions.

Queues.

As an illustration of the techniques developed in Sections 1 to 3, we present in
Section 4 an algebraic treatment of FIFO-queues. FIFO-queues play an
important role in the description of languages with asynchronous message
passing, the modelling of communication channels occurring in computer net-
works and the implementation of languages with synchronous communication.
We show how the chaining operator can be used to give short specifications of
various (faulty) queues and simple proofs of numerous identities, for example
of the fact that the chaining of a queue with unbounded capacity and a one
datum buffer is again a queue.

We give an example of an identity that holds intuitively (there is no experi-
ment that distinguishes between the two processes) but is not valid in bisimu-
lation semantics. We use the machinery developed in Section 1-3 to extend the
axiom system in a neat way (avoiding inconsistencies) so that we can prove the
processes identical.

A protocol verification.

The usefulness of the proof technique for queues is illustrated in Section 5,
where a modular verification is presented of a concurrent alternating bit proto-
col. This verification takes 4 pages (or 5 if the proof of the standard facts
about the queues is included) and is thereby considerably shorter than the
proof of similar protocols in papers by KOYMANS & MULDER [81] and LARSEN
& MILNER [85] (15 and 11 pages respectively). The verification shows that the
protocol is correct if the channels behave as faulty FIFO-queues with
unbounded capacity. However, a minor change in the proof is enough to show
that the protocol also works if the channels behave as n-buffers, faulty n-
buffers, etc. In our view the basic merit of our way of dealing with queues is
that it becomes possible to use inductive arguments when dealing with the
length of queues in protocol systems.
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1. MODULE LOGIC

In this chapter, as in many other papers about process algebra, we use formal
calculi to prove statements about concurrent systems. In this section we answer
the following questions:

- Which kind of calculi do we use?

- What do we understand by a proof?

In the next sections we will apply this general setup to the setting of con-
current systems.

1.1. Statements about concurrent systems. In many theories of concurrency it is
common practice to represent processes - the behaviours of concurrent systems
- as elements in an algebra. This is a mathematical domain, on which some
operators and predicates are defined. Algebras, which are suitable for the
representation of processes are called process algebras. Thus a statement about
the behaviour of concurrent systems can be regarded as a statement about the
elements of a certain process algebra. Such a statement can be represented by
a formula in a suitable language which is interpreted in this process algebra.
Sometimes we consider several process algebras at the same time and want to
formulate a statement about concurrent processes without choosing one of
these algebras. In this case we represent the statement by a formula in a suit-
able language which has an interpretation in all these process algebras. Hence
we are interested in assertions of the form: ‘Formula ¢ holds in the process
algebra @, notation @k ¢, or ‘Formula ¢ holds in the class of process algebras
@, notation Ck ¢. Now we can formulate the goal that is pursued in the
present section: to propose a method for proving assertions € k ¢, or CF ¢.

1.2. Proving formulas from theories. Classical logic gave us the notion of a for-
mal proof of a formula ¢ from a theory 7. Here a theory is a set of formulas.
We write T + ¢ if such a proof exists. The use of this notion is revealed by the
following soundness theorem: If T + ¢ then ¢ holds in all algebras satisfying T.
Here an algebra @ satisfies T, notation @ T, if all formulas of T hold in this
algebra. Thus if we want to prove @k ¢ it suffices to prove T + ¢ and @ ¢ T for
a suitable theory T. Likewise, if we want to prove Ck ¢, with C a class of alge-
bras, it suffices to prove T+ ¢ and Ck T.

At first sight the method of proving @k ¢ by means of a formal proof of ¢
out of T seems very inefficient. Instead of verifying @ ¢ ¢, one has to verify
@k Y for all YeT, and moreover the formal proof has to be constructed. How-
ever, there are two circumstances in which this method is efficient, and in most
applications both of them apply. First of all it might be the case that ¢ is more
complicated than the formulas of T and that a direct verification of €F ¢ is
much more work than the formal proof and all verifications @k ¢ together.
Secondly, it might occur that a single theory T with @ ¢ T is used to prove
many formulas ¢, so that many verifications @ F ¢ are balanced against many
formal proofs of ¢ out of T and a single set of verifications & k . Especially
when constructing formal proofs is considered easier then making verifications
@k ¢, this reusability argument is very powerful. It also indicates that for a
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given algebra @ we want to find a theory T from which most interesting formu-
las ¢ with @ F ¢ can be proved.

Often there are reasons for representing processes in an algebra that satisfies
a particular theory T, but there is no clear argument for selecting one of these
algebras. In this situation we are interested in assertions CF ¢ with C the class
of all algebras satisfying 7. Of course assertions of this type can be con-
veniently proved by means of a formal proof of ¢ from T.

1.3. Proving formulas from modules. In process algebra we often want to
modify the process algebra currently used to represent processes. Such a
modification might be as simple as the addition of another operator, needed
for the proper modelling of yet another feature of concurrency, but it can also
be a more involved modification, such as factoring out a congruence, in order
to identify processes that should not be distinguished in a certain application.
It is our explicit concern to organise proofs of statements about concurrent
systems in such a way that, whenever possible, our results carry over to
modifications of the process algebra for which they were proved.

Now suppose @ is a process algebra satisfying the theory T and a statement
@k ¢ has been proved by means of a formal proof of ¢ out of 7. Furthermore
suppose that @ is obtained from @ by factoring out a congruence relation on @
(so B is a homomorphic image of @) and for a certain application % is con-
sidered to be a more suitable model of concurrency than @& Then in general
%} k ¢ cannot be concluded, but if ¢ belongs to a certain class of formulas (the
positive ones) it can. So if ¢ is positive we can use the following theorem: ‘If
@ T, T+ ¢, ¢ is positive, and B is a homomorphic image of @ then % k ¢’
This saves us the trouble of finding another theory U, verifying that % ¢ U and
proving U + ¢ for many formulas ¢ that have been proved from T already.
Another way of formulating the same idea is to introduce a module H(T). We
postulate that one may derive ‘H(T) + ¢’ from ‘T + ¢’ and ‘¢ is positive’, and
H(T) + ¢ implies that ¢ holds in all homomorphic images of algebras satisfy-
ing T.

Thus we propose a generalisation of the notion of a formal proof. Instead of
theories we use the more general notion of modules. Like a theory a module
characterises a class C of algebras, but besides the class of all algebras satisfy-
ing a given set of formulas, C can for instance also be the class of
homomorphic images or subalgebras of a class of algebras specified earlier.
Now a proof in the framework of module algebra is a sequence or tree of
assertions M + ¢ such that in each step either the formula ¢ is manipulated, as
in classical proofs, or the module M is manipulated. Of course we will estab-
lish a soundness theorem as before, and then an assertion @k ¢ can be proved
by means of a module M with @ ¥ M and a formal proof of ¢ out of M. We
will now turn to the formal definitions.
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1.4. Signatures. Let NAMES be a given set of names.

A sort declaration is an expression S:S with S € NAMES.

A function declaration is an expression F:f :S, X - - - X§,—>S with f,5,,...,S,,
S e NAMEs.

A predicate declaration is an expression R:p CS, X - - - XS, with p,§},....S, €
NAMESs.

A signature o is a set of sort, function and predicate declarations, satisfying:

(F:f:8, X - XS§,»S8)eo0 = (S:5)eo0 (i=1,.,n) N\ (S:S)eo
(R:pCS | X - XS§,)eo = (S:S))eo (i=1,..,n)
A function declaration F:f:—S of arity 0 is sometimes called a constant
declaration and written as F:feS.
1.5. o-Algebras. Let o be a signature. A o-algebra @ is a function on o that
maps
(S:S)eo to a set S¢,
(F:f:S;X - -+ XS,—>S)€o to a function f§ ... x5 _s: ST X - - - XSI>8¢
(RipCS X -+ XS,)€0 to a predicate p§ x ... x5, CST X - - - XS4

Let @ and % be o-algebras. B is a subalgebra of @ if S® CS¢ for all (S:S)eo,
if moreover f§ . ...xs5_s restricted to SPX ---XSP5S® is just
fg}lx - xs,-s forall F:f :§;X - -+ X§,-S in o, and ifpglx ... xs, Testricted
toSPX - X5 isjustp?lx ... xs, forallR:pCS; X --- XS, ino.

A homomorphism h:@—% consists of mappings hs:S®—S® for all S:S in o,
such that

hs(f$,x - x5,5(X 10 Xa)) = f8x - x5, 5(hs, (X1),s 15, (x4))

for all (F:f:S;X --- X§,->S8)e0 and all e8I =1,..0)
P8 x - x5, X1y Xn) & pdic. . xs, (s, (x1),.... s, (x4))

for all (R:pCS, X - - - XS,)€0 and all x,€S{(i =1,...,n)

B is a homomorphic image of @ if there exists a surjective homomorphism
h:@—%.

Let @ be a o-algebra. The restriction p[1@ of @ to the signature p is the pNo-
algebra %, defined by

5% = §¢ for all (S:S)epno
fox xs58 = fox - xs,os for all (F:f:8;X - - XS,>S)epNe

P?.X"'XS, :pglx...xsu forall RpCS,; X --- XS,)epNo
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1.6. Logics. A logic £is a complex of prescriptions, defining for any signature

o

- aset F5 of formulas over o such that Fs NF5 =F5

- a binary relation 5 on o-algebrasXFE such that for all p-algebras @ and
(I)Eﬁfanp: OD@ Fsmp (p 4 @FE ¢

- and a set IS of inference rules — with HCF: and ¢eF:.

If @5 ¢ we say that the o-algebra @ satisfies the formula ¢, or that ¢ holds in
@. A theory over o is a set of formulas over o. If T is a theory over o and
@k5 ¢ for all T we say that @ satisfies T, notation @ k5 7. We also say that
@ is a model of T.

A logic £ is sound if %615 implies @ ks H = Q&S ¢ for any o-algebra @.

A formula ¢ F is preserved under subalgebras if @ L implies B £> o, for any
subalgebra % of @.

A formula ¢ F. is preserved under homomorphisms if @ ES o implies B £S o, for
any homomorphic image @ of @

Without doubt, the definition of a ‘logic’ as presented above is too general for
most applications. However, it is suited for our purposes and anyone can sub-
stitute his/her favourite (and more restricted) definition whenever he/she likes.

In the process algebra verifications of this chapter we will use infinitary con-
ditional equational logic. The definition of this logic can be found in the
appendix. For comparison, the definitions of equational logic and first order
logic with equality are included too.

1.7. Classical logic.
DERIVABILITY. A o-proof of a formula ¢€F5 from a theory TCF using the
logic £, is a well-founded, upwardly branching tree of which the nodes are
labelled by o-formulas, such that
- the root is labelled by ¢

and if ¢ is the label of a node g and H is the set of labels of the nodes

directly above ¢ then

- either yeT and H= &,

H _ ¢
- or —el,.

If a o-proof of ¢ from T using £ exists, we say that ¢ is o-provable from T by
means of £, notation T +5 ¢.

