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Autonomous Behaviors With A Legged Robot

Abstract
Over the last ten years, technological advancements in sensory, motor, and computational capabilities have
made it a real possibility for a legged robotic platform to traverse a diverse set of terrains and execute a variety
of tasks on its own, with little to no outside intervention. However, there are still several technical challenges
to be addressed in order to reach complete autonomy, where such a platform operates as an independent
entity that communicates and cooperates with other intelligent systems, including humans. A central
limitation for reaching this ultimate goal is modeling the world in which the robot is operating, the tasks it
needs to execute, the sensors it is equipped with, and its level of mobility, all in a unified setting. This thesis
presents a simple approach resulting in control strategies that are backed by a suite of formal correctness
guarantees. We showcase the virtues of this approach via implementation of two behaviors on a legged mobile
platform, autonomous natural terrain ascent and indoor multi-flight stairwell ascent, where we report on an
extensive set of experiments demonstrating their empirical success. Lastly, we explore how to deal with
violations to these models, specifically the robot's environment, where we present two possible extensions
with potential performance improvements under such conditions.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Electrical & Systems Engineering

First Advisor
Daniel E. Koditschek

Second Advisor
Alejandro Ribeiro

Keywords
autonomous robot, hill ascent, lyapunov stability, reactive control, stairwell ascent, unicycle

Subject Categories
Robotics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2713

https://repository.upenn.edu/edissertations/2713?utm_source=repository.upenn.edu%2Fedissertations%2F2713&utm_medium=PDF&utm_campaign=PDFCoverPages


AUTONOMOUS BEHAVIORS WITH A LEGGED ROBOT
B. Deniz Ilhan

A DISSERTATION
in

Electrical and Systems Engineering
Presented to the Faculties of the University of Pennsylvania

in
Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
2018

Daniel E. Koditschek, Professor
Electrical and Systems Engineering

Supervisor of Dissertation

Alejandro Ribeiro, Professor
Electrical and Systems Engineering

Graduate Group Chairperson

Dissertation Committee:

Alejandro Ribeiro, Professor Daniel E. Koditschek, Professor
Electrical and Systems Engineering Electrical and Systems Engineering

University of Pennsylvania University of Pennsylvania

Konstantinos Daniilidis, Professor Aaron M. Johnson, Assistant Professor
Computer and Information Science Mechanical Engineering

University of Pennsylvania Carnegie Mellon University



AUTONOMOUS BEHAVIORS WITH A LEGGED ROBOT

© COPYRIGHT

2018

Berkay Deniz Ilhan



To my mother, Meryem Kuş,
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ABSTRACT

AUTONOMOUS BEHAVIORS WITH A LEGGED ROBOT

B. Deniz Ilhan

Daniel E. Koditschek

Over the last ten years, technological advancements in sensory, motor, and computational

capabilities have made it a real possibility for a legged robotic platform to traverse a di-

verse set of terrains and execute a variety of tasks on its own, with little to no outside

intervention. However, there are still several technical challenges to be addressed in order

to reach complete autonomy, where such a platform operates as an independent entity that

communicates and cooperates with other intelligent systems, including humans. A central

limitation for reaching this ultimate goal is modeling the world in which the robot is oper-

ating, the tasks it needs to execute, the sensors it is equipped with, and its level of mobility,

all in a unified setting. This thesis presents a simple approach resulting in control strategies

that are backed by a suite of formal correctness guarantees. We showcase the virtues of this

approach via implementation of two behaviors on a legged mobile platform, autonomous

natural terrain ascent and indoor multi-flight stairwell ascent, where we report on an ex-

tensive set of experiments demonstrating their empirical success. Lastly, we explore how to

deal with violations to these models, specifically the robot’s environment, where we present

two possible extensions with potential performance improvements under such conditions.
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Chapter 1

Introduction

Over the last ten years, technological advancements in sensory, motor, and computational

capabilities have made it a real possibility for a legged robotic platform to traverse a diverse

set of terrains [47, 62] and execute a variety of tasks [62, 88] on its own, with little to no

outside intervention. However, there are still several technical challenges to be addressed

in order to reach complete autonomy, where such a platform operates as an independent

entity that communicates and cooperates with other intelligent systems, including humans.

A central limitation for reaching this ultimate goal is modeling the world in which the robot

is operating, the tasks it needs to execute, the sensors it is equipped with, and its level of

mobility, all in a unified setting. This thesis presents a simple approach resulting in control

strategies that are backed by a suite of formal correctness guarantees, allowing successful

task execution on the target legged mobile platform, RHex [42, 121].

Many of the design considerations guiding the body of this work stem from the development

of the new generation RHex platform in 2010 [42]. The first generation RHex platform

had been almost a decade old. Its superior locomotion capabilities demonstrated over the

years [25, 99, 121] had not been matched with adequate sensory and processing power

because the platform could not support substantial improvements without adding more
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Figure 1.1: The RHex robot on a forested hill.

weight to the robot or reducing battery runtime [42]. Many decisions made for the new

platform, such as the body shape, battery chemistry, motors and motor drivers, power

regulation and distribution, intra-robot communication interface, software infrastructure,

and sensory and computational payload support, were shaped by the variety of tasks the

robot would execute autonomously and the environments in which these tasks would take

place.

With its versatile locomotion capabilities, RHex can be deployed in both indoor and out-

door settings. The modes of locomotion the platform needs to operate in and the sensory

capabilities it needs to possess differ significantly from one setting to the other. In either

case, one major challenge is to model the evolution of robot position and develop provably

correct control strategies executing various exploration and navigation tasks.

One outdoor setting that the platform has been deployed in several times over the years is

forested hills (Figure 1.1). Even in its early days, the robot was capable of adjusting its
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Figure 1.2: The X-RHex robot climbing a stairwell.

locomotion pattern to adapt to inclines [80] to avoid diverging from the uphill direction,

which could otherwise lead to robot failure due to flipping, potentially damaging its sensory

equipment. In [62], the authors demonstrated an alternative to this locomotion pattern

based approach, relying instead on autonomous steering towards the incline direction. The

simplicity of this approach was intriguing, and it was intuitively clear why it was successful.

However, a formal explanation was not nearly straightforward. This motivated us to model

the environment, the task, sensory capabilities required, and the level of mobility in order

to provide a correctness analysis and expand the range of locomotion speeds and inclines

in which this behavior can be deployed [57].

Thanks to its stair ascent [99] and descent [25] gaits, the robot is capable of traversing

multiple floors inside a building (Figure 1.2). Thus, as it was demonstrated in [62] and [58],

many indoor exploration and navigation tasks can be implemented in a hybrid manner via

transitions between floor traversal and stair climbing.

One of the virtues, and yet also a limitation, of the behaviors we have developed during
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this thesis is the simplicity in the modeling decisions. Specifically, what happens when our

assumptions regarding the world are violated? It is clear that our guarantees regarding the

performance of the robot would not be viable anymore. The question is, how can we modify

our strategy without dramatically altering our bottom-up approach to executing tasks on

a legged platform? In [115], we consider a point particle agent governed by unconstrained

second order dynamics and present a control law for interacting with more complex obstacle

shapes while avoiding entrapment by an undesired fixed point. The formal extensions of this

construction following our autonomous behavior design strategy is beyond the scope of this

thesis. However, we do have an implementation on the RHex platform. In addition, [114]

presents an alternative approach to the same entrapment problem.

The body of work that forms this thesis focuses on developing behaviors executable on the

RHex legged platform [42, 121]. However, the lessons learned and methods developed can

be applied to any mobile robotic platform that can afford the point particle, or horizontal

unicycle motion model abstractions. Even when this assumption is not achievable, we

speculate it is possible to expand the bottom-up approach presented in our work and find the

sufficient lifting into the next simple motion model that can work as the gross simplification.

As an important note, various portions of this dissertation, including related text and

figures, have been published in [57, 58, 114, 115]. All of these entries were written in

collaboration with different co-authors. Even though we have included a complete account

of all these efforts in the proceeding chapters, we specify their relation to this thesis in

Section 1.2.

1.1 Motivation

In [62], which is the preliminary presentation of the two behaviors we focus on in this thesis,

the authors emphasized the intrinsic value of these behaviors for intelligence, surveillance,

and reconnaissance (ISR) as well as search and rescue operations [15, 104]. The increased
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frequency and severity of natural disasters, such as wildfires, due to climate change [13, 39,

141], makes it ever more important to channel advances in robotics for such purposes. As

a versatile platform with ever growing locomotive capabilities [65], we believe RHex is a

natural starting point for a new generation of robots utilized in disaster relief. In addition,

our expanding work with geoscience researchers further reinforces the potential value of

autonomous ascent of natural geological formations for many field science applications [112].

Despite its nearly self-evident value, the task of unassisted natural terrain ascent has long

been thought to be challenging. Prior to [62], the literature on the autonomous hill ascent

was limited to either simulation studies [6] or reports of empirical work at extremely slow

speeds due to safety concerns [123, 151], with detailed terrain identification and mapping

to avoid failures due to entrapment by small obstacles [81, 139]. Similarly, the only reports

we have found documenting empirical work on autonomy over multiple flights of stairs prior

to [62] mention a few anecdotal successes [152] or assume a very specific, simple landing

geometry [134].

In contrast, the results of [62] suggested that both of these behaviors can be readily achieved

if properly decomposed into an appropriately layered architecture. For this setup, the

mechanical intelligence of the platform takes care of all the minor insults and small obstacle

perturbations through intrinsic gait stability, while a model-based planner deals with the

more serious obstacles.

In [62], the planner for the autonomous terrain ascent took the form of an ad hoc reac-

tive scheme equipped with the simplest possible non-trivial world model—a smooth, disk-

punctured surface (i.e., a sphere world [79])—and similarly ad hoc and stripped-down body

frame sensor suite: an IMU and LIDAR. Startled by the very high empirical success rate

over a variety of seemingly challenging natural landscapes in [62], we resolved to isolate

the role of the world model by replacing the original ad hoc reactive layer with a provably

correct sensorimotor scheme, i.e., one guaranteed to achieve successful ascent assuming an

accurately modeled environment. Accordingly, [57] describes and demonstrates correctness
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of a sensorimotor scheme for a unicycle driving on a (sufficiently sparsely punctured) surface

whose perceptual apparatus is limited to the same purely body frame (IMU and LIDAR)

sensors. We both recover and extend the empirical trials of the precursor paper using the

same legged platform, RHex [42, 121].

It is clear that no real forested environment will present the simplified geometry (sparse,

convex obstacles) we formally posit. The value in carefully establishing its sufficiency for

correctness of our simple, greedy, reactive navigation scheme reflects the interest in joining

this work to a decades long tradition of multi-level [46] mobile robot architecture. The

framework of a deliberative layer deploying reactive subsystems is well established in the

field of robot navigation [97] as well as in the more general AI literature [59]. General

consensus notwithstanding, the specifics of how to design and interface abstraction barriers

has taken a long time to sort out for computational systems [1]. We believe that building

sound and soundly inter-operative mechanical, reactive, and deliberative layers for robots

will require a similarly delicate interplay between their formal and empirical properties.

Reviewing the specifically related literature in Section 1.4, we will suggest the place that

our empirically capable and formally well characterized architecture might occupy in the

full navigation stack of an autonomous outdoor robot.

Finally, the deeper research question motivating this thesis is how much planning respon-

sibility can be assigned to any purely reactive layer. Although we are only able to furnish

conditions sufficient for gradient ascent of a particularly equipped robot, we are increas-

ingly persuaded that they are also very close to be necessary for any uninformed greedy

agent. By greedy, we mean that the agent’s state ascends a Morse function (i.e., there is

a smooth scalar valued map that is non-decreasing along any of its motions). It is well

established that a perfectly informed gradient ascent is always possible (up to a set of zero

measure initial conditions) [79]. By uninformed, we mean that the agent knows nothing in

advance about the shape and location of the obstacles which must be encountered in real

time and sensed in body-centric coordinates along the way. Two other very different recent
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treatments of uninformed greedy navigation to be mentioned below [8, 109], have arrived

at sets of sufficient conditions quite similar to those we impose here: a topological sphere

world [79] populated by sufficiently sparse and convex obstacles. We will return in the

conclusion to a more speculative discussion of what our present results suggest about how

to better construe the notion of a reactive agent and, thereby, its interface to a deliberative

executive.

1.2 Relation to Published Work

The body of work forming this dissertation previously appeared in [57, 58, 114, 115]. In

this section, I would like to describe my involvement in each of these publications.

• “Autonomous Legged Hill Ascent” [57]: I was the first author. I developed the theo-

retical work for point particle control law and its extensions to kinematic and dynamic

unicycle agents. I implemented both control laws on the robot and conducted all the

experimentation. In addition, I implemented the software framework and tuned a

jogging-speed gait for the robot to be used for fast-pace locomotion. I also designed,

implemented, and tested a battery monitoring solution that provided the power data

in the specific resistance comparison experiments.

• “Autonomous Stairwell Ascent” [58]: I was the first author. Building on top of [62],

I improved the perceptual capabilities of the robot, performed modifications and up-

dates on the implemented behavior, and conducted a new set of experiments.

• “Dynamical Trajectory Replanning For Uncertain environments” [115]: I was the

second author. I worked closely with the first author in the theoretical development

phase and developed some of the theoretical proofs. In addition, with the assist of the

first author, I developed the simulation environment, conducted extensive simulation

studies for tuning the desired behaviors and investigating the performance.
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• “A Drift-Diffusion Model For Robotic Obstacle Avoidance” [114]: I was the second

author. I worked with the first author in experimental setup, implementation, and

experimentation, where we utilized [57] as the base implementation to compare with.

1.3 Organization and Contributions

This thesis is composed of three main parts. Part I focuses on encoding tasks for a legged

robot and covers Chapter 2 and Chapter 3. The main motivation behind the theoretical

developments1 established in Chapter 2 is to provide proper tools for the analysis of the

control laws presented in Chapter 3. We start with some basic definitions on the stability

of compact sets in Section 2.1. In Section 2.2, we proceed with a first order autonomous

system described in (2.1) and provide definitions for Lyapunov (Section 2.2.1) and Chetaev

(Section 2.2.2) functions accordingly. Then, we introduce the Matching LaSalle (ML) func-

tions and utilize them for stability analysis of (2.1) in Section 2.2.3. We further investigate

two special cases: embedding these systems into higher dimensional spaces (Section 2.3)

and second order systems (Section 2.4).

Chapter 3 introduces an encoding strategy for a family of tasks where the task in hand can

be reformulated as autonomous hill ascent with the goal of reaching a compact subset of

the work space2. More specifically, we provide a formal model yielding rigorous conditions

on the geometric features of the environment under which our family of controllers can

be guaranteed to succeed without relying on a more deliberative higher control layer. We

accomplish this by incorporating knowledge of certain assumed parametric bounds that

encode the mitigating features of the (otherwise unknown) putatively simplistic environment

that afford success for our reactive (greedy) real-time motion controller. The nature of these

parametric bounds lends insight into the essential problem constraints, enabling improved

robot capabilities in comparison with [62] by affording operation on steeper hills and at
1This chapter, as well as related text and figures, previously appeared in [57] as part of the appendices.
2This chapter, as well as related text and figures, previously appeared in [57].
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higher speeds.3 Our controllers are based on a gradient vector field suitable for a fully

actuated point particle ((3.34) in Section 3.2.1) that combines the vestibular perception

of steepest ascent with avoidance of impassable obstacles as they come into exteroceptive

view along the way. Their guarantees of convergence and obstacle avoidance follow from

the properties of their associated ML function (Definition 2.2.8 in Section 2.2.3) that plays

the role of a global Lyapunov function for the resulting closed loop systems.

In order to apply this idealized climbing template [41] control to a mechanically realistic

robot model, we embed the point particle gradient field in the wrench space of the kinematic

unicycle ((3.62) in Section 3.2.2.1) for slow paced climbing (Table 4.1 in Section 4.2.2.2) and,

in turn, embed that first order vector field in a second order dynamical unicycle extension

((3.72) in Section 3.2.2.2) for fast paced climbing (Table 4.2 in Section 4.2.2.2). These

models inherit the convergence properties. However, the specific subset of the free space

that is kept positive invariant (i.e., the exact extent of the resulting safe states) proves very

hard to characterize, so obstacle avoidance cannot be formally guaranteed.4

In Part II, we present two behaviors implemented on a legged robot, autonomous hill ascent

(Chapter 4) and autonomous stairwell ascent (Chapter 5). In Chapter 4, we present the

implementation details of the Autonomous Hill Ascent5 behavior, an application of task

level autonomy wherein a legged robot achieves unassisted ascent of outdoor forested ter-

rain in a variety of challenging settings, as depicted in Figure 1.3. Our work (in concert

with the initial implementations reported in [62]) offers the first documented account of

completely autonomous ascent over naturally populated hillsides by a robotic platform at

speeds comparable to human uphill hiking and flat surface walking6. Our implementation

on the RHex platform is tested in various challenging settings to showcase this empirical
3Experiments reported in [62] are run only at walking speed. In addition, they are limited to up to 17◦

slopes, whereas the slopes reported here as navigated by our upgraded controller include terrain up to 36◦.
4In practice, none of our extensive experiments have witnessed an algorithmically generated collision

and we conjecture that the positive invariant subset of these extended state spaces have a projection that is
almost coincident with the obstacle free configuration space—see Section 3.2.2 for a more detailed discussion.

5This chapter, as well as related text and figures, previously appeared in [57].
6Based on an uphill hiking speed for a 10◦ hill of 0.56m/sec [83] and a walking speed on flat terrain of

1.46m/sec [72].
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Figure 1.3: An illustration of the hill climbing controller implemented on RHex. The left
image is a sample scene containing a single obstacle. The right image is a representation of
the sensory inputs and the aggregate control law, all in body coordinates. The black point
cloud is the LIDAR reading corresponding to the tree located on the robot’s left side. The
vectors represent (clockwise from −45◦): (green) the hill gradient extracted from the IMU
reading (4.1), (blue) the combined negative gradient (3.34), (black) resulting kinematic
unicycle control input (3.62), (red) the component from the detected obstacle (3.30).

success, summarized in Table 4.1 in Section 4.2.2.2 and Table 4.2 in Section 4.2.2.2. These

experiments constitute 20 long runs with direct distances anywhere from 12.5 meters to 96.8

meters, spanning almost a kilometer. The runtimes of these experiments vary from several

seconds (19 seconds) to a few minutes (7 minutes 31 seconds), during which we report 90

instances of our methods enabling the robot to successfully avoid obstacles while main-

taining autonomous hill ascent. In addition, we report 98 instances at which the robot’s

mechanical intelligence took care of circumstances that could otherwise hinder or even stall

the robot’s progress. In total we report 11 instances of failure, 6 of which were due to the

robot’s mechanical capabilities not being able to overcome the entrapment posed by the

complex nature of the terrain, and an additional 2 due to obstacle shapes that violate our

world model.

Chapter 5 focuses on a behavior that is generally acknowledged to hold great importance,

yet still considerably difficult for existing man-portable mobile robots: the autonomous
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climbing of multi-flight stairwells in indoor settings [113] (Figure 1.2)7. To accomplish this

task, we replicate Chapter 3 and posit a very simple, deterministic world model and an

equally simple deterministic perceptual model, along with a family of feedback controllers

selected using (a sometimes slightly relaxed form of) sequential composition [24] in a manner

that seems intuitively sufficient to achieve the specified navigation task. To the best of our

knowledge, no previous authors have documented the completely autonomous ascent of

general multi-floor stairwells. Combined with [62], the primary contribution we report in

this chapter is our success in doing so on a variety of building interior styles, documented

in the data tables of Section 5.3.

In Part III, we present two methods that could be incorporated into the behaviors from

Part II to address world model violations, specifically regarding the obstacle shape assump-

tion. Chapter 6 introduces a novel reference generator and tracking control architecture

that enjoys appropriate stability properties and we present a handful of simulations demon-

strating its ability to dislodge a simple point mass particle from cul-de-sac traps that block

a naive tracking controller8. The energy costs calculated over a range of controller gains

exhibit similar features for all three systems: a minimal threshold for escaping the trap,

followed by a small range over which energy cost fluctuates, then a sweet spot exhibiting

qualitatively best behavior that extends over a significant interval. This is followed by a

roughly linear increase, and finally a mostly linear increase in cost, with many irregular

cost fluctuations. A key feature of this architecture lies in its ability to isolate task spec-

ification, the reference subsystem (6.9), from the replanner (6.7), the encoding of how to

handle unanticipated but structured obstacles to its execution. We end the chapter with a

loose interpretation of the dynamical replanner for a unicycle agent with limited perceptual

capabilities as described in Chapter 3.

In Chapter 7, we present a stochastic framework for modeling and analysis of robot nav-
7This chapter, as well as related text and figures, previously appeared in [58].
8This chapter, as well as related text and figures, previously appeared in [115].
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igation in the presence of obstacles9. We show that, with appropriate assumptions, the

probability of a robot avoiding a given obstacle can be reduced to a function of a single

dimensionless parameter which captures all relevant quantities of the problem. This pa-

rameter is analogous to the Péclet number considered in the literature on mass transport in

advection-diffusion fluid flows. Using the framework we also compute statistics of the time

required to escape an obstacle in an informative case. The results of the computation show

that adding noise to the navigation strategy can improve performance. Finally, we present

experimental results on the RHex robotic platform, illustrating how this approach could re-

sult in performance improvements. For this, we start with Chapter 3, but with a parameter

set that does not guarantee instability of the undesired equilibria as a demonstration of an

obstacle that could entrap the robot. Instead, we utilize the presented approach to drive

the robot from this spurious fixed point.

1.4 Review of Literature

Unicycle models—underactuated planar rigid bodies endowed with fore-aft and rotational

control affordances—are widely used as templates [41] for unmanned ground vehicles. The

unicycle control literature divides roughly into three families of problems: convergence to

a fixed goal set—often a designated set of rigid placements [2, 33, 61, 88, 107, 120] or a

path on the plane [2, 35, 44, 90, 125, 129], trajectory tracking with the aim of seeking and

maintaining convergence to a time varying reference signal [28, 67, 84, 120, 153], and the

generalization of these problem settings to multi-robot formations [37, 38, 86, 94, 120]. Our

work takes its place within the first family concerning stabilization to a fixed set. However,

unlike the work where the robot position and heading in relation to the goal is assumed

to be available [2, 61, 88, 107, 120], our sensor model posits merely the availability of the

instantaneous gradient vector (in body coordinates) of a fixed planar potential field to whose

local maxima we seek, along with a stand-off sensor that can see planar obstacles along the
9This chapter, as well as related text and figures, previously appeared in [114].
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way.

The problem of hill climbing (planar potential function ascent) with altitude-only sensory

information is the focus of a large literature on extremum seeking [137], which has been

applied as well in the reduced control affordance setting of unicycle-like vehicles [31, 87,

96, 154]. However, respecting the gravitational potential presented by a physical hill, our

vestibular local gradient sensing model seems much more natural (readily instantiated by a

standard commercial inertial measurement unit (IMU)) than the presumption of a device

adequately sensitive to the small relative height variations afforded by forested hills and

sloping parks. Moreover, the high control authority dithering motions, typically required

to extract gradients from concentrations [96], turn out to be particularly undesirable for

underactuated legged robotic platforms like RHex on physical hills. This is because the

rapidly shifting cross-gradient motion threatens robot failure due to flipping [62].

The majority of the work on the problem of autonomous stair ascent is limited to detection

of the stairs themselves [30, 36, 110, 124, 148, 150], climbing a single flight of stairs with

very few steps [14, 91, 101, 102, 140], and autonomous transitions between flat surface

walking and stair ascent under the control of an operator [14, 51, 101, 148].

Over the last two decades, there has been a growing interest in developing autonomy for off-

road vehicles [69], [93]. These efforts benefited a great deal from Defense Advanced Research

Projects Agency (DARPA) initiatives such as the Grand Challenge in 2005 [23], [27], and

Learning Applied to Ground Vehicles (LAGR) program between 2004 and 2008 [60], [12],

[81]. Both of these initiatives targeted large scale vehicles, where resulting research focused

on deliberative navigation, terrain classification, mapping and learning. In contrast, we are

interested in still less structured environments (natural forest rather than steep, sharply

winding, unpaved roads or prepared terrain panels) and in exploring the capabilities of

an intermediate, formally well-characterized reactive layer in between the mechanical plant

and deliberative planner. Moreover, in place of the terrain-learning [111], environment-

classifying [82], and map-building [139] components traditionally associated with navigation
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in unstructured environments, we substitute a simple greedy strategy: a set-attractor basin

generating an analytic vector field computed from local sensor-based measurements. The

mechanical competence of the platform abstracts away the need to represent and reason

about the details of the terrain. Encoding the task as a form of (punctured) hill climbing

postpones the need for classification and maps at the reactive layer on which we focus with

this work. We emphasize that it is the very simple nature of the encoded task—the very

narrow assumptions the robot makes about the presences of only convex and well separated

obstacles—that affords the greedy approach its success and its formal correctness.

Returning to the question of abstraction barriers in the navigation stack, parallel theoretical

work [142], which integrates a different reactive motion planner [8] into a new task planner

for indoor mobile manipulation [143] based upon angelic hierarchical search [95], suggests

the importance of supporting abstract task deliberation with narrowly competent greedy

motion controllers even in far more structured settings than the forested hills we explore

here. In that work, sufficient conditions for correct local manipulation of known objects in a

partially known environment are predicated upon a similarly näıve model of the unknowns.

There, simulations show that the reactive motion planner relieves the abstract task planner

of myriad geometric details (as here, the problem of circumventing simple but unanticipated

obstacles) that would otherwise abort its execution, while typically completing its assigned

subgoals even absent its conservative preconditions (as here, the assumption that the unan-

ticipated obstacles are convex and sufficiently sparse). In Chapter 8, we discuss analogous

next steps in developing a more complete navigation stack for the completely unstructured

outdoor environments addressed by the näıvely competent (i.e., provably correct relative

to narrowly conservative assumptions about the environment) reactive motion planner we

present here.
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Part I

Task Encoding for a Legged Robot
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Chapter 2

Matching-LaSalle Functions and

Stability

In this chapter, we present the theoretical developments enabling the analysis of the family of

control laws introduced in Chapter 3. We start the chapter with some definitions on stability

of compact sets in Section 2.1. We focus on compact sets with connected components and

their stability to allow the world presented in Section 3.1.1 to be more complex in nature

than a potential function with a sparse set of isolated equilibria. This increased complexity

requires us to define a weaker notion of stability. Thus, we conclude Section 2.1 with the

definition of Almost Global Asymptotic Stability.

Our goal in Section 2.2, is to develop a new type of potential function for the stability

analysis of the autonomous system, (2.1), whose set of fixed points contains a compact

subset with connected components. We first provide definitions of Lyapunov and Chetaev

functions compatible with the problem setting, and then, we introduce the Matching LaSalle

(ML) functions. These functions, by definition, can be utilized to generate local Lyapunov

or Chetaev functions around fixed points. Thus, this system admitting an ML function

becomes an important tool for investigating their stability. We analyze the control law for
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an unconstrained point particle presented in Section 3.2.1.2 via this approach.

Lastly, we turn our attention to embedding the system given in (2.1) into higher dimen-

sional spaces (Section 2.3) and second order systems (Section 2.4). Under both scenarios,

we investigate whether the stability results derived for the base system survives the cor-

responding operation. We utilize these findings in the analysis of the horizontal unicycle

control laws presented in Section 3.2.2.

2.1 Basic Definitions

Consider a positive-invariant compact set, X ⊂ Rm, with the state variable, x ∈ X .

Definition 2.1.1 (point-set distance). For the compact set G ⊂ X ,

|x|G := inf x̄∈G |x− x̄| .

