
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

9-1-2004

Heterogeneous Self-Reconfiguring Robotics Heterogeneous Self-Reconfiguring Robotics

Robert Charles Fitch
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fitch, Robert Charles, "Heterogeneous Self-Reconfiguring Robotics" (2004). Dartmouth College Ph.D
Dissertations. 8.
https://digitalcommons.dartmouth.edu/dissertations/8

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/8?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Heterogeneous Self-Reconfiguring Robotics

Dartmouth Technical Report TR2004-519

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Robert Charles Fitch

DARTMOUTH COLLEGE

Hanover, New Hampshire

September, 2004

Examining Committee:

(chair) Daniela Rus

Chris Bailey-Kellogg

Zack Butler

Bruce Donald

Alfred Rizzi

Charles K. Barlowe
Dean of Graduate Studies

c© Copyright by

Robert Charles Fitch

2004

Abstract

Self-reconfiguring (SR) robots are modular systems that can autonomously change shape,

or reconfigure, for increased versatility and adaptability in unknown environments. In this

thesis, we investigate planning and control for systems of non-identical modules, known

asheterogeneousSR robots. Although previous approaches rely on module homogeneity

as a critical property, we show that the planning complexity of fundamental algorithmic

problems in the heterogeneous case is equivalent to that of systems with identical mod-

ules. Primarily, we study the problem of how to plan shape changes while considering

the placement of specific modules within the structure. We characterize this key chal-

lenge in terms of the amount of free space available to the robot and develop a series of

decentralized reconfiguration planning algorithms that assume progressively more severe

free space constraints and support reconfiguration among obstacles. In addition, we com-

pose our basic planning techniques in different ways to address problems in the related

task domains of positioning modules according to function, locomotion among obstacles,

self-repair, and recognizing the achievement of distributed goal-states. We also describe

the design of a novel simulation environment, implementation results using this simu-

lator, and experimental results in hardware using a planar SR system called the Crystal

Robot. These results encourage development of heterogeneous systems. Our algorithms

enhance the versatility and adaptability of SR robots by enabling them to use functionally

specialized components to match capability, in addition to shape, to the task at hand.

ii

Acknowledgements

I would first like to thank my advisor, Daniela Rus, for all her ideas, support, and encour-

agement here at Dartmouth. Thanks also to my committee for all their time and energy!

The members of the Robot Lab and Robotics Journal Club have been endless sources

of both technical assistance and fun. Double thanks go to Zack Butler for collaboration

and help with recalcitrant robots, algorithms, and code, in addition to service on the com-

mittee – and for just being an all-around great guy to work with. Marty Vona built the first

Crystal robot and simulator, and developed the MeltGrow algorithm on which MeltSort-

Grow is based. Yuhang Wang assembled the second Crystal prototype and wrote initial

low-level code. Paul Hansen helped put together our favorite Mars-terrain simulations.

Thanks, as well, to everyone in the CS Dept. who has helped me brain-storm ideas

and watched me scrawl diagrams on any available writing surface. Ramgopal Mettu has

provided invaluable algorithmic discussions, especially in working out the details of the

CTS swap-sequence algorithm. Dave Wagner and I spent many late nights with MBP

planning. Chris Langmead has always been there to listen to my crazy ideadi giorno.

Finally, many thanks go to my family - Bob, Pat, Eric, and Bradley - and all the

wonderful friends I’ve been fortunate enough to share time and experiences with during

my Hanover years. You know who you are and know I wouldn’t be here without you!

The work in this thesis was performed in the Dartmouth Robotics Lab at Dartmouth

College. Funding was provided by NASA and the NSF. I am grateful for their assistance.

iii

Contents

Abstract . ii

Acknowledgements. iii

List of Tables . ix

List of Figures. x

1 Introduction 1

1.1 Heterogeneous Systems. 3

1.2 Example Applications. 4

1.3 Research Issues. 5

1.3.1 Sliding-Cube Model. 9

1.3.2 Reconfiguration Problem. 10

1.3.3 Locomotion, Self-Repair, and Goal Recognition. 16

1.4 Contributions . 19

1.5 Outline .20

2 Related Work 22

2.1 Hardware Design. 22

2.1.1 Pioneering Research. 24

2.1.2 Lattice-based Robots. 25

2.1.3 Chain-based Robots. 29

iv

2.1.4 Heterogeneous Systems. 31

2.1.5 Manually Reconfigurable Robots. 31

2.2 Planning and Control. 32

2.2.1 Early Algorithms. 32

2.2.2 Reconfiguration Planning. 32

2.2.3 Other Tasks. 35

2.3 Other Related Results. 35

3 Basic Techniques in Planning for Lattice-Based Systems 37

3.1 Connectivity Graph Representation. 38

3.2 Internal Paths: Unit-Compressible Systems. 39

3.3 Surface Paths: Sliding-Cube Systems. 39

3.4 Message-Passing. 40

3.5 Complexity of Reconfiguration. 41

3.6 Cellular Automata Model. 41

4 Reconfiguration Algorithms 43

4.1 Out-of-Place Reconfiguration. 47

4.1.1 MeltSortGrow Algorithm. 49

4.1.2 Decentralized MeltSortGrow. 57

4.1.3 Example . 62

4.1.4 Discussion . 64

4.2 In-Place Reconfiguration. 65

4.2.1 Module Relocation via Tunneling. 68

4.2.2 Centralized TunnelSort. 74

4.2.3 Decentralized TunnelSort. 79

4.2.4 Example . 83

v

4.2.5 Discussion . 85

4.3 Reconfiguration Among Obstacles. 86

4.3.1 Tunnel Paths with Bends. 89

4.3.2 Homogeneous Phase. 91

4.3.3 Heterogeneous Phase. 96

4.3.4 Algorithm: ConstrainedTunnelSort.107

4.3.5 Improvements. .107

4.3.6 Discussion .108

4.4 Position Constraints. .109

4.4.1 Representation. .110

4.4.2 Constraints on a Single Module.111

4.4.3 Algorithm: Maintaining Position Constraints. 111

4.4.4 Discussion .112

5 Applications 113

5.1 Distributed Goal Recognition. .115

5.1.1 General Approach. .116

5.1.2 Goal Recognition for Homogeneous Planar Robots. 118

5.1.3 Goal Recognition for 3D Robots.121

5.1.4 Discussion .123

5.2 Locomotion .124

5.2.1 Inchworm Locomotion Algorithm.126

5.2.2 Locomotion through Reconfiguration.129

5.2.3 Discussion .131

5.3 Rectilinear Minimum-Bend Paths Among Obstacles. 131

5.3.1 2D Algorithms .133

vi

5.3.2 3D Algorithms .133

5.3.3 Horizontal Wavefront Algorithm.134

5.3.4 The 3D-MBP Algorithm. .136

5.3.5 Analysis .141

5.3.6 Implementation. .143

5.3.7 Discussion .143

5.4 Self-Repair .145

5.4.1 Self-Repair Approach. .146

5.4.2 2D Planning .147

5.4.3 3D Planning .149

5.4.4 Discussion .151

6 Experiments 153

6.1 Experiments in Simulation. .155

6.1.1 SRSim Simulator. .155

6.1.2 Implementation of Common Functions. 161

6.1.3 MeltSortGrow .163

6.1.4 TunnelSort .168

6.2 Experiments in Hardware. .171

6.2.1 Crystal Robot Hardware. .171

6.2.2 Crystal Robot Software Architecture.175

6.2.3 Goal Recognition Experiment.179

6.2.4 Inchworm Locomotion Experiment.181

6.2.5 Heterogeneous Reconfiguration Experiment. 183

6.3 Lessons Learned. .190

6.3.1 Hardware. .190

vii

6.3.2 Algorithms .193

6.3.3 Future Work .193

7 Discussion and Future Work 195

7.1 Uncertainty .196

7.2 Planning versus Reacting. .197

7.3 Towards Real-World Applications. .197

7.4 Future Work. .199

7.4.1 Optimal Reconfiguration Planning.199

7.4.2 Heterogeneity of Module Size and Shape. 199

7.4.3 Approximate Goal Representation.200

7.4.4 Dynamics. .200

7.4.5 Learning .201

A SRSim Source Code 202

A.1 SRSim Base Class. .202

A.2 Sliding-Cube Class. .212

A.3 Algorithm Implementation Template.221

B Sorting Experiment Source Code 224

B.1 Simulation Implementation. .224

B.2 Hardware Implementation. .245

B.2.1 Message Handlers. .245

B.2.2 Utility Functions .260

Bibliography 274

viii

List of Tables

1.1 Comparison of reconfiguration to related problems. 16

4.1 Summary of heterogeneous reconfiguration planning results. 47

6.1 Empirical data for MeltSortGrow. .168

6.2 TunnelSort empirical data. .170

6.3 Empirical data for TunnelSort versus MeltSortGrow. 171

6.4 Message types in goal recognition implementation. 179

6.5 Goal recognition experimental results.180

6.6 Inchworm Locomotion experimental results.183

6.7 Experimental results from CrystalSort implementation in hardware. . . . 189

ix

List of Figures

1.1 Example of simulated SR robot on Mars terrain. 2

1.2 Selected research issues in heterogeneous SR robotics. 6

1.3 Research problems studied, in context of other research issues. 7

1.4 Reconfiguration example: chair-to-table. 10

2.1 Examples of SR robots. 23

2.2 Lattice-based versus chain-based robots. 24

2.3 Metamorphic robot from JHU. 26

2.4 CONRO robot in three configurations. 30

4.1 Reconfiguration example: table-to-chair. 44

4.2 Illustration of melt phase. 51

4.3 Steps of the sort phase. 53

4.4 Steps of the grow phase. 54

4.5 Cases of extreme mobile modules. 55

4.6 MSG implementation in SRSim. 63

4.7 Illustration of crust around a configuration. 66

4.8 Example of TunnelSort algorithm in simulation. 67

4.9 Challenge of removing modules as a group. 69

4.10 Length of a two-segment tunnel path. 71

x

4.11 Modules with large tunnel cost. 72

4.12 Example of bridging to preserve connectivity. 74

4.13 Tunneling through a segment. 77

4.14 TS example with line configuration. 84

4.15 Challenges of reconfiguration with free space constraints. 88

4.16 Tunnel with one bend. 89

4.17 Searching for tunnel paths. 98

4.18 Swap-graph with three nodes. .100

4.19 Example CTS spanning tree. .100

4.20 Position constraints example. .112

5.1 2D goal recognition examples. .120

5.2 Goal recognition with multiple special modules. 120

5.3 2D goal recognition simulation. .124

5.4 3D goal recognition simulation. .125

5.5 Inchworm Locomotion schematic. .126

5.6 Inchworm Locomotion in blob configuration.128

5.7 2D wavefront operations. .135

5.8 2D wavefronts in 3D problem instance.136

5.9 Dragging wavefronts in 3D problem.136

5.10 Spawning child wavefronts. .139

5.11 3D-MBP implementation. .142

5.12 Couch configuration with failed module.145

5.13 Moving a failed module. .148

5.14 Moving a failed module, in simulation.149

5.15 Another gait for pushing a failed module.150

xi

5.16 Cut-away view of 3D module ejection.151

6.1 Terrain-mapping over obstacles in SRSim.156

6.2 SRSim screenshots from MSG melt phase implementation. 164

6.3 SRSim screenshots from MSG sort phase implementation. 165

6.4 SRSim screenshots from MSG grow phase implementation. 166

6.5 Crystal robot prototypes, two versions.172

6.6 Single module of the Crystal robot. .173

6.7 Message format example. .176

6.8 Goal recognition experimental setup.180

6.9 Inchworm Locomotion in hardware.182

6.10 Screenshots from CrystalSort implementation in SRSim. 186

6.11 CrystalSort implementation in hardware.188

xii

Chapter 1

Introduction

Self-reconfiguring(SR) robots are robots that can change shape to match the task at hand.

These robots comprise many discrete modules with simple functionality such as con-

necting to neighbors, limited actuation, computation, communication and power. Or-

chestrating the behavior of the individual modules allows the robot to approximate, and

reconfigurebetween, arbitrary shapes. This shape-changing ability enables SR robots

to respond to complex situations better than fixed architecture robots. Common exam-

ples of reconfigurability include transforming between snake shapes for moving through

holes and legged locomotion for traversing rough terrain. Alternatively, an SR system

can employ waterfall-like locomotion as illustrated in Figure1.1. Here, we see a robot

with cube-shaped modules divide into smaller groups to explore its environment in par-

allel. These examples illustrate the main promise of shape-changing machines: extreme

versatility and adaptability in unknown environments.

The modules that compose SR systems can be identical, as they are inhomogeneous

systems, or non-identical, as inheterogeneoussystems. In heterogeneous systems, mod-

ules are grouped into various classes, where modules are the same within a given class.

Differences between classes are generally based on function, such as sensor payload,

1

(a) (b) (c)

Figure 1.1: Simulation of SR robot on Mars terrain. The robot begins as a single cube
in (a), but divides into four in (b) and (c) for parallel exploration using a distributed,
waterfall-like locomotion algorithm.

computational power, energy storage, etc. Class differences can also encompass other

variations such as module shape, actuation, and connection mechanism. Systems that

are heterogeneous retain the shape-shifting advantages of homogeneous systems, but also

offer increased capabilities due to functional specialization. The benefit is that heteroge-

neous SR robots can match not onlystructure, but alsocapabilityto task.

Many interesting planning and control problems arise in the study of SR robots. The

central problem,reconfiguration planning, is how to compute a global shape change com-

posed of local module movements. For heterogeneous systems, the key challenge is that

the placement of individual modules within the structure must be considered. In this

thesis, we concern ourselves with the development, analysis, and implementation of plan-

ning and control algorithms for heterogeneous SR robots, focusing on a class known as

lattice-basedsystems. In a lattice-based system, module location is confined to discrete

positions in space, as if the modules were embedded in a lattice1.

1We do not consider the other main class,chain-basedsystems, where modules contain continuous
degrees of freedom and aggregate in chains.

2

1.1 Heterogeneous Systems

As most SR robots research to date focuses on homogeneous systems2, our reasons for

studying the implications of heterogeneity warrants discussion. In research on homoge-

nous systems, contributions are numerous and many algorithmic and hardware challenges

have been met. But, the natural limitations of homogeneous systems lead us to investi-

gate heterogeneity. For example, it would be difficult to argue for building a robot with

1000 radio transmitters, 1000 deployable wheels, and 1000 infrared cameras, as would

be required by a homogeneous system, when significantly fewer resources are sufficient.

One potential solution is to construct complex modules from very small homogeneous

parts, but then the granularity of module size must be extremely high versus the size of

the overall robot.

Castano and Will [16] compare homogeneous and heterogeneous designs in terms of

a trade-off between software complexity and hardware complexity. They observe that a

common module design benefits from economies of scale in design and manufacturing,

and from simpler software requirements. Choosing multiple module types increases the

cost of both hardware and software production. However, as desired capabilities increase,

the complexity and cost of the base module also increases. The trade-off is that as desired

functionality increases, homogeneous systems give up simple hardware design for less

software complexity, whereas heterogeneous systems maintain low hardware complexity

through specialized modules but require complex software to control them.

The belief that planning is more difficult in heterogeneous systems is one factor that

has led researchers to focus exclusively on homogeneous systems thus far, even though

the complexity of heterogeneous variants of common problems was unknown until this

thesis. This was an obvious gap because even the addition of trivial heterogeneity from a

2It is interesting to note, though, that the original vision of SR robots, outlined by Fukuda in 1987 [38]
describes a heterogeneous system with dedicated wheel and joint modules, among others.

3

hardware perspective incapacitates homogeneous reconfiguration algorithms, which can-

not distinguish a specialized module from any other. It is impossible to, for example,

maintain a particular sensor module on the surface of the robot after reconfiguration. If

any module differences, however small, are desired, a heterogeneous reconfiguration al-

gorithm is required.

The results we report show that the complexity of many planning problems is, in fact,

asymptotically equivalent in homogeneous and heterogeneous versions. Our hope is to

encourage other researchers to explore the benefits of heterogeneous systems. To begin, a

fundamental issue is the degree to which modules are different from each other. There are

many possible dimensions of heterogeneity, such as size and shape differences, various

sensor payloads, or different actuation capabilities. We illustrate these differences and

motivate the specific problems we study via the following example applications.

1.2 Example Applications

Our vision for the potential of heterogenous systems is illustrated with the following rep-

resentative motivating applications. Consider a future scenario in which exploration tasks

are carried out by heterogeneous SR robots. When necessary, the robot reconfigures into a

legged walker to move across rough terrain or rubble, or transforms into a snake shape for

moving through small holes. The robot can also take advantage of smooth terrain by de-

ploying a special module type containing wheels for fast, efficient locomotion. A variety

of sensors are onboard, contained as modules within the structure of the robot. The sensor

modules are surrounded by other modules for protection during locomotion, but reconfig-

ure to the surface when needed for better performance. Power is provided by dedicated

battery modules also stored in the structure of the robot. Since they are relatively heavy,

these non-actuated battery modules remain close to the base of the robot during reconfig-

4

urations, but are maneuvered closer to modules that draw a large amount of current. Long

range communication with human users is accomplished through a small number of radio

modules. Communications algorithms work for any number of radios to provide fault tol-

erance against single radio failure. This property, that performance degrades gracefully

in response to module failure, is true of most of the robot’s resources. For example, if

enough wheel modules fail then the robot locomotes using legs. If further failure occurs

the robot employs an inchworm gait requiring very few operational actuators.

Another example application is self-assembly. Large SR modules of varying sizes and

shapes are deployed in small groups to a remote construction site, where they rapidly self-

assemble into scaffolding, buildings or temporary structures. This construction technique

is utilized at Martian outposts or other sites that are difficult to reach. If a building is no

longer needed, it simply reconfigures into a different structure. Alternatively, SR robots

can form a kind of reconfigurable factory. An assembly task is divided into a number of

subassembly tasks, which are completed by an SR robot configured specifically for that

subassembly. There are specialized components for peg-in-hole type assemblies, gluing,

welding or other tasks. The SR robot is simple and task-specific for the given subassem-

bly, yet can accommodate a variety of different subassemblies through reconfiguration.

Or, heterogeneous systems can be used in an underground mining application. Special

drilling modules remove material, while structural modules form supporting structures

on-the-fly.

1.3 Research Issues

The motivating examples outlined above suggest suggest a number of important research

problems, both in hardware design and in planning and control. We do not address the

issue of designing hardware capable of self-reconfiguration, but this topic has received

5

Figure 1.2: Selected research issues in heterogeneous SR robotics. Circles represent gen-
eral problem areas. Reconfiguration planning includes many problem variations, such
as in-place and out-of-place reconfiguration, and reconfiguration among obstacles. This
problem involves coordinating the control of individual modules to form the goal shape.
User interaction includes the important human-robot interaction problem. Goal computa-
tion includes problems of configuration determination, determining the best configuration
for a given situation, and also goal recognition, recognizing when the robot has reached
the goal state. Fault tolerance includes issues of uncertainty in module-level actuations,
as well as total module failure. Problem definitions, along with interactions between re-
configuration and peripheral problems, are discussed in Section1.3.

extensive attention and we survey results in Chapter2. Instead, we are interested in algo-

rithmic planning and control problems. A set of these problems is illustrated in Figure1.2.

This set is not intended to be a complete list, but is provided to frame the problems stud-

ied in this thesis within a representative context of other important issues in this area. For

example,human-robot interaction(HRI) is a necessary precursor to deploying SR robots

in the field, but we leave this problem to other researchers. This is the also the case for the

configuration determinationproblem, which asks how to compute the goal configuration

best suited to a given situation. We detail these issues along with other ideas for future

work later in Chapter7.

What we do study in this thesis is the reconfiguration planning problem and the three

6

Figure 1.3: Research problems considered in this thesis, within the context of overall
research issues. Shaded circles indicate problems studied; placement within unshaded
circles indicates relationship to the larger problem area. Reconfiguration algorithms pre-
sented in the thesis include MeltSortGrow, TunnelSort, ConstrainedTunnelSort, and Po-
sitionConstraints. Locomotion solutions include Inchworm Locomotion, and locomotion
through reconfiguration. A minimum-bends planner, 3D-MBP, is used in both locomotion
and self-repair algorithms. Finally, our distributed goal recognition algorithm addresses
the problem of recognizing achievement of goal state.

core related problems oflocomotion, fault-tolerance, andglobal goal-state recognition.

These are placed in context in Figure1.3. Because of the inherently distributed nature of

SR robots, our goal is to develop decentralized solutions to these problems that avoid the

use of centralized controllers. We briefly characterize this set of problems here, and then

give full discussion in the remainder of this section.

Reconfiguration is central because it underlies one of the fundamental claims of SR

systems, the ability to match structure to task. We develop a sequence of three heteroge-

nous reconfiguration algorithms that operate in environments with progressively more

complex constraints on the free space available, and one algorithm that enables constraints

on the position of specified module types given by relative location instead of by specific

coordinates. Reconfiguration among obstacles is clearly an important challenge, and our

7

free space constraints model this case. These are the first algorithms for reconfiguration

in heterogeneous systems. We characterize this problem more fully and compare it to

related problems later in this section (Section1.3.2).

Less obviously, lower-level operations required by reconfiguration planning are inher-

ently related to other core problems. One of these is the locomotion problem. In order

to explore the unknown environments in our examples above, SR robots require mobil-

ity. They cannot employ methods utilized by other mobile robots, such as wheeled or

legged locomotion, because SR systems do not necessarily have access to the required

hardware mechanisms. In addition, lattice-based systems cannot perform the undulating

gaits possible with the continuous degrees-of-freedom of chain-based robots. Therefore,

the most natural approach is to use reconfiguration to construct novel locomotion modal-

ities. We propose a locomotion algorithm calledInchworm Locomotion, and a supporting

path planning algorithm called3D-MBP. These are introduced in Section1.3.3.

The second of the reconfiguration-related problems we address is how to deal with

uncertainty stemming from module failures. More specifically, the issue is how to use the

inherent redundancy of SR systems for improved fault tolerance and reliability. Through-

out our algorithmic work, we assume that uncertainty in low-level module actuation will

be handled by low-level control in the modules themselves. Total failure of these con-

trollers will be passed up to a higher layer, which is the level of abstraction at which our

algorithms operate. Dealing with these failures, calledself-repair, can be viewed as a type

of heterogeneous reconfiguration. We treat failed modules as a special class of modules

that are unactuated, and apply reconfiguration techniques to repair the robot by replacing

failed modules with spares stored within the robot structure (see Section1.3.3).

The final problem we study is how to computeglobal state information based on

the exclusivelylocal information available directly to individual modules. This is called

global state estimation. The problem arises due to the dynamic connection topology of

8

modules during reconfiguration. As the robot reconfigures to move around its environ-

ment, it may need to recognize the achievement of some goal state, such as a particular

shape. We refer to this problem asgoal recognition, and introduce it more fully in Sec-

tion 1.3.3.

We now define this set of problems in detail, compare them to similar problems, and

summarize our algorithmic results. But first, to begin the algorithmic presentation, it is

necessary to introduce the module abstraction we assume: the Sliding-Cube.

1.3.1 Sliding-Cube Model

Algorithms for SR systems necessarily make assumptions about the SR systems on which

they operate. These include such properties as actuation type, primitive motions and con-

nection mechanisms. Together, these assumptions form a model of the underlying system.

Since many types of SR systems have been conceived and built, the algorithm designer

must make choices as to what model to support. We would like to design algorithms not

for one specific robot, but for a class of module types. In other words, we would like our

algorithms to be as general as possible and to be useful in a maximum number of sys-

tems. General models have been proposed for lattice-based systems, but since previous

algorithms are exclusively homogeneous, a new model is necessary.

A model used previously by our lab can be instantiated by various lattice-based sys-

tems [7]. We will extend this model and define theSliding-Cube. The module is a cube

with connectors on all faces. Modules connect face-to-face to any other module, and have

two motion primitives: sliding across another modules, and making a convex transition.

These primitives allow a single module to move across the surface of a robot shape, or

through the robot’s volume using tunneling techniques. All modules are of the same size,

but to support simple heterogeneity we assign each module a type, orclass ID.

9

Although the level of heterogeneity in the Sliding Cube only consists of unique IDs,

it is possible to extend the model to encompass a greater degree of heterogeneity. Each

module can be given connectivity constraints based on type (e.g., classx can only con-

nect to classy), or more complicated motion primitives can be defined. We limit the

heterogeneity of the model to unique IDs throughout the thesis, however.

Such an abstraction is useful because resulting algorithms can then be executed on

any system that can instantiate the model. Many module type can do this. Most often

the instantiation is accomplished through the use ofmeta-modules, or groups of atomic

modules that act together as a unit. Examples are the Crystal, the Telecube, and the

Molecule (see Chapter2). A few module designs do implement the model directly, as

well [19, 45, 53].

1.3.2 Reconfiguration Problem

After specifying the Sliding-Cube model, we can now define algorithmic problems more

clearly. First, we discuss reconfiguration planning. An example reconfiguration is shown

in Figure1.4. There are many variations of this problem, but most frequently we assume

fixed start and goal configurations sharing a common reference frame. In other words, the

problem is to compute a feasible plan that, when executed from an initial configuration

Figure 1.4: Simulation of chair-to-table reconfiguration with two module types. Light
modules forming legs of the chair map to legs of the table. Dark modules in the chair
form the top of the table. White outlines indicate the goal shape. This reconfiguration
was planned with the MeltSortGrow algorithm.

10

C, results in a specified goal configurationC ′. A plan is feasibleif it maintains the

connectivityproperty and consists of valid primitive motions for the module actuation

model specified. Connectivity requires that no group of modules be separated from any

others. This is defined precisely in Chapter3. A configuration, assuming lattice-based

systems, is represented as a list of modules defined by type and relative position. Position

is defined by coordinates within a common reference frame. It is convenient to think of

lattice-based systems graph theoretically; a configuration can also be thought of as an

adjacency-list representation. Often, we assume that modules in adjacent lattice positions

are connected, reducing the graph representation to a list of vertices.

Another important property of reconfiguration problems is the total amount of space

occupied by intermediate configurations during shape-changing. We speak of this as the

free spacerequired by the algorithm. If free space is unlimited, the algorithm isout-of-

place. In-placealgorithms, alternately, are subject to a constrained amount of free space

proportional to the union of the start and goal configurations. Finally, free space can

also be defined as an arbitrarily-shaped bounding region surrounding the start and goal

configurations. This variation is useful in performing reconfiguration among obstacles,

or in preventing intermediate configurations from colliding with the surface on which the

robot sits.

There is a continuum of approaches for solving the reconfiguration problem, ranging

from fully centralized solutions where a plan is produced based on complete knowledge

of global state, to purely distributed reactive solutions where each module has access to

local information exclusively. Hybrid approaches mix elements of both extremes, using

communication to selectively transmit partial state. An example of a local approach is

the cellular automata(CA) model, where modules select motions by comparing local

neighborhood to preconditions defined in a fixed set of rules. Centralized approaches

have the advantage of easily provable properties; distributed approaches appeal to the

11

notion of self-organizing systems [93]. Centralized planners require the use of a single

centralized processor, while decentralized planners execute on systems with one processor

per module.

This thesis focuses primarily on planning-based approaches. We report three primary

heterogeneous reconfiguration planning results and one preliminary result for a prob-

lem variation for heterogeneous reconfiguration by function. Algorithms MeltSortGrow

(MSG), TunnelSort (TS), and ConstraintedTunnelSort (CTS) form a sequence reducing

free space requirements from out-of-place in MSG, to in-place in TS, to reconfiguration

within a defined bounding region in CTS. The CTS algorithm supports reconfiguration

among obstacles by representing obstacles as constraints on free space. All three assume

Sliding-Cube modules and fixed start and goal configuration with or without holes. We

provide both centralized and decentralized versions for each.

MSG is based on a homogeneous planner for unit-compressible modules called Melt-

Grow (MG) [83]. Both algorithms reconfigure the start shape into a regular intermediate

structure and then form the goal configuration. MSG supports heterogeneity by modify-

ing this intermediate structure so that module types are correctly placed. This strategy

forces all modules to move, and so is appropriate for large changes in shape. The free

space requirements, though, are large. MSG is the first heterogeneous reconfiguration

planner, and represents a clear example of how heterogeneous and homogeneous recon-

figuration can both be solved in asymptotically optimal worst-case time,Θ(n2), where

n is the number of modules in the system. We also implemented a portion of MSG in

hardware.

TS is in-place and uses a different approach. Whereas module trajectories in MSG

traverse the surface of the structure only, in TS we create trajectories that move through

the volume of the structure. This technique is calledtunneling. We show that short,

straight tunnels are sufficient for solving the problem in-place. CTS uses more complex

12

tunnel paths but allows for more complex free space constraints. The worst-case running

time of TS is optimal (Θ(n2)), but CTS has the slower worst-case bound ofO(n4) time

and moves. We discuss later how this bound is much improved in practice.

The fourth algorithm is for a heterogeneous reconfiguration variation calledposition

constraints(PC). PC abandons the assumption of exact goal configuration specification.

This enables applications such as maintaining a sensor module at the top or front of the

robot during locomotion. The goal configuration, in this formulation, constrains the loca-

tion of a particular module type to a position in a goal configuration represented as a set of

cubes or other orthohedral objects of varying sizes. This problem is an advance over stan-

dard heterogeneous reconfiguration because it decouples reconfiguration by shape from

reconfiguration by function.

The work most related to ours is MG, as mentioned, and also distributed planners by

Butler and Rus [11], and by Vassilvitskii, Yim, and Suh [99]. These algorithms are for ho-

mogeneous reconfiguration and are specified for unit-compressible modules. MG is cen-

tralized; the others are decentralized. In unit-compressible systems, modules are moved

usingvirtual module relocation. Due to homogeneity, one unit can be virtually relocated

to another position by shifting modules along a path between the start and goal locations.

This generally requires the use of meta-modules, which simplifies the difficulty of main-

taining connectivity. In contrast, our results support heterogeneous reconfiguration and

are specified for the surface-moving Sliding-Cube modules. Virtual module relocation

is not generally possible in heterogeneous systems, since the configuration specifies the

placement of individual modules by type. Although MG and MSG share the use of an

intermediate configuration, the module trajectory planning is completely different. Also,

MSG encompasses both centralized and decentralized versions.

TS and CTS develop a powerful, novel method for motion the volume of the structure

in inherently surface-moving systems. Maintaining connectivity is a significant challenge

13

here since module relocation involves the removal of all intervening modules long the

intended path.

Complexity Analysis and Relationship to Coordinated Motion Planning

The lower bound for homogeneous reconfiguration isΩ(n2), counting either moves or

time steps, wheren is the number of modules in the system. This bound also applies to the

heterogeneous case. The lower bound construction is explained in Chapter3. Algorithms

exist for homogeneous reconfiguration with an upper bound ofO(n2) time and moves.

Surprisingly, we show the upper bound of the heterogeneous case to be equivalent.

This result is interesting because reconfiguration belongs to the general family ofco-

ordinated motion planningproblems. This family of problems involves the motion of

multiple objects within a bounded region, avoiding collisions. These problems are often

intractable, but also have special cases solvable in polynomial-time. One example is the

Warehouse Problem, which isPSPACE−hard in the general case [100, 44]. The Ware-

house Problem involves motion planning for multiple objects among obstacles and is in-

tractable even with the restriction of 2D rectangular objects within a rectangular bounding

region. The intractability proof relies on non-square objects. There are no connectivity

constraints in this problem; objects can move freely in the available space. Furthermore,

the Warehouse Problem has been shown to admit polynomial-time solutions given suffi-

cient free space [87]. Our reconfiguration algorithms must solve a problem similar to the

Warehouse Problem, with the added difficulty of maintaining connectivity. In Warehouse

Problem terms, our solutions are tractable because they exploit the special cases of both

free space and unit-square module shape.

The unit-square module assumption, however, is not always sufficient. In another

related problem, then2−1-puzzle, a solution is not guaranteed to exist [43]. In this prob-

lem, also known as the Sliding Block Puzzle, labeled square tiles must be repositioned

14

within a tight square region with limited free space such that tile labels form a sequence.

Polynomial-time solutions exist, but finding optimal solutions isPSPACE−complete.

Here, free space is severely limited and some instances have no solution. Our conclusion

is that free space is the most important factor in the solvability of heterogeneous recon-

figuration problems. Our results support this claim in that the complexity increases as

available free space decreases.

The reconfiguration problem also has strong connections to the well-studied problem

of sorting. Heterogeneous reconfiguration can be decomposed into two interrelated tasks:

1) forming overall shape, and 2) positioning modules correctly according to type. These

tasks interact since operations that correct module positioning discrepancies most often

disturb the global shape. However, it is possible to consider these as distinct since shape

errors can be corrected ignoring type, assuming same-sized modules. Correcting type

errors, then, involves relocating modules among a predetermined set of positions. This

can be thought of as a variation of the sorting problem. The connection is most clear

in the case of same-size modules with unique types; each module has exactly one valid

destination. This destination is knowna priori and is not determined by comparisons of

module types. TheΩ(n log n) lower bound on comparison-based sorts, therefore, does

not apply. Instead, this problem falls into the category of linear-time sorting. It is not

generally possible to correctly position a single module in constant time due to feasibility

constraints, however.

The above properties are summarized in Table1.3.2. The table lists asymptotic com-

plexity and common properties of reconfiguration variations, in addition to other coordi-

nated motion planning problems.

15

Problem Connectivity
Constraints

Environment Module
(Object)
Type

Internal
Obstacles
(holes)

Worst-Case
Planning
Complexity
(time)

Reconfiguration,
out-of-place
[this thesis]

Yes Unlimited Distinct
IDs

Yes Θ(n2)

Reconfiguration,
in-place [this
thesis]

Yes Crust Distinct
IDs

Yes Θ(n2)

Reconfiguration,
with obstacles
[this thesis]

Yes Bounding re-
gion

Distinct
IDs

Yes O(n4) or no
solution

Warehouse [44] No Rectangular
bounding
region

Rectangular
(not
square),
distinct IDs

No PSPACE-
hard

(n2 − 1)-Puzzle
[43]

No Square
bounding
region

Square,
unique IDs

No Polynomial

Sorting (not
comparison-
based) [25]

No N/A Distinct
IDs

N/A Θ(n)

Table 1.1: Comparison of reconfiguration to related coordinated motion planning prob-
lems. Planning complexity listed counts time steps in ann-module robot. Tighter bounds
for reconfiguration problems are given in Chapter4.

1.3.3 Locomotion, Self-Repair, and Goal Recognition

Having fully introduced the reconfiguration problem, we now return to the other three

problem areas studied in the thesis. It may be useful to refer again to Figure1.3. Here we

define the specific problem variations studied, list assumptions, and summarize results.

Locomotion

In planning reconfigurations, the goal can be specified in such a way as to effect a trans-

lation of the robot as a whole. It is straightforward to extend reconfiguration algorithms

to address the problem of locomotion. Broadly, this approach divides locomotion into

16

two levels. Low-level planning moves the robot in a specified direction, driven by a high-

level path planner. The low-level planning is implemented using reconfiguration. An

example is the rule-based locomotion approach of Butler, Kotay, Rus, and Tomita [9].

This is the algorithm used to generate the motion shown earlier in Figure1.1. Individual

modules control their motions by comparing local neighborhood information to a set of

pre-compiled rules. This is a powerful method that is easy to implement, but the rule-base

is tedious to build and care must be taken to prevent global disconnection. Restrictions

such as fixed configuration height or width are used to ensure connectivity. Our approach

requires additional planning during execution but guarantees connectivity, has no restric-

tions on shape, and can handle arbitrary obstacles.

We also investigated a low-level locomotion gait specific to unit-compressible sys-

tems, called Inchworm Locomotion. This is a purely distributed algorithm but requires

a fixed connection topology. The unit-compressible actuation allows the robot to mini-

mally change shape without altering module connectivity. We implemented this algorithm

in hardware and performed extensive experiments.

Sliding-Cube modules, which are embedded in a square lattice, have fixed rotation.

Likewise, the robot itself cannot actually turn. It can follow a rectilinear path through

space, but rotation is constant. The low-level algorithms we described generally are more

efficient at planning and controlling the straight segments of the path than the turns.

Therefore, the high-level path planner should find a rectilinear path, among obstacles,

that minimizes the number of bends. In two dimensions, this problem is called2D-MBP

(two-dimensional minimum bend path) and has been studied in the context of VLSI wire-

routing [60]. Our robots are intended to move over complex terrain, so we developed a

solution to the 3D problem which we call 3D-MBP. The 2D-MBP algorithms generally

assume rectilinear obstacles; we equivalently assume obstacles to be orthohedral in three

dimensions. This is the first published solution to 3D-MBP, but other researchers are

17

currently developing asymptotically faster algorithms.

Self-Repair

As the robot performs locomotion or other types of reconfigurations, modules are likely

to fail. Dealing with the eventuality of module failure is known as the self-repair problem.

Our approach is a three-step strategy: 1) detect module failure, 2) eject the failed module,

and 3) replace the failed module with a spare stored within the robot’s structure. We

do not consider the failure detection step, but the eject and replace steps can be cast

as heterogeneous reconfiguration problems and addressed by extending reconfiguration

planning methods. The 3D-MBP problem arises here as well, since the algorithms for

cooperatively moving the failed module require extra steps at turns. We developed an

algorithm that is the first planning-based approach to self-repair; earlier work achieved

self-repair using distributed self-assembly [109].

Goal Recognition

Another issue faced by an SR robot during reconfiguration is collective coordination and

recognition of the current global state. Having no central controller, the robot operates

as a tightly coupled distributed system where each module has access to local informa-

tion only. The problem of how the robot collectively recognizes the achievement of some

goal is called goal recognition. The goal can be the achievement of some desired con-

figuration during reconfiguration or a desired location during locomotion. The reconfig-

uration problems we study subsume this problem and guarantee termination when the

goal configuration is reached. However, it is useful to decouple goal recognition from

reconfiguration so that different methods can be combined independently. This allows

distributed reconfiguration methods to choose from existing goal recognition algorithms,

for example.

18

We developed a heterogeneous goal recognition algorithm for detecting whether the

current configuration matches a given heterogeneous shape in a distributed manner. This

algorithm works in 2D or 3D, for configurations with or without holes, in linear time.

We also implemented the algorithm in hardware and performed a number of validating

experiments.

1.4 Contributions

In this thesis, we study reconfiguration and three related problems. The main contribution

is an algorithmic basis for reconfiguration planning in heterogeneous SR systems. This

includes a number of algorithms, simulation results, and hardware experiments. Simu-

lations were performed using a software environment that we designed and constructed.

Hardware experiments made use of an existing prototype platform built by other members

of the Dartmouth Robotics Lab. Detailed contributions are summarized subsequently:

• First published solutions to the heterogeneous planning problem, presented in both

centralized and decentralized versions.

• MeltSortGrow: An algorithm for heterogeneous reconfiguration planning that solves

the problem out-of-place in asymptotically optimal time.

• TunnelSort: An in-place reconfiguration planning solution introducing motion through

the volume in systems with native surface-motion. TunnelSort also runs in asymp-

totically optimal time.

• ConstrainedTunnelSort: An algorithm for reconfiguration planning within a given

bounding region, allowing for disconnected free space. ConstrainedTunnelSort

supports the case of reconfiguration among obstacles.

19

• Position Constraints: An algorithm for maintaining the relative position of specified

module types during arbitrary reconfiguration.

• Compliant locomotion for systems of surface-moving modules.

• 3D-MBP: First published solution to the rectilinear minimum-bend-path problem

among rectilinear obstacles in three dimensions. 3D-MBP is useful both for path

planning during locomotion and module-level trajectory planning.

• Self-Repair: An algorithm for ejecting and replacing failed modules. Addresses

issues of uncertainty at the level of abstraction assumed by other algorithms.

• Goal Recognition: An algorithm for recognizing the achievement of a given het-

erogeneous goal configuration in a distributed fashion.

• SRSim: A simulation engine for implementation, visualization, and animation of

SR systems in three dimensions.

• Implementations and experiments using SRSim.

• Hardware experiments with the Crystal robot, a robot constructed previously in the

Dartmouth Robotics Lab. These experiments are the first hardware experiments

performed with a heterogeneous SR robot.

1.5 Outline

The thesis is organized as follows. Chapter2 discusses previous work in SR robotics and

related areas. In Chapter3, we provide technical background material prerequisite to later

chapters.

20

New results are presented in Chapters4 through6. We begin in Chapter4 with a

collection of solutions for heterogeneous reconfiguration planning. This includes both

centralized and decentralized algorithms that solve the reconfiguration problem out-of-

place, in-place, and in-place within a bounding region, as well as the position constraints

algorithm. We discuss solutions for distributed heterogeneous goal recognition, locomo-

tion, 3D-MBP, and self-repair in Chapter5. In Chapter6, we present implementations of

our algorithms in simulation and in hardware, along with descriptions of the simulation

environment we built and hardware platform we used. Chapter7 concludes the thesis

with a general discussion of our methods and suggestions for future work.

21

Chapter 2

Related Work

Research in modular and SR robots spans more than 15 years [38] of active investigation.

During this time, researchers have obtained significant theoretical and practical results,

and hardware prototypes have progressed from 2D tethered units such as the Fracta to

sleeker, 3D robots such as MTRAN and the Molecule (see Figure2.1). Work relevant

to this thesis falls into the categories of hardware design, algorithms and theory, and

cooperative robotics.

2.1 Hardware Design

Building reconfiguring robots in hardware involves designing and constructing the basic

modular units that combine to form the robot itself. Such modules differ from the wheels,

arms, and grippers of fixed architecture robots in that they are functional only as a group

as opposed to individually. Because we are interested in developing general algorithms

for classes of robots instead of particular systems, familiarity with the entire spectrum

of existing systems is valuable. Current systems can be divided into classes based on a

number of module properties.

22

(a) (b)

(c) (d)

Figure 2.1: Examples of SR robots. TheFracta robot of Murata, Kurokawa and Kokaji
[68] is shown in (a), tethers unplugged. In (b), the newerMTRANrobot of Murata et al.
[70] is shown reconfiguring into a legged walker. The Molecule robot from the Dartmouth
lab is shown in two configurations in (c) and (d) (Molecule robot photos courtesy of
Dartmouth Robotics Lab).

Recall the following definitions. Systems composed of a single module type are

known as homogeneous systems, and those with multiple module types are called het-

erogeneous systems. In lattice-based systems, modules move among discrete positions,

as if embedded in a lattice. Chain-based systems attach together using hinge-like joints

and permit snake-type configurations that connect to form shapes such as legged walkers

and tank treads. See Figure2.2 for typical examples from each class. Another class of

modular systems cannot self-reconfigure, but can reconfigure with outside intervention.

This class is calledmanually reconfiguringsystems. In this section, we survey robots in

each of these categories.

23

(a) (b)

Figure 2.2: Examples of (a) a lattice-based system, the Crystal, and (b) a chain-based sys-
tem, Polybot (Crystal photo courtesy of Dartmouth Robotics Lab; Polybot photo courtesy
of PARC).

2.1.1 Pioneering Research

CEBOT(cell structured robot) is the first proposed SR robot, introduced by Fukuda et al.

in 1988 as an implementation of their 1987 idea of aDynamically Reconfigurable Robotic

System(DRRS) [39, 38]. The definition of DRRS parallels our current conception of SR

robots – the system is made up of robotic modules (cells) that can attach and detach

from each other autonomously to optimize their structure for a given task. The idea is

directly inspired by biological concepts and this is reflected in the chosen terminology.

It is interesting that this proposed SR robot is heterogeneous: cells have a specialized

mechanical function and fall into one of three “levels.” Level one cells are joints (bending,

rotation, sliding) or mobile cells (wheels or legs). Linkage cells are part of Level two, and

Level three contains end-effectors such as special tools. Communication and computation

are assumed for all cells.

CEBOT is the physical instantiation of DRRS. Various versions range from recon-

figurable modules [37] to “Mark-V,” which more closely resembles a mobile robot team

[13].

24

2.1.2 Lattice-based Robots

In lattice-based systems, modules are constrained to occupy positions in a virtual grid,

or lattice. One of the simplest module shapes in a 2D lattice-based system is a square,

but more complex polygons such as a hexagon (and a rhombic dodecahedron in 3D) have

also been proposed. Because of the discrete, regular nature of their structure, developing

algorithms for lattice-based systems is often easier than for other systems. However, the

grid constraint makes implementing certain rolling motions, such as the tank-tread, more

challenging since module attachment and detachment is required. We would like our

algorithms to be implementable by most lattice-based systems, so a complete review of

their properties is essential.

One of the first lattice-based SR robots proposed and constructed in hardware is the

Fracta robot [68] (Figure 2.1(a)). The homogeneous, 2DFractummodules connect to

each other using electromagnets. Communication is achieved through infrared devices

embedded in the sides of the units, and allows one fractum to communicate with its

neighbors. Computation is also on-board; each fractum contains an 8-bit microproces-

sor. Power, however, is provided either through tethers or from electrical contacts with

the base plane. This system was designed for self-assembly, and can form simple sym-

metric shapes such as a triangle, as well as arbitrary shapes [96]. Self-assembly and

self-reconfiguration have a strong relationship, since self-assembly can be used for recon-

figuring between different shapes. Other lattice-based robots from the same group include

a smaller 2D system [107], and a 3D system [69].

The Metamorphic robot [77] is one of the first hardware prototypes for lattice-based

modular SR robots in the USA. It was developed in the Robot and Protein Kinematics Lab

at Johns Hopkins University and consists of modules designed as deformable hexagons.

The modules are aggregated in a planar lattice by attaching neighbors on an adjacent

25

Figure 2.3: Two hexagonal robots moving relative to each other. Courtesy of the Robot
and Protein Kinematics Lab at Johns Hopkins University.

hexagonal edge. Magnetic fields are used to swap connections, thus causing units to

roll around each other as shown in Figure2.3. The basic unit of this robot is a six-

bar linkage forming a hexagon. The kinematics of this shape were investigated when

the design was proposed [20], and hardware prototypes were constructed later [77]. A

unique characteristic of this system is that it can directly implement a convex transition;

a given module can move around its neighbor with no supporting structure. The hexagon

deforms and translates in a flowing motion. A square shape with this same property was

also proposed. This motion primitive is important since it is required by many general

reconfiguration algorithms, but many systems can only implement it using a group of

basic units working together.

The Metamorphic robot module is a hexagon in two dimensions, but a similar 3D

module, theRhombic Dodecahedron, was later proposed by Yim et al. [105]. The Rhom-

bic Dodecahedron has 12 faces, and each face is a rhombus. Rhombic Dodecahedron

modules pack tightly in a 3D grid and locomote by rolling around each other. This shape

is an example of a class calledProteomodules [106].

The first module proposed by the Dartmouth group is theMolecule[55]. This 3D

module consists of twoatomunits connected by a 90-degreebond, forming the overall

26

shape of an elbow with a connection mechanism at each end (shown earlier in Figure2.1).

Each atom has five inter-Molecule connection points and two degrees of freedom. One

degree of freedom allows the atom to rotate 180 degrees relative to its bond connection,

and the other degree of freedom allows the atom to rotate 180 degrees relative to one of

the inter-Molecule connectors at a right angle to the bond connection. The current design

uses R/C servomotors for the rotational degrees of freedom. A feature of this prototype is

the use of a gripper-type connection mechanism.

A variation on this actuation scheme is AIST’sModular Transformer(MTRAN) [70],

shown in Figure2.1. Like the Molecule, the MTRAN design is also based on two compo-

nents connected by a link. The difference is that MTRAN’s semi-cylindrical end compo-

nents each can rotate 180 degrees, resulting in a variable bond angle. This actuation allows

MTRAN to behave as both a lattice-based and a chain-based system. The modules can be

closely packed in a 3D grid, or they can form chains such as legs in a legged-walker con-

figuration. Communication is on-board the MTRAN, and power from an external source

is transmitted between units through connections on the faces. Experiments demonstrat-

ing various modes of locomotion have been performed, including crawling and quadruped

gaits and reconfiguration between modes. The latest prototype includes on-board power,

distinguishing this robot as the first major untethered 3D system [58].

