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Preface to “Wearable Sensors in the Evaluation of Gait

and Balance in Neurological Disorders”

The aging population and the increased prevalence of neurological diseases have raised the issue

of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders

are responsible for harmful consequences, such as falls, frequently leading to hospitalization and even

death. The high healthcare and economic burden of gait and balance disorders on society, therefore,

require new diagnostic and therapeutic strategies to promptly address this issue.

Advances in wearable technologies have offered innovative solutions to objectively assess

different biological parameters, including motor behaviors, thus providing new opportunities in the

management of health-related issues. Accordingly, over recent years, researchers have increasingly

devoted greater efforts to assessing gait and balance through wearable sensors in healthy subjects

and patients affected by neurological disorders. The use of wearable sensors has multiple appealing

prospects, including applications in telemedicine and telerehabilitation in neurological patients with

gait and balance disorders.

This book is a printed edition of the Special Issue “Wearable Sensors in the Evaluation of Gait

and Balance in Neurological Disorders”. It collects sixteen original research articles that provide the

most up-to-date information about the objective evaluation of gait and balance disorders by means of

wearable sensors in patients with various neurological diseases, such as Parkinson’s disease, multiple

sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. Overall, this book offers a detailed

overview of the most recent achievements in the field and encourages the development of new

wearable solutions to address gait and balance disorders in patients with neurological diseases.

Antonio Suppa, Fernanda Irrera, Joan Cabestany

Editors
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Abstract: The evaluation of trajectory reconstruction of the human body obtained by foot-mounted
Inertial Pedestrian Dead-Reckoning (IPDR) methods has usually been carried out in controlled
environments, with very few participants and limited to walking. In this study, a pipeline for
trajectory reconstruction using a foot-mounted IPDR system is proposed and evaluated in two large
datasets containing activities that involve walking, jogging, and running, as well as movements
such as side and backward strides, sitting, and standing. First, stride segmentation is addressed using
a multi-subsequence Dynamic Time Warping method. Then, detection of Toe-Off and Mid-Stance
is performed by using two new algorithms. Finally, stride length and orientation estimation are
performed using a Zero Velocity Update algorithm empowered by a complementary Kalman filter.
As a result, the Toe-Off detection algorithm reached an F-score between 90% and 100% for activities
that do not involve stopping, and between 71% and 78% otherwise. Resulting return position
errors were in the range of 0.5% to 8.8% for non-stopping activities and 8.8% to 27.4% otherwise.
The proposed pipeline is able to reconstruct indoor trajectories of people performing activities that
involve walking, jogging, running, side and backward walking, sitting, and standing.

Keywords: trajectory reconstruction; stride segmentation; dynamic time warping; pedestrian
dead-reckoning

1. Introduction

Indoor positioning systems (IPS) enable the provision of several location-based services
such as home monitoring, rehabilitation, navigation for blind and visual impaired people, and
finding and rescuing people/firefighters in emergencies. IPSs can be divided into two approaches:
infrastructure-based and infrastructure-free [1,2]. Infrastructure-based IPS require the deployment of
devices in the indoor environment to calculate the position of the person. Among the technologies
used by this type of IPS are Wi-Fi [3], radio frequency identification (RFID) [4], Bluetooth [5],
ultra-wide band (UWB) [6], infrared [7], and video cameras [4]. Infrastructure-free IPS do not need the
deployment of devices and mainly use dead-reckoning algorithms. Those systems are called inertial
pedestrian dead-reckoning (IPDR) because they use body movement information measured by inertial
measurement units (IMU) to estimate a person’s position changes based on a previously estimated or
known position [2]. The sum of these changes of position allows the reconstruction of the person’s
trajectory [2]. An IMU usually consists of a triaxial accelerometer and gyroscope. Although some IMUs

Sensors 2020, 20, 651; doi:10.3390/s20030651 www.mdpi.com/journal/sensors1
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also incorporate a triaxial magnetometer, alterations of the magnetic field indoors make it unreliable
for indoor positioning [8].

The advantages of IPDR systems over infrastructure-based systems are generally lower cost, data
privacy, and ease of deployment. However, IPDR systems without correction suffer from severe drift,
as person displacement is often calculated by integrating acceleration data from the accelerometer
twice and integrating the rotational angle from the gyroscope. In consequence, intrinsic errors and IMU
noise are raised to the third power, making a person’s trajectory reconstruction by direct integration
without correction impractical [9–11].