TRUTH. Let @ be a class of o-algebras and ¢p€F5. Then ¢ is said to be true in
G notation C kS ¢, if ¢ holds in all o-algebras @eC. Let Alg(o,T) be the class
of all o-algebras satisfying T.

SOUNDNESS THEOREM. If £ is sound then T () implies Alg(o,T) ¥5 ¢.
PROOF. Straightforward with induction. O
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If no confusion is likely to result, the sub- and superscripts of F and + may be
dropped without further warning.

1.8. Module logic. The set 9L of modules is defined inductively as follows:
- If o is a signature and T a theory over g, then (o,7)€91,

- If M and Ne9t then M +N e,

- If o is a signature and M €9 then cOOM €9,

- If Me9n then H(M)eN,

- If M9 then S(M)e.

Here + is the composition operator, allowing to organise specifications in a
modular way, and [ is the export operator, restricting the visible signature of
a module, thereby hiding auxiliary items. These operators occur in some form
or other frequently in the literature on software engineering. Our notation is
taken from BERGSTRA, HEERING & KLINT [17] in which also additional refer-
ences can be found. The homomorphism operator H and the subalgebra opera-
tor S are, as far as we know, new in the context of algebraic specifications. Of
course they are well known in model theory, see for instance MONK [98].

The visible signature (M) of a module M is defined inductively by:
- 2(0,T)=o

- Z(M+N)=3Z(M)UZ(N),

- Z(0OM) = eNZ(M),

- ZHM)) = Z(M),

- 2SS (M)) = Z(M).

TrRUTH. The class Alg(M) of models of a module M is defined inductively by:

- @is a model of (o,T) if it is a o-algebra, satisfying T;

- @is amodel of M +N if it is a (M + N)-algebra, such that Z(M)OQ is a
model of M and 3(N)® is a model of N;

- @is a model of o[JM if it is the restriction of a model B of M to the sig-
nature o;

- @is a model of H (M) if it is a homomorphic image of a model % of M;
@ is a model of S (M) if it is a subalgebra of a model ® of M.

Note that Alg(M) is a generalisation of Alg(o,T) as defined earlier. All the ele-

ments of Alg(M) are 3Z(M)-algebras. A 3(M)-algebra @eAlg(M) is sa1d to

satisfy M. A formula ¢EF§(M) is satisfied by a module M, notation M 5 o, if

Alg (M) kE(M) ¢, thus if ¢ holds in all Z(M)-algebras sausfymg M.

DERIVABILITY. A proof of a formula ¢ Fﬁ(m from a module M using the logic
£, is a well-founded, upwardly branching tree of which the nodes are labelled
by assertions N + v, such that

the root is labelled by M + ¢

if N+ is the label of a node ¢ and H is the set of labels of the nodes

is one of the inference rules of Table 1.

directly above ¢ then Ny
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(0,T)+ ¢ if peT
Mo (jeJ) 9, (jeJ)
W N e ek S
Mro whenever — S5
Mt o Nto
M+Nt+¢ M+N&+o
Mt ¢ ;s
oOM + ¢ if peFe
Mt o if & -
HM)+ ¢ if ¢ 1s positive
% if ¢ is universal
TABLE 1

Here positive and universal are syntactic criteria, to be defined for each logic £
separately, ensuring that a formula is preserved under homomorphisms and

subalgebras respectively. We write N + y for , and omit braces in the

%)
Nty
conditions of inference rules. If a proof of ¢ from M using £ exists, we say
that ¢ is provable from M by means of £ notation M + ¢.

LEMMA. If M +o ¢ then ¢EF§(M).
ProoF. With induction. The only nontrivial cases are the rules for + and OJ.
These follow from Fy C 5y, and F5 NF5 CFop, respectively. O

SOUNDNESS THEOREM. If € is sound then M +* ¢ implies M ¥° ¢.

PrOOF. With induction. Again the only nontrivial cases are the rules for +
and [J. These follow since for all p-algebras @ and ¢eF§np: o0Rk¢ =
@k ¢ and c00Rk ¢ < @F ¢ respectively. d

2. PROCESS ALGEBRA

This thesis does not contain an introductory chapter on process algebra. We
only give a listing of some important process modules. For an introduction to
the ACP formalism we refer the reader to [19, 20, 22].
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2.1. ACP,. In this chapter a central role will be played by the module ACP,,
the Algebra of Communicating Processes with abstraction. A first parameter of
ACP, is a finite set A4 of actions. For each action a €A there is a constant a in
the language, representing the process, starting with an g-action and terminat-
ing (successfully) after some time.

The first two composition operations we consider are -, denoting sequential
composition, and + for alternative composition. If x and y are two processes,
then x-y is the process that starts execution of y after successful completion of
x, and x +y is the process that either behaves like x or like y. We do not
specify whether the choice between x and y is made by the process itsself, or
by the environment.

We have a special constant 8, denoting deadlock, inaction, a process that
cannot do anything at all. In particular § does not terminate succesfully. We
write A5 =A4 U {8}.

Next we have a parallel composition operator |l. x|ly denotes the process
corresponding to the parallel execution of x and y. Execution of x|ly either
starts with a step from x, or with a step from y, or with a synchronisation of an
action from x and an action from y. Synchronisation of actions is described
by the second parameter of ACP,, which is is a binary communication func-
tion y:A5XAs—>As that is commutative, associative and has § as zero ele-
ment:

Y(a,b) = y(b,a) y(a,v(b,c)) = y(v(a,b),c) v(a,8) =&

If y(a,b)=c+6 this means that actions a and b can synchronise. The synchro-
nous performance of a and b is then regarded as a performance of the com-
munication action ¢. Formally we should add the parameters to the name of a
module: ACP,(4,y). However, in order to keep notation simple, we will always
omit the parameters if this can be done without causing confusion. In order to
axiomatise the ||-operator we use two auxiliary operators || (left-merge) and |
(communication merge). x|Ly is x|y, but with the restriction that the first step
comes from x, and x|y is x|y but with a synchronisation action as the first
step.

Next we have for each H CA an encapsulation operator 0y. The operator
0y blocks actions from H. The operator is used to encapsulate a process, i.e. to
block synchronisation with the environment.

When describing concurrent systems and reasoning about their behaviour, it
is often useful to have a distinguished action that cannot synchronise with any
other action. Such an action is denoted by the constant T¢A ;. The fact that 7
cannot synchronise makes that in some sense this action is not observable.
Therefore it is often called the silent action. For each I CA the language con-
tains an abstraction or hiding operator 7;. This operator hides actions in / by
renaming them into 7, thus expressing that certain actions in a system
behaviour cannot be observed.

In Table 2 we summarize the signature of module ACP,.
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S (sort): P the set of processes
F (functions): +: PXP—P alternative composition (sum)
% PXP—P  sequential composition (product)
Il: PXP—P  parallel composition (merge)
lL: PXP—P left-merge
[ PXP—P communication-merge

0y: PP encapsulation, for any H CA
T PP abstraction, for any / CA
a eP for any atomic action a€A4
) eP inaction, deadlock
T epP silent action

TABLE 2

Table 3 contains the theory of the module ACP,. In this chapter we present
ACP, as a monolithic module. In [22] however, it is shown that ACP, can be
viewed as the sum of a large number of sub-modules which are interesting in
their own right. The module consisting of axioms Al-5 only is called BPA
(from Basic Process Algebra). If we add axioms A6-7 we obtain BPA;, and
BPA; plus axioms T1-3 gives BPA,5. The module ACP consists of the axioms
Al-7, CF, CM1-9 and DI1-4, i.e. the left column of Table 3. All axioms in
Table 3 are in fact axiom schemes in a, b, H and I. Here a and b range over
A (unless further restrictions are made in the table) and H,I CA. In a product
x -y we will often omit the -. We take - to be more binding than other opera-
tions and + to be less binding than other operations. In case we are dealing
with an associative operator, we also leave out parentheses.

2.1.1. Note. Let n>0. Let D = {(d,,...,d,} be a finite set. Let t;,....t; be

process expressions. We use the notation >t for the sum ¢, + - + ;.
deD

> t4 = 8 by definition.

de @

2.1.2. Summand inclusion. In process verifications the summand inclusion
predicate C turns out to be a useful notation. It is defined by: xCy <«
x+y=y. From the ACP,-axioms Al, A2 and A3 respectively it follows that
C is antisymmetrical, transitive and reflexive, and hence a partial order.

2.1.3. PropPOSITION. ACP, + x|y = (xlly).
PrROOF. 7xl|ly D mx|Ly = m(xlly) = mx|Ly = mxLy = 7(rxlly) D =xlly.
Now use the fact that C is a partial order. a
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x+y =y+x Al xXT =X Tl
x+(y+z) = (x+y)+z A2 ™@+x = 1x T2
x+x = x A3 a(tx +y) = a(tx +y)+ax T3
(x+y)z = xz+yz A4
(xy)z = x(yz) A5
x+6 =x A6
ox =8 A7
alb = y(a,b) CF
xly = xlLy tyllLx+xly  CMI
all x = ax CM2 | 1lx = 1x ™1
(ax)lLy = a(xlly) CM3 | (mx)Ly = (xlly) T™M2
x+yllz =xllLz+yl z CM4 | 7lx =6 TC1
(ax)|b = (alb)x CMS | x|t =29 TC2
al(bx) = (alb)x CM6 | (x)ly = xly TC3
(ax)|(by) = (alb)xlly) CM7 | xI(ty) = xly TC4
x+y)z =xlz+ylz CM8
xl(y+z) =xly+xlz CM9
dy(r) = 7 DT
() =171 TI1
dy(a) = a ifaeH D1 (@) =a ifael TI2
dy(a) =8 ifaeH D2 (@) =7 ifael TI3
0y(x +y) = 0y(x)+0y(y) D3 T(x +y) = 7(x)+7,(p) T4
8r() = 3u(x)u(y) D4 | () = 1(x)T() TIS
TABLE 3

2.1.4. Monotony. Most of the operators of ACP, are monotonous with respect
to the summand inclusion ordering. Using essentially the distributivity of the
operators over +, one can show that if x Cy, ACP, proves:

Due

x+zCy+tz,
xzQCy-z,
xlLzCyll z,
x|lzCylz,
0x(x)CaH(y),
71(x) CTr(y).

to branching time, in general z-xZ zvy, x|z yllz and z|l xZ z[y.

However, we do have monotony of the merge for the case were x is of the
form 7x’. If 7x’Cy, then ACP, + 7x’||lz Cyl|z:

213 *

'z = 7(x’'llz) = =>'|LzCyllLzCyllz
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2.2. Standard Concurrency. Often one adds to ACP, the following module SC
of Standard Concurrency (a€A4;), which is parametrised by 4. A proof that
these axioms hold for all closed recursion-free terms can be found in [20].

