291 research outputs found

    Person Re-Identification by Discriminative Selection in Video Ranking

    Get PDF
    Current person re-identification (ReID) methods typically rely on single-frame imagery features, whilst ignoring space-time information from image sequences often available in the practical surveillance scenarios. Single-frame (single-shot) based visual appearance matching is inherently limited for person ReID in public spaces due to the challenging visual ambiguity and uncertainty arising from non-overlapping camera views where viewing condition changes can cause significant people appearance variations. In this work, we present a novel model to automatically select the most discriminative video fragments from noisy/incomplete image sequences of people from which reliable space-time and appearance features can be computed, whilst simultaneously learning a video ranking function for person ReID. Using the PRID2011, iLIDS-VID, and HDA+ image sequence datasets, we extensively conducted comparative evaluations to demonstrate the advantages of the proposed model over contemporary gait recognition, holistic image sequence matching and state-of-the-art single-/multi-shot ReID methods

    Person re-Identification over distributed spaces and time

    Get PDF
    PhDReplicating the human visual system and cognitive abilities that the brain uses to process the information it receives is an area of substantial scientific interest. With the prevalence of video surveillance cameras a portion of this scientific drive has been into providing useful automated counterparts to human operators. A prominent task in visual surveillance is that of matching people between disjoint camera views, or re-identification. This allows operators to locate people of interest, to track people across cameras and can be used as a precursory step to multi-camera activity analysis. However, due to the contrasting conditions between camera views and their effects on the appearance of people re-identification is a non-trivial task. This thesis proposes solutions for reducing the visual ambiguity in observations of people between camera views This thesis first looks at a method for mitigating the effects on the appearance of people under differing lighting conditions between camera views. This thesis builds on work modelling inter-camera illumination based on known pairs of images. A Cumulative Brightness Transfer Function (CBTF) is proposed to estimate the mapping of colour brightness values based on limited training samples. Unlike previous methods that use a mean-based representation for a set of training samples, the cumulative nature of the CBTF retains colour information from underrepresented samples in the training set. Additionally, the bi-directionality of the mapping function is explored to try and maximise re-identification accuracy by ensuring samples are accurately mapped between cameras. Secondly, an extension is proposed to the CBTF framework that addresses the issue of changing lighting conditions within a single camera. As the CBTF requires manually labelled training samples it is limited to static lighting conditions and is less effective if the lighting changes. This Adaptive CBTF (A-CBTF) differs from previous approaches that either do not consider lighting change over time, or rely on camera transition time information to update. By utilising contextual information drawn from the background in each camera view, an estimation of the lighting change within a single camera can be made. This background lighting model allows the mapping of colour information back to the original training conditions and thus remove the need for 3 retraining. Thirdly, a novel reformulation of re-identification as a ranking problem is proposed. Previous methods use a score based on a direct distance measure of set features to form a correct/incorrect match result. Rather than offering an operator a single outcome, the ranking paradigm is to give the operator a ranked list of possible matches and allow them to make the final decision. By utilising a Support Vector Machine (SVM) ranking method, a weighting on the appearance features can be learned that capitalises on the fact that not all image features are equally important to re-identification. Additionally, an Ensemble-RankSVM is proposed to address scalability issues by separating the training samples into smaller subsets and boosting the trained models. Finally, the thesis looks at a practical application of the ranking paradigm in a real world application. The system encompasses both the re-identification stage and the precursory extraction and tracking stages to form an aid for CCTV operators. Segmentation and detection are combined to extract relevant information from the video, while several combinations of matching techniques are combined with temporal priors to form a more comprehensive overall matching criteria. The effectiveness of the proposed approaches is tested on datasets obtained from a variety of challenging environments including offices, apartment buildings, airports and outdoor public spaces

    Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders

    Get PDF
    The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders

    Heterogeneous Self-Reconfiguring Robotics

    Get PDF
    Self-reconfiguring (SR) robots are modular systems that can autonomously change shape, or reconfigure, for increased versatility and adaptability in unknown environments. In this thesis, we investigate planning and control for systems of non-identical modules, known as heterogeneous SR robots. Although previous approaches rely on module homogeneity as a critical property, we show that the planning complexity of fundamental algorithmic problems in the heterogeneous case is equivalent to that of systems with identical modules. Primarily, we study the problem of how to plan shape changes while considering the placement of specific modules within the structure. We characterize this key challenge in terms of the amount of free space available to the robot and develop a series of decentralized reconfiguration planning algorithms that assume progressively more severe free space constraints and support reconfiguration among obstacles. In addition, we compose our basic planning techniques in different ways to address problems in the related task domains of positioning modules according to function, locomotion among obstacles, self-repair, and recognizing the achievement of distributed goal-states. We also describe the design of a novel simulation environment, implementation results using this simulator, and experimental results in hardware using a planar SR system called the Crystal Robot. These results encourage development of heterogeneous systems. Our algorithms enhance the versatility and adaptability of SR robots by enabling them to use functionally specialized components to match capability, in addition to shape, to the task at hand