The literature review done in this study is aimed at foot-mounted IMU IPDR systems that only use
the accelerometer and/or gyroscope. Foot-mounted IPDRs, together with a zero velocity update (ZUPT)
algorithm, have been the most widely and successful method used to mitigate the drift in trajectory
reconstruction [9]. We use only the accelerometer and gyroscope because in indoor environments,
different sources might produce alterations in the magnetic field that make the magnetometer readings
unreliable for trajectory reconstruction [8]. Most of the foot-mounted IPDR systems that only use
accelerometer and gyroscope data are based on trajectory reconstruction during normal walking.
Natural movements like avoiding obstacles, sitting, swinging legs, stopping, or performing activities
like jumping, jogging, or running have rarely been considered [9,10]. In consequence, the literature
review is focused on the foot-mounted IPDR systems that have reconstructed the trajectory of walking,
jogging, and/or running activities. Thus, only six studies met the inclusion criteria and are part of the
literature review. The foot-mounted IPDR systems are usually evaluated in closed-loop trajectories by
measuring the return position error (RPE). The RPE indicates the distance between the final position of
the person obtained by the system and the actual physical final position of the person at the end of the
trial [8].

Threshold-based and machine learning-based foot-mounted IPDR approaches have been proposed
to deal with walking and running activities [12–16]. Li et al. [12,13] proposed a threshold-based
stance-phase detector that consists of one footstep detector and two zero velocity detectors, one for
walking and another for running. The evaluation of the system was done with one pedestrian who
followed two closed-loop trajectories while walking and running. For the square-shape path (195.7 m),
the RPE was 0.24% for walking and 0.42% for running. For the eight-shape path (292.1 m), the RPE was
0.2% for walking and 1.01% for running. An adaptive zero-velocity detector that selects an optimal
threshold for zero-velocity detection depending on the movement (walking or running) of the person
was proposed by Wagstaff et al. [15]. This system was evaluated by five people who walked and ran a
distance of 130 m in an “L” shaped path. The RPE reported were 1% for walking and 3.24% for running.

Considering that zero-velocity detection using machine learning-based IPDR systems is free
of threshold-tuning, Wagstaff et al. proposed a method for zero-velocity detection by using a long
short-term memory neural network (LSTM) [16]. Five people walked and ran a 220-m “L” shaped
path. The RPE in walking was 0.49% and running 0.93%. Similarly, Ren et al. proposed a zero-velocity
detection algorithm based on HMM [14]. The system was evaluated by one person in an oval-shaped
sports field of 422 m. The RPE when walking and running was 0.6% and 1.61%, respectively.

The described works have obtained very high precision in the trajectory reconstruction of walking
and running. However, the systems were evaluated with very few participants, and the evaluated
trajectories involved continuous walking and running activities. Currently, trajectory reconstruction
methods in realistic scenarios—with several people, and considering walking, jogging, and running
strides—are still missing.

Physical activity classification and gait event detection are key components of the trajectory
reconstruction process using IPDR. Machine learning has played an important role in both topics.
In [17] it is shown how different machine learning-based algorithms are able to classify different
physical activities, including standing, sitting, walking, and running. Gait event detection has been
performed by using several machine learning algorithms such as deep learning [18], hidden Markov
models (HMM) [19,20] and neural networks [21,22].
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The aim of the present work was to propose a pipeline for trajectory reconstruction using a
foot-mounted IPDR system able to reconstruct the trajectories of activities that involve walking, jogging,
and running strides as well as natural movements like stopping, standing, sitting, and side-walking.

This paper contributes to foot-mounted IPDR systems by (1) comprehensively evaluating the
trajectory reconstruction of activities that involve walking, jogging, and running strides including the
discrimination of natural activities such as stopping, sitting, and side-walking; and (2) evaluating two
algorithms for Toe-off and Mid-Stance detection during walking, jogging, and running strides adapted
from the ones proposed by Barth et al. [23].