SC | (xly)llz =xlL(yllz) SC1
(xlay)lLz =xl(aylLz) SC2
xly=ylx SC3
xlly = ylix SC4
xl(ylz) =(xly)lz SCs
xll(yliz) = (xlly)llz SC6

TABLE 4

2.3. Renamings. Let A,5 = AsU{t}. For every function f: A4,5—A,s with the
property that f(§)=4& and f(r)=7, we introduce an operator p;:P—P.
Axioms for p, are given in Table 5 (Here a€A,; and id is the identity).
Module RN is parametrised by 4.

RN | pda) = f(a) RNI
pAx ty) = pdx)+pAy) RN2
prxy) = prx) pAy) RN3
pia(x) = x RN4
ProPg(x) = Prog(x) RNS

TABLE 5

For teA,; and H CA we define mappings r, y : A,5—A 5 as follows:

t faeH
ru(a) = a otherwise

In the following we will implicitly identify the operators dy and p,, ,, and also
the operators 7; and p, : encapsulation is just renaming of actions into §, and
abstraction is renaming of actions into the silent step 7.

2.4. Chaining operators. A basic situation we will encounter is one in which
processes input and output values in a domain D. Often we want to ‘chain’
two processes in such a way that the output of the first one becomes the input
of the second. In order to describe this, we define chaining operators == and
>. In the process x >y the output of process x serves as input of process y.
Operator > is identical to operator ==, but hides in addition the communi-
cations that take place at the internal communication port. The reason for
introducing two operators is a technical one: the operator > (in which we are
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interested most) often leads to the possibility of an infinite sequence of internal
actions corresponding to hidden synchronisations between the two arguments
of the operator (a form of unguarded recursion, cf. Sections 2.8.1 and 2.12.1).
In order to deal with such behaviours, it is useful to view > as the composi-
tion of two operators: the > operator and an abstraction operator that hides
the communications of =>>. We will define the chaining operators in terms of
the operators of ACP,+RN. In this way we obtain a simple, finite axiomati-
sation of the operators. The operator > occurs (in a different notation)
already in HOARE [75] and MILNER [92].

Let for deD, |d be the action of reading d, and 1d be the action of sending
d. Furthermore let ch (D) be the following set:

ch(D) = {1d,|d,s(d),r(d),c(d)|deD}.

Here r(d), s(d) and c(d) (de€D) are auxiliary actions which play a role in the
definition of the chaining operators. The module for the chaining operators is
parametrised by an action alphabet A satisfying ch (D) CA. The module should
occur in a context with a module ACP,(4, y) where

range(y)N{ld,1d,s(d),r(d)|deD} = @
and communication on ch (D) is defined by

Y(s(d),r(d)) = c(d)
(all other communications give 6). The renaming functions 1s and |r are
defined by

1s(1d) = s(d) and |r(]d) = r(d) (deD)

and 7s(a)=|r(a)=a for every other aeA,;. Now the ‘concrete’ chaining of
processes x and y, notation x>y, is defined by means of the axiom
(H = {s(d),r(d)|deD}):

X33y = d(pr(x)llpy, ()  CHI

The ‘abstract’ chaining of processes x and y, notation x>y, is defined by
means of the axiom (I = {c(d)|deD}):

x>y = 1 (x>>y) CH2

The module CH" consists of axioms CH1 and CH2, and is parametrised by
A. The ‘+’ in CH™ refers to the auxiliary actions in the module, which will
be removed in Section 3.
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2.4.1. ExampLE. Let D={0,1}. Process AND reads two bits and then outputs
1 if both are 1, and 0 otherwise:

AND = [0-(}0-10 + |1-10) + |1-(J0-70 + [1-11)
Process OR reads two bits, outputs 0 if both are 0, and 1 otherwise:

OR = |0-(J0-10 + |[1-11) + |1-(JO-11 + [1-11)
Process NEG reads a bit b and outputs 1—b:

NEG = |01 + |[110

These processes can be composed using chaining operators. It is not too hard
to prove:

(NEG-NEG>»AND)>NEG = OR
Note however that we do not have
(NEG-NEG>=>AND)>>NEG = OR

since in the LHS process internal computation steps are still visible.

2.5. Recursion. A recursive specification E is a set of equations {x =1, |x€Vg}
with Vg a set of variables and ¢, a process expression for xeVg. Only the
variables of V may appear in f,. A solution of E is an interpretation of the
variables of Vg as processes (in a certain domain), such that the equations of
E are satisfied. Recursive specifications are used to define (or specify) infinite
processes.

For each recursive specification E and x € Vg, the module REC introduces a
constant <x | E >, denoting the x-component of a solution of E.

In most applications the variables X €V in a recursive specification E will
be chosen fresh, so that there is no need to repeat E in each occurrence of
<X|E>. Therefore the convention will be adopted that once a recursive
specification has been declared, <X|E > can be abbreviated by X. If this is
done, X is called a formal variable. Formal variables are denoted by capital
letters. So after the declaration X =aX, a statement X =aaX should be inter-
preted as an abbreviation of <X |X =aX> = aa <X|X =aX>.

Let E = {x=t,|x€Vg} be a recursive specification, and ¢ a process expres-
sion. Then <t¢|E> denotes the term ¢ in which each free occurrence of
x €V is replaced by <x |E>. In a recursive language we have for each E as
above and x € V' an axiom

<x|E> = <t,|[E> REC

If the above convention is used, these formulas seem to be just the equations
of E. The module REC is parametrised by the signature in which the recursive
equations are written. In the presence of module REC each system of recur-
sion equations over this signature has a solution.
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2.6. Projection. The operator 7, : P>P (ne€IN) stops processes after they have
performed n atomic actions, with the understanding that 7-steps are tran-
sparent. The axioms for =, are given in Table 6. Module PR is parametrised
by 4.

PR | (1) =71 PR1
mo(ax) = & PR2
7, +1(ax) = a -m,(x) PR3
T(1x) = 77 (X) PR4
m(x +y) = m(x)+7m,(y) PRS

TABLE 6

In this chapter, as in other papers on process algebra, we have an infinite col-
lection of unary projection operators. Another option, which we do not pur-
sue here, but which might be more fruitful if one is interested in finitary pro-
cess algebra proofs, is to introduce a single binary projection operator
F:7:INXP-P.

2.7. Boundedness. The predicate B, CP (neIN) states that the nondeterminism
displayed by a process before its n* atomic steps is bounded. If for all neN:
B,(x), we say x is bounded. Axioms for B, are in Table 7 (a€A;). Module B
is parametrised by A.

B By(x) Bl
B, (1) B2
B,(x)
B, (tx) B
B,(x) B4
Bn+](ax)
B,(x) , B,(y) BS
B,(x +y)
TABLE 7

Boundedness predicates were introduced in [52].

2.8. Approximation Induction Principle. AIP™ is a proof rule which is vital if
we want to prove things about infinite processes. The rule expresses the idea
that if two processes are equal to any depth, and one of them is bounded then
they are equal.
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VneN m,(x) = 7,(y), B,(x
(AIP™) (x) (2] (x)
x =y
The ‘—’ in AIP™, distinguishes the rule from a variant without predicates B,,.

2.8.1. DErFINITION. Let ¢ be an open ACP,-term without abstraction opera-
tors. An occurrence of a variable X in 7 is guarded if t has a subterm of the
form a -M, with a€Ag, and this X occurs in M. Otherwise, the occurrence is

unguarded.
Let E = {x=t,|xeVg} be a recursive specification in which all 7z, are
ACP,-terms without abstraction operators. For X,Y € Vg we define:

X =Y < Y occurs unguarded in .

We call E guarded if relation = is well-founded (i.e. there is no infinite
sequence X DY DZ - )

2.8.2. THEOREM (Recursive Specification Principle (RSP)).
ACP, + REC + PR + B + AIP™ +

E

RSP =l
( ) x = <x|E>

E guarded

In plain English the RSP rule says that every guarded recursive specification
has at most one solution.

2.8.3. EXAMPLE. Let E = {X=(a+b)X} and F = {Y=a'(a+b)Y+b'Y)}
be two recursive specifications. Since
<X|E> =(a+b)y<X|E> = a<X|E>+b<X|E> =
=a(a+b)y<X|E>+b<X|E>,
the constant <X | E > satisfies the equation of F. Because the specification F
is guarded, RSP now gives that <X|E> = <Y|F>.

2.9. Koomen’s Fair Abstraction Rule (KFAR). In the verification of communi-
cation protocols one often uses the following rule, called Koomen’s Fair
Abstraction Rule (I CA). Module KFAR is parametrised by 4.

x=ix+ty (@(€l)
T(x)=77/(y)

(KFAR)

Fair abstraction here means that 7,(x) will eventually exit the hidden i-cycle.
Below we will formulate a generalisation of KFAR, the Cluster Fair Abstrac-
tion Rule (CFAR), which can be derived from KFAR.
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2.9.1. DErFINITION. Let E = {X=ty | XeVg} be a recursive specification,
and let 1 CA. A subset C of Vg is called a cluster (of 1) in E iff for all XeC:

m n
Iy = Elka+ EY[
k=1 =1
(For m=0, iy,...,in€lU {1}, X1,...,X,,€C, n=0 and Y,,...,Y,eVg—C). Vari-
ables X eC are called cluster variables. For XeC and Y € V¢ we say that

X~Y oY occurs in ty.
We define
e(C)=(YeVg—ClIXeC:X~Y}

Variables in e(C) are called exits. ~" is the transitive and reflexive closure of
~s. Cluster C is conservative iff every exit can be reached from every cluster
variable via a path in the cluster:

VXeCVYee(C): X~"Y.

2.9.2. ExaMpLE. The transition diagram of Figure 1 represents a cluster in a
recursive specification. The nodes represent variables in the recursive
specification, labelled edges represent summands, and the triangles denote
exits. The sets {1,2,3}, {4,5,6,7}, {8} and {1,2,3,4,5,6,7,8} are examples of
conservative clusters. Cluster {1,2,3,4,5,6,7} is not conservative since exit Z
cannot be reached from cluster variables 4, 5, 6 and 7.

FIGURE 1
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2.9.3. DErFINITION. The Cluster Fair Abstraction Rule (CFAR) reads as follows:

(CFAR) Let E be a guarded recursive specification; let I CA with
[I1=2; let C be a finite conservative cluster of 7 in E; and

let X,X’eC with X~X’. Then: 7, (X)=71- > 7/(Y)
Yee(C)

2.9.4. THEOREM. ACP, + RN + REC + RSP + KFAR + CFAR.
PRrOOF. See [117]. O

2.10. Alphabets. Intuitively the alphabet of a process is the set of atomic
actions which it can perform. This idea is formalised in [8], where an operator
a:P—2" is introduced, with axioms such as:

ald) = @
a(ax) = {a}Ua(x)

a(x +y) = a(x)Ua(y)

In this approach the question arises what axioms should be adopted for the
set-operators U, N, etc. One option, which is implicitly adopted in previous
papers on process algebra, is to take the equalities which are true in set theory.
This collection is unstructured and too large for our purposes. Therefore we
propose a different, more algebraic solution. We view the alphabet of a process
as a process; the alphabet operator a goes from sort P to sort P. Process a(x)
is the alternative composition of the actions which can be performed by x. In
this way we represent a set of actions by a process. A set B of actions is
represented by the process expression B=,,>b. So the empty set is
beB

represented by 8, a singleton-set {a} by the expression a, and a set {a,b} by
expression a +b. Set union corresponds to alternative composition. The pro-
cess algebra axioms Al-3 and A6 correspond to similar axioms for the set
union operator. The notation C for summand inclusion between processes
(Section 2.1.2), fits with the notation for the subset predicate on sets.