Definition 2.1.2 (local stability [4]). The compact set G ⊂ X is called locally stable if

∀ε > 0, ∃β > 0 : |x0|G < β =⇒ |x(t,x0)|G ≤ ε, ∀t ≥ 0.

Corollary 2.1.3. Let a compact set G ⊂ X be composed of compact connected components,

Gj. If Gj are all locally stable, then G is locally stable. This result simply follows from that,

|x|G = minj
{
|x|Gj

}
.

Definition 2.1.4 (set instability). The compact set G ⊂ X is called unstable if it is NOT

locally stable.

Definition 2.1.5 (local attractiveness). The compact set G ⊂ X is called locally attractive

if there exists a nonempty open set U , satisfying G ⊂ U ⊂ X , such that,

∀x0 ∈ U , lim
t→∞
|x(t,x0)|G = 0.
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Lemma 2.1.6. Let a compact set G ⊂ X be composed of compact connected components,

Gj. If Gj are all locally attractive, then G is locally attractive.

Proof. Gj being locally attractive implies the existence of Uj where

∀x0 ∈ Uj , lim
t→∞
|x(t,x0)|Gj = 0.

Since union of open sets are open, over the open set, and |x|G = minj
{
|x|Gj

}
,

∀x0 ∈ U =
⋃
j

Uj , lim
t→∞
|x(t,x0)|G = lim

t→∞
min
j

{
|x(t,x0)|Gj

}
= 0.

and thus G is locally attractive.

Definition 2.1.7 (local asymptotic stability). The compact set G ⊂ X is called locally

asymptotically stable if it is locally stable and locally attractive.

Corollary 2.1.8. Let a compact set G ⊂ X be composed of compact connected components,

Gj. If Gj are all locally asymptotically stable, then G is locally asymptotically stable from

Corollary 2.1.3 and Lemma 2.1.6.

Definition 2.1.9 (global attractiveness). The compact set G ⊂ X is called globally attrac-

tive if,

∀x0 ∈ X , lim
t→∞
|x(t,x0)|G = 0.

Definition 2.1.10 (Global Asymptotic Stability (GAS)). The compact set G ⊂ X is called

Globally Asymptotically Stable (GAS) if it is locally stable and globally attractive.

Definition 2.1.11 (almost-global attractiveness). The compact set G ⊂ X is called almost-

globally attractive if ∃N ⊂ X with empty interior such that,

∀x0 ∈ X −N , lim
t→∞
|x(t,x0)|G = 0.
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Remark 2.1.12. Definition 2.1.11 is slightly different than the version presented in [4].

Instead of introducing and working with Lebesgue measure, we find it more convenient (and

sufficient for our intended applications) to associate the almost notion with sets whose

complements have empty interior (regardless of whether or not they have measure zero). In

particular, an invariant set possessing a non-empty unstable manifold, cannot comprise the

forward limit of any open set, hence attracts almost no initial conditions in our sense.

Definition 2.1.13 (Almost-Global Asymptotic Stability (AGAS) [4]). The compact set

G ⊂ X is called Almost-Globally Asymptotically Stable (AGAS) if it is locally stable and

almost-globally attractive.

2.2 Potential Functions

Consider the autonomous system,

ẋ = f(x), (2.1)

with f :X → Rm locally Lipschitz, where X is compact and positive-invariant. In addition,

let C ⊂ X be the set of all fixed points, C := {x ∈ X : f(x) = 0}. Assume that C contains a

compact subset, G, composed of compact connected components, Gj , and let S := C −G be

its complement.

2.2.1 Lyapunov Functions

Definition 2.2.1 (Lyapunov Function). Consider the system (2.1), and a compact con-

nected subset of its fixed points, G ⊂ C. If the continuously differentiable function, γ,

defined over some open subset, U ⊂ X with G ⊂ U , satisfies,

• α1(|x|G) ≤ γ(x) ≤ α2(|x|G), where α1, α2 both belong to class K∞,10

10α : R≥0 → R≥0 belongs to class K∞ if α(0) = 0, ∀a, b ∈ R≥0, a > b =⇒ α(a) > α(b), and
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• ∇γ(x)T f(x) ≤ 0) with ∇γ(x)T f(x) = 0 if and only if x ∈ G,

then γ is a Lyapunov function and we say G locally admits a Lyapunov function.

Remark 2.2.2. The definition above borrows the ISS-Lyapunov function definition in [5],

eliminates the input, and relaxes the Lie-derivative upper bound as in [132]. Let us introduce

an input term to (2.1), ẋ = f(x)+ux, where ux :R≥0 → Rm is a locally essentially bounded

function. According to [132], an ISS-Lyapunov function, γ : U ⊂ X → R≥0, with respect

to a compact set, G ⊂ U , becomes a Lyapunov function for the zero-input system, ux = 0.

Then, G is locally asymptotically stable.

Corollary 2.2.3. Following Remark 2.2.2, for the system (2.1), if G locally admits a Lya-

punov function, γ, as defined above, then it is locally asymptotically stable.

2.2.2 Chetaev Functions

Definition 2.2.4 (Chetaev Function [70]). For the system in (2.1), let xc ∈ C, and consider

a continuously differentiable function, % : U ⊂ X → R, defined over an open set around

this critical point, xc ∈ U . Assume %(xc) = 0, and there exists x0 with arbitrarily small

|x0 − xc| such that %(x0) > 0. Choose ε such that Bε := {x ∈ X : |x− xc| ≤ ε} ⊂ U , and

let M := {x ∈ Bε : %(x) > 0}. % is called a Chetaev function around this critical point if

∀x ∈M, %̇(x) > 0, and we say xc admits a Chetaev function.

Lemma 2.2.5 (Thm. 3.3 of [70]). For the system given in (2.1), if xc ∈ C admits a Chetaev

function, %, as defined in Definition 2.2.4, then it is locally unstable.

Lemma 2.2.6. Consider a twice continuously differentiable function, ϕ : U ⊂ X → R≥0,

and a point, xc ∈ U , where ∇ϕ(xc) = 0. In addition, assume that the Hessian of ϕ

evaluated at xc, Hϕ(xc) = D2
xϕ(xc), has a negative eigenvalue, λϕ < 0, accompanied with

lima→∞ α(a) =∞
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the eigenvector, vϕ. Then, for x ∈ {xc + εvϕ : ε > 0}, the function,

%(x) := ϕ(xc)− ϕ(x), (2.2)

is positive for arbitrarily small ε.

Proof. Consider the Taylor expansion of %,

%(x) = %(xc) +∇%(xc)T
[
x− xc

]
+
[
x− xc

]T
H%(xc)

[
x− xc

]
+ o(|x− xc|2)

= −
[
x− xc

]T
Hϕ(xc)

[
x− xc

]
+ o(|x− xc|2),

where o(|x− xc|2) represents the collection of all the higher order terms, O(|x− xc|k) with

k > 2. When evaluated for x = xc + εvϕ with ε > 0,

%(xc + εvϕ) = −ε2vTϕHϕ(xc)vϕ + o(ε2) ≥ −ε2λϕ + o(ε2),

is positive for arbitrarily small ε since λϕ < 0.

Proposition 2.2.7. For the system given in (2.1), consider a fixed point xc ∈ C, and

assume there exists a function, ϕ, satisfying the conditions laid out in Lemma 2.2.6. Then,

the function in (2.2) is a Chetaev function and consequently xc is unstable.

Proof. Following Lemma 2.2.6, define the function % as in (2.2). Notice first that %(xc) = 0,

and %̇ = −ϕ̇ ≥ 0. Now, following Definition 2.2.4, define a set U . Consequently, %̇(x) > 0

when x ∈ U . From Lemma 2.2.6 there exists a direction at which % stays positive as x→ xc.

Therefore, % is a Chetaev function, and from Lemma 2.2.5, xc is unstable.
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2.2.3 Matching LaSalle (ML) Functions

Definition 2.2.8 (Matching LaSalle (ML) Function). For the system given in (2.1), the

continuously differentiable function, ϕ :X → R, is called a Matching LaSalle (ML) function

if,

• ∇ϕ(x) = 0 if and only if x ∈ C,

• ϕ̇ = ∇ϕ(x)T f(x) ≤ 0, where ϕ̇ = 0 if and only if x ∈ C,

• for every Gj, the function, γ(x) := ϕ(x)−ϕ(xc), with xc ∈ Gj, is a Lyapunov function,

• for every xc ∈ S, the function, %(x) := −γ(x) = ϕ(xc)−ϕ(x), is a Chetaev function,

in which case we say the system admits an ML function.

Theorem 2.2.9. If the system (2.1) admits an ML function, ϕ, then C is globally attractive,

G is locally asymptotically stable, and S is locally unstable.

Proof. From LaSalle’s Invariance Principle (Theorem 3.4 of [70]), for every initial state,

x0 ∈ X , limt→∞ x(t,x0) ∈ M ⊆ C where M is the biggest invariant subset of C. Since

in this case C is composed of fixed points, it is invariant and thus M = C, meaning C is

globally attractive.

For every compact connected component, Gj , the function, γ, given in Definition 2.2.8 is

a local Lyapunov function, and from Corollary 2.2.3, Gj is locally asymptotically stable.

Then, via Corollary 2.1.8, we conclude G is locally asymptotically stable.

Lastly, for all xc ∈ S, % from Definition 2.2.8 is a Chetaev function, and thus xc is locally

unstable according to Lemma 2.2.5.

Proposition 2.2.10. For the system given in (2.1), assume there exists an ML function,

ϕ. If at each xc ∈ S, the Jacobian, Dxf(xc), has a positive eigenvalue, then G is AGAS.

22



Proof. From Theorem 2.2.9, existence of the ML function, ϕ, implies C is globally attractive,

G is locally asymptotically stable, and S is locally unstable. In addition, for any xc ∈ S, the

Jacobian, Dxf(xc), has a positive eigenvalue. From Center Manifold Theorem (Thm. 3.2.1

of [48]), there exists an unstable manifold around this equilibrium point that is at least one

dimensional. This implies the stable manifold around S has empty interior, and thus, G is

almost-globally attractive. Since G is already locally stable, we conclude G is AGAS.

Corollary 2.2.11. For the system given in (2.1), assume there exists an ML function, ϕ,

implying from Theorem 2.2.9 that C is globally attractive, and G is locally stable. If S = ∅,

then C = G, and thus, it is GAS.

2.3 Embedding a System: A Special Case

In this section, we consider a special case of embedding a system that admits an ML func-

tion as in Definition 2.2.8 into a higher dimensional space. By the term embedding we

mean that the forward limit set of the original system is embedded in that of the higher

dimensional system with the same local stability properties at each point. A more desirable

goal would be to start with an AGAS system, and anchor the original system in the sense

of [41] whereby there is an invariant embedding of the original state space with conjugate

restriction dynamics (implying among other consequences that the embedding of an AGAS

set remains AGAS in the embedding space), however the degeneracies associated with our

present constructions do not seem to afford that stronger conclusion. In particular, ab-

sent our present ability to find an explicit unstable eigenvalue in the linearized dynamics

of the (higher dimensional) embedding system corresponding to that of the (lower dimen-

sional) embedded model, we achieve our local stability results by recourse to a Chetaev

function, postponing the local conjugacy (and consequently a global AGAS property for

the embedding system) to conjectural status for future study.

Theorem 2.3.1. For the system given in (2.1), assume there exists an ML function, ϕ,
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as in Definition 2.2.8, and thus, from Theorem 2.2.9, C is globally attractive, G is locally

asymptotically stable, and S is locally unstable. In addition, assume that for all xc ∈ S,

the function is twice continuously differentiable over an open neighborhood, its Hessian

evaluated at the critical point, Hϕ(xc), has a negative eigenvalue, λϕ < 0, and its curvatures

are bounded, supxc∈S ‖Hϕ(xc)‖ ≤ κϕ <∞.

Now, consider the system,

ż = g(z), (2.3)

with z = (x,y) ∈ X × Y ⊂ Rm+k and k > 0, where Y is compact, and g : X × Y → Rm+k

is locally Lipschitz. In addition, assume C ×Y is the set of all fixed points. If there exists a

nonnegative continuously differentiable function, η :X ×Y → R≥0, and a positive constant,

νϕ, satisfying η(x,y) ≤ νη
2 ∇ϕ

T (x)∇ϕ(x) with νηκϕ < νϕ, such that,

ϕE(x,y) := νϕϕ(x) + η(x,y), (2.4)

has a non-positive Lie derivative, ϕ̇E ≤ 0, with ϕ̇E = 0 if and only if x ∈ C, then ϕE is an

ML function for the system (2.3).

Proof. The first two conditions in Definition 2.2.8 are already assumed to be true. To inves-

tigate the conditions regarding Lyapunov and Chetaev functions, we will use the bounding

relations,

νϕϕ(x) ≤ ϕE(x,y) ≤ νϕϕ(x) + νη
2 ∇ϕ

T (x)∇ϕ(x). (2.5)

For the system (2.1), consider a compact connected component of the stable fixed point

set, Gj , which admits γ(x) = ϕ(x) − ϕ(xc) as a local Lyapunov function according to

Definition 2.2.8. For the higher dimensional system(2.3), consider the component Gj × Y,
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and the function,

γE(x,y) := ϕE(x,y)− ϕE(xc,y)

= νϕγ(x) + η(x,y), (x,y) ∈ U × Y,

with any xc ∈ Gj . From (2.5), we have νϕγ(x) ≤ γE(x,y) ≤ νϕγ(x) + νη
2 ∇ϕ

T (x)∇ϕ(x).

Then, γE is nonnegative and its Lie derivative, γ̇E = ϕ̇E , is non-positive, where both the

function and its Lie derivative are zero if and only if x ∈ Gj . As the result, Gj × Y locally

admits γE as a Lyapunov function.

For the system (2.1), consider a critical point, xc ∈ S. The Hessian of the upper bound

function in (2.5) is,

D2
x

{
νϕϕ(x) + νη

2 ∇ϕ
T∇ϕ

} ∣∣∣
x=xc

= Dx {νϕ∇ϕ+ νηHϕ∇ϕ}
∣∣∣
x=xc

= νϕHϕ(xc) + νηH
2
ϕ(xc) + νηDx {Hϕ}

∣∣∣
x=xc
∇ϕ(xc)

= νϕHϕ(xc) + νηH
2
ϕ(xc).

Let vϕ be the eigenvector for the negative eigenvalue of Hϕ(xc), λϕ < 0. Then,

D2
x

{
νϕϕ(x) + νη

2 ∇ϕ
T∇ϕ

} ∣∣∣
x=xc

vϕ =
[
νϕHϕ(xc) + νηH

2
ϕ(xc)

]
vϕ

=
[
νϕλϕ + νηλ

2
ϕ

]
vϕ

=
[
νϕ + νηλϕ

]
λϕvϕ,

where,

νϕ + νηλϕ ≥ νϕ − νηκϕ > 0,

since νηκϕ < νϕ, and thus, the Hessian of the upper bound in (2.5) evaluated at xc ∈ S

has a negative eigenvalue,
[
νϕ + νηλϕ

]
λϕ. For the higher dimensional system in (2.3), each
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member of corresponding set of critical points, (xc,y), with y ∈ Y, has the function,

%E(x,y) := ϕE(xc,y)− ϕE(x,y)

= νϕϕ(xc)−
[
νϕϕ(x) + η(x,y)

]
,

where %E(xc,y) = 0, and its Lie derivative %̇E(x,y) = −ϕ̇E(x,y) is positive in the vicinity

when x 6= xc. From (2.5), this time we have νϕϕ(xc) −
[
νϕϕ(x) + νη

2 ∇ϕ
T (x)∇ϕ(x)

]
≤

%E(x,y). Since the Hessian of νϕϕ(x)+ νη
2 ∇ϕ

T (x)∇ϕ(x) evaluated at xc ∈ S has a negative

eigenvalue, from Lemma 2.2.6, there exists a direction at which the function’s lower bound,

νϕϕ(xc) −
[
νϕϕ(x) + νη

2 ∇ϕ
T (x)∇ϕ(x)

]
, is positive arbitrarily close to the critical point.

Therefore, %E is a valid Chetaev function.

2.4 Second Order Embedding

This section provides a generalization for the second order embedding of a first order system

previously discussed in [73, 115], where we show that an exact cancellation term in the

control policy is not required.

For the system given in (2.1), assume there exists an ML function, ϕ. Consider the second

order lift, [73, 115],

ẍ = ḟ − νϕ∇ϕ− νf
[
ẋ− f

]
, (2.6)

with the positive constants, νϕ and νf , where ḟ := Dxf · ẋ, and the following potential

function,

ϕS(x, ẋ) := νϕ ϕ(x) + 1
2 |ẋ− f(x)|2, (2.7)
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whose Lie derivative,

ϕ̇S = νϕ∇ϕTẋ +
[
ẍ− ḟ

]T[ẋ− f
]

= νϕ∇ϕT
[
f +

[
ẋ− f

]]
− νϕ∇ϕT

[
ẋ− f

]
− νf |ẋ− f |2

= νϕ∇ϕTf − νf |ẋ− f |2

≤ 0,

is zero if and only if x ∈ C and ẋ = f(x) at the same time. Without further investigating

whether ϕS is an ML function, notice that this approach relies on exact cancellation through

the use of original ML function gradient, ∇ϕ, which may not be available as a measurement.

To address this issue, we introduce the following theorem:

Theorem 2.4.1. Consider the special case of (2.1), admitting a factorization,

f(x) := B(x)u(x), (2.8)

where B : X → Rm×l, with 0 < l ≤ m, is full-rank matrix with bounded norm, κB :=

max x∈X ‖B(x)‖ < ∞. Assume there exists an ML function, ϕ, as defined in Defini-

tion 2.2.8, satisfying,

∇ϕT f = ∇ϕTB u ≤ −νx |∇ϕ|β , (2.9)

with β > 1 and νx > 0.

Now, consider the following system,

ẋ = B(x)k (2.10a)

k̇ = uk (2.10b)
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with k,uk ∈ Rl. Under the control law,

uk(x,k) := u̇(x)− σf (k− u(x))
[
k− u(x)

]
, (2.11)

where u̇ := Dxu · ẋ, and σf is a locally Lipschitz scalar valued function with lower bound

0 < νf ≤ σf , this system admits,

ϕS(x,k) := νϕϕ(x) + β − 1
β
|k− u|

β
β−1 , (2.12)

as an ML function.

Proof. For the system (2.10) combined with the control law (2.11), the set of fixed points

is C × {0}. To show this, observe that B is a full-rank matrix, and thus, the fixed points of

(2.10a) satisfy k = 0, whereas, the unique fixed point of (2.10b) is k = u.

Consider the change of coordinates, (x,k) 7→ (x, r) where r := k− u(x). Resulting equiva-

lent system,

ẋ = B(x)
[
u(x) + r

]
(2.13a)

ṙ = −σf (r) r, (2.13b)

has the same fixed point set. In addition, we can express (2.12) as,

ϕS(x, r) := νϕϕ(x) + β − 1
β
|r|

β
β−1 , (2.14)

which is continuously differentiable since β/(β − 1) > 1. Its gradient,

∇ϕS(x, r) =
[
νϕ∇ϕ(x) |r|

2−β
β−1 r

]T
,
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vanishes if and only if (x, r) ∈ C × {0}. Its Lie derivative with respect to (2.13) is,

ϕ̇S = νϕ∇ϕT ẋ + |r|
2−β
β−1 rT ṙ

= νϕ∇ϕTB
[
u + r

]
+ |r|

2−β
β−1 rT

[
−σf (r)r

]
= νϕ∇ϕTB u + νϕ∇ϕT B r− σf (r) |r|

β
β−1

≤ −νϕνx |∇ϕ|β + νϕκB |∇ϕ| |r| − νf |r|
β
β−1 ,

where second term of this expression is bounded by,11

νϕ |∇ϕ| |r| ≤ νβϕκ
β
B

[ 2
νf

]β−1
|∇ϕ|β + νf

2 |r|
β
β−1 ,

resulting in,

ϕ̇S ≤
[
−νϕνx + νβϕκ

β
B

[ 2
νf

]β−1
]
|∇ϕ|β +

[
νf
2 − νf

]
|r|

β
β−1

≤
[
−νx + νβ−1

ϕ κβB

[ 2
νf

]β−1
]
νϕ |∇ϕ|β −

νf
2 |r|

β
β−1 .

With the choice, νϕ = νf
2
[ νx

2κβB

] 1
β−1 , the upper bound becomes,

ϕ̇S ≤ −
νx
2 νϕ |∇ϕ|

β − νf
2 |r|

β
β−1

≤ 0,

where ϕ̇S = 0 if and only if (x, r) ∈ C × {0}.

For the system (2.1), from Definition 2.2.8, Gj locally admits the Lyapunov function, γ(x) =

ϕ(x)− ϕ(xc) with xc ∈ Gj . Now, for the system (2.13), consider the component Gj × {0},

11Let a, b, ς, ε, ω ∈ R>0, and consider the term ς ab. If ς a ≤ ε b1/ω then ς ab ≤ ε b

[
1+1/ω

]
. Otherwise,

ς ab ≤ ε−ως

[
1+ω
]
a

[
1+ω
]
. We conclude, ς ab ≤ εb

[
1+1/ω

]
+ ε−ως

[
1+ω
]
a

[
1+ω
]
. Here, ς := νδκB , ε := νr/2,

a := |∇δ|, b := |r− g|, and ω := β − 1.
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where under the subset U ×R, the function,

γS(x, r) := ϕS(x, r)− ϕS(xc,0)

= νϕγ(x) + β − 1
β
|r|

β
β−1 , xc ∈ Gj ,

is nonnegative and its Lie derivative, γ̇S = ϕ̇S is non-positive over U × R, where both the

function and its Lie derivative are zero if and only if (x, r) ∈ Gj × {0}, and thus Gj × {0}

locally admits γS as a Lyapunov function.

For the system (2.1), from Definition 2.2.8, every xc ∈ S admits the Chetaev function,

%(x) = ϕ(xc) − ϕ(x). Now, for the system (2.13), consider the critical point, (xc,0), and

the function,

%S(x, r) := ϕS(xc,0)− ϕS(x, r)

= νϕ%(x)− β − 1
β
|r|

β
β−1 ,

where %S(xc,0) = 0 and its Lie derivative, %̇S(x, r) = −ϕ̇S(x, r) is positive in the vicinity

when x 6= xc. Moreover, since % is a Chetaev function, for r = 0, there is a direction at

which %S(x, r) = νϕ%(x) is positive arbitrarily close to the critical point. Therefore %S is a

Chetaev function.

Corollary 2.4.2. In Theorem 2.4.1, if the Lie derivative upper bound (2.9) is replaced

by a combination of terms, ∇ϕ(x)T f ≤ −
∑j
i=0 νxi |∇ϕ|βi, where νxi > 0 and βi > 1 are

constant, and j is a positive and finite constant, then replacing the function in (2.12) with,

ϕS(x, r) :=
j∑
i=0

[
νϕiϕ(x) + βi − 1

βi
|k− u|

βi
βi−1

]
, (2.15)

suffices to reach the same conclusion.

Corollary 2.4.3 (AGAS). In Theorem 2.4.1, for the system (2.1) where the vector field

obeys (2.8), assume that for every xc ∈ S, the Jacobian, Dxf(xc), has a positive eigenvalue.
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Observe that the Jacobian of (2.13) evaluated at any fixed point (xc,0) with xc ∈ C, is,

Dx, r

 B
[
u(x) + r

]
−σf (r) r


∣∣∣
xc∈C, r=0

=

Dxf(xc) B(xc)

−σf (0)I

 ,
which is a block triangular matrix and its eigenvalues are composed of the eigenvalues of

Dxf(xc) and −σf (0)I. Since Dxf(xc), has a positive eigenvalue, from Proposition 2.2.10,

we conclude G × {0} is AGAS.

Corollary 2.4.4 (Second Order Embedding). In Theorem 2.4.1, B = I is equivalent to the

second order system ẍ = uk. With the control law (2.11), the resulting system turns into a

second order embedding,

ẍ = ḟ − νf
[
ẋ− f

]
, (2.16)

which is (2.6) without the undesired gradient term.
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Chapter 3

Task Encoding for a Legged Robot

In this chapter, we present our bottom-up approach to task encoding for horizontal unicycle

agents. Our strategy is suited for tasks that can be formulated as reaching a compact subset

of the work space. In Section 3.1, we lay out our modeling decisions with regards to the

environment the robot operates in, the task it is expected to execute, and the sensors it is

equipped with. In Section 3.2, we focus on an unconstrained planar point particle agent.

We present a reactive obstacle interaction model, and develop a combined control law

maintaining autonomous hill ascent while avoiding obstacles. By utilizing the tools we have

developed in Chapter 2, we show in Theorem 3.2.6 that the goal set representing the task

can be made AGAS (as in Definition 2.1.13) through proper parameter selection. Then, we

turn our attention to horizontal unicycle models with Section 3.2.2. In Section 3.2.2.1, we

extend the point particle control law presented in the previous section, into the kinematic

unicycle model. By utilizing Theorem 2.3.1, we show in Theorem 3.2.11 that the local

stability properties of the goal set and other fixed points are maintained. In Section 3.2.2.2,

we lift the kinematic unicycle control law into the dynamic unicycle model. This time we

utilize Theorem 2.4.1, and we show in Theorem 3.2.15 that the local stability profile of all

the fixed points stay the same.
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3.1 World and Task

In this section, we first introduce a representation of the world the robots we consider in this

thesis are assumed to operate in. This representation abstracts out many details regarding

the actual environment, encouraging the construction of simplified sensorimotor algorithms

for task execution in the expectation that the robot’s mechanical preflexes [19, 53] will

handle the rest. We proceed to formulate the autonomous hill ascent task for a robot that,

for now, is a fully actuated point particle. The robot’s goal—achieving a peak or ridge—is

represented by the compact set of critical points of the punctured terrain height function.

In this work, all our execution strategies incorporate the gradient of this task function to

reach the goal set. Applying this gradient to achieve successful task execution on a physical

robot platform requires accounting for the limitations of the underlying robot dynamics,

which is the focus of Section 3.2.

3.1.1 The World Model

A summary of the model and accompanying assumptions presented in this section can be

found in Table 3.1.

Definition 3.1.1 (Terrain). A terrain is represented by some unknown height function,

h ∈ C∞[R2,R]. (3.1)

Not only is h unknown, it is not necessarily a metrically full scale accurate copy of the

actual work space, rather to be imagined as sufficiently smoothed and thus absent of spatial

frequencies much below the robot’s body length. The operative assumption is that any patch

of such terrain is readily traversable by the robot’s standard gaits outside of obstacle regions.
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The set of obstacles is given by excessively steep grades,

O :=
{
p ∈ R2 : |∇h(p)| ≥ Γh

}
, (3.2)

where Γh is an upper bound on the grades below which the robot is assumed to operate

(i.e., obey the presumed plant model) without any failures.

Definition 3.1.2 (Hill). A hill is defined as a terrain punctured by a disjoint union of d

obstacles,

O =
d∐
i=1
Oi, (3.3)

where each obstacle, Oi, is a closed disk parametrized by its center, pi, and radius, ρi,

Oi :=
{
p ∈ R2 : |p− pi| ≤ ρi

}
, (3.4)

which we assume is unknown a priori but can be perceived upon its entrance into a sensor’s

spherical footprint radius, or sensor range, ρS ,

Di :=
{
p ∈ R2 : |p− pi| ≤ ρi + ρS

}
, (3.5)

which we call the obstacle region. Lastly, the open annulus representing the free work space

in the vicinity of each obstacle,

Ri := Di −Oi, (3.6)

is called a region of interest.

Figure 3.1 illustrates an obstacle region, Di, composed of Ri, and Oi.