The proposed pipeline is able to recognize walking, jogging and running strides and detect the
Toe-off and Mid-Stance events in each of them. With this information, a foot-mounted IPDR system is
able to reconstruct the person’s trajectory regardless of their gait speed. This allows the development
of new ambient assisted living applications in which indoor tracking is a ground technology as well as
the development of new applications for indoor sports.

2. Datasets

2.1. Unicauca Dataset

The objective of the Unicauca dataset was to evaluate the trajectory reconstruction of walking,
jogging, and running in similar settings as the state-of-the-art methods, which are usually evaluated in
close-loop trajectories and the activities performed by the participants include continuous walking,
jogging, or running. This dataset was collected at the University of Cauca, Popayán, Colombia.
Ten participants (mean age: 30 ± 3 years) walked, jogged, and ran a closed-loop P-shaped path of
approximately 150 m (Figure 1) with an IMU attached to the lateral side of the left shoe with a Velcro
strap (Figure 2).

Figure 1. Illustration of the path used for walking, jogging and running in the Unicauca dataset. It
is a “P” shaped path. The dotted red line represents the trajectory followed by one person, dotted
black lines show outer edges (walls) of the path, and the blue square shows the start and end point of
the trajectory.

The IMU was a Shimmer3 GSR+ (Shimmer Sensing, Dublin, Ireland). Acceleration (range: ±16 g)
and angular velocity (range: ±2000 dps) data were collected at a frequency of 200 Hz. Accelerometer
calibration consisted in leaving the sensor still for a few seconds lying on each of its 6 sides on a flat
surface. For gyroscope calibration, the sensor is rotated around the three axes. At the beginning of
each trial, the participant was asked to remain standing without moving the IMU for at least 10 s for
gyroscope bias calculation.

3
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(a) (b) 

Figure 2. IMU sensor placement and axis alignment. (a) Accelerometer. (b) Gyroscope.

2.2. FAU Dataset

The FAU dataset is based on a previous study evaluating a method for smart labeling of cyclic
activities [24] and is publicly available at www.activitynet.org. The dataset provides gait data in a
relatively natural setting, and its protocol consisted in the execution of 12 different task-driven activities
performed in random order for each participant. It includes data from 80 healthy participants with
a mean age of 27 ± 6 years. Data were collected from 56 participants at the Friedrich-Alexander
University Erlangen-Nürnberg (Germany) and from 24 participants at the University of Ljubljana
(Slovenia). In this study, data collected at Slovenia from 20 of the 24 participants (mean age of 28 years)
was used as training dataset [25] and data collected in Germany from the 56 participants were used as
evaluation dataset. Only the data collected from the IMU worn on the left foot was used for trajectory
reconstruction of ten activities (Table 1). Sensor placement and axis alignment are the same used in the
Unicauca dataset (Figure 2). The acceleration (range: ±8 g) and angular velocity (range: ±2000 dps)
were collected at a frequency of 200 Hz. The on-ground and off-ground phases of each stride are
labeled. The accelerometer was calibrated using six static positions and the gyroscope was calibrated
using a complete rotation about each of the three axes. Data were acquired in an indoor environment
which including chairs and tables (Figure 3). Jogging was described to the participants as “if one
would jog for exercise in the evening” and running as “if one is late for a bus”. These instructions were
the same used in the Unicauca dataset.

 
Figure 3. Map of the indoor environment used for collecting the FAU dataset. Blue squares represent
chairs that denote start/end positions of activities. Black rectangles represent tables, and dotted red
lines represent the possible trajectories followed by participants in each activity.

4
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Table 1. Activity descriptions and abbreviations, shown with their relevant start and end points as
labeled in Figure 3 as well as approximated distances.

Activity Description Start/End Position Approximated Distance (m)

W-Slalom Walk slalom through 3 tables B→B 31
W-Posters Sign name on 5 posters on the wall C→G 21
W-Tables Perform task at 3 different tables while sitting D→D 20
W-Cards Perform task on a table while standing E→E 6
W, J, R-20 Walk, jog, run 2 times 20 m A→A 40

W, J, R-Circuit Walk, jog and run half a circuit each F, G→G,F 43

3. Methods

A trajectory reconstruction pipeline was carried out separately for each activity of both datasets
(Figure 4). This pipeline is based on previous work by Hannink et al. [26]. A type of activity classification
step was included. Toe-Off and Mid-Stance algorithms were modified in order to deal with non-walking
strides as well as a complementary filter added for stride length and orientation estimation.