The following axioms in Table 8 define the alphabet of finite processes
(a€A). Module AB is parametrised by A.

AB | a(d) = 6 ABI1
alax) = a+a(x) AB2
a(x+y) = a(x)+a(y) AB3
a(t) = & AB4
a(tx) = a(x) ABS

TABLE 8

In order to compute the alphabet of infinite processes, we introduce an
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additional module AA which is parametrised by 4.

AA | a(x)CA AAl
alxlly)=a(x)+a(y)ta(x)la(y) AA2

acp(x) Cppodyoa(x) AA3
(where H={aeA|f (a)=1})

VnelN a(m,(x))Cy
a(x)Cy

TABLE 9

It is not hard to see that the axioms of AA hold for all closed recursion-free
terms.

2.10.1. ExaMPLE. (from [8]). Let p=<X|{X=aX}>, and define ¢ =7, (p),
r=gq-b (with b*a). What is the alphabet of r? We derive:

a(r) = a(gb) = a(tay(p)b) = a(ta)(p)T(a) (b)) =
AA3 RNS
= a('r(a)(pb)) C ‘r{a)oa(,,)Oa(pb) = a(a)oa(pb).

Since
AB2
a(pb) = a(apb) = a-+a(ph),
we have that a Ca(pb). On the other hand we derive for neIN:
a(m,(pb)) = a(a"-6)Ca

and therefore, by application of axiom AA4, a(pb)Ca.
Consequently a(pb) = a and

(X(I’) — B{G}Oa(pb) = 8(,,)(0) =4

Information about alphabets must be available if we want to apply the follow-
ing rules. These rules, which are a generalisation of the conditional axioms of
[8], occur in a slightly different form also in [118]. Rules like these are an
important tool in system verifications based on process algebra. Module RR is
parametrised by A4 and y. Observe that axioms AA1 and RRI1 together imply
axiom RN4 of Table 5. Axiom RR2, which describes the interaction between
renaming and parallel composition, looks complicated, but that is only because
it is so general. The axioms RR are derivable for closed recursion-free terms.



72 Il. Modular specifications in process algebra - with curious queues

a(x)CB F(b)=
p/(x):xVbeB.f(b) b RRI

a(x)CB, a(y)CC _p . — o
p,(xlly):p/(xllp,(y)) VeeC.f(c)=f(c)\(VbeB.foy(b,c) Y(b,f (c))) RR2

TABLE 10

2.10.2. LeEMMA: (Conditional Axioms (CA)): Let CA be the theory consisting of
the conditional axioms in Table 11. Then: ACP, + RN + AB + RR + CA.

a(x)|(e(y)NH)CH cal | 2@emnh=2 .,
A (x lly)=04(x1195(y)) m(x ly)=7(x 7, (y))
ax)NH =0 CA3 ax)NI=o Cad
dp(x)=x T(x)=x

H=H,UH, CAS I=I1,UlI, -

0y(x)=0y,°dy,(x) T(x)=7 °17,(X)
HNI=9
CA7
7190 (x) =0 °1/(x)

TABLE 11

PrOOF: We prove three of the rules. The others can be dealt with similarly.
CA3:  Choose ac€a(x). Then a¢ H. This means that r; y(a) = a. Because a
was chosen arbitrarily, we can aply rule RRI1, which gives

r,, () = du(x) = x.
CAS5:  Follows immediately from the observation
rsH = Ts,H °Ts H,
and application of axiom RNS of Table 5.
CAl:  Choose cea(y). We have:
rs.u(c) = rsporsu(c)
Choose bea(x). If c¢H then rsy(c) = ¢ and the condition of rule
RR2 is fulfilled. If ceH then either y(b,c) equals & (so that we have
rsu°Y(b,c) = 8), or y(b,c)eH, so that again rs yoy(b,c) = 8. But in
case c € H we also have
rs.n°Y(b,rs u(c)) = rspov(b,8) = 8
This means that we can apply rule RR2. O
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2.10.3. REMARK. In most of the situations where we want to apply axiom
CAl, H does not contain results of communications: (4 |A)NH = @. Further
actions from a(x) will not communicate with actions from H. In these cases
the following weakened version of axiom CAl is already strong enough:

a(x)|H = @

BH(xlly) = 3H(xl|6H(y)) Cals

2.11. ACP%. The combination of all modules presented thus far, except for
KFAR, will be called ACP# (the system ACP# as presented here slightly
differs from a system with the same name occurring in [22]). The module is
defined by:

ACP# = ACP,+SC+RN+CH" +REC+PR+B+AIP™ +AB+AA+RR

Bisimulation semantics, as described in for instance [9], gives a model for the
module ACP# + KFAR. Work of BERGSTRA, KLOP & OLDEROG [23] showed
that in a large number of interesting models KFAR is not valid. Therefore we
have chosen not to include KFAR in the ‘standard’ module ACP%.

2.12. Generalised Recursive Specification Principle. For many applications the
RSP is too restrictive. Therefore we will present below a more general version
of this rule, called RSP .

2.12.1. DEfFINITION. Let @ be the set of closed expressions in the signature of
ACP%. A process expression pe? is called guardedly specifiable if there exists
a guarded recursive specification F with Y € V¢ such that

ACP+ p=<Y|F>.
We have the following theorem:

2.12.2. THEOREM (Generalised Recursive Specification Principle (RSP™)).
ACP# +

E

+
(RSP™) = <x|E>

<x|E > guardedly specifiable

2.12.3. Remarks. In the definition of the notion ‘guardedly specifiable’, it is
essential that the identity p=<Y|F> is provable. If we would only require
that p=<Y|F>, then the corresponding version of RSP* would not be
provable from ACP#, since this rule would then not be valid in the action rela-
tion model of [52]. In this model we have the identity <X|{X =X}>=8."

1. Strictly speaking, this is not correct. In [52], a recursion construct <X|E > is viewed as a
kind of variable which ranges over the X-components of the solutions of E. Since any process X
satisfies X=X, the identity <X|{X =X}>=4 does not hold under this interpretation. However,
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Hence <X|{X=X}>=<Y|{Y=6}>=4. Since the specification {Y=4§} is
guarded, this would mean that expression <X|{X=X}> is guardedly
specifiable. But then RSP* gives that for arbitrary x: x=<X|{X =X}>=3.
This is clearly false.

We conjecture that an expression p is guardedly specifiable iff it is provably
bounded, i.e. for all neIN: ACP# + B,(x).

3. APPLICATIONS OF THE MODULE APPROACH IN PROCESS ALGEBRA

3.1. The auxiliary status of the left-merge.

3.1.1. Semantics. Sometimes it happens that our ‘customers’ complain that
they do not succeed in proving the identity of two processes in ACP¥#, whose
behaviour is considered ‘intuitively the same’. Often, this is because there are
many intuitions possible, and ACP# happens not to represent the particular
intuitions of these customers. Therefore we have defined some auxiliary
modules that should bridge the gaps between intuitions.

In general a user of process algebra wants that his system proves p =¢ (here
p and g are closed process expressions in the signature of ACP¥), whenever p
and g have the same interesting properties. So it depends on what properties
are interesting for a particular user, whether his system should be designed to
prove the equality of p and g or not. For this reason the semantical branch of
process algebra research generated a variety of process algebras in which
different identification strategies were pursued. In bisimulation semantics we
find algebras that distinguish between any two processes that differ in the pre-
cise timing of internal choices; in trace semantics only processes are dis-
tinguished which can perform different sequences of actions; and, somewhere
in between, the algebras of failure semantics identify processes if they have the
same traces (can perform the same sequences of actions) and have the same
deadlock behaviour in any context. A lot of these process algebras can be
organised as homomorphic images of each other, as indicated in Figure 2. For
concrete process algebra (without 7-moves) these process algebras have been
defined in Chapter 1. If two process expressions p and g represent the same
process in bisimulation semantics with explicit divergence, they have many
properties in common; if they only represent the same process in trace seman-
tics, this only guarantees that they share some of these properties; and, des-
cending from bisimulation semantics with explicit divergence to trace seman-
tics, less and less distinctions are made. Now a user should state exactly in
which properties of processes (s)he is interested. Suppose (s)he is only
interested in traces and deadlock behaviour, then we can tell that for this pur-
pose failure semantics suffices. This means that if processes p and ¢ are proven
equal in failure semantics, this guarantees that they have the same relevant
properties. If they are only identified in trace semantics (somewhere in the lat-
tice below failure semantics) such a conclusion cannot be drawn, but if they
are identified in a semantics finer than failure semantics (such as bisimulation

if one interprets the construct <X|E > as a constant in the model of [52], then the most natural
choice is to relate to <X|E > the bisimulation equivalence class of the term <X|E>. Under
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bisimulation semantics with explicit divergence [23]

ready trace semantics [10] bisimulation semantics
/ \ with fair abstraction [9]
readiness semantics [102] failure trace semantics [105]

N

failure semantics [23,33,43,76]

trace semantics [75]
FIGURE 2. The linear time - branching time spectrum

semantics with explicit divergence), then they certainly have the same interest-
ing properties, and probably some uninteresting ones as well. Hence a proof in
bisimulation semantics with explicit divergence is just as good as one in failure
semantics (or even better).

This is the reason that we do our proofs mostly in bisimulation semantics:
the entire module ACP# is sound with respect to bisimulation semantics with
explicit divergence. However, if two processes are different in bisimulation
semantics, we will never succeed in proving them equal from ACP¥. In such a
case we might add some axioms to the system, that represent the extra
identifications made in a less discriminating semantics. If we find a proof from
this enriched module, it can be used by anyone satisfied with the properties of
this coarser semantics.

It is in the light of the above considerations that one should judge the
appearance of the following module T4:

T4 | 7(rx+y) = 7x+y

The law of this module does not hold in bisimulation semantics, but it does
hold in all other semantics of Figure 2. Thus any identity derived from ACP#
+ T4 holds in ready trace semantics and hence also in the courser ones like
failure and trace semantics, or so it seems ....

this interpretation <X |{X =X}>=34.
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3.1.2. An inconsistency.

3.1.2.1. DEFINITION. Let M be a process module with Z(M)D Z(BPA;). We
call M consistent if for all closed expressions x and y in the signature of BPA;
with

M x=y,
the sets of complete traces agree:

trace(x)=trace(y).