Now, consider the following set of assumptions imposed throughout our analysis to achieve

the desired stability results.
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ρi

ρS

ρSpi

p

OiRi

`i

Figure 3.1: Obstacle and sensor models. The thickness of the region of interest, Ri, is set
to be identical to the sensor range. Since the obstacles are assumed to be disk shaped in
Definition 3.1.2, sensor output is a simply a rescaled version of the relative position of the
obstacle center, as given in (3.28).

Assumption 3.1.3. The obstacles, Oi, situated over the hill are,

1. suitably located: the obstacle regions, Di, do not contain any critical points,

∀p ∈ Di, ∇h(p) 6= 0, (3.7)

2. suitably sized: obstacle radii are bounded within a fixed (but unknown) interval,

ρmin ≤ ρi ≤ ρmax, (3.8)

3. suitably separated: individual obstacle regions do not intersect,

Di ∩ Dj = ∅. (3.9)
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Assumption 3.1.4. The global terrain component,

T :=
{
p ∈ R2 : h(p) ≥ hmin

}
, (3.10)

is a compact and contractible subset of the plane for some suitably chosen (but unknown)

hmin, in which case there is an (again unknown) upper bound,

hmax := max p∈T {h(p)} > hmin. (3.11)

In addition, the boundary of the global terrain component, ∂T , does not intersect with the

obstacle regions,

Di ∩ ∂T = ∅, (3.12)

and does not contain any critical points,

∀p ∈ ∂T ,∇h(p) 6= 0. (3.13)

Under these assumptions,

P := T − O, (3.14)

is a topological sphere world in the sense of [79], inserted into which a rigid body must

be confined to a free space given as a correspondingly punctured subset of the planar

rigid transformation group.12 Of course, the robot has no prior knowledge of the shape

and location of any obstacles but will use the sensed gradient field as an effective internal

beacon to circumvent them in a manner we detail later in Section 3.2.1.
12 When the free space boundaries are exactly known, and the body is fully actuated then the problem

admits an essentially global navigation function as was established in [116].
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WORLD MODEL
Definition Expression

p robot position p ∈ R2

h terrain function h ∈ C∞[R2,R] (3.1)
Γh obstacle grade threshold
O set of obstacles O :=

{
p ∈ R2 : |∇h(p)| ≥ Γh

}
(3.2)

pi obstacle location pi ∈ R2

ρi obstacle radius ρi ∈ R>0
ρmin minimum obstacle radius
ρmax maximum obstacle radius
Oi disk obstacle Oi :=

{
p ∈ R2 : |p− pi| ≤ ρi

}
(3.4)

ρS sensor range
Di obstacle region Di :=

{
p ∈ R2 : |p− pi| ≤ ρi + ρS

}
(3.5)

Ri region of interest Ri := Di −Oi (3.6)
hmin min hill elevation
T global terrain component T :=

{
p ∈ R2 : h(p) ≥ hmin

}
(3.10)

hmax max hill elevation hmax := max p∈T {h(p)} (3.11)
P work space P := T − O (3.14)

Assumption

O composed of d disjoint disks O =
d∐
i=1
Oi (3.3)

Oi
suitably located ∀p ∈ Di, ∇h(p) 6= 0 (3.7)
suitably sized ρmin ≤ ρi ≤ ρmax (3.8)
suitably separated Di ∩ Dj = ∅ (3.9)

∂T does not intersect with obstacle regions Di ∩ ∂T = ∅ (3.12)
does not contain any critical points ∀p ∈ ∂T ,∇h(p) 6= 0 (3.13)

Table 3.1: Fixed relations and (unknown) geometric parameters underlying the assumed
world model

3.1.2 Task Model

A summary of the task model detailed in this section can be found in Table 3.2.

We define the task of autonomous hill ascent as reaching some local maximum of the terrain

function, h, independent of the robot’s initial state. In the present work, we assume that

the hill is time invariant so that the gradient of its height function, ∇h, is purely a function

of robot position. We find it convenient to adopt the traditions of the robot navigation

literature (e.g. [79]) by inverting the terrain function as follows.

37



Definition 3.1.5 (Task). For the hill introduced in Definition 3.1.2, the smooth function,

φ(p) := hmin − h(p), (3.15)

is called a task function [76], because the task of autonomous hill ascent on P is encoded

as reaching its critical point set,

Cφ := [∇φ]−1(0). (3.16)

Observe that (3.7) from Assumption 3.1.3 implies,

Cφ ∩Ri = ∅. (3.17)

Based on Definition 3.1.2, the gradient of the task function, ∇φ, is bounded,

|∇φ(p)| < Γh, ∀p ∈ P. (3.18)

In addition, from (3.17), a common positive lower bound to its magnitude, Ωh, exists over

the regions of interest, Ri,

∃Ωh > 0 : Ωh ≤ |∇φ(p)| , ∀p ∈ Ri, ∀i ∈ {1, . . . , d} . (3.19)

Because P is compact and the task function is assumed to be smooth (at least twice con-

tinuously differentiable), it has bounded curvatures over the terrain. Thus, defining the

Hessian,

Hφ := DT
p
(
∇φ
)

= D2
p
(
φ
)
, (3.20)
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we have,

κφ := sup p∈P ‖Hφ(p)‖ <∞. (3.21)

Assumption 3.1.6. For the task function in Definition 3.1.5, the critical point set, Cφ has a

compact subset, Gφ, composed of n compact connected components, Gφj, and let Sφ := Cφ−Gφ

denote its complement, where,

1. Every Gφj locally admits,

γφ(p) = φ(p)− φ(pc), pc ∈ Gφj , (3.22)

as a Lyapunov function (as in Definition 2.2.1),

2. At every critical point, pc ∈ Sφ := Cφ − Gφ, the Hessian has a negative eigenvalue,

∀pc ∈ Sφ, ∃λφ < 0,∃vφ :Hφ(pc)vφ = λφvφ. (3.23)

Consequently, from Proposition 2.2.7,

%φ(p) = φ(pc)− φ(p), pc ∈ Sφ, (3.24)

is a Chetaev function.

For an unconstrained planar agent, p ∈ P, in the presence of no obstacles, O = ∅, P = T

is bounded by a level set of φ and, hence, is positive invariant. Based on Assumption 3.1.6,

the system,

ṗ = −∇φ(p), (3.25)

admits φ as an ML function as defined in Definition 2.2.8. From Theorem 2.2.9, this implies

Cφ is globally attractive, Gφ is locally asymptotically stable, and Sφ is locally unstable. In
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addition, since its Jacobian evaluated at any unstable equilibrium, −Hφ(pc) with pc ∈ Sφ,

has a positive eigenvalue, we conclude via Proposition 2.2.10 that Gφ is Almost Globally

Asymptotically Stable (AGAS) under the flow (3.25) induced by the gradient field.

TASK MODEL
Definition Expression

φ task function φ(p) := hmin − h(p) (3.15)
Cφ task critical set Cφ := [∇φ]−1(0) (3.16)
|∇φ| task gradient magnitude |∇φ(p)| < Γh, ∀p ∈ P. (3.18)
Ωh min task gradient magnitude over Ri ∃Ωh > 0 : Ωh ≤ |∇φ(p)| , ∀p ∈ Ri,∀i ∈ {1, . . . , d} (3.19)
Hφ task Hessian Hφ := D2

p
(
φ
)

(3.20)
κφ task curvature bound κφ := sup p∈P ‖Hφ(p)‖ <∞ (3.21)

Assumption

Gφ
compact connected components Gφ = ⋃

Gφj ⊂ Cφ
local Lyapunov functions for every Gφj γφ(p) = φ(p)− φ(pc), pc ∈ Gφj (3.22)

Sφ
complement subset Sφ := Cφ − Gφ
Hessian with negative eigenvalue ∀pc ∈ Sφ, ∃λφ < 0,∃vφ :Hφ(pc)vφ = λφvφ (3.23)
Chetaev functions for every pc ∈ Sφ %φ(p) = φ(pc)− φ(p) (3.24)

Table 3.2: Nomenclature and (unknown) geometric parameters underlying the task model.
In the absence of obstacles, the task would be achieved by simply following the terrain
gradient field (3.25).

3.1.3 Sensor Models

A summary of sensor models including varying assumptions on available measurements for

different robot models can be found in Table 3.3.

We assume a sensory suite that has no direct measurement of the robot’s position, as in a

GPS-denied environment [11, 147]. The available sensors include a vestibular sensor that

captures the terrain gradient, ∇h, and a limited exteroceptive sensor that can detect nearby

(up to ρS away) obstacles. Specifically, for the obstacle Oi, the robot can only sense location

of the closest point on the obstacle relative to its own location,

`i(p)
∣∣∣
Ri

:=
[
arg minp̄∈Oi

|p− p̄|
]
− p. (3.26)

The geometric nature of this measurement in relation to an obstacle region can be found

in Figure 3.1. Note that, since Oi is a disk with the radius ρi , the obstacle distance can be
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written as,

|`i(p)|
∣∣∣
Ri

= min
p̄∈Oi
|p− p̄| = |p− pi| − ρi , (3.27)

and the relative obstacle location becomes,

`i(p)
∣∣∣
Ri

= −|p− pi| − ρi
|p− pi|

[
p− pi

]
, (3.28)

although the robot has no prior information about pi or ρi (nor do we find it useful to

attempt any estimation of those parameters).

We assume an inertial frame fixed at some absolute position in P with a fixed orientation,

relative to which we introduce world frame coordinates for the robot’s position, p ∈ P,

and heading, θ ∈ S1, jointly written as q :=
[
p, θ

]
∈ SE(2). We place a frame in the

robot’s body whose origin in world frame coordinates is located at p and whose orientation,

aligned with its fore-aft direction of motion, is given by the world frame vector direction

n(θ) :=
[
cos θ, sin θ

]T , so the transformation into body coordinates, xb, of a vector, x ∈ R2,

in world frame coordinates is given by xb = RT (θ) x, where R(θ) =
[
n(θ), n̄(θ)

]
, and

n̄(θ) :=
[
− sin θ, cos θ

]T .

For the horizontal unicycle models, relative obstacle location, `i, is available through a

local omni-directional range and bearing sensor (in our implementation, a Laser Imaging,

Detection And Ranging (LIDAR) unit detailed in Section 4.1.1.1), `i
b(p). Similarly, the

terrain function gradient,∇h, is available as a local measurement through a vestibular sensor

(in our implementation, an Inertial Measurement Unit (IMU) detailed in Section 4.1.1.2),

∇hb(p).
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SENSOR MODELS
Definition Expression

`i relative obstacle location `i(p)
∣∣∣
Ri

:= arg minp̄∈Oi
|p− p̄| − p (3.26)

θ robot heading θ ∈ S1

q robot pose q :=
[
p, θ

]
∈ SE(2)

n(θ) robot direction vector n(θ) :=
[
cos θ, sin θ

]T
n̄(θ) orthogonal direction vector n̄(θ) :=

[
− sin θ, cos θ

]T
R(θ) robot rotation matrix R(θ) =

[
n(θ), n̄(θ)

]
{.}b body frame transformation xb := RT (θ) x,x ∈ R2

Table 3.3: Sensor models

3.2 Robot Control

As noted at the end of Section 3.1.2, ṗ = −∇φ is a provably correct ascent strategy for a fully

actuated point particle on an obstacle-free terrain. However, this leaves open the question

of how to handle hills obstructed by unknown obstacles, even those as simply shaped and

situated as introduced in Definition 3.1.2. Here, we first construct a control law for a fully

actuated point robot (Section 3.2.1.2) using the previously defined task model (Section 3.1.2)

that guarantees collision-free essentially global convergence to the goal set, Gφ, subject

to the foregoing assumptions (Definition 3.1.2) about the interaction of the terrain with

the obstacle field (Section 3.2.1.1). We then extend the construction, successively, to the

kinematic (Section 3.2.2.1) and dynamic (Section 3.2.2.2) unicycle models with no further

restrictions on the terrain parameters.

3.2.1 Autonomous Point Particle Hill Ascent with Obstacle Avoidance

The obstacle model and the point particle control policy arising from combining this model

with the initial task function, including conditions guaranteeing successful performance, are

summarized in Table 3.4.
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POINT PARTICLE CONTROL
Definition Expression

ψi obstacle function ψi
∣∣∣
Ri

= 1
2ρS

[
ρS − |`i(p)|

]2 (3.29)
ϕ combined task function ϕ := φ+ νψ

∑d
i=1 ψi (3.33)

νψ control parameter
C combined task critical set C = Gφ ∪ Sφ ∪ Sψ (3.35)

Sψ spurious critical set Sψ :=
d⋃
i=1
Sψi (3.36)

Sψi spurious critical set component Sψi := {p ∈ Ri :∇φ = −νψ∇ψi} (3.36)
Assumptions about the sensors and the environment

`i, ∇φ available as measurements
Ωh, Γh, κφ, ρmax known parameters
ρmax max obstacle radius sufficiently small ρmax <

Ωh
κφ

(3.55)
Conditions on the Design Parameters

νψ control parameter sufficiently large νψ > Γh (3.56)
ρS sensor range sufficiently small ρS <

1[
1−Ωh

νψ

][Ωh
κφ
− ρmax

]
(3.57)

Table 3.4: Summary of point particle control definitions, assumptions, and sufficient con-
ditions for successful execution. Additional summaries of corresponding world, task, and
sensor models are located in Table 3.1, Table 3.2, and Table 3.3, respectively.

3.2.1.1 Obstacle Model

The simplified assumptions about obstacle shapes and locations afford an intuitively straight-

forward sensor-based repelling local field.

Definition 3.2.1 (Obstacle Function). For the obstacle Oi, the obstacle function, ψi, is

defined to be a local potential function,

ψi =


1

2ρS

[
ρS − |`i(p)|

]2
, p ∈ Ri

0 , otherwise.
(3.29)

When constrained in its region of interest, the obstacle function can be rewritten as,

ψi
∣∣∣
Ri

= 1
2ρS

[
ρS − |`i(p)|

]2 = 1
2ρS

[
ρi + ρS − |p− pi|

]2
.
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Its gradient can be derived as,

∇ψi
∣∣∣
Ri

= DT
p(ψi)

∣∣∣
Ri

= DT
p( 1

2ρS
[
ρS + ρi − |p− pi|

]2)

= −ρi + ρS − |p− pi|
ρS |p− pi|

[
p− pi

]
.

By utilizing (3.27), the gradient can be rewritten as,

∇ψi
∣∣∣
Ri

= −ρS − |`i(p)|
ρS |p− pi|

[
p− pi

]
= ρS − |`i(p)|

ρS |`i(p)| `i(p). (3.30)

This gradient can be computed from available sensory measurements, where its magnitude

is simply,

|∇ψi|
∣∣∣
Ri

= ρS − |`i(p)|
ρS

, (3.31)

which is strictly monotonic and decreases linearly with the obstacle distance. For an un-

constrained planar agent, the control law, ṗ = −∇ψi, results in, ψ̇i = − |∇ψi|2, implying

any trajectory starting in Ri asymptotically approaches its outer boundary.

The obstacle function Hessian constrained in its region of interest can be derived as,

Hψi

∣∣∣
Ri

= DT
p

{
−ρi + ρS − |p− pi|

ρS |p− pi|
[
p− pi

]}
= DT

p

{
ρi + ρS
ρS

[ 1
ρi + ρS

− 1
|p− pi|

] [
p− pi

]}
= ρi + ρS

ρS

[[ 1
ρi + ρS

− 1
|p− pi|

]
I + 1
|p− pi|3

[
p− pi

][
p− pi

]T ]
,
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where I is the 2× 2 identity matrix. Now let,

nψi := 1
|∇ψi|

∇ψi = 1
|p− pi|

[
p− pi

]
,

n̄ψi := R(π/2)nψi ,

and observe that nψinTψi + n̄ψin̄Tψi = I. Then the Hessian can be reorganized as,

Hψi

∣∣∣
Ri

= ρi + ρS
ρS

[[ 1
ρi + ρS

− 1
|p− pi|

]
I + 1
|p− pi|

nψin
T
ψi

]
= ρi + ρS

ρS

[[ 1
ρi + ρS

− 1
|p− pi|

]
n̄ψin̄

T
ψi + 1

ρi + ρS
nψin

T
ψi

]
= 1
ρS

[[
1− ρi + ρS
|p− pi|

]
n̄ψin̄

T
ψi + nψin

T
ψi

]
, (3.32)

revealing that it has one positive eigenvalue (associated with the gradient eigenvector nψi)

and one negative eigenvalue (associated with the orthogonal eigenvector tangent to the level

set of ψi).

3.2.1.2 Combined Control Law

As a candidate for expressing the combined hill ascent and obstacle avoidance task, consider

the following potential function,

ϕ := φ+ νψ

d∑
i=1

ψi, (3.33)

with the positive constant, νψ, and the control law based on its gradient,

ṗ = −∇ϕ(p) = −∇φ(p)− νψ
d∑
i=1
∇ψi(p), (3.34)

where νψ becomes the control parameter. Define the fixed point set as, C := {p :∇ϕ = 0}.

Then, the resulting Lie derivative, ϕ̇ = − |∇ϕ|2 ≤ 0, is zero if and only if p ∈ C. According

to our world model, Definition 3.1.2, the obstacle regions on a hill neither intersect with
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each other nor with the goal. Then, critical point set can be partitioned as,

C = Gφ ∪ Sφ ∪ Sψ, (3.35)

where Gφ, Sφ are as defined in Assumption 3.1.6, and

Sψ :=
d⋃
i=1
Sψi :=

d⋃
i=1
{p ∈ Ri :∇φ = −νψ∇ψi}, (3.36)

represents the set of all spurious critical points emerging from the construction in (3.33).

Note that the individual components, Sψi , can be empty. In addition, over Gφ and Sφ, ϕ = φ.

This means local Lyapunov and Chetaev functions of Assumption 3.1.6 are maintained for

this system. To show that ϕ is an ML function for the system (3.34) as in Definition 2.2.8,

and investigate whether Gφ is AGAS (as in Definition 2.1.13), we need to characterize the

stability of Sψ.

Note that an alternative construction for this combined task is the quotient introduced

in [79],

ϕS := φ

ψ̃
, (3.37)

where,

ψ̃ =
d∏
i=1

ψ̃i :=
d∏
i=1

[ρS
2 − ψi

]
,

vanishes as the state approaches any of the obstacles (for the obstacle Oi, as |`i(p)| → ρi ,

the obstacle function (3.29), ψi(p) → ρS/2), and the quotient based function increase

unboundedly. Unfortunately, because we assume that the actual height function, φ, is

unknown, the gradient of the quotient,

∇ϕS = 1
ψ̃

[
∇φ− φ

ψ̃
∇ψ̃

]
= 1
ψ̃

[
∇φ− φ

ψ̃

d∑
i=1
∇ψ̃i

]
, (3.38)
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can not be recovered by the agent due to the sensory limitations imposed in Section 3.1.3.

Even if the task potential function, φ, was available as a measurement, ψ̃ is not twice

continuously differentiable on P (for obstacle Oi, ψi is once continuously differentiable at

the outer boundary of Ri), which implies ϕS is not a valid navigation function. Recent

work [109] demonstrates that the potential function in (3.37) yields a navigation function

in the case of a convex hill with convex obstacles. In the specific case that the hill is

quadratic, then a provably correct (continuous and piecewise smooth but non-gradient)

vector field has been developed [8] whose expression can be computed directly in real-time

from online sensor-based measurements. Since natural hills have various ridges and local

maxima that may all be of interest in the hill climbing problem, we prefer not to assume

that φ is convex (much less quadratic) in this paper. For these reasons, we can not rely on

these existing formal methods and must define and develop an understanding of the new

controller construction (3.34).

For the obstacle, Oi, define the following partitioning of the region of interest, Ri,

Ui :=
{

p ∈ Ri : |`i(p)| <
[
1− Γh

νψ

]
ρS

}
, (3.39)

Vi :=
{

p ∈ Ri : |`i(p)| >
[
1− Ωh

νψ

]
ρS

}
, (3.40)

Wi := Ri − {Ui ∪ Vi} , (3.41)

where observe that Ui is non-empty if and only if νψ > Γh, in which case Figure 3.2 illustrates

the region of interest, Ri, and the partitioning, Ui, Vi, and Wi.

Proposition 3.2.2. For the control law (3.34), the choice of control parameter obeying

(3.56), νψ > Γh, where Γh is the task gradient magnitude upper bound (3.18), guarantees

that the workspace, P, is positive-invariant.

Proof. To show positive-invariance, we need to show that, under the control law (3.34), the
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ρi ρUi ρVi

Wi

Vi

Ui

Oi

P −Ri

Ri

ρS

Figure 3.2: Regions Around the Obstacle. From (3.39), ρUi :=
[
1− Γh

νψ

]
ρS , and from (3.40),

ρVi := Ωh
νψ
ρS .

system can not leave P through its boundaries, ∂P. Based on (3.14),

∂P = ∂T ∪ ∂O, (3.42)

where T is the global terrain component (3.10), and O is the set of all obstacles (3.3),

and Assumption 3.1.4 implies ∂O ∩ ∂T = ∅, letting us test these boundary components

separately.

Based on Assumption 3.1.4, the obstacle functions, ψi, defined in (3.29) are zero over the

global terrain component boundary. From (3.33), this implies ∀p ∈ ∂T , ϕ(p) = φ(p),

where φ is the task function defined in (3.15). Then, based on (3.10), ∂T is a level set of

ϕ. Since under the control law (3.34), ṗ = − |∇ϕ|2, we conclude ∀p0 ∈ P − ∂T and ∀t ≥ 0,

p(t,p0) /∈ ∂T .

For any obstacle, Oi, the value of corresponding obstacle function, ψi, is inversely related to
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obstacle distance, |`i|, where the level sets are at fixed distances. Any choice of the control

parameter obeying (3.56) guarantees that Ui defined in (3.39) is not empty, over which the

Lie derivative of the obstacle function is,

ψ̇i
∣∣∣
Ui

= ∇ψiT
[
−∇φ− νψ∇ψi

]
= −∇ψiT∇φ− νψ |∇ψi|2

≤ |∇ψi| |∇φ| − νψ |∇ψi|2 = |∇ψi|
[
|∇φ| − νψ |∇ψi|

]
< |∇ψi|

[
Γh − νψ |∇ψi|

]
.

From (3.31),

|∇ψi|
∣∣∣
Ui
>
ρS −

[
1− Γh

νψ

]
ρS

ρS
= Γh
νψ
. (3.43)

It follows that,

ψ̇i
∣∣∣
Ui
< |∇ψi|

[
Γh − Γh

]
= 0. (3.44)

This means, ∀p ∈ Ui, d
dt {|`i(p)|} > 0, implying the system can not leave P through ∂Oi.

Proposition 3.2.3. For the control law in (3.34) combined with the choice of control pa-

rameter in (3.56), a necessary condition for any pc ∈ Ri to be a fixed point, pc ∈ Sψi, is,

pc ∈ Wi, with Wi as defined in (3.41).

Proof. For obstacle Oi, we have already shown in the proof of Proposition 3.2.2 that the

choice of the control parameter in (3.56) guarantees that Ui is non-empty, where ∀p ∈ Ui,

ψ̇i(p) < 0. Over Vi, the Lie derivative of the task function is,

φ̇
∣∣∣
Vi

= ∇φT
[
−∇φ− νψ∇ψi

]
= − |∇φ|2 − νψ∇φT∇ψi

≤ − |∇φ|2 + νψ |∇φ| |∇ψi| = |∇φ|
[
− |∇φ|+ νψ |∇ψi|

]
< |∇φ|

[
−Ωh + νψ |∇ψi|

]
.
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where remember from (3.19) that ∀p ∈ Ri, 0 < Ωh ≤ |∇φ| (p). Based on (3.31),

|∇ψi|
∣∣∣
Vi
<
ρS −

[
1− Ωh

νψ

]
ρS

ρS
= Ωh

νψ
, (3.45)

resulting in,

φ̇
∣∣∣
Vi
< |∇φ|

[
Ωh − Ωh

]
= 0. (3.46)

Assume pc ∈ Ui ∪ Vi is indeed a critical point under the control law (3.34), ϕ̇(pc) =

− |∇ϕ(pc)|2 = 0, which implies φ̇(pc) = −∇φ(pc)T∇ϕ(pc) and ψ̇i(pc) = −∇ψi(pc)T∇ϕ(pc) =

0. This is a contradiction since according to (3.44) pc ∈ Ui implies ψ̇i(pc) < 0, and according

to (3.46) pc ∈ Vi implies φ̇(pc) < 0.

Observe that the obstacle distance restricted to Ri can be represented as,

|p− pi|
∣∣∣
Ri

= ρi + |`i(p)| = ρi + αi ρS , αi ∈ (0, 1). (3.47)

When we apply this representation into the negative eigenvalue of Hψi in (3.32), we have,

1
ρS

[
1− ρi + ρS

ρi + αi ρS

]
= − 1

ρS

ρS
[
1− αi

]
αi ρS + ρi

= − 1− αi
ρi + αi ρS

. (3.48)

For p ∈ Wi, we can derive from (3.39) and (3.40) that,

[
1− Γh

νψ

]
ρS ≤ |`i(p)| ≤

[
1− Ωh

νψ

]
ρS , p ∈ Wi, (3.49)

and thus,

1− Γh
νψ
≤ αi

∣∣∣
Wi

≤ 1− Ωh

νψ
, (3.50)

which is independent of both ρS and ρi , letting us conclude that over Wi, the magnitude of
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this eigenvalue is inversely related to ρS and ρi . We proceed with providing more specific

upper bounds for ρS and the maximum value of ρi , ρmax, so that, at a spurious critical

point, the magnitude of the negative eigenvalue of Hψi(pc) is big enough to guarantee that

the combined function’s Hessian, Hϕ(pc), has a negative eigenvalue.

Lemma 3.2.4 (Theorem 4.3.7 of [54]). For any matrix M ∈ Rm×m, let λ1(M) ≥ λ2(M) ≥

. . . ≥ λm(M) denote its eigenvalues, and consider two Hermitian matrices A,B ∈ Rm×m.

For indices i, j satisfying 1 ≤ i+ j − 1 ≤ m,

λi+j−1(A+B) ≤ λi(A) + λj(B), (3.51)

and for indices i, j such that 1 ≤ i+ j −m ≤ m,

λi+j−m(A+B) ≥ λi(A) + λj(B), (3.52)

For m = 2, Lemma 3.2.4 results in

λ2(A) + λ1(B) ≤ λ1(A+B)

λ1(A) + λ2(B) ≤ λ1(A+B)

λ1(A+B) ≤ λ1(A) + λ1(B),

(3.53)

and,

λ2(A) + λ2(B) ≤ λ2(A+B)

λ2(A+B) ≤ λ1(A) + λ2(B)

λ2(A+B) ≤ λ2(A) + λ1(B).

(3.54)

Proposition 3.2.5. For the control law (3.34) combined with a control parameter choice

based on (3.56), νψ < Γh, assume the maximum permissible obstacle radius, ρmax, obeys
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(3.55),

ρmax <
Ωh

κφ
.

Any choice of obstacle sensor range, ρS , satisfying (3.57),

ρS <
1[

1− Ωh
νψ

][Ωh

κφ
− ρmax

]
,

guarantees that, for any critical point described in (3.36), pc ∈ Sψ, Hϕ(pc) has a negative

eigenvalue.

Proof. For obstacle region, Oi, let λ1(Hφ) ≥ λ2(Hφ), λ1(Hψi) ≥ λ2(Hψi), and λ1(Hϕ) ≥

λ2(Hϕ) be the pairs of eigenvalues for, Hφ, Hψi , and, Hϕ = Hφ + νψHψi , respectively.

Assume there exists a critical point, pc ∈ Wi. From (3.54), we have,

λ2(Hϕ) ≤ λ1(Hφ) + νψλ2(Hψi).