 

Figure 4. Pipeline for trajectory reconstruction for each activity.

3.1. Stride Segmentation

As shown by Zrenner et al., a threshold-based stride segmentation and a double integration with
the ZUPT algorithm performed better than other approaches based on stride time, foot acceleration,
and deep learning for calculating stride length in running using a foot-mounted IMU [27]. Thus,
multi-dimensional subsequence dynamic time warping (msDTW) and a double integration with
ZUPT were used as the stride segmentation and stride length and orientation estimation methods,
respectively, in this study [23].

msDTW is used to find a subsequence of continuous signal sequences similar to a given reference
pattern. In the context of stride segmentation, that pattern consists of a template of one stride. The stride
start was set to the negative peak before the swing phase and stride end to the negative peak at the end
of the stance phase (Figure 5a), according to the definition of stride given in [20]. Using that template,
msDTW looks for similarities in a movement sequence. msDTW has been shown to be a robust method
to segment strides from healthy, geriatric, and Parkinson’s patients using foot-mounted IMUs [28].

3.1.1. Template Generation

A MatLab script was developed for template generation. It included two steps: interpolation
and averaging. Interpolation consisted of taking each stride and interpolating it to a fixed duration of
200 samples. After interpolation, the template was obtained by averaging, sample by sample, all the
strides. The templates for walking, jogging, and running were built using the 8724, 1688, and 1360
walking, jogging, and running strides, respectively, of the training dataset. Unlike other studies, which
used only straight strides for building templates [23,28,29], the three templates were built with all the
strides of the activities. Thus, both straight and non-straight strides were included in the templates.

The swing-phase starts when the foot leaves the ground (Toe-Off) and ends when the heel strikes
the ground (Heel Strike). The portion of the gyroscope z-signal after Heel Strike (HS) describes the

5



Sensors 2020, 20, 651

stance-phase. A Mid-Stance (MS) event is defined as the part of the stance-phase when the signal
energy is zero [30].

 
(a) (b) 

Figure 5. (a) Walking, jogging, and running templates (gyroscope z-axis). (b) Running stride example
(gyroscope z-axis).

3.1.2. Classification of Walking, Jogging, and Running Activities

In order to automatically select the walking, jogging, or running template that will be used in the
stride segmentation process, the machine learning algorithms included in the Matlab Classification
Learner app were trained using the activities of the training dataset. A window size of 200 samples (1 s
of data) and an overlap of 100 samples were used for feature extraction. The features extracted were
velocity (by integrating accelerometer readings), angular velocity (by integrating gyroscope readings)
and energy of accelerometer and gyroscope axes. The most frequent value in the result was chosen
as the final classification. The evaluation was performed using ten-fold cross-validation. As a result,
the highest accuracy (98.1%) was achieved by the SVM classifier with a polynomial kernel function
of third-order.

3.1.3. Multi-Subsequence Dynamic Time Warping Implementation

The output of the stride segmentation based on msDTW is a set of segments [31]. Each segment
describes a possible stride. One issue using these resulting segments for trajectory reconstruction is that
often the end of a segment does not coincide with the start of the next segment even for consecutive
strides (Figure 6a). The solution to this issue is based on the Toe-Off (TO) detection, which is described
in the next section. Using the templates (Figure 5a), the first event detected in each stride is TO. For this
reason, TO was defined as the beginning of a stride. For consecutive strides, the end of the stride
corresponds with the beginning of the next stride (next TO), resulting in a stride segmentation without
“holes” (Figure 6b).

The precision and sensitivity of the stride segmentation using msDTW can be tuned using a
threshold. The threshold needed to detect a stride indicates the similarity between that stride and
the template used, that is, a large threshold indicates a large difference between the template and the
segmented stride [23]. Therefore, with a very small threshold, the number of false negatives strides
would increase, and a very large threshold would generate false positives strides. Thresholds from 0 to
100 in steps of 5 were tested on the training dataset. As a result, it was found that a fixed threshold of 65
maximizes the F-score of the stride segmentation in walking, jogging, and running activities (Figure 7).
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(a) 

 
(b) 

Figure 6. (a) Result of stride segmentation with msDTW. (b) Final stride segmentation with TO
detection. Blue vertical lines depict TOs. Light blue rectangles are segmented strides.