A complete trace is a finite sequence of actions, ending with a symbol \/ or &
indicating successful resp. unsuccessful termination. A formal definition of the
set trace(x) is given in [23]. Here we only give some examples, which should
make the notion sufficiently clear:

trace(abc +add+a(tbc +d)) = {abc+/, ad8, ad+\/}
trace(t) = {\/} # {8, \/} = trace(r+19)

A model @ of M is consistent if for all closed expressions x and y in the signa-
ture of BPA 5 with

@k x=y,

the sets of complete traces agree. The module ACP# + KFAR is consistent
because bisimulation semantics with fair abstraction, as described in [9], gives
a consistent model for this module. However, KFAR is not valid in any of the
other semantics of Figure 2.

3.1.2.2. PROPOSITION.
ACP, +T4 + t(ac +ca)+bc = 1(t(ac +ca)+bc +c(ra+b)).
PROOF.

T(ra+b)lLc = (ra+b)lLc = 7(allc)+bc = r(ac +ca)+bc
T(ta+b)|_c¢c = 1((ra+b)llc) = m(m(ac +ca)+bc+c(ra+b)) O

Proposition 3.1.2.2 shows that module ACP,+T4 is not consistent. This sud-
den inconsistency must be the result of a serious misunderstanding. And
indeed, what’s wrong is the use of ACP, in the less discriminating models (say
in failure semantics). It happens that, in a setting with 7, failure equivalence
(or ready trace equivalence for that matter) is not a congruence for the left-
merge ||, and this causes all the trouble.
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3.1.3. Solution. In applications we do not use the operators || and | directly.
In specifications we use the merge operator ||, and || and | are only auxiliary
operators, needed to give a complete axiomatisation of the merge.

Let sacp, be the signature obtained from Z(ACP,) by stripping the left-
merge and communication-merge:

sacp, = 2Z(ACP,) — {F:|L:PXP—-P,F:|:PXP->P}

Failure equivalence as in [23], etc. are congruences for the operators of sacp,.
However, the operators [ and | in ACP, are needed to axiomatise the |-
operator, and without them even the most elementary equations cannot be
derived. Our solution to this problem is based on the following idea. Suppose
we want to prove an equation p =g in the signature sacp, that holds in ready
trace semantics (and hence in failure semantics) but not in bisimulation seman-
tics. Then we first prove an intermediate result from ACP,: one or more equa-
tions holding in bisimulation semantics (with explicit divergence) and in which
no | and | appear. This intermediate result is preserved after mapping the
bisimulation model homomorphically on the ready trace or failure model, and
can be combined consistently with the axiom T4. Thus the proof of p =¢ can
be completed. In our language of modules we can describe this as follows. The
module

SACP, = H(sacp, 0(ACP, +SC))

does not contain the operators || and | in its visible signature and since
failure semantics can be obtained as a homomorphic image of bisimulation
semantics, considering that ACP, +SC is sound w.r.t. bisimulation semantics
and that the operators of sacp, carry over to failure semantics, we conclude
that this module is sound w.r.t. failure semantics. Hence it can be combined
consistently with T4, and SACP, is a suitable framework for proving state-
ments in failure semantics.

We would like to stress that the use of the H-operator is essential here. The
H-operator makes that from module SACP, only positive formulas are prov-
able. The following example shows what goes wrong if we also allow non-
positive formulas. From the proof of Proposition 3.1.2.2 it follows that:

T(ra+b)=1a+b
c(tra+b)Cr(ac+ca)+bc
Consequently we can prove an inconsistency if we add law T4:

sacp, J(ACP, +SC)+ <7(tx +y)=7x +y> + c¢(ra +b) C1(ac +ca)+bc

So although the formulas provable from module sacp, J(ACP, +SC) contain
no left-merge, some of them (which are non-positive) cannot be combined con-
sistently with the laws of ready trace semantics and failure semantics.

sacp, J(ACP, +SC) +
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3.2. Associativity of the chaining operator. ACP, is a universal specification for-
malism in the sense that in bisimulation semantics every finitely branching,
effectively presented process can be specified in ACP, by a finite system of
recursion equations (see [9]). Still it often turns out that adding new operators
to the theory facilitates specification and verification of concurrent systems. In
general, adding new operators and laws can have far reaching consequences for
the underlying mathematical theory. Often however, new operators are
definable in terms of others operators and the axioms are derivable from the
other axioms. In that case the new operators can be considered as notations
which are useful, but do not complicate the underlying theory in any way.
Examples of definable operators are the projection operators and the process
creation operator of [16].

Just like the left-merge and the communication-merge are needed in order to
axiomatise the parallel composition operator, new atomic actions are often
needed if we want to define a new operator in terms of more elementary
operators. As an example we mention the actions s(d) and r(d) which we
need in the definition of the chaining operators. These auxiliary atoms will
never be used in process specifications. Unfortunately they have the
unpleasant property that they occur in some important algebraic laws for the
new operators. One of the properties of the chaining operators we use most is
that they are ‘associative’. However, due to the auxiliary actions, the chaining
operators are not associative in general. We do not have general associativity
in the model of bisimulation semantics. Counterexample:

(r(d)y=>(s(d)+s(e)))=>>r(e) = c(d)d
r(d)>=>((s(d)t+s(e)=>r(e)) = c(e)d

However, we do have associativity under some very weak assumptions. In the
model of bisimulation semantics, the following law is valid (here
H={s(d),r(d)|ldeD}):

O (x)=x,3u(y)=y,04(z)=2
(x>=>>y)>>Sz=x>>(>>2)

It would be much nicer if we somehow could ‘hide’ the auxiliary atoms, and,
for the >>-operator, have associativity in general. In this section we will see
how this can be accomplished by means of the module approach.

3.2.1. The associativity of the chaining operators. Although the rule CC holds in
the model of bisimulation semantics, we have not been able to prove it alge-
braically from module ACP¥. However, we can prove algebraically a weaker
version of rule CC if we make some additional assumptions about the alpha-
bet. We assume that besides actions ch (D), the alphabet 4 contains actions:

H = (5(d).7(d)|deD} en H = (s(d),r(d)|deD)

One may think about these actions as special fresh atoms which are added to
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A only in order to prove the associativity of the chaining operators.! Let
H={r(d),s(d)|ldeD} and let H=HUHUH. We assume that actions from
H do not_synchronise with the other actions in the alphabet, and that
range(yyNH = &. On H communication is given by (de€D):

Y((d), r(d)) = y(s(d), r(d)) = y(s(d), 7(d)) = ¥(s(d), r(d)) =
= ¥(s(d), r(d)) = ¥(s(d), r(d)) = ¥(s(d), r(d)) = c(d)
We define for v,w e{T,J,,s,r,E,?,i,i } the renaming function vw:

w(d) if a=v(d) for some deD
wia) = 1, otherwise

3.2.1.1. LemMa. SACP, + RN + CH' + AB + AA + RR+
dr(x)=x, 3x()=y, da(z)=2

(s (X)ller () = x>y =3x(p1s(x)llpy, (7))
PrOOF. We only prove the first equality. }he_second-one follows by symmetry.
0r(prs(x)llpi7(y)) = (Note 1 below, RR1)

= Opopsopr(p(0)llpF(y)) = (RNS, y=35(y))

= g°psopr(Ps(x)llp7op,(v)) = (Note 2, RR2)

= Ogopsopr(prs()llpy,(v)) = (SC4, RNS, x=95(x))

= dg°proPs(p(¥)llpsopys(x)) = (as in Note 2, RR2)

= 3goprops(py (P)llops(x)) = (RNS)

05°05(p;,(¥)llpys(x)) = (Note 3, RR1, SC4)
CHI1
= aH(st(x)”p],r(y)) = X>>>}’

Note 1. Let B=A —H. We claim a(pys(x)llpj7(y)) CB
(recall that B:defzbe 20

PROOF: a(ps(x)llp7(y)) =
pEgrr SR

(Use that x Cy = x|z Cy|z. Use further x =a,;(x)RiSaHoa,;(x):a,,(x).)
A&] aopy5°0p(x) +aop o0y (y) +A414 C

1. The Fresh Atom Principle (FAP) says that we can use new (or ‘fresh’) atomic actions in proofs.
In [12], it is shown that FAP holds in bisimulation semantics. We have not included FAP in the
theoretical framework of this chapter. Therefore, if we need certain ‘fresh’ atoms in a proof, we
have to assume that they were in the alphabet right from the beginning.
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(Use that range(yyNH=@.)
RN'S
C aodyopss(x)tacdyop(y) +BC
AA3 RN 4
C  dyeacpys(x)+oycacpHy)+BC
(Use that x Cy implies p(x) CpAy).)
AA1

This finishes the proof of the claim.

Note 2. Application of axiom AAl gives: a°py(x)CA and acp,(y)CA. In
order to apply axiom RR2, we first have to check that for all ceA4:
rr(c)=rrorr(c). This is obviously the case. Because range(y) N H = &, we have
for all b,ceA:rroy(b,c)=v(b,c). Now the last thing to be checked is that for
b,ceA: y(b,c)=7y(b,rr(c)). This turns out to be the case.

Note 3. Let C=A —H. We claim: a(p;,(»)llpys(x)) CC. The proof is similar to
the proof in Note 1.

This finishes the proof of the lemma. a

3.2.1.2. THEOREM. SACP, + RN + CH" + AB + AA + RR +
Au(x)=x, d5(y)=y, 94(z)=z
XZ>(Y>SSz)=(x>>y)>z

Proor. This is essentially Theorem 1.12.2 of [118]. We give a sketch of the
proof.

x>3>(y>>2) = p(pr(x)lleFdu (o (M)lley(2)) =
= o0 oy, )0y, 1) =
= I°9n (Prs(O)NIBkop H(ors (V)lloy(2)) =
= 0ol or, 0y () =
= 0ROl e om0 lIoy ) =
= A°3u (Pys(0)llo7oprs ()l (2)) =
RN'S
= dd(pr(0)llpreopr(y)llpy,(2)) =
= 807 (pr(ors(x)Ipreop () llpy, (2)) =
= 9585 (P1s (P ()Nl 7 () llpy, (2)) =
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RR2

= a§°aﬁ(aﬁ°Pfi(Pﬁ(X )||P¢?(Y))||P¢£(Z =

RRI

= 3£(317°P1£(Pﬁ(x)”PF(Y))”PL!(Z)) =

RNS

= 0u(prs n(ps(X)lloF(V)llpy(2)) = (x=>y)>>2

d

3.2.1.3. THEOREM. SACP, + RN + CH' + AB + AA + RR+

H(x)=x, a(Y)=y, d(2)=2
x>(y>z) = (x>y)>»z

PROOF. Let I ={c(d)|deD}.
CH2
x>>(y>>Z) = 'r,(x>>>('r,(y>>>z))) =

CHI

= 1o0h(pgs(X)llpy o (y>=>>2)) =
RNS

= g°ti(pys(xX)llTrop),(y>>2)) =
RR2

= 0g°ti(prs(X)llpy (y=>>2)) =
RN'S

= 1°04(pps(X)llpy, (y=>>2)) =
CHI

= (x>3>(>>z) =
3212

= m((x>>y)=>>z) = - = (x>y)>z O

3.2.2. Removing auxiliary atoms. We will now apply the module approach to
remove completely the auxiliary atoms which were used in the definition of the
chaining operators. What we want to obtain is a module where ‘inside’ the
auxiliary atoms are used to define the chaining operator but where ‘outside’
they are no longer visible and moreover chaining is associative in general.
Below we will employ the notation:

cAM=(Z(M)—0o)OM.
Consider the module:
CH™ = ({F :aePIaeIA{} U{F:ps:P>PIf:A5—>Ar})
A(SACP, +RN+CH* + AB+AA+RR).