Observe from (3.21), |λ1(Hφ)| ≤ κφ, and consider the representation for λ2(Hψi) given in

(3.48),

λ2(Hϕ) ≤ κφ − νψ
1− αi

ρi + αi ρS
.

If we utilize the obstacle radius upper bound (3.8) and the upper bound for αi in (3.50),

λ2(Hϕ) ≤ κφ − νψ
1−

[
1− Ωh

νψ

]
ρmax +

[
1− Ωh

νψ

]
ρS

= κφ −
Ωh

ρmax +
[
1− Ωh

νψ

]
ρS
.

Then, a sufficient condition for λ2(Hϕ) to be negative is,

κφ <
Ωh

ρmax +
[
1− Ωh

νψ

]
ρS
,
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which can be rearranged as

ρS <
1[

1− Ωh
νψ

][Ωh

κφ
− ρmax

]
.

Theorem 3.2.6. Consider an unconstrained planar agent operating on a hill as described

in Definition 3.1.2 where the maximum obstacle radius in (3.8) satisfies,

ρmax <
Ωh

κφ
, (3.55)

where Ωh is defined in (3.19) as the lower bound of the task gradient magnitude over all

regions of interest, Ri, and κφ defined in (3.21) as the task curvature bound. Assume the

agent is equipped with a vestibular sensor capturing the terrain gradient, ∇h, and a set of

obstacle sensors, `i (3.26). If the choice of control parameter satisfies,

νψ > Γh, (3.56)

where Γh is the hill gradient magnitude upper bound (3.18), and the selected sensor range

satisfies,

ρS <
1[

1− Ωh
νψ

][Ωh

κφ
− ρmax

]
, (3.57)

then, P is positive invariant, and the control law in (3.34) admits ϕ as an ML function

(as in Definition 2.2.8). Furthermore, under this control law, Gφ is AGAS (in the sense of

Definition 2.1.13).

Proof. First of all, from Proposition 3.2.2, for the system (3.34), any control parameter

choice satisfying (3.56) guarantees that the workspace, P, is positive invariant. Over Gφ

and Sφ, ϕ = φ. Then, from Assumption 3.1.6, Gφj and Sφ admit local Lyapunov and
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Chetaev functions, respectively, as required in Definition 2.2.8. Proposition 3.2.5 shows

that, given a maximum obstacle radius obeying (3.55), any choice of obstacle sensor range

satisfying (3.57) guarantees that the combined function Hessian evaluated at the critical

point, Hϕ(pc) with pc ∈ Sψ, has a negative eigenvalue. From Proposition 2.2.7, this implies

that pc ∈ Sψ admit Chetaev functions as required Definition 2.2.8. Then, (3.34) admits ϕ as

an ML function. Since the Jacobian of the system evaluated at the unstable critical point set,

−Hϕ(pc) with pc ∈ Sφ ∪Sψ, has a positive eigenvalue, we conclude from Proposition 2.2.10

that Gφ is AGAS.

An important aspect of Theorem 3.2.6 is that the constraint on ρS is inversely related to the

choice of νψ. The implication of this is that on one hand, νψ needs to be larger than Γh, but

on the other hand, a bigger control parameter value implies a tighter bound on a sufficient

choice of ρS . A special case where this trade-off is irrelevant is when ∇φ is approximately

constant. This implies the curvature bound, κφ, is approximately zero. Then the second

part of the constraint where κφ is in the denominator becomes arbitrarily large and ρS can

be chosen accordingly independent of the choice of νψ.

Example 3.2.7. To illustrate scenarios under which insufficient ρmax and ρS values lead

into an undesired spurious critical point, consider the following hill task function,

φ =
√[[

ph − p
]Te1

]2 + 1 +
√[[

ph − p
]Te2

]2 + 1, (3.58)

where ph = [0, 10]T denotes the only critical point of the hill which is stable. This con-

struction is similar to the saturation term in [115], which results in a gradient vector with

bounded magnitude, Γh =
√

2, and a positive-definite Hessian with bounded curvatures,

κφ = 1/ξ = 1. Let us introduce a single obstacle located at the origin, pc = 0, resulting in

the minimum task gradient magnitude over the obstacle region, Ωh = 1. Then, according to
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Figure 3.3: Level sets of the combined potential field in Example 3.2.7 for three different
sets of choices for νψ, ρmax, and ρS . The inner arc represents the boundary of the obstacle,
O1, and the outer arc represents the boundary of the obstacle region, D1. For all three cases
the choice for νψ = 2.0 is sufficiently big. (a) ρmax = 0.5, ρS = 0.5 are both sufficiently
small and there is a single unstable critical point, (b) ρmax = 0.5, ρS = 1.5 where ρS is
too big and there are three critical points one of which is stable, (c) ρmax = 1.5, ρS = 0.5,
where ρmax is too big and there are three critical points one of which is stable.
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Theorem 3.2.6, any spurious critical point emerging under the parameter set satisfying,

ρmax < 1 (3.55), νψ >
√

2 (3.56), ρS <
1[

1− 1
νψ

][1− ρmax](3.57),

is unstable. Figure 3.3 illustrates the levels sets of the combined potential function under

three different sets of parameters. For all three cases, νψ = 2 is sufficiently big. Then the

obstacle radius, ρmax = 0.5, results in the sensor radius upper bound, ρS < 2 ·
[
1− 0.5

]
= 1.

On the other hand, for a more extreme environment in which ρmax = 1.5, no ρS choice can

be sufficient as the upper bound for this radius becomes negative.

Corollary 3.2.8. In Theorem 3.2.6, we considered autonomous ascent over a physical hill

while avoiding disk obstacles. This same obstacle avoidance approach can be incorporated

for any virtual hill satisfying the assumptions laid out in Section 3.1.

3.2.2 Horizontal Unicycle Models

In the previous section, we provide a control strategy for a planar agent with no kinematic

constraints that is tasked with autonomous hill ascent, where we show in Theorem 3.2.6 that,

trough the sufficient choice of parameters summarized in Table 3.4, ϕ is an ML function for

the system (3.34). Moreover, under these conditions, Gφ is AGAS (as in Definition 2.1.13).

In this section, we extend this approach into horizontal unicycle models. These models, es-

pecially the kinematic unicycle, are popular in the literature since they successfully capture

lack of lateral mobility of various mobile platforms including legged platforms like RHex [88,

121]. However, as the locomotion speed increases, the assumption that the translational and

rotational velocity values can change instantaneously poses problems with control strate-

gies based on the model, motivating modifications such as the rotational velocity based

approach in [128], and the dynamic unicycle model [106, 108]. In this work, for the slow

pace operation of the robot we utilize the kinematic unicycle model, whereas for the fast

pace operation with the same gait we choose to use the dynamic unicycle model. The
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horizontal unicycle extensions rely on successive embeddings of the point particle control

law while preserving the local stability and instability of the original fixed point set. As

discussed in Remark 3.2.12, our current theoretical efforts are not sufficient to show that

the almost-global attractiveness of Gφ is maintained, and thus, we can not conclude that

the embeddings of Gφ are AGAS. Yet, we conjecture that this is indeed the case.

3.2.2.1 Kinematic Unicycle

For a summary of additional modeling decisions made for the kinematic unicycle achieving

desired stability results, refer to Table 3.5.

KINEMATIC UNICYCLE CONTROL
Definition Expression

e1, e2 Cartesian unit vectors
[
e1 e2

]
:=
[
1 0
0 1

]

B(θ) kinematic unicycle map B(θ) :=
[
n(θ)eT1

eT2

]
(3.59)

ϕ
ku

kinematic unicycle task function ϕ
ku

:= νθϕ+ 1
2 |∇ϕ+ |∇ϕ|n|2 (3.60)

u
ku

kinematic unicycle input u
ku

:= −σϕ(|∇ϕ|)
[
|∇ϕ|

νθ

]
∇ϕb (3.62)

σϕ(|∇ϕ|) configurable positive scalar function
νθ control parameter

Assumptions about the sensors and the environment
`i
b, ∇φb available as measurements

ρmin known parameter
Conditions on the Design Parameters

νθ sufficiently large νθ > 4
[
κφ + νψ

[ 1
ρmin

+ 1
ρS

]]
(3.69)

Table 3.5: Summary of definitions, assumptions, and sufficient conditions for kinematic
unicycle control, which is developed on top of the point particle control (Table 3.4), with
the difference in available measurements.

Consider the planar kinematic unicycle [88],

q̇ = B(θ)u
ku

; B(θ) :=

n(θ)eT1
eT2

 , (3.59)
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with I =
[
e1 e2

]
:=

1 0

0 1

, where u
ku
∈ R2 consists of translational and rotational

velocity inputs, respectively.

One way to have a kinematic unicycle execute the task of autonomous hill ascent while

avoiding obstacles is to build upon the gradient of the combined ML function, ∇ϕ, by

introducing an angle error term, ϕθ, between the gradient vector angle, ∠(∇ϕ), and the

robot’s heading, θ. A widely used approach for error tracking on SO(2) (and SO(3) as

in [74]), ϕθ := 1 + cos(θ − ∠(∇ϕ)) = 1 + 1
|∇ϕ|∇ϕ

Tn(θ), is not smooth when ∇ϕ = 0. To

address this, we propose a modified angle error energy term, ϕ̃θ := |∇ϕ|2 ϕθ = ∇ϕT∇ϕ +

|∇ϕ| ∇ϕTn = 1
2 |∇ϕ+ |∇ϕ|n|2, and the function,

ϕ
ku

:= νθϕ+ 1
2 |∇ϕ+ |∇ϕ|n|2 , (3.60)

where ϕ
ku

: SE(2)→ R≥0 and νθ > 0 constant. The gradient of this function is,

∇ϕ
ku

= DT
q (νθϕ+ 1

2 |∇ϕ+ |∇ϕ|n|2),

with the components,

DT
p(1

2 |∇ϕ+ |∇ϕ|n|2) = DT
p(∇ϕ+ |∇ϕ|n)

[
∇ϕ+ |∇ϕ|n

]
=
[
Hϕ + 1

2 |∇ϕ|Hϕ∇ϕnT
][
∇ϕ+ |∇ϕ|n

]
,

and,

∂

∂θ
(1
2 |∇ϕ+ |∇ϕ|n|2) = ∂

∂θ
(∇ϕ+ |∇ϕ|n)T

[
∇ϕ+ |∇ϕ|n

]
= |∇ϕ| n̄T

[
∇ϕ+ |∇ϕ|n

]
.
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Then,

∇ϕ
ku

=

νθ∇ϕ
0

+

[Hϕ + 1
|∇ϕ|Hϕ∇ϕnT

][
∇ϕ+ |∇ϕ|n

]
|∇ϕ| n̄T

[
∇ϕ+ |∇ϕ|n

]


=

νθ∇ϕ
0

+

[2 + nT∇ϕ
|∇ϕ|

]
Hϕ∇ϕ+ |∇ϕ|Hϕn

|∇ϕ| n̄T∇ϕ



=

 νθI

|∇ϕ| n̄T

∇ϕ+


[
1 + |∇ϕ+|∇ϕ|n|

2

2|∇ϕ|2
]
Hϕ∇ϕ+|∇ϕ|Hϕn

0

 . (3.61)

Observe that the second term in the gradient contains the Hessian, Hϕ, which is not available

as a sensory measurement, preventing us from directly utilizing this gradient for a control

policy as in [88]. On the other hand, the following control policy,

u
ku

:=− σϕ(|∇ϕ|)B(θ)T
|∇ϕ| I
νθn̄T

∇ϕ

=− σϕ(|∇ϕ|)

|∇ϕ|
νθ

∇ϕb, (3.62)

where σϕ is a smooth and positive scalar valued function of the gradient magnitude (rep-

resenting any scaling or saturation that could be introduced to the control law to respect

limitations on applicable inputs), can be recovered from available measurements. Moreover,

under this control law, the resulting system,

q̇ = −σϕ(|∇ϕ|)

n(θ)eT1
eT2


|∇ϕ|

νθ

RT (θ)∇ϕ

= −σϕ(|∇ϕ|)

|∇ϕ| [nT (θ)∇ϕ
]
n(θ)

νθn̄T (θ)∇ϕ

 , (3.63)

has the fixed point set, C × S1.

Proposition 3.2.9. Consider the planar kinematic unicycle agent given in (3.59). For
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the control policy given in (3.62), the choice of parameter, (3.69), guarantees that for the

resulting system (3.63), the function, (3.60), has a non-positive Lie derivative, that is zero

if and only if p ∈ C.

Proof. For the system (3.63) the function, (3.60), has the Lie derivative,

ϕ̇
ku

= ∇ϕ
ku

TB(θ)u
ku

= −σϕ∇ϕkuT
|∇ϕ|nnT

νθn̄T

∇ϕ,

where, substituting for ∇ϕ
ku

from (3.61) and noting that nnT + n̄n̄T = I, results in,

ϕ̇
ku

= −σϕ |∇ϕ| νθ∇ϕT∇ϕ− σϕ |∇ϕ|
[[

1 + |∇ϕ+|∇ϕ|n|2

2 |∇ϕ|2
]
∇ϕ+|∇ϕ|n

]T
HϕnnT∇ϕ.

By utilizing Cauchy-Schwarz13 and matrix norm14 inequalities [135],

ϕ̇
ku
≤ −σϕνθ |∇ϕ|3 + σϕ

[[
1 + 4 |∇ϕ|2

2 |∇ϕ|2
]
|∇ϕ|+ |∇ϕ|

]
κϕ |∇ϕ|2

≤ −σϕνθ |∇ϕ|3 + σϕ
[
3 |∇ϕ|+ |∇ϕ|

]
κϕ |∇ϕ|2

≤ −σϕ
[
νθ − 4κϕ

]
|∇ϕ|3 ,

and from (3.64),

νθ > 4
[
κφ + νψ

[ 1
ρmin

+ 1
ρS

]]
,

guarantees that ϕ̇
ku
≤ 0 and ϕ̇

ku
= 0 if and only if p ∈ C.

Lemma 3.2.10. For the point particle control parameter choice (3.56), and obstacle sensor

range choice (3.56), the maximum curvature for the combined task function, ϕ, in (3.33),
13Let x, y ∈ Rm. Then,

∣∣xTy
∣∣ ≤ |x| |y|.

14Let x ∈ Rm and A ∈ Rk × Rm. Then, |Ax| ≤ ‖A‖ |x|.
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κϕ := sup p∈P ‖Hϕ(p)‖, is bounded by,

κϕ ≤ κφ + νψ
[ 1
ρmin

+ 1
ρS

]
. (3.64)

Proof. When p ∈ P − ∪ni=1Ri, the combined task function, ϕ, shares the same curvature

bound as the task function, φ, ‖Hϕ(p)‖ ≤ κφ, ∀p ∈ P − ∪ni=1Ri. Thus, in this proof we

will be investigating the curvature bounds over the regions of interest, Ri. As in Proposi-

tion 3.2.5, let λ1(Hφ) ≥ λ2(Hφ), λ1(Hψi) ≥ λ2(Hψi), and λ1(Hϕ) ≥ λ2(Hϕ) be the pairs of

eigenvalues for, Hφ, Hψi , and, Hϕ = Hφ + νψHψi , respectively.

Note that,

‖Hϕ‖ = max {|λ1(Hϕ)| , |λ2(Hϕ)|} . (3.65)

From (3.54), we have λ2(Hϕ) ≥ λ2(Hφ) + νψλ2(Hψi), where recall from Proposition 3.2.5

that λ2(Hϕ) is negative. In addition, observe from (3.21) that |λ2(Hφ)| ≤ κφ, and consider

the representation for λ2(Hψi) given in (3.48). Then,

|λ2(Hϕ)| ≤ |λ2(Hφ) + νψλ2(Hψi)|

≤ |λ2(Hφ)|+ νψ |λ2(Hψi)|

≤ κφ + νψ
1− αi

αi ρS + ρi
,

where, by combining (3.8) with the fact that αi > 0, we reach,

|λ2(Hϕ)| < κφ + νψ
1

ρmin
. (3.66)

Similarly, via (3.53), we have, λ1(Hϕ) ≤ λ1(Hφ) + νψλ1(Hψi). Notice that λ1(Hϕ) < 0

implies |λ1(Hϕ)| ≤ |λ2(Hϕ)|, thus we focus on when λ1(Hϕ) > 0. Once again, from (3.21)
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we have |λ1(Hφ)| ≤ κφ and λ1(Hψi) is provided in (3.32), resulting in,

|λ1(Hϕ)| ≤ |λ1(Hφ) + νψλ1(Hψi)|

≤ |λ1(Hφ)|+ νψ |λ1(Hψi)|

≤ κφ + νψ
1
ρS
. (3.67)

Then,

‖Hϕ‖ ≤ max
{
κφ + νψ

1
ρmin

, κφ + νψ
1
ρS

}
≤ κφ + νψ max

{ 1
ρmin

,
1
ρS

}
≤ κφ + νψ

[ 1
ρmin

+ 1
ρS

]
. (3.68)

The main constraint for the planar kinematic unicycle is the lack of lateral mobility. Thus, it

is intuitively clear that the success of any gradient tracking strategy depends on curvatures

of corresponding potential function. With the following theorem, we provide a sufficient

condition for the control parameter, νθ, based on curvature bounds of the ML function, ϕ,

guaranteeing that under the control law (3.62), the function (3.60) is an ML function.

Theorem 3.2.11. Consider the point particle system given in (3.34), and assume that,

for this system, there exists an ML function ϕ over the positive invariant set P, where for

all unstable critical points, pc ∈ S, its Hessian, Hϕ(pc), has a negative eigenvalue, and its

curvatures are bounded, supp∈P {‖Hϕ(p)‖} ≤ κϕ < ∞. For the planar kinematic unicycle

agent (3.59), under the control policy given in (3.62), if the choice of control parameter

satisfies,

νθ > 4κϕ, (3.69)
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then the resulting system (3.63) admits ϕ
ku

as an ML function.

Proof. To achieve the desired result, we need to show that the requirements for Theo-

rem 2.3.1 hold. The assumptions regarding ϕ already follow its description in Theorem 2.3.1.

In addition, we show in Proposition 3.2.9 that if the choice of νθ satisfies (3.69), then it

follows that the Lie derivative of ϕ
ku

is non-positive, and zero if and only if p ∈ C. Lastly,

the continuously differentiable nonnegative function, η(p, θ) := 1
2 |∇ϕ(p) + |∇ϕ(p)|n(θ)|2

satisfies that η(p, θ) ≤ 2∇ϕT (p)∇ϕ(p). We conclude from Theorem 2.3.1 that ϕ
ku

is an

ML function.

Remark 3.2.12. In Theorem 3.2.11, we could not conclude that G × S1 is AGAS. This is

because all the eigenvalues of the Jacobian of (3.63) over any critical point are zero, hence,

the Center Manifold Theorem (Thm. 3.2.1 of [48]) is not applicable to show that the stable

manifold around unstable equilibria have empty interior. Yet, we conjecture that this is

indeed the case, and G × S1 is AGAS.

Remark 3.2.13. Theorem 3.2.11 does not examine the positive invariance of the original

set, P. This is because, in general, we can not make positive invariance claims for the

embedded system, as discussed in [78]. Instead, around every connected component of its

boundary, ∂P, [78] shows the positive invariance of the lowest boundary energy set of ϕ
du

. In

principal, one can exploit this observation in the present setting to define a danger zone that

circumscribes each physical obstacle within the larger (more conservative) region cut out by

the level set of its lowest energy boundary point 15. Since this is indeed positive invariant,

knowing the robot’s ascent initiates outside these zones will guarantee that it avoid the

obstacle for all future time. In implementation, however, determining such danger zones

would require advance knowledge of the obstacle’s position—quite at odds with the intended

application setting. In practice, in none of the hundreds of empirical trials to be presented in
15We conjecture that, by defining a ring shaped danger zone around the boundary of obstacle, Oi, we

can guarantee that, given that the robot starts out of the danger zone, it will not cross over this obstacle
boundary. We further conjecture that this zone’s radius depends on the kinematic unicycle control parameter
choice, νθ. A bigger νθ value results in a smaller danger zone radius.
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Section 4.2.2 has the robot ever penetrated inside such a danger zone to hit an obstacle—an

effective safety property for which we offer intuitive explanation in the accompanying text.

Let us now consider the task of autonomous hill ascent’s suitability for Theorem 3.2.11. For

the point particle agent, when the conditions for Theorem 3.2.6 are satisfied, the system

(3.34) admits ϕ as an ML function over the positive invariant set P, where, ∀pc ∈ Sφ ∪Sψ,

Hϕ(pc) has a negative eigenvalue. Furthermore, in Lemma 3.2.10, we provide a specific

finite upper bound over κϕ. By utilizing this bound we further conclude that, for the task

of autonomous hill ascent, the tighter bound,

νθ > 4
[
κφ + νψ

[ 1
ρmin

+ 1
ρS

]]
, (3.70)

guarantees that Theorem 3.2.11 holds.

As discussed in Remark 3.2.13, resulting kinematic unicycle controller does not guarantee

positive invariance of P, but safety is maintained in working practice for reasons we now

intuitively describe. Given that the robot starts in close vicinity of ∂Oi, a penetration

into an actual physical object is very unlikely as it depends on the robot’s initial heading

instantaneously zeroing out the obstacle gradient’s translational component right as the

hill ascent gradient is driving the robot into the obstacle. Meanwhile, the aggregate rota-

tional component is still steering the robot away from the obstacle. As mentioned in the

Remark, an appropriately defined danger zone formally eliminates even this unlikely event,

but requires advance information about the obstacle that we cannot assume in the present

application setting.

Remark 3.2.14 (Parameter Availability). In the actual implementation, as described in

Section 4.1.4, Γh, Ωh, κφ, ρmin, and ρmax are not known, and we do not attempt to estimate

them. Instead, the controller performance requires proper tuning of control and sensor

parameters.
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3.2.2.2 Dynamic Unicycle

A summary of additional modeling decisions made for the dynamic unicycle agent to extend

the kinematic unicycle stability results can be found in Table 3.6.

DYNAMIC UNICYCLE CONTROL
Definition Expression

r velocity state vector r ∈ R2

u
du

dynamic unicycle input u
du

:= u̇
ku
− νr

[
r− u

ku

]
∈ R2 (3.72)

νr control parameter νr > 0
Assumption

u̇
ku

kinematic unicycle input derivative available

Table 3.6: Summary of additional definitions and assumptions for dynamic unicycle control,
which is based upon the kinematic unicycle control (Table 3.5).

Consider the dynamic unicycle [106, 108], a second order system of the robot pose, q,

q̇

ṙ

 =

B(θ)r

u
du

 , (3.71)

with B(θ) as in (3.59). The velocity input vector of the kinematic unicycle, u
ku

in (3.59), is

replaced by a velocity state vector, r ∈ R2, whose evolution is controlled via an acceleration

input vector, u
du
∈ R2.

Consider the control policy which is based on a second order embedding (for more informa-

tion, consult Section 2.4) of the kinematic unicycle input, u
ku

(3.62),

u
du

:= u̇
ku
− νr

[
r− u

ku

]
, (3.72)

with the dynamic unicycle control parameter, νr > 0, constant. The fixed point set of the

resulting system is of the form, C × S1 × {0}. Observe that this policy includes the time

derivative of the kinematic unicycle input, which is a function of the combined ML function

gradient, ∇ϕ. However the Hessian of this function, Hϕ, is not available. We discuss the
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details regarding the numerical approximation of this derivative in Section 4.1.

Theorem 3.2.15. For the dynamic unicycle given in (3.71), consider the control policy

given in (3.62) & (3.72), with the choice of parameter (3.69), and assume that the require-

ments for Theorem 3.2.11 are satisfied. The resulting system admits,

ϕ
du

:= νϕϕku + 2
3
[
r− u

ku

]3/2
, (3.73)

as an ML function.

Proof. Our main goal in this proof is to utilize our results for second order embedding of a

system admitting an ML function, presented in Theorem 2.4.1. Observe that the candidate

function follows the ML function construction, (2.12), with β = 3. Thus, we need to show

that (3.71) combined with (3.72) satisfies the requirements for Theorem 2.4.1.

Recall from Theorem 3.2.11 that the kinematic unicycle input, u
ku

, given in (3.62), with a

sufficiently large choice of νθ, results in the system (3.63) admitting ϕ
ku

as an ML function.

Then, the only condition of Theorem 2.4.1 we need to investigate is concerning the Lie

derivative bound of the ML function, (2.9). If we take the norm of ∇ϕ
ku

in (3.61), we see

that,

|∇ϕ
ku
| ≤

∣∣∣∣∣∣∣
νθI

|∇ϕ| n̄T

∣∣∣∣∣∣∣ · |∇ϕ|+
∣∣∣∣∣[1 + |∇ϕ+ |∇ϕ|n|2

2 |∇ϕ|2
]
Hϕ∇ϕ

∣∣∣∣∣+ |∇ϕ| · |Hϕn|

≤ νθ |∇ϕ|+ |∇ϕ|2 + 3κϕ |∇ϕ|+ κϕ |∇ϕ|

≤
[
νθ + Γϕ + 4κϕ

]
· |∇ϕ| ,

where observe that, Γϕ := maxp∈P |∇ϕ(p)|, is bounded. We show in the proof of Propo-

sition 3.2.9 that, for sufficiently large νθ, ∇ϕkuTB(θ)u
ku
≤ −

[
νθ − 4κϕ

]
· |∇ϕ|3 where it is
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zero if and only if ∇ϕ
ku

= 0. This implies that,

∇ϕ
ku

TB(θ)u
ku
≤ − νθ − 4κϕ[

νθ + Γϕ + 4κϕ
]3 · |∇ϕku |3 ,

and thus, from Theorem 2.4.1, (3.71) combined with (3.72) admits (3.73) as an ML function.

Remark 3.2.16. As in Theorem 3.2.11, we can not conclude that Gφ× S1×{0} is AGAS.

This is due to reasons underlined in Remark 3.2.12, and we similarly conjecture that this

is indeed the case.

Remark 3.2.17. Similar to Theorem 3.2.11, Theorem 3.2.15 does not examine the positive

invariance of the original set, P. Following Remark 3.2.13, we can define danger zones

around obstacles and, starting from [78], show that, for any initial condition outside these

non-safe zones, the robot will never cross over the obstacle boundary.

In the case of the hill ascent control law (3.34), we conjecture that, the size of these danger

zones depend upon the initial velocity of the robot in combination with the ring-shaped

danger zones defined for its kinematic unicycle template in (3.59).
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Part II

Autonomous Behaviors with a

Legged Robot
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Chapter 4

Autonomous Hill Ascent

In this chapter, we report on the implementation of the Autonomous Hill Ascent behav-

ior presented in [57], an application of task level autonomy wherein a legged robot achieves

unassisted ascent of outdoor forested terrain in a variety of challenging settings (Figure 1.1).

To support different scenarios, we have implemented a slow pace (up to 0.7m/sec) and a

fast pace (up to 1.5m/sec) horizontal unicycle control law. This work, (in concert with the

initial implementations reported in [62]) offers the first documented account of completely

autonomous ascent over naturally populated hillsides by a robotic platform at speeds com-

parable to human uphill hiking and flat surface walking16. The climbing algorithms have

useful provable properties with respect to a greatly simplified world model that abstracts

away details of terrain (negotiated by the mechanical stability properties of the vehicle) and

obstacle shape (irrelevant at the relatively coarse scale afforded by the obstacles’ presump-

tive sufficiently low density). Despite the model’s dramatically simplified assumptions, it

approximates the reality of forested ascent sufficiently well that we have logged thousands of

body lengths of successful, entirely unassisted robot climbs in natural unstructured wood-

land and parkland settings.
16Based on an uphill hiking speed for a 10◦ hill of 0.56m/sec [83] and a walking speed on flat terrain of

1.46m/sec [72].
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In Section 4.1.1, we go through implementation details for the autonomous hill ascent be-

havior on the RHex robotic platform [42, 121], and the challenges faced to achieve reliable

performance, where Figure 4.1 and Figure 4.2 illustrate kinematic and dynamic unicycle

control law implementations, respectively. We document the results on extensive experi-

mentation with RHex in Section 4.2. These results include performance experiments both

at walking and running speeds and another set of experiments conducted to compare the

dynamic and kinematic unicycle control laws based on specific resistance.