Figure 7. Threshold choice for stride segmentation of walking, jogging, and running strides
using msDTW.
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3.2. Toe-Off and Mid-Stance Detection

The previous algorithms for TO and MS detection [31] were modified in order to improve detection
accuracy in jogging and running. These modifications are described in this section. Both previous and
proposed algorithms use the signal of the gyroscope z-axis for TO and MS detection.

3.2.1. To Detection

At TO, the gyroscope z-axis describes a zero-crossing because of the ankle joint changes from
plantar flexion to a dorsal extension position in the sagittal plane [23]. The algorithm included in [31]
for TO detection consists of detecting the first zero-crossing in the gyroscope z-axis. Due to the abrupt
movements in jogging and running strides, in a few cases, a peak located at the beginning of the stride
causes a zero crossing. This would lead to a wrong TO detection (red circle in Figure 8). Consequently,
the adapted algorithm for TO detection (Algorithm 1) find the maximum peak of the signal and then
find the nearest zero crossing before it (blue circle in Figure 8). After the detection of all the TOs
that belong to the activity, all the portions corresponding from TO to TO are considered as strides
(Figure 6b). Considering that the stride time of walking strides is around one second [24], if one TO to
TO portion is greater than 2 s (400 samples), only the signal until 1.5 s was taken into account. This
often happens because the participant is standing still or sitting.

Algorithm 1: Toe-off (TO) detection algorithm.

1: xMP← getMaximumPeak(stride)
2: xZC← getZeroCrossings(stride(1 : xMP))
3: TO← getNearestZCtoMP(xZC, xMP)

Figure 8. Example of TO and MS detection. The red circle and square show a wrong TO and MS
detection, respectively, using the previous TO detection algorithm. The blue circle and square show an
adequate TO and MS detection, respectively, using the proposed algorithms.

3.2.2. Mid-Stance Detection

At Mid-Stance (MS) we define that the foot is entirely stationary on the ground [23,28] and its
velocity is zero. The gyroscope z-signal is minimal at that moment. As the speed of movement
increases from walking to running, the stance-phase time decreases (Figure 5a) making MS detection
more difficult [10]. The previous algorithm for MS detection in walking strides consists of calculating
the middle of the window with the lowest energy in the full stride’s gyroscope z-signal [23,28,31].
For jogging and running strides, the MS is often confused with other parts of the signal like the valley
just before the HS or the peak before the next TO (red square in Figure 8).

8



Sensors 2020, 20, 651

The adaptation of the MS detection algorithm (Algorithm 2) consisted of (1) taking only the stride
portion from HS to 80% of the stride—this portion was chosen taking into account that the stance-phase
of walking strides is approximately the last 60% of the stride and for jogging and running strides it is
approximately the last 40% of the stride [25]; (2) calculating the middle of the window with the lowest
energy within that portion—to this end, a window size of 20 samples (100 ms) and a window overlap
of 10 samples (Blue square in Figure 8) are used.

Algorithm 2: Mid-Stance (MS) detection algorithm.

1: windowSize← 20
2: overlap← 10
3: stride← interpolateStrideTo200Samples(stride)
4: xMP← getMaximumPeak(stride)
5: stride← stride(xMP : 160)
6: xHS← getMinimumPeak(stride)
7: stride← stride(xHS : end)
8: MS getMinimumEnergy(stride, windowSize, overlap)

3.2.3. Stride Length and Orientation Estimation

The biggest challenge to adequately estimate stride length using IMU data is the significant bias
derived from the use of IMUs, which leads to large drifts after the double-integration process. For that
reason, the ZUPT method was used. Zero-velocity detection was done by evaluating a threshold
on the magnitude of the gyroscope rate of turn of each measurement. If the measurement is less
than a threshold of 0.6 dps, that measurement is considered as a zero-velocity measurement. It has
been proved that this simple approach works properly in walking strides [11,30]. However, this
approach does not work correctly in jogging and running strides due to the abrupt signal variations.
The solution to this problem is the use of the MS detected previously. Taking into account that the
average stance-phase time in running strides is around 100 ms (20 samples), it was empirically found
that taking 5 samples to each side of the MS (which corresponds to 50 ms with the sampling frequency
used) leads to better zero-velocity detection in jogging and running strides.