Another variation on this design is theI(CES)-Cubesrobot [98]. The link component

on this module, however, is separated from the end components. Therefore, the system is

termedbipartite. The end units, thecubes, are passive and connect toLink units, which

are actuated. In this way, the I(CES)-cubes implement motion primitives similar to the

Molecule robot [97], although there are fewer constraints since each cube can be placed

independently.

Motion of the previously discussed modules is primarily achieved by movement over

the surface of the robot. Unit-compressible systems, alternatively, use modules that move

27

through the volume of the robot. The actuation method of unit-compressible modules is

termedscaling-basedbecause the modules expand and contract in multiple dimensions.

The basic idea of using extendable arms for actuation to construct a reconfigurable robot

was patented by Tanie and Maekawa in 1993 [95]. The Crystal robot was constructed

by the Dartmouth group as a 2D physical realization of a unit-compressible system [100,

82, 83]. Crystal units are squares that attach to each other at each of the four faces, and

expand and contract in two dimensions. Communication in the Crystal robot is between

neighbor units only, and is implemented using infrared devices mounted in the faces. Both

power and computation for the Crystal are on-board each unit.

A unit-compressible system extended to three dimensions was developed at Xerox

PARC [57]. This implementation, theTelecube, is similar to the Crystal but has an added

degree of expansion and contraction for the third dimension [94]. An external power

source is required but the Telecube avoids a large number of tethers by routing power

between modules.

Other actuation models have also been proposed for lattice-based systems. Hosokawa

et al. [45] designed and constructed a system based on cubes with actuated arms. The

arms attach to other units and allow one cube to pull another cube from its side to its

top. This robot is two-dimensional, but in the vertical plane. Another vertical 2D system,

CHOBIE (Cooperative Hexahedral objects for Building with Intelligent Enhancement)

was recently proposed [48, 53]. The CHOBIE modules are square and interlock with

a system of rails and grooves for a high degree of mechanical rigidity. A system using

pneumatic actuators, along with hardware experiments, was presented by Inou, Koseki

and Kobayashi [47]. Guéganno and Duhaut designed and prototyped a module called

MAAM (Molecule = Atom — Atom + Molecule) consisting of a sphere (the atom) with

six legs (bonds) [41]. Hydron, a system designed to operate underwater, was described

by Konidaris, Taylor, and Hallam [52]. The Hydron module uses water jets to control its

28

position.

A new robot currently under development by the HYDRA EU project [29] is called

the ATRON [75, 24, 76]. The ATRON is a spherical 3D module with arm-like connectors.

The upper and lower hemispheres rotate with respect to each other, allowing for module

locomotion. A number of prototypes have been developed, with a goal of producing 100

modules. If successful, the ATRON would be the largest SR robot constructed thus far.

2.1.3 Chain-based Robots

In chain-based systems, modules aggregate as connected 1D strings of units. This class

of robots easily implements rolling or undulating motions as in snake robots or legged

robots. However, control is much more difficult for chain-based systems than for lattice-

based systems because of the continuous nature of the actuation: modules can move to

any arbitrary position as opposed to a fixed number of neighbor positions in a lattice.

Our work does not consider chain-based systems, but it is important to understand their

characteristics in the interest of developing more generalized algorithms.

The first prominent chain-based system isPolypod, proposed by Yim in 1993 [103,

104] and developed at the Palo Alto Research Center (PARC). Polypod is made up of

Segments, which are actuated 2-DOF 10-bar linkages, andNodes, which are rigid cubes

housing batteries. Polypod modules consist of two square parts that can rotate by 90 de-

grees relative to each other by a standard hobby servomotor. The inter-module connection

mechanism is provided by two connection plates on either side of the module which are

identical and have a four-way rotational symmetry at 90 degree increments. Four grooved

pins enter four holes and are grabbed by a latching mechanism that is released by a shape-

memory alloy actuator. Multiple gaits for locomotion, including rolling, legged, and even

Moonwalk gaits, were demonstrated with Polypod.

29

Figure 2.4: CONRO in three configurations. Photos courtesy of USC Information Sci-
ences Institute (copyright ISI).

Polybotsucceeds Polypod, sharing the same bipartite structure (see Figure2.2). Al-

though Polypod is manually reconfigurable, Polybot is self-reconfigurable. Segments in

Polybot abandon the 10-bar linkage in favor of a 1-DOF rotational actuator. The latest

generation of Polybot prototypes has on-board processing and CANbus (controller area

network) hardware for communication. Two CANbuses on each module allows the chain-

ing of multiple module groups to communicate without running into bus address space

limitations.

A system that uses a similar actuation design is CONRO (CONfigurable RObot) [89],

shown in Figure2.4. The CONRO module has two rotational degrees of freedom, one for

pitch and one for yaw, and was designed with particular size and weight considerations

[15]. Considerable attention has been paid to the connection mechanism, which is a

peg-in-hole connector with SMA (shape-memory alloy) latching mechanism that can be

disconnected by either face. Computation is on-board each module, so unlike Polypod,

CONRO has only one module type. Power can be provided externally or via batteries

on later prototypes [16]. Examples of manually configured shapes are the snake and the

hexapod, and the current CONRO system is designed for self-reconfiguration.

The DRAGON is a snake robot with torsion-free (constant-velocity) joints [72]. A

sophisticated connector has been developed for the DRAGON, designed for strength1 and

1The author demonstrated this by suspending himself from the connector, hanging from the sixth floor
of a building.

30

tolerance for docking [73].

2.1.4 Heterogeneous Systems

SR systems with significant levels of heterogeneity are few. The most prominent hetero-

geneous system is CEBOT [38], although bipartite systems such as I(CES)-Cubes and

Polybot are minimally heterogeneous. Heterogeneity results from adding various sensors

to any existing system, as well. Another source of heterogeneity is module failure; failed

actuators lead to a system with immobile modules. Differential battery drain in systems

with on-board power can also cause actuation speed differences between modules. This

heterogeneity might seem trivial from a mechanical perspective but is significant algo-

rithmically since it leads to violations of the assumption of module interchangeability.

The algorithmic results in this thesis encourage the development of new heterogeneous

systems.

2.1.5 Manually Reconfigurable Robots

Modularity, the concept of designing a system divisible into discrete and relatively inde-

pendent pieces, is often considered a desirable characteristic in designing systems. Man-

ually reconfigurable modular systems share many design issues with self-reconfigurable

systems, so a brief review is given here. Many groups have developed modular robotics

[22, 61] and manipulators, such as theReconfigurable Modular Manipulator System

(RMMS) of Paredis, Brown and Khosla [79], and Goldenbergs modular arm [46]. The

general problem of reconfigurable modular design is explored by Chen and Burdick [18],

and Farritor and Dubowski [30].

31

2.2 Planning and Control

In attempting to devise new algorithms, it is useful to understand and compare techniques

developed previously. In this section, we survey early theoretical work, approaches to the

reconfiguration problem, and also work addressing locomotion, self-repair, and division

tasks.

2.2.1 Early Algorithms

In SR research, CEBOT work is prescient in that a majority of current research issues in

SR robotics are identified in early CEBOT papers. Communication and docking problems

are described in [35]. Distributed decision making [36], hierarchical control [40, 13] and

analysis of how the number of modules affects performance [49] are also studied. Other

early theoretical work in planning and control for modular systems comes from the per-

spective of cellular automata theory. Gerardo Beni proposed the idea of a “cellular robotic

system” around the same time as the first CEBOT papers [3]. Here, the familiar idea of

large numbers of mobile cooperating autonomous units is reiterated, but physical recon-

figuration is not included. Distributed control with no synchronized clock is emphasized.

Further papers discuss theoretical [4] and practical [42] issues. For additional information

on early cellular and cooperative robotics research, see survey papers by Sandini [86] and

Cao, Fukunaga and Kahng [14].

2.2.2 Reconfiguration Planning

Solving the reconfiguration planning problem is fundamental to SR systems research.

In some approaches, explicit start and goal configurations are given, and in others the

goal shape is defined by desired properties. Recall that centralized algorithms require

global system knowledge and compute reconfiguration plans directly, whereas decentral-

32

ized algorithms compute solutions in a distributed fashion without the use of a central

controller. Reconfiguration algorithms can be designed for specific robots, or for classes

of modules. Often, a centralized solution is more obvious and is developed first, followed

by a distributed version. Not all decentralized algorithms are guaranteed to converge to

a solution, or are correct for arbitrary goal shapes. We review relevant reconfiguration

algorithms in this section.

CEBOT reconfiguration was planned by a central control cell known as amaster

[37]. Master cells were later intended to be dynamically chosen, blurring the distinction

between centralization and decentralization [40]. Later CEBOT control is hierarchical

(behavior-based) [13].

A common technique used in reconfiguration algorithms for lattice-based systems

is to build a graph representation of the robot configuration, and then to use standard

graph techniques such as search to compute motion plans. Planning for the Molecule

robot developed by the Dartmouth group is one example [55, 56]. Another example

from the Dartmouth group is planning for unit-compressible systems such as the Crystal

[100, 82]. This planner, named MeltGrow, uses the concept of a meta-module, where a

group of modules are treated as a single unit with additional motion capabilities. The

Crystal robot implements convex transitions using meta-modules calledGrains. Graph-

based algorithms are also used by the MTRAN planner to compute individual module

trajectories [108].

Centralized planners can also store pre-computed data structures such as gait-control

tables. Once a gait is selected by the central controller, it is executed by local controllers

on the individual modules. This type of algorithm is used by Polypod [104]. The division

between central and local controllers is also used in by RMMS [79], and I-Cubes [98].

Important work in decentralized planning begins with the Fracta system [68]. Individ-

ual units used a precompiled set of rules to self-assemble into various shapes, and even-

33

tually into arbitrary shapes [96]. The randomized component of these algorithms limits

convergence guarantees, however, as the algorithms are similar to simulated annealing.

A similar algorithm is presented by Hosokawa et al. [45]. This algorithm uses simpler

rules and is deterministic, but is more limited in the classes of shapes it can form. Shapes

with “overhangs” are disallowed, for example. Yim, Duff and Roufas [106] present a

distributed controller for Proteo modules that achieves arbitrary shapes, but again with-

out convergence guarantees. An interesting method for distributed control of hexagonal

modules is given by Walter, Welch and Amato [101]. Recent work by Stoy [90] uses

a gradient-based method coupled with a scaffold structure to perform concurrent recon-

figuration. A multi-resolution representation of the goal configuration is also proposed

[91].

A successful approach in distributed planners is the use of message-passing. Shen,

Salemi and Will [88] and Salemi, Shen and Will [85] propose a control system for CONRO

using a message-passing scheme calledDigital Hormones. The problem of distributed re-

configuration for unit-compressible modules was solved by a combination of thePacman

algorithm developed by the Dartmouth group [5] and later modifications and analysis by

Vassilvitskii, Yim and Suh [99]. This distributed algorithm is correct and complete for ar-

bitrary shape reconfigurations of 3D unit-compressible cubic systems using metamodules,

but makes explicit use of module homogeneity.

In addition to algorithmic solutions, other theoretical issues related to the reconfig-

uration problem have been addressed. Chirikjian and Pamecha [21] discuss bounds for

self-reconfiguration. Metrics for reconfiguration planning have also been studied [78, 19],

and Vassilvitskii, Yim and Suh provide complexity analysis for their distributed reconfig-

uration algorithm [99].

34

2.2.3 Other Tasks

Aside from the reconfiguration problem, the locomotion problem for reconfigurable robots

has also received much research attention. Generally, chain-based systems locomote with-

out module detachment, while lattice-based systems require reconfiguration to perform

locomotion. Yim [104] demonstrates control for rolling and legged locomotion gaits for

Polypod. Stoy, Shen and Will [92] present distributed locomotion algorithms for CONRO.

Other distributed locomotion work, based on cellular automata-style algorithms, is pre-

sented by Butler, Kotay, Rus and Tomita [7].

When modules in an SR system fail, it is desirable for the robot to fix itself, orself-

repair. The self-repair problem was first studied by Yoshida et al. [109].

Another useful capability of SR robots is self-replication, the ability of a large robot to

divide itself in several independent smaller robots with the same basic functionality (but

not identical size). For example, a system consisting of 100 modules could function as

one large robot or 10 smaller robots each consisting of 10 modules, or any number of other

configurations. Self-replicating robots are useful in tasks where the overall effectiveness

and task completion time is improved by parallelism, such as distributed surveillance

or exploration. Solutions to this problem are in their infancy, but some first results are

described in [10].

2.3 Other Related Results

Results from communities other than modular robotics relate to our algorithmic questions,

as well. This work comes from the fields of heterogeneous robot teams, self-assembly and

formation control.

There is a large body of literature investigating teams of mobile robots. Often, re-

35

searchers are interested in how teams of varying types of robots, or heterogeneous teams,

can cooperate in accomplishing a common task. SR and modular robots can be thought

of as a special case of a tightly coupled robot team. See Balch and Parker [12] for an

excellent review of the field.

Another related field of research is self-assembly. An interesting recent result is by

Nagpal [71], who presents a programming language for constructing global shapes from

independent agents using “Origami Mathematics.” Other work studies how free-floating

square tiles can self-assemble into global shapes [81, 2]. Inspired by biological processes,

Saitou and Jakiela [84] investigate how to self-assemble subassemblies with conforma-

tional switches. More recent work based on conformational switching is by Klavins [51],

focusing on the synthesis of graph grammars to control the generation of a specified as-

sembly. Important work by Lipson and Pollack [62] studies automatic design and man-

ufacturing of novel robot structures using genetic algorithms and rapid-prototyping tech-

nology. Lipson investigates stochastic methods for self-assembly and self-reconfiguration

in later work [102].

Vehicle formations are assemblies of self-controlled mobile vehicles, such as a squadron

of aerial robots. The controls community has recently investigated distributed controllers

for such formations. This is similar to modular robot control, without the physical cou-

pling of modules. Representative work is presented by Fax and Murray [32, 31], Klavins

[50], and Olfati-Saber and Murray [74].

36

Chapter 3

Basic Techniques in Planning for

Lattice-Based Systems

Here, we briefly review a collection of common definitions and concepts for convenience.

We begin with relevant simple properties of graphs, outline existing techniques for plan-

ning in homogeneous lattice-based systems, and then briefly discuss complexity of recon-

figuration planning. A summary of the cellular-automata model, included for comparison

to other models, concludes the chapter.

We observe that the techniques in this chapter, as well as the new results presented in

the thesis, do not consider issues of dynamics. Extensions that do include dynamics are

suggested in Chapter7. Likewise, we assume that uncertainty in module-level actuation

is handled by low-level controllers and is thus not present at this level of abstraction. Total

failure of low-level controllers is handled by our self-repair approach, presented in Chap-

ter 5. Lastly, methods for surface-moving modules are specified for systems embedded

in a square lattice but also are applicable to other types of lattices. Motion through the

volume does not generally extend in this manner.

37

3.1 Connectivity Graph Representation

Given a lattice-based modular robot, we can represent it with amodule connectivity graph,

or equivalently,connectivity graph, which is an undirected graphG = (V, E) where the

set of verticesV contains exactly one vertex for each module and the set of edgesE

contains an edge connecting the vertices corresponding to each pair of adjacent stationary

modules. Throughout this thesis, we assumeG is connected. All module operations must

preserve connectivity.

An articulation pointis a vertexv such that removal ofv causes disconnection. There-

fore, a module corresponding to an articulation point may not be moved. We can label

all articulation points in a graph using the standard algorithm based ondepth-first search

(DFS). Every finite connected graph contains at least two vertices that are not articulation

points [28].

A modulem is consideredmobile if and only if its corresponding vertex is not an

articulation point andm can execute a primitive motion. In other words,m is not locked

in place by surrounding modules.

A meta-module is a group of modules that are treated as one. In the connectivity

graph, there is a single node for each meta-module. Meta-modules have enhanced motion

primitives that are composed of the native motions of component modules. This technique

is normally used as an aid in reconfiguration planning. For example, atile is such a

structure for modules of the Molecule robot [56]. Meta-modules of unit-compressible

systems are discussed in the next section.

38

3.2 Internal Paths: Unit-Compressible Systems

Module trajectories can be categorized as motion over the surface or through the volume

of the structure. Sliding-Cube systems support only surface motion natively, but unit-

compressible systems move through the volume [83]. Virtual module relocationrefers to

the idea that, in a homogeneous structure, a module can be “virtually” moved to a distant

location by shifting modules along an internal path. Each module along the path moves

by one position. This can be thought of as shifting the unoccupied position, or hole, to

the position of the original module.

In unit-compressible systems, a single module has limited motion capabilities. Often,

meta-modules calledgrainsare used for locomotion and trajectory planning purposes. For

a unit-compressible system organized into grains, an individual grain can follow any path

through the connectivity graph via virtual module relocation. Such a path is rectilinear

due to the geometry of the modules. By repeatedly relocating individual modules, the

system as a whole can reconfigure to match a given goal. Algorithm MeltGrow is an

example. See [83] for a full exposition of MeltGrow and general reconfiguration planning

for unit-compressible systems.

3.3 Surface Paths: Sliding-Cube Systems

Sliding-Cube modules primitively move over the surface of other modules. A mobile

module can reach any position on the surface of the structure. Homogeneous configura-

tions with a single surface, and thus no holes, can be reconfigured into a goal configuration

using a simple greedy method. The algorithm is to iteratively find a mobile module in the

current configuration whose position is unoccupied in the goal configuration, and relocate

it to a free position that is occupied in the goal. This operation can always be performed

39

until the goal configuration is reached [54]. We prove this property for configurations

with holes in Chapter4.

3.4 Message-Passing

Message-passingrefers to the transmission of a discrete unit of data, amessage, from

one module to another via some communication system. In Sliding-Cube systems, com-

munication is possible between connected modules only. Therefore, message-passing

occurs only between connected neighbors.Broadcastcommunication sends a message

from a single source module to multiple destination modules simultaneously. Sliding-

Cube systems have no native broadcast facility, but we can simulate broadcast through

message-passing. When a module first receives a message, it resends the message to all

other neighbors. If a module receives a message it has already seen, it does nothing. Mes-

sages can be identified by unique sequence numbers to implement this. Alternatively, the

initial receipt of a message identifies the sender as theparent. A module only resends

messages received from its parent. These concepts are described in detail in [63].

This broadcast method results in messages traversing the connectivity graph according

to pre-order traversal of an induced spanning tree. We can use this technique to perform

computation, as well, with the addition of areturn message. When a module receives a

message it has already seen, or has no neighbors other than its parent, it performs some

computation and sends the result in a message back to its parent. After a module has

received return messages from all children, it similarly computes a result and sends a

return message. The module that sent the original message, the root of the spanning

tree, can then compute a final result. This method represents post-order traversal of the

spanning tree. We use this technique frequently in our decentralized algorithms. For

example, we can easily identify the module with the minimum relative coordinate by

40

passing the current minimum as message data. The computation performed by a module

is to compare its coordinate with the current minimum. The root module broadcasts the

final result. This can be thought of as a form ofleader election.

3.5 Complexity of Reconfiguration

The number of primitive motions required for some instance of reconfiguration in ho-

mogeneous lattice-based systems isΘ(n2), wheren is the number of modules. In other

words, the Reconfiguration problem has a worst-case lower bound ofΩ(n2). Consider

reconfiguring a horizontal line into a vertical line. Regardless of where the two lines in-

tersect, each module in the horizontal line must travel lattice-distance proportional to the

length of the line. Forn modules, total lattice-distance traveled isΘ(n2). Assuming a sin-

gle motion primitive moves a module by a lattice-distance of one, the number of moves

is alsoΘ(n2). Bounds for reconfiguration are discussed in detail in [21]. Comparison to

other coordinated motion planning problems is given in Chapter1.

3.6 Cellular Automata Model

In contrast to the above planning-based methods that search the entire configuration, re-

configuration also can be approached using local information only. We include a sum-

mary of one of these methods, inspired by cellular automata, for comparison. A general

discussion of how our results compare to other methods is given in Chapter7.

Thecellular automata modelis a reconfiguration approach in which modules use lo-

cal configuration only in deciding when to move [9]. Each module has access to a set

of rules that maps local configurations to actions such as actuations and internal state

updates. Various evaluation models are possible, dictating how frequently a given mod-

41

ule queries the rule set. These models range from round robin to totally asynchronous

evaluation order. The rule sets have been shown to produce global behaviors such as lo-

comotion in a straight line, turns, and locomotion among obstacles. These rule sets are

currently manually constructed, but automated methods have been developed for proving

correctness.

42

Chapter 4

Reconfiguration Algorithms

The versatility and adaptability of SR robots hinges on their ability to plan and con-

trol shape changes. The reconfiguration planning problem intuitively seems as though

it should be fundamentally less complex in homogeneous systems since any module can

substitute for any other. However, this intuition turns out to be misleading. In this chapter,

we present the main results of the thesis: the worst-case planning complexity of common

formulations of the reconfiguration problem in the heterogeneous case is equivalent to

that of the homogeneous case. We show this with a sequence of three algorithms for

reconfiguration planning under increasing free space constraints. MeltSortGrow (MSG)

is an out-of-place solution, TunnelSort (TS) is a corresponding in-place solution, and

ConstrainedTunnelSort plans reconfigurations among obstacles modeled as arbitrary and

possibly disconnected free space bounding regions. We conclude the chapter with our

approach to a novel problem formulation that is more closely tied to heterogeneity, re-

configuration according to relative module position. This problem is addressed by the

PositionConstraints (PC) algorithm.

To begin, recall the following problem specification defined in Chapter1. The hetero-

geneous reconfiguration planning problem is how to compute a feasible plan that, when

43

Figure 4.1: Simulation of table-to-chair reconfiguration with two module types, planned
by MSG. White outline indicates the goal shape. Total number of moves in the reconfig-
uration is 12,143.

executed from an initial configurationC, results in a specified goal configurationC ′. A

plan is feasible if it maintains connectivity and consists of valid primitive motions. A

configuration is a list of modules defined by type and relative position. Position is de-

fined by coordinates within a common reference frame. Start and goal configurations

share this reference frame, so alignment between the two is given. We assume modules

defined by the Sliding-Cube model. Modules belong to classes, or types, identified by

unique class (type) IDs. Primitive motions consist of 1) sliding motion over the surface

of adjacent modules, and 2) convex transitions from the face of a neighbor module to an

adjacent face of the same modules. Modules in adjacent lattice-positions are assumed to

be connected at their faces.

An example reconfiguration is shown in Figure4.1. Notice that since intermediate

configurations build a single long line of modules, this reconfiguration is out-of-place.

An in-place version would only place modules in the union of the chair and table shapes

plus a one module-width surface covering this union. Arbitrary free space constraints

could further restrict modules from moving below the legs of the chair, for example, to

model the case where the chair is resting on a rigid surface.

The Sliding-Cube model, defined and discussed in Chapter1, is an abstraction that al-

lows us to focus on the computational aspects of the problem by encapsulating architecture-

specific details. This is a common technique in reconfiguration planning, and the Sliding-

44

Cube is a useful model because it can be realized by a variety of SR robot modules using

a constant number of modules and moves. A number of such instantiations are given

by Butler et al. [9]. Systems covered include the Crystal, Molecule, hexagonal-lattice

systems like the Fracta and metamorphic robot, and M-TRAN. Planning for the Sliding-

Cube model ensures that our algorithms are applicable to many different SR systems.

Efficiency of our general methods versus architecture-specific methods is determined by

the size of the constant factor involved in translating native motion primitives into Sliding-

Cube primitives.

The notion of composing low-level motion primitives into more complex primitives

can be extended as a means of understanding our general algorithmic approach. Sliding-

Cube motions are composed to build module-trajectory primitives. The two types of

module trajectories are motion over the surface and through the volume of the structure.

These trajectory primitives are then composed into reconfiguration plans. For example,

MSG uses surface motion only, and TS and CTS utilize both types of trajectory primitives.

Compositions of trajectory primitives can also be used to address problems other than

reconfiguration. Our approach to locomotion and self-repair, presented in Chapter5 are

examples.

Aside from actuation, the other important property of the Sliding-Cube model is that it

assumes no central controller and no common communication channel. Communication

is possible between connected modules only, and each module contains computational

resources sufficient for processing this communication. This assumption is common in

planning and control research for a number of reasons. First, a central control module

creates a single point of failure. Distributing control over the entire robot helps to increase

fault tolerance. Another issue is scalability; the fear is that centralized control will become

too slow as the size of the robot increases to thousands of modules. Distributed control

has the advantage of reduced communication cost and better support for parallelism.

45

The approach we adopt is termed decentralized because it combines the advantages of

easily-analyzed sequential algorithms with the ability to execute on a distributed system.

We first develop a centralized solution and prove correctness and running time bounds.

Then we convert this into a decentralized version using message-passing. We assume

that all messages are delivered eventually by the underlying network protocol. The ad-

vantages and drawbacks of this approach compared to other possibilities are discussed in

Chapter7, but the most important benefit offered by this decentralized approach is that

we can provide performance and correctness guarantees unavailable in other distributed

methods.

In order to specify decentralized algorithms in pseudocode, we invented a format

loosely based on message-passing algorithms by Lynch [63]. Pseudocode is divided in-

tro three sections:State, Messages, andProcedures. The State section lists module-level

state variables. The Messages section defines message types along with associated ac-

tions to be performed upon receipt. The termmessage handleris equivalent to an action.

The Procedures section lists code organized into procedures to be shared across message

handlers, or code that is too large to fit nicely within an action definition. See Algorithm5

for an example.

Results for our three main algorithms are summarized in Table4.1. The table includes

assumptions made by each algorithm, and worst-case complexity analysis for the number

of time steps required in planning and the number of moves in the plan produced. The

analysis listed is parameterized by a number of factors, but can also be stated in simpler

terms. Briefly, the plan size complexity for MSG and TS isΘ(n2), and for CTS isO(n4).

The bound for CTS is not tight; we discuss better bounds when CTS is presented in

Section4.3.

We now present our main algorithmic results in detail. The chapter is organized into

four major sections. Sections4.1, 4.2, and4.3present the algorithms MSG, TS, and CTS,

46

MeltSortGrow TunnelSort Constrained-
TunnelSort

Module abstraction Sliding-Cube Sliding-Cube Sliding-Cube
Configurations with no holes yes yes yes
Configurations with holes yes yes yes
Free space requirements unlimited crust bounding region
Worst-case planning complex-
ity for shape-forming

O(4n2)
centralized,
O(3n2 + n3)
decentralized

N/A O(n2)

Worst-case number of moves
for shape-forming

O(3n2) N/A O(np)

Worst-case planning complex-
ity for sorting by type

N/A O(25mn +
min(4mt2, 4n2))

O(mn + m2 +
25m2n +
4m2t2)

Worst-case number of moves
for sorting by type

N/A O(22mp +
min(4mt2, 4n2))

O(22m2p +
4m2t2)

Table 4.1: Summary of heterogeneous reconfiguration planning complexity and assump-
tions for three main algorithms, wheren is the size of the robot in modules,m is the
number of modules with invalid type,t is an upper bound on the length of the longest
tunnel, andp is an upper bound on the length of a surface path. Since path lengths are
bounded by the size of the robot,t ≤ p ≤ n. Worst-case complexity analysis is given;
average-case complexity can be obtained by substituting average values ofm, t, andp for
maximum values in the listed results. MSG has entries marked N/A since it does not sep-
arate homogeneous and heterogeneous phases. Likewise, TS has no homogeneous phase
(typical greedy homogeneous reconfiguration would beΘ(n2) time andΘ(np) moves).
TS and CTS can execute tunnel moves in parallel, reducing actuation time by a factor of
t.

respectively. The final section describes the PC algorithm. Analysis and discussion is

provided for all algorithms within their individual sections.

4.1 Out-of-Place Reconfiguration

MeltSortGrowis an out-of-place algorithm that solves the heterogenous reconfiguration

planning problem. This planner reconfigures the initial shape into a regular intermediate

structure, and then builds the goal configuration. If cast as an instance of the Warehouse

Problem, this approach would be to first move all boxes into a separate room, and then

47

individually place them in their correct positions. The inputs to the algorithm, as defined

above, are two configurationsC (the starting configuration) andC ′ (the goal configura-

tion). The output is a feasible plan that, when executed fromC, results inC ′. The length

of the plan isO(n2), wheren is the number of modules in the robot, and the running time

of the algorithm is alsoO(n2).

This solution builds on an earlier algorithm, MeltGrow, that plans reconfigurations

for homogeneous systems with unit-compressible modules [83]. MeltGrow consists of

two phases. TheMelt phase builds an intermediate configuration, and theGrow phase

builds the goal out of this intermediate shape. Different intermediate structures are spec-

ified based on dimensionality. A line is used for a 2D problem, while a plane is used in

3D. Rather than transforming from the initial configuration directly to the goal config-

uration, we generate an intermediate configuration that is easy to reach from any initial

condition, and easy to transform into the goal configuration. In this case we choose a

single line, or chain, as a simple intermediate configuration. As a homogeneous planner,

MeltGrow cannot guarantee the final position of specific modules in the configuration.

Our algorithm addresses this by reconfiguring the intermediate structure such that mod-

ule position is correct as the goal shape is grown. The subgoal of this addedSortstep is

determined by computing a disassembly order of the goal. Another difference between

the two algorithms is that MeltGrow is specific to unit-compressible systems and uses

meta-modules (grains), whereas MeltSortGrow assumes Sliding-Cube actuation. Since

unit-compressible modules are an instantiation of the Sliding-Cube model, MeltSortGrow

can solve any instance that MeltGrow can.

In this section, we present the general approach of MeltSortGrow and detail its three

major steps. We describe the centralized algorithm first, and then the decentralized ver-

sion. Analysis and discussion accompany both versions. We implemented MeltSortGrow

in simulation and tested the implementation with randomly generated start and goal con-

48

figurations; these results are detailed later in Chapter6. We also instantiated the sort

phase of the algorithm in hardware using the Crystal Robot. These experiments are also

described in Chapter6.

4.1.1 MeltSortGrow Algorithm

The generic algorithm outline is listed in Algorithm1. We first plan a reconfiguration

from the start configuration to the intermediate structure. Then we sort the modules in

the intermediate structure to prepare for the grow step, where we plan a reconfiguration

from the modified intermediate structure to the goal shape. The grow step is basically a

Melt of the final configuration, in reverse. The disassembly order computed from the goal

configuration determines the sort order. This guarantees that the module chosen in Line

5 can always find a path to a free position in the goal configuration with the correct type.

In other words, the module’s type matches the type specified in the goal configuration at

the module’s final position.

Algorithm 1 Generic centralized out-of-place algorithm for heterogeneous self-
reconfiguration.

1: “Melt” configuration into 1D linear chain
2: Compute feasible assembly order for goal shape
3: Sort chain by assembly order
4: while Reconfiguration is not completedo
5: Move next module into final position

An example reconfiguration is shown in Figure1.4. Here, a table shape is reconfig-

ured into a chair shape. There are two module types in this example; the legs of the table

are composed of one typet1, and the remaining modules have typet2. In the chair con-

figuration, the legs also are specified as typet1, and all other modules are typet2. Note

that the intermediate structure is formed from the rear leg of the chair. The sorting step is

not shown. The number of moves in this example is 3,513 for the Melt phase, 4,984 for

49

Sort, and 3,646 for Grow, or 12,143 in total.

Melt

The objective of the Melt step is to compute a plan that transforms the initial configuration

into the intermediate configuration, a line. As in MeltGrow, we repeatedly choose a

module in the current configuration and move it to a free position in the intermediate

structure. To choose a module in the current configuration, we identify all mobile modules

using standard graph search techniques. Then we find a path from any mobile module to

the end of the chain, called thetail.

Algorithm 2 Melt algorithm builds intermediate structure (1D chain).
1: I is intermediate configuration, initially empty
2: while Modules remain in initial configurationC do
3: Find articulation points ofC − I
4: Find pathp from root ofI to non-articulation point modulem in C − I using BFS
5: Movem to tail (end ofI) usingp

The melt step is specified in Algorithm2. To begin, we choose one leftmost module

from the initial structure and label this theroot. The root is the minimum of all modules

when sorted by x, y, and z coordinates within a coordinate frame centered at any arbitrary

module. We will grow the intermediate structure to the left of the root, since by our

choice of root we know there are no other modules to its left. In Line 3 we compute

articulation points, and Line 4 chooses a surface module from the set of non-articulation

points. If we begin at the tail, and search all possible module paths, then any module we

reach must be on the surface. Observe that in the Sliding-Cube model, the only reachable

positions are adjacent to existing modules. We call thesepath positions. In Line 4 of

the algorithm, we search through path positions using breadth-first-search (BFS), starting

from the tail position and terminating when we reach a non-articulation point module. The

resulting path is transformed into a motion plan and executed in Line 5 by reconstructing

50

(a) (b) (c)

Figure 4.2: Illustration of Melt phase. In (a), the root module (lower-left) is darkened and
mobile modules are shown in light grey. The state after two modules have been moved
is shown in (b), with modules in the intermediate structure shown in medium grey. The
complete intermediate structure is drawn in (c).

the motion primitives used in the BFS path. We repeat this procedure until all modules

have been moved, which is once per module. See Figure4.2 for an illustration of this

step.

Sort

The next phase of the algorithm is to modify the intermediate structure such that it is pos-

sible to easily grow the new configuration in the final phase. Assembly order is important

since specific modules must be moved into their assigned positions. We approach this

problem by sorting the modules in the intermediate chain, where the sorting corresponds

to a feasible assembly order of the goal configuration. Therefore we must compute a

feasible assembly order and then physically sort the modules according to this sequence.

The sort step is specified in Algorithm3. First we compute the (dis)assembly order

of the goal configuration using the melt technique described earlier, although instead of

computing a path for each module we simply label it with its assembly order and mark

it deleted. This can be thought of as a virtual melt. Reversing the resulting disassembly

order yields a total ordering on the modules in the intermediate chain, assuming all mod-

ules have unique types. The case where modules share types can be handled by artificially

labeling modules as convenient.

51

Algorithm 3 Compute feasible assembly order and sort chain.
1: Given intermediate configurationI
2: for counterc = 1 ton do
3: Find articulation points in goal configurationC ′

4: Find pathp from root to non-articulation point modulem in C ′ using BFS
5: Labelm with c and mark as deleted
6: Move left half of I on top of right half, forming rowsa andb
7: while a is not emptydo
8: Find modulem in a with minimum label
9: Movem to leftmost unoccupied position in row belowb

10: Repeat for rowb, into row belowa
11: Merge rowsa andb into one sorted row abovea, in the style of MergeSort.

In order to physically sort the chain, we use the simple quadratic-time sorting algo-

rithm SelectionSort, and also one step of MergeSort. Removing a module from the middle

of the line violates connectivity constraints, but the same operation on a double line is per-

missible. Therefore, in Line 6 we create a double line by iteratively moving half of the

modules from the end of the line to form a second row connected to the original row.

Now we are free to use SelectionSort to move modules in the top line into sorted position

in a new row below the bottom line. Continuing in this way, we obtain two sorted rows.

Now we simply merge these two as in MergeSort into a final sorted line adjacent to the

double row. By carefully choosing where the new rows are created, the final sorted line

is assembled at the same position as the original intermediate structure. See Figure4.3

for an illustration of this phase of the algorithm. The one special case to consider is to

ensure that the rightmost modules stay connected during the MergeSort step. This can

be handled in a number of ways, but the simplest is to test the sort order of the upper

rightmost module against the lower rightmost module, and swap the upper module with

one from the bottom row if necessary before beginning MergeSort. This guarantees that

as the rows are merged, the lower rightmost module will be merged before the upper one

and the configuration remains connected. The following Lemma shows that is always

possible to perform sorting:

52

(a) (b) (c)

Figure 4.3: Steps of the sort phase. Modules next to move are greyed. Construction of
the double row is shown in (a). In (b), SelectionSort is in progress. The final sorted order
is assembled in (c) by merging the two sorted rows into a third.

Lemma 1. An intermediate configuration with arbitrary module ordering can be recon-

figured into a configuration with the same shape and a designated module ordering.

Proof. Consider the specification of Algorithm3. The double row can be assembled

without disconnecting the structure since modules always move from the end of the top

row, which can not be an articulation point since it has only one neighbor. The selection

sort step maintains connectivity since all modules at all times are connected to a module

in the lower row, and correctly assembles the sorted row since modules are chosen in

order. The merge step is correct since we merge two sorted chains, and the three rows are

always connected by the rightmost modules. Thus, the sorting algorithm is correct.

Grow

In the final phase of the algorithm, we build the goal configuration from the sorted in-

termediate configuration. Due to the sorting step, it is guaranteed that at any time, there

exists a path from the tail module to its unique position in the goal configuration. We

repeatedly find such a path and execute it for each module in the intermediate configu-

ration. It is also possible to store the paths found while computing disassembly order to

avoid replanning.

Pseudocode for this phase is listed in Algorithm4. Line 3 finds a path from the tail to

53

(a) (b) (c)

Figure 4.4: Steps of the grow phase. Shading indicates module type. In (a), a path is
found from the module at the left end of the intermediate structure to its final position
in the goal configuration, shown in (b). This repeats until the complete goal shape is
assembled in (c).

Algorithm 4 Grow goal configuration.
1: Intermediate configurationI
2: while Reconfiguration is not completedo
3: Find pathp from tail of I to goal position using BFS
4: Execute pathp

its position in the goal configuration using the same BFS technique described in the melt

phase. A motion plan based on the returned path is computed in Line 4, and this process

repeats for each module. See Figure4.4for an example of this step.

Analysis

To prove correctness, we first must show that there is always a mobile module available

from the original configuration to be moved into the intermediate configuration during

the Melt phase. For configurations without holes, this has already been proved by Kotay

[54]. Here, we prove this property for configurations including holes.

Lemma 2. During the Melt phase, in a configuration with one or more internal holes,

there exists at least one mobile module such that this module is not part of the intermediate

structure.

Proof. If any surface module has only one neighbor, it is mobile because it cannot be

an articulation point. Therefore, we only need to consider the case where all surface

54

modules have two or more neighbors. For any module on the surface, at least two of

these neighbors must lie on a cycle surrounding a hole. Otherwise, the hole could not be

completely surrounded by modules.

We consider a subset of surface modules and prove that at least one of these is mobile.

We say a module isextremeif it is minimum or maximum in some direction. Suppose

modulem is extreme, and is one of the rightmost modules. There can be no right neighbor,

sincem is extreme in this direction. Eitherm or one if its neighbors is mobile. To show

this, we examine each ofm’s neighbors in turn. Supposem has a top neighbor,m′.

Modulem′ is on the surface, since it too is extreme. By our initial assumptions,m′ has

at least two neighbors and is connected to the structure other than throughm. Therefore,

m′ will not be disconnected by the removal ofm. Aside from the left neighbor, the other

cases are symmetric.

Now refer to Figure4.5. If m has no left neighbor, it must be mobile. Ifm does have

a left neighbor, this left neighbor is either connected to one ofm’s other neighbors or

not. In the first case,m is mobile. Otherwise, allm’s remaining neighbors have no left

neighbor, and therefore must be mobile by the same analysis applied tom.

(a) (b) (c)

Figure 4.5: Illustration of cases described in Lemma2. Modulem is shown shaded in all
cases. The dotted line signifies thatm is extreme; there are no other modules to the right.
In (a), m has no left neighbor. In (b),m’s left neighbor is connected to the rest of the
structure. In (c),m’s top neighbor has no left neighbor, and also is extreme.

55

We now show that MeltSortGrow is correct and complete. We also show the running

time as claimed.

Theorem 1. The algorithm MeltSortGrow computes a feasible reconfiguration plan of

lengthO(n2) for all start and goal configurations inO(n2) time, wheren is the number

of modules in the system.

Proof. By the specification of Algorithm4, each position in the goal configuration is filled

only by a module of appropriate type. Therefore, the goal configuration is assembled cor-

rectly. It remains to prove completeness. We will show that any start configuration can be

reconfigured into the intermediate configuration, and that the intermediate configuration

can be reconfigured into any goal configuration.

As shown by Lemma2, there is always a mobile module available during the Melt

step. By repeatedly relocating mobile modules, we can therefore form the intermediate

configuration from any start configuration. This argument also applies to computing the

(dis)assembly sequence, since the same melt procedure is used. The intermediate configu-

ration can be sorted by the assembly sequence due to Lemma1. Now consider the module

at the left end of the intermediate configuration, the tail. The tail is clearly mobile, and

can move to any position on the surface of the structure without disconnection. Due to

the assembly order, the destination position of the tail in the goal is unfilled and is reach-

able, and therefore the tail can successfully be relocated. Continuing in this way, we can

relocate all modules in the intermediate structure and the goal configuration is assembled.

Therefore MeltSortGrow is correct and complete for all start and goal configurations.

The running time is easy to see as each of the algorithm’s three phases requiresO(n2)

time. First, one step of the melt phase requiresO(n) time for articulation point finding

andO(n) time for BFS. Forn modules, we haveO(n2) time for the Melt phase in total.

Sorting requiresO(n2) time for computing the sort order,O(n2) time for selection sort,

56

andO(n) for merging. Finally the grow phase performs BFSO(n) times orO(n2) total.

Overall, the algorithm requiresO(n2 + n2 + n2 + n + n2) = O(4n2) = O(n2) time.

No more than one primitive move is generated during each time step, and the sort order

computation generates no moves, so the length of the resulting path isO(3n2) = O(n2).

We cannot lower the bound on the path length traveled by individual modules since the

intermediate structure forces path lengths to increase towardsn with every module melted.

4.1.2 Decentralized MeltSortGrow

In this section, we extend centralized MeltSortGrow to run in a decentralized manner.

The main approach is to retain the overall structure of the algorithm, but replace central-

ized computation with message-passing as necessary. We assume that at the beginning,

a single module receives a message to start running the algorithm. Further, we assume

that all modules have a copy of the goal configuration in their local memories. If only

one module knows the goal shape, then it can propagate this data to the rest of the sys-

tem. This assumption appears to involve a significant communications cost, but this cost

is only paid once, before the algorithm starts. Also, the problem of actually determining

the desired goal configuration is still open. Recent approaches involve goal representa-

tions whose size is dependent on granularity [91]. We also begin to address inexact goal

representations later in this chapter (Section4.4). Reducing the size of the representa-

tion decreases the communication cost of propagating this information throughout the

system. In any case, the planning-based approach we adopt necessitates this assumption

because all modules within a class can substitute for each other and therefore need ac-

cess to configuration information for all modules in that class. With neighbor-to-neighbor

communication only, there is no way to selectively transmit pieces of the goal configu-

57

ration without the potential for necessarily routing this information throughout the whole

system.

Melt

To begin algorithm execution, a single module,mstart, receives the initial message. We

find the root by propagating a message depth-first style frommstart that computes a rel-

ative lattice position for each module. We use depth-first search (DFS) since it is easier

to distribute than BFS. Starting atmstart (0, 0, 0), each module computes positions for its

children and passes this information in a message. In this way, the leftmost coordinate

can be returned by comparing the return values of a module’s children. Eventuallymstart

will receive the answer and propagate this information to the rest of the system.

The root is the initial tail. At any time, there exists exactly one tail. To find a mobile

module, the tail initiates a distributed articulation-point labeling algorithm. This is the

same as the centralized version except recursive calls are replaced by message-passing

to children. The tail then initiates distributed DFS to find the first non-articulation point,

which then follows the path back to the tail and becomes the new tail. This ends when

DFS fails. Alternatively, iterative-deepening search can be implemented if shortest paths

are desired. Centralized MeltSortGrow uses BFS for this purpose. Pseudocode is shown

in Algorithm 5.

Sort

The next step is to sort the intermediate structure. We first need to determine the sort

order by virtually disassembling the goal configuration and then physically sorting the

modules. Disassembly in a decentralized manner can be handled in different ways, but

the simplest solution is for each module to perform the computation itself to discover its

own order. This solution is acceptable due to our assumption that all modules know the

58

Algorithm 5 Distributed Melt. Pseudocode for single module.
State:
articulationPoint, am I an articulation point

Messages:
start, sent to exactly one module to begin algorithm

Action: determine root, root executes meltOneModule()
labelArticulationPoints, labels articulation point modules

Action: DFS-send(labelArticulationPoints), settingarticulationPointas result
findMobileModule, search to find non-articulation point

Action: if I am mobile, follow path to tail and execute meltOneModule(), else continue
message propagation according to DFS-send procedure

Procedures:
meltOneModule()

DFS-sendlabelArticulationPoints
DFS-sendfindMobileModule
if result is false, signal start of sort phase

DFS-send(message)
sendmessageto first child, wait for response
repeat for all children and compute result
send result in return message to parent

goal configuration, and each module uses the same deterministic algorithm. This adds a

factor ofn to the total computation cost, but occurs in parallel. Next, the single chain must

fold in half to form a double row. The tail module initiates this by moving around to its

final position below the root. Other modules follow and stop when all top row modules

have lower neighbors. The last module in the top row signals its row to begin sorting,

using distributed BubbleSort. When one pair has finished their comparison, they signal

the next pair. This happens back and forth down the row until no more swaps are made.

Then the top row signals the bottom row to performs the same sort operation. The two

then merge to complete the intermediate configuration. See pseudocode in Algorithm6.

This specification handles the case when all modules are uniquely identified. The

modification to remove this assumption is simple, but requires extra memory. Instead of

computing a unique sort position, the modules keep an array of all positions for their class

59

Algorithm 6 Distributed Sort. Pseudocode for single module.
State:
goal, goal configuration
sortLabel, my order in assembly sequence
swapCount, counter to detect bubble sort termination

Messages:
sort, sent to start sort phase

Action: propagatesort, execute computeSortOrder(), execute formDoubleRow()
bubbleSort, sent to do swap test

Action: execute handleBubbleSort()
bubbleSortDone, sent to signal bubble sort termination

Action: if top row, sendbubbleSortto bottom row. if bottom row, execute merge()

Procedures:
computeSortOrder()

disassemblegoal to determinesortLabel
formDoubleRow()

move around structure to form double row
if I am last module, execute bubbleSort()

bubbleSort()
compare sortLabel with neighbor and swap if necessary
incrementswapCountif swapped
sendbubbleSort(swapCount) to neighbor

handleBubbleSort()
if swapCount=0 then propagatebubbleSortDone
otherwise if I am at the end of the line, sendbubbleSortin opposite direction

merge()
tails of sorted rows propagatesortLabel. tail with minimum moves to final row and signals
next tails. when complete, grow phase begins.

ID. Then when the single chain is assembled, the unique position is resolved by passing

a counter down the chain.

Grow

The grow phase reconfigures the intermediate configuration into the final shape. The

basic step is that the tail module finds a path, executes it, and signals the new tail. Path

planning is done using distributed DFS. When the root module becomes the tail, the

algorithm terminates. See Algorithm7 for pseudocode.

60

Algorithm 7 Distributed Grow. Pseudocode for single module.
State:
goalPosition, my position in goal configuration
root, am I the root

Messages:
grow, sent to signal start of grow phase

Action: if I am the current tail, execute moveToGoal()
nextModule, sent to grow next module

Action: if I am the current tail, and I am root, signal completion. else execute moveToGoal()
findPath(goalPosition), sent to find path

Action: if I am adjacent togoalPosition, return true. else DFS-send(findPath(goalPosition))

Procedures:
moveToGoal()

DFS-sendfindPath(goalPosition)
follow path
propagatenextModule

DFS-send()
specified in Algorithm5

Analysis

Theorem1 proved correctness and completeness for the centralized algorithm. Here, we

show that the decentralized version is also correct and complete using a similar argument.

Theorem 2. The decentralized version of MeltSortGrow computes a feasible reconfigu-

ration plan of lengthO(n2) for all start and goal configurations inO(n2) time, wheren

is the number of modules in the system.

Proof. In the melt phase, a module trajectory path is found by searching free positions

adjacent to modules. Because the system is connected, we visit all free spaces eventually

and a path is guaranteed to be found. Continuing in this way for all modules, the inter-

mediate structure is assembled. Sorting is performed in the style of bubble-sort until both

halves of the double row are sorted. Because each half is sorted sequentially, connectivity

is maintained. Finally, the grow phase assembles the goal shape using search techniques

as in the melt phase.