    Viability in State-Action Space: Connecting Morphology, Control, and Learning

    Get PDF
    Wie können wir Robotern ermöglichen, modellfrei und direkt auf der Hardware zu lernen? Das maschinelle Lernen nimmt als Standardwerkzeug im Arsenal des Robotikers seinen Platz ein. Es gibt jedoch einige offene Fragen, wie man die Kontrolle über physikalische Systeme lernen kann. Diese Arbeit gibt zwei Antworten auf diese motivierende Frage. Das erste ist ein formales Mittel, um die inhärente Robustheit eines gegebenen Systemdesigns zu quantifizieren, bevor der Controller oder das Lernverfahren entworfen wird. Dies unterstreicht die Notwendigkeit, sowohl das Hardals auch das Software-Design eines Roboters zu berücksichtigen, da beide Aspekte in der Systemdynamik untrennbar miteinander verbunden sind. Die zweite ist die Formalisierung einer Sicherheitsmass, die modellfrei erlernt werden kann. Intuitiv zeigt diese Mass an, wie leicht ein Roboter Fehlschläge vermeiden kann. Auf diese Weise können Roboter unbekannte Umgebungen erkunden und gleichzeitig Ausfälle vermeiden. Die wichtigsten Beiträge dieser Dissertation basieren sich auf der Viabilitätstheorie. Viabilität bietet eine alternative Sichtweise auf dynamische Systeme: Anstatt sich auf die Konvergenzeigenschaften eines Systems in Richtung Gleichgewichte zu konzentrieren, wird der Fokus auf Menge von Fehlerzuständen und die Fähigkeit des Systems, diese zu vermeiden, verlagert. Diese Sichtweise eignet sich besonders gut für das Studium der Lernkontrolle an Robotern, da Stabilität im Sinne einer Konvergenz während des Lernprozesses selten gewährleistet werden kann. Der Begriff der Viabilität wird formal auf den Zustand-Aktion-Raum erweitert, mit Viabilitätsmengen von Staat-Aktionspaaren. Eine über diese Mengen definierte Mass ermöglicht eine quantifizierte Bewertung der Robustheit, die für die Familie aller fehlervermeidenden Regler gilt, und ebnet den Weg für ein sicheres, modellfreies Lernen. Die Arbeit beinhaltet auch zwei kleinere Beiträge. Der erste kleine Beitrag ist eine empirische Demonstration der Shaping durch ausschliessliche Modifikation der Systemdynamik. Diese Demonstration verdeutlicht die Bedeutung der Robustheit gegenüber Fehlern für die Lernkontrolle: Ausfälle können nicht nur Schäden verursachen, sondern liefern in der Regel auch keine nützlichen Gradienteninformationen für den Lernprozess. Der zweite kleine Beitrag ist eine Studie über die Wahl der Zustandsinitialisierungen. Entgegen der Intuition und der üblichen Praxis zeigt diese Studie, dass es zuverlässiger sein kann, das System gelegentlich aus einem Zustand zu initialisieren, der bekanntermassen unkontrollierbar ist.How can we enable robots to learn control model-free and directly on hardware? Machine learning is taking its place as a standard tool in the roboticist’s arsenal. However, there are several open questions on how to learn control for physical systems. This thesis provides two answers to this motivating question. The first is a formal means to quantify the inherent robustness of a given system design, prior to designing the controller or learning agent. This emphasizes the need to consider both the hardware and software design of a robot, which are inseparably intertwined in the system dynamics. The second is the formalization of a safety-measure, which can be learned model-free. Intuitively, this measure indicates how easily a robot can avoid failure, and enables robots to explore unknown environments while avoiding failures. The main contributions of this dissertation are based on viability theory. Viability theory provides a slightly unconventional view of dynamical systems: instead of focusing on a system’s convergence properties towards equilibria, the focus is shifted towards sets of failure states and the system’s ability to avoid these sets. This view is particularly well suited to studying learning control in robots, since stability in the sense of convergence can rarely be guaranteed during the learning process. The notion of viability is formally extended to state-action space, with viable sets of state-action pairs. A measure defined over these sets allows a quantified evaluation of robustness valid for the family of all failure-avoiding control policies, and also paves the way for enabling safe model-free learning. The thesis also includes two minor contributions. The first minor contribution is an empirical demonstration of shaping by exclusively modifying the system dynamics. This demonstration highlights the importance of robustness to failures for learning control: not only can failures cause damage, but they typically do not provide useful gradient information for the learning process. The second minor contribution is a study on the choice of state initializations. Counter to intuition and common practice, this study shows it can be more reliable to occasionally initialize the system from a state that is known to be uncontrollable

    Autonomous Behaviors With A Legged Robot

    Get PDF
    Over the last ten years, technological advancements in sensory, motor, and computational capabilities have made it a real possibility for a legged robotic platform to traverse a diverse set of terrains and execute a variety of tasks on its own, with little to no outside intervention. However, there are still several technical challenges to be addressed in order to reach complete autonomy, where such a platform operates as an independent entity that communicates and cooperates with other intelligent systems, including humans. A central limitation for reaching this ultimate goal is modeling the world in which the robot is operating, the tasks it needs to execute, the sensors it is equipped with, and its level of mobility, all in a unified setting. This thesis presents a simple approach resulting in control strategies that are backed by a suite of formal correctness guarantees. We showcase the virtues of this approach via implementation of two behaviors on a legged mobile platform, autonomous natural terrain ascent and indoor multi-flight stairwell ascent, where we report on an extensive set of experiments demonstrating their empirical success. Lastly, we explore how to deal with violations to these models, specifically the robot\u27s environment, where we present two possible extensions with potential performance improvements under such conditions

    Intelligent approaches in locomotion - a review

    Get PDF
    • …
    corecore