After zero-velocity detection, a complementary Kalman filter (CF) was used in order to model
the error in velocity and position estimates using the ZUPTs as measurements (see Appendix A for
details). When zero-velocity is detected, but the estimated velocity is different to zero, the CF adjusts
the velocity and the corresponding displacement. The CF used in this work is based on the proposed
work by Fischer et al. [11]. Three main parameters have to be set up for CF initialization: accelerometer
and gyroscope noise (σa and σw) and the ZUPT detection noise (σv). Accelerometer and gyroscope
noise were set to equal value in both datasets (σa = 0.01 m/s2 and σw = 0.01 rad/s). ZUPT detection
noise depends on the velocity of the participant. That parameter was established by evaluating from
σv = 0.001 m/s to σv = 0.05 m/s in steps of 0.001 m/s for each trajectory performed. The σv chosen was
the one that produced the least error in the final distance evaluated. The stride length and orientation
estimation are obtained using the position increments in each MS event. Stride length, where ∇Pk is
the position increment from stride k-1 to stride k, is calculated as follows:

SLk =

√
∇Pk(x)

2 + ∇Pk(y)2, (1)

9
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4. Results

4.1. Unicauca Dataset

4.1.1. Classification of the Type of Activity

The accuracy in the activity classification was 90%. There were only three misclassifications: two
running activities were classified as jogging activities and one jogging activity was classified as a
running activity (Figure 9).

Figure 9. Confusion matrix of the classification of the type of activity in the Unicauca dataset.

4.1.2. Toe-Off and Mid-Stance Detection

In this dataset, TO and MS were manually labeled. A TO/MS is considered as a true positive
(TP) if it is located within 15% of the total number of samples of the stride to the right and left of the
TO/MS ground truth. A false positive (FP) occurs when a TO/MS is detected outside this range. A false
negative (FN) indicates that a TO/MS for a stride was not detected. Having in mind that 40% and 60%
of the stride corresponds to the stance-phase of walking and running strides, respectively [25], the TO
detection performance was evaluated in the training dataset using error ranges from 5% to 21% of the
total stride in steps of 3% (Figure 10). As a result, 15% was chosen as an acceptable error range for
TP calculation.

Figure 10. TO performance evaluation using error ranges from 5% to 21% in steps of 3%.

Results of the evaluation of the TO and MS detection using the previous and proposed algorithms
are shown in Tables 2 and 3, respectively.
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Table 2. Averaged results of TO and MS detection for the 10 participants in the Unicauca dataset using
the previous TO and MS detection algorithms.

Toe-Off Mid-Stance

Activity TO GT TP FP FN F-Score (%) MS GT TP FP FN F-Score (%)

Walking 105.5 105.4 0.1 0.1 99.9 104.5 104.4 0.1 0.1 99.9
Jogging 75.4 39.4 37.1 36.2 51.5 74.4 41.2 34.2 33.3 54.9
Running 59.6 21.7 37.5 37.1 36.4 58.6 25.8 31.5 30.7 45.3

TO GT: ground truth TO rate. MS GT: ground truth MS rate. TP: true-positive rate. FP: false-positive rate. FN:
false-negative rate.

Table 3. Averaged results of TO and MS detection for the 10 participants in the Unicauca dataset using
the proposed TO and MS detection algorithms.

Toe-Off Mid-Stance

Activity TO GT TP FP FN F-Score (%) MS GT TP FP FN F-Score (%)

Walking 105.5 105.5 0 0 100 104.5 104.5 0 0 100
Jogging 75.4 75.2 0.1 0.2 99.8 74.4 74.4 0 0 100
Running 59.6 59.3 0.3 0.2 99.7 58.6 58.5 0.1 0.1 99.8

TO GT: ground truth TO rate. MS GT: ground truth MS rate. TP: true-positive rate. FP: false-positive rate. FN:
false-negative rate.