61

The running time bound is shown by observing that each atomic step in the centralized

version is replaced by a message in the decentralized version. We assume a constant

amount of work is performed in processing a message, so we equate time steps with

messages. Path searching is done using DFS, which takesO(n) messages to find a path.

Therefore, melt and grow takeO(n2) messages each. BubbleSort also generatesO(n2)

messages. Since sort order is computed by each module, this adds a factor ofO(n3)

time steps. The overall running time is thusO(3n2 + n3) = O(n3), with O(n2) moves

generated as in the centralized version.

4.1.3 Example

A detailed centrally-planned example is shown in Figure4.6. Here the start and goal

configurations are both box shapes of 18 modules with unique types. However, the type

specification of the goal configuration is such that no module in the start configuration is

in a valid position, i.e. each module must move to a new position to correctly form the

goal configuration.

In (a), the root module is chosen. The next picture shows the line being formed to

the left of the root. The Melt phase is then completed in (c) as all modules in the initial

configuration have been moved.

The next three illustrations show the Sort phase. In (d), the line configuration has been

broken in half and doubled-up on itself. This enables each half row to be sorted, shown

in (e). Finally, (f) shows the two sorted rows being merged back into a single line.

At this point, the tail module can always find a path to its final position in the goal

shape. Since this example has unique types, each module has exactly one valid position

in the goal. Pictures (g) and (h) illustrate the Grow phase, and the final configuration is

completed in (i).

62

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 4.6: Screenshots from MeltSortGrow implementation in SRSim simulation. Mod-
ule shading indicates unique labels; here all modules are unique. Cube-shape reconfigures
into another cube shape with order of modules reversed.

63

4.1.4 Discussion

The significance of this algorithm is that it is the first to address the heterogeneous re-

configuration problem. It is surprising that the running time is equivalent to the fastest

algorithms for homogeneous reconfiguration as well, since this contradicts the intuitive

notion that module interchangeability makes reconfiguration easier. One explanation is

that MeltSortGrow exploits a special case of the Warehouse Problem, where free space is

relatively unconstrained. Therefore, free space appears to be the critical resource in con-

tention, as theO(n2) worst-case running time matches theΩ(n2) reconfiguration lower

bound and so is asymptotically optimal.

Practically speaking, choosing a line as the intermediate structure is not the best al-

ternative. It is simple to explain and analyze, but other structures would be more useful

in practice. For example, a square or other planar structure would be just as easy to con-

struct and sort. In fact, any intermediate structure amenable to sorting would suffice. This

approach is particularly beneficial in cases where the robot is primarily homogeneous –

for example, where a few specialized sensor modules are added to an otherwise homoge-

neous robot. In this case, efficient sorting could be used to easily adapt to the system’s

limited heterogeneity.

In comparing the centralized and decentralized versions, the decentralized version is

necessary since we generally assume that a centralized controller is neither available nor

desirable. The decentralized version does incur increased cost of messaging overhead,

but this is primarily due to broadcast messages. Although the Sliding Cube model only

includes point-to-point communication, real systems often have some sort of broadcast

functionality. Utilizing this reduces the communications burden of the decentralized ver-

sion. Furthermore, time spent in actuation typically dwarfs the time spent in communica-

tion, so actual running time should not be appreciably greater even in the absence of any

64

broadcast facilities.

Although the free space required by this algorithm is large, subsequent algorithms in

this section reduce this requirement significantly. The next obvious theoretical question,

then, is whether the length of the plan can be reduced. TheΩ(n2) lower bound holds

for general reconfiguration, but perhaps other special cases can be identified that would

provide homogeneous systems an advantage.

A major area of future work for this style of algorithm lies in considering dynamics

of the system during reconfiguration. Throughout this work, we generally ignore issues

of the robot toppling over and basically assume the robot is floating in space. There is

good potential for addressing this issue through refinement of two pieces of the algo-

rithm: choice of modules during melt and order of constructing the intermediate shape.

Only very sparse, stringy shapes contain few mobile modules. Most shapes have many

choices, and here we simply choose the first encountered by BFS or DFS. A more sophis-

ticated search procedure could be used instead. Also, the intermediate structure could be

constructed such that it forms supporting structure for modules above. Addressing the

issue of dynamics is, of course, critical for implementing this algorithmic approach in a

real 3D system.

4.2 In-Place Reconfiguration

Although unlimited free space is useful for planning fast reconfigurations, the case where

free space is limited also admits a polynomial-time solution.TunnelSortis an algorithm

we developed that solves the heterogeneous reconfiguration problem in-place. Due to

these constraints, algorithms that utilize intermediate goal configurations, such as Melt-

SortGrow, are no longer feasible. Instead, TunnelSort builds the goal configuration di-

rectly in a greedy manner, without regard to type. It then relocates modules within the

65

goal configuration to correctly place modules according to type. This can be thought of

as “sorting” modules in the goal configuration. Like MeltSortGrow, TunnelSort takes as

input a start configuration and a goal configuration and outputs a reconfiguration plan.

The worst-case running time and number of moves are bothO(n2), which is equivalent

to MeltSortGrow. This is asymptotically optimal for the reconfiguration problem.

Free space is constrained in the following way. Allowable module positions include

only the union of the start and goal configurations (with alignment assumed to be given)

plus empty lattice positions immediately adjacent to modules on the surface of this union.

We call this extra space thecrust, since it can be thought of as growing the union by one

unit. See Figure4.7for an example.

Figure 4.7: Illustration of crust around the union of start and goal shapes. This is the
region of free space available to an in-place reconfiguration algorithm.

For two non-identical configurations, inconsistencies at a specific lattice position fall

into two cases: 1) there is a module in the goal and not in the start, or 2) there is a module

in both but they have different types. Heterogeneous reconfiguration can thus be divided

into two phases: the first forms the goal shape regardless of type, and the second adjusts

the goal shape to ensure type consistency. Decomposing the problem in this way is helpful

since the first phase is purely homogeneous and can therefore be solved using existing

greedy algorithms as described by Yim [99] or Kotay [54], in the case of configurations

with no holes. The case of configurationswith holes requires more planning; we address

this in the following section. For now, we focus on the challenge of the second phase,

66

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: Example of TunnelSort algorithm. Some modules not shown. Initial config-
uration with two incorrectly placed modules is shown in (a). Modules are unlocked in
(b)–(e), and swapped in (f)–(k), resulting in the final configuration (l).

where the modules must be sorted by type. TunnelSort solves this phase of the problem.

Our approach is to repeatedly swap modules until all type requirements in the goal

configuration are satisfied. See Figure4.8 for an example. The challenge is to “unlock”

67

modules from the structure while both maintaining global connectivity and avoiding back-

tracking caused by displacing correctly positioned modules. For example, to access a

module buried deeply in the structure, it might be necessary to temporarily displace a

large number of other modules. Or, consider rearranging a sparse shape such as a line.

Removing a module in the interior clearly divides the line. We address these challenges

as follows. To swap modules, we will unlock each by creating a path, or tunnel, to the

crust. Displaced modules are temporarily stored in the crust, while the two desired mod-

ules exchange positions. Then the remaining modules reverse their motions. This idea is

similar in spirit to the Warehouse Problem solution given by [87]. Throughout, the main

technique is to find or construct local features that assure global connectivity.

An initial assumption we make is that the relative positions, or overlap, of the two

shapes is given. This is an assumption made by other algorithms and is valid since the

overlap can easily be computed according to characteristics of the underlying task.

In this section, we present the TunnelSort algorithm. We begin with basic techniques

for moving modules through the structure. We then describe the algorithm itself, first

in centralized form for clarity as Algorithm8, then as a decentralized implementation in

Algorithm 9. We analyze each version, and conclude the section with an example run of

the algorithm and a discussion.

4.2.1 Module Relocation via Tunneling

For module-level trajectory planning, there are generally two strategies: motion over the

surface, and motion through the volume of the structure. The Sliding-Cube model in-

cludes motion primitives for direct surface motion. We would like to implement motion

through the structure as well. To do this, our approach is to create a path for a given mod-

ule by temporarily displacing intervening modules. We refer to such a path as atunnel.

68

Figure 4.9: Challenge of removing modules as a group. No module is an articulation
point. Either shaded module can be moved individually, but moving both causes discon-
nection.

The main challenge in creating a tunnel is preventing disconnection. For a single

module, mobility can be tested by labeling articulation points in the connectivity graph.

If a module is a non-articulation point, it can be moved without causing disconnection.

However, we need to displace a group of modules. A method for identifying a mobile

groupof modules is more difficult. Consider an example configuration as shown in Fig-

ure 4.9. Here, no module is an articulation point. Either shaded module may safely be

removed, but not both. Other graph theoretic techniques can he helpful in identifying a

sequence of modules to be moved, but it is unclear how to extend them to be useful in

path planning. For example, consider any spanning tree imposed over the connectivity

graph. The leaves of the spanning tree, by definition, can be removed without disconnect-

ing the graph. Therefore, any subtree in a spanning tree forms a set of modules that can

be removed as a group, by “peeling” the leaves from the subtree. Another example by

Ghrist [1] extends the idea of configuration space to support searching for sets of physi-

cally independent primitive moves. Unfortunately, this does not help in finding a path in

polynomial time.

Rather, we would like to identify local properties that guarantee the global property of

connectivity. First, observe that a partial cut does not disconnect the module connectivity

graph:

Lemma 3. Nodes along a straight-line path through a module connectivity graph can

be removed without disconnecting the graph if each node along the path has both side

69

neighbor positions occupied, and the side neighbors of the node at one end of the path

are connected to each other.

Proof. The construction insures that there is a line of modules on either side of the partial

cut. Choose any removed node. All remaining neighbors stay connected since there exists

a path around the cut that connects them.

Therefore, as long as the sides of the tunnel are connected, modules along the tunnel

path,tunnel modules, can safely be removed. The total number of motions sufficient to

displace the tunnel modules is equal to the squared length of the tunnel. This can be seen

by noting that if each module follows its neighbor, the deepest module traverses the entire

length. So for a tunnel of lengthl, we havel modules makingl moves orl2 overall.

Interestingly, if we add holes to the tunnel path, the total number of moves does not

increase. The total is still equal to the number of modules in the path, not the path length

in lattice-distance. This is because some modules maybe be “stored” in the holes and do

not need to traverse the entire path. The following lemma formalizes this notion.

Lemma 4 (Amount of work done in creating a tunnel). For a straight line path withl

(not necessarily connected) modules, the amount of work required to tunnel through this

path isO(l2).

Proof. We have two cases. If the modules are connected, then each module makesl

moves to reach the crust and the total work isl2. Otherwise, the tunnel is divided into

segments and holes. The motion of modules adjacent to a hole is bounded by the length

of the hole, since these modules remain in the hole and do not travel the entire length of

the tunnel. We can bound the distance traveled by one of these modules byh, the sum

of the lengths of all holes. There areh such modules, so the total number of moves for

these isO(h2). The remainingl − h modules travel, at most, the entire length of the

70

tunnel,l + h. The overall bound for the case with holes is thusO(h2 + (l− h)(l + h)) =

O(h2 + l2 + lh− hl − h2) = O(l2).

If we assume that a tunnel must be created to every module in the structure as part

of a reconfiguration algorithm, it is necessary to count the total number of moves in all

tunnels. We can accomplish this by bounding the length of all tunnel paths. First, consider

a simple case with no holes and paths consisting of two straight-line segments.

Lemma 5 (Length of a two-segment tunnel path).There exists a tunnel path from any

module to the surface of a configuration with no holes such that the path can be decom-

posed into two perpendicular straight-line segments where the length of each segment is

O(
√

n).

Proof. Assume not. Then the second segment can be swept up, creating a rectangle with

sides< O(
√

n), contradicting the assumption that the total number of module isn. See

Figure4.10for an illustration.

Figure 4.10: For a tunnel path consisting of two segments, the maximum required length
of each segment is

√
n, wheren is the total number of modules. The shaded square

is a module, and the dark line denotes a tunnel path. If either segment is longer, the
rectangular region completed by the dotted line must be greater thann.

Now we show that the sum of the lengths of all straight-line, single-segment paths is

also bounded byO(n2):

Lemma 6 (Amortized analysis of work done in unlocking).For a planar robot withn

modules, the sum of the squares of the minimum distance to the surface over all modules

is O(n2).

71

Proof. We will show
∑n

i=1(min(ri, ci))
2 = O(n2), whereri andci are number of modules

in the row and column, respectively, that contain modulei. We define the setmlong as all

modulesmj such thatmin(rj, cj) >
√

n, and similarly,mshort as modulesmk such that

min(rk, ck) <=
√

n. The total contributed to the sum bymshort, by definition, is bounded

by n(
√

n)2 = O(n2).

Now consider the elements ofmlong. If there arel such elements, andmmax is the

maximum value ofmin(rj, cj) for all mj, then
∑

mlong
(min(rj, cj))

2 < lm2
max. But, we

know that since there aren modules in total,mmax

√
l = O(n). See Figure4.11. This is

true because the length ofmmax is bounded by the total number of modules, minus the

size ofmlong, plus the maximum number of elements ofmlong that lie along the column

of max length, orn − l +
√

n. The last term is
√

n because all elements inmlong have

row and column lengths at least
√

n, and there aren modules in total. The maximum

value ofmmax

√
l = (n− l +

√
n)
√

l occurs where(l = n), sommax

√
l = O(n), and so

lm2
max = l(O(n)√

l
)2 = O(n2). Together, we have

∑n
i=1(min(ri, ci))

2 = O(n2) + O(n2) =

O(n2).

Figure 4.11: Illustration of relationship between long segments and the number of mod-
ules with high cost of tunneling. Line segments represent lines of contiguous modules
in a configuration; dark circles are modules at intersection points. The number of line
segments is bounded by the square root of the number of intersections, which in turn is
bounded by the total number of modules.

This 2D analysis also applies to the 3D case. Any tunnel in a 3D structure lies in three

72

2D-planes. We showed that the total cost due to tunneling is bounded by the total number

of modules in the 2D configuration. The size of any 2D slice of a 3D configuration is

smaller than the size of the full 3D configuration. Therefore, the 2D upper bound shown

in Lemma6 is also an upper bound on the amortized number of moves in a 3D instance.

The analysis further extends to cases with holes:

Lemma 7. For a planar robot withn modules including holes, the sum of the squares of

the minimum distance to the surface over all modules isO(n2).

Proof. The proof of Lemma6 proves this bound in the case with no holes. The summation

counts only the number of modules in a row or column, not the lattice distance. Therefore,

the proof of Lemma6 also holds in the case of shapes with holes.

So far we have not discussed the placement of modules displaced during tunneling.

The crust is large enough to hold all tunnel modules, as shown by Lemma8.

Lemma 8 (Size of crust).A one-unit crust contains at least4
√

n module positions.

Proof. For a configuration with no holes and no limiting obstacles, the size of the crust

is equal to the number of free lattice positions adjacent to modules. This number is

minimized by the tightest packing of squares in two-dimensions. For ann-module robot,

wheren = k2 for some integerk, the tightest packing is given by a square. This yields

4k = 4
√

n crust positions. Since this is a minimum, the size of the crust for any arbitrary

configuration is4
√

n. An n-module shape with holes has perimeter at least as large as

ann−module shape with no holes, so the bound holds for all connected configurations in

two dimensions.

The crust is actually large enough to hold modules from two tunnels simultaneously.

Observe that the length of a tunnel is bounded by the diameter of the configuration. The

73

(a) (b)

Figure 4.12: Example of bridging a module to preserve connectivity. In (a), the shaded
module is to be removed, but it is an articulation point. We recruit extra modules to
connect the shaded module’s neighbors in (b). This temporary bridge structure allows
the shaded module to be removed and swapped with another module elsewhere in the
structure. Then, bridge modules can return to their original positions.

surface is at least twice as large as any diameter, so two tunnels may be created simulta-

neously without depleting storage positions.

Finally, we outline an algorithm for creating a tunnel. The first step is to build suffi-

cient supporting structure around the deepest module in the tunnel, to ensure that it is not

an articulation point and to connect the sides of the tunnel. We call this processbridg-

ing. To bridge a module, it is necessary to connect all neighbor modules not part of the

tunnel. See Figure4.12for an example. Mobile modules in the structure are recruited for

this task. Such modules are always available. Observe that if a lattice position adjacent

to a module is free, then it forms the surface of a hole. This might be an internal hole,

or else the crust. Since the surface forms a cycle in the connectivity graph, at least one

module can be removed, followed by modules adjacent to it on the surface. Therefore the

constant number of modules required for bridging are always available. After bridging is

complete, the tunnel module adjacent to the crust follows an arbitrary path through the

crust, and the other tunnel modules follow until the tunnel is complete.

4.2.2 Centralized TunnelSort

We present the algorithm in centralized fashion as Algorithm8 in order to simply

describe the algorithmic idea; Algorithm9 shows the equivalent decentralized algorithm.

74

Algorithm 8 Centralized TunnelSort.
1: Reconfigure homogeneously to match goal shape
2: Label crust
3: while Reconfiguration is not completedo
4: Choose modulesm1, m2 wherem2’s type matches goal type atm1’s position
5: Find minimum-length straight-line path fromm1 to crust
6: for each segments in path fromm1 to crustdo
7: if s is tunnelablethen
8: Find path arounds or create bridge
9: if s was bridgedthen

10: Move all modules ins into adjacent free space
11: Repeat withm2

12: Find path betweenm1 andm2 and swap
13: Replace all other modules

At a high level, the outer loop (Line 3) chooses modules that are in invalid positions and

swaps them. The choice of modules is done using a simple graph search. Swapping in-

volves planning a path, creating tunnels, moving the modules, and returning all displaced

modules to their original positions. See Figure4.8, shown earlier in this section, for an

example in simulation. We now go through these steps in detail.

Line 1 uses existing algorithms as noted earlier. At this point, the correct goal shape

has been constructed and we can perform necessary preprocessing in Line 2. The purpose

of the preprocessing step is to define the crust by labeling lattice positions that comprise it.

This is straightforward in the centralized version. We simply build a data structure to store

a collection of lattice positions. These are defined as follows. For a modulemi, the set of

six adjacent lattice positions is referred to asLi. For the set of all modulesM , the set of all

adjacent lattice positionsL =
⋃

i Li. The crust consist of all adjacent lattice positions not

occupied by another module, orL−M . This is easily implemented by iterating through

the module list and adding or deleting items from the crust data structure as necessary.

In Line 3, the main loop commences. The choice of modules to swap (Line 4) can

be done in any linear-time search. We iterate through the modules in arbitrary order and

75

choosem1 as the first module whose type does not match the goal, ortype_of(m1) 6=

goal_type(position_of(m1)). The choice ofm2 is made similarly, with the added con-

dition thatm2’s type matches the goal type we are looking for:

type_of(m2) = goal_type(position_of(m1)). Note that since we always choose

two modules whose type is invalid, the algorithm always makes progress by correctly

placing at least one module. The final swap corrects the final two type errors.

Most of the complexity lies in the unlocking procedure, which begins in Line 5. The

first step is to choose a path fromm1 to the crust. This path will form the tunnel allowing

m1 to access the surface of the structure. We find a minimum-length, straight-line path by

searching out fromm1 in a straight line in all dimensions until we reach the crust. If there

are no holes along this shortest path, we simply create a tunnel by moving the intervening

modules into the crust, as shown in Figure4.13(a). It might be necessary to bridgem1 to

initiate the tunnel. This case is handled as described earlier in Section4.2.1. Otherwise,

this path may be divided into a number of connected segments of modules. The resulting

sequence of alternating segments and holes allows us to store modules in the segments

in the subsequent holes instead of exclusively in the crust (Figure4.13(b)). Considering

a segmentsi and holehi, if si can be removed without disconnecting the structure, then

we may relocatesi into hi until hi is filled except for free space along the tunnel we are

attempting to create. Further modules insi can then traverse this tunnel until they reach

segmentsi+1, and will be handled during the next iteration.

If si cannot be safely removed, however, we must either avoid the problem by simply

movingm1 aroundsi (Figure4.13(c)), or else it must be possible to “bridge” the sides of

si to the rest of the structure and thus fall into the earlier case (Figure4.13(d)). We can

label the connected components that would be disconnected in the removal ofsi by simply

executing a depth-first search starting with modules adjacent tosi. Then we find a mobile

module on the perimeter of holehi, and move this module around the perimeter until it

76

(a) (b) (c) (d) (e)

Figure 4.13: Tunneling through a segment. Module to be unlocked is shown in black;
shading indicates the original tunnel path. The case with no holes is shown in (a). Shaded
modules will be stored in the crust. If the path does contain holes, as in (b), shaded mod-
ules can be stored there. In (c), the tunnel segment cannot be removed but an alternate
path exists. A similar case is shown in (d), but no such path exists. Rather, a bridg-
ing module allows the segment to be safely removed by connecting the lightly shaded
modules to the rest of the structure, resulting in (e).

becomes adjacent to both a labeled and unlabeled modules. Such a position much exist

since it was not possible to circumventsi entirely. Repeating for all labeled connected

components, it is now safe to tunnel throughsi.

Once a segment is identified as tunnelable, either without modification or through

bridging, the tunneling proceeds in the same manner. The module closest to the crust

makes a random move into the adjacent surface. It then continues to randomly move

across this surface, with the remaining tunnel modules moving in follow-the-leader style.

Care must be taken to not allow the string of modules to intersect itself, which would

partition the crust into an unreachable region. This process terminates when the tunnel is

complete. If the far endpoint of the segment is adjacent to a hole instead of the crust, then

modules simply greedily move to positions on the surface of the hole until it is filled.

We repeat this procedure for each segment in the path, and thusm1 can reach the

crust. Note that since the modules follow one another along the tunnel, these motions can

be executed in parallel for improved efficiency.

After m1 andm2 traverse the crust in Line 12, all other modules return to their original

positions in Line 13. This is implemented by maintaining a stack of moves associated

77

with each module. When it is time to reverse the tunnel, modules simply pop and execute

motions from their stack.

Analysis

Theorem 3 (Correctness of centralized TunnelSort).Algorithm8 produces a reconfig-

uration plan that transforms any given start configuration into any given goal configura-

tion.

Proof. When the algorithm begins, the current configuration matches the goal shape. For

each colorc, the number ofc-colored modules equals the number ofc-colored goal posi-

tions. Therefore, suitablem1, m2 always exist in Line 4.

The unlocking procedure is correct based on case descriptions in Section4.2.2. There

is sufficient space in the crust for temporarily storing modules since the size of the surface

is greater than the length of any path. A path betweenm1 andm2 through the crust always

exists since temporary modules never form a path that intersects itself. All free spaces in

the crust are thus reachable from each other. After swapping, the original configuration is

restored except for the position reversal ofm1 andm2. Each iteration therefore correctly

positions at least one module and the loop eventually terminates with the robot in the

correct final configuration.

It remains to show the time bound ofO(n2). First, the time spent in unlocking a given

modulemi is equal to the sum of distances traveled by modules along the tunnel path,

by mi itself, and by modules used in creating bridges. The number of moves required to

create bridges plus the path length ofmi is O(n + n) = O(n). The work done in moving

all other modules is proportional to the squared length of the tunnel. Since we always

choose the straight line path of minimum length, we can amortize the cost of all tunnels

to O(n2). The total work done in unlocking is thereforen ∗ O(n) + O(n2) = O(n2).

78

Total time overall isn iterations ofO(n) time for searching and swapping plusO(n2)

amortized time for unlocking, orO(n2) overall.

We can give a tighter analysis by parameterizing the bound in terms of the actual

number of modules that need to be swapped,m, the maximum path length traveled by

a module during swapping,p, and the maximum tunnel lengtht. We first examine the

number of time steps performed during planning. To unlock a module, we spendO(n)

steps to find a tunnel path. There are a maximum of five bridge modules, so creating

and later destroying these bridges addsO(10n) time steps. Then, moving tunnel modules

takesO(t2) steps. Finding a path and moving the module to its final position takesO(n)

steps. Finally, returning tunnel modules to their original locations takes anotherO(t2)

steps. So we haveO(12n + 2t2) time for unlocking. There are two unlocking operations

per swap, plusO(n) time for finding modules to swap. That givesO(25n + 4t2) time

steps per swap, orO(25mn + 4mt2) time total. But, we know that the sum of all tunnel

lengths isO(n2). That gives a bound ofO(25mn + min(4mt2, 4n2)) time steps overall.

The number of moves in unlocking isO(10p) for bridging,O(2t2) for tunnel modules,

andO(p) to swap. With two unlock operations per swap, that givesO(22p + 4t2) moves,

or O(22mp + 4mt2) moves total. With the further bound on total tunnel lengths, we have

O(22mp + min(4mt2, 4n2)) in all.

4.2.3 Decentralized TunnelSort

The decentralized version of TunnelSort is listed as Algorithm9. Our general approach is

to dynamically choose modules as controllers over local operations, and to use message-

passing for global synchronization. Most often, message-passing is implemented such

that a message traverses modules sequentially. For example, with procedure DFS-send(),

the message arrives at modules in the robot in the same order in which depth-first search

79

would visit nodes in the module connectivity graph.

The algorithm begins as messagetype_checkis sent to any module. This initial mes-

sage can originate from outside the system or from another module using this algorithm

as a subroutine. When a module receivestype_check, it initiates a swap procedure if

necessary and then resendstype_check. The algorithm terminates after all modules have

receivedtype_check. This implements the outer loop of the centralized algorithm.

Control over the swap procedure is shared between the two modules,m1 andm2, that

exchange positions. Modulem1 unlocks itself by locally creating a tunnel in procedure

unlock(), and then searches form2 by sending theswapmessage. Modulem2 similarly

unlocks itself, moves into position, and signalsm1. Thenm1 is free to move to its final

position. All remaining modules return to their original positions via thereturn message

and the swap is complete.

Analysis

Correctness of decentralized TunnelSort can be proved by showing that the decentralized

version performs steps equivalent to centralized TunnelSort. This is formalized in the

following theorem.

Theorem 4 (Correctness of decentralized TunnelSort).Algorithm9 produces a recon-

figuration plan that transforms any given start configuration into any given goal configu-

ration.

Proof. First we show that the high-level synchronization places all modules in valid posi-

tions and terminates. Initially, we haveM = Mvalid ∪Minvalid, whereM is the complete

set of modules,Mvalid is the set of modules whose types match the goal type, andMinvalid

is the set of modules whose types conflict with their respective goal types. Procedure

DFS-send() propagates a message through the system according to a post-order traversal

80

Algorithm 9 Decentralized TunnelSort. Algorithm begins with messagetypechecksent
to any module. Each module executes identical code.

State:
type, my type label
goal_type, type in goal configuration at my current position

Messages:
type_check, sent to search for modules whose type conflicts with goal type

Action: If type = goal_type, DFS-send(type_check). Else execute unlock(), send
swap(goal_type, my position)

swap(t, position), sent to search for a module of requested typet
Action: If type= t, handleSwap(position). Else DFS-send(swap(t, position))

swap_done(position), sent to synchronize swap
Action: Find path toposition, follow path, DFS-sendreturn, sendtype_check

tunnel, sent to move modules out of the way
Action: Sendtunnelin same direction. Move to side of path, recording motions

return, sent to return displaced modules to original positions
Action: While not in original position, wait for next position to be free and move there.
Return true

Procedures:
handleSwap(p)

unlock()
Find path and move to position p
sendswap_done(my_original_position)to m1

unlock()
search for minimum length straight line path
while I am not in crustdo

if current segment not tunnelablethen
if path exists around segmentthen

follow path and continue
else

request mobile modules to bridge sides of tunnel to rest of structure
sendtunnelto segment
move through tunnel to next segment

DFS-send(message)
sendmessageto first child, wait for response
repeat for all children and compute result
send result in return message to parent

of a spanning tree imposed on the module connectivity graph, as discussed in Chapter3,

Section3.4. The messagetype_checkis propagated by DFS-send() and therefore arrives

at modules in sequential order. Propagation stops whentype_checkarrives at a mod-

81

ule m1 in Minvalid. The swap procedure movesm1 into a valid position and some other

modulem2 ∈ Minvalid to a different, possibly still invalid, position. Therefore, the swap

procedure results in decreasing the size ofMinvalid by at least one. Messagetype_checkis

then resent. Each iteration decreases the size ofMinvalid and increases the size ofMvalid

until Mvalid = M and the algorithm terminates.

We now show the correctness of the swap procedure. Messageswapis propagated

until it arrives at a modulem2 with invalid type, so we havem1, m2 ∈ Minvalid. Module

m2 moves itself to the crust via the tunnel procedure, and signalsm1, which also creates

a tunnel and moves itself to the crust. Since bothm1 andm2 are adjacent to the same sur-

face, a path between them exists. Modulem1 finds such a path and moves to the original

position ofm2. It then sends a message tom2, which similarly moves to the original po-

sition ofm1. Messagereturn then causes all displaced modules to return to their original

positions. The tunneling procedure operates locally according the case analysis described

earlier.

To show the time bound, we note that the number of module movements is equal to

that of the centralized version. The tunnel paths are straight lines, which Lemma6 showed

requireO(n2) moves in total, for ann-module robot. The swap paths are bounded by the

size of the robot, and so these also contributeO(n2) total moves, makingO(n2)+O(n2) =

O(n2) overall. We now must show that the addition message-passing overhead does not

asymptotically increase the number of time steps. To do this, we will count messages

by type. First,type_checkis sentO(n) times, orO(n2) total. Each swap consists of

a constant number of synchronization messages, each arriving atO(n) modules in the

worst case (simulated broadcast), plus added messages for tunneling. Tunnel messages

are passed along the tunnel, and the number is thus proportional to the tunnel length,

which we showed earlier to beO(n2) overall. Therefore the total number of messages

82

done in swapping isO(n2), and the total number of messages for the entire algorithm

is O(n2) + O(n2) = O(n2). Since the decentralized and centralized versions operate

equivalently, the parameterized analysis we showed for the centralized case is the same

in this case.

4.2.4 Example

An example run of TunnelSort is given in Figure4.14. This is an example of a diffi-

cult problem instance, a line configuration. In this section, lettered Frames all refer to

Figure4.14.

The number of mobile modules in a chain configuration is exactly two. The end

modules can be moved, but all others are articulation points. Therefore, reconfiguring

to or from a chain is difficult since most modules are immobile. This example shows

the solution TunnelSort planned for reversing the order of a line of modules. Frame (a)

shows the initial configuration, and the final frame shows the goal configuration almost

complete. Module shading indicates type, and all module types are unique. Note that the

order of module shading in the final frame is a reverse of the initial frame.

Since the goal is to reverse the module order, swaps must happen between outer mod-

ules, progressing inwards. The first swap, which exchanges the outer-most modules of the

chain, is simple. Frame (b) shows the modules en route to their final positions, and Frame

(c) shows the result. Since inner modules are immobile, they must be bridged. Frame

(d) shows such a bridge. Frames (e) and (f) show the second bridge, and the modules

in transit. This operation is completed in Frames (g) and (h). Another swap is shown in

Frames (i) and (j).

An interesting situation is how to swap to adjacent modules. The total module count

in this example is an even number, so the final swap in the reconfiguration exchanges the

83

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.14: TunnelSort example. Reversing the order of modules in a line configuration.
A line is the most restrictive configuration for a Sliding-Cube system since the number
of mobile modules is minimal (two). Here we see that the algorithm finds a solution by
unlocking internal modules using bridging.

two modules at the midpoint of the line. The solution found by TunnelSort is in Frame (k).

Note that the two modules end up sharing bridge modules in order to unlock themselves.

This was not implemented as a special case; the generic bridge implementation planned

84

it directly.

4.2.5 Discussion

This section presented an algorithm for sorting a configuration in-place. Coupled with a

solution for in-place homogeneous reconfiguration, this provides a complete method for

in-place heterogeneous reconfiguration. TS is the first published solution for this variant

of the problem. The reliance on a separate method for the homogeneous phase is not

limiting since 1) the greedy algorithm for the case with no holes is straightforward, 2)

a similar greedy solution exists for models that provide motion through the volume of

the structure, such as the unit-compressible model, and 3) we show how to simulate such

motion using the Sliding-Cube model in the next section.

The theoretical importance of this result is that it proves a polynomial-time solution

for heterogenous reconfiguration with constrained free-space. Earlier, we saw how hetero-

geneous reconfiguration exploits free space as a special case of the generally intractable

Warehouse Problem. The next section of this chapter completes the picture by removing

the assumption that the free space is connected, as it is in the crust.

The asymptotic worst-case number of primitive motions is not reduced in TS com-

pared to MSG, since both are asymptotically optimal solutions in the worst-case. How-

ever, MSG forces the worst-case behavior in any configuration, even if the start and goal

configurations are similar. This occurs because all configurations must proceed through

the line shape chosen as the intermediate configuration, and so average path length is large

(n/2). TS is an improvement in cases where only a small number of modules are invalid.

TS can make small changes to the structure without completely disassembling it, as MSG

does.

In fact, TS may be used as an alternative for the sorting procedure of MSG. In the

85

special case of a line, decentralized TS runs quickly because all tunnels are zero-length.

With a cube, TS is fast because all tunnels have length bounded by3
√

n, and there are

no bridging operations. Empirical data that shows the actual number of moves for cube-

shaped instances is given later in Table6.3. We see that TS is much faster than the sort

approach specified in MSG.

A single tunnel in TS can also be viewed as a local instance of MSG. A possible

heuristic improvement is to re-order the tunnel modules as they are replaced. If any

of these tunnel modules can be placed in valid positions, the total number of swaps is

reduced.

The overall concept of tunneling is important since this is a useful technique in other

variations of the reconfiguration problem. The algorithm in the next section is based on a

modified tunnel technique, for example. Also, this is used as the basis for in-place homo-

geneous reconfiguration with holes, which has not been published thus far for the Sliding-

Cube model. Along with the natural surface motion of Sliding-Cube systems, the addition

of motion through the volume as provided algorithmically by the tunnel technique makes

the Sliding-Cube a more powerful model. Previously, only unit-compressible systems

using meta-modules had this property.

4.3 Reconfiguration Among Obstacles

A main theme of this chapter is the gradual reduction of free space available during recon-

figuration. In this section, we continue this line of inquiry and examine the case where free

space is defined by an arbitrarily-shaped bounding region. This addresses the important

practical problem of reconfiguration among obstacles, and also the interesting theoreti-

cal question of reconfiguration planning with severely constrained, possibly disconnected

free space. Our algorithm includes a general method for homogeneous shape formation

86

in-place as well, so it represents a full solution for heterogeneous reconfiguration. Our ap-

proach is to refine the notion of tunneling presented earlier into a set of useful algorithmic

tools for module motion through the volume of the structure in the Sliding-Cube model.

The only model that supports such motion primitively is unit-compressible actuation with

meta-modules.

The TunnelSort algorithm addresses heterogeneous reconfiguration in-place but relies

on a separate algorithm for forming the initial shape homogeneously. Homogeneous re-

configuration in-place with a one-unit crust is straightforward in configurations of surface-

moving modules with no holes. A simple greedy method suffices. Full analysis is given

by Kotay [54]. In unit-compressible systems with meta-modules, a similar greedy method

works in-place with no additional free space beyond the union of the start and goal shapes

[99]. However, for surface-moving modules either in configurations with holes, or with

free space constrained beyond a one-unit crust, this method fails. The algorithm presented

in this section is useful because it addresses these problem instances.

The practicality of constraining free space is that we can model obstacles. An obvious

example where this is useful is reconfiguration on a surface. Unless the robot is floating in

space, reconfiguration must be able to avoid planning paths through impenetrable surfaces

such as the ground. Also, one of the main motivations of self-reconfiguration research is

that the robot can change shape and move through complex obstacles. This algorithm can

allow the robot to move tightly against obstacles, in a type of compliant reconfiguration.

Finally, one method of locomotion of SR systems is to plan a serious of shapes that moves

the robot to a desired location. This algorithm makes this task possible for homogeneous

or heterogeneous Sliding-Cube systems.

The challenge of disconnected free space is that the constraints can make it very dif-

ficult, or even impossible, to move modules to a desired position. For example, consider

the 2D homogeneous instance in Fig.4.15(a). If free space surrounds the configuration, a

87

(a) (b) (c) (d)

Figure 4.15: Challenges of reconfiguration with free space constraints. Example (a)
shows failure of greedy homogeneous reconfiguration in presence of free space con-
straints. Viewpoint is side view of 3D configuration. Start configuration is a cube, goal
configuration is same shape translated to the right. Shaded module does not change posi-
tion. Greedy algorithm fails because final free position is inaccessible via surface motion.
An example of an immobile (locked) configuration is in (b). All free space is adjacent
to immobile modules. Any move breaks connectivity. In (c), dark lines mark bounding
region, grey squares are uniquely-typed modules, white square is free space. May not
have a solution. In (d), module 1 needs to move to 3, module 2 needs to move to 1, and
module 3 needs to move to 2. Shortest valid swap sequence is 2-3,2-1.

greedy method can be applied that repeatedly searches for a mobile module and moves it

over the surface of the structure to any unfilled position in the goal configuration. But, as

the example shows, a greedy planner can fail if some space adjacent to the goal configu-

ration is not free. Even worse, Fig.4.15(b) shows a locked configuration where no moves

are possible. A heterogeneous example is in Fig.4.15(c). Here, the only available free

space is the size of one module. With uniquely-typed modules, this problem is an instance

of the(n2−1)-Puzzle, which is not solvable for all instances [43]. Finally, even if motion

through the volume of the structure is provided, free space constraints can make a greedy

swap order fail. Consider Fig.4.15(d). Our earlier planner might swap modules 3 and 1,

then 2 and 3. But the 2-3 swap is not possible because of free space disconnection, so we

would have to first swap 2 and 3, then 2 and 1.

Our approach to these challenges is to move modules through the volume of the struc-

ture in a planned order. First, we detail a revised tunneling procedure. Then, we use this

technique to develop an algorithm for homogeneous reconfiguration. The simple greedy

algorithm is listed for convenience. We then present the heterogeneous component of the

88

algorithm in both centralized and decentralized forms, along with analysis. The section

concludes with an example and discussion.

4.3.1 Tunnel Paths with Bends

A tunnel was defined in the previous section as a straight-line path. Because free space

was guaranteed to exist at the surface of the structure (the crust), a straight-line path was

also guaranteed to exist that connects any module to free space. With the loss of this free-

space assumption, a straight-line path is no longer sufficient. However, we can create a

more intricate tunnel path by allowing bends. This requires a more sophisticated, but still

linear-time, search procedure.

Recall that the main difficulty in removing a group of modules is maintaining global

connectivity in the structure. Earlier we saw that a particular local substructure was suffi-

cient to prevent disconnection during tunneling. As long as all neighbors of tunnel mod-

ules are connected, no disconnection can occur when the tunnel modules are removed.

We will refer to the neighbors on a given side of a tunnel as awall of the tunnel. In a 3D

Sliding-Cube system, a tunnel can have a maximum of four walls, but can also have less

than four. A one-walled tunnel equates to surface motion. For example, if the tunnel is

running along thez-axis, possible walls are positivex, negativex, positivey, and negative

y neighbors.

(a) (b) (c)

Figure 4.16: Tunnel with one bend. Shaded modules are tunnel modules; unshaded mod-
ules form tunnel walls. Tunnel path is shown in (a), (b) shows virtual module relocation
by shifting tunnel modules, and (c) shows unlocking a module for swapping.

89

Now consider a bend in a tunnel path. The walls of the tunnel must have bends as

well. See Figure4.16. The following Lemma shows that allowing bends preserves our

connectivity guarantee.

Lemma 9 (Tunnel with bends preserves connectivity).Any setMtunnel of adjacent

modules forming a chain can be removed without causing global disconnection if all

neighbors ofMtunnel are connected other than throughMtunnel.

Proof. Proof is similar to Lemma3. Since all neighbor modules are connected, removal

of a modulem in Mtunnel cannot cause disconnection because any two remaining mod-

ules in the structure that were connected throughm before removal remain connected

following removal.

To find a tunnel path from a given module to free space, we can use a simple search

procedure such as DFS. When the search begins, we determine the number of walls by

examining the local neighborhood. We must maintain this number and configuration

of walls during search; a search path terminates when the wall configuration changes.

Consider the path in Figure4.16(a) marked by the arrow. Note that the wall configuration

is the same for the first four shaded modules in the path. At this point, sufficient modules

exist for both walls to bend along with the tunnel path. Using these simple local rules, we

can use DFS to search for tunnel paths.

If the search ends without reaching the goal, it is still possible to continue searching.

We will detail this in later sections, but for now we refer to the portion of a tunnel with

constant wall configuration as atunnel segment. We will connect tunnel segments in two

different ways: one for using tunnels homogeneously for virtual module relocation, and

the other for using tunnels for actual module relocation as in TunnelSort.

90

4.3.2 Homogeneous Phase

Using module relocation through tunneling, we now present an algorithm for the homo-

geneous (shape-only) phase of heterogeneous reconfiguration. Unlike the greedy method,

this algorithm is in-place with free space constraints, and allows for configurations with

holes. The inputs are a start configuration, goal configuration, and free space defined as

a set of lattice positions. The output is a reconfiguration plan. Note that since this is

intended as a homogeneous phase of a heterogeneous algorithm, we ignore type infor-

mation in the configurations. The objective is to form the goal shape only, and a second

(heterogeneous) phase will correct type errors.

We now describe an extension to our tunneling technique to support virtual module

relocation. Then we present centralized and decentralized versions of the algorithm along

with analysis.

Virtual Module Relocation through Tunneling

The objective of virtual module relocation is to fill an empty lattice position by shifting

modules along a path. This idea can be implemented using tunnels. Instead of completely

removing tunnel modules from the tunnel path as we did in previous sections, we only

need to move each tunnel module once. This virtually relocates the module at one end of

the tunnel segment to the lattice position at the other end by shifting the tunnel modules

along the tunnel path.

Once a module has been virtually relocated in this manner, it is free to participate in

another tunnel segment. A tunnel segment ends at the termination of one of the tunnel

walls. This termination point is an open lattice position, which lies either on the surface of

an internal hole or on the outside surface of the structure. The final tunnel module in the

path is thus adjacent to this surface and can traverse it to reach the beginning of another

91

tunnel segment. Linking tunnel segments in this way, we can virtually relocate a mobile

module to any free lattice position.

To search for a tunnel path from a module to an open lattice position, we search the

module connectivity graph beginning with the initial module. Any graph search algorithm

can be used; we use DFS since it is easy to implement in a decentralized way. When we

reach a module adjacent to free space, we immediately search the surface of the free space

to check if we can reach the goal position, if not, we add all modules adjacent to this free

space as child nodes and continue. Otherwise, the search proceeds as described earlier in

Section4.3.1. Because the underlying algorithm is DFS, we can search the entire structure

in linear time.

After a path is found, motion is executed by iteratively shifting tunnel modules along

the tunnel segments in the path. To initiate the shift, we must bridge the tunnel walls

temporarily while the shift happens. Then the bridge modules can return to their original

positions. This bridging procedure is the same as defined earlier in Section4.2. The

number of primitive motions performed during execution of a tunnel path is equal to the

number of modules shifted plus the distance traveled by modules during surface motion

linking tunnel segments. This is linear in the number of modulesn, or O(n).

An important feature of this search procedure is that it effectively prioritizes surface

motion over internal motion. This results from adding all modules on the surface of free

space as children directly at the end of a tunnel segment. Therefore, if the goal position

is reachable via surface motion from a given position, this path will be found before

continuing to search internally with additional tunnel segments.

Centralized Algorithm

Algorithm 10 lists the centralized version in pseudocode. The overall structure is sim-

ilar to the greedy solution. The additional capability of tunneling, however, avoids the

92

failures of the greedy approach with surface motion only. Search form is conducted by

iterating over the list of modules; search forp iterates over the list of modules in the goal

configuration.

Algorithm 10 Homogeneous in-place reconfiguration with free space constraints allow-
ing configurations with holes. Modified greedy approach that makes use of motion
through the volume of the structure in addition to over the surface. Decentralized ver-
sion is listed as Algorithm11.

1: while reconfiguration is not completedo
2: Choose mobile modulem, where lattice positionm is empty in goal configuration

andm is bridgeable
3: Choose lattice positionp, wherep is occupied in the goal configuration but not

filled in current configuration
4: Search for tunnel path betweenm andp
5: Fill p by executing virtual module relocation fromm to p

Decentralized Algorithm

The equivalent decentralized algorithm is listed as Algorithm11. We assume that each

module has a copy of the goal configuration and knows its current position in goal con-

figuration coordinates. Each module runs the same code, and messagestart arrives at

a single module to begin algorithm execution. Algorithm steps parallel the centralized

version, with centralized iterative loops replaced by message-passing. MessagefindMo-

bileModuleis propagated until it arrives at a suitable modulem. Thenm begins a tunnel

search to find a goal positionp using DFS. This search is implemented, as in our other

decentralized algorithms, by message-passing. See Section3 for a description of this

technique. When a path is found,m begins execution. The module that fills positionp

signalsm, and a new search is begun with a call to moveOneModule(). When no more

mobile modules are found, the configurations are the same and the algorithm terminates.

93

Algorithm 11 Decentralized homogeneous in-place reconfiguration with free space con-
straints allowing configurations with holes. Centralized version is listed as Algorithm10.

State:
articulationPoint, am I an articulation point

Messages:
start, sent to exactly one module to begin algorithm

Action: moveOneModule()
labelArticulationPoints, labels articulation point modules

Action: DFS-send(labelArticulationPoints), settingarticulationPointas result
findMobileModule, search to find bridgeable non-articulation point

Action: execute handleFindMobile()

Procedures:
moveOneModule()

DFS-sendlabelArticulationPoints
DFS-sendfindMobileModule
if result is false, signal start of heterogeneous phase

handleFindMobile()
if articulationPoint is false and there is enough adjacent free space to bridge my neighbors
then

findTunnelPath()
executeTunnelPath()
moveOneModule()

else
DFS-send(findMobileModule)

findTunnelPath()
if adjacent to free spacethen

search for goal position reachable with surface motion
else

search for tunnel path with DFS
executeTunnelPath()

bridge start of tunnel segment
shift modules along path
signal start of next tunnel segment
when goal is filled, signal return

Analysis

We now show properties of correctness and completeness. We also prove the running

time as claimed.

94

Theorem 5. The homogeneous phase of CTS computes a feasible reconfiguration plan of

lengthO(n2) for all start and goal configurations inO(n2) time, wheren is the number

of modules in the system.

Proof. We first show correctness of the centralized version. By our choice of modules

to move, we never place a module in a position that is unfilled in the goal configuration.

The tunnel procedure is correct by Lemma9. Therefore, the correct goal configuration is

formed without breaking connectivity or violating free space constraints.

The steps of the decentralized algorithm are equivalent to the centralized version, as

shown in Section4.3.2. Procedure moveOneModule() replaces Steps 2-5 of Algorithm10.

After a module has been correctly positioned, this procedure is called again. This repli-

cates the loop structure of the centralized algorithm. This repeats until the goal is reached.

The decentralized version thus also correctly produces the goal configuration.

Completeness is proved as follows. First we show that the tunnel procedure finds a

path from any mobile module to any unfilled surface lattice position. Because the con-

figuration remains connected, there exists a path through the module connectivity graph

between any two modules. Our tunnel procedure shifts modules along any path, provided

there is sufficient room to bridge the beginning of tunnel segments. If the surfaces of the

start and goal configurations have the same shape, then this bridging occurs internally and

is not affected by free space constraints. Otherwise, since it is always possible to greed-

ily plan reconfigurations without holes [54] we know that relocations are possible until

the surfaces of the shapes match. Then we have reached the earlier case and relocations

proceed internally until reconfiguration is complete.