4.1 Implementation

Both kinematic unicycle and dynamic unicycle control law implementations start with pro-

cessing the two physical sensors, LIDAR and IMU, to generate the sensory inputs (hill

gradient, hill incline, and obstacle) expected by the Task Encoder. The Task Encoder is

responsible for combining these inputs into a task gradient, in addition to filtering these

inputs for successful execution. The output of the Task Encoder is applied to the Kinematic

Unicycle Control module. In the case of the kinematic unicycle implementation, the result-

ing input vector, u
ku

introduced in (3.62), is then directly fed to the robot as a velocity

input. For the dynamic unicycle implementation, this output and its derivative are fed

into the Internal System representing the dynamic unicycle extension. The Internal System

state is then utilized as the velocity input to the robot.

4.1.1 Sensors

In this section we provide a list of sensors used for implementing autonomous hill ascent.

The first of these is an exteroceptive sensor that can be realized through use of a LIDAR

hardware unit mounted on a robot, whereas the other two are vestibular sensors that rely

on a conventional IMU.
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IMU

LIDAR

Hill Gradient
Sensor

Hill Incline
Sensor

α

∇hb

Obstacle
Sensor

{`ib}

Task
Encoder

Kinematic
Unicycle
Control

Robot
Locomotion

(xb,yb, zb)

{dib}

−∇ϕb u
ku

Figure 4.1: Kinematic unicycle implementation. Measurements from the two physical sen-
sors, IMU and LIDAR, are processed to provide the sensory inputs expected by the task
encoder module. In return, this module provides the combined task gradient for the kine-
matic unicycle control law, which is fed into the robot locomotion module as the velocity
input.

4.1.1.1 Obstacle Sensor

The obstacle sensor is an abstract map,

σd : SE(2)→ R2 × . . .× R2︸ ︷︷ ︸
d copies

,

over the hill, h, as defined in Definition 3.1.2. From each position and heading on the plane,

q ∈ SE(2), this map returns a set of vectors, `i
b, in the body frame based on the d obstacles

located over P as described in Section 3.1.1. Given the sensor range, ρS , and the field of

view limit, βM , denoting visibility constraints for distance and relative bearing, respectively,

this sensor first performs a radial quantization of the visible portion where each slice has the

arc length of k, and for each of these slices, it returns the distance to the nearest excessive

grade. Then, it clusters these readings into candidate obstacles. Candidates satisfying a

minimum arc length threshold are registered as obstacles, Oi, represented by a local frame

vector pointing towards their closest member, `i
b.

In our implementation, we use the output from a fixed LIDAR unit, {dib}, placed horizon-

tally on the body frame. [127] previously discussed some of the limitations of placing the
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Task
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Unicycle
Control
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du

Finite
Difference

Robot
Locomotion

(xb,yb, zb)

{dib}

−∇ϕb u
ku

u̇
ku

r

Figure 4.2: Dynamic unicycle implementation. The diagram follows Figure 4.1, except the
kinematic unicycle input and its derivative is utilized by the internal system representing
dynamic unicycle extension, instead. This system’s state is applied to the robot locomotion
module as the velocity input.

LIDAR unit with no pitch down angle, including inability in detecting obstacles that are

lower than the height of the beam and any problems variation in body pitch may cause. In

our case, the laser scanner plane is at a height such that any obstacle that it cannot see is

assumed to be surmountable and any obstacle that it can see is assumed to be insurmount-

able with respect to the standard alternating tripod gait. For the chosen fixed placement of

this unit, our robot interprets as an obstacle anything (tree, rock, slope increase, wall) that

rises more than 25cm over a run set by ρS above the existing slope—hence, abstractly, this

sensor is indeed responding to an excessively steep grade corresponding to the terrain model

above. The LIDAR unit cannot sense beyond a distance of 4m, to which the infinite reading

of its maximum depth scale is calibrated (i.e. ρS < 4.0). The field of view extends roughly

±120◦ off center (i.e. βM ≤ 120◦), and it is divided into 682 slices (i.e. k = 240◦/682). The

way we process the LIDAR output is somewhat similar to [40], with some differences such

as LIDAR unit placement, and availability of the robot’s pose relative to any reference. In

addition, unlike [40], where both lateral discontinuities along the measurement plane and

longitudinal discontinuities along the direction of motion are taken into account, we only

rely on lateral discontinuities in the clustering. Instead, a short term memory is realized at

task encoding stage (Section 4.1.2).
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4.1.1.2 Hill Gradient Sensor

Similar to [134], given the robot’s frame of reference (xb,yb, zb) from an IMU, the local

instantaneous hill gradient, ∇hb, can be computed through the direction of the normalized

gravity vector, ng,

∇hb := R(θ)T ∇h = −

nTg xb

nTg yb

 . (4.1)

4.1.1.3 Hill Incline Sensor

Given the robot’s frame of reference (xb,yb, zb) from an IMU and the steepest ascent gradi-

ent magnitude
∣∣∣∇hb∣∣∣, the tangent of the instantaneous hill incline angle, α, can be computed

through,

tanα = −

∣∣∣∇hb∣∣∣
nTg zb . (4.2)

4.1.2 Task Encoder

The task encoder module is responsible for constructing the combined task gradient in the

body frame. To do this, it first computes two components: the obstacle function gradient,

∇ψb, from the obstacle sensor output, {`ib}, and the hill ascent task gradient, ∇φb, from

the hill gradient sensor output, ∇hb. The module applies exponential smoothing17 to both

of these components to prevent oversensitivity to non-persistent disturbances on the hill

gradient and obstacle measurements. This filter also provides a remedy to cyclic body

pose-variations stemming from robot locomotion and potential repercussions of the limited
17For the raw data sequence, {xt}, the smoothed data sequence, {yt}, can be generated as: y0 = x0

and yt = αxt + (1 − α)yt−1, where 0 < α < 1 [20]. In this way, the current value, yt, is affected by all
previous values of the raw data sequence but older members of the sequence have exponentially diminishing
importance.
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field of view. We discuss some of these concerns further in Section 4.1.3. The output

gradient, ∇ϕb, is used by the kinematic unicycle control law introduced in (3.62).

4.1.3 Sensory and Physical Limitations

In this section, we address various sensory and physical limitations encountered during the

implementation and present the developed solutions.

4.1.3.1 Bounded Control Inputs

One major concern in any robotic implementation is to make sure that the control inputs

generated by the policy are realizable on the physical platform. We utilize a Fourier-style

saturation term as introduced in [115], µ : R2 → R≥0 with µ(x) =
√
|x|2 + ξ2 where ξ > 0

constant, to construct the scalar valued function in the kinematic unicycle input, (3.62),

σϕ(|∇ϕ|) := νp
1

µ2(∇ϕ) = νp
1

|∇ϕ|2 + ξ2
,

where νp > 0 is the scaling constant. This construction is suitable since it is bounded,

σϕ(|∇ϕ|) ≤ νp
1
ξ2 ,

and applied to (3.62), it saturates the individual components, resulting in,

u
ku
≤ νp

 1
νθ
2ξ

 . (4.3)
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4.1.3.2 Field of View

As discussed in Section 4.1.1.1, we chose to use a LIDAR unit to realize the obstacle sensor.

While it is very simple to utilize this sensor and process its output, its limited field of

view presents a disparity from the model described in Section 3.1.3. As such, we limited

the robot’s translational movement to avoid any motion out of the field of view. In other

words, if the combined gradient vector in body coordinates, ∇ϕb, points a direction out of

the LIDAR’s field of view, the robot is only allowed to execute the rotational velocity input.

To avoid undesired high frequency switching at certain extreme cases, a short term memory

on ∇ϕb is realized through exponential smoothing of both of its components during task

encoding. Although we have not performed a full analysis, we conjecture that the hybrid

system emerging from this implementation results in a similarly stable behavior.

4.1.3.3 Cyclic Body Pose Variations

Cyclic pitch and roll variations caused by the robot locomotion is a nontrivial source of

noise on the hill gradient measurements. When directly applied to the controller, the noise

this vector results in the robot oscillating around its expected path. To remedy this effect,

we utilize exponential smoothing on both the hill gradient and hill incline sensor outputs.

Especially at low grades, the inherent noise becomes significant, where filtering of the hill

gradient vector is not sufficient. To avoid this, we introduce a dead band, where if the slope

angle sensed is less than 6◦, it is deemed as flat terrain, and the hill gradient sensor returns

a unit vector aligned with the robot’s forward direction. As a consequence, the robot does

not stop at summits, and maintain its progress across intermediate plateaus.
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4.1.3.4 Dynamic Unicycle Input

The control input introduced in Section 3.2.2.2, (3.72), includes the time derivative of

the kinematic unicycle control input, (3.62), which is a function of the combined LaSalle

function gradient, ∇ϕ. Since the Hessian, Hϕ, is not available to the robot, we chose to use

the two-sample finite difference approximation,

u̇
ku

(ti+1) ≈ 1
ti+1 − ti

[
u
ku

(ti+1)− u
ku

(ti)
]
. (4.4)

Despite its limited accuracy, since our dynamic unicycle approach can be loosely described

as low-pass filtering of u
ku

applied to the system, in practice this approximation suffices to

achieve the desired behavior with minimal computational cost18.

4.1.4 Parameter Tuning

As discussed in Section 3.2 in detail, stability of the goal set relies upon the choice of a

suitable set of parameters. For the point particle agent (3.34), these parameters are obstacle

function gain, νψ, and the sensor range, ρS . These choices depend upon the maximum task

gradient magnitude, Γh, the minimum task gradient magnitude over the obstacle regions of

interest, Ωh, the task curvature bound, κφ, and the maximum permissible obstacle radius,

ρmax, all of which are not available. Additionally, the success of the kinematic unicycle

control law (3.62) relies on a sufficient choice of the kinematic unicycle coefficient, νθ, which

depends on another unknown parameter, the minimum permissible obstacle radius, ρmin.

Lastly, even though the theoretical success of the dynamic unicycle control law (3.72) is

guaranteed, the implemented behavior’s performance depends on the choice of the dynamic

unicycle control gain, νr.

To overcome the unavailability of all these parameters, we have devised a tuning policy for
18The acceleration dynamics governing the second order unicycle model are implemented via an Euler

integral. Thus, only the finite difference in the numerator appears in the update equation for the velocity.
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kinematic and dynamic unicycle agents, where we first make sure the parameter choices

result in successful behavior without any obstacles. We start with a sufficiently large νθ

value to succeed at walking speed over a variety of patches of hilly terrain with no obstacles.

Too high of a value for νθ results in jittery robot behavior which is taken into consideration.

Next, at running speed, we tune a νr level that provides a fast enough convergence to

the desired uphill walking behavior. Third, we manually pick different ρS values for slow

and fast pace behaviors, where the value for the latter behavior is picked to be slightly

larger to achieve a more graceful reaction of the physical platform to sensed changes in the

environment. Based on the choice of ρS , we tune a sufficient νψ value resulting in successful

robot behavior at both walking and running speeds over a variety of initial conditions around

a single obstacle.

4.2 Experimental Results

In this section, we present the results of multiple hill ascents conducted at two different sites

with the RHex platform [42, 121]. We first describe the experimental sites used for all the

experiments. We proceed with the first set of experiments where we test the performance of

the kinematic unicycle controller, (3.62), at a slower (walking) pace and the dynamic unicy-

cle controller, (3.72), at a faster (running) pace. We provide details about the experimental

procedures, present the results at both speed levels, and discuss some of the common issues.

We then discuss a second set of experiments that compare the two unicycle controllers at

both speed levels, with details on procedures and analysis of the results.

4.2.1 Experiment Sites

To test the autonomous hill climbing behavior at both walking and running speed levels,

several experiments were conducted in two different sites. The first of these, Penn Park19,
193000 Walnut St, Philadelphia, PA 19104
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has a human-built grassy hill patch which provided medium to steep slope angles (up to 36◦)

with a sparse obstacle course containing some young trees and the supports of a pedestrian

crossing bridge. The latter, by introducing rectangular shapes and a wall into the mix

of obstacles, constituted violations to the world model which added more diversity to the

experiments. One side of this patch contained no obstacles but maintained the steep slope

angle for around 15 meters. These experiments also tested the effects of the two unicycle

control policies on the robot’s pitch and roll stability at such high grades.

The second location, Ridley Creek State Park20, provided some more difficult challenges

for the robot with its uneven terrain and a dense distribution of both detectable and non-

detectable obstacles. The detectable obstacle set included fully grown trees, medium to

large size bushes and even fallen trunks, whereas non-detectable obstacle set included small

size bushes, small rocks, fallen branches and pits hidden by a thick layer of leaves.

4.2.2 Performance Experiments

4.2.2.1 Procedure

Performance Experiments

On-Site
move robot to new location

start experiment
declare termination

measure direct distance
sample hill slope

Post-Processing
extract time-to-travel

mark faults
annotate obstacles

annotate other faults
annotate finish condition

Figure 4.3: Procedure for performance experiments. The steps taken to generate reported
results are categorized as on-site and post-processing.

The procedure followed for performance experiments is summarized in Figure 4.3. The steps

taken to generate reported results are categorized as on-site experiments and accompanying
201023 Sycamore Mills Rd, Media, PA 19063
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measurements, and post-processing of recorded videos.

Every trial starts at a new location and an initial slope angle of at least 6◦, where we record

a video from its beginning on the initial slope until the operator declares its termination

(annotated as either a summit, edge, or fault to be detailed below).21 At each declared

terminus, we measure the direct distance traveled from the start to finish via a measurement

wheel,22 and sample the hill incline angles with a digital level. Additional annotations on

sensory inputs, their interpretations and control outputs are logged accordingly.23

We generate time-to-travel and detectable and non-detectable obstacle encounter informa-

tion manually from recorded data. In the processing of the video records, any abrupt change

in robot heading is recorded as an obstacle encounter. If this abrupt change stemmed from

the controller reacting to the presence of a tree or a high bush (taller than the LIDAR

scan line) in the close path of the robot, the obstacle encountered is labeled as detectable.

Otherwise, the obstacle is labeled as non-detectable. Lastly, any interruption in robot op-

eration is recorded as a robot fault. If the fault is caused by an obstacle, it is labeled with

the type of obstacle encountered. Otherwise, a label describing the issue is used. Lack

of summit detection as described in Section 4.1.3.3 allows the robot to keep accumulating

climbing statistics, where we do not count local ascents as summits in the count of Table 4.1

and Table 4.2. For the same reason, some experiments interrupted by faults are resumed

through operator intervention but we report and account for each of these interruptions as

faults in Table 4.1 and Table 4.2. Lastly, some trials are ended by the operator because

of the robot reaching the edge of the course. This artificial boundary means two different

things depending on the site. In Ridley Creek State Park, this specifically meant the end

of lightly vegetated section of the hill patch the robot was operating on. Even if the robot

could potentially keep going, it would be hard for the operator to go in and fetch the robot
21These video runs are available for download at http://cmass.seas.upenn.edu/hillascentjournal.
22Especially at Ridley Creek State Park, the robot failed to receive any GPS signal, and thus, we could

not report path lengths the robot traversed.
23Data generated from manual processing of the experiment videos can be accessed from http://cmass.

seas.upenn.edu/hillascentjournal in spreadsheet format. In addition, corresponding data log files and
scripts to load them are included.
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in case something went wrong, and thus, it was logical to end the session then. In the case

of Penn Park, we had a bridge orthogonal to the uphill direction at the end of the hill patch,

and the robot could keep going on the bridge as it had an uphill section. But this would be

challenging for both the robot and the operator due to active pedestrian and bike traffic,

and thus, the operator ended the run when the robot reached this area.

4.2.2.2 Results

Walking Speed A dataset of eleven experiments collected on four different hill sections

tests the walking speed behavior, as summarized in Table 4.1. Overall, the robot climbed

around half a kilometer24 (461.8 meters, or 810.2 body lengths) of hilly terrain while en-

countering 111 obstacles and successfully avoiding 107 of them. 49 of the avoided obstacles

were detectable by its sensor (trees, tall bushes and walls), and 58 of them were not de-

tectable (short bushes, fallen branches and logs). The 4 obstacles the robot failed to avoid

were not detectable by its sensor. In other words, the steepest ascent controller, with no

obstacle avoidance term introduced, would otherwise have failed to avoid and likely become

entrapped by 49 additional obstacles that the robot was able to avoid in these tests.

Trials 6 through 10 ended in a summit and Trials 1, 4 and 11 ended when the robot reached

an edge of the course (an artificial boundary picked by the operator beyond which it is

not safe for the robot). Trials 2, 3 and 5 were stopped when the robot suffered a fault—

i.e., it got stuck on a small but rigid branch from the under brush—a non-detectable but

insurmountable obstacle. These failures of the world model (specifically, the assumption of

Section 3.1.1 that any obstacle unseen by the sensor is surmountable), could be addressed

by improvements in sensing or locomotion primitives that lie beyond the scope of this paper.

Trial 2 contained an intermittent fault where a thick branch trapped the left rear leg. The

operator pulled this branch off and the trial continued. Of note, Trial 11 tested the limits of
24The total runtime for all walking speed experiments is 37 minutes and 8 seconds. The distance reported

is the direct distance between initial and final locations. The length of the path the robot traversed is not
available.
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# Location Description Direct Distance Hill Slope Runtime D. O. N. O. Faults Finish
(meters) (degrees) (min:sec)

1 Ridley Creek Medium Forest 69.5 10− 15 5:22 8 11 - Edge
2 Ridley Creek Medium Forest 62.3 3− 15 6:14 4 12 2x N.O. Fault
3 Ridley Creek Medium Forest 62.9 6− 15 4:55 3 13 N.O. Fault
4 Ridley Creek Medium Forest 96.8 3− 15 7:31 11 19 - Edge
5 Ridley Creek Steep Forest 18.7 15− 18 1:47 2 3 N.O. Fault
6 Penn Park Medium Grassy 27.5 3− 12 1:54 1 0 - Summit
7 Penn Park Medium Grassy 20.9 3− 20 1:36 2 0 - Summit
8 Penn Park Steep Grassy 36.2 3− 33 2:34 7 0 - Summit
9 Penn Park Steep Grassy 22.6 3− 33 1:46 4 0 - Summit
10 Penn Park Medium Grassy 28.8 3− 20 2:17 7 1 - Summit
11 Penn Park Steep Grassy 15.6 15− 36 1:12 0 0 - Edge

Table 4.1: Eleven outdoor hill climbing behavior trials including 49 detectable obstacles
(D.O.) successfully avoided and 58 non-detectable obstacles (N.O.) successfully mechanically
traversed over around half a kilometer of climbing with only 4 faults.

the hill ascent controller, where the hill incline angle reached 36◦. Yet, the robot successfully

traversed this patch of hill and reached the edge.

Running Speed A dataset of nine experiments collected on three of the same hill sec-

tions as the walking speed experiments tests the running speed behavior, as summarized in

Table 4.2. Overall, the robot climbed 357.8 meters25 (or 627.7 body lengths) of hilly terrain

while encountering 89 obstacles, and successfully avoiding 85 of them. 41 of the avoided

obstacles were detectable by its sensor (trees, tall bushes and walls), and 44 of them were

not detectable (short bushes, fallen branches and logs). The robot got entrapped by 4 ob-

stacles. Twice it got caught up on (non-detectable) rigid branches; another two times the

navigation failed to clear 2 detectable obstacles, both of which violated the world model in

a manner detailed below. In other words, the steepest ascent controller, with no obstacle

avoidance term introduced, would otherwise have hit and likely become entrapped by 41

additional obstacles that the robot was able to avoid in these tests.

Trials 15 through 18 ended in a summit and Trials 13 and 20 ended when the robot reached
25In total, running speed experiments took only 11 minutes and 22 seconds. The distance reported is

the direct distance between initial and final locations. The length of the path the robot traversed is not
available.
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# Location Description Direct Distance Hill Slope Runtime D. O. N. O. Faults Finish
(meters) (degrees) (min:sec)

12 Ridley Creek Medium Forest 58.7 10− 15 1:43 3 11 N.O., W.M.V. Fault
13 Ridley Creek Medium Forest 87.3 3− 15 2:55 7 17 - Edge
14 Ridley Creek Medium Forest 89.5 3− 15 3:18 12 16 W.M.V, N.O. Fault
15 Penn Park Medium Grassy 19.3 3− 12 0:19 1 0 - Summit
16 Penn Park Medium Grassy 19.7 3− 20 0:22 2 0 - Summit
17 Penn Park Steep Grassy 19.3 3− 33 0:24 3 0 - Summit
18 Penn Park Steep Grassy 19.1 3− 33 0:49 5 0 - Summit
19 Penn Park Medium Grassy 24.2 3− 20 0:58 6 0 Hardware Fault
20 Penn Park Steep Grassy 12.5 15− 36 0:34 2 0 2x Flip Edge

Table 4.2: Nine outdoor hill climbing behavior trials including 41 detectable obstacles
(D.O.) successfully avoided and 44 non-detectable obstacles (N.O.) successfully mechanically
traversed over around 350 meters of climbing with only 4 obstacle interaction based faults.
2 of these occurred due to robot failure over non-detectable obstacles. The other 2 occurred
due to world model violations (W.M.V.) where a complex set of obstacles resulted in the
robot control strategy failure.

an edge of the course (see the previous section for details of this termination condition).

Trials 12, 14 and 19 were stopped when the robot incurred a fault after the reported

distance had been covered. Trial 12 was terminated when the robot reached a fallen trunk

and failed to walk around it (which could be considered and edge). This trial also contained

an intermittent fault where a thick branch trapped left middle leg. The operator pulled

this branch off and the trial continued. Trial 14 ended with the robot climbing over a

short bush and losing traction as it can be seen on Figure 4.4. In addition, this trial was

interrupted when the robot encountered a concave obstacle region formed by a wide tree and

a big fallen branch. The operator moved the robot out of the trap and the trial continued.

Trial 19 ended with a hardware failure where the left middle leg cracked. Similar to the

previous section, Trial 20 tested the limits of the hill ascent controller where the hill incline

angle reached 36◦. Unlike the walking speed experiment, the robot would have flipped at

two different instances without any operator intervention. Each of these interventions are

marked as faults.
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Figure 4.4: An extreme case: small bush trapping the robot at the end of Trial 14.

4.2.2.3 Common Issues

In this section, we address some of the issues encountered during the experiments. These

issues all arose from disparities between the world model and the terrain encountered.

One of the common themes observed during these experiments was the non-detectable ob-

stacle interfering with the steepest ascent direction measurements. An extreme case of such

an encounter occurred in Trial 14. Three frames during this encounter shown in Figure 4.5

illustrate how the robot’s interaction with a big fallen branch provided enough variations

in body pitch and roll to interfere with the steepest ascent direction measurements. At the

end of the encounter, the robot briefly paused as the pitch down motion put the steepest

ascent direction at the back of the robot. This interaction is not recorded as a failure as

the robot reacted to this interference as expected and it maintained its progress after this

encounter.

Another problem encountered more than once during the experiments was a small branch

stalling one of the legs. Even if the robot manages to keep moving, this situation can

result in further damage due to a stalled motor and the operator intervention is inevitable

without some specialized proprioceptive sensory suite and control modifications focusing
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Figure 4.5: An extreme case: three frames illustrating the robot’s interaction with a non-
detectable obstacle and its effects on the steepest ascent direction during trial 1.

on detecting and recovering from such modes of failure, e.g. as in [63]. An example where

operator intervention was inevitable occurred at the end of Trial 14. Figure 4.4 shows

the result of robot’s encounter with a bush tall enough to create enough interference with

steepest ascent direction yet not tall enough to be detected by the obstacle sensor, where

the robot partially climbed over the bush before getting stuck. Similarly, world model

violations on obstacle shapes can result in failure of the control laws. A simple obstacle like

a fallen trunk may result in entrapment of the robot with such simplified control laws as

in Trials 12 and 14. Tackling all these problems is beyond the scope of this work but we

provide some future directions to address such issues in Chapter 8.

4.2.3 Model Comparison Experiments

In this section, we compare the specific resistance of the robot governed by kinematic

and dynamic unicycle controllers at both walking and running speeds; first without any

obstacles, and then with a single obstacle introduced. The specific resistance formula26 [121,
26Our measurements do not take the work done against gravity into account. For more accurate specific

resistance measurements and thus fair comparisons of locomotion between level, sloped, and vertical surfaces,
[50] proposes a model containing the original equation (4.5) plus an experimentally fitted correction term.
Since our goal is to compare two different control laws over the same hill patches with the same initial
and final elevations (an thus, with the same work against gravity), we chose to utilize the original specific
resistance measurement.

84



144] is,

SR = Pavg
mg vavg

. (4.5)

The average power, Pavg, is calculated by processing the power usage data provided by a

custom battery monitoring solution, and the average speed, vavg, is calculated by processing

the position data from the GPS module contained by the IMU unit. The robot mass, m is

measured to be 9.22 kg, and gravity, g, is assumed to be 9.81 m/s2.

4.2.3.1 Procedure

The procedures followed for the two sets of model comparison experiments are summarized

in Figure 4.6 and Figure 4.7. The steps taken to generate reported results are categorized

as on-site experiments and accompanying measurements, and post-processing of recorded

logs from the robot.

Model Comparison (No Obstacle)

On-Site
place robot on same location

rotate robot to new initial heading
start experiment

declare termination

Post-Processing
parse logs

detect heading alignment per trial
compute SR per trial
compute SR averages

Figure 4.6: Procedure for model comparison experiments with no obstacle. The steps taken
to generate reported results are categorized as on-site and post-processing.

For the first set of experiments, where we seek the steady state performance with no ob-

stacles, both Pavg and vavg are computed over a portion of the trial where the translational

velocity command applied to the lower level locomotion control reaches at least 95% of its

maximum permissible value.27 These experiments were all conducted on the same (roughly
27From (3.62) combined with (4.3), for a specific hill grade, a disparity between robot’s heading and

steepest ascent direction results in a smaller translational velocity component. On the other hand, when the
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10◦ − 15◦ inclined) hill patch at Penn Park, comprising five trials per control choice and

locomotion speed combination with identical start and finish locations (separated by a dis-

tance of roughly 20 body lengths), but initiated with varied headings relative to the hill

ascent direction.28

Model Comparison (Single Obstacle)

On-Site
place robot on same location and heading

start experiment
declare termination

Post-Processing
parse logs

compute SR per trial
compute SR averages

compute SRw per trial
compute m, v per trial
compute SRw averages

Figure 4.7: Procedure for model comparison experiments with a single obstacle. The steps
taken to generate reported results are categorized as on-site and post-processing.

For the second set of experiments where the effect of an obstacle on robot performance is

investigated, these average values are calculated over the portion where the combined task

controller is active. In addition to specific resistance values based on these overall averages,

we also computed moving averages with a window width of 50 samples (about 2.7 seconds),

a corresponding series of specific resistance values, SRw, and its mean and variance. These

experiments were conducted with a single tree located roughly 3 body lengths above the

20◦ initial inclination angle. For each controller locomotion speed combination, three trials

with the same start and finish locations were conducted. In contrast to the previous trials,

there was no variation in initial heading to ensure the robot’s interaction with the obstacle.
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No Obstacle
Trial Walking Running

Kinematic Dynamic Kinematic Dynamic
1 1.50 1.59 1.08 1.13
2 1.34 1.63 1.14 1.17
3 1.90 1.74 1.26 1.18
4 1.55 1.57 1.18 1.17
5 1.68 1.86 1.46 1.17

Average 1.60 1.68 1.22 1.16

Table 4.3: Comparative specific resistance values for kinematic and dynamic controllers
operating at two different speeds in the absence of an obstacle. The kinematic controller
exhibits lower cost of transport at walking speed and the dynamic controller exhibits better
performance at running speed.