This module cannot be used to prove any formula containing atoms in H. But
unfortunately module CH™ still does not prove the general associativity of the
chaining operators:

CH™ ¥ x>>(>>2)=(x>>y)>>z
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The reason is that the auxiliary atoms, although removed from the language,
are still present in the models of module CH™. Thus the counterexample
(r(d)>=>(s(d)+s(e)))>=>>r(e) still works in the models. Let A~ =4 —H. We
are interested in consistent models which only contain actions of 4~ . The
module CH™ + <a(x)CA~ > does not denote such models: all consistent
models of CH™ contain the process 4 with a(4)=AZ A~ . Adding the law
a(x)CA~ therefore throws away all consistent models. The right class of
models can be denoted with the help of operator S. We consider the module

CH = S(CH )+ <a(x)CA™ >.
Some models of module CH™ have consistent submodels which do not contain
auxiliary atoms. In these models the law a(x)CA4~ holds. Thus module CH

has consistent models.
From Theorems 3.2.1.2 and 3.2.1.3, together with axiom RRI, it follows

that:
a(x)CA ™, a(y)CA ™, a(z)CA™
(x>=>>y)>Sz=x>>(>>2)
ax)CA , a(y)CA—, a(z)CA~
(x>y)>z=x>(>z) '
From this we can easily see that module CH proves the general associativity of
the chaining operators:

and

CH +

CH +

CHt x>>(y>>z)=(x>>y)>>x and

CH x>(>z)=(x>y)>x

3.2.3. The following laws can be easily proven from module CH (here
d,eeD):

rdx>( 3 ley®) = m(x>p?) L1
eeD

rd-x>trey = Te-(1d-x>y) L2

(S dxD)>(Sley®) = Sld-x>(S ley®)) L3

deD eeD deD eeD

(ZldxD)>rey = Fld(x?>rey) + 1e(( T ldx))>y) L4

deD deD deD

The laws are equally valid when the operator > is replaced by ==, except for
law L1 where in addition the 7 has to be replaced by c(d).
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3.3. SACP%. Module SACP# is an ‘improved’ version of module ACP¥. It is
defined by:

SACP! = SACP, +RN+CH+REC+PR+B+AIP~ +AB+AA+RR.

If modules in the above defining equation have an alphabet as parameter, this
is A7, and if they are parametrised by a communication function this is the
restriction Yy~ of y to (4~ U{8})X(4~ U{8}). The rules RSP, RSP* and
CFAR can still be used in a setting with module SACP%. We have SACP# +
RSP, SACP# + RSP* and SACP# + KFAR + CFAR.

4. QUEUES

In the specification of concurrent systems FIFO queues with unbounded capa-

city often play an important role. We give some examples:

- The semantical description of languages with asynchronous message pass-
ing such as CHILL (see Recommendation Z.200 (CHILL language
definition), CCITT Study Group XI, 1980),

- The modelling of communication channels occurring in computer net-
works (see LARSEN & MILNER [85] and VAANDRAGER [117]),

- The implementation of languages with many-to-one synchronous com-
munication, such as POOL (see AMERICA [5] and VAANDRAGER [118]).
Consequently the questions how queues can be specified, and how one can
prove properties of systems containing queues, are important. For a nice sam-
ple of queue-specifications we refer to the solutions of the first problem of the
STL/SERC workshop [46]. Some other references are BROY [35], HOARE [76]

and PraTT [108].

4.1. Also in the setting of ACP a lot of attention has been paid to the
specification of queues. Below we give an infinite specification of the process
behaviour of a queue. Here D is a finite set of data, D* is the set of finite
sequences o of elements from D, the empty sequence is €. Sequence o*a’ is the
concatenation of sequences ¢ and o’. The sequence, only consisting of deD is
denoted by d as well.

QUEUE = Q. = X 1d-Qu

deD

Qo'd = Ele Osigid T Td'Qo

eeD

Note that this infinite specification uses only the signature of BPA; (see Sec-
tion 2.1). We have the following fact:

4.1.1. THEOREM: Using read/send communication, the process QUEUE cannot be
specified in ACP by finitely many recursion equations.
PROOF: See BAETEN & BERGSTRA [7] and BERGSTRA & TIURYN [25]. O
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It turns out that if one allows an arbitrary communication function, or extends
the signature with an (almost) arbitrary additional operator, the process
QUEUE can be specified by finitely many recursion equations. For some nice
examples we refer to BERGSTRA & Kirop [22].

4.2. Definition of the queue by means of chaining. A problem we had with all
ACP-specifications of the queue is that they are difficult to deal with in process
verifications. For example, let BUF'1 be a buffer with capacity one:

BUF1 = 3 |d-BUF1?
deD

BUF14 = 1d-BUF1

In process verifications we need propositions like QUEUE>BUF1 = QUEUE
(in Section 5 we present a protocol verification where a similar fact is actually
used). However, the proof of this fact starting from the infinite specification is
rather complicated. Now the following specification of a queue by means of
the (abstract) chaining operator allows for a simple proof of the proposition
and numerous other useful identities involving queues. This specification is
also described by HOARE [76] (p. 158).

Q = 3 |d(Q0>BUF19)

deD

The first thing we have to prove is that the process described above really is a
queue.

4.2.1. THEOREM: Q = QUEUE.
ProOOF: Define for every neN and 0=d,, ..., ,d,eD" processes D as fol-
lows:

D" = Q>BUF1 """, times >BUF1* - - - >BUF1%

So by definition D? = Q. Using the laws of Section 3.2.3, we derive the fol-
lowing recursion equations:

D! = Q= 3 |d(Q>»BUF1¥) = 3 |d-D§
deD deD
"g = O>BUF1 """, umes >BUF1* --- >BUF1“>BUF1¢ =
= S 1e(Q>BUF1°>BUF1 " , ymes >BUF1* - - - >BUF1*>BUF1%) +
eeD
+ 1d(Q>BUF1 ", imes >BUF1% - - - >BUF1*>BUF1) =
note

= S 1e(Q>BUF1 """, ymes >BUF1°>BUF1% - - - >BUF1%>BUF19) +
eeD
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+ 1d(Q>BUF1 - " 4| imes >BUF1" - -+ >BUF1*) =

= S leDivgg + 1d-Dy*!
eeD

Note. In the second last step we moved the data in the sequence of 1-datum-
buffers to the right as far as possible. It is easy to see that this is allowed. Sup-
pose that not all data are moved to the right. By applying the associativity of
the chaining operator we can rewrite the expression in such a way that we get
a subterm of the form BUF19>BUF1. This subterm can be rewritten into
T«(BUF1>BUF 19). Next we move the initial 7 to the front of the sequence
using the identity x|y =7(xlly) of Proposition 2.1.3, and remove it by means
of axiom T1 (x7=x) of ACP,. Now we have moved one datum one place to
the right in the queue. We can iterate this procedure until the desired result is
obtained.
Define the process Q? by:

Q! = 3 1d-0;
deD

Qi = Zle Qpowa + 1d:Q5™
eeD

The specification of process Q? is clearly guarded. Applying RSP gives us on
the one hand that QUEUE=Q?, and on the other hand that Q=D?=0°.
Consequently QUEUE = Q. O

The proof above shows the ‘view of a queue’ that lies behind the specification
of Q. During execution there is a long chain of 1-datum buffers passing mes-
sages from ‘the left to the right’. After the input of a new datum on the left, a
new buffer is created, containing the new datum and placed at the leftmost
position in the chain. Because no buffer is ever removed from the system, the
number of empty buffers increases after every output of a datum.

42.2. LEMMA: Q>BUF1 = Q.
PROOF:

0>BUF1 = S |d((Q>BUF19y>BUF1) =

deD

S 1d(Q>(BUF 1*>BUF1)) =

deD

= 3 |d(Q>»7(BUF1>BUF1%) =
deD

213

= 3 |d(Q>(BUF1>BUF1%) =
deD

= 3 1d-(Q>BUF1)>BUF1%)

deD
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Now apply RSP™ (from the proof of Theorem 4.2.1 it follows that Q is guard-
edly specifiable). O

By means of an inductive argument we can easily prove the following corollary
of Lemma 4.2.2.

4.2.3. COROLLARY: Let for ceD", Q° be a queue with content o:
o°=0
0™ = 0*3BUF1?

Then: 7-(Q°>BUF1) = 1-Q°.

4.2.4. PROPOSITION: 0>Q = Q.
PROOF:
0>Q = 3 1d-(Q>»BUF19)>Q) =
deD
= 3 1d(Q>(BUF1>Q)) =
deD

= 3 1d(Q>7(BUF1>(Q>BUF %)) =
deD

= >ld '(Q>>(BUF1>>(Q>>BUF]d))) =
deD

= 3 |d-((Q>BUF1)>(Q>BUF1%) =
deD

422

= S 1d(Q>(Q>BUF1%) =
deD

= S 1d-(Q>Q)>BUF1%)

deD
Now apply RSP*. a

4.2.5. COROLLARY: Let o,peD". Then: T(Q°>QP) = TQ""°.

4.2.6. Remark. It will be clear that the implementation which is suggested by
the specification of process Q is not very efficient: at each time the number of
empty storage elements equals the number of data that have left the queue.
But we can do it even more inefficiently: the following queue doubles the
number of empty storage elements each time a datum is written.

Q0 = S1d(Q>1d-Q)

deD

A standard proof gives that Q = QUEUE. From the point of view of process
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algebra this specification is very efficient. It is the shortest specification of a
FIFO-queue known to the authors, except for a 5-character specification of
PraTT [108]: |1 X D*. A problem with Pratt’s specification is that a neat
axiomatisation of the orthocurrence operator X is not available. Our Q-
specification has the disadvantage that it does not allow for simple proofs of
identities like 0>Q = Q.

4.3. Bags. In [18] a bag over data domain D is defined by:

BAG = S |d-(1d|BAG)
deD

4.3.1. THEOREM: Q>BAG = BAG.
PROOF:
Q0>BAG = > d(Q0>1d-BUF1)>BAG) =
deD

S 1d(Q>(1d-BUF 1>BAG)) =
deD

> 1d(Q>(BUF 1’>>(BAG|I1d))) =
= dgld-(Q>>(BUF1>>(BAG||Td))) =
= :EZ 1d-(Q>BUF 1)>(BAG||1d)) =
- dED 1d(Q>(BAGIINd)) =

= 3 |d-((Q>BAG)IINd)

deD

Now apply RSP.