We now analyze the running time of the algorithm. For ann-module configuration,

the maximum number of relocations isO(n). For each relocation, we spendO(n) com-

putation steps in the centralized version (messages in the decentralized version) to find

95

articulation points,O(n) time (messages) to find a mobile module, andO(n) time (steps)

to find a tunnel path. Total search time isO(n + n + n) = O(n). For each relocation,

we spendO(n) time (messages) and motions during tunneling. Running time overall for

both centralized and decentralized versions is thereforeO(n2) time withO(n2) primitive

moves. Alternatively, if we bound the length of a module path byp then plan complexity

is O(np) moves.

4.3.3 Heterogeneous Phase

The heterogeneous phase corrects type errors left by the earlier homogeneous phase.

Since the goal shape as already been formed, the problem specification is the same as

for TunnelSort: the inputs are a type specification for the goal configuration, and a match-

ing start configuration with type labels. We also have free space constraints in the form

of a set of free lattice positions as in the homogeneous phase.

We begin with a method for moving a given module through the structure using an-

other refinement of tunneling. Because free space can be disconnected, the order of swap-

ping can no longer be arbitrary. We discuss an algorithm for determining this order, and

then give centralized and decentralized algorithms and analysis.

Actual Module Relocation through Tunneling

The tunnel procedure described in Section4.3.1can be extended to perform actual mod-

ule relocation as in the TunnelSort algorithm. This allows us to exchange the position, or

swap, a pair of modules. We now define a procedure for swapping two given modules.

Consider a modulem. To movem to a different position in the structure, we will create

temporary free space in the form of a tunnel thatm can traverse. As we tunnel, some

number of modules will be temporarily displaced. These modules can be stored using

96

existing free space. In some cases, a tunnel path can reach free space that is too small to

hold the temporary modules. The tunnel path can continue to other free space regions,

however, and is valid as long as the sum of adjacent free space is sufficient to hold all

modules along the tunnel path. Oncem tunnels to a given free space region, the tunnel

modules can reverse their movements. Now the structure, minusm, is returned to its pre-

vious configuration. Repeating this for a second modulem′ allowsm andm′ to exchange

positions, or swap. Given a list of modules and a list of disconnected free space regions,

we present an algorithm to determine which pairs of modules can swap with each other

and to generate a motion plan that executes the swap.

The path a tunnel follows consists of an alternating sequence ofsegments, sections

that pass through the volume of the structure, andholes, sections which pass through free

space. A segment does not need to be a straight line path; it can have arbitrary shape as

long as its length does not exceed the lattice distance between its endpoints. This property

makes sense because the only reason a path would have to double back on itself would be

to avoid a hole, which in our case would simply split the segment.

To search for tunnel paths, we will use a simple graph search augmented with addi-

tional information. The idea is to begin a breadth-first search from the start modulem,

and for every free space region we visit, we compute whether there is enough free space

for the tunnel to terminate at that region. Searching the entire graph, we can compute all

free space regionsm can use for swap space. This algorithm is listed as Algorithm12.

We begin BFS at modulem. We maintain lattice distancedi for every modulemi we

visit. At m, d = 0. When we move from a modulemi to a childmi+1, we increment

d such thatdi+1 = di + 1. When we reach a module adjacent to free space, we must

perform some additional computation. First, if the size of the free space region is greater

thand, thenm can safely tunnel into this hole. Now, to continue the search, we adjust

d by subtracting the size of the free space region. This accounts for the fact that we can

97

Algorithm 12 Searching for free space reachable from a given module.
1: Initialize d to 0 for all modules
2: BFS fromm
3: for each modulemi visiteddo
4: di = di−1 + 1
5: if mi is adjacent to free spacesi then
6: if size ofsi ≥ di then
7: add edge betweenm andsi

8: add modules adjacent tosi as BFS children ofm
9: setd = di− size ofsi

10: if d < 0 then
11: d = 0

deposit tunnel modules into this free space. Now we add all modules along the surface

of this hole as children ofmi, and we continue until the entire graph is searched. See

Figure4.17for an example.

We repeat this procedure beginning at every invalid module. Now we have a con-

nectivity graph of modules to free space. Our goal, however, is to determine module

connectivity. This is easily computed by connecting all modules adjacent to the same free

space node. After the swap sequence is determined, we can execute it by translating each

swap into a motion plan.

(a) (b)

Figure 4.17: Illustration of a searching for free space regions reachable via tunneling.
Distance labels keep track of tunnel length, beginning at 0. When the search reaches a
hole, the size of the hole is deducted from the current tunnel distance label. See (a). The
next step, shown in (b), is to reset the counter to 0 and add the modules surrounding the
hole as BFS children.

98

Determining Swap Sequence

Disconnected free space can prevent us from swapping arbitrary modules, since we can

only swap modules that can reach the same free space region through tunneling. We must

therefore plan a swap order. Pseudocode for this procedure is listed as Algorithm13.

We first build graphG = (V, E) where setV is the set of all modules, and setE has

an edge between each pair of modules that can swap with each other. The details of

determining “swappability,” or connectivity between modules, are not relevant to the swap

sequence algorithm. This abstraction allows the swap sequence algorithm to be useful in

more general contexts. For this application, we give a specific method for computing

swappability in the next section (Section4.3.3). For now we will assume a method exists

and continue by assigning each vertex inV a color corresponding to module type.

Algorithm 13 Approximating optimal swap sequence. Our solution is a
d−approximation.

1: Build module connectivity graph for invalid modules
2: Compute minimum diameter spanning tree
3: for each vertexv in post-orderdo
4: Search from parent for vertexv′ with goal color
5: Exchangev with v′ by swapping along search path
6: Output series of swaps

Our goal is to modifyG such thatG = G′, whereG′ is isometric toG but the vertex

colors correspond to types in the goal configuration. In other words,G represents the

start configuration andG′ represents the goal configuration. We modifyG by swapping

colors of adjacent vertices. For example, consider the graph in Figure4.18. Choosing the

specified swap order produces a solution in three operations.

To minimize swaps, we will find a spanning tree and perform a post-order tree traver-

sal. At each vertex we visit, we adjust the color to matchG′. To do this, we begin at the

parent vertex and use breadth-first search (BFS) to traverse nodes until we find a match.

99

(a) (b) (c)

Figure 4.18: Example of a swap-graph with three nodes. Initial graph is in (a). Right
child swaps with parent in (b), then left child swaps with parent in (c). Any other swap
order requires more swaps to produce the goal configuration shown in (c).

(a) (b)

Figure 4.19: Example spanning tree. In (a), deepest nodes in left subtree already match
the goal color, but their parent does not. Colors in the list associated with each node are
given for selected nodes. The resulting sequence of swaps is marked by darkened edges
in (b).

Then we swap colors in reverse order along the search path. This results in a sequence

such as that shown in Figure4.19.

Since the colors inG are a permutation of those inG′, there exists a swap sequence

that makesG = G′. Once a vertex is fixed, it is never modified since all searches proceed

from the parent and we visit all vertices in post-order (children, then parent). Therefore,

this algorithm correctly finds a solution for all connectedG.

For a tree of depthd, each vertex can require up to2d swaps to fix its color. Consider

the vertex with the goal color. The color is swapped with its parent up to some vertex,

where it then follows a path down to the final vertex. Searching for this path naively

would takeO(n) time per search, but we can augment the graph such that each search

only takes2d time with O(n) extra work. The extra data stored at each node is a list of

100

all colors contained within the subtree rooted at this node. These lists can be computed

simply with a post-order tree walk. The list for a parent is the merged lists of its children.

With n vertices, the running time is2d ∗ n = O(dn). Note that for sparse graphs, this

bound degenerates toO(n2).

So far, we have ignored the quality of the spanning tree. Now, we know the running

time of our algorithm depends on the spanning tree depth. Finding the spanning tree with

minimum depth therefore minimizes the running time of our algorithm. But it turns out

that we can make an even stronger statement: with a minimum-depth spanning tree our

algorithm approximates optimal within a factor of2d.

This spanning tree, more accurately theminimum-diameter spanning tree, can be

computed inO(n3) time generally but can be done faster with unit edge weights. A

quadratic-time implementation is to execute BFS from each vertex and choose the tree

with minimum diameter. Since BFS finds the shortest path tree from the chosen root,

some such tree is minimum overall.

To see why our algorithm is ad-approximation, consider the complete graphKn. Our

spanning tree is a root withn − 1 leaves. Clearly, the optimal solution (OPT) can use

cross edges not present in our tree to solve this inn time, whereas we require2dn = 2n

swaps. The number of cross edges OPT can use, however, is limited. We are guaranteed

at least one subtree of depthd with no cross edges (else we contradict the assumption that

this tree has minimum depth). Therefore, OPT must make the same number of swaps that

we do for this subtree. The remainingm nodes can be handled inm time by OPT, but we

required2dm. Therefore, OPT can be no more than2d faster.

Centralized Algorithm

We now combine tunneling and swap sequence to build the heterogenous phase of the

reconfiguration algorithm. Initially, we find a valid sequence of swaps by building and

101

searching a graph, where there is a node for each module, and there is an edge between

two nodes if the corresponding modules can be swapped. Swappability between each

pair of modules is determined by a search procedure. We then search this graph to find

a valid sequence of swaps. If no sequence exists, the algorithm fails. Otherwise, we

execute the swaps using an extended tunneling procedure. This approach is summarized

in pseudocode as Algorithm14.

Algorithm 14 Heterogeneous reconfiguration with severe free space constraints.
1: Build connectivity graph of swappable modules
2: Search graph for feasible swap sequence using Algorithm13
3: if no sequence existsthen
4: Fail
5: else
6: Execute swaps using extended Tunnel procedure

Assuming we have stored the tunnel paths generated earlier, we can swap using Al-

gorithm 15. This algorithm can be easily understood as a modification of TunnelSort.

Instead of only swapping using the crust, now we can swap in any free space region.

Also, instead of straight tunnels, we use tunnel paths with bends. The algorithm proceeds

as follows. First, we tunnelm1. Using extra modules, we bridge the mouth of the tunnel.

Then, we greedily move modules along the tunnel path into free space. Modulem can

then traverse this tunnel and we reverse to reset the structure. We repeat form2, but before

refilling the tunnel we movem1 into m2’s former position. One more tunnel allowsm2 to

move intom1’s original spot.

Decentralized Algorithm

We now develop a decentralized version of the heterogeneous phase, based on message-

passing. Our choices of algorithms for MST and path planning generally use local in-

formation so adaption to a decentralized version is natural. We replace BFS, which is

102

Algorithm 15 Swapping modulesm1 andm2 using free space regionsfree.
1: Bridgem1

2: for each segment along tunnel pathdo
3: Move tunnel modules along path into adjacent free space
4: Movem into sfree

5: Replace tunnel modules
6: Tunnelm2 into sfree

7: Movem1 into old position ofm2

8: Replace tunnel modules
9: Recreatem1’s tunnel

10: Movem2 into m1’s original position
11: Replace tunnel modules

difficult to implement in a distributed way, with iterative deepening search. This allows

us to compute shortest paths as in BFS and also to have the ease of distributed implemen-

tation as in depth-first search.

Algorithm 16 defines our solution in pseudocode. A copy of this code is assumed to

execute on each module simultaneously. The algorithm begins when astart message is

sent at the termination of the homogeneous phase. This initial message arrives at a single

module, and algorithm execution commences. From here, the local MST computation

happens in parallel, followed by sequential swapping according to a traversal of the global

MST.

The start message-handler simply broadcasts a command to begin the minimum-

diameter spanning tree (MST) computation. This procedure will execute on all modules

in parallel. First, if the module is already valid (current type equals goal type), then there

is nothing to do. Valid modules still need to broadcast this to the rest of the system, how-

ever, so later leader election will take place. Otherwise, the first step in building the MST

is to compute a connectivity graph. This is implemented using iterative deepening search

over all modules, using the same scheme as in the centralized version. At the end of this

step, the originating module has a list of holes it can reach, along with path costs for each

hole. The next step actually builds the MST. We will simulate BFS here by building a list

103

Algorithm 16 Heterogeneous reconfiguration with severe free space constraints, decen-
tralized.

1: State:
2: type, my type label
3: goal_type, type in goal configuration at my current position
4: leader, true if global MST is rooted at me (initially false)
5:
6: Messages:
7: start, sent to begin execution (arrives at exactly one module)
8: Action: BroadcastMST.
9: MST, sent to build minimum diameter spanning tree over graph of swappable modules, rooted

at this module
10: Action: Execute MST().
11: MST_done(cost c), sent to announce cost of MST and begin next phase
12: Action: If heard from all modules and my cost is min, setleader to true. DFS-

send(validate) over MST. When DFS-send returns, broadcastdone.
13: validate, sent to fix color of module
14: Action: Execute validate().
15: done, sent to signal algorithm termination
16: Action: Clean up any leftover state, start next task.
17:
18: Procedures:
19: MST()
20: if type= goal_type, broadcast MST cost as null
21: search free space to find holes we can reach
22: build MST
23: broadcast MST cost
24: validate()
25: search for matching color
26: execute swaps along search path
27: return when color is correct
28: DFS-send(message)
29: sendmessageto first child, wait for response
30: repeat for all children and compute result
31: send result in return message to parent

of modules reachable in one hop, then two hops, etc. For one hop, we send out a list of

reachable free space regions. Each module that can reach the same free space, and thus

swap, responds with a list of its free space regions. Now we iterate through this list and

request a similar list of modules for each. Removing duplicates, this becomes the new list

of two-hop modules. We repeat until all modules are visited. When done, we broadcast

104

the maximum hop count as the MST cost.

After all MSTs are computed, the module with the minimum MST cost begins the

next step of the algorithm. In the centralized version, we determined swap sequence

by using a post-order traversal of the MST. Here, we can use DFS-order to implement

this. The message-handler forvalidatecontrols the procedure to move a valid module

into position, thereby validating the type. Note that as part of MST determination, we

maintain the ID of the MST parent (think of this as a parent pointer), and also a list of all

module colors in our MST subtree. Search proceeds by sending a message to the parent,

which checks for the goal color in its subtree list. If the color exists, it sends the message

to its MST children. Otherwise, it sends the message to its MST parent. This implements

the same search order as in the centralized version. When a match is found, the matching

module then initiates swaps following the resulting swap sequence. When it swaps with

the final module, the validate message is then propagated to the next module to continue

reconfiguration. When all swaps are done, the algorithm terminates.

Unlike the centralized version, which computes the entire swap sequence for all mod-

ules and then executes it, the decentralized algorithm interleaves these two operations.

The details of controlling a single swap follow the order described in Algorithm15. The

module to be unlocked acts as a local controller, and sends messages out along the tun-

nel path that cause tunnel modules to move into available free space. The messages that

synchronize this process are given in Section4.2.

Analysis

Complexity analysis is as follows. Building the swap graph takesO(mn) time for m

modules that are out of position andO(n) search time per module. The swap sequence

can then be computed inO(m2) time. Unlocking a module requires the same time as in

TS,O(25n+4t2). We have a maximum ofm2 swaps, so total time spent isO(mn+m2 +

105

25m2n + 4m2t2).

The number of moves to swap a module is the number of time steps minus time spent

searching. Search time isO(2n) for finding tunnel paths plusO(n) to initially find a

module to swap. For a maximum surface path lengthp, the number of moves in a swap is

thusO(22p + 4t2). Total moves withm2 swaps isO(22m2p + 4m2t2). Tunneling can be

parallelized by moving tunnel modules at the same time instead of sequentially, reducing

actuation time by a factor oft.

If m = t = p = n, then these bounds degenerate toO(n4). For average values oft

andp, and smallerm, the bound is reasonable. For example, withm = t = p = O(
√

n),

the upper bound isO(n2) time and moves.

The number of swaps in the decentralized version is the same as in the centralized

analysis. Therefore, the planning and plan complexity for the decentralized case is also

the same as in the centralized case.

This algorithm is not guaranteed to solve all problem instances. However, we can

solve instances with sufficient free space:

Theorem 6. Algorithm ConstrainedTunnelSort produces a feasible plan for a given prob-

lem instance if the graph of free space regions is connected, and all modules can reach a

free space region through tunneling.

Proof. If a module can reach free space via tunneling, it can be moved into this free space

region by the specification of the tunneling procedure. If all such free space regions are

connected, a module can traverse them using tunneling. Since all modules can reach some

free space region, all modules can reach all possible goal positions and CTS will produce

a feasible plan.

Specifically, instances containing one large free space region can be solved. For exam-

ple, a single free space region with size equal to the diameter of the module connectivity

106

graph is sufficient. The crust used by TS is another example.

It is important to note that the tunnel search procedure places additional constraints

on the instances we can solve. A tunnel path through a single chain of modules with no

surrounding free space cannot be executed without breaking connectivity. This implies a

tunnel with zero walls, which would not be found by our search procedure.

Although there is no constant-time procedure for determining whether a particular

instance is solvable, Theorem6 suggests a polynomial-time decision algorithm. We can

build the swappability graph inO(n2) time total, since each module requiresO(n) time

for tunnel path searching. If the graph is disconnected, the algorithm will fail.

4.3.4 Algorithm: ConstrainedTunnelSort

Algorithm 17 Algorithm ConstrainedTunnelSort. Plans reconfigurations for heteroge-
neous systems with free space constraints, allowing configurations with holes.

1: Form shape using Algorithm10or 11
2: Correct type errors with Algorithm14or 16

We now combine the homogeneous and heterogeneous phases together as Algorithm17.

This provides a full reconfiguration solution.

4.3.5 Improvements

A number of improvements can be made to reduce the number of moves at the expense

of added computation steps. This is a good trade-off since actuation in SR systems is

generally much more costly (in terms of time) than computation. One idea is to find

minimum-bend paths for module trajectories (see Chapter5). This reduces actual moves

since straight-line paths require less moves than turns in Sliding-Cube instantiations.

Another area for improvement is the bridging operation. Any position along a tunnel

wall adjacent to another tunnel wall can be used for bridging. Searching from each of

107

these positions to find the closest mobile module adds aO(n) factor in planning, but

potentially reduces the number of moves since it minimizes bridging moves.

During the homogeneous phase, we do not consider module type. However, the plan

complexity of the heterogeneous phase is dependent on the number of type errors in the

configuration. We can improve this by greedily choosing modules of the correct type

during the homogeneous phase. It is not possible to do this for every module, however.

Finally, the tunneling trajectory planning can be replaced by other trajectory prim-

itives that are specialized for certain structures. For example, a tight gait that moves

modules in a local cycle can be used in dense configurations. Such a gait is presented in

Chapter5. This would allow CTS to solve extremely tightly constrained instances, and a

tunnel would require moves linear in the tunnel length as opposed to quadratic. But, this

does not work for sparse configurations.

4.3.6 Discussion

In this section we developed a novel reconfiguration algorithm composed of homogeneous

and heterogeneous phases. The homogeneous algorithm is the first in-place solution with

free space constraints and configurations with holes for modules with surface motion as

the actuation primitive. TheO(n2) worst-case running time is asymptotically optimal for

this problem variation. The heterogeneous algorithm requiresO(n4) time in the worst

case but solves instances with complicated free space constraints. There is also aO(n2)

time decision algorithm to detect whether a given instance is solvable. The tunnel pro-

cedure that enables both algorithms is a useful general method providing motion through

the volume of the structure for Sliding-Cube modules.

Recall that polynomial-time solutions by Sharma [87] utilize a connected region of

free space. Here we add to the list of special cases that can be solved polynomially. We

108

still do not have an enumeration of all special cases, but can characterize instances that

are solvable in terms of size and connectedness of free space.

Despite the slow worst-case bound on running time for the heterogeneous phase, this

algorithm has important practical applications. The homogeneous phase can be used for

locomotion among obstacles, for example. Locomotion would occur via a series of goal

configurations, possibly generated on the fly, that have the effect of moving the robot

along some path. The best existing locomotion algorithms, based on cellular-automata

rules, are simpler but require assumptions such as constant width or height in order to

prevent disconnection [8]. Our algorithm is useful as a subroutine in cases where complex

obstacles prevent fast locomotion.

The worst-case analysis presented for the heterogeneous phase is misleading when

considered out of context. The worst-case running time ofO(n4) occurs only when all

modules must be relocated and all paths are very long (n modules). A more realistic

estimate of path length isO(
√

n) or O(3
√

n). This reduces the tunnel cost toO(n) from

O(n2). Also, O(n2) swaps can only be required for uniquely typed modules and a large

number of very small free space regions. Each module would have to “hop” throughn

free space regions before reaching a valid location, which is unlikely in practice. A better

average-case measure isO(n) swaps total, since the number of types in a system is likely

to be constant and the number of free space regions is likely to be far less thann. This

yields an average-case running time ofO(n2), which is competitive with other algorithms.

4.4 Position Constraints

In all reconfiguration techniques discussed so far, we assumed the availability of a fixed

goal configuration. We began to relax this assumption in the discussion of locomotion;

now we investigate the idea of alternate representations of the goal configuration in the

109

context of modules specialized by function. For example, a camera module might need

to remain at the front of the robot during reconfiguration, or heavy battery modules might

need to remain at the bottom. We refer to these restrictions asposition constraints. Main-

taining position constraints during reconfiguration is related to the general reconfigura-

tion problems of this chapter in two ways. First, this approach can be thought of as an

extension of the main theme of reconfiguration in heterogeneous systems. Second, the

algorithmic tools enabling this task come directly from reconfiguration solutions.

The general idea of reconfiguration according to function is unexplored. In this sec-

tion, we make initial steps. We propose new representations, in the data-structure sense,

of configurations, and outline how constrained modules acquire and react to updates of the

current configuration. We also present a simple algorithmic demonstration in simulation.

4.4.1 Representation

In order for a given module to maintain position constraints relative to a structure, it must

have some knowledge of the current global state. This knowledge might be estimated,

inexact, or out-of-date, but in the absence of global state, the module (or some module

controlling it) cannot maintain its relative position in a changing structure.

Our choice of representation of this state should be small and simple, and able to be

dynamically updated. We propose representing the goal shape as a sum of boxes. This is

similar to the representation of a 1D signal as the sum of sinusoids. Such a representation

can be complex enough to express position constraints at the required granularity, but

could also be constant size, such as a bounding box, if position constraint requirements

are simple. Small size is important since this is data that will be updated frequently via

inter-module communication.

The question of how and when to update this global state is important since this de-

110

termines communication cost, and also how quickly and accurately constrained modules

retain their positions. Solutions vary in how frequently updates are sent, and in the num-

ber of modules receiving updates. At one extreme, each module broadcasts its position

at every move. At the other extreme, updates are sent locally and infrequently. Hybrid

approaches include partial updates punctuated by infrequent full updates, such as the idea

of a key frame, or some other combination.

4.4.2 Constraints on a Single Module

Position constraints for a single module can be defined by specifying a box face in the

goal representation. For example, to maintain a sensor module on top of the robot, the top

face of a bounding box representation is chosen.

Once this constraint is expressed and a method of dynamically updating global state

is provided, the problem of maintaining position can be addressed as a control problem.

Standard control techniques can be adapted and applied. Low-level motion is planned by

algorithms for either surface motion or tunneling.

4.4.3 Algorithm: Maintaining Position Constraints

We implemented a simple example to illustrate the concept. The task is to keep a module

at the top center of a randomly-moving Sliding-Cube robot. We chose a single rectangle

(bounding box) representation, with each module broadcasting updates at every move.

A simple algorithm executed by a constrained module is listed as Algorithm18, and

screenshots are shown in Figure4.20.

111

Algorithm 18 Position constraints algorithm executed by constrained module. Assumes
continuous updating of goal configuration, represented by a single box. Module attempts
to maintain its position at the top center of the structure.

1: wait for state update
2: if new position is outside bounding boxthen
3: compute new bounding box
4: plan path to top center
5: execute motion plan

(a) (b) (c)

Figure 4.20: Position constraints example. The dark module attempts to maintain position
in the center top of the structure. The white lines indicate the bounding box, and the center
column marks the actual center. Modules move randomly, favoring motion to the right.
Note that the configuration moves to the right as a result, but the constrained module
maintains position.

Analysis

Communication cost of this example isO(n) per module motion, since each module

broadcasts its position at every move. The constrained module can maintain its position

exactly since it has complete information.

4.4.4 Discussion

The example presented in this section is a simple illustration of the position constraints

concept. Further research is required to achieve greater communications efficiency. A

good goal is to provide a parameterized algorithm that trades of communication cost with

position accuracy.

112

Chapter 5

Applications

Realizing the vision of heterogeneous SR robots requires solutions to planning and control

problems beyond the basics of shape-changing. In Chapter1, we outlined a number of

these related problems and identified three that we chose to study in this thesis. Other

important issues, such as human-robot interaction and goal configuration determination,

are left to other researchers. The three problems addressed in this chapter are distributed

goal recognition, locomotion, and self-repair. We study these particular issues because of

their strong relationship to our main reconfiguration planning results.

The first issue we address in this chapter is the problem of distributed goal recognition

in heterogeneous systems. This is an important problem, since any type of reconfiguration

requires the system to realize when it has reached its goal. Our GR algorithm compares

the current state to a goal state, defined by the same heterogeneous configuration repre-

sentation we use in reconfiguration algorithms, in a distributed fashion. Even though our

reconfiguration algorithms are guaranteed to terminate when the robot reaches its goal

configuration, it is useful to consider goal recognition as we do here, as a stand-alone

problem. For example, GR can be used as a subroutine in other applications or in other

types of reconfiguration algorithms.

113

The second issue we address in this chapter is locomotion. As previously described

in Chapter1, locomotion is an important application of reconfiguration. The ability to

change shape affords SR systems versatile locomotion modalities specially suited for

moving over rough terrain and through unknown environments. The issue of uncertainty

arises here since modules are likely to experience connection, actuation, communication,

or other failures during operation. The third issue we discuss, self-repair, is how to handle

this total module failure. This is high-level, discrete uncertainty as opposed to the low-

level, continuous uncertainty faced by systems that control connection, disconnection,

and actuation mechanisms.

Our approach to the locomotion and self-repair problems is based on our reconfigura-

tion planning work, which composes basic motion primitives into higher level trajectory

primitives, and then further composes these into reconfiguration plans. For locomotion,

we begin with a simple algorithm for unit-compressible systems that requires no changes

in module connections. This algorithm, called Inchworm Locomotion, has been imple-

mented in hardware (see Chapter6). We then develop a general method for Sliding-Cube

systems that supports compliant locomotion among obstacles. The nature of this motion is

such that the robot moves along rectilinear paths, where straight segments are preferred to

turns. This leads us to investigate rectilinear path planning that minimizes bends, and we

describe the first published solution to the 3D minimum-bend path problem (3D-MBP).

In the self-repair problem, we view a robot with a failed module as a heterogeneous

system with an unactuated component. We develop trajectory primitives that collabo-

ratively transport a module that cannot move on its own, and use these to construct a

self-repair approach. The 3D-MBP problem occurs here as well, since these trajectory

primitives are more efficient for straight-line paths than for turns.

The chapter is organized into four sections. Distributed goal recognition is presented

first, in Section5.1. Section5.2describes the Inchworm Locomotion algorithm and gen-

114

eral locomotion among obstacles. 3D-MBP is presented independently in Section5.3.

Self-repair concludes the chapter in Section5.4.

5.1 Distributed Goal Recognition

Since modular robots operate as a tightly coupled distributed system, most usage depends

on collective coordination and recognition of the current state of the system. This is

especially important in the context of recognizing that the system has achieved its goal.

For example, the goal can be a desired shape for a self-reconfiguring application, reaching

a certain spot for locomotion or implementing a given configuration for manipulation. As

discussed in Section5.2, locomotion algorithms based on local rules do not explicitly

track the global configuration centrally. Goal recognition could be used in conjunction

with other algorithms for locomotion or reconfiguration tasks. The possibility of using

goal recognition as a frequently called subroutine is mentioned in [106].

Distributed goal recognition is challenging because each module in the system has

access to local state information only. This information has to be integrated to form a

global picture, and modules must find their positions in this overall state. In order to

compute the solution, the union of these configurations has to be compared against the

goal.

We now present our approach for solving the goal recognition problem for hetero-

geneous robots. We outline the main idea of the solution, develop the algorithm for 2D

robots, then propose a 3D version. Both algorithms use the same resource upper bounds,

O(n2) total messages executing in (parallel)O(n) time. Finally we describe the imple-

mentation of our solution in simulation.

115

5.1.1 General Approach

The general goal recognition problem asks if a modular robot’s configuration matches a

particular goal. Configurations can be represented as a binary matrix for homogeneous

systems, with 0 corresponding to empty space and 1 corresponding to space occupied by

a module, or as a matrix with value indicating module type for heterogeneous systems.

This representation leads to the following problem formulation: given an oriented goal

matrixG and a modular robotA, determine ifA’s configuration matches that specified by

G. We assume that the robot is a purely distributed system comprising modules that have

local communication, limited processing power and memory, and that form a lattice. To

simplify presentation, we consider square (in 2D) and cubic (in 3D) module shapes, but

the algorithm works with other shapes as well.

Our solution to distributed goal recognition is based on a technique we call atrace.

Intuitively, a trace is a tour of the modules of the robot matched at each step against

the goal matrix. Consider the situation where one module is assigned a position in the

goal matrix. If the matrix value matches the module’s type, then the module is consid-

eredvalid. That module then passes a message to a neighbor, including an indication of

the matrix position corresponding to that neighbor. This new module could then decide

whether it is valid, and so on. If any modules are not valid, then the trace is said to fail.

Conversely, if all modules are valid, then the trace is said to succeed, and under certain

conditions this implies that the robot is positively in the goal configuration. In particu-

lar, if the number of modules in the robot and in the goal matrix are the same, and both

are fully connected, then a successful trace is both necessary and sufficient to solve the

goal recognition problem. Of course, the problem remains as to how any module knows

whether all other modules are valid. We approach this differently in 2D and 3D, but in

both cases the message-passing policy guarantees that the module originating the trace

116

eventually receives the “answer.”

The main idea of our algorithm is for multiple modules to initiate traces in parallel,

each testing themselves against the same well-known position in the matrix. We call this

position theanchor, and arbitrarily define it as the upper-left corner (in 3D, forward upper-

left) of the target shape. The modules find this position by scanning the matrix for the first

non-zero value. In 2D, a module matching this local configuration would have no north

or west neighbors, so any such physical module is calledspecialand knows to initiate a

trace when the algorithm begins. Neighbor detection can be performed using message-

passing or through the use of some special sensor. At most one trace will succeed, and

the winning module then sends a global message. If all traces fail, however, then the

situation is slightly more complex since no single module has enough information to

discern global failure. If at least one module knows that all traces have failed, it can then

propagate a global failure message. Therefore, when a trace fails, its originator sends a

failure message that acts as a “meta-trace.” Any special modules that receive this message

hold it until their respective traces fail, then send as normal. When the module gets the

meta-trace back, it knows that all other traces have failed and it can propagate the global

failure message.

Since the algorithm is distributed, the method of signaling the algorithm’s result is not

immediately clear. If the algorithm is used as a subroutine in a larger context, then the

first module to attain the global answer could return the result. In this case, however, we

are working with goal recognition in a stand-alone fashion. We chose to simply propagate

the answer throughout the system and programmed the modules to execute a predefined

behavior to signal success or failure.

This algorithm has several nice properties. First, it is distributed and avoids the con-

cept of a supermodule. It also requires less space than simpler solutions. For example,

one such simple approach would be that each module broadcasts (through local message-

117

passing) its ID and the IDs of its neighbors. When one module has received a message

from all modules, it builds a connectivity graph, converts it into a matrix, and compares

against the goal matrix to compute the answer. That solution requires linear space in each

module, orO(n2) space overall versus our algorithm which requires only linear space

overall. Our solution also requires fewer messages. We now describe the algorithm in

detail.

5.1.2 Goal Recognition for Homogeneous Planar Robots

We begin with the simple case of 2D homogeneous robots. If the target shape has no

holes, and the number of modules in the robot and target are equal, then a trace needs

only to compare theperimetermodules against the goal. This is easily accomplished by

passing the trace messages according to theright-hand rule. We use the reverse order for

convenience so a more accurate term would beleft-hand rule. Passing messages along

the perimeter also insures that the trace message always returns to the originator after

being seen by all perimeter modules. Modules pass messages around the perimeter using

a LeftHandPass function that takes the direction of the incoming message as a parameter

and sends to the next module in a clockwise direction (potentially the previous sender).

The algorithm begins when a message (GR_START) is generated from an outside

source, such as an outer algorithm using Goal Recognition as a subroutine, and is prop-

agated through the system. Special modules initiate traces in response to the start mes-

sage, and a successful trace generates a success message. Failed traces otherwise generate

meta-traces, eventually resulting in a global failure message. Behavior to signal success

or failure could be implemented as a return to the calling algorithm. Pseudocode for the

algorithm, listed as a series of message handlers, is given in Algorithm19.

Examples with only one special module are given in Figure5.1. Part (a) shows a sim-

118

Algorithm 19 2D Goal Recognition message handlers.
GR_START:
PostMessage(GR_START)
if I am specialthen

LeftHandPass(TRACE, receivedFrom)

TRACE(vector goalPos):
if message is from methen

PostMessage(GR_SUCCESS)
else

if valid(goalPos)then
LeftHandPass(TRACE(neighborPosition, receivedFrom)

else
LeftHandPass(TRACE_FAIL, receivedFrom)

TRACE_FAIL:
if message is from methen

LeftHandPass(META_TRACE, receivedFrom)
else

LeftHandPass(TRACE_FAIL, receivedFrom)

META_TRACE:
if message is from methen

Signal(FALSE)
PostMessage(GR_FAILURE)

else
if I am specialthen

while my trace has not returneddo
wait for my trace message

LeftHandPass(META_TRACE, receivedFrom)

ple shape. Once GR_START is received, it propagates through the robot. Meanwhile,

m1 initiates a TRACE message, which is valid for each module. When the TRACE re-

turns tom1, GR_SUCCESS is sent and the robot signals success. In (b), the trace fails

at m2 and TRACE_FAIL is sent. Modulem1 receives the TRACE_FAIL, sends the

META_TRACE, and then follows with GR_FAILURE. Figure5.2 is a more complex

example with multiple special modules.

119

m1 m2

m 1

(a) (b)

Figure 5.1: 2D goal recognition examples. In (a), modulem1 sends a successful trace
message. Modules that have received the trace are shown in light gray. Arrows indicate
direction of the trace. The goal in part (b) has no module atm2, causing the trace to fail.
Dark modules indicate TRACE_FAIL propagation.

Analysis

Our algorithm correctly solves the goal recognition problem for all instances in which

the robot and goal shape have the same number of modules and no holes. This can be

shown by considering two cases. First, if the robot is in the goal configuration, the anchor

position in the matrix must match one special module. This module will initiate a trace

that necessarily returns and is valid, at which point global success is signaled. If the

robot does not match the goal shape, the perimeter of the goal cannot match the robot’s

perimeter. Therefore, all traces must fail, but regardless of the robot shape will return

to their parent modules. A META_TRACE message is then allowed to pass through all

special modules to its originator, and global failure is signaled.

The total number of messages isO(sk) trace messages(s traces ofk messages each),

Figure 5.2: Multiple special modules. Dark modules are special and initiate traces in
parallel, with paths of the traces indicated by arrows.

120

wheres is the number of special modules andk is the number of modules on the perimeter,

plusO(n) messages for propagating the solution, orO(n + sk) total. Sinces < k <= n,

the overall upper bound on number of messages isO(n2). Since messages are sent in

parallel, the time requirement is linear in the number of modules. The space requirement

is constant per module, or linear overall.

Extension to General Heterogeneous Shapes

The 2D algorithm we presented works under the assumption that the structure has no

holes and is homogeneous. However, with a simple extension we can be sensitive to

heterogeneous structures with holes as well. The addition is another layer of validation

messages prior to the global success signal. If a trace is successful (note that even with

holes present, only one trace can succeed), its originator propagates a message through

the modules similar to the 3D trace described below. If any interior modules are invalid

at this time, they can immediately broadcast GR_FAILURE, while if the message returns

to the originator, it can signal GR_SUCCESS. This increases the number of messages by

a small factor but does not affect the asymptotic analysis.

5.1.3 Goal Recognition for 3D Robots

The approach in Algorithm19 can be used with a 3D robot. The major difference is

in how a trace message is propagated. It is unclear how to propagate the trace over the

surfaceof a 3D robot and guarantee that the special module receives the correct answer,

so we must send the trace to every module instead, using a breadth-first search (BFS)

scheme. We must still ensure that the special module retrieves the answer to the trace.

This can be implemented with BFS on a spanning tree of the module connectivity graph.

First, the special module sends the trace to all its neighbors, and waits for an answer

121

from each. When it receives the trace back from each neighbor, its global answer is

GR_SUCCESS if its trace is successful, and otherwise it broadcasts a TRACE_FAIL

message. When a neighbor module receives a trace message, it checks to see if it has

already received this message. If so, it simply returns TRACE_REPLY(FALSE). Else,

it recursively sends the trace to all its neighbors, and so on. The algorithm is listed in

pseudocode as Algorithm20.

Algorithm 20 3D Goal Recognition.
GR_START:
PostMessage(GR_START)
if I am specialthen

for all neighbor modulesm do
PostMessage(TRACE)

TRACE(vector goalPos):
if already receivedthen

SendMessage(receivedFrom, TRACE_REPLY(FALSE))
else

for all neighbor modulesm do
SendMessage(m, TRACE(neighborPosition))

TRACE_REPLY(Bool bSucceeded, int numSpecial)
if message is from methen

if bSucceededthen
PostMessage(GR_SUCCESS)

else
numTraces = numSpecial
PostMessage(TRACE_FAIL)

else
if received reply from all neighborsthen

if I am specialthen
numSpecial = numSpecial + 1

SendMessage(parent, TRACE_REPLY(answer, numSpecial))

TRACE_FAIL:
numTraceFails = numTraceFails+1
if numTraceFails == numTracesthen

Signal(FALSE)
PostMessage(GR_FAILURE)

122

In order to detect global failure, each special module will increment a counter as-

sociated with trace messages. This way, when a special module gets its trace back, it

knows how many special modules are in the current configuration. Then, if a special

module receives as many TRACE_FAIL messages as traces, it sends GR_FAILURE. If

a trace succeeds, the module sends GR_SUCCESS. In either case, the algorithm termi-

nates. Note that since we send messages to all modules, this version is sensitive to holes

in the structure.

The 3D algorithm is correct for all heterogeneous robot and goal shapes with equal

numbers of modules. As in the 2D case, if the robot matches the goal configuration,

exactly one trace will succeed. Otherwise all traces fail, and each special module knows

the total number of special modules. Each special module therefore waits until all traces

are known to have failed, and then correctly signals global failure.

The number of messages is nowO(n2), and time is still linear. Space requirements

are increased, however, toO(n) per module.

5.1.4 Discussion

In this section, we have presented a simple algorithm for goal recognition in modular

robotic systems. Our solution allows such a robot to compare its overall physical shape

and distribution of module types with a given goal configuration represented as a type-

matrix. We implemented the algorithm in simulation in both 2D and 3D versions, and

also conducted hardware experiments using an SR system developed in our lab. These

results are presented in Section6.

An interesting extension would be, instead of computing a binary result, to measure

how close the robot is to the goal, using some metric that could be computed in a cumu-

lative fashion by the trace message. For example, the trace could carry a counter of valid

123

Figure 5.3: Screenshot from 2D simulator. Left pane represents robot, right pane is goal
shape. Special modules are lightened. This instance will fail.

versus invalid modules, and the special modules could then use that information in some

way, perhaps as input to an outer reconfiguration planning algorithm.

5.2 Locomotion

Most mobile robots achieve locomotion with dedicated mechanisms such as wheels, legs,

or tank-treads. SR robots do not commonly include such specialized components and in-

stead must perform locomotion through the primitive actuation capabilities of their mod-

ules. On most lattice-based systems, locomotion can be performed by moving individual

modules over the surface of the group from the back to the front in a tank-tread-like

pattern. In unit-compressible systems such as the Crystal, no single module can move

relative to the group without help from other modules. A different specialized technique

is required. We have performed extensive experiments with such a technique: a sim-

124

Figure 5.4: 3D simulator screenshot. The algorithm compares the robot on the left to the
goal shape on the right.

ple locomotion algorithm for the Crystal robot with sensors. We describe this algorithm

in this section, along with more sophisticated algorithmic techniques for locomotion in

heterogeneous Sliding-Cube systems.

In general, there are two main strategies for locomotion in lattice-based systems. The

first strategy is purely local and rule-based, similar to cellular automata techniques [11].

Locomotion in this strategy is fast and simple to control, but must make assumptions

about the configuration, such as fixed height or fixed width. The other strategy is to

use reconfiguration for locomotion. This method works in the general case, but requires

planning.

We discuss both strategies in this section, beginning with a solution based on the

first strategy: a simple algorithm for locomotion in a minimally heterogeneous unit-

compressible system. This algorithm produces inchworm-like motion to perform loco-

motion on a stand-alone group of modules, taking advantage of friction with the ground

to move the group forward. We then discuss a method for using heterogeneous reconfig-

uration algorithms for locomotion in complex environments.

125

5.2.1 Inchworm Locomotion Algorithm

Figure 5.5: Schematic of module action under Inchworm Locomotion, in which the group
is heading upward, and the series (left to right) represents progress of a single inchworm
“step.”

The Inchworm algorithm for locomotion in unit-compressible systems is based on a

set of rules that test the module’s relative geometry and generate expansions and contrac-

tions as well as messages that modules send to their neighbors. When a module receives

a message from a neighbor indicating a change of state, it tests the neighborhood against

all the rules, and if any rule applies, executes the commands associated with the rule. The

algorithm is designed to mimic inchworm-like locomotion: compressions are created and

propagated from the back of the group to the front, producing overall motion.

Pseudocode is presented as Algorithm21. The overall idea behind Inchworm Lo-

comotion is that at any given moment, the majority of the modules are stationary. The

remaining modules move relative to the majority. In addition, the motion is specified

such that two adjacent modules will move together, minimizing the net force to the other

modules. A schematic storyboard of this algorithm is given in Fig.5.5. The “tail” module

contracts first and signals its forward neighbor to contract. Each module expands after

contraction, so that the contraction propagates through the robot. When the contraction

has reached the front of the group, the group will have moved half a unit forward (in

theory; empirical results are given in Chapter6). Depending on context, once the leader

of the group has contracted and expanded, it can then send a message back to the tail to

initiate another step.

126

Algorithm 21 Distributed Inchworm Locomotion. Identical copies of this code execute
on all modules simultaneously.

State:
neighbors[], array of neighbors
heading, direction robot is moving: N,S,E,W

Messages:
inch (direction d), sent to move robot in directiond

Action: setheadingstate tod, execute TryRules()
state (state s), announces state changes to neighbors

Action: execute TryRules()

Procedures:
TryRules()

position← FindPosition()
if position = headthen

if neighbor[opposite(heading)] is contractedthen
contract, send state
expand, send state
send inch

if position = bodythen
if neighbors[opposite(heading)] is contractedthen

contract, send state
expand, send state

if position = tail and responding toinchmessagethen
contract, send state
expand

FindPosition()
if rear neighbor but no forward neighborthen

return head
else ifforward neighbor but no rear neighborthen

return tail
else

return body

Analysis

The Inchworm Locomotion algorithm produces locomotion in the intended direction.

This is simply shown by noting that only the tail can contract at first, followed by each

other module in turn. Since each contraction must be triggered by astatemessage, no

module will contract until it has the proper information, but once it does contract and

127

(a) (b)

(c)

Figure 5.6: Photos of locomotion experiment for the blob shape. In (a), the leftmost
column is contracted, and in (b) and (c) the following columns contract to make the group
walk to the right.

sends a message forward to that effect, the contraction will always propagate. At best,

this algorithm moves the robot by half the width of one module per iteration. One itera-

tion consists of a message traveling from tail to head. In practice, the actual efficiency is

less. We discuss empirical results in Chapter6.

Convex Shapes

Algorithm 21 is specified (and analyzed above) for a single column, but can be extended

to more complex shapes by selecting one column as a master column. When a module in

the master column actuates, a message is passed across its row that causes all modules in

the row to actuate simultaneously. This is effective since communication is much faster

128

than actuation, and the modules not in the master column have no other responsibilities

that could cause communications lag. This allows for correct locomotion for any convex

shape. An example of locomotion in such a convex shape is shown in Figure5.6. In

this way, locomotion steps can be executed in multiple directions (but only one direction

at once) to allow the robot to locomote along a rectilinear path. We currently have no

effective method to rotate the robot.

Heterogeneity

A simple form of heterogeneity results from adding sensors to an otherwise homogeneous

system. In our experiments with the Crystal robot, we added touch sensors to certain units.

Algorithmically, this presented an opportunity to investigate a heterogeneous version of

the Inchworm algorithm by adding rudimentary obstacle avoidance. We modified the

rules of the “head” module to test for touch-sensor actuation, and to reverse direction

of the inch message as appropriate. With sensor modules on outside positions of the

reconfiguration, the robot moved back and forth between obstacles. For modules without

a sensor, the algorithmic changes had no affect. The software remained homogeneous.

5.2.2 Locomotion through Reconfiguration

The Inchworm algorithm has the advantage of simplicity and reliability. However, as

specified it will work only with a planar unit-compressible system. We would like to sup-

port general Sliding-Cube systems. For example, rule-based cellular automata algorithms

are also simple solutions and handle 3D systems. These can plan locomotion over certain

obstacles, but in situations where the width or height of the configuration are forced to

change, the rules become very complicated. Since the rules are currently hand-coded, this

is problematic. It is possible, however, to leverage reconfiguration algorithms developed

129

in the previous chapter to produce locomotion.

Recall that in MeltSortGrow, TunnelSort, and ConstrainedTunnelSort, the overlap be-

tween start and goal configurations is assumed to be given. Now, we can exploit this

apparent shortcoming for the purposes of locomotion. Consider two configurations iden-

tical except for translation. Specifying minimal overlap, the execution of a reconfiguration

algorithm between these two shapes results in a net translation of the robot. Continuing

in this way, translation along a path can be accomplished by generating an appropriate

sequence of goal configurations.

Unfortunately, generating this sequence is computationally expensive for large sys-

tems:Θ(n) per reconfiguration “step.” A better strategy is to modify the reconfiguration

algorithm to accept a looser goal specification. For example, the goal can be defined as a

bounding box. In ConstrainedTunnelSort, the homogeneous phase can be modified such

that search paths terminate at any free lattice position in the bounding box. Or, paths can

be terminated at any lattice position beyond a given coordinate. This achieves locomotion

in a given direction.

In the presence of sensed obstacles, this strategy results in compliant motion. The

tunnel paths are designed to avoid free space constraints, and these constraints can be

defined by obstacles sensed dynamically. This can be thought of as a dynamically updated

goal configuration, where the updates are made by modules as they move. For example,

if a module cannot make progress in the current direction because it cannot plan a path

that moves it into the goal configuration, it can decide to change the robot’s direction by

broadcasting an updated goal configuration. Or, some policy can be implemented where

multiple modules collectively decide what the update should be. The result would be

compliant locomotion, as in wall-following.

130

5.2.3 Discussion

This section presented a simple algorithm for locomotion in unit-compressible systems,

and a strategy for modifying reconfiguration algorithms for to produce locomotion. Both

assume that specialized mechanisms such as wheel modules are unavailable. For motion

on smooth surfaces, wheel modules may be suitable. But for locomotion on rough terrain,

reconfiguration-based locomotion is promising.

Generating long sequences of large configurations seems inefficient and can be com-

putationally prohibitive. The modifications to ConstrainedTunnelSort to accept loosely

defined goal configurations are simple and this strategy is preferred. The potential cost is

that the exact configuration at any time is no longer known, but our GR algorithm provides

a method for detecting goal shapes if desired.

Another issue is that Inchworm Locomotion and specifying goal configurations as

motion in a given direction both favor locomotion in a straight line. The next section

addresses this issue with high-level path planning that minimizes turns in a path.