4.2.3.2 Results

The results for the first set of experiments, conducted at Penn Park, over the portion of

the first hill patch with no obstacles, are summarized in Table 4.3. The average specific

resistance values over five trials suggest the kinematic unicycle controller achieves only 5%

improvement in cost of transport at walking speeds, whereas the dynamic unicycle model

exhibits only 4% improvement at running speeds.

Table 4.4 summarizes the results for the second set of experiments conducted over the

portion of the first hill adjacent to the location for the first set, containing a single obstacle.

The average specific resistance over the three trials suggests that at walking speeds the

kinematic unicycle achieves roughly 13% better efficiency than the alternative dynamic

controller when interacting with an obstacle. Conversely, at running speeds, the dynamic

unicycle controller achieves 15% better efficiency. The same trend can also be observed

in mean values of SRw. The mean and variance of SRw show a bigger disparity between

kinematic and dynamic unicycle controllers at running speeds, where, on average, there is

robot is aligned with the steepest ascent direction, translational velocity component reaches its maximum
level.

28 These heading variations were introduced manually but roughly (to the operator’s best ability) consis-
tently over the four sets of experiments.
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a 20% change in mean and 65% change in variance.

Trial
Single Obstacle

Walking Running
Kinematic Dynamic Kinematic Dynamic

SR
SRw SR

SRw SR
SRw SR

SRw
m v m v m v m v

1 1.46 1.56 0.28 1.69 1.73 0.13 1.69 1.88 0.21 1.43 1.52 0.06
2 1.53 1.59 0.17 1.63 1.70 0.25 1.65 1.82 0.29 1.46 1.64 0.31
3 1.43 1.60 0.30 1.78 1.86 0.22 1.64 1.93 0.79 1.33 1.40 0.08

Average 1.48 1.58 0.25 1.70 1.76 0.20 1.66 1.88 0.43 1.41 1.52 0.15

Table 4.4: Comparative specific resistance, SR, and moving average based specific resistance
series, SRw, mean (m) and variance (v) for kinematic and dynamic controllers operating at
two different speeds in the presence of an obstacle. The kinematic controller exhibits lower
cost of transport at walking speed and the dynamic controller exhibits better performance
at running speed. The obstacle avoidance maneuver incurs additional cost. Mean values
of SRw agree with the trends seen in SR values. At running speed, disparity between
kinematic and dynamic unicycle controllers in terms of mean and variance values of SRw
is more prevalent.

The specific resistance values reported at Table 4.3 and Table 4.4 are higher than the

previously reported [42] value for the platform, 0.9, which was recorded over featureless

flat terrain. This is expected as our specific resistance measurement method does not

take operating over inclines into account. Finally, despite showing some improvements

in line with our intuition, the comparison experiments do not reveal a clear advantage for

choosing one of the control strategies over the other for specific locomotion speeds or terrain

conditions.
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Chapter 5

Autonomous Stairwell Ascent

In this chapter, we report on another autonomous behavior for a legged robot previously

reported in [58], allowing it to negotiate a non-trivial indoor environment thanks to its well

designed preflex and feedback mediated controls. The term preflex [19] denotes a purely

mechanical loop arising from the interaction of a designed, shaped body or compliant limb

with some naturally occurring geometric and mechanical features of the robot’s environ-

ment. The feedback policies we use all approach the ideal (and in many cases represent a

formal instantiation) of an attractor-basin selected by some state-based switching logic im-

plementing the prepares relation according to the sequential composition method proposed

in [24]. Thus, the phrase algorithmically simple refers to our robot’s sole reliance on the

switched composition of online controllers to achieve autonomy.

Section 5.1 presents all the modeling decisions made regarding operational environment,

task, robot, and sensors. In Section 5.2, we present the details of the behavior imple-

mentation, where Figure 5.3 describes the two-stage process enabling the robot to travel

multi-flight stairwells in flowchart form. We end the chapter with experimental results

presented in Section 5.3.
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5.1 Robot and Task

This section details the sensorimotor models and simple world models underlying the em-

pirical stairwell ascent behavior. The world model of the stair ascent task is complicated

by the intermittent disappearance of the gradient beacon field (on flat landings) and the

need to find specifically marked obstacles (flights of stairs) whereon a distinctly different

gait yields robust ascent. The stair ascent behavior is accordingly complicated, and for-

mal statements of correctness would have a stochastic character governed by the statistical

properties of real stairwells. Although a formal demonstration of correctness lies beyond

the scope of the present paper, we aim to present in this section a precise enough account

of the world and sensorimotor models so as to enable future analysis (when coupled with

our description in the following section of the behavior that relies upon them).

5.1.1 World Model

We now follow [57, 62] to introduce the very simple model of the world (Section 3.1.1), that

will abstract away almost all the physical properties of the stairs and landings to provide

a uniform view of the robot’s task within its environment. This abstraction is appropriate

on a platform such as RHex whose normal walking gait can safely handle small obstacles

(debris or uneven surfaces). For the stairs, in this work, we assume no obstacle is present

and the robot’s stair climbing gait [99] can reliably traverse various stair designs.

5.1.1.1 The Stairwell Model

Definition 5.1.1. stairwell A stairwell is defined to be a piecewise constant terrain (Defini-

tion 3.1.1). Each constant (and compact) component is called a landing and it is surrounded

by boundary obstacles (walls, cliffs) including a subset called a stair that connects it to the

next landing.
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Note that we define a stair purely in terms of its perceptual features as detailed below in

Section 5.1.4.5.

5.1.2 Robot Model

We utilize two different models depending which stairwell component the robot is currently

operating. For the operations over a landing, we utilize the kinematic unicycle model

introduced in Section 3.2.2.1. Over the stairs, on the other hand, we assume the stair

climbing gait [99] reduces down to a scalar point particle tracking the single dimensional

gradient defined by the slope of the stairs.

5.1.3 Task Model

The task of autonomous stairwell ascent requires that the robot locomote from any initial

position and orientation over a stairwell to some landing with no upward stair boundaries.

5.1.4 Sensor Models

In this section we provide a list of abstract sensor models used for implementing the au-

tonomous stairwell ascent behavior. These sensors are a succession of exteroceptive sensors

that can be realized through the use of a LIDAR hardware unit mounted on a legged robot.

5.1.4.1 Depth Sensor

The depth sensor is an abstract map,

σE : SE(2)× B × T → R
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that returns from each position and heading in the plane, (p, θ) ∈ SE(2), bearing angle,

β ∈ B := [βm, βM ], and body pitch, τ ∈ T := [τm, τM ], a distance, ρ ∈ R := [0, ρM ].

In our implementation, we use the output from a fixed LIDAR unit to realize this depth

map. The arc extends roughly ±120◦ off center. The distance profile corresponds to the

first depth at which the LIDAR unit records a return. The LIDAR unit cannot detect

beyond a distance of ρM := 4m, to which the infinite reading of its maximum depth scale

is calibrated.

5.1.4.2 Gap Sensor

The gap sensor is an abstract map,

σG : SE(2)→ B

that returns for each position and orientation at which the robot is pointing, the center,

σG(p, θ) = ξ of an arc segment [ξ−S, ξ+S] ⊂ B, a window within which the interval depth

is maximum

ξ := argmax
βm+S≤β̄≤β

M
−S
I[β̄, S],

where,

I[β̄, S] := min
β̄−S≤β≤β̄+S

σE(p, θ, 0, β)
(1−K) cos6(β − β̄) +K

,

contains the introduced bias towards lower bearing differences to emulate the search for a

rectangular opening on the robot’s path.

5.1.4.3 Pitch Scan Sensor

The pitch scan sensor, σP : SE(2)× B × T → R× B × T is defined as,

σP (p, θ, τm, τM ) :=
{
(σE(p, θ, τ, β), β, τ) : β ∈ B, τ ∈ [τm, τM ] ⊂ T

}
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Figure 5.1: The pitch wiggle behavior for up and down scans, with inactive legs removed
for clarity.

and is implemented by running the depth sensor at each bearing angle within the field

of view and pitch angle achieved via a coordinated motion of the legs — a pitch wiggle

self-manipulation [62, 65, 122].

The pitch wiggle is a sensorimotor routine utilizing the planar LIDAR to measure ranges

in many planes. With a LIDAR unit positioned horizontally with respect to the ground, a

stair for example will appear similar to a wall. Unlike many robots that attach a LIDAR

unit to a motorized tilting mechanism, we use RHex’s natural ability to self-manipulate to

a variety of angles in order to sweep the LIDAR’s sensing plane. This maneuver produces a

large variation in body pitch (either up or down) with no internal forces or toe slip29, and

is depicted in Figure 5.1. A more precise treatment of this self-manipulation behavior is

presented in [65].
29This pitch change can be easily derived from the geometry of the C-shaped legs.
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5.1.4.4 Cliff Sensor

The cliff sensor, σC : SE(2)×B × T → {0, 1} is the composition σCD ◦ σP . The pitch scan

sensor, σP is pitched through a downward interval (τm < τM < 0) to scan a mid distance

rectangular region on robot’s path. The cliff detection sensor

σCD :R× B × T → {0, 1}

compares the results from σP with predicted range values from current pitch and bearing

angles and returns a binary value based on the persistence of segments with extreme negative

error. It contains two stages. In the first stage, ground range prediction error

σGE(ρ, β, τ) := µ(β, τ)− ρ

is computed for every (ρ, β, τ) ∈ σP through the ground range prediction function µ:B×T →

R as

µ(β, τ) := 0.5 l tan(−τ) + hs
tan(−τ) · 1

cosβ

where, assuming that LIDAR is located at the geometric center, l is the length of robot’s

body and hs is the total height of the LIDAR and robot body. After a unidirectional

threshold, a binary value based on the persistence of segments with extreme negative error

is returned.

5.1.4.5 Stair Sensor

The stair sensor, σS : SE(2)× B × T → R× B × S1 × {0, 1} is the composition σSD ◦ σP .

The pitch scan sensor, σP is pitched through an upward interval (0 < τm < τM ).

The stair detection sensor σSD :R×B×T → R×B×S1×{0, 1} returns the range ρS , bearing

βS and normal angle θS of the stairwell and a binary variable cS indicating if the sensor is
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confident about this detection. It outputs zero if it can not detect stairs. It is implemented

in three stages. To detect and extract output parameters, a stairwell is modeled as a set

of vertical plane segments with increasing horizontal offset where offset difference between

successive plane segments are within a predefined interval [dl, du] ⊂ R. At the first stage, a

line segment extractor σLS(σP ) :=
{
piL
}

finds and parameterizes line segments,

Li := {(ρ, β, τ) ∈ σP : ρ cos(β) = ρ sin(β)ai + bi, τ = τ i},

on the LIDAR scanning plane for every pitch angle. A line segment is represented with

five parameters: pitch angle τ i, bearing interval boundaries βim, βi
M

, normal angle ni =

atan(−ai), and horizontal offset di = bi cos τ i where,

piL := (τ i, βim, βiM , n
i, di).

Once all the line segments are extracted and parameterized, vertical plane segment extractor

σPS(σLS) :=
{
pjP
}

groups these line segments into vertical plane segments

Pj :=
{
pkL ∈ σLS : [βkm, βkM ] ∩ [βk+1

m , βk+1
M

] 6= ∅, nk = nj , dk = dj
}

by comparing individual bearing angle intervals, normal angles and horizontal offsets and

performs a parametrization. A plane segment is represented by six parameters: pitch

interval boundaries τ jm,τ j
M

, total bearing interval boundaries βjm = min
k
βkm, βjm = max

k
βk
M

,

normal angle nj and horizontal offset dj where

pjP := (τ jm, τ jM , β
j
m, β

j
M
, nj , dj)

Finally, the stair extractor σSE(σPS) := pS returns the range, bearing and heading angles

of the stairwell and a binary confidence variable if detected. It outputs zero otherwise. It
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first extracts a stair candidate

S :=
{

pkP ∈ σPS : nk = nS , d
k=0 = ρS , dl ≤ dk+1 − dk ≤ du

, [τkm, τkM ] ∩ [τk+1
m , τk+1

M
] = ∅, [βkm, βkM ] ∩ [βk+1

m , βk+1
M

] 6= ∅
}

by comparing pitch and bearing intervals, normal angles and horizontal offsets. A stairwell

is represented by four parameters: stair distance ρS , stair central bearing angle βS , stair

heading θS = nS +θ, and a binary confidence indicator cS that is nonzero if minimum pitch

angle; τk=0
m and absolute bearing angle |βS | are both within some confidence intervals

pS := (ρS , βS , θS , cS)

The actual implementation employs two more preprocessing stages. During the first stage,

beginning from the lowest pitch angle, any infinite reading for a specific bearing is replaced

by the reading for the same bearing from the lower pitch angle scan. During the next stage,a

simple edge detector is employed to segment individual pitch angle scans into intervals.

5.2 Autonomous Stairwell Ascent

Because of the additional perceptual and motor activity associated with finding and nego-

tiating stairs, the autonomous stairwell ascent behavior has greater complexity than the

autonomous hill ascent in Chapter 4. Although we address the overall task through the

systematic construction of pre-image backchaining [89], our reliance upon preflexes implies

that not all the action steps will admit well-defined attractors and basins as required for the

very robust and formally more powerful variant of sequential composition [24]. We report

here on the presently functioning constituents of this behavior and leave for future work

their formal reconciliation into that more powerful (but restrictive) framework.
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Figure 5.2: Implementation details of the stair sensor. For all the graphs the vertical axis
denotes the body pitch and the horizontal axis denotes relative bearing angle in degrees.
The top two graphs contain the raw readings and the output of a simple filter.
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Figure 5.3: Flow chart describing autonomous stair climbing.

5.2.1 The Stair Climbing Behavior

RHex robots have been climbing single-flight stairs for nearly a decade since Buehler’s

group first developed the appropriate gait [99] and they perform quite reliably on a variety

of typical human-scale staircases. This capability owes much to the preflex yaw stabilization

conferred by in-phase contra-lateral legs (providing a wide base of support on each successive

stair) along with the metachronal gait that engages the circular legs just in time to place the

body weight quasi-statically on the tread of the stair [77]. The preflexes arising from this

gait ensure that RHex-style legged platforms ascend stairs in open-loop as if in the presence

of the perceptually active steepest ascent stabilizing controller on hills (Chapter 4)30.

The previous paragraph describes a controller that climbs the stairs essentially by establish-

ing a (a component of the underlying prepares graph in the sense of [24]) from the domain

of any individual step (say the first one) to any higher step (such as the last step). When
30And, as it turns out, at least as reliably in this task open-loop mode as any tracked robots under feedback

control since the latter must place their weight on the nose of the stair for each step [103], which is contrary
to the way stairs are intended to be used.

98



a next stairwell has been located on a given landing, in order to enter the domain of the

stair climbing controller, the robot uses a transition from walking to stair climbing that has

also been shown empirically to be reliable when the robot is walking towards the start of

a stairwell [51]31. The transition from previous stair to next landing is accomplished by a

simple stair exit controller, triggered by the robot body pitch (as reported for a different

robot in [51]), that commands a few open loop forward steps.

5.2.2 Landing Exploration Behavior

Once the robot climbs through a flight of stairs and reaches a new landing, a sequence of

controllers (as summarized in Figure 5.3) is activated to drive it out of the prior goal set

(i.e., the sensed zero-grade event that triggered the stair exit controller) and into the basin

of the next as follows:

• Stair Detector

This controller first calls the stair sensor, σS and returns (ρS , βS , θS , cS) (Section 5.1.4.5).

For nonzero output, this controller performs an open loop move to the relative pose

(ρS , βS , θS − θ). If cS = 1, the robot transitions into stair climbing behavior. Other-

wise, it transitions back to σS for further investigation.

If σS returns 0, the robot switches to the Open Detector Controller.

• Open Detector

By calling the gap sensor σG (Section 5.1.4.2), this controller picks the most open

bearing angle. At the beginning of each landing, the sign of this bearing angle is

declared as the preferred direction to be used in case of future conflicts.

If no suitably open bearing angle is available (if σE ◦ σG(p, θ) < 1m, i.e. the robot

is in a corner) the robot simply rotates by 90◦ through the preferred direction and
31Now using the virtual contact sensor of [63] instead of mere controller error to trigger the same transition

more reliably.
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transitions back to the Stair Detector. In the presence of a suitably open bearing, the

robot rotates to this angle and switches to the Cliff Detector Controller.

• Cliff Detector

This controller first runs the cliff detector sensor σC (Section 5.1.4.4) to ensure it will

not fall by pursuing this new heading. If this controller returns 0, robot walks for up

to one meter, otherwise it rotates back through the preferred direction and transitions

back to the Stair Detector Controller.

It seems unreasonable to expect any deterministic guarantees that the robot can reach the

basin of the next stairwell ascent controller (i.e., the first steps of the next upward stairs)

through this sequence of controllers flight through this slow process. Empirically, the data

show that this behavior finds the subsequent stairwell with very high probability as landings

are generally metrically small, topologically simple and not maze-like.

With this landing exploration behavior the (informal) sequential composition backchaining

is completed and produces a roughly cyclic iterated path through controllers until the robot

reaches the top of a stairwell. Figure 5.3 summarizes the entire behavior.

5.3 Experimental Results

To test the autonomous stairwell climbing behavior we ran the robot on 10 of the many dif-

ferent stairwells in 4 nearby buildings32, as Table 5.1 summarizes33. We distinguish behavior

faults (arising from inadequacies in either the algorithm or the sensorimotor capabilities that

sub-serve it) from robot faults (failures due to mechanical or electronic unreliability). Only

two of the stairwells met the requirements of our world model. Specifically, they exhibited
32There were three additional stairwells that were attempted but on which the robot made no progress

due to their having either open risers or glossy painted risers that the laser scanner could not see well if at
all. This is a limitation of the sensor and these stairwells are not reported.

33Naturally every stairwell is unique, and even within a stairwell the rise, run, width, steps per flight,
landing size, style, and wall type can vary significantly. Listed here are typical values for a given stairwell
that attempt to convey some of these differences without providing full blueprints.
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# Violation Rise Run Landing Landing Size # Flights # Stairs Time # Scans Behavior Robot
(cm) (cm) (cm x cm) (hour:min:sec) ( stair, cliff)

1 - 15.3 28.0 Straight 189 x 150 2 11 0:01:51 2, 0 - -
2 - 15.3 28.0 Straight 327 x 150 2 11 0:03:01 3, 1 - -
3 Glass 17.4 29.6 Straight 192 x 143 2 27 0:02:27 2, 0 - -
4 Glass 16.7 26.9 Mixed 256 x 277 3 25 0:07:20 7, 4 - -
5 Various 17.5 31.4 U-Left 768 x 653 6 81 0:50:05 47, 36 1S 1N, 2L
6 Window 18.2 26.3 U-Left 486 x 222 7 60 0:25:25 33, 22 1S, 1T 2N, 2L
7 Glass 16.2 28.5 U-Left 471 x 252 10 111 1:03:25 51, 36 1C 3N, 3L
8 Glass 17.3 27.2 U-Left 349 x 156 10 112 0:54:40 55, 39 2T, 1C 1N, 1LD, 1L
9 Mesh 17.3 27.2 Mixed 293 x 137 11 112 0:44:54 44, 26 1T, 2W 2N, 1LD
10 Heater 17.5 26.0 U-Left 228 x 122 14 181 1:00:59 49, 27 2T 1LD, 1I

Table 5.1: Ten indoor stairwell climbing behavior trials covering 731 stairs in 67 flights with
a total of 12 behavioral problems. World model violations are briefly described. Rise, Run
and Landing Size dimensions are given in centimeters (cm). Scans column contains two
numbers; Stair Scans and Cliff Scans. Behavior faults are categorized as (S)tair Detection,
(C)liff Detection, Stair (T)ransition, and (W)all Collision. Robot faults fall into 4 categories;
(N)etwork Communication, (L)eg Failures, (L)I(D)AR Failures, and (I)MU Failures.

solid, detectable walls and no significant stepped features on the landings. The rest of the

stairwells violated our world model assumptions, but the robot was still able to climb with

significant success. Thus the simple world model, while upon initial inspection seems to pro-

vide a general description of most stairwells, in practice there is a surprisingly rich diversity

of stairwell structures, notwithstanding which, even in the face of unexpected variation, the

stair climbing behavior based on this simple world model assumption was able to perform

with reasonable success. The robot had only two false positives on stair detection through-

out 67 flights of stairs. In particular one of these two failures occurred because the specific

landing had a window whose frame combined with the wall fit the stairwell model described

in Section 5.1.4.5. The other failure could be avoided by opting out too small pitch angles as

they managed to create enough features to mislead the plane segment extractor. Similarly

there were only two wall collision based failures and both happened on stairwell number 5

where the laser scanner could see through the mesh walls and detect open space even though

the mesh is actually an obstacle to the robot, leading to collisions that in turn precipitated

faults requiring operator intervention. Cliff detection thresholds were rather conservative

during the experiments to avoid any false positives which resulted in two possible cliff falls

avoided by operator intervention. The remaining 6 behavior failures occurred during initial
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stair transitions. These could be avoided by more intense sensor integration which is out of

the scope of our current efforts.

In addition to behavioral faults, there were 21 robot faults over all 67 flights. The majority

of these arose from a leg failing to respond (8 times) and from network communication issues

(9 times) — the former due to known power distribution issues partially addressed in the

midst of experimentation and expected to be fully resolved in very near future. Additionally,

there were 3 LIDAR failures each of which happened due to overheating. These failures

resulted in low quality readings which we were able to fix by power cycling the LIDAR. In

the future these failures can be fully avoided by simple heat dissipation solutions. We had

an IMU failure once due to a loose USB cable which happened during stair climbing and

so the robot could not detect the end of the stairs.

Overall the behavior was able to climb a total of 731 stairs in 67 flights while encountering

only 12 behavioral faults in over 5 hours of testing. In almost every stairwell, there were

many other incidents that could be considered faults (such as a leg hitting a wall, open loop

walking leaving the robot at the wrong angle, etc.) but the robust preflexes and reactive

behaviors prevented these from requiring a human intervention.
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Part III

World Model Violations
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Chapter 6

Dynamical Trajectory Replanning

for Uncertain Environments

In Chapter 3, we rely on the basic assumption that the world the robot operates in contains

circular obstacles that are suitably located, sized, and separated. This simplification enables

our systematic approach to the point particle and horizontal unicycle control strategies. On

the other hand, in Chapter 4, we document two instances of robot operation being inter-

rupted while negotiating with obstacles that violate this assumption. Moreover, consider

the kind of obstacles depicted in Figure 6.1, Figure 6.3, and Figure 6.4. For a point particle

agent governed by the control law of Section 3.2.1.2, depending on its initial state, entrap-

ment is inevitable. How can we modify this strategy in a way that reacts to such violations

successfully, but still maintains successful task execution? In this chapter, we present the

work from [115], where we investigate a control law accomplishing the desired behavior.

We start the chapter with the motivation (Section 6.1) and background ideas (Section 6.2)

behind this approach. We proceed with the controller design (Section 6.3). We, then,

present two applications of the construction (Section 6.4) accompanied with simulation

studies (Section 6.5). We end this chapter with a discussion on how to extend this approach
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to a kinematic unicycle agent despite the fact that, in its current form, this control law

violates both the sensory capability and mobility assumptions of Chapter 3 (Section 6.6).

6.1 Motivation

Unlike the first order point particle model of Section 3.2.1.2, this work focuses on the

tracking problem for a fully actuated, force-controlled, unit-mass point-mechanism with

configuration space Q := Rn subject to a force disturbance d,

q̈ = Q[q; r] + d, (6.1)

where Q denotes a causal functional of the trajectory of the plant q and of a desired reference

motion path r. Because physical actuators suffer severe limitations we restrict attention to

designs for which both the force input (the output of Q) and the rate of mechanical work

(omitting work done by the disturbance) are bounded.

In the traditional robotics and control paradigm [29] some higher level planner generates

a sufficiently smooth34 reference trajectory r : R → Q that encodes the task at hand.

The presumably task-naive but tracking-expert controller produces forces excited by the

augmented tracking error, Q[q; r] := r̈−E[e, ė] where e := r− q ∈ Q and E is a force law

chosen so that the resulting tracking error system,

ë = E(e, ė)− d, (6.2)

converges as strongly as possible to zero despite disturbances d. Within the controls field,

one counterpart to our work is the longstanding anti-windup literature [138] wherein the

unexecutably high authority commands of some nominal tracking controller are trimmed

back to respect the saturating nature of inputs to the plant (6.1), and the very active
34It is convenient to assume that all our signals are C∞, but physical actuators are generally adequately

protected from long term mechanical (albeit not necessarily thermal [34] ) harm by C2 inputs.
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reference governor literature [45] provides controllers which do so with formal convergence

guarantees. Indeed, any of the variants on these constructions which yield iISS [131] closed

loops (6.2) with guaranteed Lyapunov functions [16], suitable for second order systems

[100] would be appropriate candidates to generate the posited error tracker (6.2), although

for purposes of illustration in this work we use a very much simpler saturating potential-

dissipative [78] tracker (6.21).

In contrast, our focus is the question of what benefit can be achieved by modifying the

reference trajectory r in the face of online exposure to the disturbances d. Specifically, we

advance an architecture relevant to the growing class of robots [22, 92, 105, 119, 121, 149]

whose reference trajectories are dynamically generated by allowing disturbance induced

tracking errors (6.2) to excite a transient replanner subsystem that alters the reference

generator in a stable manner.

The inevitable inaccuracies in world model, sensor acuity and actuator fidelity represented

by d in (6.1) usually have a systematic (albeit unmodeled) as well as a random component

and we believe that such recourse to simple dynamical replanning may allow the plant to

avoid rather than fight against otherwise intransigent if not adversarial obstacles.

6.2 Background Ideas

In this section we present the conceptual geometric ideas that lead us to our design. The

equations in this section are not used in our main result. Instead, they are intended provide

the rationale for the more elaborate constructions that follow.
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6.2.1 A First Order Graph as a Second Order Attractor

Following [73], we assume a given geometrically defined task [76] encoded as a smooth first

order reference dynamical system,

ṙ = f(r), (6.3)

endowed with a known Lyapunov function φr. Examples of nontrivial geometrically defined

tasks that are nicely amenable to second order lifts of first order dynamical encodings are

obstacle avoidance problems [73, 79], group formation coordination [10], and even complex

kinodynamic motion planning problems [32, 118]. Define the second order lift

r̈ = R(f ,φr)(r, ṙ) := ḟ − κr[ṙ− f(r)]−∇φrr (6.4)

where ḟ := Drf(r)ṙ, ∇φrr := [Drφr]T . Observe [73] ηr := φr + 1
2 |ṙ− f(r)|2 is a Lyapunov

function for (6.4).

In the next section we will replace (6.4) with an augmented construction (6.8),(6.9) that

accepts the replanner’s transient inputs, respecting which appropriate assumptions on φr

insure that ηr is an ISS-Lyapunov function as well.