Note. We claim that SACP, +RN+CH" + AB+AA+RR + (Q>(BAGII1d))

= ((Q>BAG)|1d). Let I = {c(d)ldeD} and H = {r(d),s(d)|deD}. Then:
(Q>(BAGI1d)) = 1,°0y(p1(Q)lIpy(BAGIINd)) =

(straightforward application of axioms of AB + AA + RR + SC6)

71°9k(p1s(Q)llpy, (BAG))ITd =

((Q>BAG)|I1d)

From the claim it follows that CH + (Q>(BAGI|1d)) = ((Q>BAG)I||1d) and
consequently SACP? + (O>(BAGI|1d)) = ((Q>BAG)IINd). O
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4.3.2. Remark. The identity BAG>Q =BAG does not hold. The intuitive
argument for this is as follows: if a bag contains an apple and an orange, and
the environment wants an apple, then it can just take this apple from the bag.
In the case where a system, consisting of the chaining of a bag and a queue,
contains an apple and an orange, it can occur that the first element in the
queue is an orange. In this situation the environment has to take the orange
first. The argument that processes Q>>BAG and BAG are different, because in
the first process the environment is not able to pick an apple that is still in the
queue, does not hold. In ACP, we abstract from the real-time behaviour of
concurrent systems. If the environment waits long enough then the apple will
be in the bag.

4.4. A queue that can lose data. In the specification of communication proto-
cols, we often encounter transmission channels that can make errors: they can
lose, damage or duplicate data. All process algebra specifications of these
channels we have seen thus far were lengthy and often incomprehensible.
Consequently it was difficult to prove properties of systems containing these
queues. Now, interestingly, the same idea that was used to specify the normal
queue by means of the chaining operator, can also be used to specify the vari-
ous faulty queues. One just has to replace the process BUF1 in the definition
by a process that behaves like a buffer but can lose, damage or duplicate data.

First we describe a queue FQ that can lose every datum contained in it at
every moment, without any possibilities for the environment to prevent this
from happening. The basic component of this queue is the following Faulty
Buffer with capacity one:

FBUF1 = Y |d-FBUF1?
deD

FBUF1? = (1d + 7)-FBUF1

If the faulty buffer contains a datum, then this can get lost at any moment
through the occurrence of a 7-action. In the equation for FBUF 1 there is no
T-action before the Td-action because this would make it possible for the buffer
to reach a state where datum d could not get lost.

We use the above specification in the definition of the faulty queue FQ:

FQ = Y |d(FQ>FBUF1%)
deD
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The idea behind this specification of the faulty queue is illustrated in Figure 3.
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FIGURE 3. The faulty queue

4.4.1. LeMMA: FBUF 1“>FBUF1 = 7-(FBUF 1>>FBUF 19).
PROOF:

FBUF19>FBUF1 = r(FBUF13>FBUF1?) + v(FBUF1>FBUF1) =
= 7(FBUF1>FBUF1%)
In the last step we use that:

7(FBUF 1>>FBUF 1)C FBUF 1>>FBUF 1° Ct(FBUF 1>>FBUF 1), O

Compare the simple definition of FQ with the following BPA ;-specification of
the same process.

4.4.2. Leto,peD". We write 0—p if p can be obtained from o by deleting one
datum. Let R(o) = {plo—p} be the finite set of residues of o after one dele-
tion. Now FQUEUE is the following process.

FQUEUE = FQ, = 3 |d-FQ,

deD

FQo'd = El«e 'FQe'o'd + Td'FQu + 2 T'FQp

eeD peR(o*d)

4.43. THEOREM: FQ = FQUEUE.
PROOF: Analogously to the proof of Theorem 4.2.1. Use Lemma 4.4.1. O

Analogous versions of the identities we derived for the normal queue can be
derived for the faulty queue in the same way. In the proofs we use Lemma
44.1.



90 Il. Modular specifications in process algebra - with curious queues

4.4.4. PROPOSITION:
i) FQ>FBUF1=FQ,
ii) Let for oe D", FQ° be a faulty queue with content o:

FQ* = FQ

FQ*¢ = FQ°>FBUF1?

Then: -(FQ°>FBUF1) = 1-FQ",
iii) FBUF19>FQ=r(FBUF |’>(FQ>FBUF 19)),
iv) O>FQ = FQ>FQ = FQ,
v) Leto,peD". Then: T(FQ°>FQ") = 1 FQ”".

4.5. An identity that does not hold. 1In this subsection we will discuss the iden-
tity
FQ = Q>>FBUF]1.

‘Intuitively’ the processes FQ and Q> FBUF1 are equal since both behave like
a FIFO-queue that can lose data. Furthermore, with both processes the
environment cannot prevent in any way that a datum gets lost. Unlike the
situation with the processes BAG>Q and BAG which we discussed in Section
4.3, we can think of no ‘experiment’ that distinguishes between the two
processes. Still the identity cannot be proved with the axioms presented thus
far.

4.5.1. THEOREM: If parameter D of operator >> contains more than one element,

then SACP* v FQ = Q>FBUF].

PrROOF: We show that the identity is not valid in the model of process graphs

modulo bisimulation congruence as presented in BAETEN, BERGSTRA & KrLoP

[9]. Suppose that there exists a bisimulation between processes FQ and

O>FBUF1. Suppose that process FQ reads successively two different data,

starting from the initial state. Because of the bisimulation it must be possible

for the process Q>FBUF1 to read the same data in such a way that the
resulting state is bisimilar to the state process FQ has reached. Now process

FQ executes a 7-step and forgets the second datum. We claim that process

O>FBUF1 is not capable to perform a corresponding sequence of zero or

more 7-step. This is because there are only two possibilities:

1) O>FBUF1 forgets the second datum. But this means that also the first
datum is forgotten. In the resulting state Q>>FBUF1 cannot output any
datum (before reading one), whereas process FQ can do this.

2) QO>FBUF1 does not forget the second datum. In the resulting state
Q>FBUF1 can output this datum. Process FQ cannot do that.

The argument is illustrated in Figure 4.
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FIGURE 4.

The next theorem shows that, if we add law T4, the two faulty queues can be
proven equivalent.

4.5.2. THEOREM: SACP?# + T4+ FQ=Q>FBUF1.
PROOF: Define the process QF by:

QF = QF = X |d-QF,

deD

QFo'd = E\Ire 'QFe*o'd Ly (Td £y T)'QFo
eecD
Analogous to the proof of Theorem 4.2.1, using in addition the identity
O>»BUF1=Q, we prove that Q> FBUF 1=QF. For this we do not need the
additional axiom.

The main trick in the proof is that we introduce yet another ‘view of
queues’: process QF, is split in two parts, a read-process QF; and a write pro-
cess QF;. The read-process takes care of reading new data, whereas the write
process outputs the data in 6. When the write process is ready, it sends a mes-
sage ready to the read-process and dies. When the read-process, after reading a
sequence p of messages, receives the ready-signal it behaves again like process
QF,. The fact that the length of the sequence of data ¢ in QF; can only
decrease, allows us to use induction. L

We extend the alphabet! with actions ready, ready” and ready, and define

1. See Note 1 in Section 3.2.1.
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communication by y(ready,ready”)=ready. For se D" and d €D we define:

QF. = 3 |d-QF;
deD
QF;'d = zle 'QF;'a-d + "ead)" 'QFa'd
eeD
QF; = ready

QFq = (1d + 1)-QF,
A short but nontrivial proof gives:
OF, = T(mﬁ}oa(ready,ready'}(QF:“QF‘;)

Also in this step we do not use the extra axiom. We claim that:
T'QFy C OFguguo-

The proof of the claim goes with induction to the length of ¢’. If |0’| = 0 the
the claim holds trivially. Now suppose the claim is proved for |o’|<n.
Choose ¢ with length n, and e D. We have that:

7' QF e = 7 (Te QFoz + 70F5) =
(this is the only step where we use axiom T4)
= Te-QFu; + 1 QF;5 C
(because on the one hand e -QF;.; C Te -QF;.4.; because of the induction

hypothesis and axiom T3, and on the other hand 7-QF.; C 7-QF;.45
because of the induction hypothesis and axiom T2)

C TeQFuis + 7 QFuic = QFoivsee
This finishes the proof of the claim. A corollary is that 7-QF s,y C QF guguo':
T'QFa'a’ = T'T{reE}oa(ready,ready')(QH“QF:'G’) c
(Use the observation of Section 2.1.4 that 7x Cy implies 7x[|z Cy||z)
C T(ready} *Oready,ready’ ) OF | QFGudeer) = QF oudrer
We have shown that process QF, is indistinguishable from a process that can
lose each datum at every moment. Using the notation of Section 4.4.2 we can
write down the following equation for processes QF . 4:
QFa'd = Ele ‘QFpugea + 1d-QF, + 2 T'QFp
eesD peR(o*d)
Application of RSP gives that the process FQUEUE of Section 4.4.2 equals
process QF. But according to Theorem 4.4.3 also FQUEUE = FQ. O
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4.6. The faulty and damaging queue. In the specification of certain link layer
protocols we have to deal with a communication channel that behaves like a
FIFO-queue with unbounded capacity (this is of course a simplifying assump-
tion), but has some additional properties: (1) a datum can be damaged at
every moment it is in the queue; the environment cannot prevent this event,
and (2) a datum can be lost at every moment it is in the queue. We give a
process algebra specification of this process in two steps. First we specify the
Faulty and Damaging Buffer with capacity one (FDBUF1). We assume that
the domain of data D contains a special element er, representing a damaged
datum.

FDBUF1 = 3 |d-FDBUF1*
deD

FDBUF 14 = 1d -FDBUF1 + 1-(fer +1)-FDBUF 1

With the help of this process we can now easily define the Faulty and Damag-
ing Queue (FDQ):

FDQ = 3 |d(FDQ>FDBUF 1)
deD

4.6.1. LeMMA: FDBUF 19> FDBUF1 = r(FDBUF 1>FDBUF 19).
PROOF: FDBUF 19>>FDBUF1 =

= r(FDBUF 1>>FDBUF 19) + 7+((fer +1)-FDBUF 13>FDBUF 1) =
= r«(FDBUF 1>>FDBUF 1%) + 1r-(FDBUF 1>>FDBUF 1) +
+ 7«(FDBUF 1>>FDBUF1)) =

note

= r(FDBUF 1>>FDBUF 1%) + 7+(r-(FDBUF 1’>(r-(fer +7)-FDBUF 1)) +
+ 7(FDBUF 1>>FDBUF1)) =

= 1«(FDBUF 1>>FDBUF1%) + 7-(r«(FDBUF 1>>(Yer +1)-FDBUF1) +
+ 7(FDBUF 1>>FDBUF1)) =

= r«(FDBUF 1>>FDBUF 19) + 7(FDBUF 1>>(fer +7)-FDBUF 1) =

= 7(FDBUF 1>>FDBUF 19)

Note. FDBUF1“ = ter-FDBUF1 + t(fer+7)-FDBUF1 =

T2
= r(fer +7)-FDBUF 1. 0

Once we have Lemma 4.6.1, it is standard to prove that process FDQ is guard-
edly specifiable. It is moreover easy to derive an analogous version of Proposi-
tion 4.4.4 for FDQ.
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4.6.2. Remark. One might ask if there is not a 7 too many in the specification
of process FDBUF 1. Why not specify the faulty and damaging buffer simply
as follows?