5.3 Rectilinear Minimum-Bend Paths Among Obstacles

The methods discussed in Section5.2move the robot along rectilinear paths. In general,

straight-line motion is preferred over turns. In moving the robot from one point to another,

we would like to find a path that has as few turns as possible. This problem, planning rec-

tilinear paths with minimum bends among rectilinear obstacles, is called minimum-bend

path (MBP). The 3D version of the problem, with orthohedral obstacles, is called 3D-

MBP. MBP algorithms have numerous applications. Examples include motion planning

for structured environments such as assembly lines, where it is simpler to command the

robot to move along three set directions than to require arbitrary movement, and auto-

131

mated machining tasks where controlling a turn is more difficult and error-prone than

controlling a straight line. Although the resulting rectilinear plans may be longer than the

shortest path in terms of overall distance, the actual execution of such plans may be faster

and more robust.

Rectilinear motion planning algorithms are well-suited to applications in planning for

lattice-based SR systems. As discussed in Section5.2, low-level locomotion control is

often biased towards straight-line paths. The simple Inchworm Locomotion algorithm is

a clear example. Cellular automata-style techniques and locomotion through reconfig-

uration are other examples. In these applications, efficient planning involves finding a

rectilinear path with minimum bends among obstacles.

The general problem of finding a shortest path between two points among obstacles

has been extensively studied in many contexts, and with common variations such as the

rectilinearity constraint and bend-distance1 metric we consider in this paper. Optimal

solutions exist for MBP in 2D, but much less work has been done with the 3D variant,

even though many applications require a 3D solution. For 2D, the optimalO(e log e)

running time [27], wheree is the number of obstacle edges, has been achieved by a num-

ber of algorithms [60]. However, these do not extend trivially to higher dimensions, and

general 3D path planning is hard. Using the Euclidean distance metric, the 3D shortest

path problem among obstacles is NP-Hard [67], for example. Adding restrictions on the

characteristics of paths and obstacles makes the problem tractable.

Much of the existing work on finding rectilinear paths among rectilinear obstacles2 is

motivated by applications in VLSI wire routing. The number of bends in a path affects

resistance, and the total length affects cost. In some models, vertical and horizontal wires

are restricted to separate layers, and minimizing connection between layers is desirable.

1Many authors use the termlink-distance.
2Rectilinear obstacles have all edges parallel to a coordinate axis.

132

An excellent survey is given by Leeet al. [60]. Lee provides a taxonomy of problem

variations along with a categorization of algorithmic techniques. In addition to MBP,

SMBPis defined as the shortest-minimum-bend-path problem. Of all MBP solutions, the

SMBP solution minimizes rectilinear distance. A more recent survey has been written by

Maheshwariet al. [64].

In this section, we propose an algorithm to solve the 3D minimum-bend-path problem

(3D-MBP). We describe our 3D-MBP solution, analyze its complexity and present an

implementation in simulation. Our algorithm runs inO(n2 log n + n2I) time, wheren is

the number of obstacle vertices andI is the maximum number of obstacles intersected by

a line parallel to thex axis. This result, is the first published 3D-MBP solution, and is the

first to extend the wavefront technique to 3D.

5.3.1 2D Algorithms

Two different approaches have dominated rectilinear shortest path algorithms in 2D. In

the graph theoretic approach, the method is to build and search apath-preserving graph

[17]. The graph is constructed to contain sufficient distance information to allow stan-

dard graph search algorithms to find solutions. The second technique is the wavefront,

or “continuous Dijkstra” approach, where line segments carrying distance information

sweep away from the source. Mitchell [66] proposed a 45-degree wavefront algorithm,

while Lee’s algorithm [59] uses simpler horizontally oriented wavefronts. The horizontal

wavefront algorithm is described in more detail in Section5.3.3.

5.3.2 3D Algorithms

Extending these 2D solutions to higher dimensions is difficult. Piatko [80] proves various

problems to be NP-Hard, and outlines approximation algorithms for 3D problems among

133

arbitrary polyhedral obstacles. Restriction to orthohedral obstacles, which have all edges

parallel to one of the coordinate axes, is useful. Mitchell [66] suggested the application of

the continuous Dijkstra approach to 3D problems. Choi and Yap [23] propose a solution to

3D-SP (shortest rectilinear path) among “box” shaped obstacles withO(n2 log n) running

time, wheren is the number of “boxes”. Our algorithm is the first exact solution to 3D-

MBP with orthohedral obstacles that has been published [33].

5.3.3 Horizontal Wavefront Algorithm

In developing our solution to 3D-MBP, we chose to extend Lee’s 2D horizontal wavefront

algorithm to 3D. Since Lee’s algorithm is a component of our solution, we summarize it

here. Given a set of rectilinear obstacles, a sources and a destinationd, the problem is

to find a collision free path froms to d with a minimum number of bends. This is done

by sweeping through the entire environment withwavefronts. A wavefront is defined as a

horizontal line-segment that extends to obstacles on both sides, and carries distance infor-

mation specifying an upper bound on the length of the MBP froms to every point on the

line segment. Wavefronts sweep away froms, stopping atevent points, which are defined

by obstacle vertices. Certain wavefront operations take place at event points to allow

wavefronts to split, extend and sweep around obstacles, and merge with other wavefronts.

Figure5.7 illustrates wavefronts and enumerates cases for wavefront operations. A seg-

ment tree data structure is used to maintain distance information in the form of partitions

on the wavefront.

Preprocessing is performed to allow event point calculation in constant time. The al-

gorithm begins by inserting two wavefronts at the source, one sweeping up and the other

sweeping down. Wavefronts are stored in a priority queue which is sorted by the shortest

distance on the wavefront. The algorithm pops a wavefront from the front of the queue,

134

Figure 5.7: 2D wavefront operations, adapted from [59]. (a) Extend and wrap. Parent
wavefrontw extends tow1, and wraps around to createw2. (b) Split. Wavefrontw is
replaced byw1 andw2.

sweeps it to the next event point, applies the appropriate operations, and inserts any child

wavefronts back into the queue. When a wavefront hits the destination, and all remain-

ing wavefronts have higher distance labels, a path is reconstructed by following parent-

pointers. Withe obstacle edges, preprocessing takesO(e log e) time. Merge operations

requireO(e log e) time amortized, and Lee proves that a constant number of wavefronts

pass through a given obstacle vertex, for an optimal total running time ofO(e log e) [27].

Note that with rectilinear obstacles in 2D, a simple cell decomposition can be con-

structed by dividing the space into “rows” at each obstacle vertexy-coordinate, and

“columns” at each obstacle vertexx-coordinate. This cell decomposition containsO(n2)

cells and can be searched using breadth-first search (BFS) to produce a solution to MBP

in O(n2) time, which is slower than the optimalO(e log e) running time. This “naive”

solution is easily extended to 3D, and solves 3D-MBP inO(n3) time. We are interested

in a faster solution, so obviously we need to avoid explicitly calculating the entire decom-

position while still exploring the entire volume of the problem. The horizontal wavefront

algorithm accomplishes this by exploring multiple cells per step. Our results exploit this

property in 3D.

135

5.3.4 The 3D-MBP Algorithm

We now present our solution to 3D-MBP. The goal is to find a rectilinear path with fewest

bends from a source points to a destinationd in <3 among obstacles. A rectilinear path

is a path composed of a series of connected line segments, each parallel to one of the

coordinate axes. In this case, we consider only orthohedral obstacles, which have all

edges parallel to one of the coordinate axes.

Figure 5.8: Exploring a 3D problem using 2D wavefronts. Wavefronts sweep through a
2D slice of the overall problem, as illustrated in the 2D detail views at the right of the
figure.

Figure5.8 illustrates the main idea of our solution. We explore the 3D problem using

linear wavefronts that sweep in one of two orientations. As in the 2D algorithm, wave-

Figure 5.9: Computing a simple 3D path. In (a), four wavefronts are inserted (one in
each possible direction). Part (b) showsw1 being dragged, along with the resulting child
wavefronts. Similarly,w2 is dragged in (c). Parts (d) and (e) are 2D detail views ofw3 as
it is dragged. The final path is shown in (f).

136

fronts spawn children according to certain rules, and eventually the entire problem space

is searched.

Our algorithm extends Lee’s 2D algorithm using the “continuous Dijkstra” approach.

The basic idea is to maintain distance labels on obstacle vertices such that a label rep-

resents an upper bound on the length of a shortest path from the source to the labeled

vertex. In each iteration we expand the labeled region by exploring a small area away

from a vertex with a minimum distance label. In this extension of the horizontal wave-

front technique, a wavefront is still a line segment but may travel in one of two possible

directions and spawns child wavefronts in both directions accordingly. When a minimum-

distance wavefront reaches the destination, we recreate the path by following predecessor

pointers back to the source.

Conceptually, the wavefronts explore the surfaces of cells in an exact 3D cell decom-

position of the environment, instead of explicitly exploring cell interiors. It is easy to see

that all paths through a given series of cells are homotopic, so paths through the faces

can be constructed that are just as good (in number of bends) as any path through the cell

volumes. To explore all cell faces, we first take the 3D problem and create a set of 2D

problems parallel to thexy-plane at thez coordinates of all obstacle vertices. Another set

of 2D problems are created that are aligned with thexz-plane at obstacley coordinates.

Wavefronts can then be thought of as “living” in one of these 2D problems. Unlike in 2D,

the sweep operation will not only generate child wavefronts in its own 2D problem, but

may also spawn children in intersecting problems.

The main computation is given in Algorithm22. To begin, we insert four wavefronts

at the source: an up-goingxy, a down-goingxy, an up-goingxz and a down-goingxz.

There is no need to explicitly sweep wavefronts in the third dimension since the other

wavefronts have maximal length, thereby implicitly covering this case. From there we

remove a wavefront from the priority queue of existing wavefronts based on minimum

137

bend-value, drag it, and insert all newly generated wavefronts as described below. When a

wavefront hits the destination, we continue until all remaining wavefronts have minimum

bend-values at least as large as the best.

A simple example is shown in Figure5.9. In (a), the initial four wavefronts are in-

serted. Wavefrontw1 is taken from the queue and dragged in (b), generating child wave-

fronts as described below. Part (c) shows wavefrontw2 being dragged, also generating

new wavefronts. Next, other wavefronts with zero minimum bends would be dragged, but

for sake of illustration we skip directly tow3, shown in (d) and (e) in a 2D detail. In (e),

the destination is reached. The algorithm continues until all wavefronts have at least two

bends (the best so far), then the path is generated, shown in (f).

As in 2D, each wavefront is a partitioned maximal-length line segment that stores the

“length” (number of bends) of the shortest path from the source to any point on the line

segment. Each wavefront orientation keeps its own bend-counting semantics; in other

words,xy wavefronts measure paths with the final segment pointing in they direction,

andxz problems measure paths ending in thez direction. As in the standard 2D problem,

this invariant is maintained until a wavefront hits the destination, when we then need to

calculate which approach orientation is best. This can be done by simply adding one to

the minimum partition label on the wavefront (for an approach from thex direction) and

comparing with the value of the partition that contains the destination point (approach

from y or z).

To drag a wavefront in 3D, we first apply all the 2D wavefront operations as usual

within the wavefront’s local 2D problem. However, the wavefront now generates addi-

tional wavefronts in the other plane. As anxy wavefront is dragged, it potentially sweeps

past they locations of a number ofxz problems. This will generate both an up- and

down-going wavefront in each of thexz problems the wavefront cuts through. When

anxy wavefront is dragged fromy1 to y2, for each obstacle vertexv with y coordinate

138

vy, wherey1 < vy <= y2, wavefronts are added to thexz problem atvy, as shown in

Figure5.10. The x coordinates of the new wavefront will equal those of the original.

Thinking in terms of thexz problem atvy, the new wavefronts are “popping up” into the

problem, not necessarily at an event point in that problem. So to find thez coordinate of

the new wavefronts, we use the pointers linked in preprocessing to find the nearest event

points. Therefore we always generate wavefronts that are at valid event points in their

respective 2D problems. All bend values are simply incremented by one, since the paths

are now being measured with the final segment oriented in thez direction instead of the

y direction. Propagation ofxz wavefronts is analogous; they generatexy waves at every

vertexz coordinate they sweep through.

Figure 5.10: Generating new child waves. Anxy wavefront generatingxz wavefronts is
shown in (a), while (b) shows anxz wavefront generatingxy wavefronts.

Extra preprocessing is also required in 3D. The preprocessing pseudocode is listed in

Algorithm 23. This step has two objectives: generating the canonical set of 2D problems,

and linking the problems together. For convenience, we assume a bounding cube around

the problem, with all obstacles and start/end points inside the cube. First a plane (parallel

with the xy-plane) is swept through the problem, stopping atz coordinates of obstacle

vertices. We maintain a data structure of currently intersected obstacles, and add/remove

obstacles as necessary, such that at each event point we can generate a 2D problem by

ignoring thez coordinates of the vertices in the data structure. Within this 2D problem

we then perform 2D preprocessing [59]. This step uses a sweep line and links each vertex

to projection points— points on the nearest obstacle on either side in thex dimension.

The projection points therefore define the width of a wavefront passing through that ver-

139

Algorithm 22 3D-MBP
1: Preprocess (Algorithm23)
2: Let Q be a priority queue sorted by minimum bend distance
3: Insert four waves intoQ ats: upxy, downxy, upxz, downxz.
4: while Q is not empty andd is unmarkeddo
5: w = DeleteMin(Q)
6: Dragw from event pointp to nearest event pointp′

7: Apply 2D wavefront operations tow
8: Mark p′

9: Insert intoQ counter-oriented child wavefrontswi at intersection points betweenp andp′,
in both UP and DOWN directions

10: if d is unmarkedthen
11: Fail
12: else
13: let bmin = distance(d)
14: while Q is not empty and min(Q) < bmin do
15: Sweep as in lines 5-9
16: If wavefront reachesd, updatebmin

17: Generate pathP by following pointers fromd to s
18: Outputbmin andP

tex. We add pointers such that projection points may be obtained from a vertex and vice

versa in constant time. The projection points are stored in linked lists that correspond to

obstacle edges, so that from a projection point, the next event point can be obtained also

in constant time by following the linked list. In addition to this standard 2D preprocess-

ing, we also compute intersections withxz problem locations between each pair of event

points, and add these to a hash table for later constant time retrieval. Each intersection

point is linked to the nearest projection point. We then repeat this process with thexz-

plane to generate the canonical problem set. Intersection points are retrieved from the

hash table as necessary and linked to the nearestxz projection points. The time required

to build these2n problems isO(n log n) for the plane sweep operations, plusO(n log n)

at each ofn event points. The total is2n(2n log n) = O(n2 log n) time and space.

140

Algorithm 23 3D-preprocessing
1: Generate set of all obstacle verticesV
2: sortV by z coordinate
3: for each v ∈ V with uniquez do
4: Build 2D xy problem
5: sortV by y coordinate
6: for each v ∈ V with uniquey do
7: Build 2D xz problem

5.3.5 Analysis

We now prove the correctness and running time of our algorithm.

Theorem 7. The algorithm 3D-MBP correctly finds a minimum-bend path froms to d.

Proof. LetP be a shortest (minimum-bend) path froms tod. Now construct an equivalent

pathP ′ as follows. Find the firstx- ory-segment inP and push it down (negativez), along

with all adjacentx- and y-segments, until a segment hits an obstacle. Some segment

must hit an obstacle during this pushing, otherwise we could reduce the number of turns,

contradicting the assumption thatP is a shortest path. Continue by pushing the nextx-

or y-segment(s) inP and so on.P ′ is also a shortest path, since we added no additional

turns in pushing, and it has allx- andy-segments in the samexy-plane as an obstacle

face, connected byz-segments. Further modifyP ′ by dragging allx- andz-segments

back until they hit an obstacle. For adjacentx- andz-segments, drag the segments as a

unit. Now consider a line segment parallel to thex-axis starting froms and moving along

P ′, stopping at eachx-segment. The line segment drags in they-direction only in the

same plane as some obstacle vertex, which is also a 2D subproblem in our canonical set.

The line segment moves in thez-direction only when in the same plane as some obstacle

vertex, which also is included as a subproblem. Since our algorithm generatesx − y

segments only at obstacle faces, andz segments only at obstacle faces, and attempts to

generatex− y or z segments at all possible obstacle faces, it can generate pathP ′.

141

Throughout the algorithm, the wavefronts properly maintain bend information. In

2D, this has already been proven [59]. What remains is to prove that bend information is

properly maintained when crossing between 2D problems. This is easy to see since we

simply add one bend when going fromy-directed toz-directed segments, and vice versa.

Waves are dragged in best-first order, and the algorithm continues until all waves have

a cost of at leastbmin, the cost of the shortest path. Therefore it is not possible to have

a path shorter thanbmin, since all remaining waves already have at leastbmin bends and

path length is nondecreasing during each sweep.

If no path is found, waves eventually explore all free space. Therefore a path is always

found if one exists, and this path is shortest.

Figure 5.11: 3D-MBP implementation. In (b), the firstxz wavefront sweeps up and
generates a childxy wavefront on the front face of the bounding cube. The remaining
children of this wavefront are added in (c). Part (d) shows the results of dragging the
initial xy wavefront. All wavefronts remaining in the queue at algorithm termination are
depicted in (e), and the shortest path is given in (f).

Theorem 8. The algorithm 3D-MBP runs inO(n2 log n + n2I) time, wheren is the

number of obstacle vertices, andI is the maximum number of obstacles intersected by a

line parallel to thex axis.

Proof. The preprocessing step hasO(n) event points, withO(n log n) time processing at

each point, orO(n2 log n) time overall.

We have2n 2D problems, each of which requiresO(n log n) time. Each dragging

step does the same operations as in the standard 2D algorithm, plus the added wavefronts.

142

Charge the cost of the new wavefront to the 2D problem into which it is inserted, so the

cost of each 2D problem is theO(n log n) plus the cost of adding wavefronts that “pop

in” to it. The number of pops is bounded by the number of possible pop locations, which

is O(n) 2D problems timesnI, whereI is the number of times anx oriented line can

be split by obstacles. Total running time isO(n2 log n + n2I). The worst case scenario

occurs only when there exists a line parallel to thex-axis that intersects all obstacles. For

this class of problems, the running time isO(n3) and thus it is preferable to use a simpler

algorithm such as searching the 3D cell decomposition.

5.3.6 Implementation

We implemented our 3D-MBP algorithm using the C++ programming language and built

a graphical simulation using OpenGL graphics libraries. Figure5.11 illustrates sample

output from the simulator. The implementation takes as input a set of orthohedral ob-

stacles, a start point and a destination point. The simulator renders the obstacles inside

an artificial bounding cube and marks the start and destination points. As a wavefront is

swept, it appears as a moving line segment in the simulation, and wavefronts in the prior-

ity queue are shown as static line segments. When a wavefront reaches the destination, its

path is recovered and drawn. The program outputs the MBP, which can be subsequently

input to other applications.

5.3.7 Discussion

In this section we presented a solution to the 3D-MBP problem, based on an extension

of an existing wavefront algorithm for 2D-MBP. Our algorithm correctly solves 3D-MBP

in O(n2 log n) for most inputs. Although our result fails to achieve aO(n2 log n) worst

case running time for inputs where all obstacles can be intersected by a line parallel to

143

thex-axis, there exists a solution to 3D-SP that does have this bound and we conjecture

that a faster solution to 3D-MBP is also possible. An optimal running time for either 3D

variant remains an open problem.

So far we have considered only MBP, but in 2D the SMBP solution only requires

augmenting the wavefront data structure and adding a secondary sort criterion to the pri-

ority queue. Of course, if SMBP is solved then SP can also be solved by ignoring the

primary metric (thinking of all paths as having equal bends, so just secondary metric is

minimized). It should therefore be possible to extend our algorithm to solve 3D-SMBP

and 3D-SP as well, both among orthohedral obstacles.

Our motivating application for the 3D-MBP algorithm is motion planning for SR sys-

tems. For motion along smooth surfaces, 2D planning algorithms suffice. One of the main

promises of SR systems, however, is the ability to navigate over rough terrain. Here, 3D

planning is useful.

The 3D-MBP solution we presented is a centralized algorithm. As in other early mo-

tion planning solutions, complete knowledge of the environment is assumed. Also, obsta-

cles must be orthohedral. This actually reduces the necessary environmental information

since we do not need to know the exact obstacle geometry; a bounding box representation

is enough. Orthohedral obstacles can be true obstacle shapes or bounding boxes around

more complex obstacles. Unfortunately, in real-world scenarios, knowledge about the en-

vironment is only available via sensors. Centralized motion planning approaches are not

applicable in this case.

For module trajectory planning within the robot, complete knowledge of the “terrain”

is directly available. We explore this idea as part of the self-repair task in the next section.

144

(a) (b) (c)

Figure 5.12: The left image shows a couch configuration with a defective module high-
lighted. The middle figure shows that couch after the bad module was ejected. The right
figure shows the repaired couch. One of the compressed modules was used to fill in the
gap.

5.4 Self-Repair

The built-in redundancy of SR systems leads to interesting fault-tolerance and self-repair

properties. If an arbitrary part of a fixed-architecture robot fails, the robot cannot usually

perform self-repair; a human or a different robot must perform the task. Intuitively, a

self-repair system must have at least two qualities: the ability to self-modify, and the

availability of new parts or resources to fix broken parts. Most extant systems lack these

properties. However, self-repair behavior is prevalent in biological systems, the most

notable being human tissue repair [65]. A system with failed modules is also a case of a

heterogeneous system. Self-repair research is thus an investigation of another example of

heterogeneity.

A self-repairing robot can, in the event of component failure, restore itself to original

operation without external intervention. By carrying some additional modules, the robot

may excise the failed part and replace it with the spare units. When the modules com-

prising the robot are identical and can move in general ways relative to one another, it is

possible to detect and eliminate defective modules, while replacing their functionality in

the system.

145

Yoshida et al [109] introduced the concept of a self-repair robot and presented a

simulated-annealing algorithm for this operation. We focus instead on geometric mo-

tion planning algorithms for self-repairing robots consisting of Crystalline modules [82].

We begin by describing our approach to homogeneous self-reconfiguring robot systems,

using the Crystal robot. We focus on algorithms that permit a robot to detect a failed

module, eject it, and replace it with one of the extra modules on the body, so as to repair

the arm-rest of the couch in Figure5.12, for instance. The Crystal is a good candidate for

studying self-repair, as it can carry redundant modules in the robot’s structure—in other

words, spare parts.

In many lattice-based systems, modules can travel only along rectilinear paths. Trans-

lations are easier than changing the direction of movement, therefore we can use rectilin-

ear minimum-bend path planning to generate good module trajectory plans. This provides

an appropriate situation in which to employ the 3D-MBP algorithm.

5.4.1 Self-Repair Approach

We start by observing that the process of self-repair consists of three phases: (1) detect

failure, (2) eject the failed module, and (3) replace the failed module. We have not yet

addressed detecting module failure, as in general it is highly dependent on the implemen-

tation of the system. There are a number of possible approaches, however, such as polling

by a central unit or nearest-neighbor testing. Biological systems, such as human skin

cells, use a “cry for help” method where the failed unit (damaged cell) sends a broadcast

message by releasing its contents into the microenvironment as it dies [65].

We present algorithms for phases (2) and (3) of self-repair. Our solution assumes

Crystal robots with a known failed module. Without loss of generality, we focus our

discussion on the case when only one module fails in the system. Our algorithms can be

146

iterated to cope with multiple module failures.

A bad module may not be able to move under its own power, so “live” modules in the

system should manipulate the “dead” module into position for ejection. The strategy we

pursue is to move the dead module to a place where it will simply fall off of the robot when

released by any attached live modules. Our solution (1) identifies all the locations on the

surface of the robot from where it is possible to release the bad module; (2) computes a

shortest path to that region; and (3) uses a gait to propel the bad module along the shorted

path.

5.4.2 2D Planning

Motion planning in the Crystal involves moving a module from one position to another,

and exploits virtual module relocation. Therefore, path planning reduces to finding a

rectilinear path through the robot structure. Each segment of the path can be executed in

constant time, so an efficient motion plan requires a rectilinear path of minimum bends.

Replacing a failed module (filling a “hole” in the structure) can be solved using virtual

module relocation. To eject a failed module, this planning technique can not be used

directly since here a particular module must be actually pushed (or pulled) to a position

on the surface of the robot. However, pushing gaits to move the failed module, such as

the one shown in Figure5.13, also exhibit the property that turns are more expensive than

straight line motion. Finding a minimum-bend path is therefore useful in both steps. An

MBP problem is constructed by modeling the source and destination points in module

coordinates, and holes and concavities in the structure as obstacles. Then, given a path,

motion planning can be accomplished by iterating the appropriate gait over the path.

One such gait is shown in Figure5.14. We use an SMBP algorithm for this particular

gait, since straight line motion is easier to plan than turns but the gait actually requires

147

Figure 5.13: A tight gait for propagating a failed module.

constant time per unit distance. Once the dead module is ejected, we use a SMBP to plan

the replacement motion, since module relocation is linear in the number of turns in the

path.

The planning algorithm is summarized as follows:

1. Using the SMBP algorithm, compute a path from the dead unit to a point on the
outside surface.

2. Iterate the pushing gait for each step in the path, eventually ejecting the module.
3. Compute the SMBP from the ejection location to the closest redundant module.
4. Use fast module relocation, following the computed path, to virtually relocate the

replacement module to the ejection location.

Implementation

We conducted self-repair experiments using thextalsimsimulator [83]. Xtalsim was cre-

ated as part of the original Crystalline robot development effort and was used to explore

the self-reconfiguring abilities of the robots. The simulator reads a file-based specifica-

tion of a robot and motions of individual modules. It verifies the validity of the requested

motions and displays a 3D animation of the robot in motion.

The existing xtalsim version required modification to support self-repair functionality.

We extended the software to allow specification of dead modules along with graphical dis-

148

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.14: Simulation displaying sample gait to push dead module.

tinction in the animation. Also, we added removal features to simulate ejected modules.

Figure5.14depicts snapshots from the simulator output. Our experiments demonstrate

pushing gaits to move a disabled module, and module relocation to fill holes. We tra-

verse the computed shortest path by iterating the pushing gait algorithms for straight line

movement and for turns.

5.4.3 3D Planning

This motion planning technique easily extends to 3D given an efficient shortest path al-

gorithm. A 3D rectilinear path can be decomposed into a sequence of 2D turns (not all

of which are in the same plane). Therefore, given a 3D rectilinear path, a motion plan

can be constructed by iterating the appropriate module gait over each path segment. Note

149

Figure 5.15: Pushing a failed module along a line. After initial setup, each push step
requires four contractions/expansions. The second row illustrates two such steps. Finally,
modules along the path are “reset” by shifting left.

that pushing gaits require a minimum amount of supporting structure, but we can build

this into the path planning problem by growing the obstacles (holes in the structure) by

the required amount. This ensures that any path returned by the algorithm is feasible. We

use the 3D-MBP algorithm (Algorithm22) to compute a path, and iterate a pushing gait

along this path to eject the module. Finally, we use virtual module relocation to fill the

gap in the structure left by the ejected module.

Implementation

We have conducted experiments for 3D self-repair in Crystal robots in simulation. Output

from our 3D-MBP implementation, in the form of a rectilinear path, is fed to a motion

planning routine that generates motion primitives. These primitives are input in turn to

150

our Crystal robot simulator that verifies physical feasibility and renders the simulation.

Figure5.15outlines a pushing gait, and Figure5.16illustrates a sample simulation of a

Crystal robot executing the pushing gait computed from a path returned by our 3D-MBP

algorithm.

Figure 5.16: Cut-away view of 3D module ejection. The path is shown by the white
arrow, and the failed module is darkened. The middle figure is previous to the first turn,
and the last figure shows the failed module at the beginning of the final segment.

5.4.4 Discussion

In this section, we discussed the general problem of self-repair as an example task of a

heterogeneous SR system and proposed a multi-step strategy for implementing self-repair

in an SR system. We presented algorithms for ejecting and replacing failed modules.

These algorithms analyze the robot structure to determine candidate locations for module

ejection, and then compute efficient motion plans. The planning algorithm is capable of

minimizing both rectilinear distance and number of turns in a path.

Although the self-repair problem is certainly difficult in existing engineered systems,

we have demonstrated that the problem is addressable in experimental systems with spe-

cial properties. Abstractly, the minimum requirement is the ability to self-modify, and

then in the case of the Crystal the problem can be transformed into a motion planning

151

problem for which related algorithmic tools already exist.

The final step needed to completely address our three-part strategy for self-repair is

failure detection. We mentioned a selection of possible overall approaches, including

pairwise testing, centralized polling, and cry-for-help. Further experience with hardware

prototypes will be necessary to identify possible failure patterns in the modules, but pair-

wise testing seems to be the most feasible model.

152

Chapter 6

Experiments

Algorithmic research in robotics is fundamentally motivated by applications of robots in

the real world. We gain insight into and can better characterize theoretical problems with

algorithmic studies alone, but ultimately the purpose of this work is to use results embed-

ded in real robots. Accordingly, this thesis includes a sizable and important experimental

component. Implementation and evaluation of our algorithmic results in simulation and

hardware afford a number of benefits. Experiments demonstrate proof of concept and

help in identifying special cases. They also help to guide further research by providing

a context in which to validate assumptions and evaluate effectiveness outside the usual

method of asymptotic analysis. SR research has not yet matured to the point when it can

field useful systems, but any hardware experience we can document joins other valuable

first steps in this direction.

We performed experiments both in simulation and in hardware. Both are important

in the context of this research. The absence of suitable existing hardware prototypes

necessitates simulation work. But, simulation can never fully model the physical system

and hardware experimentation is essential.

Our software implementations are constructed within a graphical simulator,SRSim,

153

that we designed and developed specifically for SR robots. SRSim is intended to be easily

extended to support any module type. Currently, we have implemented Sliding-Cube and

Crystal modules. Centralized, multi-threaded decentralized, and cellular automata-style

simulations are supported. SRSim is currently being used by other researchers and the

source code is included in [9]. We implemented our reconfiguration algorithms in SRSim;

other implementations are listed along with the algorithm descriptions in Chapter5.

The hardware experiments we performed utilized the Crystal robot. This work con-

stitutes the first thorough evaluation of the second Crystal prototype. The modules were

physically designed and constructed by other members of the lab. We then developed

a software architecture to support message-passing and implemented a number of algo-

rithms. The major effort was to implement the MeltSortGrow sort phase, which is the first

hardware experiment with a heterogeneous system.

The overall results indicate that the hybrid approach of provable decentralized algo-

rithms is suitable for distributed SR systems. This approach essentially replaces central-

ized computation with communication, and the major concern is communication scala-

bility. We found that communication scales sublinearly with the size of the robot, and

is orders of magnitude faster than actuation time requirements. The resource bottleneck,

therefore, is number of actuations, and scalability concerns with regard to communication

volume are unwarranted. A legitimate issue raised by the results is how to realize the fault

tolerance promises of SR systems. Our conclusion is that the current Crystal prototype

does not perform to a level adequate for addressing this question.

This chapter is divided into three sections. First we describe SRSim in detail, along

with implementation results. Then we present our experiments with the Crystal robot,

followed by a discussion of lessons learned. Source code described in this section is

included in the Appendix section for reference.

154

6.1 Experiments in Simulation

Algorithm implementation in simulation provides graphical visualization of algorithm

execution and demonstrates feasibility of algorithm correctness. Commercial simulators

do not support features adequate for SR systems, however. We designed and developed a

simulation environment calledSRSimin which to implement our algorithms.

In this section, we detail simulator design and common implementation techniques.

Then we describe our implementation of the MeltSortGrow and TunnelSort algorithms.

6.1.1 SRSim Simulator

SRSim produces 3D animations in real time of Sliding-Cube and unit-compressible mod-

ules. Single-threaded (centralized), multi-threaded (decentralized), and cellular-automata

style simulations are supported. The simulation engine handles all rendering tasks and is

designed for extensibility. For example, new actuation types can be implemented by sim-

ply extending a module class and implementing the required interface. A terrain mapping

implementation is also included. This stretches an image over a height map to create a

textured landscape with obstacles. The terrain in Figure6.1 is an example. Source code

samples are included in the Appendices.

Design

SRSim is written in the Java programming language with the Java3D API for 3D graph-

ics. The simulator is designed as a base class, SRSimBase.class, with a set of module

classes. Currently implemented module classes are Sliding-Cube.class and Crystal.class.

An algorithm implementation is a class that extends SRSimBase. The base class takes

care of all Java3D initialization and draws an empty window. By overriding methods, a

landscape can be added or any other modifications can be made, including adding other

155

Figure 6.1: Terrain-mapping over obstacles in SRSim. A simple grey image was stretched
over a terrain defined by a height map.

156

background elements. We designed the simulator in this way to maximize extensibility.

SRSimBase extends Applet, so simulations can easily be added to web pages in addition

to being called as stand-alone executables. The canvas object is actually an instance of

NCSA’s RecordableCanvas3D [34], so image sequences can be automatically generated

for compilation into a movie.

Java3D is a scene graph-based graphics API. A scene graph is a tree data structure

that holds objects to be drawn and transformations modifying those objects. The Java3D

rendering thread renders the scene by traversing the scene graph. An application using

Java3D is freed from all rendering responsibility. Modifications to the scene graph are

handled dynamically by Java3D.

Centralized Simulations

In a centralized simulation, the algorithm implementation runs in a single thread and has

exclusive global control over moving modules and maintaining state information. To build

a centralized simulation, it is enough to simply create a class that extends SRSimBase,

instantiate it, and add the object as the content pane of a window object such as a JFrame.

A template is provided in the Appendices (file “MyNewAlgorithm.java”).

To perform initialization tasks such as adding user interface elements or background

elements, a number of methods in SRSimBase can be overridden. Buttons and other UI

objects are added by overriding theinit() method. Landscapes and backgrounds can

be added by overridingcreateLand andcreateBackground , respectively.

Generally, all other tasks (drawing the robot, starting the simulation) are handled in

response to button clicks. Unfortunately, the direct implementation of this results in the

algorithm code running inside the UI event-handling thread. This prevents any other UI

events from being handled until the algorithm code finishes. To remedy this, we execute

any long-running code inside a separate thread. We use the SwingWorker class to spawn

157

the new thread for simplicity.

Algorithm implementation is accomplished by interacting with module and configura-

tion data structures. Since graphics rendering is handled by Java3D, the algorithm needs

only to interact with the robot data structures themselves and any drawing happens auto-

matically. For example, calling amove() method on a module updates the geometry of

the module object and also animates the module moving on the screen.

Decentralized, Multi-Threaded Simulations

In actual SR systems instantiating the Sliding-Cube model, each module is computation-

ally independent. It is desirable to simulate module execution by running code for each

module inside its own thread. Java provides convenient threading support, so we use Java

threads. A module object extends the Thread class. Creating a multi-threaded simulation

is similar to building a centralized simulation, but code for algorithm implementation re-

sides inside the module thread class instead of in the main application class. The main

application adds and starts module thread objects.

The Sliding-Cube model has neighbor-to-neighbor communication only. We imple-

ment this using a MessageQueue object belonging to each module, exposing a public

method for adding messages. Modules interact with one another by adding messages to

message queues. For efficiency, the message queue is implemented such that the thread

blocks on receipt of a message. Most threads are sleeping at any given time, so the simu-

lation can support a large number of modules. We observed acceptable performance with

greater than 500 threads.

Algorithm-specific code in this simulation style resides in message-handling functions

inside the module thread class. The benefit of this scheme is that it is very similar to

writing code for the actual hardware. For example, the software architecture we built for

the Crystal robot is almost identical. Simulation code can be directly ported to the Crystal

158

hardware by converting the simulator’s java syntax to C.

In some cases, module threads need to interact with the global application. For exam-

ple, a global physics module can provide information that would be directly sensed by a

hardware module, such as local neighborhood configuration. To support this, we add a

static reference to the application to the module class.

Cellular Automata-style Simulations

In the previous simulation styles, essentially only a single module moves at any given

time. In cellular automata simulations, however, these moves happen very rapidly and

appear to be in parallel. Such simulations need to support a very large number of modules,

with continuous geometry updating. Even java threads are too heavy-weight for this

situation, so instead we utilize a Java3D class meant specifically for complex animations:

the Behavior object.

A Behavior is a scene-graph object that is asynchronously activated in response to

some repetitive event, such as the passing of time or animation frames. By adding

algorithm-specific code to a Behavior object, we can implement cellular-automata sim-

ulations. This frees the application from the task of scheduling updates and allows for

very fast geometry updating. In each call to the Behavior, the algorithm can decide which

modules to process, depending on which execution model it assumes.

Sliding-Cube Object

Module classes are implemented as extensions of Java3D graphical objects. They can be

added to the scene graph directly. We describe the Sliding-Cube object, but other module

implementations are similar. The Crystal class is another example.

The Sliding-Cube object performs two main functions. It represents the low-level

module geometry and graphical appearance, and provides an interface for manipulating

159

these properties. Geometry is stored as a set of vertices forming a cube. Java3D uses

coordinates measured in meters; the default module size is 0.1 m3. Methods are provided

for moving the module to an absolute coordinate or by a relative coordinate offset. These

methods modify the underlying geometry directly through the Java3D GeometryUpdater

class. This approach is more efficient than using a Transform object for each module

in the scene graph since motion happens so frequently. Appearance, such as color and

opacity, can also be updated dynamically via a collection of exposed methods.

For multi-threaded simulations, we wrap a Sliding-Cube object inside a class that

extends Thread. All application logic is built into this thread object. The thread imple-

ments a message loop that blocks on receipt of a message. When a message is received,

it passes execution to a message-handler method appropriate to the message type. When

the message-handler return, the loop continues.

Adding Background Elements

SRSimBase provides functionality for added terrain-mapped landscapes. Various ver-

sions of thecreateTerrainMappedLand method support the creation of landscape

from texture and height map files. From the height map, a triangulated surface is cre-

ated. Then the image in the texture file is mapped to this surface and rendered by Java3D.

Realistic terrains with obstacles are easily built using this method.

Backgrounds, such as adding a blue sky with clouds, can also easily be added by

overriding thecreateBackground method. The standard procedure is to map an

image onto the inside of a large sphere.

Lighting of the entire scene can be adjust by overriding thecreateLights method.

Simple lighting is implemented by default.

160

6.1.2 Implementation of Common Functions

Some common implementation issues are shared by all simulations. The first is how

to represent configurations. We use a file-based scheme to store configurations on disk.

The file format is a simple text file. Each line of the file defines one module as a tab or

space-delimited list of four integers: x coordinate, y coordinate, z coordinate, and type.

A configuration file can be read by the application and interpreted as either a start or goal

configuration. We consider the start configuration to define a robot. The application reads

the file and instantiates a new module object for each line. We normally store a collection

of modules as an array inside a simple Sliding-CubeRobot class. A goal configuration is

read similarly, although the appearance of the modules is set to wireframe.

This array-based representation is usually augmented with other data structures inside

the application. A three-dimensional array, referred to as a grid, can be built to store refer-

ences to module instances. This provides fast look-up since it allows constant-time access

to modules indexed by coordinates, but the grid must be big enough to hold the robot’s

entire workspace. Memory requirements quickly become prohibitively large. An alterna-

tive is to use a graph-based representation. A connectivity graph is constructed based on

the module array. Both data structures must be maintained during module motion. For

centralized implementations, either data structure is possible. However, in decentralized

implementations only the graph-based is allowable since each module can only directly

access its immediate neighbors.

These data structures are used to perform low-level trajectory planning for a single

module. A module at a given location can execute the Sliding-Cube’s two motion primi-

tives, translation and convex transition, determined by its local configuration. By exam-

ining the local neighborhood, a list of possible motions can be constructed. This defines

a successor function for use in search algorithms. For example, using the grid represen-

161

tation, a function would take a grid location as input and would output a list of child

coordinates representing the locations reachable by a module at the input location. This

function can be used by a BFS or DFS implementation to search for a path from a module

to a point. The path, stored as an ordered list of points, is executed by the module by

successively moving to each waypoint.

For a decentralized simulation, the concept is equivalent but the implementation is

more complex. A given module has immediate access to its local neighborhood, so it

can build a list of potential motions directly. But, path planning requires knowledge of a

greater neighborhood. We address this using message-passing as follows. Any reachable

location is adjacent to some module. Therefore, all possible motions exist within the

local neighborhood of some module. For example, consider a modulem that executes

a translation. After the translation,m is now adjacent to neighborm1. Further motions

can be computed by examiningm1’s neighborhood. Using message-passing,m can query

m1 to obtain this list without actually executing the translation. Continuing in this way,

m1 can query its neighbors for another list of reachable locations. A search algorithm

can thus be constructed that effectively searches the free space on the surface of modules.

Note, however, that this does not mean that a module is marked “visited” once a search

message reaches it. What is actually visited is the free space adjacent to the module. In

graph terms, each module is split into a number of nodes - one for each free location in its

local neighborhood. Extra bookkeeping is required but the entire free space of the robot

can be searched using this technique. We use DFS for ease of implementation.

Likewise, we can search for a path from a free location to a mobile module. The only

change is that the search terminates when it reaches a mobile module. One step is added

to the search that takes a given free location and builds a list of modules that can reach

this spot. This is simply a reverse of the previous successor function.

To test whether a module is mobile, we must decide whether removing the module

162

disconnects the robot. A module that would cause a disconnection is an articulation point

in the module connectivity graph. We use the standard DFS-based algorithm for finding

and labeling articulation points. With the graph-based representation, we can execute the

articulation point algorithm immediately. For the grid representation, we must first build

a graph and then proceed. In decentralized simulations, this is easily implemented using

message-passing.

Message-passing that routes a message according to a post-order traversal of the con-

nectivity graph is commonly used, both for simulated broadcast and for search algorithms.

We assume the connection topology to be fixed during message propagation, so the only

issue is how to decide whether a given module has already received a given message. We

use a unique message ID for each message, but other techniques (such as maintaining par-

ent pointers) are possible. When a new message arrives at a module, it first tests whether

the message has already been received. If so, it sends a return message back to the sender.

Otherwise, it sends the message to one of its neighbors. Eventually, a return message will

arrive from that neighbor, and it can send the message to a different neighbor, and so on.

When finished, it sends a return message back to the original sender. This process can be

thought of as distributed, asynchronous DFS.

6.1.3 MeltSortGrow

This section describes our implementation of our MeltSortGrow algorithm (see Section

4.1) using SRSim. We discuss centralized and decentralized versions, and also experi-

ments with randomly generated start and goal configurations.

163

Centralized MSG

The algorithm begins by initializing data structures. Start and goal configurations are read

from files and initialized as described earlier in Section6.1.2. The start configuration is

drawn as opaque modules and the goal is not drawn. We validate the configurations by

checking for connectedness and equal module counts. This implementation uses a grid

representation so we initialize the grid by storing module references in the appropriate

array locations.

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Screenshots from the melt phase of the MeltSortGrow algorithm implemented
in SRSim.

The melt phase begins by iterating through the module list to find the module with

minimum coordinate (the root). Path planning is implemented using BFS through the grid

as described in Section6.1.2. Screenshots illustrating this phase are shown in Figure6.2.

The search path is animated using wireframe cubes. We used BFS instead of DFS since

164

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.3: Screenshots from the sort phase of the MeltSortGrow algorithm implemented
in SRSim.

it finds the shortest paths; DFS is used in the decentralized versions since it is easier to

implement with message-passing.

The sort phase requires computation of an assembly order of the goal configuration.

To do this, we execute the melt phase on the goal configuration. When a goal module

is chosen, we find a module in the current configuration with the same type and give it

an integer label. Thus, even though multiple modules can have the same type, this step

essentially creates unique types by assigning unique assembly order labels. A label is

stored as a property of the module object. Since we use a single grid, we need to delete

all module references from the grid, and re-initialize it with goal configuration modules.

During disassembly, we build a sorted list of grid locations such that a module with label

i originated at the coordinate at elementi of the list. We use this information in the grow

phase. After disassembly, we again initialize the grid with current module positions. See

Figure6.3for screenshots of the sort phase.

The grow phase is a similar to the melt phase, but in reverse. See Figure6.4 for

165

(a) (b) (c)

(d) (e) (f)

Figure 6.4: Screenshots from the grow phase of the MeltSortGrow algorithm imple-
mented in SRSim.

screenshots.

Decentralized MSG

The decentralized implementation generally replaces any iteration over the module array

or graph search with search via message-passing. All broadcasts and DFS-style searches

are implemented using DFS-style message propagation as in Section6.1.2. Since we as-

sume each module has a copy of the goal configuration, we read in the goal configuration

and add a static reference to it inside the module thread class. To begin, module thread

objects are created and initialized and the main application sends astart message to a

random module.

The handler for thestart message finds the root module by searching for the module

with minimum coordinates using DFS-style search. When the search returns, the min-

166

imum coordinate is broadcast. The module matching this coordinate becomes the root.

This can be thought of as a simple method for leader-election.

The melt and grow phases are equivalent to the centralized implementation except

for path searching and added synchronization. Paths are searched using our DFS-style

message-based path searching. When a module finds and executes a path, it broadcasts a

message signalling completion. This causes the new tail module to start a search, and so

on.

Sorting begins when the last module has been melted. At this point, the search for

another mobile module fails and the current tail broadcasts a message to begin sorting.

Upon receipt of this message, each module computes the disassembly order as in the

decentralized version. This module compares its type to each goal module melted during

disassembly, and stores a list of order labels. We need to do this because there may

be multiple modules of a given type yet a unique sort order is required. We resolve

this order after all modules have completed the disassembly computation by passing a

message down the intermediate structure that keeps a counter for each module type. As

this resolution message is propagated, modules identify their unique label by choosing an

element from their label listed indexed by the counter in the message.

Experiment with Random Configurations

To test our implementations, we built a random test configurations. The configuration

generator constructed configurations additively by randomly choosing a module in the

current configuration and adding a new module to a random face. We executed both

centralized and decentralized implementations with configurations of up to 50 modules

in size. Results are summarized in Table6.1. Since the intermediate configuration is a

line shape in all instances, we expect the average path length to ben/2 and the total move

count to be4n2/2 = 2n2. As the table shows, the actual data track this function closely.

167

Instance Melt Sort Grow Total
Random shapes,
n = 11

69 132 66 267

Random shapes,
n = 12

84 150 84 318

Random shapes,
n = 13

95 175 99 369

Random shapes,
n = 14

108 202 111 421

Random shapes,
n = 15

124 224 133 481

Random shapes,
n = 16

155 256 145 556

Random shapes,
n = 17

161 286 168 615

Random shapes,
n = 18

183 312 192 687

Random shapes,
n = 50

1426 2302 1421 5149

Table 6.1: Number of moves produced by MSG for reconfiguration between random
shapes of increasing size, broken down by algorithm phase. The number of modules in
each instance is denoted byn. Each row represents an instance consisting of randomly
generated start and goal shapes and unique module types. Data for instances with non-
unique types is included in Table6.3.

6.1.4 TunnelSort

The TunnelSort algorithm was described in Section4.2. Its implementation is straightfor-

ward, based on common techniques described in Section6.1.2. We also include empirical

data showing the actual number of moves for each step of the algorithm.

Centralized TunnelSort

Initialization is similar to centralized MeltSortGrow. We read in a start configuration

and populate an occupancy grid. This algorithm sorts the configuration in-place, so for

the goal configuration we store the goal type in the grid along with the reference to the

occupying module. To ensure the in-place property, we mark grid elements belonging

168

to the crust and mark all other grid elements as unreachable. This is implemented by

iterating over the module list and updating grid entries as necessary.

All path planning is simple BFS-based path search. To store motions of modules

displaced during tunneling, we use a stack. Each tunnel module has an associated stack;

to return to its original position we repeatedly pop a motion from the stack and execute it

until the stack is empty.

Table6.2lists empirical data from a number of TS instances. We collected data from a

cube shape with a varying number of modules to be swapped. We also collected data from

the line example shown in Chapter4 (Section4.2.4). The data show that the number of

moves is far less thann (the number of modules) for instances with short tunnels and few

swaps. The line example has many swaps but extremely short tunnels; the move count is

dominated by bridging operations.

We also collected data to directly compare TS and MSG. The results indicate that

MSG performs poorly for sorting alone, but is good for sorting plus shape-changing. The

TS algorithm is for sorting only, and performs very well. We generated a sequence of in-

stances with increasing heterogeneity and executed both MSG and TS on these instances.