6.2.2 Internal Dynamical Reference Generators

Although there can be great virtue in self-excited designs wherein a copy of (6.3) is placed

directly in the plant’s feedback path (e.g. [22, 92, 105, 119]) this work focuses on a control

scheme that places the reference dynamics in the feed-forward pathway using a design akin

to

r̈ = R(r, ṙ) + u(e)

q̈ = r̈− E(e, ė) + d
(6.5)
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For example, the original RHex [121] controller adopted a completely open loop version (i.e.,

with u ≡ 0) of this architecture on the torus, Q ≈ TN . A compensating feedback term was

added and tuned to achieve better performance subsequently in RHex [145], and has proven

essential to the RiSE climbing machine [133]. The lift in (6.5) of the reference dynamics

(6.3) now constitutes an internal model (a separate imagined copy of q representing the

desired plant state and future trajectory) whose value we seek to exploit in recognizing

situations of surprise and replanning in response.

Toward that end, we now proceed to develop a controller design recipe that augments

this internal model with a maneuver-generator/replanner, s, governed by a smooth time-

invariant vector field, g, over some Euclidean space, S. This replanner excites the reference

dynamics to express recovery maneuvers when an error builds up.

A consequence of physical restrictions is that the system cannot reject all bounded dis-

turbances, since adversarial or even blind disturbances larger than the system’s force and

power budget can always disrupt any controller’s attempts at correction. Instead, a more

subtle notion of stability is needed, the notion of Integral Input to State Stability (iISS) [3,

131], which relates the L2 norm of the disturbance to a (L∞) bound on the state of the

controller. We make additional use of control-theoretic tools from the Input to State Sta-

bility (ISS) [130] toolbox in demonstrating that our cascaded design has a response to the

disturbance that is guaranteed to be bounded, and which will ultimately converge to the

desired motion if the disturbance ceases. In the context of persistent state-dependent dis-

turbances such as the unknown terrain obstacles in our examples, the disturbance ceases

whenever the system manages to bypass these obstacles. Thus, we are guaranteed that

should it succeed in escaping entrapment, the system will resume correct behavior. Notice

that trajectories generated through this design recipe are not optimal in any sense. We

merely guarantee that the replanner implements a feasible course of action in the face of

arbitrary disturbances while respecting force and power limitations.
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6.3 Controller Design

Denote the zero section over any submanifold X ⊆ Q as ZX := {(q, 0) ∈ TQ|q ∈ X}.

Assume the following design requirements from the component dynamical systems:

(1) A fully actuated, unit mass, second order plant with state (q, q̇) ∈ TQ.

(2) A task encoded as a first order dynamical control system

ṙ = f(r) + v(r, s) (6.6)

over r ∈ R ⊆ Q, with input s ∈ S.

(2a) (6.6) is ISS with respect to some compact attractor Gr and the input s.

(2b) The coupling term v(r, s) is monotonically bounded in |s|Gs with respect to a

K∞ comparison function ν(·): |v(r, s)| < ν(|s|Gs)

(2c) The task admits φr, a smooth ISS-Lyapunov function (in the sense of [132]

Sec.2.1) which also has a saturating gradient. Namely, there exists some Fmax ∈

R>0 such that |∇φr(r)| ≤ Fmax

(2d) The replanner excitation function u : Q → TS is zero at zero, globally bounded

‖u(e)‖ < umax and continuous everywhere except perhaps at zero.

(3) A replanner encoded as a first order dynamical control system ṡ = g(s) + u which is

ISS with respect to some compact attractor Gs and the input u.

(4) A tracker system ë = E(e, ė) + d which is iISS with respect to the point attractor Z0

and the input d.

Using these components, selecting a gain κr ∈ R>0, and defining e := r−q ∈ Q, we propose
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a control system in the following form:

ṡ = g(s) + u(e) (6.7)

ẇ = −κrw−∇φr(r) (6.8)

ṙ = w + f(r) + v(r, s) (6.9)

q̈ = r̈− E(e, ė)− d (6.10)

ë = E(e, ė) + d (6.10∗)

Our key theoretical result is expressed as follows:

Theorem 6.3.1. The proposed architecture (6.7)-(6.10), possesses the following stability

properties:

[iISS] The combined dynamics of (e, ė, r,w, s) is iISS with respect to input d and the

attractor A where A := Z0 × ZGr × {0}. A is an attracting invariant submanifold of

the unforced system (i.e. d ≡ 0).

[ISS] The projection of the system to (r,w, s) is ISS with respect to the attractor ZGr×{0}

and the input e.

[BP] The undisturbed (d ≡ 0) input to the mechanical plant (6.10) and its internal me-

chanical power are both bounded.

Note that for the range of intended applications the disturbance will be (in part) state

dependent and we have not yet established any useful sufficient conditions (e.g., properties

of the replanner relative to the obstacles’ shapes and placements) guaranteeing that the

disturbance will have bounded energy (e.g., that the replanner will succeed in eluding those

obstacles) . The theorem merely guarantees the replanner will not itself destabilize the

internal reference and mechanical plant dynamics assuming the disturbance desists.
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Proof. The proof that follows relies strongly on various properties of ISS systems and iISS

systems; see [131] for an excellent tutorial overview of these ideas.

Given Proposition 6.3.2 below, we conclude that the second order system (6.8), (6.9) is

ISS with respect to its input s. The system (6.7) was assumed to be ISS with respect to

its attractor Gr and the input u. The (compact-set)-ISS property is preserved by cascade

composition, thus (6.7) into (6.8) into (6.9) is ISS with respect to the input u, proving [ISS]

.

Because u is bounded by construction, and the ISS property implies Bounded Input to

Bounded State (BIBS), [ISS] also proves that (r,w, s) are bounded, and thus [BP] is proven

via (6.10).

As per design requirement (4), (6.10∗) is iISS. From proposition 2 of [85], cascade of an

iISS system into an ISS system is also iISS proving that cascading (6.10∗) into (6.7), (6.8)

and (6.9) is iISS and establishing [iISS] .

Proposition 6.3.2. The system (r,w) ∈ TR from (6.8), (6.9) is ISS with respect to input

s and compact attractor ZGr.

Proof. The zero section ZGr is compact from the previously assumed compactness of Gr.

Sontag and Wang [132] Section 2.1 provide two equivalent definitions for an ISS-Lyapunov

function V : Rn → R≥0 whose existence with respect to some compact goal set H ⊆ Rn is

equivalent to the ISS property with respect to H. V must be proper and positive definite

with respect to H, and there must exist comparison functions α1, α2, χ ∈ K∞ such that for

all ξ ∈ Rn:

α1(|ξ|H) ≤V (ξ) ≤ α2(|ξ|H) ( [132] eqn. 5)

ξ 6= 0 ∧ |ξ|H ≥χ(|v|) ⇒ V̇ (ξ) < 0 ( [132] eqn. 8)
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We proceed to show that ηr(r,w) := 1
2w2 + φr(r) is an ISS-Lyapunov function.

From the assumption that φr(r) is ISS-Lyapunov we conclude that it is smooth, proper,

positive, and vanishes precisely on the set Gr, and thus ηr is also smooth, proper, positive

and vanishes precisely on the set ZGr . Now taking the Lie derivative of φr along the motions

of system (6.8), (6.9) we have

η̇r = ẇ ·w +∇φr · ṙ

= −κr |w|2 +∇φr · (f + v)

= −κr |w|2 +∇φr · f(r) +∇φr · v(r, s) (6.11)

From [132] eqn. (8) applied to φr, we conclude the existence of a comparison function

χ ∈ K∞ that satisfies

|r|Gr > χ(|s|Gs)⇒ ∇φr(r) · (f + v) < 0. (6.12)

As an ISS-Lyapunov function with respect to input v, φr is also perforce a Lyapunov

function for the zero input system ṙ = f(r), and we conclude ∇φr · f ≤ 0 everywhere except

Gr.

With these observations in hand, we define a comparison function β(·)

β2(x) := (Fmax/κr) ν(x) + χ2(x), (6.13)

and note that ν, χ ∈ K∞ ensure β ∈ K∞.

We wish to show that |r,w|ZGr > β(|s|Gs) implies η̇r < 0, and so as to satisfy [132] eqn.

(8). Consider two cases: |r|Gr > χ(|s|Gs) and its complement. In the first case, because the

term −κr |w|2 in (6.11) is negative definite we have ∇φr(r) · (f + v) < 0 from (6.12) and

therefore η̇r < 0 is satisfied.
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It remains to handle the complementary case |r|Gr ≤ χ(|s|Gs). By definition, |r,w|2ZGr :=

|w|2 + |r|2Gr , motivating the derivation

|r,w|2ZGr = |w|2 + |r|2Gr > β2(|s|Gs)

|w|2 > β2(|s|Gs)− χ
2(|s|Gs),

with the last step using the assumption of this case. Substituting from (6.13), obtain

κr |w|2 > Fmaxν(x) > |∇φr(r)| · |v(r, s)| (6.14)

> ∇φr(r) · v(r, s) +∇φr · f(r) (6.15)

with the (6.14) from design requirements (2b) and (2c) ; and (6.15) from ∇φr · f ≤ 0.

From (6.15), we see that in both cases considered the RHS of (6.11) is negative definite with

respect to the compact set ZGr . This RHS vanishes only on ZGr itself. We conclude that

with the comparison function β(|s|Gs), ηr is proven to be a (compact-set) ISS-Lyapunov

function for the input s and the attractor ZGr .

6.4 Application of the Construction

In these examples, the configuration space is the Euclidean plane R2, and thus vector spaces

R, s and Q are all copies of R2. Denote by J the antisymmetric matrix
[ 0 −1

1 0
]
, and (by

abuse of notation) define a matrix valued J(x, y) :=
[ x −y
y x

]
that takes each point (x, y) ∈ Q

to an orthogonal basis whose first vector is (x, y)T . A useful constituent in the constructions

to follow is the function µ(τ) :=
(
τ + α2) 1

2 , where τ is a positive scalar and α is a positive

scale parameter to be selected.
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6.4.1 Reference Generator

The reference (6.6) must be ISS with respect to the input s coupled via v(·, ·), and with

respect to a compact goal Gr. We would like the replanner to backtrack along the most recent

motions of the plant and then try to move around the obstacle, and therefore maneuvers

should act in a direction opposite to the most recent motion. If we assume that tracking

error is small, the most recent motion would have been in the direction of f(r). We therefore

coupled the maneuver into the reference taking the direction of the reference vector field as

the first axis

v(r, s) := csr
µ(fT f)J(f) s. (6.16)

Observe that for any τ > 0, µ(τ) ≥ τ , giving µ(f) ≥ ‖J(f)‖ and thus |v(r, s)| ≤ csr|s|,

satisfying requirement (2b) . Given a smooth Lyapunov function φr(r) for the system

ṙ = f(r), there exists a comparison function ξ ∈ K∞ such that ∇φr(r) · f ≤ −ξ(|r|Gr), and

using the same comparison function

∇φr(r) · (f + v) ≤ −ξ(|r|Gr) + csr|s|, (6.17)

establishing that φr(r) is an ISS-Lyapunov function for the system (6.6) as per requirement

(2a) .

6.4.1.1 Point attractor reference system

One of the reference systems we study below models a flowbox; a region of a vector field

that is constant, or nearly so, by virtue of being en-route to a distant point attractor.

We take as our attractor the point r0 := [1000, 0]T , and define our Lyapunov function

φr(r) := µ((r− r0)T [ 1 0
0 0.01 ] (r− r0)). Our reference system is chosen to be f(r) := ∇φr(r),

giving what is effectively a flow-box in the region rx < 0. Our choice of φr is asymptotically
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linear in |r|Gr , causing f to satisfy requirement (2c) .

6.4.1.2 Saturated Hopf oscillator reference system

The second reference system we examine models recurrent tasks, which may encounter a

persistent disturbance multiple times. This reference is defined in terms of φr(r) := (|r|2 −

R2
0)2/µ(|r|3), with the constant α of the saturation function set so that α3 � R4

0, and thus

the dynamics near the R0 radius disc are close to those of the unsaturated system, while the

linear asymptotic growth ensures that ∇φr(r) is bounded. The state space is Q := R2−{0},

and the reference dynamics on this space are given by f(r) := ∇φr(r) + ω0Jr/µ(rT r),

generating a constant angular rotation rate ω0 in combination with the Hopf oscillator-like

convergence to the circle at radius R0 and also satisfying requirement (2c) .

6.4.2 ISS Replanner

The replanning vector field g is a stable focus [7]:

g(s) := −kg (I + wsJ) s (6.18)

where scalar gain kg adjusts the recovery rate from any perturbation on the transient

dynamics, and the gain ws adjusts the rate of rotation as expressed in the imaginary part

of the eigenvalues. We excite maneuvers along the first coordinate of s, driven by the

magnitude of tracking error

u(e) := |e|
µ(eTe)

1

0

 (6.19)

where |u| < 1 since µ(eTe) =
√
|e|2 + α2 > |e|, providing requirement (2d) .

Let φs(s) := µ(sT s), giving ∇φs(s) = s/µ(sT s). This gradient’s norm monotonically grows
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to 1 as |s| grows to infinity. The Lie derivative of φs for the system (6.7) given by ṡ =

g(s) + u(e) is

φ̇s(s, e) = g(s) · s + u(e) · s
µ(sT s)

= 1
µ(|s|2)

−kg |s|2 + |e|
µ(|e|2)

1

0

 · s


≤ −kg
|s|2

µ(|s|2)
+ |s|
µ(|s|2)

|e|
µ(|e|2)

≤ −kg |s|+
|e|

µ(|e|2)

≤ −kg |s|+
|e|
α

(6.20)

From [132] eqn. (7), φs is an ISS-Lyapunov function for the replanner, (6.7) is ISS with

respect to attractor 0 and input e, and requirement (3)is satisfied35.

6.4.3 Integral-ISS Tracking Error Dynamics

We implement a simple potential-dissipative [75, 78] tracking controller (in this case, a

generalized spring-damper) with saturated terms, where φe(e) = keµ(eTe) and

E(e, ė) := −∇φe(e)− me
µ(ėT ė) ė (6.21)

Proposition 6.4.1. The system

ë = E(e, ė) = −∇φe(e)− me
µ(ėT ė) ė (6.22)

is GAS.
35Note that we have formulated our theory allowing the replanner’s attractor to be a general compact

set, rather than zero; this allows for memory; the maneuver state within the attractor can persist between
excitations.
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Proof. Consider the function

ηe := φe(e) + 1
2 ėT ė (6.23)

whose Lie derivative under (6.22) satisfies,

η̇e = ∇φe(e) · ė + ė · ë

= ė ·
(
∇φe(e)−∇φe(e)− me

µ(|ė|2)
ė
)

= − me
µ(ėT ė) |ė|

2

≤ 0.

For ė = 0 we note that ë = −∇φe(e), and thus (ë · e) |ė=0 < 0, satisfying LaSalle’s condition

and therefore ensuring that ηe → 0.

Proposition 6.4.2. ë = E(e, ė) +d is iISS with respect to the attractor 0 and the input d.

Proof. We show that ηe of (6.23) satisfies the conditions of an iISS storage function, as

per [3] equation (11).

η̇e = me
µ(ėT ė)

(
ė · d− ėT ė

)
<

me
µ(ėT ė) |ė| |d| (6.24)

By construction µ(x2) > max(x, α), and thus M := sup{x/µ(x2)|x ∈ R>0} is finite. We

may choose for [3] equation (11) to have σ(|d|) := M |d|. As we have already shown 0-GAS,

the requirements of [3] theorem 1 case 4 are met, satisfying our design requirement (4).

6.4.4 Disturbance

We model persistent disturbances by taking d := ∇h(q) for a scalar function h defined

in terms of manually placed square tiles. This height-like disturbance potential h will
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be referred to as the terrain, although the magnitudes were chosen such that the terrain

obstacles could not be surmounted with the force available to the controller. Each tile is

endowed with a cubic mapping height from a displacement measured either radially from a

corner or as a Cartesian distance from one of the edges of the tile. This collection of tiles

allows the construction of C2 smooth terrains, by appropriate selection of neighboring tiles;

all simulated terrains are smooth.

6.5 Simulation Studies

6.5.1 Simulations and Quality Metrics

The controller architecture we propose lies on a continuum determined by the coupling gain

csr of (6.16), at one end of which csr = 0 and the system simplifies to a classical trajectory

tracker with the trajectory starting at r(0) as its reference. As csr grows, maneuvers induced

in t have larger effects on r. We demonstrate that for our example systems, an interval

of csr values provides noticeably better system performance by several quality metrics:

(1) tracking quality as represented by the Lyapunov function ηtotal := ηr + ηe + φs; (2)

reference convergence as represented by the Lyapunov function of the reference φr; (3)

power expenditure as expressed by the integral Etotal :=
∫
|q̈ · q̇| dt. For the point attractor

example, this integral is taken until the state variable qx lies to the right of the terrain

obstacle. For the Hopf examples, the integral is normalized by dividing by the number of

rotations around the origin.

As can be observed in the accompanying figures, the proposed architecture results in con-

siderable perturbation away from the trajectories of the undisturbed reference generator.

Indeed, as discussed above, these deformations cannot be claimed optimal in any sense.

Rather, they are feasible courses of action that respect the plant’s power and energy limi-

tations.
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All simulations were integrated using code derived from the dopri5 code from [49], with

the output interfaced to the SciPy open-source scientific Python environment36.

6.5.1.1 Point Attractor with comb obstacle

The first example shows the interaction of our controller with a comb obstacle punctuated by

regularly spaced cul-de-sac traps (Figure 6.1), and demonstrates how csr relates performance

to the geometry of obstacles. Success at this task constitutes reaching a state with qx to

the right of the obstacle. The change in total energy consumption with varying csr is

presented in Figure 6.2, and shows that while the interval 3.9 < csr < 18.0 provides good

performance, at larger values repeated resonance-like bands of degraded performance appear

(e.g. at csr = 99.0). Apparently these bands correspond to maneuver spatial scales that

take the state out of one trap into another.

(a)

Csr=0.0

(c)

Csr=8.0

(b)

Csr=95.0 

Figure 6.1: Plant evolution for the point attractor reference meeting a comb obstacle with
different transient to reference (csr) coupling gains( (red) plant, (black) reference).
(a) For a small value of csr the particle remains blocked by the obstacle, (b) For a moderate
csr value plant escapes with very low costs, (c),(d) For higher values of csr energy cost
grows again with resonance peaks when the replanner induces escape maneuvers whose
spatial frequencies couple strongly to the geometric features of the particular obstacle.
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Figure 6.2: Energy consumed over the course of the point attractor reference with comb
obstacle depicted in Fig. 1 as a function of the transient to reference coupling gain, csr (of
(6.16)). (a) Magnified view of small values of csr; (b) Larger values of csr showing optimum,
an approximately linear increase in cost with increased csr, and occasional resonance peaks
where cost is larger over a narrow range.

6.5.1.2 Hopf reference with two obstacles

In these two examples, the task encoded by the reference system continually brings the

plant back into interaction with an obstacle that blocks the limit cycle, and includes a trap

that would completely block a simple reference tracker.

For both the simple obstacle A (Figure 6.3) and the more elaborate obstacle B (Figure 6.4),

our controller manages to escape the traps. For a range of csr values, the system then

exhibits a modified cycle which accomplishes the task with moderate energy consumption

(Figure 6.5 obstacle A; Figure 6.6 obstacle B).
36Scientific Tools for Python, www.scipy.org. Using our code this provided an extremely fast ODE

integrator. In our tests it gave 1.02 · 106 trajectory points a second of a Rossler system’s chaotic orbit on a
single core of an Intel i5 CPU at 2.67 GHz — an order of magnitude faster than the commonly used MatLab
ode45 integrator on the same platform.
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Csr=0.0 

(a) (b) (c) 

Csr=75.0 Csr=29.0 

Figure 6.3: Plant evolution for the Hopf cycle attractor reference meeting a simple obstacle
with different transient to reference coupling gains ( (red) plant, (black) reference). (a)
Classical trajectory tracker (Zero or small csr) gets trapped until the reference sweeps back
behind it – at which point it is pulled out and proceeds to cycle hitting the obstacle again at
a different position, effectively trapped in place, (b) At a sufficiently large csr a qualitative
change appears – the plant hits the obstacle exactly once every cycle and then back-tracks
and circles the obstacle, achieving a deformation on the reference trajectory cycle, (c) At
even larger csr this regular trajectory deforms more and more.

From the point of view of iISS theory, it should be noted that in these simulations |d|2 is

unbounded since the obstacle interaction has support in every cycle. Thus we can not expect

convergence to Gr, nor should we anticipate ηtotal and φr to go to zero (see Figure 6.7).

6.6 Unicycle Extension

In this section, we describe a unicycle controller implementation on the RHex [42, 121]

platform that loosely follows the methods presented in Section 6.4, specifically the point at-

tractor replanner system. The major departure comes from the modeling decisions presented

in Chapter 3: the robot is only equipped with local measurements about its environment,

and thus, it can not facilitate an internal reference system. Instead, we seek to couple the

internal transient system directly with the kinematic unicycle model. Since we have no

reference to measure error against, we utilize the obstacle function gradient to excite the

transient system.
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(a) (b) (c)

Csr=0.0 Csr=7.3 Csr=132.0

Figure 6.4: Plant evolution for the Hopf cycle attractor reference meeting an elaborate
obstacle with different transient to reference coupling gains ( (red) plant, (black) reference).
(a) The classical trajectory tracker (small or zero csr) gets trapped in the cul-de-sac as
expected, and unlike the previous case , even though the reference trajectory gets behind
the plant at each period, the plant can not leave the trap. (b),(c) At a sufficiently large
csr a qualitative change appears whereby the initial hit excites a successful escape recovery
trajectory which returns along the unblocked portion of the cycle to repeat the same pattern,
cycle after cycle.

The resulting system is as follows:

q̇ = B(θ)
[
u
ku

+ 1
µ(∇ϕT∇ϕ)

J(∇ϕ)s
]

(6.25)

ṡ = −kg (I + wsJ) s + |d|
µ(dTd)

1

0

 (6.26)

with u
ku

as in (3.62), and d := νψ
∑d
i=1∇ψi(p) combined obstacle function gradients as

utilized in Section 3.2.1.2. To analyze whether the resulting system exhibits anything akin

to an ISS or iISS system is beyond the scope of this thesis. There exists the notion of an

almost-ISS system [4]. Unfortunately, as stated in Remark 3.2.12, we can’t prove that the

kinematic unicycle system is AGAS under (3.62), and thus, we can not follow up with the

corresponding analysis.
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Figure 6.5: Energy consumed over the course of the Hopf cycle attractor reference with
simple obstacle depicted in Fig. 3 as a function of the transient to reference coupling gain.
(a) Magnified view of small values of csr; (b) Larger values of csr showing optimum, an
approximately linear increase in cost with increased csr, and occasional resonance peaks
where cost is larger over a narrow range.
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Figure 6.6: Energy consumed over the course of the Hopf cycle attractor reference with
elaborate obstacle depicted in Fig. 4 as a function of the transient to reference coupling
gain. (a) Magnified view of small values of csr; (b) Larger values of csr showing optimum,
an approximately linear increase in cost with increased csr, and occasional resonance peaks
where cost is larger over a narrow range.
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ηe +φs
ηe +φs +ηr

Figure 6.7: Contributions to total Lyapunov function ηtotal for one cycle of the Hopf system.
The tracking error Lyapunov ηe (red) comprising potential (cyan) and kinetic terms grows
rapidly when the obstacle is hit, causing a growth of the transient φs (ηe +φs in green). The
ISS Lyapunov function ηtotal (blue) continues to grow until the transient becomes sufficiently
small, and then it too decays exponentially.
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Chapter 7

A drift-diffusion model for robotic

obstacle avoidance

In Chapter 6, we demonstrated a method that can be used for negotiating with more complex

obstacles by utilizing an internal model capable of inferring and reacting to the presence of

an unexpected obstacle by exciting special behaviors that promote escape. Unfortunately,

the problem representation suitable to sound reasoning about the dynamical implications of

these methods leaves a substantial gap with respect to the implications relating to knowledge

about the geometric properties of the environment–most crucially, the obstacle loci and

shape.

In this chapter, we present another extension to our task execution strategies previously

published in [114], where we take the very earliest steps toward a fundamentally stochastic

approach to reasoning about the interaction between such a system and the geometric prop-

erties of its state space that shows promise for meeting up usefully with the deterministic

properties of the underlying dynamics. For now, as a first step toward a stochastically-

enhanced version of the deterministic replanner [115], we simply replace it and introduce

stochastic noise into the otherwise deterministic robot dynamics and reason about the statis-
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tics of the resulting interaction with the uncertain local geometric environment. Unsurpris-

ingly, this approach allows a more natural representation of that uncertainty. However, at

the same time, less obviously, it invites a representation of the deterministic aspects of the

obstacle avoidance control strategy in terms of boundary interaction models treated by a

growing body of literature on stochastic differential equations (SDEs).

In Section 7.1 we present the problem statement motivating this work, where the robot and

the task are modeled together as a stochastic dynamical system. In Section 7.2, we inves-

tigate the robot’s interaction with a single obstacle under this formulation. In Section 7.3,

we present a loose interpretation of this method on the RHex robot, where the control

law of Section 3.2.2.1 is not tuned properly and the robot can be trapped by an undesired

fixed point in front of a single obstacle. We document experimental results (Section 7.3.3),

where the introduction of our approach not only improves the probability of avoiding this

undesired fixed point from 50% to 100% but also reduces the average time the robot spends

interacting with the obstacle.

7.1 Problem statement

The starting point for our framework is the navigation function method originally proposed

in [73]. We model the robot as a point mass traveling in a domain D ⊆ R2, so its configura-

tion at time t ∈ R is given by x(t) ∈ D. The domain is cluttered with obstacles, which we

model as closed curves in D. We assume the existence of a navigation function φ : D → R,

which is a differentiable function with a unique maximum. The navigation function encodes

the robot’s task, which is to find maxima of φ. The robot achieves its task if its trajectory

x(t) obeys

lim
t→+∞

x(t) = argmax
x

φ(x). (7.1)

The robot carries out its task by climbing the spatial gradient ∇φ of the task function φ,
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so its idealized dynamics are given by

ẋ = u∇φ, u ∈ R+,

where the quantity u controls the speed at which the robot climbs the gradient. However,

there are disturbances to these idealized dynamics due to, e.g., issues measuring the gradient

∇φ, interactions with the environment, as well as disturbances introduced as part of the

control scheme. Denote the coordinates on D as (x, y) = x. We model the disturbance

in each coordinate as a Wiener process of strength D(x) ∈ R+, and assume that the two

processes are independent. The process noise intensity is the sum of two terms: D(x) =

Da(x)+Dc(x), where Da(x) ∈ R+ is the ambient noise due to the environment and Dc(x) ∈

R+ is the control noise added added as part of the control strategy.

The noise-corrupted dynamics are described by the following Itô stochastic differential equa-

tion (SDE)

Dx =

Dx

Dy

Dt = u

∂φ∂x
∂φ
∂y

Dt+D(x)

DWt

DVt

 , (7.2)

where D(x) is the strength of the disturbance at x ∈ D and DWt and DVt are independent

Wiener increments. Dependencies in the disturbances can be modeled by making D(x)

a positive-definite matrix-valued function of x. Standard references for the SDE methods

used in this work are [117] and [43].

Solving Equation (7.2) generates trajectories of a single particle. Solving the equation re-

peatedly from the same initial conditions generates different trajectories due to the stochas-

tic nature of the dynamics. Alternatively, one can consider the probability distribution

p(x, t) of the state x(t) as a function of time t. The probability distribution is a function

that gives the probability of finding the robot in a set of states:

Pr [x(t) ∈ S] =
∫
S
p(x, t)Dx, (7.3)
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where S ⊆ D is a subset of the state space.

The time evolution of the distribution p induced by the dynamics (7.2) is given by the

following partial differential equation:

∂p

∂t
= 1

2∇ · (D(x)D(x)T∇p)− u∇φ · ∇p. (7.4)

Equation (7.4) is known as the Fokker-Planck equation [43, 117]. Equations of this form

are studied in the literature on scalar transport phenomena under various names such as

the advection-diffusion equation and the drift-diffusion equation.