FDB1 = 3 |-FDB1?
deD

FDB1¢ = (1d + ter + 7)-FDB1

A first observation we make is that if D{er}:
SACP* ¢y FDBUF1 = FDB1

This is because the two processes are different in bisimulation semantics. Pro-
cess FDBUF1 can input a datum d different from er, and then get into a state
where either an output action fer will be performed or no output action at all.
This means that it is possible that a datum is first damaged and then lost.
Process FDB 1 does not have such a state.

For similar reasons we also have the following fact:

SACP* ¢y FDB1“>FDB1 = t«(FDB1>FDB19)

This means that if we work with a queue defined with the help of FDB1, our
standard technique to prove facts about queues is not applicable. Note that
processes FDB 1 and FDBUF 1 are trivially equal if we work in a setting where
the law T4 (m(tx +y)=7x +y) is valid.

4.7. The faulty and stuttering queue. This section is about a very curious queue:
a FIFO-queue that can lose or duplicate any element contained in it at every
moment. An infinite specification of this process can be found in LARSEN &
MILNER [85]. The basic component we use in the specification of the Faulty
and Stuttering Queue is a Faulty and Stuttering Buffer with capacity 1:

FSBUF1 = Y |d-FSBUF1“
deD

FSBUF1? = 1d-FSBUF1? + 7-FSBUF1

FSQ = > |d-(FSQ>FSBUF19)
deD

When we place two faulty and stuttering buffers in a chain, then we have the
possibility of an infinite number of internal actions (the first buffer stutters and
the second one loses all its input). This implies that, in the specification of the
faulty and stuttering queue, we have to guard against unguarded recursion.
We need a fairness assumption if we want to exclude the possibility of infinite
stuttering.

First we prove a simple lemma:
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4.7.1. LeMMA: FSBUF 1“>FSBUF1¢ = r(FSBUF 19>FSBUF1%) =
= FSBUF1“>FSBUF1 = r«(FSBUF1?>FSBUF).
PROOF:

FSBUF19>FSBUF1¢ D r«(FSBUF1*>FSBUF1) D FSBUF19>FSBUF1 D
D 7(FSBUF 14> FSBUF1¢) O FSBUF1¢>FSBUF 14 O

The proof of the next lemma is more involved.

4.7.2. LEMMA:
SACP# + KFAR+FSBUF 1> FSBUF1 = 7-(FSBUF 1> FSBUF 19).
PROOF:
FSBUF 1>>FSBUF1 =
= ¢(d)(FSBUF 143> FSBUF 1¢) + 1-(FSBUF 1>3>FSBUF 1)
FSBUF 14>>FSBUF1¢ =
= r+(FSBUF1>>FSBUF1) + t-(FSBUF1>>FSBUF1%) +
+ 1d (FSBUF 19>> FSBUF 19)
Application of CFAR gives (I ={c(d)|deD}):
FSBUF14>FSBUF1 = 1/ (FSBUF 19>>FSBUF 1) =
= r1(r(FSBUF1>3>FSBUF1) + 1-(FSBUF 1>>FSBUF 1) +

+ 1d (FSBUF 1“>>FSBUF 1)) =

47.1
= r(r(FSBUF1>>FSBUF1) + 7-(FSBUF1>>FSBUF 1%) +

+ 1d (FSBUF 1> FSBUF 1))
In addition we derive:

FSBUF1>FSBUF 19 = 3 |e (FSBUF1°>>FSBUF 19) +
eeD

+ 7(FSBUF 1>>FSBUF 1) + 1d (FSBUF 1>>FSBUF 1%
FSBUF 1°>>FSBUF 1 = =-(FSBUF 1>>FSBUF 1) +
+ 1(FSBUF 1°>>FSBUF1) + 1d (FSBUF 1°>>FSBUF 1)

FSBUF1>FSBUF1 = 3 |d-(FSBUF 1d>>FSBUFl)
deD

Let E be the following guarded system of recursion equations:
Yt = 7Y + 7Y + 1d-Y?)

¥ = Ble¥® ++¥ + §d-5
eeD
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Yd = 7Y+ 7Y + 1Y
Y= 3|dre
deD

RSP gives that FSBUF 1>FSBUF1 = Y% and FSBUF 1’>FSBUF1¢ = Y.
Thus it suffices to prove that Y¢ = 7-Y%. Let F be the following guarded
system of recursion equations:

2= % |eZ¥ 4 ¢+ Z + d-Z°

eeD
Zz4 = ¢2% 4 v:Z° 4+ 1d-Z*
Z= ¥4z
deD

We derive:
124 =172 =1(tZ +1d-2° + 729

If we substitute 7-Z¢ for Y4, Z¢ for Y%, Z° for Y* and Z for Y, then RSP
gives: 7-Z9=Y*% and Z‘=Y". Consequently Y4 =71-Y. O

From Lemma 4.7.2 all the rest follows: process FSQ is guardedly specifiable
and we can derive an analogous version of Proposition 4.4.4.

5. A PROTOCOL VERIFICATION

In this section we present the specification and verification of a variant of the
Alternating Bit Protocol, resembling the ones discussed in KOYMANS &
MULDER [81] and LARSEN & MILNER [85]. The aim of this exercise is to illus-
trate the usefulness of the proof technique developed in the previous section.
The architecture of the Concurrent Alternating Bit Protocol (CABP) is as fol-
lows:

A B

D (&
FIGURE 5.

Elements of a finite set of data are to be transmitted by the CABP from port 1
to port 2. Verification of the CABP amounts to a proof that (1) the protocol
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will eventually send at port 2 all and only data it has read at port 1, and (2)
the protocol will send the data at port 2 in the same order as it has read them
at port 1.

In the CABP sender and receiver send frames continuously. Since sender
and receiver will have a different clock in general, the number of data that can
be in the channels at a certain moment is in principle unlimited. In this section
we assume that the channels behave like the process FQ as described in Sec-
tion 4.4: a FIFO-queue with unbounded capacity that can either lose frames or
pass them on correctly.

In the protocol, the sender consists of two components 4 and D, whereas
the receiver consists of components B and C. One might propose to collapse A4
and D into a sender process, and B plus C into a receiver process. The result-
ing processes would be more complicated and in the correctness proof we
would have to decompose them again.

5.1. Specification. Let D be a finite set of data which have to be sent by the
CABP from port 1 to port 2. Let B = {0,1}. 9 = (DXB)UB is the set of
data which occur as parameter in the actions of the chaining operators. The set
of ports is P = {1,2,3,4}, the set of data that can be communicated at these
ports is D = D U {next}. Alphabet A and communication function y are now
defined by the standard scheme for the chaining operators, augmented with
actions ri(d), si(d) and ci(d), for which we have communications
Y(ri(d),si(d)) = ci(d) (ieP and deD).

We now give the specifications of processes A4, B, C and D. Here b ranges
over B = {0,1} and d over D (the overloading of names B and D should
cause no confusion). The specifications are standard and need no further com-
ment.

A4=4° B = B°
Ab = Jrid)-4® B® = 3 |d 1—-b)-B® + 3 |db-B®
deD deD deD

A% = 1db-A® + r3(next)-A'"?| |B® = 52(d)-s4(next)-B'~"®
1

D = pY &= ! (not C°1)

D = |(1-b)-D* + Cb = 1b-C + r4(next)-Cc'~*
+ |b-s3(next)-D'?

Let H and I be the following sets of actions:
H = {r3(next),s 3(next),r 4(next),s 4(next)}
I = {c3(next),c4(next)}

The Concurrent Alternating Bit Protocol is defined by:
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CABP = 1,90((4>FQ>B)|l(C>FQ>D))

5.2. Verification. If we do not abstract from the internal actions of the proto-
col, then the number of states is infinite. This means that a straightforward
calculation of the state graph is not possible. A strategy which is often applied
in cases like this is that one substitutes a buffer with capacity 1 for the com-
munication channels. As a result the system is finite and can be verified
automatically. Next a buffer with capacity 2 is substituted, followed by another
automatic verification, etc.. The verification for the case of buffers with capa-
city 155 takes 23 hours CPU time. Thereafter it is decided that ‘the protocol is
correct’.

Of course it is not so difficult to specify a protocol that is correct for buffers
with capacity less or equal than 155, but fails when the capacity is 156. The
conclusion that the protocol is correct for arbitrary buffer size because it works
in the cases where the buffer size is less than 156, is therefore influenced by
other observations. It is for example intuitively not very plausible that the
CABP works for buffer size 155, but not for buffer size 156, because the
specification is so short and the only numbers which occur in it are 0 and 1.

Because intuitions can be wrong people look for formal techniques which
tell in which situations induction over certain protocol parameters is allowed.

The basic merit of the results of Section 4 is that they make it possible to
use inductive arguments when dealing with the length of queues in protocol
systems. In the verification below we show that the protocol is correct if the
channels behave as faulty FIFO-queues with unbounded capacity. However, a
minor change in the proof is enough to show that the protocol also works if
the channels behave as n-buffers, faulty n-buffers, perfect queues, faulty and
stuttering queues, etc.

The following two lemmas will be used to show that, after abstraction, the
number of states of the protocol is finite. The first lemma says that if, at the
head of the queue, there is a datum that will be thrown away by the receiver
because it is of the wrong type, this datum can be thrown away immediately.

5.2.1. LEMMA:

i)y FBUF1%»B'"® = 1 (FBUF1>B'™?);

ii) FBUF1%>>s4(next)-B'~® = 1-(FBUF1>s4(next)-B'~?);
iiiy FBUF1%>B% = r-(FBUF13>B%).

PROOF: The proof of (i) is trivial. Part (ii) goes as follows:

FBUF1®>54(next)-B' ™ =
= 1(FBUF 1>>s4(next)"B' ") + s4(next)(FBUF1*>B' %) =
@
= 7(FBUF I>>s4&(next)-B' %) + sd&(next)(FBUF1>B'~%) =

7-(FBUF 1>>s 4(next)-B' %) (summand inclusion)

Il
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The proof of part (iii) is similar:

FBUF1%>B% = r(FBUF1>B®) + s2(d)(FBUF 1*s4(next)-B' ") =
(i)

= 7(FBUF1>B®%) + s2(d)(FBUF 1’>s4(next)-B' %) =

= r«(FBUF1>B%) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>