All shapes were identical (a 6x6x6 cube), but the number of module types across in-

stances was increased. Results are shown in Table6.3. The number of swaps executed

by TS increases with the number of configuration positions whose module type is dif-

ferent in the start and goal configurations. In other words, TS only swaps modules that

are out of place. MSG, however, builds the intermediate structure for all instances. For

simple instances, TS produces very few moves compared to MSG. For more complex

instances, MSG and TS perform equally well. The instances listed in Table6.3 are all

cube-shaped. This means the average tunnel path length in TS is3
√

n, and the total move

count is4k 3
√

n. Becausen = 216 is fixed in these instances, the total move count for

TS in the table increases linearly ink. The average path length in MSG is alwaysn/2

169

Instance Tunnel 1 Tunnel 2 Bridging Path 1 Path 2 Swap Total
Cube 6 15 0 8 9 38
n = 216
Total Moves= 38
Cube 6 6 0 13 13 38
n = 216 6 15 0 7 8 36
Total Moves= 74
Cube 1 1 0 4 4 10
n = 216 1 6 0 12 13 32
Total Moves= 272 6 15 0 13 14 48

6 15 0 7 8 36
6 6 0 8 8 28
6 1 0 13 12 32
1 1 0 2 2 6
1 6 0 12 13 32
6 15 0 13 14 48

Line 2 2 0 12 11 27
n = 14 2 2 28 10 10 52
Total Moves= 346 2 2 34 10 8 56

2 2 30 8 6 48
2 2 38 6 4 52
2 2 48 4 2 58
2 2 46 2 1 53

Table 6.2: Number of moves produced by TunnelSort for various instances, wheren is
the number of modules in the instance. Each row of the table shows the number of moves
for each step of a single swap operation. Columns labeled “Tunnel 1” and “Tunnel 2” are
the number of moves produced in the first and second tunnel of the swap, respectively.
Likewise, “Path 1” and “Path 2” are the number of moves in the paths traveled by each
module being swapped. The “Bridging” column is the total moves performed in bridging
for that swap.

since the intermediate configuration is fixed, so the number of moves is4n2/2 = 2n2 on

average. In the table, we see that the actual move count for MSG with fixedn does not

vary appreciably.

With more complex shapes, the average tunnel length for TS approachesn/2, and the

two algorithms would perform similarly. An option for improving MSG is to replace the

line configuration with a cube, and then use TS to sort the cube during the sort phase.

This would reduce the average path length for MSG in many instances.

170

Instance Melt Sort Grow MeltSortGrow Total TunnelSort Total
Cube,k = 0 25523 41398 26090 93011 0
Cube,k = 1 25523 41358 26090 92971 18
Cube,k = 8 25523 41321 26090 92934 229
Cube,k = 27 25523 41105 26090 92718 635
Cube,k = 64 25523 40962 26090 92575 1443
Cube,k = 125 25523 40314 26090 91927 2954
Cube,k = 216 25523 39495 26090 91108 5056

Table 6.3: Number of moves produced by TS versus MSG on a sequence of instances
with increasing heterogeneity. Each instance has identical shape, a 6x6x6 cube, but the
number of unique module types within each instance is varied. The number of positions
k where the module type in the start does not match the type in the goal is increased from
zero (a homogeneous instance) ton, the total number of modules in the configuration.
The valuek corresponds to the number of swaps performed by TS. The cube shape elicits
best-case performance from TS since average path length is3

√
n. Average path length for

MSG isn/2.

6.2 Experiments in Hardware

We performed experiments in hardware to demonstrate and evaluate our algorithmic

ideas. These experiments use the Crystal, a robot prototype designed and constructed

in the Dartmouth Robotics Lab. In the next section, we review the hardware design.

Then we present the software infrastructure designed and developed to support our ex-

periments. The first two experiments, goal recognition and Inchworm Locomotion, are

implementations of algorithms described in Section5. The final experiment instantiates

the Sort phase of algorithm MeltSortGrow, described in Section4.

6.2.1 Crystal Robot Hardware

The Crystalline Atom (or Crystal) is a 2-D unit-compressible self-reconfiguring modular

robot. It actuates by expansion and contraction of individual modules, which together

with connection and disconnection allows the robot to change shape as well as locomote.

Each module consists of a central core and four faces that move in and out relative to the

171

Figure 6.5: The first (left) and second (right) version prototypes of the Crystal robot. The
first version is fully expanded while the second is contracted along one axis and expanded
along the other.

core to perform expansion. An expanded module is exactly twice the size of a compressed

module, which aids in reconfiguration and planning. It is closely related to the Telecube

[94] developed at PARC, which is a tethered 3-D unit-compressible system.

The original version of the Crystal [83] had a single degree of freedom for expan-

sion, so that all four faces expanded and contracted together. Each module had its own

processor to control actuation, but synchronization was performed through sensing an ex-

ternal beacon — modules had no ability to communicate directly with each other. In the

new version of the hardware, the expansion has two degrees of freedom as well as inter-

module communications. In fact, in the current version, there is no facility for global

communications, so all operations must be performed in a distributed fashion. The old

and new prototypes are pictured together for comparison in Figure6.5. In this section,

we describe in detail the hardware components, electronics and fabrication of the new

modules, as well as a simple communications infrastructure to allow message-passing

between neighboring modules.

172

Connector
(active face)

IR Emitter

Connector
(passive face)

IR Reciever

Electronics

Face
(East) Face

(North)Core

Figure 6.6: A single module of the Crystal robot.

The second-generation Crystal module, shown in Figure6.6, incorporates several im-

portant new features including an additional degree of freedom for actuation, inter-module

IR communication capability and sensor inputs. The robot control is now done in a purely

distributed fashion. The North/South and East/West faces are independently actuated, so

the degrees of freedom increase to four (two for expansion/contraction, and two for con-

nectors on active faces). In addition, several features have been improved over the first

version, including stiffening of the linear bearings that align the faces during actuation,

more powerful motors to perform actuation, and a faster processor with more memory

and I/O capability.

Each atom’s on-board electronics provide computation, IR communication, sensor

inputs and motor control. The processor is a Hitachi HD64F3644H running at 10 MHz,

which includes 32KB of EEPROM for program storage. Analog inputs to this chip are

brought out to a small connector so that various sensors (analog or digital in nature) can be

attached. Digital outputs control motor drivers that perform actuation, and an additional

digital output powers an LED for rudimentary debugging.

173

Communication is implemented with asynchronous serial over IR components on the

Crystal faces. Each module face contains an IR emitter and detector that allow modules

to communicate at distances of up to 10 cm. These components are each connected to a

dedicated Maxim Max3100 UART in the core, so a unit can talk with all neighboring units

essentially simultaneously. The UARTs communicate at 1200 Baud and have an eight-

word hardware FIFO. Synchronous serial communication is used between the processor

and the UARTs.

Each face is connected to the core circuit board with a flexible ribbon cable, so that

the cabling exerts minimal force on the face during expansion and contraction. Four 3V

Lithium batteries (one in each face) are connected in series to power the unit, enabling

fully untethered operation. Code is downloaded to the processor though a serial interface.

The code executes as soon as the unit is powered on.

The expansion/contraction mechanism uses a rack-and-pinion to actuate each pair of

module faces. Two MicroMo motors are mounted coaxially in the module core, with pin-

ion gears mounted directly on the motor output shafts. Racks connected to opposing faces

mate on opposite sides of a pinion such that each motor drives two faces simultaneously.

Shaft encoders built into each motor’s housing generate interrupts that allow the processor

to detect when the face is fully expanded or contracted. Three additional passive shafts

on each face provide greater rigidity during expansion.

Modules attach to each other at their faces, using channel-and-key type connectors.

Each module has two faces with active connectors, and two faces with passive connectors.

Passive faces simply contain a channel that accepts a bar from an active face. The active

face can rotate the bar a quarter-turn, locking the two modules together, and unlocking

the modules by reversing the rotation. Lego mini-motors are used to actuate the active

faces.

Dimensionally, this Crystal prototype is slightly larger than its predecessor. This is

174

primarily due to the addition of the second expansion degree of freedom and the use of

much stronger (but slightly larger) expansion motors. Since this is a prototype system, we

are more concerned with functionality than small changes in size. The expanded size of a

module is 5.2 inches square, and contracted size is 2.6 inches square. The overall height

is 7.4 inches with a weight of 18 ounces. Eighteen modules have been constructed.

6.2.2 Crystal Robot Software Architecture

Communication is the key component for providing the system support for distributed

control in Crystal robots. To this end, we developed a message-passing infrastructure on

top of the Crystal’s communication capabilities. Each unit maintains a message queue,

and can post messages to neighbor modules. A module’s program is then centered around

a message loop, similar to the message loop in modern windowing systems. In each iter-

ation, the processor polls each UART for incoming messages and adds any new messages

to the queue. It then takes a message from the queue and processes it according to the

appropriate message handler. Since each UART has its own FIFO, the UARTs still can

receive data while the processor is busy handling messages. Because the processor speed

is much faster than the UART transmission rate, the risk of the UART FIFOs filling up

before they get serviced by the processor has not been an issue.

Library functions were developed to handle the synchronous communication between

the processor and UARTs in both directions. Polling of the UARTs is done with a single

library call, so that the creation of the message loop is trivial. For these library functions,

we have assumed that all messages will be two bytes long (although the content within

the two bytes is message dependent). This limit was imposed to allow the system to be

able to receive four messages from each direction before the UARTs are polled, although

future messaging infrastructure (and interrupt-based communication) will allow us to re-

175

0 01 10 1 101 110 0 01 1

typesender

15 13 3 0

parent IDdata

7

Figure 6.7: Message format example. The sample message is from the goal recognition
algorithm, indicating a trace message received from the west face.

lax this restriction. For all the algorithms and robot sizes presented here, this message

size limitation has not been problematic.

Using this infrastructure we implemented the distributed algorithms by defining a set

of message types and creating message handlers for each message type. In general we

have maintained a common format for the messages, so that additional common library

functions can be used. In particular, the lowest four bits of the message are reserved for

the message type, and the highest two bits are reserved for the direction from which the

message was received. These data can be extracted from the message with a bit mask,

and providing library functions to perform the bit masking leads to less propensity for

coding errors. The data can take up the remainder of the message and be in whatever

format is necessary for the particular message or algorithm (in many of our algorithms,

the data format is consistent over all message types). An example of a message from the

distributed goal recognition algorithm is given in Figure6.7.

Development Environment

Since a C compiler is available for the Hitachi H8 microcontroller, programming the

Crystal is done on a host computer in C, compiled, and downloaded to the unit with a

serial interface. Each unit runs the same code. Heterogeneity is modeled by assigning

each unit a unique integer type. To make the build process faster, we manually edited the

binary image to assign types before downloading to flash memory.

176

Boot Procedure

While the messages used by any given algorithm are necessarily specific to that algorithm,

there is a common boot sequence that is used (with some algorithm-specific adaptations

possible). A boot sequence is required since the modules must be manually switched on

one at a time, so that when a module starts its program, it does not initially know whether

its neighbor units are powered on. To solve this problem, we use a special message called

system_init. This message is initially generated only after all modules have been powered

on, and can be sent at later times to effect a software “reboot.” This message is created by

one module that has a switch. Thesystem_init message handler propagates the message

to all neighbors, and also recognizes each neighbor from which it received asystem_init.

Any initialization of algorithm-specific global variables is also done in this function. If

furthersystem_inits are received, they are ignored. However, to enable later soft reboots,

there is also apre_init message to set a state bit that is cleared bysystem_init. This allows

a module to realize when asystem_init (or pre_init) is a duplicate and when it indicates a

new reboot of the system.

Attaching and Detaching from Neighbors

Attaching and detaching from neighbors is a critical primitive operation in the Crystal.

This is an asymmetrical procedure since only one face is active. To connect or disconnect

a passive face, a module must make a request to its active neighbor. The challenge is

that the connection mechanism is particularly error-prone and subject to jamming. Hall

sensors in the mechanism detect when the connector is fully open or fully closed, so three

states are observable at the software level: open, closed, and intermediate. A connector

in the intermediate state for greater than a certain time threshold is considered stuck.

We implemented software control of connection/disconnection as a function that takes

177

two arguments: 1) requested action (connect or disconnect), and 2) which face to act upon.

This function acts differently depending on whether the requested face is active or passive.

For an active face, we open the connector, send a message to the neighbor to notify it

of disconnection, and wait for an acknowledgement message from the neighbor. Each

operation is subject to timeout, defined as five seconds. If timeout occurs, the module

turns on its LED to signal failure and halts. For a passive face, we send a message to the

active neighbor to request disconnection, and wait for an acknowledgement message. A

similar timeout scheme used.

To implement the timeout, we use a busy-waiting scheme that polls the system clock.

During this busy-waiting, we must continuously check for acknowledgement messages

since the main message loop is blocked. To accomplish this, we peek directly into the

hardware FIFOs to search for messages of the correct type.

The connect/disconnect function, therefore, blocks until either the operation is suc-

cessful or an error occurs. We provide a non-blocking version as well that returns before

receiving an acknowledgement message.

Neighbor Detection

After locomotion, a module may need to discover its local neighborhood. Since no hard-

ware is available to sense directly the presence or absence of a neighbor, we implemented

neighbor detection in software. This procedure sends aping message to a given face

and waits for an acknowledgement. Busy-waiting, FIFO searching, and timeouts are uti-

lized as in the connect/disconnect function. The neighbor detect function returns true if it

received an acknowledgement, and false if it reached timeout.

178

Name Function
PRE_INIT Prepare for initialization
SYSTEM_INIT Perform system initialization
GR_START Begin goal recognition algo-

rithm
TRACE Tests validity in goal matrix
TRACE_FAIL Trace has failed
META_TRACE Check if all traces failed
GR_SUCCESS Return true
GR_FAILURE Return false

Table 6.4: List of all message types used in goal recognition implementation.

6.2.3 Goal Recognition Experiment

We implemented the 2D Goal Recognition algorithm in hardware using the Crystal. To

enable the algorithm, we developed message-handling routines as described below, and

performed experimental studies with several different configurations of the modules. Re-

sults are described in this section.

Algorithm Implementation

The message handlers for the required message types are summarized in Table6.4. We

hard-coded the goal matrix, since the message size we chose is so small. We would like

to transmit goal matrices on the fly, but that requires a more complex protocol to allow

for arbitrarily large messages. When a start message is received, the goal recognition

algorithm is started and trace messages cause the module LEDs to blink. When the algo-

rithm finishes, the modules signal success or failure with a given pattern of LED blinks.

A sample robot is shown in Figure6.8.

179

Figure 6.8: Experimental setup for goal recognition corresponding to rightmost column
in Table6.5.

Results

We executed the 2D Goal Recognition algorithm using various configurations of the Crys-

tal robot. Data is given in Table6.5. Most trials were successful, but since the commu-

nication uses IR, sometimes module misalignment led to communications failure. We

hope to address this issue with a new connector design. Fortunately, when this occurred

the trace message continued as if the neighbor module did not exist, and the algorithm

correctly recognized the subset of the goal shape.

Robot shape

Matches goal? No Yes Yes Yes No
Trials 50 50 50 50 50

Successes 49 49 50 50 48
Total messages 25 16 67 32 44

Table 6.5: Goal recognition experimental results.

180

Combining Goal Recognition and Reconfiguration

The next experiment we conducted investigated the behavior of our Goal Recognition al-

gorithm as a subroutine of a simple reconfiguration algorithm. One column of modules

was programmed to “inchworm” along a fixed group of modules (using a variation of the

Attaching locomotion algorithm presented below) and automatically initiate Goal Recog-

nition at the end of each inchworm step. Reconfiguration halts when the robot recognizes

achievement of the goal shape, in this case a rectangle. Preliminary results indicate that

Goal Recognition runs at least an order of magnitude faster than actuation for these robots,

although we would still like to use Goal Recognition less often during reconfiguration.

6.2.4 Inchworm Locomotion Experiment

The ability to perform distributed locomotion depends on the modules passing their state

to their immediate neighbors. The communication infrastructure enables this by allowing

us to define astatemessage, which indicates whether the module is expanded in the direc-

tion of motion and whether it is connected to a fixed module. This information (along with

the message type) easily fits within the two-byte limit. The other message required is the

inch message, which tells the robot to begin locomotion, and includes the desired direc-

tion of travel. Theinchmessage is sent from an external source to initiate the locomotion,

and is also sent by the head module to trigger another step (when desired). Together with

the soft-boot sequence described in Section6.2.2, these algorithms therefore use only four

message types to perform locomotion.

Results

Our locomotion experiments attempted to empirically determine the effectiveness of the

Inchworm Locomotion algorithm. We tested single-row inchworms on different surfaces

181

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.9: First nine steps of Inchworm Locomotion with line configuration of five mod-
ules.

as well as more complex shapes (such as the one in Figure5.6). Snapshots from a five-

module line are shown in Figure6.9. We found the locomotion proceeds well as long

as there are at least four modules in each row. The exact amount of progress is also

dependent on both the surface and the individual modules in the group. That is, if there

is any differential in the friction under the various modules, or if the modules actuate at

different speeds (due to internal friction variance or other irregularities), the locomotion

will not move as far as the theoretical distance. In addition, since groups that are not

simple chains require modules to expand and contract synchronously, it was necessary to

ensure that adjacent modules were reasonably well matched to avoid developing excess

stress within the Crystal.

In all experimental setups, we found that along fairly smooth surfaces (plexiglass and

182

Robot
shape

Surface Nt Ns

Mean
distance
(in/step)

Min-Max
distance
(in/step)

Paint 10 10 2.24 2.10-2.39
Plexiglass 10 10 2.32 2.22-2.37

Plexiglass 10 6 2.14 1.75-2.25

Plexiglass 10 6 1.14 0.9-1.3

Nt: Number of trials,Ns: Number of steps per trial

Table 6.6: Stand-Alone locomotion performance on painted metal floor and plexiglass.
Shapes are given such that the group moves to the left or right. All distances are given as
inches per step.

painted metal) the actual distance was 75-85% of the theoretical for four-module rows,

and 80-90% of the theoretical for five-module rows. Increasing the group size should

allow the distance per step to approach the theoretical limit, but variations in the modules

and ground friction limit this effect. These results held for both single- and double-row

groups, as can be seen in Table6.6. The last row in this table is an interesting case —

since the top and bottom rows are only two modules long, they work against the overall

locomotion, and in fact this robot walked much more slowly than the other groups. The

speed of the locomotion is effected by group size, since the time to perform one step is

proportional to the length of the group. For the single-row group presented at the top of

Table6.6, the steps were made at the rate of one every 20 seconds, for an overall group

speed of 6.7 in/min.

6.2.5 Heterogeneous Reconfiguration Experiment

In this section, we present a hardware demonstration of heterogeneous reconfiguration.

The algorithm MeltSortGrow approaches the heterogeneous SR problem by reconfiguring

183

the original shape into a regular intermediate structure (Melt) and then building the goal

shape (Grow). These two steps treat the system as homogeneous. However, the middle

step reconfigures the intermediate structure such that module types are correct. Since the

Sort step is what handles heterogeneity, we decided to implement this in hardware using

the Crystal robot. This robot was designed to be homogeneous, but by assigning modules

individual colors we treat it as a heterogeneous system. Our experiment was to attempt

to use self-reconfiguration to sort a row of Crystal modules according to a given color

sequence. We developed an algorithm calledCrystalSortfor this task.

These experiments represent the first extensive tests of the reconfiguration ability of

this version of the Crystal hardware. Our results show that our algorithms are feasible

given the memory, computation, and asynchronous communication requirements of the

physical system. The results also revealed mechanical limitations of the connector design

that necessitate a redesign in the future.

Next we present algorithm and implementation details. Then we describe our results

and comment on lessons learned. Source code from our implementation of CrystalSort

both in SRSim and in hardware is listed in AppendixB.

Sorting Modules by Color

To sort the heterogeneous Crystal robot we instantiate the generic sorting step of Melt-

SortGrow to the Crystal actuation method. Given a configuration of modules with color

labels, the objective is to reconfigure the structure such that modules are arranged accord-

ing to a given sequence of colors.

The algorithm will sort a row of Crystal modules using a technique similar to the

familiar selection sort. Because of the actuation requirements in a unit-compressible sys-

tem, this operation needs surrounding structure to succeed, in the form of two additional

rows. This allows any single module to retract fully from the current row. The procedure

184

to reposition a module consists of three steps. First, the module is removed from its row

by contraction of its upper neighbors. Then, the remaining modules move back and forth

to align the module with its new position. Finally, the contracted modules expand to place

the module back into its original row but in the new order.

A top level protocol synchronizes the sorting such that modules are placed in their

correct order beginning at the left of the configuration and progressing successively to the

right. The order is determined by the color sequence of the middle row. The algorithm

is illustrated in Figure6.10. Step (a) shows the initial configuration. The first operation

is to move the module in the last column to the first column, which happens in steps (b)

through (f). Next, the correct module for column two is located and repositioned in steps

(g) and (h). The final operation exchanges modules in columns three and four and results

in the sorted configuration shown in (i). Pseudocode for the decentralized implementation

is listed in Algorithm24.

Our experimental setup consisted of a 12-module robot placed on plexiglass (see Fig-

ure6.11). The possible configurations consist of all permutations of a row of four types.

We ran the algorithm from a number of initial configurations, summarized in Table6.7.

Results and Discussion

The robot successfully completed sorting from numerous initial configurations. In gen-

eral, the longer trials requiring more motions were more prone to failure. Failures were

due exclusively to mechanical limitations of the hardware; the software and algorithms

performed correctly. The main hardware errors were caused by IR communication fail-

ures and by connector failures. Better hardware prototypes are needed to address the

mechanical concerns, although performance can also be enhanced algorithmically by re-

ducing the number of module motions. Friction encountered during expansion and con-

traction through free space leads to misalignment and hence connection failure. Manual

185

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.10: Screenshots from CrystalSort implementation in SRSim simulator. Bottom
row is in reverse order in (a), and is sorted to match column type. The first swap (4-1), is
completed in (f), the second (4-2) is completed in (h), and the final swap (4-3) completes
the sorting in (i).

intervention was required during the experiment to ensure connections. Another way to

address this issue is by spatially constraining the motion of the modules. This constraint

can be accomplished in part by reducing the amount of free space used by the system,

allowing stationary modules to become alignment tracks.

The robot successfully completed reconfigurations from numerous initial configura-

tions. In general the longer trials requiring more motions were more prone to failure.

Failures were due primarily to mechanical limitations of the hardware. The software

186

Algorithm 24 Decentralized algorithm CrystalSort. Assumes three rows of modules,
and begins withsortTokenmessage sent to leftmost module (column one) in middle row.
Bottom row will be sorted to match middle row.

State:
my_color, my color label
my_column, my current column

Messages:
sortToken, sent to synchronize sorting

Action: Request color from bottom neighbor. If neighbor color matchesmy_color, send
sortTokento right neighbor. Else search for matching color by sendingsortQuery(my_color,
my_column)to bottom neighbor.

sortQuery(requested_color, column), searches for matching color
Action: If my_color does not matchrequested_color, send sortQuery message to right neigh-
bor. Else, execute moveToPosition(column). When done, passsortTokenback to new upper
neighbor.

Procedures:
moveToPosition(column)

1. initiate locomotion to align myself with center of structure
2. send command to upper neighbors to contract
3. command bottom row to reconnect
4. send locomotion command to lower neighbor to produce hole beneath me at desired
column
5. command upper neighbors to expand
6. initiate locomotion to realign row with rest of structure

and algorithms performed as designed. These results represent the first extensive tests of

reconfiguration in the Crystal, and also the first demonstration of heterogeneous reconfig-

uration.

The main source of mechanical failures was the inter-module connection mechanism.

Because they require tight module alignment to successfully connect, the connectors con-

sistently jammed and required manual intervention (jiggling) to become unstuck. Since

the processor is programmed to block until the connection is made, a stuck connector is

enough for complete failure of the trial. We acknowledge this as and issue, but in or-

der to continue our evaluation of the rest of the system we circumvented the problem by

manually perturbing stuck connectors.

187

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.11: CrystalSort implementation in hardware using the Crystal robot. Steps cor-
respond to simulation in Figure6.10.

The other main source of failure was excessive lateral drift during expansion. Since

the modules locomote in chains, this motion error compounds enough that the side faces

of the modules collide with neighbors, often preventing further motion and totally dis-

turbing the lattice structure, leading to complete failure. The cause of this problem is not

enough rigidity in both the intermodule connection, and the rack mechanism that connects

the faces to the core. A potential solution is to allow the modules to realign themselves

by pushing against neighbors. We implemented this by partially contracting side faces

during expansion. This worked well except when the deformation was too great, when

the side face would slip past the neighbor face and become totally entwined. Aside from

the connection problems, the modules worked reliably for a long period of time.

188

Table 6.7: Experimental results from CrystalSort algorithm implementation on Crystal
robot from various initial configurations. Goal configuration was 1-2-3-4.

Initial Number Swap Successful Total Manual
Config of Swaps Sequence Attempts Attempts Interventions
2-1-3-4 1 2↔1 1 1 12
2-3-1-4 1 3↔1 1 1 12
2-4-3-1 1 4↔1 1 1 16
1-3-2-4 1 3↔2 1 1 10
1-3-4-2 1 4↔2 1 1 12
1-2-4-3 1 4↔3 2 4 11
2-1-4-3 2 2↔1; 4↔3 2 3 23
3-2-1-4 2 3↔1; 3↔2 1 1 22
3-4-1-2 2 3↔1; 4↔2 1 2 24
4-3-2-1 3 4↔1; 4↔2; 4↔3 1 10-15 (est.) 35
Totals: 12 25-30

Another source of failure came from the communications system. We use IR-based

hardware and a very simple protocol with 2-byte fixed size messages and no error correc-

tion. Excessive ambient light and module misalignment could trigger an erroneous byte

transmission. Once the UART entered this one-off state, it required software reboot to

recover since further messages always consisted of two bytes. These problems mainly

caused failures during boot-up only, but a more sophisticated protocol with error correc-

tion and variable message size would eliminate the failures and also add flexibility to

software development.

Otherwise, the software architecture worked well. Further hardware prototypes are

clearly necessary to address the mechanical concerns. But more importantly, we need to

focus our algorithmic work on reducing the number of motions. Time spent and failures

caused by expanding and contracting, and making and breaking connections make these

expensive operations compared to communication and computation. Therefore it is ad-

vantageous to tradeoff computation for closer to optimal reconfiguration plans. Since op-

timal solutions to reconfiguration are intractable, investigating approximation algorithms

is a good avenue for algorithmic work.

189

6.3 Lessons Learned

The main contributions of our experimental work can be summarized as follows:

• A useful simulation tool

• A robust software architecture for SR systems

• First major evaluation of Crystal robot prototype

• First demonstration of heterogeneous SR system in hardware

• Demonstration and evaluation of reconfiguration algorithms in simulation

In this section we discuss these results within the overall topics of hardware, algo-

rithms. We also discuss how the results translate into recommendations for future research

directions.

6.3.1 Hardware

In terms of hardware development, our work represents alpha testing of the Crystal pro-

totype. We identified a number of mechanical design issues, which are detailed here. As

the primary software developers for the system, we also evaluate software issues.

Design

Performance of the Crystal modules was generally predictable. The computational re-

sources were adequate. We experienced no problems due to processing power or memory

shortages. The mechanical subsystems were reliable in that failures were consistent.

The biggest point of failure, as discussed earlier, was the connection mechanism. In

addition to jamming when attempting to connect, the glue joint holding the key assembly

190

to the motor shaft failed frequently. The jamming problem was improved by regluing

the key such that it protruded from the module face, thereby allowing greater tolerance

for rotation within the neighbor channel. The downside was that this added flexibility

to the connection as a whole and contributed to a greater amount of lateral drift during

expansion.

Another main failure mode was broken wires connecting the core assembly to the

faces. The high-gauge wire experienced considerable fatiguing at the connection with the

face during expansion and contraction. Locating these failures was difficult due to the

large number of wires involved. Encasing the entire connection area in hot glue added

enough to rigidity to prevent further failure.

A less frequent source of failure was the communications hardware. As noted, errant

transmissions were received due to ambient light and cross-talk. Communication only

occurs in the connected state, so better receiver shielding could help this problem.

We also identified usability issues. Although battery life was relatively long, replace-

ment was time-consuming since the batteries were soldered in place. With four batteries

per module, this became a significant problem. Also, the lack of an on/off switch lead to

premature battery replacement since it was easy to unintentionally leave the units pow-

ered on for long periods of time. To power the modules off, a ribbon cable had to be

disconnected. Repeated connection and disconnect of these cables also contributed to

wire fatigue and failure.

Software

The simple software architecture we developed proved to be well-designed and easy to

work with. Organizing code by message type allowed us to keep code for multiple algo-

rithms loaded in memory without conflicts. It was troublesome to download code, how-

ever, since this involved connecting a wire to each module individually to reprogram its

191

flash memory. As SR systems grow in size, some type of auto-programming will become

necessary.

Beneath the message-passing architecture is low-level code for directly controlling

motors and communications hardware. The main expansion/contraction is controlled by

counting rotations of the motor shaft. Unfortunately, this meant that the width of the

module had to be manually calibrated. The other type of motor in the system rotates

the connector mechanism. This is controlled with the use of a hall sensor for absolute

positioning, which worked well. There is no sensor to detect the presence of a neighbor,

though, so we implemented neighbor detection by sending a ping message. If a timeout

was exceeded without a receiving a return message, we assume there is no neighbor.

Obviously this scheme fails if the neighbor module is present but unable to communicate.

A touch sensor or other simple solution is desirable. The communication protocol we

developed uses simple fixed-width messages with no software error correction. We were

able to work around this limitation for the current algorithm implementations, but a more

complex protocol will be necessary to transmit larger amounts of data.

At the level of trajectory control, we were able to compensate for some lateral drift

by partially contracting lateral faces during contraction and expansion. Re-expanding the

faces helped the module to self-align in some circumstances by pushing against neighbor

faces.

The biggest downside of our implementation is that we were unable to recover from

most mechanical failures such as stuck connectors. We could implement failure detection

in software, but the failure rate in the current system was too high for this to be of use.

192

6.3.2 Algorithms

Implementing our reconfiguration algorithms in simulation aided algorithm development

by making special cases apparent and by exposing incorrect assumptions. For Crystal-

Sort, initial simulations sped debugging since the debugging facilities offered by modern

programming languages are far superior to those found on the robot.

In terms of algorithm design, an important point that our simulation work made ap-

parent is that asymptotic analysis is a necessary but insufficient tool for evaluation of

reconfiguration algorithms. We anticipate the number of modules in SR systems to be

large, but not infinite. Therefore, asymptotic analysis alone can obscure the comparison

of reconfiguration techniques. Because the cost of module actuation is enormous in time

and energy, more precise measures of motion counts should be used in practice. Likewise,

the notion of instantiating Sliding-Cube modules with different actuation types is another

source of hidden extra actuations.

6.3.3 Future Work

There are a number of recommendations stemming from our results. The first addresses

one of the primary motivations of SR research, fault tolerance through redundancy. We

feel that this goal can only be achieved with a minimum level of mechanical reliability

combined with fault tolerant algorithms. Our hardware did not perform to a level suffi-

cient to fully explore fault tolerance properties of our algorithms. The mechanical issues

we identified must be mitigated in further prototypes.

Another large issue is the consideration of dynamics. Observing the behavior of BFS

and DFS as search techniques for melting initial configurations into the line shape in

MeltSortGrow makes it clear that arbitrary configurations place impossible demands on

the strength of intermodule connections in the presence of gravity.

193

A final, perhaps obvious recommendation is for closer integration of hardware and

algorithm designers in the research process. Tighter cycles of design, development, and

testing would help to advance this research program at a much quicker pace.

194

Chapter 7

Discussion and Future Work

The versatility and adaptability of SR robots is increased by the introduction of functional

specialization at the module level. In this thesis, we have laid an algorithmic groundwork

for the study of heterogeneous SR systems. We showed that heterogeneous reconfigura-

tion can be planned in polynomial time under common assumptions, and characterized

the free space constraints that cause our algorithms to fail. These algorithms allow a het-

erogeneous robot to plan shape changes among obstacles in all realistic situations, and

support the relative positioning of modules by function. We also applied the planning

methods and implementation techniques developed for reconfiguration algorithms to the

related problems of locomotion, self-repair, and distributed goal recognition. Finally, we

constructed a novel simulation environment and performed experiments in simulation and

in hardware with an existing SR robot prototype.

In addition to the discussion presented in individual chapters, we conclude the the-

sis with a discussion of overarching issues and suggestions for future work. Section7.1

discusses the important issue of uncertainty in reconfiguration planning, Section7.2com-

pares our overall planning approach with competing approaches, Section7.3 discusses

issues pertaining to real-world applications of SR robots, and Section7.4outlines a num-

195

ber of immediate next steps for research suggested by our results.

7.1 Uncertainty

All robots operating in the real world face many forms of uncertainty. SR robots are

no exception. A system composed of thousands of units has the benefits of redundancy,

but also suffers from thousands of opportunities for a module to experience errors and

failure. Our approach to uncertainty in reconfiguration planning for SR systems is to

divide the issue into a low-level, continuous layer, and a higher-level, discrete layer. The

continuous layer subsumes errors in performing connections, disconnections, and other

actuations by the physical mechanisms that implement these functions on a single module.

An example is connection failure due to module misalignment. Total failure of low-level

controllers to correct these errors is treated as a discrete failure and passed up to the

higher-level. The topic of how to deal with this low-level uncertainty is critical, but is

highly dependent on module implementation and is left to hardware-design researchers.

The level of abstraction at which our algorithms operate thus considers only discrete

module failures. The approach we present in this thesis is to treat module failure as a total

loss and to replace the module with a spare. This is the self-repair approach described in

Chapter5.

There is much work remaining in this area. For uncertainty in the connection mecha-

nism, researchers are exploring mechanical solutions that increase the misalignment tol-

erance for a successful connection [6, 73]. For other forms of uncertainty, solutions are

still in their infancy. Assuming the availability of touch sensors, our locomotion work in

Chapter5 begins to address uncertainty in locomotion by using compliance. Algorithmi-

cally, future work could attempt to avoid the total loss of a failed module by leaving it in

the structure and planning paths around it. Even so, the self-repair approach is justified

196

based on the basic assumptions of large systems (thousand of units) and a minimum level

of module reliability. In other words, if failures fall within an acceptable level, replacing

modules as a solution to failure is affordable.

7.2 Planning versus Reacting

For all our algorithms, we started with a centralized solution and transformed it into a

decentralized version. The main alternative is a pure distributed reactive approach based

on gradients or local rules. This warrants comparison. The benefit of our hybrid approach

is that we retain convergence and run time guarantees while still executing on a distributed

system with only neighbor-to-neighbor communication. The downside is that planning

requires significantly more communication and computation than reactive methods. Also,

our techniques lack the natural concurrency arising from local rule-based algorithms. In

some cases, such as in CA-style locomotion, the price of simple rule-based execution at

run-time is paid up front with time spent developing the rules and proving them correct.

Ultimately, which approach is superior will depend on the relative costs of actuation

versus computation and communication. If modules move anywhere near as fast as they

do in simulation, then reactive methods are probably better. But if actuation remains as

slow as it is in our observations, there is plenty of time for planning in order to reduce the

total number of expensive module motions.

7.3 Towards Real-World Applications

There are many challenges to be met before SR robots can be effective situated in the

real world. We discuss two of these challenges here. First, a critical feature of real-world

situations is the presence of obstacles. Our work with reconfiguration and locomotion

197

among obstacles is a solid contribution towards meeting this challenge. An important

property of this work is that it does not require long-range sensing. Simple sensors such as

touch sensors, infrared pairs, or sonar are enough. We added touch sensors to the Crystal

modules during locomotion experiments, for example. More complex sensors such as a

laser scanner can be added to a single module while keeping the sensing requirements

low for the majority of modules in the robot.

Another important issue, outlined in Chapter1, is how to design and implement a

human-robot interface for SR systems. The basic issue is a one-to-many relationship:

how can a single user interface with multiple modules? This interface must support both

commands to the robot and feedback or other information returning to the user. Direct

control of each module is equivalent to centralized control and is undesirable for same

reasons that led us towards decentralized/distributed algorithms. It is better to enter the

loop at a higher level. This idea is generally referred to assemi-autonomous control.

For example, we were basically able to interface with the Crystal robot (see Chapter6)

by issuing single-step locomotion commands. We used a spare Crystal module with an

added momentary-contact switch (a button) as the interface, and could communicate with

any module in the robot.

HRI is a major open problem. Solutions for SR robots can include a number of in-

teresting properties. The first is redundancy – the robot can include a variable number of

communications modules, positioned to optimize performance. Secondly, the notion of

semi-autonomous control is appealing because it hides low-level details and reduces de-

mands on users attention. The message-based architecture we developed for the Crystal is

good platform because control via an external user and an internal module is fundamen-

tally the same. Messages could assume different priority levels to allow an external user

to take full control if necessary. Finally, since the most likely physical interface device

is a hand-held computer, users should be able to simply specify a desired configuration.

198

The compressed configuration representation discussed in this thesis (Section4.4) and in

other recent work by Stoy [91] is a good step in this direction.

7.4 Future Work

We discussed directions for future work as associated with individual chapters. Here, we

highlight main points to conclude the thesis.

7.4.1 Optimal Reconfiguration Planning

Based on our experimental results, it is evident that module motion is vastly more expen-

sive, in terms of time and errors, than computation. Therefore, it would be advantageous

to reduce motions at the expense of computation. Interesting theoretical questions along

these lines include approximating the optimal number of moves for a given configuration,

and generating an approximate goal shape using the optimal number of moves. Given

the apparent complexity of finding optimal reconfiguration plans, an intriguing question

is whether reconfiguration is even polynomial-time approximable, and whether the com-

plexity of approximation differs between homogeneous and heterogeneous systems.

7.4.2 Heterogeneity of Module Size and Shape

One of the most natural extensions of our reconfiguration work is to consider other types

of heterogeneity. Allowing modules of varying size and shape is an important issue. This

would allow interesting applications in assembling large structures. Since one of the most

difficult aspects of constructing small modules is how to fit the required components in

a package of limited size, large modules present an appealing alternative. The difficulty

of this problem depends heavily on the definition of inter-module connection properties.

199

For example, consider a planar robot comprising both square and rectangular modules.

The first question is, how do the two module sizes connect together? If connection is

defined such that surface motion is preserved, then the problem can be addressed by a

straightforward extension of existing algorithms. If the connection properties impose

further constraints on module trajectory planning, then new methods would be required.

7.4.3 Approximate Goal Representation

Furthering the ideas initiated in our Position Constraints algorithm is another promising

research direction. The two main questions are: 1) how to minimize communication

volume while updating partial state estimates in the position-constrained modules, and

2) how to best use state estimates that change over time to plan trajectories for position-

constrained modules. We discussed initial solutions in Chapter5.

The notion of representing configurations other than by specifying the exact position

of every module can begin to address the general problem of configuration determination,

which has not yet received appreciable attention. Representations that allow variable

resolution, such as non-uniform meshes in finite element methods [26], are promising.

7.4.4 Dynamics

We have generally ignored dynamics in our reconfiguration planning work. This is an

obvious shortcoming. It is interesting to consider modifying simple algorithms such as

MeltSortGrow to choose the order in which modules are moved in such a way as to pre-

serve properties in addition to connectedness. For example, lattice-based systems are gen-

erally treated as statically stable structures and the center of mass can easily be computed.

One idea is to only make moves that prevent the robot from toppling over by keeping the

center of mass within the current footprint. Another idea is to favor dense structures over

200

sparse structures so as to minimize the occurrence of long chains of unsupported modules.

7.4.5 Learning

Finally, we note that although our decentralized algorithms have many useful properties,

they still require a significant amount ofa priori knowledge. Reducing this requirement

is desirable for operation in unknown environments. Either the module controllers were

manually synthesized, as in the locomotion results, or the goal configuration was pro-

vided, as in the reconfiguration planning results. A possible progression is to use learning

techniques to further this line of research. A feasible issue to attack is configuration de-

termination, but the general approach of using learning in SR robots research remains an

open question.

201

Appendix A

SRSim Source Code

SRSim is the SR robot simulation environment we built for implementing and animating

our algorithms. This Appendix includes java source code samples from SRSim. Sec-

tion A.1 lists full source code for the simulator’s base class. SectionA.2 lists the Sliding-

Cube module object implementation. A code template for implementing algorithms in

SRSim is listed in SectionA.3.

A.1 SRSim Base Class

/***
* SRSimBase.java
*
* Base class for SRSim simulations. Can be extended for implementing
* specific algorithms, or used as a template.
*
* RCF Robert Fitch
*
* 12/17/02 RCF Initial version
*
* NOTES:
*

***/

import java.applet.Applet;

202

import java.awt.BorderLayout;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.universe.SimpleUniverse;
import javax.media.j3d.*;
import com.sun.j3d.utils.behaviors.vp.*;
import javax.vecmath.*;
import com.sun.j3d.utils.image.TextureLoader;
import com.sun.j3d.utils.geometry.*;
import java.io.*;
//import ncsa.j3d.ui.record.*;

public abstract class SRSimBase extends Applet
{

//
// default params
private static float WIDTH = 8.0f;
private static float HEIGHT = 0.0f;
private static float LENGTH = 8.0f;
private static String floorImage = "floor.gif";

//
// private member vars
protected SimpleUniverse simpleUniverse = null;
protected PositionInterpolator pi = null;
protected BranchGroup removeableBehavior = null;
protected BranchGroup objRoot = null;
protected OrbitBehavior orbit = null;
protected Canvas3D canvas = null;
//protected RecordableCanvas3D canvas = null;
private boolean flipYZ = false;

//
// constructors
public SRSimBase()
{}

public void init()
{

// set up our graphical environment
setLayout(new BorderLayout());
GraphicsConfiguration config =

SimpleUniverse.getPreferredConfiguration();
canvas = new Canvas3D(config);
//canvas = new RecordableCanvas3D(config);
add("Center", canvas);

BranchGroup scene = createSceneGraph();
scene.compile();

203

orbit = new OrbitBehavior(canvas, OrbitBehavior.REVERSE_ALL
| OrbitBehavior.STOP_ZOOM);

orbit.setSchedulingBounds
(new BoundingSphere(new Point3d(5,5,2),10));

simpleUniverse = new SimpleUniverse(canvas);
setViewPlatformTransform();
simpleUniverse.getViewingPlatform().setViewPlatformBehavior

(orbit);
simpleUniverse.addBranchGraph(scene);

}

//
// Scene graph methods
//
protected BranchGroup createSceneGraph()
{

// create some objects
objRoot = new BranchGroup();
objRoot.setCapability(BranchGroup.ALLOW_CHILDREN_EXTEND);
objRoot.setCapability(BranchGroup.ALLOW_DETACH);

// Set up the background
createBackground();

// Set up the global lights
createLights();

// add the ground
objRoot.addChild(createLand(new Point3f

(0.0f, 0.0f, 0.0f),
WIDTH,
HEIGHT,
LENGTH,
floorImage));

// and we’re done
return objRoot;

}

protected void setViewPlatformTransform()
{

simpleUniverse.getViewingPlatform().setNominalViewingTransform();
}

protected void createBackground()
{

Background bgNode = new Background(0.5f, 0.5f, 0.5f);
bgNode.setApplicationBounds(new BoundingSphere());

204

objRoot.addChild(bgNode);
}

protected void createLights()
{

Color3f lColor1 = new Color3f(0.7f, 0.7f, 0.7f);
Vector3f lDir1 = new Vector3f(-1.0f, -1.0f, -1.0f);
Color3f alColor = new Color3f(0.2f, 0.2f, 0.2f);

AmbientLight aLgt = new AmbientLight(alColor);
aLgt.setInfluencingBounds

(new BoundingSphere(new Point3d(5,5,2),10));
DirectionalLight lgt1 = new DirectionalLight(lColor1, lDir1);
lgt1.setInfluencingBounds

(new BoundingSphere(new Point3d(5,5,2),10));
objRoot.addChild(aLgt);
objRoot.addChild(lgt1);

}

protected Group createLand(Point3f origin,
float width,
float height,
float length,
String textureFile)

{
QuadArray quadArray = new QuadArray

(4, GeometryArray.COORDINATES |
GeometryArray.NORMALS |
GeometryArray.TEXTURE_COORDINATE_2);

float[] coordArray = {
origin.x, origin.y+height, origin.z + length, //near left
origin.x+width, origin.y+height, origin.z + length,//right
origin.x+width, origin.y+height, origin.z, // far right
origin.x, origin.y+height, origin.z }; // left

quadArray.setCoordinates
(0, coordArray, 0, coordArray.length/3);

for(int n = 0; n < coordArray.length/3; n++)
quadArray.setNormal(n, new Vector3f(0,1,0));

float[] texArray = {0, 0,
1, 0,
1, 1,
0, 1 };

quadArray.setTextureCoordinates
(0, 0, texArray, 0, coordArray.length/3);

205

// load texture
Texture tex = new TextureLoader

(textureFile, this).getTexture();
Appearance app = new Appearance();
app.setTexture(tex);

// make the image show on both sides of the ground
PolygonAttributes pa = new PolygonAttributes();
pa.setCullFace(PolygonAttributes.CULL_NONE);
app.setPolygonAttributes(pa);

// and put it all together
BranchGroup bg = new BranchGroup();
Shape3D shape = new Shape3D(quadArray, app);
bg.addChild(shape);

return bg;
}

protected Group createTerrainMappedLandFlipYZ
(Point3f origin, float width, float height, float length,

String textureFile, String heightMapFile)
{

flipYZ = true;
Group ret = createTerrainMappedLand

(origin, width, height, length, textureFile, heightMapFile);
flipYZ = false;
return ret;

}

protected Group createTerrainMappedLand
(Point3f origin, float width, float height, float length,

String textureFile, String heightMapFile)
{

// takes a heightmap file
//
boolean readTexCoords = true;
Point2f[][] textureMap = null;
float[][] heightMap = null;
int xLength,zLength;

// parse file: [col][row]
try
{
FileInputStream stream = new FileInputStream(heightMapFile);
InputStreamReader reader = new InputStreamReader(stream);
StreamTokenizer tokens = new StreamTokenizer(reader);

tokens.nextToken();
if ((int)tokens.nval==1) {readTexCoords = false;}
tokens.nextToken();

206

xLength = (int)tokens.nval;
tokens.nextToken();
zLength = (int)tokens.nval;
heightMap = new float[xLength][zLength];
textureMap = new Point2f[xLength][zLength];
float xInt, zInt;
xInt = 1.0f/(xLength-1);
zInt = 1.0f/(zLength-1);

System.out.print("Reading "
+ xLength
+ "x"
+ zLength
+ " elevation map");

if (readTexCoords) {
System.out.println(" with texture coordinates.");

}
else {

System.out.println(" and auto-generating
texture coordinates.");

}
for(int i=0; i<zLength; i++)
{

for(int j=0; j<xLength; j++)
{

tokens.nextToken();
heightMap[j][i] = (float)tokens.nval;
if (readTexCoords)
{
}
else
{

if (flipYZ)
textureMap[j][i] = new Point2f(j*xInt,i*zInt);

else {
textureMap[j][i] =

new Point2f(j*xInt,1.0f-i*zInt);
}

}
}

}

stream.close();
}
catch (IOException e)
{

System.out.println("error reading elevation map "
+ heightMapFile);

return null;
}

207

return createTerrainMappedLand(origin,
width,
height,
length,
textureFile,
textureMap,
heightMap);

}

protected Group createTerrainMappedLandFlipYZ(Point3f origin,
float width,
float height,
float length,
String textureFile,
float[][] heightMap)

{
flipYZ = true;
Group ret = createTerrainMappedLand(origin,

width,
height,
length,
textureFile,
heightMap);

flipYZ = false;
return ret;

}

protected Group createTerrainMappedLand(Point3f origin,
float width,
float height,
float length,
String textureFile,
float[][] heightMap)