The following physical analogy is illustrative. Consider a drop of dye in a fluid flow. The

function p(x, t) measures the concentration of dye at the spatial location x at time t. If the

dye is initially concentrated at x0, the initial condition for the equation (7.4) is the Dirac

delta function p(x, t0) = δ(x − x0). As time elapses, the dye moves with the fluid, which

flows with local velocity ∇φ(x) and diffuses with coefficient D(x). Transport due to the

local velocity is called advection, or drift, while the spreading due to the D(x) term is called

diffusion, and the two terms of the equation are referred to accordingly.

The equations (7.2) and (7.4) define a stochastic dynamical system where u is a control

parameter. In future work, we will leverage tools from the stochastic geometry literature

to derive ways to tune u such that the robot can navigate through a spatially-distributed

obstacle field. A key next step to developing this theory will be the extension of our model

to the case of multiple obstacles.

7.2 Single obstacle

In this section, we analyze the interaction of a particle obeying the stochastic dynamics

(7.2) and a single obstacle, which we model as a closed curve in D. We develop a set of

assumptions under which we can calculate the probability of escaping a single obstacle in
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closed form as a function of a single dimensionless parameter.

7.2.1 Assumptions

We make the following assumptions to develop analytical tools to study informative cases

of the obstacle escape problem.

(1) The coordinates are aligned with the local gradient ∇φ, such that ∂φ/∂x = 1 is a

constant and ∂φ/∂y = 0. In other words, traveling in the +x direction is equivalent

to climbing the (constant) local gradient.37

(2) The diffusion tensor D(x) is diagonal and constant in x: D(x) = Diδij .

(3) Diffusion only acts in the dimension orthogonal to the gradient, so D(x) has x com-

ponent D1 = 0 and y component D2 = D.

(4) The particle interacts with obstacles through specular reflection: if, prior to the in-

teraction it has momentum p, after the interaction it will have momentum p′ =

p− 2n̂(n̂ · p), where n̂ is the outward normal vector to the surface of the obstacle at

the point of contact. This is equivalent to assuming that the obstacles have infinite

mass and that the particle-obstacle interaction is an elastic collision.

Specular reflection constitutes one of the two canonical types of boundary conditions gen-

erally specified for stochastic differential equations (with absorption being the other [43]).

More recent work, e.g., [126, 136], has considered more general boundary conditions that

could model inelastic collisions with a coefficient of restitution ε ∈ (0, 1). However, the

interpretation of these boundary conditions is more complicated and would require more

detailed modeling of the physical obstacle interaction. Therefore, in this preliminary study,
37This analytical simplification (guaranteed by the “flowbox” theorem of dynamical systems to be pos-

sible in the neighborhood of any non-singular orbit) would not have any impact on the actual physical
implementation.
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we adopt the abstract reflecting boundary condition as the most appropriate for developing

analytical results with the particle model considered here.

With these assumptions, the dynamics (7.2) reduce to

Dx =

ẋ
ẏ

Dt =

u
0

Dt+

0 0

0 D


dWt

dVt

 . (7.5)

The drift-diffusion equation (7.4) induced by (7.5) is

∂p

∂t
= D2

2
∂2p

∂y2 − u
∂p

∂x
. (7.6)

We assume that the initial location of the particle is known with certainty to be x0 =

(x0, y0) ∈ D, so the initial condition for (7.6) is p(x, t = 0) = δ(x− x0). Finally, we assume

that the speed u is constant.

In the absence of boundary conditions, the solution of (7.6) can be found in closed form,

and is (cf. [117, (5.20)])

p(x, t) = 1√
2πD2t

exp
(
−(y − y0)2

2D2t

)
δ(x− (x0 + ut)). (7.7)

The solution can be interpreted as follows. The particle moves deterministically along the

x coordinate with a constant velocity u and moves stochastically along the y coordinate

according to a random walk. At time t, the particle distribution is Gaussian with center

(x0 + ut, y0) and standard deviation D
√
t.

For a given evolution time t the distribution has two characteristic lengths:

(1) Advection length scale: ut

(2) Diffusion length scale: D
√
t.

Their ratio, ut/D
√
t, is a form of the Péclet number [55], which is a dimensionless quantity
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that measures the relative strength of advection and diffusion. This ratio is a function

of evolution time t; if we specify an evolution time, we get a characteristic number that

captures all the dimensional variables governing the dynamical behavior.

7.2.2 Probability of escaping a single obstacle

The dynamics (7.5) have a clear flow in the positive x direction. We take advantage of

this behavior to characterize obstacles according to their geometry relative to the flow.

Intuitively, the reflecting boundary condition specified in assumption 4) allows the particle

to bounce off of obstacles and in some cases escape an obstacle by moving around it.

However, a particle will clearly not be able to escape all obstacles in this fashion. Consider,

for example, the crescent-shaped obstacle shown in Figure 7.1-B. If the advection term

dominates in the dynamics (7.5), then the particle will tend to get trapped by the obstacle.

The examples in Figure 7.1 illustrate that the important characteristic of an obstacle in this

framework is the convexity of its footprint with respect to the local advective flow. Loosely

speaking, an obstacle is convex with respect to the flow (7.5) if the obstacle appears convex

to an observer looking at it from the upstream direction. An obstacle concave with respect

to the flow is defined analogously.

A B

r�

Figure 7.1: Example obstacles placed in the flow described by the dynamics (7.5). Panel
A: an obstacle that is convex with respect to the flow, and will not trap a particle with
D > 0. Panel B: An obstacle that is concave with respect to the flow, and may trap a
particle regardless of the value of D.
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The definition of obstacle convexity can be made more precise in the following way. Define a

section Σ transverse to the flow upstream of the obstacle. Consider the noise-free dynamics,

i.e., (7.5) with D = 0. For each point x ∈ Σ, define g(x) as the time at which the solution

to the noise-free dynamics with initial condition x first touches the obstacle. The convexity

property of the obstacle can now be formally defined as being inherited from that of the

time-to-impact function, g.

If a particle following the dynamics (7.5) with D = 0 evolves from an initial condition

upstream of a concave obstacle, it will eventually hit the obstacle and remain close to the

point of impact. Conversely, we define a particle to have escaped an obstacle if its trajectory

passes downstream of the obstacle. On the basis of physical intuition and numerical exper-

iments, we argue that a particle following (7.5) with D > 0 will escape convex obstacles

with probability one. This statement follows from the asymptotic behavior of solutions of

(7.6), but that degree of formal development lies beyond the scope at present.

In contrast to convex obstacles, concave obstacles can trap particles with positive proba-

bility. Therefore, we explore in somewhat greater detail the interplay between controlled

drift and diffusion in the face of concavity. Figure 7.2 defines the quantities relevant to the

interaction with a concave obstacle. The advection and diffusion length scales defined in the

previous section appear, as well as two geometric length scales: d is the distance between

the initial position of the particle and the front of the obstacle located downstream, and `

is the width of the concave section of the obstacle. Note that ` can be less than the width

of the obstacle itself. For simplicity of exposition we assume that the obstacle has a mirror

symmetry over the y = y0 axis. The probability of escape thus computed is a lower bound

for the probability associated with a non-symmetric obstacle with the same width `.

The geometric length scales allow us to compute the probability that a particle obeying

(7.5) will escape a given concave obstacle. We evolve the probability distribution (7.7) of

the location of the particle until it reaches the front of the obstacle. This requires the

particle to travel a distance d at a constant speed u, which takes time td = d/u. This sets
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the evolution time for the advection and diffusion length scales. The particle’s location

follows a Gaussian distribution with mean y0 and standard deviation σ = D
√
td = D

√
d/u.

The particle will move into the concave region of the obstacle and get trapped if it is at the

edge of the concave region at time td, i.e., if its y coordinate is in the range (−`/2, `/2).

Since the particle’s location is Gaussian distributed, the probability that y is in this range,

and therefore that the particle will become trapped, can be calculated in closed form. This

yields π, the probability that the particle will avoid the obstacle:

π = Pr [Avoid obstacle] = 2
(

1− Φ
(Pe

2

))
, (7.8)

where Pe =
√

`2u
D2d ≥ 0 is the Péclet number for the given interaction and Φ : R → [0, 1] is

the cumulative distribution function for the standard normal (i.e., Gaussian) distribution.

Figure 7.3 compares the analytical avoidance probability (7.8) with the simulated avoidance

probability computed from 100 numerical simulations of the particle interaction depicted

in Figure 7.2. The two avoidance probabilities match well up to moderate values of the

diffusion coefficient D; for large values of D, there is more of a discrepancy, but this is likely

due to approximation effects in the simulation code.

7.2.3 Escape time

The primary objective in the single obstacle problem is escaping the obstacle, for which the

probability of avoidance (7.8) gives a quantitative metric. Given that the particle escapes

the obstacle, a secondary objective is to do so quickly. For this objective a quantitative

metric is time to escape, which can also be analyzed in our stochastic framework.

Consider again an obstacle interaction with geometry as in Figure 7.2. Define the random

variable T as the first time at which the particle passes beyond the face of the obstacle.
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x0

d = utd

2D
p

td

Figure 7.2: The geometry of interaction with a concave obstacle. There are three charac-
teristic lengths involved: d, D

√
td, and `. The particle starts at location x0, which is at

a distance d from the obstacle, and travels at a constant speed u. This defines the time
to interaction td through the relationship d = utd. At the interaction time, the effects of
diffusion mean the particle distribution has characteristic width D

√
td. When the particle

interacts interacts with the obstacle, it will get trapped if its location falls inside the concave
footprint, which has width `.

That is,

T = inf
τ≥0
{x(τ) > 0},

where x(τ) is the x coordinate of the particle at time τ . The quantity T is a random variable

because of the stochastic nature of the dynamics. In general, T can have a complicated

distribution, which depends on the initial location of the particle. Let T (x) represent the

mean of T conditional on the initial location being equal to x.

The function T (x) (and the higher-order moments of T ) can be computed using a partial

differential equation that is closely related to the Fokker-Planck equation (7.4) [43, Section

6.6]. The partial differential equation can be solved analytically only in special cases,
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Figure 7.3: Analytical vs. simulated obstacle avoidance probability for the concave obstacle
depicted in Figure 7.2. The theoretic analytical probability is given by (7.8), while the sim-
ulated probability (with approximate 95% confidence interval) is computed as the empirical
avoidance probability from 100 numerical simulations. The two quantities match well up
to moderate values of the diffusion coefficient D.

corresponding to obstacles with simple geometries. In more general cases, it can be solved

numerically using finite element methods. An alternative method for finding the distribution

of T is direct simulation of individual trajectories. This method is completely general and

can be thought of as a type of particle filter method. In the following, we use direct

simulation to study escape probability and escape time.

Figure 7.4 shows the probability of escape π and mean escape time T (x0) as a function

of diffusion coefficient D for a particle obeying dynamics (7.5) interacting with a circular

obstacle with the geometry depicted in Figure 7.5. This geometry can be considered a special

case of the geometry depicted in Figure 7.2 with the length ` of the concave footprint being

` = 0. As argued above, the details of the obstacle geometry outside the concave section of
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the footprint do not matter so long as they are convex with respect to the drift flow ∇φ.

When D = 0, the particle hits the obstacle at the point (x, y) = (0, 0) and reflects directly

along the direction in which it came, thereby getting trapped with probability one. For

D > 0, the particle eventually escapes the obstacle, though the time to escape can be

arbitrarily long. The figure depicts probability of escape in less than 10 time units; for

D > 10−3, the probability of escape is effectively one. The time to escape, conditional on

escaping in less than 10 time units, decreases with increasing D until it appears to reach an

asymptotic value of approximately 2.5 for large D. The asymptotic value is similar to the

value that would be seen if there were no obstacle and the particle were simply traversing

the distance d.

7.2.4 Implications for control

The result (7.8) and the escape time shown in Figure 7.4 have direct implications for obstacle

avoidance control for a mobile robot, for which the particle model serves as a control target.

We assume that the robot can control its speed u and the amount of process noise in its

dynamics D by manipulating Dc. When there is an obstacle, on-board sensors, e.g., a

LIDAR unit, will provide the robot with estimates of the distance d to the obstacle and its

width, which serves as an upper bound for `. If the sensor is sufficiently precise, it may be

able to classify the obstacle as convex or concave, and provide an estimate of ` in the latter

case. If the obstacle is convex, any positive noise will guarantee that the robot escapes the

obstacle with certainty, i.e., probability one.

If the obstacle is concave, (7.8) implies that there is a non-zero probability that the robot

will get stuck. However, we can make π, the probability of avoiding the obstacle, take

any value in (0, 1) by appropriately manipulating the control parameters u and D. This

result provides a point of contact to recent work in the robotics literature that makes use

of results from percolation theory, e.g., [68]. In this literature, the obstacle-strewn domain
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Figure 7.4: Probability of escape (line with circles, right scale) and expected time to escape
conditional on escaping (solid line, left scale) a circular obstacle of radius R = 5, as a
function of diffusion coefficient D. For D = 0, the particle gets trapped with probability
one, while for D greater than 10−3, the probability of escape is effectively one. The drop
in probability of escape for D greater than 1 is due to the finite time of simulation. The
obstacle was centered at x = (0, 0) and the initial location of the particle was x0 = (0,−20).
The drift speed u was equal to 10. The dashed lines indicate one standard deviation above
and below the mean expected time to escape. All quantities were computed based on 1,000
simulations for each set of parameter values.

is modeled as a lattice graph and the probability of avoiding an obstacle is represented

in terms of probabilities associated with the edges and vertices of the graph. Percolation

theory then provides tools to find conditions under which it is feasible to travel extended

distances through the graph.

For an individual obstacle, there will be trade-offs between the control parameters because

high avoidance probabilities are associated with small speeds u and large diffusion parame-

ters D. Large values of D result in fast escape times, as seen in Figure 7.4. However, such

large diffusion parameters result in large deviations from the desired flow along ∇φ. These
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Figure 7.5: The geometry of interaction with a circular obstacle. This can be thought of as
a case of the geometry in Figure 7.2 with ` = 0, as explained in detail in Section 7.2.3. A
trajectory of the particle dynamics (7.5) is said to escape from the obstacle if the trajectory
crosses the plane x = 0 denoted by the dashed horizontal line.

deviations result in occasional large escape times T , which produce the dip in probability

of escape and increased spread of escape time observed for D > 1. For a given interaction

geometry, (7.8) shows that the two control parameters trade off in an inverse manner. This

gives us a first step towards understanding the optimal way to trade off the parameters,

which we intend to continue in future work.

7.3 Experimental results

Consider a particle interacting with a convex obstacle with geometry as in Figure 7.5. The

qualitative prediction of the theory developed in the previous section is that in the noise-

free case D = 0, the particle will get trapped behind the obstacle. This can be seen from
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Equation (7.8): a convex obstacle corresponds to the limit `→ 0, while the noise-free case

corresponds to D → 0. For the case of noise-free motion with a convex obstacle, D goes to

0 more quickly than `, so this case corresponds to a Péclet number Pe→ +∞. In contrast,

in the case with noise D > 0, the Péclet number obeys Pe→ 0 and Equation (7.8) predicts

that the particle will eventually escape the obstacle. As shown in Figure 7.4, the theory also

predicts that in this case the mean time to escape decreases sharply with increasing noise.

In this section, we present results of robot experiments that corroborate these qualitative

predictions.

7.3.1 Implementation on RHex

To verify the qualitative predictions of the theory developed above in the context of a

physically interesting robot (rather than a more literal instantiation of the abstract point

particle for which the theory and simulation are literally applicable), we implemented a

version of the stochastic dynamics (7.5) on an X-RHex hexapedal robot [42]. The X-

RHex robots have non-trivial dynamics [146] whose coarse horizontal plane motion in slow

gaits (e.g., up to two body lengths per second) can be reasonably well approximated by

a kinematic unicycle [88] and by a second order generalization of such nonholonomically

constrained models when moving at higher speeds [33]. For purposes of this work, we used a

gait slow enough to be usefully abstracted by the kinematic unicycle, and applied a variant

of the controller in [88] whose anchoring relation [41] to the notional point-particle gradient

dynamics posited in this work can be established [57].

However, because we are disinclined to allow our robot to actually collide and bounce

off a physical obstacle, our point particle gradient controller is rather more complicated

than the simple constant-flow-with-elastic-collision model underlying the theoretical results

presented above. Rather, we posit that the modified navigation function controller [115]

implemented in these experiments introduces local deterministic interactions with obstacles

that would be better modeled by the case of a plastic collision — i.e., the case ε = 0 in
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Section II-A, Assumption 4. Looking ahead to assessing the efficacy of more sophisticated

local replanners [115], we are pursuing the analysis of the more general scattering collision

models discussed in that section. However, these more sophisticated analyses all lie beyond

the scope of the present state of this work. In sum, the discrepancies between our actual

robot control strategy and the abstraction used to develop the theory of Section II preclude

any likelihood that quantitative predictions from the stochastic theory could be directly

comparable to these experimental results. However, as we now report, the qualitative

predictions are encouragingly reflected in these early empirical trials.

The implementation used for the robot experiments follows an approach that was first intro-

duced by Khatib [71] where the task to be executed is represented by an artificial potential

field composed of an attractive pole representing the goal state and repelling regions rep-

resenting the obstacles. An extension to this approach was developed by Borenstein and

Koren [17] where the obstacles are represented by certainty grids which enables a temporal

filtering approach to obstacle detection. An alternative approach introduced by Borenstein

and Koren [18] stems from some limitations of the previous method and focuses on moving

to empty regions rather than being repelled by obstacle regions. A previous implementation

on the RHex platform [62] utilizes a similar approach. Our assumptions regarding obstacle

shape and distribution let us disregard the limitations described by Borenstein and Koren

and implement a simple local repelling field around obstacles where, with proper choice of

control parameters, any spurious fixed points introduced to the force field are guaranteed

to be unstable [57].

7.3.2 Experimental setup

In our experiments we used a circular obstacle in the geometry depicted in Figure Figure 7.5.

The effective radius of the obstacle was approximately R = 0.75 m, and the initial location

of the center of the robot was at x0 = (−2.0, 0.0) m, which is equivalent to an initial distance

d = 2.0 m. The gradient field ∇φ was generated by placing a point attractor in the far
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distance directly in front of the robot’s initial position, along with an immediate repeller

located in the obstacle. The effective radius of the repeller was small, and is included in the

effective radius of the obstacle. The resulting gradient field approximates the constant field

assumed in the dynamics (7.5) to a degree of precision comparable to the other experimental

uncertainties. Timing for runs was performed through manual control of logging software,

which resulted in measurements of the time to escape that were accurate to within 1 s.

As defined above, the process noise D was modeled as the sum of two terms: D = Da+Dc,

where Da was the ambient noise due to the environment and Dc was the control noise

added as part of the control strategy. The ambient noise Da is due to noise in the robot’s

perceptual systems and various control loops. We manipulated the control noise Dc to have

two values: either Dc = 0 or Dc =
√

40 ≈ 6.3 m·s−1/2. We did not directly measure nor

manipulate the ambient noise Da, but it can reasonably be assumed to have been small and

constant across the series of experiments. Importantly, the experimental results presented

below imply that Da was non-zero.

7.3.3 Results

The experiments consist of a number of obstacle interactions for the two control noise cases:

the noise-free case Dc = 0 and the noisy case Dc =
√

40. For these first efforts, we focused

exclusively on the single circular convex obstacle, rather than a family of obstacles including

both convex and concave examples; such a family will be the subject of future work. Again,

the noise values are not directly comparable to the diffusion coefficient D defined in Section

II because of the details of the control strategy used on the robot. The results presented

in Table 7.1 show, however, that the experiments match the qualitative trend predicted in

Figure 7.4: adding control noise results in a higher probability of escaping the obstacle and

a shorter mean time to escape for those runs that do escape.

In the noise-free case where Dc = 0, 50% of the runs resulted in the robot escaping the
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Noise-free, Dc = 0 Noisy, Dc > 0
N = 8 runs N = 10 runs

Probability of escape 50% 100%
Mean time to escape 45.08 s 8.860 s
Standard deviation 13.94 s 0.5393 s

Table 7.1: Experimental results. The noisy control strategy results in avoiding the obstacle
much more quickly and with significantly higher probability.

obstacle. In view of the results presented in Figure 7.4, this implies that the ambient noise

Da is small, resulting in an overall noise D = Da that is comparable to the value of 10−5

that one can interpolate from Figure 7.4. Adding noise ensures that 100% of the empirical

runs resulted in the robot escaping the obstacle. This corresponds to pushing the system

into the regime on the right hand side of Figure 7.4. The other benefit of the noise can

be seen in the mean time to escape: adding noise results in decreasing the mean time to

escape by a factor of approximately five. This represents a substantial increase in obstacle

avoidance performance.

Clearly the theory does not account for all of the empirical trends: for example, the empirical

standard deviation of time to escape decreases with increasing noise, while the simulations

based on the particle model presented in Figure 7.4 show a standard deviation that is in-

creasing with increasing noise intensity. The intuition behind this trend is as follows. In

the model, when a particle interacts with an obstacle, it can be reflected into the direction

opposite the desired direction of motion. When this occurs, the particle takes longer to

escape the obstacle. The control noise injects momentum into the particle, so larger noise

intensities result in more energetic reflecting interactions with the obstacle and larger stan-

dard deviations of the escape time. This energetic reflecting behavior does not occur in

the physical experiment, showing a limitation of the reflecting boundary condition model.

More detailed modeling of the robot-obstacle interaction is required to better match theory

and experiment which will be a subject of future work.
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Chapter 8

Conclusions

In this thesis, we have explored methodologies for executing autonomous behaviors on a

legged robot. For both behaviors demonstrated in our work, we started with simplified

models of the robot’s surroundings, its perceptual capabilities and restrictions on its mo-

bility. Task encoding, behavior development, and the physical implementation closely fol-

lowed these modeling decisions, which resulted in the empirical successes we have reported

throughout this dissertation.

We have presented the autonomous hill ascent behavior, whose empirically demonstrated

robustness in unstructured natural environments rests upon simple physical, sensory, and

environmental models, combined with the underlying motor competencies of the host plat-

form. Linear superposition of vestibular-sensed hill gradients and body-centric exteroceptive

sensed obstacle gradients yields convergence and obstacle avoidance guarantees in simple

environments—ones punctured by sufficiently sparse convex obstacles—for fully actuated

point particle agents. Appropriately extended models enable control strategies that cor-

rectly embed this construction into kinematic and dynamic unicycle agents. Implementa-

tion of these sensorimotor schemes on a legged physical platform achieves highly successful

autonomous hill-climbing performance at both walking and jogging speeds.
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The comparison studies between the two unicycle models presented in Section 4.2.3 did not

provide enough evidence in favor of one model over the other. This lack of clarity likely

stems from the limited sample size for the various scenarios. Roughly speaking, the trends

emerging in our analysis agree with our intuition that the kinematic unicycle agent is more

suitable for slow-pace behavior, whereas the dynamic unicycle agent is a better fit for fast-

pace behavior. Considering that the control policy for the dynamic unicycle agent is simply

a low-pass-filtered version of the kinematic unicycle agent, if we had to choose one approach

over the other, we would recommend the dynamic unicycle agent (3.71) combined with the

control law (3.72). This choice can closely approximate the kinematic unicycle agent (3.59)

equipped with the control law (3.62) via a steep increase in the dynamic unicycle control

gain, νr.

We have also presented the autonomous stairwell ascent behavior, a rudimentary form of

guarded autonomous locomotion. Its empirically demonstrated robustness in unstructured

synthetic environments rests upon the underlying motor competencies of the host platform,

stitched together with very simple perceptually triggered switches. The behavior implemen-

tation is arranged in a manner idealized by the formal notion of sequential composition [24].

We are convinced that a number of readily available extensions and improvements to the

controllers presented in Chapter 3 would still further raise the level of practical autonomy

suggested by the experiments in Chapter 4, thereby conferring still greater applications-

worthy utility upon the RHex platform. We could use hill slope angle measurements to cue

a greater diversity of better hill climbing gaits [146] in order to climb hills as steep as 45◦. To

better interact with obstacles that are not detectable by the current sensory implementation,

the robot could rely on its legs to feel such disturbances [63] and temporarily modify its

control policies, as in Chapter 6, if they persist. Similar deformations could be utilized to

circumvent detectable obstacles violating our simple world model, an elementary version of

which is presented in Chapter 7.

We believe that several further modest extensions and improvements to the execution of
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the autonomous stairwell ascent task would considerably close the gap to full autonomy

still revealed by the tables, thereby conferring true applications-worthy utility upon the

X-RHex platform. The stair climbing behavior can be endowed with descent capability (as

in [52] via [25]), as well as more reactive obstacle avoidance (as in Chapter 4). We also

suspect this behavior could be completed using no exteroceptive sensors at all [63]. Instead

the robot would rely on proprioceptive sensors and use the legs to feel obstacles. We could

use a virtual contact sensor to feel the walls and a missing ground sensor as a cliff detector.

Lastly, our approach to task encoding and execution could be combined with the perceptual

capabilities developed in [148] for faster exploration of multiple floor buildings.

More broadly, as discussed in Section 1.4, while we only address the set stabilization problem

here, the horizontal unicycle control policies presented in Section 3.2.2.1 and Section 3.2.2.2

are not limited to the problem of physical terrain ascent. This greedy, reactive methodology

extends to trajectory tracking and path following settings by utilizing the reference tracking

formulation of Chapter 6 or, for abstract quadratic hills, the more general reference governor

approaches to reactive navigation of [9]. Finally, these methods can be utilized as a baseline

for more complex (not purely uphill and respecting other objectives) behavior planning, as

in [64].

This dissertation focuses on real-time control strategies for reactive motion planning. On

the one hand, our controllers rely on the presumed mechanical capabilities of the platform

to relieve many detailed real-time responsibilities. On the other hand, they rely on a näıve

world model as a means of delimiting the navigational competence of their resulting closed

loop behaviors. Of course, such motion planning strategies merely postpone—but, by dint

of their known conservative guarantees, we contend, can simplify—the role of deliberative

task planning on which we now speculate.

As a concrete setting, consider a geosciences robot field assistant that could help study

the process of desertification [112], hill-slope erosion [21], or the structural geology of fault

zones [98]. Researchers in these areas require repeated measurements of both ground and
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atmospheric quantities to be made in a manner largely determined by the topography (crests

and troughs, windward and lee faces of dunes, etc) of the local terrain. We posit an ag-

gressively hierarchical deliberative layer (i.e. featuring lazy execution at the task level) [66]

whose semantics entail topographic features only in so far as they relate to the underlying

scientific hypotheses (e.g., as in [26]). The affordances of this layer in the workspace require

exactly the goal states of physically embodied primitives (such as those presented here)

that handle the myriad of topographical features from the physical environment that are

not related to the task semantics. Deliberation succeeds only because of the primitives’ for-

mal guarantees (here, ridge ascent), predicated upon conservative guard conditions (here,

sparse and convex obstacles). These conditions can then be explicitly reasoned about (by

high level postponement or recursive refinement [66]), e.g., here, perhaps via a geometry

engine to subdivide or merge those troubling but otherwise uninteresting obstacles encoun-

tered at real-time execution.

Thus, the sufficient conditions we have established to achieve the task at hand (that we

speculate, as in [8] and [109], may be close to necessary) can provide a valuable primitive

for deliberative navigation task planners by handing off an otherwise overwhelming set of

detailed and task-irrelevant responsibilities to lower motion planning layers. Considering

the increased complexity (mission time span, disparity between physical and sensory capa-

bilities, and environmental factors) in deployment scenarios for mobile autonomous systems,

we speculate that passing some of these responsibilities to lower layers of control will become

crucial for the overall success of the mission.
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