{
// auto-generate texture coordinates
//
int xLength = heightMap.length;
int zLength = heightMap[0].length;
Point2f[][] textureMap = new Point2f[xLength][zLength];
float xInt = 1.0f/(xLength-1);
float zInt = 1.0f/(zLength-1);

for(int i=0; i<xLength; i++)
{

for(int j=0; j<zLength; j++)
{

if (flipYZ)
textureMap[i][j] = new Point2f(i*xInt,j*zInt);

else
textureMap[i][j] =new Point2f(i*xInt,1.0f-j*zInt);

}

208

}

return createTerrainMappedLand(origin, width, height,
length, textureFile, textureMap,
heightMap);

}

protected Group createTerrainMappedLandFlipYZ(Point3f origin,
float width,
float height,
float length,
String textureFile,
Point2f[][] textureMap,
float[][] heightMap)

{
flipYZ = true;
Group ret = createTerrainMappedLand(origin, width, height,

length, textureFile,
textureMap, heightMap);

flipYZ = false;
return ret;

}

protected Group createTerrainMappedLand(Point3f origin,
float width,
float height,
float length,
String textureFile,
Point2f[][] textureMap,
float[][] heightMap)

{
// unravel coordinate data: [col][row]
if ((textureMap.length != heightMap.length) ||

(textureMap[0].length != heightMap[0].length))
{

System.out.println("error creating terrain. size of
texture and height map data don’t match");

return null;
}
int index = 0;
Point3f[] coordArray =

new Point3f[heightMap.length*heightMap[0].length +
(heightMap.length-2)*heightMap[0].length];

float[] texArray = new float[2*coordArray.length];
int[] stripCounts = new int[heightMap.length-1];
float xInterval = (width - origin.x)/heightMap.length;
float zInterval = (length - origin.z)/heightMap[0].length;

for (int i=0; i<heightMap.length-1; i++)
{

209

stripCounts[i] = 2*heightMap[0].length;

if (flipYZ) {
coordArray[index] =

new Point3f(xInterval*i,0.0f,
heightMap[i][heightMap[0].length-1]);

} else {
coordArray[index] =

new Point3f(xInterval*i,heightMap[i][0],0.0f);
}
texArray[2*index] = textureMap[i][0].x;
texArray[2*index+1] = textureMap[i][0].y;
index++;

for(int j=0; j<heightMap[0].length-1; j++)
{

if (flipYZ) {
coordArray[index] =

new Point3f(xInterval*(i+1),
zInterval*j,
heightMap[i+1][(heightMap[0].length-1)-j]);

} else {
coordArray[index] = new Point3f(xInterval*(i+1),

heightMap[i+1][j],
zInterval*j);

}
texArray[2*index] = textureMap[i+1][j].x;
texArray[2*index+1] = textureMap[i+1][j].y;
index++;
if (flipYZ) {

coordArray[index] =
new Point3f(xInterval*i,

zInterval*(j+1),
heightMap[i][(heightMap[0].length-2)-j]);

} else {
coordArray[index] =

new Point3f(xInterval*i,
heightMap[i][j+1],
zInterval*(j+1));

}
texArray[2*index] = textureMap[i][j+1].x;
texArray[2*index+1] = textureMap[i][j+1].y;
index++;

}

if (flipYZ) { coordArray[index] =
new Point3f(xInterval*(i+1),

zInterval*(heightMap[0].length-1),
heightMap[i+1][0]);

} else {
coordArray[index] =

210

new Point3f(xInterval*(i+1),
heightMap[i+1][heightMap[0].length-1],
zInterval*(heightMap[0].length-1));

}
texArray[2*index] =

textureMap[i+1][heightMap[0].length-1].x;
texArray[2*index+1] =

textureMap[i+1][heightMap[0].length-1].y;
index++;

}

// load texture
Texture tex =

new TextureLoader(textureFile, this).getTexture();
Appearance app = new Appearance();
app.setTexture(tex);

// build geometry
GeometryInfo gi =

new GeometryInfo(GeometryInfo.TRIANGLE_STRIP_ARRAY);
gi.setTextureCoordinateParams(1,2);
gi.setCoordinates(coordArray);
gi.setTextureCoordinates(0,texArray);
gi.setStripCounts(stripCounts);

NormalGenerator normalGenerator = new NormalGenerator();
normalGenerator.generateNormals(gi);

// make the image show on both sides of the ground
PolygonAttributes pa = new PolygonAttributes();
pa.setCullFace(PolygonAttributes.CULL_NONE);
//pa.setPolygonMode(PolygonAttributes.POLYGON_LINE);
app.setPolygonAttributes(pa);

// and put it all together
BranchGroup bg = new BranchGroup();
Shape3D shape = new Shape3D(gi.getGeometryArray(), app);
bg.addChild(shape);

return bg;
}

}

211

A.2 Sliding-Cube Class

/***
* SlidingCube.java
*
* Implements a generic sliding cube model self-reconfiguring robot
* module
*
* RCF Robert Fitch
*
* 12/07/02 RCF Initial version, extends Box.
* 01/01/03 RCF rewritten to extend Shape3D
*
* NOTES:
* we initially extended Primitive, but according to the selman book
* that’s a bad idea. so instead we’ll extend Shape3D and get the
* geometry by copying the source from ColorCube.java
*

***/

import javax.media.j3d.*;
import javax.vecmath.Color3f;
import javax.vecmath.Point3f;
import javax.vecmath.Point3i;

public class SlidingCube extends Shape3D
{

//
// default params (public constants)
public static final float DEFAULT_X = 0.045f;
public static final float DEFAULT_Y = 0.045f;
public static final float DEFAULT_Z = 0.045f;
public static final Color3f COLOR_RED =

new Color3f(1.0f, 0.0f, 0.0f);
public static final Color3f COLOR_GREEN =

new Color3f(0.0f, 1.0f, 0.0f);
public static final Color3f COLOR_BLUE =

new Color3f(0.0f, 0.0f, 1.0f);
public static final Color3f COLOR_BLACK =

new Color3f(0.0f, 0.0f, 0.0f);
public static final Color3f COLOR_WHITE =

new Color3f(1.0f, 1.0f, 1.0f);
public static final int TRANSPARENT = 1;
public static final int WIREFRAME = 2;
public static final int SOLID = 3;
public static final int RED = 1;
public static final int GREEN = 2;
public static final int BLUE = 3;
public static final int BLACK = 4;

212

public static final int WHITE = 5;

protected static SlidingCubeUpdater geometryUpdater = null;

private static Appearance defaultAppearance = null;
private static Appearance transparentAppearance = null;
private static Appearance solidAppearance = null;
private static Appearance wireFrameAppearance = null;
private static Appearance flatSolidAppearanceRed = null;
private static Appearance flatSolidAppearanceGreen = null;
private static Appearance flatSolidAppearanceBlue = null;
private static Appearance flatSolidAppearanceBlack = null;
private static Appearance flatSolidAppearanceWhite = null;
private static int range = 2;

private static final float[] normals = {
// Front Face

0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,

// Back Face
0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f,
0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f,

// Right Face
1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,

// Left Face
-1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,

// Top Face
0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,

// Bottom Face
0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f,
0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f,

};

//
// private member vars
//
protected QuadArray cube = null;

//
// private member vars
//
private Point3f centroid;
private Point3f newCentroid;
private double scale;
private int id = 0;

213

private int label = 0;
private boolean unlabeled = true;

//
// constructors
//
public SlidingCube()
{

this(0.0f, 0.0f, 0.0f);
}

public SlidingCube(float x, float y, float z)
{

geometryUpdater = new SlidingCubeUpdater();
createAppearances();

cube = new QuadArray(24, QuadArray.COORDINATES
| QuadArray.NORMALS
| QuadArray.BY_REFERENCE);

cube.setCapability(GeometryArray.ALLOW_REF_DATA_READ);
cube.setCapability(GeometryArray.ALLOW_REF_DATA_WRITE);
cube.setCapability(GeometryArray.ALLOW_COUNT_READ);

centroid = new Point3f(x, y, z);
newCentroid = new Point3f(x, y, z);

cube.setCoordRefFloat(getVerts(x, y, z));
cube.setNormalRefFloat(normals);
this.setGeometry(cube);

this.setAppearance(defaultAppearance);
this.setCapability(Shape3D.ALLOW_APPEARANCE_READ);
this.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE);

}

//
// public methods
//
public Point3f getCentroid()
{

return(centroid);
}

public Point3f getNewCentroid()
{

return(newCentroid);
}

public void setNewCentroid(Point3f p)

214

{
centroid = p;

}

public Point3i getGridCoordinates()
{

// this returns this objects into the grid.
// it’s just a simple transform.
return new Point3i(Math.round(centroid.x*10.0f),

Math.round(centroid.y*10.0f),
Math.round(centroid.z*10.0f));

}

public void setAppearance(int appearanceConstant)
{

switch(appearanceConstant)
{
case TRANSPARENT:

this.setAppearance(transparentAppearance);
break;

case SOLID:
this.setAppearance(solidAppearance);
break;

case WIREFRAME:
this.setAppearance(wireFrameAppearance);
break;

}
}

public void setColor(int color)
{

switch(color)
{
case RED:

this.setAppearance(flatSolidAppearanceRed);
break;

case GREEN:
this.setAppearance(flatSolidAppearanceGreen);
break;

case BLUE:
this.setAppearance(flatSolidAppearanceBlue);
break;

case BLACK:
this.setAppearance(flatSolidAppearanceBlack);
break;

case WHITE:
this.setAppearance(flatSolidAppearanceWhite);
break;

}
}

215

public void move(float x, float y, float z)
{

centroid.x += x;
centroid.y += y;
centroid.z += z;
geometryUpdater.setOffset(x,y,z);
cube.updateData(geometryUpdater);

}

public void move(Point3i p) {
move(p.x*0.1f, p.y*0.1f, p.z*0.1f);

}

public void moveTo(Point3i p) {
this.moveTo(p.x*0.1f, p.y*0.1f, p.z*0.1f);

}

public void moveTo(float x, float y, float z)
{

centroid.x = x;
centroid.y = y;
centroid.z = z;
geometryUpdater.setPosition(x,y,z);
cube.updateData(geometryUpdater);

}

public int getID() { return id; }

public void setID(int id) {setID(id,false);}
public void setID(int id, boolean chromaCode)
{

// set the id and generate a color coding if requested
this.id = id;

if (chromaCode)
{

float color = id*(1.0f/range);
Appearance app = new Appearance();
Material mat = new Material();

/*
if (id == 1)

color = .4f;
else

color = .65f;
*/

mat.setDiffuseColor(color, .0f, color);
mat.setSpecularColor(.84f, .0f, .0f);
mat.setEmissiveColor(color, .0f, .0f);
mat.setShininess(15f);

216

// ivory looking appearance
//mat.setDiffuseColor(.2f, .2f, .7f);
//mat.setSpecularColor(.85f, .85f, .85f);
//mat.setEmissiveColor(.7f, .7f, .8f);
//mat.setShininess(22f);

app.setMaterial(mat);
this.setAppearance(app);

}
}

public static void setColorRange(int r) {range = r;}
public static int getColorRange() {return range;}

public int getLabel() { return label; }
public void setLabel(int label) {

unlabeled = false; this.label=label;
}
public boolean unlabeled() {return unlabeled;}

//
// private methods
//
protected static float[] getVerts(float x, float y, float z)
{

float[] verts =
{

// front face
DEFAULT_X + x, -DEFAULT_Y + y, DEFAULT_Z + z,
DEFAULT_X + x, DEFAULT_Y + y, DEFAULT_Z+ z,

-DEFAULT_X + x, DEFAULT_Y + y, DEFAULT_Z+ z,
-DEFAULT_X + x, -DEFAULT_Y + y, DEFAULT_Z+ z,
// back face
-DEFAULT_X + x, -DEFAULT_Y + y, -DEFAULT_Z+ z,
-DEFAULT_X + x, DEFAULT_Y + y, -DEFAULT_Z+ z,

DEFAULT_X + x, DEFAULT_Y + y, -DEFAULT_Z+ z,
DEFAULT_X + x, -DEFAULT_Y + y, -DEFAULT_Z+ z,

// right face
DEFAULT_X + x, -DEFAULT_Y + y, -DEFAULT_Z+ z,
DEFAULT_X + x, DEFAULT_Y + y, -DEFAULT_Z+ z,
DEFAULT_X + x, DEFAULT_Y + y, DEFAULT_Z+ z,
DEFAULT_X + x, -DEFAULT_Y + y, DEFAULT_Z+ z,

// left face
-DEFAULT_X + x, -DEFAULT_Y + y, DEFAULT_Z+ z,
-DEFAULT_X + x, DEFAULT_Y + y, DEFAULT_Z+ z,
-DEFAULT_X + x, DEFAULT_Y + y, -DEFAULT_Z+ z,
-DEFAULT_X + x, -DEFAULT_Y + y, -DEFAULT_Z+ z,
// top face

DEFAULT_X + x, DEFAULT_Y + y, DEFAULT_Z+ z,

217

DEFAULT_X + x, DEFAULT_Y + y, -DEFAULT_Z+ z,
-DEFAULT_X + x, DEFAULT_Y + y, -DEFAULT_Z+ z,
-DEFAULT_X + x, DEFAULT_Y + y, DEFAULT_Z+ z,
// bottom face
-DEFAULT_X + x, -DEFAULT_Y + y, DEFAULT_Z+ z,
-DEFAULT_X + x, -DEFAULT_Y + y, -DEFAULT_Z+ z,

DEFAULT_X + x, -DEFAULT_Y + y, -DEFAULT_Z+ z,
DEFAULT_X + x, -DEFAULT_Y + y, DEFAULT_Z+ z,

};
return(verts);

}

private static void createAppearances()
{

Color3f objColor = null;
PolygonAttributes pa = null;

// default appearance
pa = new PolygonAttributes();
pa.setPolygonMode(PolygonAttributes.POLYGON_LINE);
defaultAppearance = new Appearance();
defaultAppearance.setPolygonAttributes(pa);

// lit solid
solidAppearance = new Appearance();
Material mat = new Material();
mat.setDiffuseColor(.34f, .0f, .34f);
mat.setSpecularColor(.84f, .0f, .0f);
mat.setEmissiveColor(.34f, .0f, .0f);
mat.setShininess(15f);
solidAppearance.setMaterial(mat);

// transparent appearance
transparentAppearance = new Appearance();
TransparencyAttributes ta = new TransparencyAttributes();
ta.setTransparencyMode(ta.BLENDED);
ta.setTransparency(0.6f);
transparentAppearance.setTransparencyAttributes(ta);

pa = new PolygonAttributes();
pa.setCullFace(pa.CULL_NONE);
transparentAppearance.setPolygonAttributes(pa);

objColor = new Color3f(0.7f, 0.8f, 1.0f);
transparentAppearance.setMaterial(new Material(objColor,

COLOR_BLACK,
objColor,
COLOR_BLACK,
1.0f));

// wireframe

218

pa = new PolygonAttributes();
pa.setPolygonMode(PolygonAttributes.POLYGON_LINE);
wireFrameAppearance = new Appearance();
wireFrameAppearance.setPolygonAttributes(pa);

//colors
flatSolidAppearanceRed = new Appearance();
flatSolidAppearanceRed.setColoringAttributes(

new ColoringAttributes(COLOR_RED,
ColoringAttributes.FASTEST));

flatSolidAppearanceGreen = new Appearance();
flatSolidAppearanceGreen.setColoringAttributes(

new ColoringAttributes(COLOR_GREEN,
ColoringAttributes.FASTEST));

flatSolidAppearanceBlue = new Appearance();
flatSolidAppearanceBlue.setColoringAttributes(

new ColoringAttributes(COLOR_BLUE,
ColoringAttributes.FASTEST));

flatSolidAppearanceBlack = new Appearance();
flatSolidAppearanceBlack.setColoringAttributes(

new ColoringAttributes(COLOR_BLACK,
ColoringAttributes.FASTEST));

flatSolidAppearanceWhite = new Appearance();
flatSolidAppearanceWhite.setColoringAttributes(

new ColoringAttributes(COLOR_WHITE,
ColoringAttributes.FASTEST));

}

//**
// helper classes
//
public class SlidingCubeUpdater implements GeometryUpdater
{

GeometryArray geometryArray;
float[] vertices;
private float x = 0.0f;
private float y = 0.0f;
private float z = 0.0f;
private boolean absolutePosition = true;

public void setPosition(float x, float y, float z)
{

absolutePosition = true;
this.x = x;
this.y = y;
this.z = z;

}

219

public void setOffset(float x, float y, float z)
{

absolutePosition = false;
this.x = x;
this.y = y;
this.z = z;

}

public void updateData(Geometry geometry)
{

geometryArray = (GeometryArray)geometry;
if (absolutePosition)
{

geometryArray.setCoordRefFloat(getVerts(x, y, z));
}
else
{

vertices = geometryArray.getCoordRefFloat();
for (int i=0; i<72 ; i+=3)
{

vertices[i] += x;
vertices[i+1] += y;
vertices[i+2] += z;

}
}

}
}

}

220

A.3 Algorithm Implementation Template

/***
* MyNewAlgorithm.java
*
* Template for using the SRSim base classes.
* Use this to write new algos.
*
* RCF Robert Fitch
* --add other author initials/name pairs here---
*
* 01/08/03 RCF Initial version
* ---add revision history here---
*
* NOTES:
* ---add whatever notes you have here---
*
**/

import java.awt.*;
import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;
import javax.media.j3d.*;

import javax.swing.JOptionPane;
import java.util.Enumeration;

public class MyNewAlgorithm extends SRSimBase
{

//
// private member vars
//

//
// constructors and initialization
//
public MyNewAlgorithm()
{

// any data structure initilization
}

public void init()
{

// this overrides the SRSim init method, which draws
/// everything. so make sure to call the super class
// constructor. if there is nothing to add, this method
// doesn’t need to be overridden.

221

super.init();

// add other swing components or whatever here

// init your graphics objects here, or override the scene
// graph creation methods as shown below. or encapsulate the
// graphics stuff inside your objects (pass in a reference to
// the scene graph and let them add themselves).

}

//
// public methods
//

//
// protected methods
//
protected BranchGroup createSceneGraph()
{

// overrides SRSim method and adds custom objects
super.createSceneGraph();
SlidingCube cube = new SlidingCube();
objRoot.addChild(cube); // how to add an example cube

// example of adding a custom behavior
RobotBehavior behave = new RobotBehavior(cube);
// won’t get scheduled without this!
behave.setSchedulingBounds(new BoundingSphere());
objRoot.addChild(behave);

return(objRoot);
}

//
// private methods
//

//
// main entry point for the app
//
public static void main(String[] args)
{

MyNewAlgorithm me = new MyNewAlgorithm();
new MainFrame(me, 512, 512);

}

222

//**
// helper classes
//
class RobotBehavior extends Behavior{

WakeupOnElapsedFrames w = null;
//WakeupOnElapsedTime w = null;
SlidingCube cube = null; // or robot or whatever

public RobotBehavior(){
w = new WakeupOnElapsedFrames(100);
//w = new WakeupOnElapsedTime(100);

}

public RobotBehavior(SlidingCube cube)
{

this();
this.cube = cube;

}

public void initialize(){
System.out.println("behavior init"); // debug code.

// remove if not
// debugging.

wakeupOn(w);
}

public void processStimulus(Enumeration criteria){
System.out.println("process stimulus"); // debug code.

// remove if not
// debugging.

// put all data updates here.
cube.move(0.1f, 0.0f, 0.0f);

// and reschedule yourself
wakeupOn(w);

}
}

}

223

Appendix B

Sorting Experiment Source Code

This Appendix lists source code for the CrystalSort algorithm implementation described

in Chapter6. CrystalSort sorts a row of modules such that their colors match the mod-

ules in the row above. SectionB.1 lists java source code from simulation in SRSim, and

SectionB.2 lists C source code that executes on the Crystal robot hardware. The simula-

tion implementation is very similar to the hardware implementation, since the simulation

environment accurately emulates the software architecture we built for the robot.

B.1 Simulation Implementation

The code listed below implements the message handlers for the CrystalSort algorithm.

This class is used in conjunction with a wrapper class that extends SRSimBase, which is

not listed but is based on the template given in AppendixA.

/***
* CrystalThread.java
*
* Message handlers for CrystalSort algorithm
*
* RCF Robert Fitch

224

*
* 06/19/03 RCF Initial version
*
* NOTES:
*

***/
import java.util.Vector;
import java.util.Stack;
import javax.vecmath.*;

public class CrystalThread extends Thread {
//
// default params (public constants)
public static final int TOP = 0;
public static final int BOTTOM = 1;
public static final int LEFT = 2;
public static final int RIGHT = 3;
public static final int FRONT = 4;
public static final int BACK = 5;
public static final int TOP_FRONT = 6;
public static final int TOP_BACK = 7;
public static final int TOP_LEFT = 8;
public static final int TOP_RIGHT = 9;
public static final int FRONT_RIGHT = 10;
public static final int FRONT_LEFT = 11;
public static final int BACK_RIGHT = 12;
public static final int BACK_LEFT = 13;
public static final int BOTTOM_FRONT = 14;
public static final int BOTTOM_BACK = 15;
public static final int BOTTOM_LEFT = 16;
public static final int BOTTOM_RIGHT = 17;

public static final int EXPAND = 0;
public static final int CONTRACT = 1;
public static final int PULL = 2;
public static final int PUSH = 3;
public static final int INCH = 4;
public static final int INCH_DONE = 5;

public static long animationDelay = 1;
public static boolean debug = true;
public static boolean testing = false;
public static Physics physics = null;

//
// member vars
//
private Crystal m;
private CrystalThread[] neighbors;

225

private boolean stop = false;
private boolean contracted = false;
private boolean inching = false;
private int inchDimension;
private int inchDirection;
private int inchSteps;
private int inchOriginalPosition;
private int inchCurrentPosition;
private int inchDestinationPosition;
private boolean inchRow;

// swap
private boolean swapMaster = false;
private int swapState = -1;

public MessageQueue messages;

//
// constructors
//
public CrystalThread()
{

messages = new MessageQueue();
neighbors = new CrystalThread[6];

}

public CrystalThread(Crystal m)
{

this();
this.m = m;

}

public CrystalThread(Crystal m, String name)
{

this(m);
this.setName(name);

}

//
// public methods
//
public void run()
{

Message msg;

// fire up msg loop
while(true)
{

msg = (Message)messages.pop(); // pops first element

226

// of queue
if (stop)

{
if (msg.type==Message.KILL) //die

return;
else

continue;
}

switch (msg.type)
{
case Message.START:

debugPrint("got message of type: START, id " +msg.id);
handleStart();
break;

case Message.STOP:
stop = true;
break;

case Message.SORT_TOKEN:
handleSort(msg);
break;

case Message.SORT_QUERY:
handleSortQuery(msg);
break;

case Message.COMMAND:
handleCommand(msg);
break;

case Message.STATE:
handleStateChange(msg);
break;

case Message.SWAP:
handleSwap(msg);
break;

default:
debugPrint("unknown message type received.");

}

try
{

Thread.sleep(1);
}
catch (InterruptedException e) {}

}
}

public CrystalThread getNeighbor(int n)
{

return neighbors[n];
}

public void setNeighbor(int whichNeighbor, CrystalThread neighbor)

227

{
if (neighbor != null)

neighbors[whichNeighbor] = neighbor;
}

public void disconnect(CrystalThread neighbor)
{

for (int i=0; i<6; i++)
{

if (neighbors[i] == neighbor)
neighbors[i] = null;

}
}

public void dumpNeighbors()
{

debugPrint("neighbors: ");
for (int i=0; i<6; i++)
{

debugPrint(neighbors[i] + ", ");
}
debugPrint("");

}

public SlidingCube getGeometry()
{

return m;
}

public int getLabel()
{

return m.getLabel();
}

public boolean isContracted()
{

return contracted;
}

//
// private methods
//
private void refreshNeighbors()
{

for (int i=0;i<6;i++)
if (neighbors[i]!=null) neighbors[i].disconnect(this);

neighbors = physics.getNewNeighbors(this);
for (int i=0;i<6;i++)

if (neighbors[i]!=null) {
neighbors[i].neighbors[oppositeNeighbor(i)] = this;

228

}
}

private void broadcast(Message msg)
{

for (int i=0; i<6; i++)
{

if (neighbors[i] != null)
neighbors[i].messages.send(msg);

}
}

private void handleStart()
{

debugPrint("starting.");

//Message msg = new Message(Message.SWAP);
//msg.data = new SwapData(1,4,3);

Message msg = new Message(Message.SORT_TOKEN);
msg.data = new SortData(-1,1,-1);

this.messages.send(msg);
//neighbors[TOP].messages.send(msg);

}

private void handleSort(Message msg)
{

SortData data = (SortData)msg.data;

//debugPrint("sort " + data.goalPosition +","+m.getID());

// we’ll have to pass type in a state msg
if (neighbors[BOTTOM].m.getID() == m.getID())
{

// rock on
refreshNeighbors();
if (neighbors[RIGHT]!=null)
{

((SortData)msg.data).goalPosition++;
neighbors[RIGHT].messages.send(msg);

}
else
{

debugPrint("all done!");
//////////////////////////////////
//
// all done!!! woo hoo!!!
//
//////////////////////////////////

}

229

}
else
{

// send out a query
Message newMsg = new Message(Message.SORT_QUERY);
newMsg.data =

new SortData(data.goalPosition,
data.goalPosition,m.getID());

neighbors[BOTTOM].messages.send(newMsg);
}

}

private void handleSortQuery(Message msg)
{

SortData data = (SortData)msg.data;

//debugPrint("sort query " + data.startPosition+","
// +data.goalPosition+","+data.id+", "+m.getID());

// let’s see if we match
if (data.id == m.getID())
{

// we match. fire up a swap
debugPrint("swap ("+data.startPosition+","+

data.goalPosition+")");
Message newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(1,

data.startPosition,
data.goalPosition);

this.messages.send(newMsg);
}
else
{

// not us. pass it on
data.startPosition++;
if (neighbors[RIGHT]!=null)

neighbors[RIGHT].messages.send(msg);
else
{

// uh oh.
System.out.println("error. sort query fails!");
System.exit(1);

}
}

}

private void handleCommand(Message msg)
{

CommandData data = (CommandData)msg.data;

switch(data.action)

230

{
case CONTRACT:

contract(data.dimension, data.direction);
if (data.dimension==Crystal.Y)
{

if(neighbors[TOP]!=null)
{

neighbors[TOP].messages.send(msg);
}

}
else if (data.dimension==Crystal.X)
{

if(neighbors[RIGHT]!=null)
{

neighbors[RIGHT].messages.send(msg);
}

}
break;

case EXPAND:
expand(data.dimension, data.direction);
if (data.dimension==Crystal.Y)
{

if(neighbors[TOP]!=null)
neighbors[TOP].messages.send(msg);

}
else if (data.dimension==Crystal.X)
{

if(neighbors[RIGHT]!=null)
neighbors[RIGHT].messages.send(msg);

}
break;

case PULL:
if (data.dimension==Crystal.Y)
{

if (data.direction == Crystal.POSITIVE)
{

m.move(0.0f,0.05f,0.0f);
if(neighbors[BOTTOM]!=null)

neighbors[BOTTOM].messages.send(msg);
}
else
{

m.move(0.0f,-0.05f,0.0f);
if(neighbors[TOP]!=null)

neighbors[TOP].messages.send(msg);
}

}
else if (data.dimension==Crystal.X)
{

if (data.direction == Crystal.POSITIVE)
{

231

m.move(0.05f,0.0f,0.0f);
if(neighbors[LEFT]!=null)

neighbors[LEFT].messages.send(msg);
}
else
{

m.move(-0.05f,0.0f,0.0f);
if(neighbors[RIGHT]!=null)

neighbors[RIGHT].messages.send(msg);
}

}
break;

case PUSH:
if (data.dimension==Crystal.Y)
{

if (data.direction == Crystal.POSITIVE)
{

m.move(0.0f,-0.05f,0.0f);
if (neighbors[BOTTOM]!=null)

neighbors[BOTTOM].messages.send(msg);
}
else
{

m.move(0.0f,0.05f,0.0f);
if (neighbors[TOP]!=null)

neighbors[TOP].messages.send(msg);
}

}
else if (data.dimension==Crystal.X)
{

if (data.direction == Crystal.POSITIVE)
{

m.move(-0.05f,0.0f,0.0f);
if (neighbors[LEFT]!=null)

neighbors[LEFT].messages.send(msg);
}
else
{

m.move(0.05f,0.0f,0.0f);
if (neighbors[RIGHT]!=null)

neighbors[RIGHT].messages.send(msg);
}

}
break;

case INCH:
inchRow = true;
if (!inching)
{

inching = true;
inchDirection = data.direction;
inchDimension = data.dimension;

232

inchSteps = data.numberOfSteps;
if (data.dimension==Crystal.X)
{

Message m;
if ((neighbors[LEFT]!=null) && (msg.from != LEFT))
{

m = new Message(Message.COMMAND);
m.data = new CommandData(INCH,

inchDimension,
inchDirection,
inchSteps);

m.from = RIGHT;
neighbors[LEFT].messages.send(msg);

}
if ((neighbors[RIGHT]!=null) &&

(msg.from != RIGHT))
{

m = new Message(Message.COMMAND);
m.data = new CommandData(INCH,

inchDimension,
inchDirection,
inchSteps);

m.from = LEFT;
neighbors[RIGHT].messages.send(msg);

}
}
doInchRules(msg);

}
break;

case INCH_DONE:
if (inchRow)
{

inchRow = false;
refreshNeighbors();

}

if ((data.syncActive==true) && (swapState>0))
{

data.syncActive = false;
Message newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(swapState);
this.messages.send(newMsg);

}

if (neighbors[TOP]!=null)
neighbors[TOP].messages.send(msg);

int d = LEFT;
if (data.direction==Crystal.NEGATIVE)

d = RIGHT;

233

if (neighbors[d]!=null)
neighbors[d].messages.send(msg);

break;
}

}

private void handleStateChange(Message msg)
{

if (inching) doInchRules(msg);
}

private void doInchRules(Message msg)
{

int positiveNeighbor, negativeNeighbor;

// rules
if (inchDimension == Crystal.X)
{

if (inchDirection==Crystal.POSITIVE)
{

positiveNeighbor = RIGHT;
negativeNeighbor = LEFT;

}
else
{

positiveNeighbor = LEFT;
negativeNeighbor = RIGHT;

}

if (!contracted && (neighbors[negativeNeighbor]==null) ||
(neighbors[negativeNeighbor].isContracted()))

{
contract(inchDimension, inchDirection);
broadcast(new Message(Message.STATE));

// head
if (neighbors[positiveNeighbor]==null)
{

expand(inchDimension, inchDirection, false);

if (inchSteps>1)
{

inchSteps--;
Message newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(INCH,

inchDimension,
inchDirection,
inchSteps);

this.messages.send(newMsg);
}

234

else
{

refreshNeighbors();
Message newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(INCH_DONE,

inchDimension,
inchDirection);

((CommandData)newMsg.data).syncActive = true;
this.messages.send(newMsg);

}
}
else
{

expand(inchDimension, inchDirection);
}
inching = false;

}
}

}

private void contract(int dimension, int direction)
{

if (contracted)
{

System.out.println("got command to contract
but i’m already contracted.");

return;
}

try { Thread.sleep(animationDelay); }
catch (InterruptedException e) {}

m.contract(dimension);
contracted = true;

if (dimension==Crystal.Y)
{

Message newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(PULL, Crystal.Y, direction);

if (direction==Crystal.POSITIVE)
{

m.move(0.0f,0.025f,0.0f);
if(neighbors[BOTTOM]!=null)

neighbors[BOTTOM].messages.send(newMsg);
}
else
{

m.move(0.0f,-0.025f,0.0f);
if(neighbors[TOP]!=null)

neighbors[TOP].messages.send(newMsg);

235

}
}
else if (dimension==Crystal.X)
{

Message newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(PULL, Crystal.X, direction);

if (direction==Crystal.POSITIVE)
{

m.move(0.025f,0.0f,0.0f);
if(neighbors[LEFT]!=null)
{

neighbors[LEFT].messages.send(newMsg);
}

}
else
{

m.move(-0.025f,0.0f,0.0f);
if(neighbors[RIGHT]!=null)

neighbors[RIGHT].messages.send(newMsg);
}

}
}

// overload expand so we can override the push back
private void expand(int dimension, int direction)
{ expand(dimension,direction,true);
}
private void expand(int dimension, int direction, boolean push)
{

if (!contracted)
{

System.out.println("got command to expand
but i’m already expanded.");

return;
}

int positiveNeighbor, negativeNeighbor;

try { Thread.sleep(animationDelay); }
catch (InterruptedException e) {}
m.expand(dimension);
contracted = false;

if (dimension==Crystal.Y)
{

if (direction==Crystal.POSITIVE)
{

m.move(0.0f,-0.025f,0.0f);
negativeNeighbor = BOTTOM;

}

236

else
{

m.move(0.0f,0.025f,0.0f);
negativeNeighbor = TOP;

}

if (push)
{

Message newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(PUSH,

Crystal.Y,
direction);

if(neighbors[negativeNeighbor]!=null)
neighbors[negativeNeighbor].messages.send(newMsg);

}
else
{

// fix this to get rid of redundant logic expression
if (direction==Crystal.POSITIVE)

m.move(0.0f,0.05f,0.0f);
else

m.move(0.0f,-0.05f,0.0f);
}

}
if (dimension==Crystal.X)
{

if (direction==Crystal.POSITIVE)
{

m.move(-0.025f,0.0f,0.0f);
negativeNeighbor = LEFT;

}
else
{

m.move(0.025f,0.0f,0.0f);
negativeNeighbor = RIGHT;

}

if (push)
{

Message newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(PUSH,

Crystal.X,
direction);

if(neighbors[negativeNeighbor]!=null)
neighbors[negativeNeighbor].messages.send(newMsg);

}
else
{

// fix this to get rid of redundant logic expression
if (direction==Crystal.POSITIVE)

m.move(0.05f,0.0f,0.0f);

237

else
m.move(-0.05f,0.0f,0.0f);

}
}

}

private void handleSwap(Message msg)
{

Message newMsg;
SwapData data = (SwapData)msg.data;

//debugPrint ("swap case " + data.step);

switch(data.step)
{
case 1: // drive into position

// init data structures
swapMaster = true;
inchOriginalPosition = data.currentPosition;
inchCurrentPosition = inchOriginalPosition;
inchDestinationPosition = data.destinationPosition;

newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(2);
this.messages.send(newMsg);
break;

case 2: // contract
swapState = -1;
if (swapMaster)
{

// we might have to drive over
if (inchCurrentPosition == 4)
{

swapState = 2;
newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(INCH,

Crystal.X,
Crystal.NEGATIVE,
2);

newMsg.from = RIGHT;
this.messages.send(newMsg);
inchCurrentPosition--;
return;

}

newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(2);
neighbors[TOP].messages.send(newMsg);

}
else if (neighbors[TOP]==null) // contract is done
{

238

contract(Crystal.Y,Crystal.POSITIVE);
newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(3);
neighbors[BOTTOM].messages.send(newMsg);

}
else // contract
{

contract(Crystal.Y,Crystal.POSITIVE);
neighbors[TOP].messages.send(msg);

}
break;

case 3: // contract done
if (!swapMaster)
{

neighbors[BOTTOM].messages.send(msg);
return;

}

newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(4);

CrystalThread topNeighbor = neighbors[TOP]; // refresh
//will blow away the real top neighbor

refreshNeighbors();
topNeighbor.neighbors[TOP] = neighbors[TOP];
neighbors[TOP].neighbors[BOTTOM] = topNeighbor;
neighbors[TOP] = topNeighbor;
topNeighbor.neighbors[BOTTOM] = this;

// force refresh cuz inching could have changed
// neighbor relationships
neighbors[RIGHT].refreshNeighbors();
neighbors[LEFT].refreshNeighbors();

neighbors[LEFT].messages.send(newMsg);
if (inchOriginalPosition!=4)

neighbors[RIGHT].messages.send(newMsg); //hack

// cache state for when reconnect is done
swapState = 5;
break;

case 4: // reconnect
// route to bottom
if (neighbors[BOTTOM]!=null)
{

neighbors[BOTTOM].messages.send(msg);
return;

}

// there’ll be one singleton and one double
if ((neighbors[LEFT]==null) && (neighbors[RIGHT]==null))

239

{
return;

}
else
{

// inch over
int d;
if (neighbors[LEFT]!=null) d = Crystal.POSITIVE;
else d = Crystal.NEGATIVE;
newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(INCH, Crystal.X, d, 2);
this.messages.send(newMsg);

}
break;

case 5: // reconnect done
if (!swapMaster)
{

debugPrint("hey i got a SWAP step 5 but i’m not
swap master.");

return;
}

// compute current local position. basically, there are
// three modules below us now. are we on top of the 1st,
// 2nd, or 3rd one?
int currentPosition=-1;
if ((inchOriginalPosition==2) ||(inchOriginalPosition==3))

currentPosition = 2;
else if (inchOriginalPosition==4)

currentPosition = 3;
else
{

debugPrint("error: invalid inchOriginalPosition");
System.exit(1);

}

// now move right
swapState = 6; // get us set up for next step
// *2 because it’s 2 inch steps per module step
int stepsToMove =

2*(currentPosition-inchDestinationPosition+1);
newMsg = new Message(Message.COMMAND);

newMsg.data = new CommandData(INCH,
Crystal.X,
Crystal.POSITIVE,
stepsToMove);

neighbors[BOTTOM].messages.send(newMsg);
break;

case 6: // split
//
// at this point, in the row below us all modules to the

240

// right of us are correctly in position. directly below
// us, there is either nothing, one, or two modules.
// we need to tell them to split and move left if
// there are any there.
//
swapState = -1;
// if we don’t need to split, just go to next step
if (neighbors[BOTTOM]==null)
{

data.step=9; // dangerous to hardcode this!!!!!
handleSwap(msg);

}
else // tell them to split and pick us back up at the

// expand step
{

swapState = 9;
newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(7);
neighbors[BOTTOM].messages.send(newMsg);

}

break;
case 7: // move left one

//
// we need to move left. if there is no one to help us,
// we’ll have to recruit from the right and then have them
// move back over.
//
if (neighbors[LEFT] != null) // just inch over and rock on
{

neighbors[RIGHT].disconnect(this);
neighbors[RIGHT] = null;
newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(INCH, Crystal.X,

Crystal.NEGATIVE,
2);

neighbors[LEFT].messages.send(newMsg);
}
else // we need to recruit help
{

// this is a hack. but before we send inchDone,
// we’ll check swap state and that will pre-empt the
// swapState in the swapMaster from firing. it’s like
// a second-tier swapState.
swapState = 8;
newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(INCH,

Crystal.X,
Crystal.NEGATIVE,
2);

this.messages.send(newMsg);

241

}
break;

case 8: // move back right

swapState = -1;
neighbors[RIGHT].disconnect(this);
newMsg = new Message(Message.COMMAND);
newMsg.data = new CommandData(INCH,

Crystal.X,
Crystal.POSITIVE,
2);

newMsg.from = LEFT;
neighbors[RIGHT].messages.send(newMsg);
neighbors[RIGHT] = null;
break;

case 9: // expand
swapState = -1;
if (swapMaster)
{

newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(9);
neighbors[TOP].messages.send(newMsg);

}
else if (neighbors[TOP]==null) // expand is done
{

expand(Crystal.Y,Crystal.POSITIVE);
newMsg = new Message(Message.SWAP);
newMsg.data = new SwapData(10);
neighbors[BOTTOM].messages.send(newMsg);

}
else // expand
{

expand(Crystal.Y,Crystal.POSITIVE);
neighbors[TOP].messages.send(msg);

}
break;

case 10: // expand is done, now realign
if (!swapMaster)
{

neighbors[BOTTOM].messages.send(msg);
return;

}

refreshNeighbors();

// realign
if (inchCurrentPosition!=inchDestinationPosition)
{

swapState = 11; // pick up after inch
newMsg = new Message(Message.COMMAND);
newMsg.data =

242

new CommandData(INCH,
Crystal.X,
Crystal.NEGATIVE,
2*(inchCurrentPosition-

inchDestinationPosition));
this.messages.send(newMsg);

}
else
{

data.step=11; // dangerous to hardcode this!!!!!
handleSwap(msg);

}
break;

case 11: // all done! signal middle row
swapState = -1;
newMsg = new Message(Message.SORT_TOKEN);
newMsg.data = new SortData(-1,inchDestinationPosition,-1);
neighbors[TOP].messages.send(newMsg);
break;

}
}

// utilities
private void blink(long milliseconds)
{

m.setAppearance(SlidingCube.TRANSPARENT);
try { Thread.sleep(milliseconds); }
catch (InterruptedException e) {}
m.setAppearance(SlidingCube.SOLID);

}

private int oppositeNeighbor(int n)
{

switch(n)
{
case TOP: return BOTTOM;
case BOTTOM: return TOP;
case FRONT: return BACK;
case BACK: return FRONT;
case LEFT: return RIGHT;
case RIGHT: return LEFT;
}
debugPrint("bogus neighbor passed to oppositeNeighbor: " + n);
return -1;

}

private void debugPrint(String s)
{ if (debug) System.out.println(s); }

//
// helper classes

243

//
class CommandData
{

public int action;
public int dimension;
public int direction;
public int numberOfSteps=0;
public boolean syncActive = false;

public CommandData(){}
public CommandData(int action, int dimension)
{

this.action = action;
this.dimension = dimension;

}
public CommandData(int action, int dimension, int direction)
{

this(action, dimension);
this.direction = direction;

}
public CommandData(int action, int dimension,

int direction, int numSteps)
{

this(action, dimension, direction);
this.numberOfSteps = numSteps;

}
}

class SwapData
{

public int step;
public int currentPosition;
public int destinationPosition;

public SwapData(){}
public SwapData(int step)
{

this.step = step;
}
public SwapData(int step, int currentPosition,

int destinationPosition)
{

this(step);
this.currentPosition = currentPosition;
this.destinationPosition = destinationPosition;

}
}
class SortData
{

public int startPosition;
public int goalPosition;

244

public int id;

public SortData(){}
public SortData(int start, int goal, int id)
{

startPosition = start;
goalPosition = goal;
this.id = id;

}
}

}

B.2 Hardware Implementation

Below is the C source code that implements the CrystalSort algorithm on the Crystal

robot. SectionB.2.1lists the main message loop and message handlers, and SectionB.2.2

lists utility function implementations.

B.2.1 Message Handlers

/***
*
* sort/version1/sort.c
*
* Demo of heterogeneous reconfiguration algorithm. Assumes 3x4
* grid, sorts bottom row according to middle row.
*
* Robert Fitch 08/11/03
*
***/

#include "..\..\Shared\StAlone\monbreak.h"
#include "..\..\Shared\StAlone\inlines.h"
#include "..\..\Shared\StAlone\h83644f.h"
#include "..\..\Shared\StAlone\macros.h" // for fifos, nbrs, msg types

// (which need to be changed!)

// msgs defs (reuses some type numbers defined in macros.h)
#define PING 0x0101
#define SWAP 0x0102
#define INCH 0x0103
#define INCH_DONE 0x0104

245

#define STATE 0x0105
#define DISCONNECT 0x0106
#define CONNECT 0x0107
#define ACK 0x0108
#define SORT_TOKEN 0x0109
#define SORT_QUERY 0x010A
#define REQUEST_ID 0x010B

void error(int err);
#include "utils.c" // includes ..\Shared\mylib16.c

// other constants
#define TRUE 1
#define FALSE 0
#define BLUE 0 // class ids
#define WHITE 1
#define GREEN 2
#define YELLOW 3

//
// module level vars

// pseudo constants
unsigned int TOP = SOUTH;
unsigned int BOTTOM = NORTH;
unsigned int LEFT = WEST;
unsigned int RIGHT = EAST;
unsigned int LEFT_RIGHT = EAST_WEST;
unsigned int TOP_BOTTOM = NORTH_SOUTH;

// app
unsigned char bSwapMaster = 0;
int nInchOriginalPosition;
int nInchCurrentPosition;
int nInchDestinationPosition;
int nSwapState=-1;
unsigned char bInching = 0;
unsigned char bInchRow = 0;
unsigned int nInchDirection;
unsigned int nInchSteps;
unsigned char bReconnectInchHead = FALSE;
unsigned int nInchDoneCount = 0;

// system
unsigned char gInitDone = 0;
unsigned int pingCount = 0;
unsigned char bError = FALSE;
int nErrorNumber = -1;

246

char id_label[3] = "id=";
unsigned char id = WHITE;

void doInchRules();

//
// system message handlers
//
void preInit()
{

// just set global variable to false to enable further SYSINIT msg
// and propogate msg
// reset neighbors here, they can be set later by SYSINIT msg
int i;

blinkLight(5000);

for (i=0;i<4 ;i++)
{

neighbors[i] = FALSE;
connected[i] = FALSE;

}
gInitDone = 0;
initFifo();

putMsgsInFifo();
writeWordtoNorthUART(PREINIT);
putMsgsInFifo();
writeWordtoEastUART(PREINIT);
putMsgsInFifo();
writeWordtoSouthUART(PREINIT);
putMsgsInFifo();
writeWordtoWestUART(PREINIT);

}

void systemInit(unsigned int msg)
{

// do any system initialization, propogate the msg, and turn off
// the light. but first we add the neighbor who sent this to us,
// as long as it’s not the ghost module
unsigned int sender, face;

if (fromGhostModule(msg)) // eliminates need for separate ghost
// neighbor code

{
blinkLight(5000);blinkLight(5000);

}
else // normal
{

lightOn();

247

sender = getMessageSender(msg);
// only connect the active faces. otherwise we get deadlock.
if ((sender==NORTH) || (sender==WEST))
{

connect_WithTimeout(sender,20); //timeout after
// like 20 seconds

}
nbr_state[sender] = 0x0003;
lightOff();

}

// if this is not the first SYSINIT, ignore it.
if (gInitDone)

return;

// keep reading the uart’s because it seems we can’t read
// and write at the same time. if we try to write and there’s
// something in the uart, one of the bytes gets lost.
for (face=0;face<4;face++)
{

putMsgsInFifo();
putMsgsInFifo();
sendMessage(SYSINIT,face);

}
pingCount = 0;
gInitDone = 1;

}

//
// Application message handlers
//
void handleSwap(unsigned int msg)
{

unsigned int d;
int currentPosition=-1, stepsToMove;
int i; //debug

//for(i=0;i<getMessageData_Step(msg);i++)
//{
// blinkLight(5000);
//}

switch (getMessageData_Step(msg))
{

case 1: // init and drive into position
//blinkLight(20000);
bSwapMaster = TRUE;
nInchOriginalPosition = getMessageData_StartPosition(msg);
nInchCurrentPosition = nInchOriginalPosition;
nInchDestinationPosition =

248

getMessageData_GoalPosition(msg);

// we might have to drive over to align
if (nInchCurrentPosition == 4)
{

nSwapState = 2;
sendMessage_Inch(LEFT, 2, ME);
nInchCurrentPosition--;

}
else // else continue
{

sendMessage_Swap(2,
nInchOriginalPosition,
nInchDestinationPosition,
ME);

}
break;

case 2: // contract
if (bSwapMaster)
{

connect(TOP);
disconnect(LEFT);
disconnect(RIGHT);
contract_short(LEFT_RIGHT);
sendMessage_Swap(2,

nInchOriginalPosition,
nInchDestinationPosition,
TOP);

}
else if (!neighbors[TOP]) // contract is done
{

disconnect(LEFT);
disconnect(RIGHT);
contract(NORTH_SOUTH);
sendMessage_Swap(3,

nInchOriginalPosition,
nInchDestinationPosition,
BOTTOM);

}
else // contract
{

disconnect(LEFT); // disconnect first just in case
disconnect(RIGHT);
sendMessage_Swap(2,

nInchOriginalPosition,
nInchDestinationPosition,
TOP);

contract(NORTH_SOUTH);
}
break;

case 3: // contract done

249

if (!bSwapMaster)
{

sendMessage_Swap(3,0,0,BOTTOM);
return;

}

expand_short(LEFT_RIGHT);
connect(LEFT);
connect(RIGHT);

if (nInchOriginalPosition!=4) //hack
sendMessage_Swap(4,0,0,RIGHT);

sendMessage_Swap(4,0,0,LEFT);

// cache state for when reconnect is done
nSwapState = 5;
break;

case 4: // reconnect
// route to bottom
connect(BOTTOM); // this will time out if no one is there
if (neighbors[BOTTOM])
{

sendMessage_Swap(4,0,0,BOTTOM);
return;

}

// there’ll be one singleton and one double
if (!neighbors[LEFT] && (!neighbors[RIGHT]))
{

return;
}
else
{

// inch over
if (neighbors[LEFT])

d = RIGHT;
else

d = LEFT;

bReconnectInchHead = TRUE; // tells us to reconnect
// head when inch is done

sendMessage_Inch(d, 2, ME);
}
break;

case 5: // reconnect done
if (!bSwapMaster)
{

error(-1);
return;

}

250

// compute current local position. basically,
// there are three modules below us now. are we on top of
// the 1st, 2nd, or 3rd one?
if ((nInchOriginalPosition==2) ||

(nInchOriginalPosition==3)) {
currentPosition = 2;

} else if (nInchOriginalPosition==4)
currentPosition = 3;

else
{

error(-1);
return;;

}

// now move right
nSwapState = 6; // get us set up for next step
// *2; 2 inch steps per module step
stepsToMove =

2*(currentPosition-nInchDestinationPosition+1);
sendMessage_Inch(RIGHT, stepsToMove, BOTTOM);
break;

case 6: // split
//
// at this point, in the row below us all modules to the
// right of us are correctly in position. directly below
// us, there is either nothing, one or two modules.
// we need to tell them to split and move left if
// there are any there.
//
// if we don’t need to split, just go to next step
if (nInchDestinationPosition==1) // meaning there’s

// no one below us
{

msg &= 0xF0FF; // clears step
msg |= ((9 & 0x000F) << 8); // dangerous to

// hardcode this!!!!!
wait(15000);
handleSwap(msg);

}
else // tell them to split and pick us back up at the

// expand step
{

nSwapState = 9;
sendMessage_Swap(7,0,0,BOTTOM);

}

break;
case 7: // move left one

//
// we need to move left. if there is no one to help us,

251

// we’ll have to recruit from the right and then have them
// move back over.
//
if (neighbors[LEFT]) // just inch over and rock on
{

disconnect(RIGHT);
sendMessage_Inch(LEFT, 2, ME);

}
else // we need to recruit help
{

// this is a hack. but before we send inchDone, we’ll
// check swap state and that will pre-empt the
// nSwapState in theswapMaster from firing.
// it’s like a second-tier nSwapState.
nSwapState = 8;
sendMessage_Inch(LEFT, 2, ME);

}
break;

case 8: // move back right (split)
//
// tricky because this is basically a split.
//
connect(TOP);
disconnect(RIGHT);
sendMessage_Inch(RIGHT, 2, RIGHT);
break;

case 9: // expand
if (bSwapMaster)
{

disconnect(LEFT);
disconnect(RIGHT);
contract_short(LEFT_RIGHT);
sendMessage_Swap(9,0,0,TOP);

}
else if (!neighbors[TOP]) // expand is done
{

expand(NORTH_SOUTH);
sendMessage_Swap(10,0,0,BOTTOM);
connect(LEFT);
connect(RIGHT);

}
else // expand
{

sendMessage_Swap(9,0,0,TOP);
expand(NORTH_SOUTH);
connect(LEFT);
connect(RIGHT);

}
break;

case 10: // expand is done, now realign
if (!bSwapMaster)

252

{
sendMessage_Swap(10,0,0,BOTTOM);
return;

}

expand_short(LEFT_RIGHT);

// realign
if (nInchDestinationPosition>1)
{

connect(LEFT);
}
if (nInchDestinationPosition<4)
{

connect(RIGHT);
}

if (nInchCurrentPosition!=nInchDestinationPosition)
{

nSwapState = 11; // pick up after inch
stepsToMove =

2*(nInchCurrentPosition-nInchDestinationPosition);
sendMessage_Inch(LEFT, stepsToMove, ME);

}
else
{

msg &= 0xF0FF;
// dangerous to hardcode this!!!!!
msg |= ((11 & 0x000F) << 8)
handleSwap(msg);

}
break;

case 11: // all done! signal middle row
sendMessage_Sort(SORT_TOKEN,

0,
nInchDestinationPosition,
0,
TOP); //start,goal,id

break;
default: // this should really never happen

error(-1);
break;

}
}

void handleInch(unsigned int msg)
{

unsigned int nFrom = getMessageSender(msg);
bInchRow = TRUE;

if (!bInching)

253

{
blinkLight(5000);

bInching = TRUE;
nInchDirection = getMessageData_InchDirection(msg);
nInchSteps = getMessageData_InchSteps(msg);

if((nInchDirection!=nFrom) && neighbors[nInchDirection]) {
sendMessage_Inch(nInchDirection, nInchSteps,

nInchDirection);
}
if((oppositeNeighbor(nInchDirection)!=nFrom) &&

neighbors[oppositeNeighbor(nInchDirection)]) {
sendMessage_Inch(nInchDirection, nInchSteps,

oppositeNeighbor(nInchDirection));
}
doInchRules();

}
}

void handleInchDone(unsigned int msg)
{

int d;
unsigned char bSyncActive = getMessageData_InchSyncActive(msg);
int nCount = getMessageData_InchDoneCount(msg);

if (nCount <= nInchDoneCount)
{

return;
}

blinkLight(10000);

if (bInchRow)
bInchRow = FALSE;

if (bReconnectInchHead)
{

connect(nInchDirection);
bReconnectInchHead = FALSE;

}

if (bSyncActive && (nSwapState>0))
{

sendMessage_Swap(nSwapState,1,1,ME);
nSwapState = -1;
bSyncActive = FALSE;

}

sendMessage_InchDone(bSyncActive, nCount, ALL);

254

nInchDoneCount = nCount;
}

void handleState(unsigned int msg)
{

blinkLight(1000);
nbr_state[getMessageSender(msg)] = getNbrState(msg);

if (bInching)
doInchRules();

}

void handlePing(unsigned int msg)
{

int i;
unsigned int data = getMessageData(msg);

if (data <= pingCount)
{

return;
}

blinkLight(5000);
broadCast(msg);
pingCount = data;

}

void handleSort(unsigned int msg)
{

unsigned int ack, nGoalPosition;

blinkLight(10000);

// get id of neighbor. block because we can’t do anything else
// in the mean time
sendMessage(REQUEST_ID, BOTTOM);
ack = block(ACK, 20);
if (!ack)
{

// we timed out. throw an error.
error(-1);
return;

}

nGoalPosition = getMessageData_GoalPosition(msg);

if (getMessageData_Id(ack) == id)
{

// rock on
blinkLight(5000);blinkLight(5000);blinkLight(5000);
connect(RIGHT);

255

if (neighbors[RIGHT])
{

sendMessage_Sort(SORT_TOKEN,0,nGoalPosition+1, 0, RIGHT);
}
else
{

blinkLight(20000);blinkLight(20000);blinkLight(20000);
//////////////////////////////////
//
// all done!!! woo hoo!!!
//
//////////////////////////////////

}
}
else
{

// send out a query
sendMessage_Sort(SORT_QUERY, nGoalPosition,

nGoalPosition, id, BOTTOM);
}

}

void handleSortQuery(unsigned int msg)
{

unsigned int nStartPosition, nGoalPosition;
nStartPosition = getMessageData_StartPosition(msg);
nGoalPosition = getMessageData_GoalPosition(msg);

blinkLight(5000);

// let’s see if we match
if (getMessageData_ClassID(msg) == id)
{

// we match. fire up a swap
blinkLight(5000);blinkLight(5000);blinkLight(5000);
sendMessage_Swap(1, nStartPosition, nGoalPosition, ME);

}
else
{

// not us. pass it on
if (neighbors[RIGHT])

sendMessage_Sort(SORT_QUERY, nStartPosition+1,
nGoalPosition,
getMessageData_ClassID(msg), RIGHT);

else
{

// uh oh.
error(-1); // sort query failed
return;

}
}

256

}

void handleRequestId(unsigned int msg)
{

// just send the id in the ack
sendMessage_AckWithId(id, getMessageSender(msg));

}

//
// Helper functions
//
void doInchRules()
{

int nInchDimension = EAST_WEST;
int nOppositeNeighbor = oppositeNeighbor(nInchDirection);
int i;

if ((nInchDirection==NORTH)||(nInchDirection==SOUTH))
{

nInchDimension = NORTH_SOUTH;
}

// rules
if (expanded[nInchDimension] &&

(!neighbors[oppositeNeighbor(nInchDirection)])
|| (!nbr_expanded(nInchDimension, nOppositeNeighbor)))

{
if (nInchDimension==EAST_WEST)
{

disconnect(NORTH);
disconnect(SOUTH);

}
else if (nInchDimension==NORTH_SOUTH)
{

disconnect(EAST);
disconnect(WEST);

}

contract(nInchDimension);
sendMessage_State(ALL);

// head
if (!neighbors[nInchDirection])
{

expand(nInchDimension);
sendMessage_State(ALL);

if (nInchSteps>1)
{

//for(i=0;i<nInchSteps;i++) blinkLight(10000);
nInchSteps--;

257

bInching=FALSE;
sendMessage_Inch(nInchDirection, nInchSteps, ME);
return;

}
else
{

sendMessage_InchDone(TRUE, nInchDoneCount+1, ME);
}

}
else
{

expand(nInchDimension);
sendMessage_State(ALL);

}
bInching = FALSE;

}
}

void error(int err)
{

bError = TRUE; // this will break us out of the event loop
// and into the error handler

nErrorNumber = err; // this allows us to repeat a sequence of
// blinks in the error handler

// this is broken up into two functions cuz we can’t forcibly
// break out of the msg loop

}

void handleError()
{

switch (nErrorNumber)
{
default:

lightOn();
}

}

//
// Our standard message pump
//
void msgProcessLoop()
{

unsigned int msg = 0 ;
unsigned int fromdir;

while(!bError)
{

putMsgsInFifo();
putMsgsInFifo();
if (getFifo(&msg) == 0)

258

{
fromdir = getMessageSender(msg);
switch (getMessageType(msg))
{

case (0) : break; // no op
case (PREINIT&0x000F): if (gInitDone) {preInit();}

break;
case (SYSINIT&0x000F): systemInit(msg);

break;
case (PING&0x000F): handlePing(msg);

break;
case (SWAP&0x000F): handleSwap(msg);

break;
case (INCH&0x000F): handleInch(msg);

break;
case (INCH_DONE&0x000F):handleInchDone(msg);

break;
case (STATE&0x000F): handleState(msg);

break;
case (DISCONNECT&0x000F):

// opens (if active face) and sets state
disconnect_helper(fromdir);
sendMessage(ACK, fromdir);
break;

case (CONNECT&0x000F):
connect_helper(fromdir);
sendMessage(ACK, fromdir);
break;

case (SORT_TOKEN&0x000F):
handleSort(msg);
break;

case (SORT_QUERY&0x000F):
handleSortQuery(msg);
break;

case (REQUEST_ID&0x000F):
handleRequestId(msg);
break;

default:
blinkLight(5000); blinkLight(5000);
blinkLight(5000); blinkLight(5000); break;

}
}

}

// error handler. this will basically crash us, but has the
// capability to repeatedly blink an error code if we set one
// going down
handleError();

}

259

/**/
// Main entry point
//
int main (void)
{

int i;
lightOn();
initio();
initUARTs();
initFifo();
P8DR |= 0x80; //stop WC_MOTOR
P8DR |= 0x02; //stop NC_MOTOR
NC_Close();
wait(10000);
wait(10000);
wait(10000);
NC_Open();
WC_Close();
wait(10000);
wait(10000);
wait(10000);
WC_Open();
lightOff();

msgProcessLoop();

return (0);
}

B.2.2 Utility Functions

/***
*
* General utilities for programming the Crystal modules
* Robert Fitch, 1/29/02
*
* Based on:
* Distributed inchworm for crystals, 12/12/01, Zack Butler
* Goal Recognition. Fitch, Butler, Wang, 9/01
*
***/

#define NORTH_SOUTH 0
#define EAST_WEST 1
#define TRUE 1
#define FALSE 0
#define ME 4

260

#define CONNECT_TIMEOUT 5 // timeout in seconds

#include "..\..\Shared\StAlone\mylib16.c"
#include "expand.c" // for new expansion/contraction functions

void disconnect_helper(int face);
void connect_helper(int face);
void setStateConnected(int face);

//
// global stuff
//
unsigned char expanded[2] = {1, 1}; // our state
unsigned char connected[4] = {0, 0, 1, 1}; // although only west is

// used right now!
unsigned char nbr_state[4] = {0, 0, 0, 0}; // state of our nbrs:

// east_west expanded,
// n/s expanded

// note nbr_state is undefined at start - will be set when nbr is set.

//
// LED, time utilities
//
void wait(long loop)
{

long i,j;

for (j=0; j<=8; j++)
{

for (i=0; i<= loop; i++) {;}
}

}

void lightOn()
{

P6DR |= 0x03; /* set p6 0-1 high */
}

void lightOff()
{

P6DR &= 0xFC; /* set p6 0-1 low */
}

void blinkLight(int loop)
{

int i;

// turn it on for a while and check msgs
lightOn();
wait(loop);

261

putMsgsInFifo();

// turn it off and leave off for a bit
lightOff();
wait(loop);

}

//
// neighbor functions
//
int oppositeNeighbor(int dir)
{

switch(dir)
{

case NORTH: return SOUTH;
case SOUTH: return NORTH;
case EAST: return WEST;
case WEST: return EAST;
default: return -2; // ALL is -1

}
}

int nbr_expanded(int dimension, int dir)
{

switch(dimension)
{

case NORTH_SOUTH:
return (nbr_state[dir] & 0x01);

case EAST_WEST:
return ((nbr_state[dir] & 0x02) >> 1);

default:
return -1;

}
}

int nbr_CONNECT_WEST(int dir)
{

return ((nbr_state[dir] & 0x02) >> 1);
}

int nbr_head(int dir)
{

return ((nbr_state[dir] & 0x0C) >> 2);
}

int nbr_sig(int dir)
{

return ((nbr_state[dir] & 0xF0) >> 4);
}

262

//
// Messaging utilities
//
unsigned int getMessageData_Id(unsigned int wdata)
{

return ((wdata & 0x00F0) >> 4);
}

unsigned int getMessageData_InchDirection(unsigned int wdata)
{

return ((wdata & 0x0300) >> 8);
}

unsigned int getMessageData_InchSteps(unsigned int wdata)
{

return ((wdata & 0x00F0) >> 4);
}

unsigned int getMessageData_InchSyncActive(unsigned int wdata)
{

return ((wdata & 0x1000) >> 12);
}

unsigned int getMessageData_InchDoneCount(unsigned int wdata)
{

return ((wdata & 0x0FF0) >> 4);
}

unsigned int getMessageData_StartPosition(unsigned int wdata)
{

return ((wdata & 0x00C0) >> 6)+1; // convert back to
// one-based counting

}
unsigned int getMessageData_GoalPosition(unsigned int wdata)
{

return ((wdata & 0x0030) >> 4);
}
unsigned int getMessageData_Step(unsigned int wdata)
{

return ((wdata & 0x0F00) >> 8);
}
unsigned int getMessageData_ClassID(unsigned int wdata)
{

return ((wdata & 0x0F00) >> 8);
}
unsigned int getMessageType(unsigned int wdata)
{

return (wdata & 0x000F);
}

263

unsigned int getMessageSender(unsigned int wdata)
{

return ((wdata & 0xC000) >> 14);
}

unsigned int getMessageData(unsigned int wdata)
{

return ((wdata & 0x3F00) >> 8);
}

unsigned int getMessageID(unsigned int wdata)
{

return ((wdata & 0x00F0) >> 4);
}

unsigned char getNbrState(unsigned int wdata)
{

return (unsigned char)((wdata & 0x0300) >> 8);
}

void broadCast(unsigned int msg)
{

writeWordtoEastUART(msg);
writeWordtoSouthUART(msg);
writeWordtoWestUART(msg);
writeWordtoNorthUART(msg);

}

void send (unsigned int msg, int dir)
{

switch (dir)
{

case ALL:
broadCast(msg); break;

case EAST:
writeWordtoEastUART(msg); break;

case SOUTH:
writeWordtoSouthUART(msg); break;

case WEST:
writeWordtoWestUART(msg); break;

case NORTH:
writeWordtoNorthUART(msg); break;

case ME:
putFifo(msg|0xC000); // hack that makes it look like

// the msg is from the north in
// this app, only INCH looks at
// the msg sender. and, we only
// inch east/west. so north is ok.

}
}

264

void sendMessage_Swap (unsigned int nStep ,
unsigned int nStart ,
unsigned int nGoal ,
int dir)

{
unsigned int msg = 0;
unsigned int nMessageType = SWAP;

// convert to zero-based for transmission.
// nGoal is ok cuz it’ll never get above 3
nStart--;

// build msg
msg |= ((nStep & 0x000F) << 8); // upper data byte
msg |= ((nStart & 0x0003) << 6); // start
msg |= ((nGoal & 0x0003) << 4); // goal
msg |= 0x1000; // just so upper byte has a

// 0 and a 1 in it
msg |= (nMessageType & 0x000F);

// and send
send(msg,dir);

}

void sendMessage_Sort (unsigned int nMessageType,
unsigned int nStart ,
unsigned int nGoal ,
unsigned int nClassID ,
int dir)

{
unsigned int msg = 0;

// convert to zero-based for transmission.
// nGoal is ok cuz it’ll never get above 3
nStart--;

// build msg
msg |= ((nClassID & 0x000F) << 8); // upper data byte
msg |= ((nStart & 0x0003) << 6); // start
msg |= ((nGoal & 0x0003) << 4); // goal
msg |= 0x1000; // just so upper byte has a

// 0 and a 1 in it
msg |= (nMessageType & 0x000F);

// and send
send(msg,dir);

}

265

void sendMessage_Inch (unsigned int nDirection ,
unsigned int nSteps ,
int dir)

{
unsigned int msg = 0;
unsigned int nMessageType = INCH;

// build msg
msg |= ((nDirection & 0x0003) << 8); // direction we’re inching
msg |= ((nSteps & 0x000F) << 4); // number of steps to inch
msg |= 0x1000; // just so upper byte has

// a 0 and a 1 in it
msg |= (nMessageType & 0x000F);

// and send
send(msg,dir);

}

void sendMessage_InchDone (unsigned char bSyncActive,
unsigned int nCount,
int dir)

{
unsigned int msg = 0;
unsigned int nMessageType = INCH_DONE;

// build msg
msg |= ((bSyncActive & 0x0001) << 12); // sync active
msg |= ((nCount & 0x00FF) << 4); // msg counter
msg |= 0x2000; // just so upper byte has

// a 0 and a 1 in it
msg |= (nMessageType & 0x000F);

// and send
send(msg,dir);

}

void sendMessage_State(int dir)
{

unsigned int msg = 0;
unsigned int nMessageType = STATE;

msg |= 0x1000; // just so upper byte has
// a 0 and a 1 in it

msg |= (nMessageType & 0x000F);
msg |= ((expanded[NORTH_SOUTH] & 0x0001) << 8); // expanded N/S?
msg |= ((expanded[EAST_WEST] & 0x0001) << 9); // expanded E/W?

send(msg,dir);
}

void sendMessage_AckWithId(unsigned int id, int dir)

266

{
unsigned int msg = 0;
unsigned int nMessageType = ACK;

msg |= 0x1000; // just so upper byte has
/// a 0 and a 1 in it

msg |= (nMessageType & 0x000F);
msg |= ((id & 0x000F) << 4); // id

send(msg,dir);
}

void sendMessage (int type, int direction)
{

unsigned int msg = 0;

// build msg
msg |= 0x1000; // just so upper byte has

// a 0 and a 1 in it
msg |= (type & 0x000F);

// and send
send(msg,direction);

}

void multiCast(unsigned int wdata)
{

putMsgsInFifo();
// writes msg to known neighbors only
// order of neighbors in data structure is:
// East, South, West, North
if (neighbors[0])
{

putMsgsInFifo();
writeWordtoEastUART(wdata);

}
if (neighbors[1])
{

putMsgsInFifo();
writeWordtoSouthUART(wdata);

}
if (neighbors[2])
{

putMsgsInFifo();
writeWordtoWestUART(wdata);

}
if (neighbors[3])
{

putMsgsInFifo();
writeWordtoNorthUART(wdata);

}

267

}

unsigned int fromGhostModule(unsigned int msg)
{

// ghost module is assumed to be 16(one-based) (0xF), and we pass
// this in the parent field of the msg
return (0x00F0 == (msg & 0x00F0));

}

///
// blocks on given msg type until timeout
// for infinite (effectively) timeout, use -1
//
// this uses the hardware timer, Timer X. even in the slowest setup,
// it’s still super fast. so what we’re actually using is the overflow
// flag, stored in bit 1 of TMRX_TCSRX. it takes about 500ms for the
// counter to overflow, so we count overflows and convert to seconds.
//
unsigned int block(unsigned int ack, int nTimeoutSeconds)
{

int i;
unsigned char bFound=FALSE, msg;
long nTicks = nTimeoutSeconds*2; // approximately 2 ticks per

// second
unsigned int ret;

TMRX_TCRX |= 0x02; // make sure we’re in the longest tick setting

while ((!bFound) && (nTicks!=0)) // if nTicks is negative, it
// won’t timeout until the long datatype rolls over.
// that would be a long time.

{
TMRX_TCSRX = 0x00; // clear timer overflow
while (!(TMRX_TCSRX & 0x02)) // while the overflow

// flag is not set
{

// check for incoming msgs
putMsgsInFifo();
putMsgsInFifo();

// loop through queue and look for the ack
msg = GetI;
for (i=0;((!bFound)&&(i<Size));i++)
{

if (getMessageType(Fifo[msg])==(ack&0x000F))
{

bFound = TRUE;
ret = Fifo[msg];
Fifo[msg] = 0; // clear it so we don’t see

// it again
}

268

else
{

msg++;
if (msg >= FifoSize)
{

msg=0; // wrap
}

}
}

}
nTicks--;

}

if (bFound)
return ret;

else
return FALSE;

}

///
// motion
void contract(int dimension)
{

int oppositeDimension = (dimension==NORTH_SOUTH) ? EAST_WEST :
NORTH_SOUTH;

contract_helper(oppositeDimension, CON_COUNT_SHORT);
contract_helper(dimension, CON_COUNT);
expanded[dimension] = FALSE;
//expand_helper(oppositeDimension, EXP_COUNT_SHORT);

}

void contract_short(int dimension)
{

contract_helper(dimension, CON_COUNT_SHORT);
}

void expand(int dimension)
{

int oppositeDimension = (dimension==NORTH_SOUTH) ?EAST_WEST :
NORTH_SOUTH;

//contract_helper(oppositeDimension, CON_COUNT_SHORT);
expand_helper(dimension, EXP_COUNT);
expanded[dimension] = TRUE;
expand_helper(oppositeDimension, EXP_COUNT_SHORT);

}

void expand_short(int dimension)
{

269

expand_helper(dimension, EXP_COUNT_SHORT);
}

void openConnector(int face)
{

switch (face)
{

case NORTH:
NC_Open();
break;

case WEST:
WC_Open();
break;

}
}

void closeConnector(int face)
{

switch (face)
{

case NORTH:
NC_Close();
break;

case WEST:
WC_Close();
break;

}
}

int disconnect(int face)
{

///
// WARNING: this function will block until it succeeds!!!!
//
switch (face)
{

case NORTH:
case WEST:

lightOn();
disconnect_helper(face); // opens and sets state
sendMessage(DISCONNECT,face);
if (neighbors[face])
{

block(ACK,-1);
}
lightOff();
break;

case SOUTH:
case EAST:

// send disconnect msg
sendMessage(DISCONNECT,face);

270

// block until we get the ACK
lightOn();
if (neighbors[face])
{

block(ACK,-1);
}
connected[face] = FALSE;
neighbors[face] = FALSE;
lightOff();
break;

default:
break;

}
return TRUE;

}

void disconnect_helper(int face)
{

switch (face)
{

case NORTH:
case WEST:

openConnector(face);
connected[face] = FALSE;
neighbors[face] = FALSE;
break;

case EAST:
case SOUTH:

connected[face] = FALSE;
neighbors[face] = FALSE;
break;

default:
break;

}
}

int connect(int face)
{

return connect_WithTimeout(face, CONNECT_TIMEOUT);
}

int connect_WithTimeout(int face, int nTimeout)
{

///
// WARNING: this function will block until it succeeds!!!!
// or times out!!! (-1 for near infinite timeout)
//
int bRet = FALSE;

switch (face)

271

{
case NORTH:
case WEST:

lightOn();
connect_helper(face); // close and set state
sendMessage(CONNECT,face);
bRet = block(ACK, nTimeout);
if (!bRet) // reverse
{

disconnect_helper(face);
}
lightOff();
break;

case SOUTH:
case EAST:

if (!connected[face])
{

// send disconnect msg
sendMessage(CONNECT,face);

// block until we get the ACK
lightOn();
bRet = block(ACK, nTimeout);
if (!bRet) // reverse
{

disconnect_helper(face);
}
else
{

setStateConnected(face);
}
lightOff();

}
break;

default:
break;

}
return bRet;

}

void connect_helper(int face)
{

switch (face)
{

case NORTH:
case WEST:

closeConnector(face);
setStateConnected(face);
break;

case EAST:
case SOUTH:

272

setStateConnected(face);
break;

default:
break;

}
}

void setStateConnected(int face)
{

connected[face] = TRUE;
neighbors[face] = TRUE;

// we don’t really know the expansion state. let’s just
// assume it’s expanded for now.
nbr_state[face] = 0x0003;

}

273

Bibliography

[1] A. Abrams and R. Ghrist. State complexes for metamorphic robot systems.Intl. J.

of Robotics Research, to appear.

[2] L. Adleman. Towards a mathematical theory of self-assembly. Technical Report

00-722, University of Southern California, 2000.

[3] G. Beni. The concept of cellular robotic system. InProc. of IEEE International

Symposium on Intelligent Control, pages 57–62, 1988.

[4] G. Beni and J. Wang. Theoretical problems for the realization of distributed robotic

systems. InProc. of IEEE International Symposium on Intelligent Control, pages

1914–1920, 1991.

[5] Z. Butler, S. Byrnes, and D. Rus. Distributed motion planning for modular robots

with unit-compressible modules. InProc. of the Int’l Conf. on Intelligent Robots

and Systems, 2001.

[6] Z. Butler, R. Fitch, and D. Rus. Distributed control for unit-compressible robots:

Goal-recognition, locomotion and splitting.IEEE/ASME Trans. on Mechatronics,

7(4):418–30, Dec. 2002.

274

[7] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Cellular automata for decentralized

control of self-reconfigurable robots. InICRA 2001 Workshop on Modular Self-

Reconfigurable Robots, 2001.

[8] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decentralized control for a

class of self-reconfigurable robots. InProc of IEEE ICRA, 2002.

[9] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decentralized locomotion con-

trol for lattice-based self-reconfigurable robots.International Journal of Robotics

Research, 23(9), Sept. 2004.

[10] Z. Butler, S. Murata, and D. Rus. Distributed replication algorithms for self-

reconfiguring modular robots. InDistributed Autonomous Robotic Systems 5, 2002.

[11] Z. Butler and D. Rus. Distributed motion planning for modular robots with unit-

compressible modules.International Journal of Robotics Research, 22(9):699–

716, Sept. 2003.

[12] Edited by T. Balch and L. Parker.Robot Teams: From Diversity to Polymorphism.

A K Peters, Ltd., 2002.

[13] A. Cai, T. Fukuda, F. Arai, T. Ueyama, and A. Sakai. Hierarchical control archi-

tecture for cellular robotic system - simulations and experiments. InProc. of IEEE

ICRA, pages 1191–1196, 1995.

[14] Y. Cao, A. Fukunaga, and A. Kahng. Cooperative mobile robotics: Antecedents

and directions.Autonomous Robots, 4:1–23, 1997.

[15] A. Castano and P. Will. Mechanical design of a module for reconfigurable robots.

In Proc. of the Int’l Conf. on Intelligent Robots and Systems, pages 2203–2209,

2000.

275

[16] A. Castano and P. Will. A polymorphic robot team. In T. Balch and L. Parker,

editors,Robot Teams: From Diversity to Polymorphism. A K Peters, Ltd., 2002.

[17] C.D.Yang, D.T. Lee, and C.K. Wong. On bends and lengths of rectilinear paths: a

graph-theoretic approach.Internat. J. Comput. Geom. Appl., 2:61–74, 1992.

[18] I. Chen and J. Burdick. Determining task optimal modular robot assembly config-

urations. InProc. of IEEE ICRA, volume 1, pages 132 –137, 1995.

[19] C.-H. Chiang and G. Chirikjian. Modular robot motion planning using similarity

metrics.Autonomous Robots, 10(1):91–106, 2001.

[20] G. Chirikjian. Kinematics of a metamorphic robotic system. InProc. of IEEE

ICRA, pages 449–455, 1994.

[21] G. Chirikjian and A. Pamecha. Bounds for self-reconfiguration of metamorphic

robots. InProc. of IEEE ICRA, pages 1452–1457, 1996.

[22] S. Chitta and J. Ostrowski. Motion planning for hetrogeneous modular mobile

systems. InProc. of IEEE ICRA, pages 4077–4082, 2002.

[23] J. Choi and C.K. Yap. Rectilinear geodesics in 3-space (extended abstract). In11th

Symp. Computational Geometry, pages 380–389, 1995.

[24] D. Christensen, E. Østergaard, and H. Lund. Meta-module control for the atron

self-reconfigurable robotic system. InProceedings of the The 8th Conference on

Intelligent Autonomous Systems (IAS-8), pages 685–692, 2004.

[25] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms. The

MIT Press, Cambridge, MA, second edition, 2001.

276

[26] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational

Geometry: Algorithms and Applications. Springer, 2nd edition, 2000.

[27] P.J. de Rezende, D.T. Lee, and W.F. Wu. Rectilinear shortest paths in the presnece

of rectangular barriers.Discrete and Computational Geometry, 4:41–53, 1989.

[28] R. Diestel. Graph Theory, volume 173 ofGraduate Texts in Mathematics.

Springer-Verlag, New York, 2nd edition, 2000.

[29] HYDRA EU. http://www.hydra-robot.com . WebSite, 2004.

[30] S. Farritor and S. Dubowski. On modular design of field robotic systems.Au-

tonomous Robots, 10(1):57–65, 2001.

[31] J. Fax and R. Murray. Graph laplacians and stabilization of vehicle formations. In

Proc. of IFAC World Congress, 2002.

[32] J. Fax and R. Murray. Information flow and cooperative control of vehicle forma-

tions. InProc. of IFAC World Congress, 2002.

[33] R. Fitch, Z. Butler, and D. Rus. 3D rectilinear motion planning with minimum

bend paths. InProc. of the Int’l Conf. on Intelligent Robots and Systems, 2001.

[34] National Center for Supercomputing Applications.http://www.ncsa.uiuc.

edu/ . WebSite.

[35] T. Fukuda, M. Buss, and Y. Kawauchi. Communication system of cellular robot:

Cebot. InProceedings of IECON ’89: 1989 International Conference on Industrial

Electronics, Control, and Instrumentation, pages 695–700, 1989.

[36] T. Fukuda and T. Kaga. Distributed decision making of dynamically reconfigurable

robotic system. InProc. of IEEE IROS, pages 1604–1609, 1997.

277

http://www.hydra-robot.com
http://www.ncsa.uiuc.edu/
http://www.ncsa.uiuc.edu/

[37] T. Fukuda and Y. Kawauchi. Cellular robotic system (CEBOT) as one of the real-

ization of self-organizing intelligent universal manipulator. InProc. of IEEE ICRA,

pages 662–7, 1990.

[38] T. Fukuda and S. Nakagawa. A dynamically reconfigurable robotic system (con-

cept of a system and optimal configurations). InProceedings of IECON ’87: 1987

International Conference on Industrial Electronics, Control, and Instrumentation,

1987.

[39] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss. Self organising robots based

on cell structures - cebot. InProc. 1988 IEEE International Workshop on Intelli-

gent Robots and Systems, pages 145–150, 1988.

[40] T. Fukuda, T. Ueyama, and F. Arai. Control strategy for a network of cellular robots

- determination of a master cell for cellular robotic network based on a potential

energy. InProc. of IEEE ICRA, pages 1616–1621, 1991.

[41] C. Gúeganno and D. Duhaut. A hardware/software architecture for the control

of self-reconfigurable robots. In7th International Symposium on Distributed Au-

tonomous Robotic Systems (DARS’04), 2004.

[42] S. Hackwood and J. Wang. The engineering of cellular robotic systems. InProc.

of IEEE International Symposium on Intelligent Control, pages 70–75, 1988.

[43] Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block

puzzles and other problems through the nondeterministic constraint logic model

of computation.Theoretical Computer Science, to appear. Special issue “Game

Theory Meets Theoretical Computer Science”.

278

[44] J. Hopcroft, J. Schwartz, and M. Sharir. On the complexity of motion planning

for multiple independent objects;PSPACE−hardness of the “warehouseman’s

problem”. The International Journal of Robotics Research, 3(4):76–88, 1984.

[45] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y. Koruda, and I. Endo.

Self-organizing collective robots with morphogenesis in a vertical plane. InProc.

of IEEE ICRA, pages 2858–63, 1998.

[46] R. Hui, N. Kircanski, A. Goldenberg, C. Zhou, P. Kuzan, J. Wiercienski, D. Ger-

shon, and P. Sinha. Design of the iris facility-a modular, reconfigurable and ex-

pandable robot test bed. InProc. of IEEE ICRA, volume 3, pages 155 –160, 1993.

[47] N. Inou, M. Koseki, and H. Kobayashi. Pneumatic cellular robots forming a

mechanical structure. InTITech COE/Super Mechano-System Symposium 2001,

page 67, 2001.

[48] N. Inou, K. Minami, and M. Koseki. Group robots forming a mechanical structure

(development of slide motion mechanism and estimation of energy consumption of

the structural formation). InProc. IEEE Int. Symp. on Computational Intelligence

in Robotics and Automation, pages 874–879, 2003.

[49] T. Kawauchi, M. Inaba, and T. Fukuda. A relation between resource amount and

system performance of the cellular robotic system (cebot). InProc. of IEEE IROS,

pages 454–459, 1993.

[50] E. Klavins. Automatic synthesis of controllers for distributed assembly and forma-

tion forming. InProc. of IEEE ICRA, pages 3296 –3302, 2002.

[51] E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars for self-assembling robotic

systems. InProc. of IEEE ICRA, 2004.

279

[52] G. Konidaris, T. Taylor, and J. Hallam. Hydrogen: Automatically generating self-

assembly code for hydron units. In7th International Symposium on Distributed

Autonomous Robotic Systems (DARS’04), 2004.

[53] M. Koseki, K. Minami, and N. Inou. Cellular robots forming a mechanical structure

(evaluation of structural formation and hardware design of “CHOBIE II”). In7th

International Symposium on Distributed Autonomous Robotic Systems (DARS’04),

2004.

[54] K. Kotay. Self-Reconfiguring Robots: Designs, Algorithms, and Applications. PhD

thesis, Dartmouth College, Computer Science Department, 2003.

[55] K. Kotay and D. Rus. Locomotion versatility through self-reconfiguration.

Robotics and Autonomous Systems, 26:217–32, 1999.

[56] K. Kotay and D. Rus. Scalable parallel algorithm for configuration planning for

self-reconfiguring robots. InProceedings of the Society of Photo-Optical Instru-

mentation Engineers, Boston, 2000.

[57] J. Kubica, A. Casal, and T. Hogg. Complex behaviors from local rules in modular

self-reconfigurable robots. InProc. of IEEE ICRA, pages 360–7, 2001.

[58] H. Kurokawa, A. Kamimura, S. Murata, E. Yoshida, K. Tomita, and S. Kokaji.

M-TRAN II: Metamorphosis from a four-legged walker to a caterpillar. InPro-

ceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2003), volume 3, pages 2454 – 2459, 2003.

[59] D.T. Lee, C.D. Yang, and C.K. Wong. On bends and distances of paths among

obstacles in two-layer interconnection model.IEEE Transactions on Computers,

43(6):711–724, 1994.

280

[60] D.T. Lee, C.D. Yang, and C.K. Wong. Rectilinear paths among rectilinear obsta-

cles.Discrete Applied Mathematics, 70:185–215, 1996.

[61] W. H. Lee and A. Sanderson. Dynamic analysis and distributed control of the

tetrabot modular reconfigurable robot system.Autonomous Robots, 10(1):67–82,

2001.

[62] H. Lipson and J.B. Pollack. Automatic design and manufacture of robotic life-

forms. Nature, 406:974–978, 2000.

[63] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco,

1996.

[64] A. Maheshwari, J.R. Sack, and H.N. Djidjev. Link distance problems. In J.R. Sack

and J. Urrutia, editors,Handbook of Computational Geometry, pages 519–558.

Elsevier Science Publishers B.V., NorthHolland, Amsterdam, 2000.

[65] G. Majno and I. Joris.Cells, Tissues, and Disease: Principles of General Pathol-

ogy. Blackwell Science, 1996.

[66] J.S.B. Mitchell.L1 shortest paths among polygonal obstacles in the plane.Algo-

rithmica, 8:55–88, 1992.

[67] J.S.B. Mitchell. Geometric shortest paths and network optimization. In J.R. Sack

and J. Urrutia, editors,Handbook of Computational Geometry, pages 633–701.

Elsevier Science Publishers B.V., NorthHolland, Amsterdam, 2000.

[68] S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. InProc. of

IEEE ICRA, pages 442–8, 1994.

[69] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji. A 3-D self-

reconfigurable structure. InProc. of IEEE ICRA, pages 432–9, May 1998.

281

[70] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, and S. Kokaji.

Hardware design of modular robotic system. InProc. of the Int’l Conf. on Intelli-

gent Robots and Systems, pages 2210–7, 2000.

[71] R. Nagpal. Programmable Self-Assembly: Constructing Global shape using

Biologically-inspired Local Interactions and Origami Mathematics. PhD thesis,

Massachusetts Institute of Technology, 2001. AI Technical Report 2001-008.

[72] M. Nilsson. Why snake robots need torsion-free joints and how to build them. In

Proc. of IEEE ICRA, pages 412–417, 1998.

[73] M. Nilsson. Heavy-duty connectors for self-reconfiguring robots. InProc. of IEEE

ICRA, pages 4071–4076, 2002.

[74] R. Olfati-Saber and R. Murray. Distributed cooperative control of multiple vehicle

formations using structural potential functions. InProc. of IFAC World Congress,

2002.

[75] E. Østergaard and H. Lund. Evolving control for modular robotic units. InProceed-

ings of IEEE International Symposium on Computational Intelligence in Robotics

and Automation (CIRA’03), pages 886–892, 2003.

[76] E. Østergaard and H. Lund. Distributed cluster walk for the atron self-

reconfigurable robot. InProceedings of the The 8th Conference on Intelligent

Autonomous Systems (IAS-8), pages 291–298, 2004.

[77] A. Pamecha, C-J. Chiang, D. Stein, and G. Chirikjian. Design and implementation

of metamorphic robots. InProc. of the 1996 ASME Design Engineering Technical

Conf. and Computers in Engineering Conf., 1996.

282

[78] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. Useful metrics for modular robot

motion planning.IEEE Trans. on Robotics and Automation, 13(4):531–45, 1997.

[79] C. Paredis, H.B. Brown, and P. Khosla. A rapidly deployable manipulator system.

In Proc. of IEEE ICRA, pages 1434–1439, 1996.

[80] C.D. Piatko. Geometric Bicriteria Optimal Path Problems. PhD thesis, Cornell

University, 1993.

[81] P. Rothemund and E. Winfree. The program-size complexity of self-assembled

squares. InSTOC 2000, 2000.

[82] D. Rus and M. Vona. Self-reconfiguration planning with unit compressible mod-

ules. InProc. of IEEE ICRA, pages 2513–20, 1999.

[83] D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with unit-

compressible modules.Autonomous Robots, 10(1):107–24, 2001.

[84] K. Saitou and M. Jakiela. Subassembly generation via mechanical conformational

switches.Artificial Life, 2:377–416, 1995.

[85] B. Salemi, W.-M. Shen, and P. Will. Hormone-controlled metamorphic robots. In

Proc. of IEEE ICRA, 2001.

[86] G. Sandini. Cellular robotics - annotated bibliography. Technical Report TR 1/92,

LIRA-Lab - DIST University of Genova, Via Opera Pia 13 - 16145 Genova, Italy,

July 1992.

[87] R. Sharma and Y. Aloimonos. Coordinated motion planning: The warehousman’s

problem with constraints on free space.IEEE Transactions on Systems, Man, and

Cybernetics, 22(1):130–141, 1992.

283

[88] W.-M. Shen, B. Salemi, and P. Will. Hormones for self-reconfigurable robots. In

Proc. of IAS-6, 2000.

[89] W.-M. Shen, P. Will, and A. Castano. Robot modularity for self-reconfiguration.

In SPIE Conf. on Sensor Fusion and Decentralized Control in Robotic Systems 2,

1999.

[90] K. Stoy. Controlling self-reconfiguration using cellular automata and gradients. In

Proceedings of the The 8th Conference on Intelligent Autonomous Systems (IAS-8),

2004.

[91] K. Stoy and R. Nagpal. Self-reconfiguration using directed growth. In7th In-

ternational Symposium on Distributed Autonomous Robotic Systems (DARS’04),

2004.

[92] K. Stoy, W.-M. Shen, and P. Will. Global locomotion from local interaction in

self-reconfigurable robots. InProc. of IAS-7, 2002.

[93] S. Strogatz.Sync: the emerging science of spontaneous order. Hyperion, New

York, 1st edition, 2003.

[94] J. Suh, S. Homans, and M. Yim.Telecubes: Mechanical design of a module for

self-reconfiguring robotics. InProc of IEEE ICRA, 2002.

[95] K. Tanie and H. Maekawa. Self-reconfigurable cellular robotic system. US Patent

5361186, 1993.

[96] K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, and S. Kokaji. Self-assembly and

self-repair method for a distributed mechanical system.IEEE Trans. on Robotics

and Automation, 15(6):1035–45, Dec. 1999.

284

[97] C. Ünsal and P. Khosla. I(ces)-cubes: a modular self-reconfigurable bipartite

robotic system. InProc. of SPIE, volume 3839: Sensor Fusion and Decentralized

Control in Robotic Systems II, pages 258–269, 1999.

[98] Cem Ünsal and Pradeep Khosla. Mechatronic design of a modular self-

reconfiguring robotic system. InProc. of IEEE ICRA, pages 1742–7, 2000.

[99] S. Vassilvitskii, M. Yim, and J. Suh. A complete, local and parallel reconfiguration

algorithm for cube style modular robots. InProc. of IEEE ICRA, 2002.

[100] M. Vona. A two dimensional crystalline atomic unit modular self-reconfigurable

robot. Undergraduate Honors Thesis, Dartmouth College, 1999.

[101] J. Walter, J. Welch, and N. Amato. Concurrent metamorphosis of hexagonal robot

chains into simple connected configurations.IEEE Transactions on Robotics and

Automation, 18(6):945–956, 2002.

[102] P.J. White, K. Kopanski, and H. Lipson. Stochastic self-reconfigurable cellular

robotics. InIEEE International Conference on Robotics and Automation (ICRA04),

2004.

[103] M. Yim. A reconfigurable modular robot with multiple modes of locomotion. In

Proc. of JSME Conf. on Advanced Mechatronics, Tokyo, 1993.

[104] M. Yim. New locomotion gaits. InProc. of IEEE ICRA, pages 2508–2514, 1994.

[105] M. Yim, J. Lamping, E. Mao, and J.G. Chase. Rhombic dodecahedron shape for

self-assembling robots. SPL TechReport P9710777, Xerox Palo Alto Research

Center, 1997.

[106] M. Yim, Y. Zhang, J. Lamping, and E. Mao. Distributed control for 3D shape

metamorphosis.Autonomous Robots, 10(1):41–56, 2001.

285

[107] E. Yoshida, S. Kokaji, S. Murata, H. Kurokawa, and K. Tomita. Miniaturized self-

reconfigurable system using shape memory alloy. InProc. of the Int’l Conf. on

Intelligent Robots and Systems, pages 1579–1585, 1999.

[108] E. Yoshida, S. Murata, A. Kaminura, K. Tomita, H. Kurokawa, and S. Kokaji.

Motion planning of self-reconfigurable modular robot. InProc. of Int’l Symposium

on Experimental Robotics, 2000.

[109] E. Yoshida, S. Murata, K. Tomita, H. Kurokawa, and S. Kokaji. An experimental

study on a self-repairing modular machine.Robotics and Autonomous Systems,

29:79–89, 1999.

286

	Heterogeneous Self-Reconfiguring Robotics
	Recommended Citation

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Heterogeneous Systems
	Example Applications
	Research Issues
	Sliding-Cube Model
	Reconfiguration Problem
	Locomotion, Self-Repair, and Goal Recognition

	Contributions
	Outline

	Related Work
	Hardware Design
	Pioneering Research
	Lattice-based Robots
	Chain-based Robots
	Heterogeneous Systems
	Manually Reconfigurable Robots

	Planning and Control
	Early Algorithms
	Reconfiguration Planning
	Other Tasks

	Other Related Results

	Basic Techniques in Planning for Lattice-Based Systems
	Connectivity Graph Representation
	Internal Paths: Unit-Compressible Systems
	Surface Paths: Sliding-Cube Systems
	Message-Passing
	Complexity of Reconfiguration
	Cellular Automata Model

	Reconfiguration Algorithms
	Out-of-Place Reconfiguration
	MeltSortGrow Algorithm
	Decentralized MeltSortGrow
	Example
	Discussion

	In-Place Reconfiguration
	Module Relocation via Tunneling
	Centralized TunnelSort
	Decentralized TunnelSort
	Example
	Discussion

	Reconfiguration Among Obstacles
	Tunnel Paths with Bends
	Homogeneous Phase
	Heterogeneous Phase
	Algorithm: ConstrainedTunnelSort
	Improvements
	Discussion

	Position Constraints
	Representation
	Constraints on a Single Module
	Algorithm: Maintaining Position Constraints
	Discussion

	Applications
	Distributed Goal Recognition
	General Approach
	Goal Recognition for Homogeneous Planar Robots
	Goal Recognition for 3D Robots
	Discussion

	Locomotion
	Inchworm Locomotion Algorithm
	Locomotion through Reconfiguration
	Discussion

	Rectilinear Minimum-Bend Paths Among Obstacles
	2D Algorithms
	3D Algorithms
	Horizontal Wavefront Algorithm
	The 3D-MBP Algorithm
	Analysis
	Implementation
	Discussion

	Self-Repair
	Self-Repair Approach
	2D Planning
	3D Planning
	Discussion

	Experiments
	Experiments in Simulation
	SRSim Simulator
	Implementation of Common Functions
	MeltSortGrow
	TunnelSort

	Experiments in Hardware
	Crystal Robot Hardware
	Crystal Robot Software Architecture
	Goal Recognition Experiment
	Inchworm Locomotion Experiment
	Heterogeneous Reconfiguration Experiment

	Lessons Learned
	Hardware
	Algorithms
	Future Work

	Discussion and Future Work
	Uncertainty
	Planning versus Reacting
	Towards Real-World Applications
	Future Work
	Optimal Reconfiguration Planning
	Heterogeneity of Module Size and Shape
	Approximate Goal Representation
	Dynamics
	Learning

	SRSim Source Code
	SRSim Base Class
	Sliding-Cube Class
	Algorithm Implementation Template

	Sorting Experiment Source Code
	Simulation Implementation
	Hardware Implementation
	Message Handlers
	Utility Functions

	Bibliography