A perfect F-score was obtained for TO and MS detection in walking strides. Very few mistakes
occurred for jogging and running, but the F-score remains high.

4.1.3. Trajectory Reconstruction

Two evaluation measures were used. (1) Return position error (RPE): the distance between the
coordinates of the actual final point of the activity and the coordinates of the participant’s final stride
of the corresponding activity. (2) Strides out of trajectory (SOT): All strides of the reconstructed
trajectory should be within the boundaries of the corridors represented by black dotted lines (Figure 11).
Otherwise, those strides will be counted as out of trajectory.

Higher velocity corresponds to more SOT and RPE. Although, on average, 5.7 % of the strides are
out of trajectory in the running trial, the RPE remains less than 1.0% (Table 4). Trajectories of the three
trials are mostly within the boundaries (Figure 11).

Table 4. Average results of trajectory reconstruction for each type of activity performed by the 10
participants using the previous and the proposed TO and MS detection algorithms.

Activity SOT RPE

[31] New A [31] New A

# % # % meters % meters %

Walking 1.7 1.6 1.7 1.6 0.8 0.5 0.8 0.5
Jogging 6.6 8.6 2.9 3.8 2.2 1.4 1.4 0.9
Running 5.3 9.2 3.3 5.7 2.6 1.6 1.4 0.9

SOT: strides out of trajectory, RPE: return position error, [31]: previous TO and MS detection algorithms, New A:
proposed TO and MS detection algorithms.
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Figure 11. Trajectory reconstruction for the ten participants of the Unicauca dataset in a P shaped
path. Black dotted lines show outer edges (walls) of the possible path. Gray lines are the trajectories
reconstructed of the ten participants by using the proposed pipeline.

4.2. FAU Dataset

4.2.1. Classification of the Type of Activity

The accuracy obtained by the SVM classifier was 93%. Most of the misclassifications occurred
when classifying between running and jogging (Figure 12).

Figure 12. Confusion matrix of the classification of the type of activity classification in the FAU
dataset activities.
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4.2.2. Toe-Off Detection

The last sample of the on-ground phase of each stride was used as ground truth for the evaluation
of the TO detection algorithm (Table 5). The same criteria used in the Unicauca dataset for TP, FP,
and FN calculations were used. The evaluation was carried out on the data collected from the 56
participants at the Friedrich-Alexander University Erlangen-Nürnberg (Germany) of FAU dataset.

Table 5. Average results of TO detection for each type of activity performed by the 56 participants in
the FAU dataset using the previous and the proposed TO detection algorithms.

Activity TO TP FP FN F-Score (%)

[31] New A. [31] New A. [31] New A. [31] New A.

W-Slalom 21.5 21.2 21.2 0.8 0.8 0.4 0.3 97 97
W-Posters 13.0 10.6 10.6 3.6 3.5 2.3 2.3 77 78
W-Tables 11.9 9.5 9.5 3.7 3.7 2.4 2.4 75 75
W-Cards 4.33 3.7 3.7 1.6 1.6 2.4 0.6 71 71

W-20 28.4 28.2 28.2 1.3 1.0 0.4 0.2 99 98
J-20 22.3 13.7 21.6 9.7 1.1 8.6 0.7 56 96
R-20 18.4 8.1 17.0 12.3 2.1 10.6 1.3 48 90

W-Circuit 28.2 27.6 27.7 0.7 0.7 0.4 0.3 98 98
J-Circuit 21.9 11.8 21.3 10.8 0.7 10 0.5 49 97
R-Circuit 17.7 7.6 17.3 10.7 0.8 10.2 0.4 40 96

TO: toe-off rate, TP: true positives rate, FP: false positives rate, FN: false negatives rate, [31]: previous TO and MS
detection algorithms, New A: proposed TO and MS detection algorithms.

4.2.3. Body Trajectory Reconstruction

For RPE estimation in FAU dataset (Table 6), it is important to note that the start/end activity
positions were defined by chairs in the indoor environment. For that reason, the actual positions
where the participants started and finished the activities were not precisely the same as the chairs’
positions since participants began each activity near the corresponding chair and did not necessarily
return to the exact point where they started the activity. Based on the videos of the data collection,
participants started and finished the activities within a radius of 1.5 m around the chairs. Light blue
and gray rectangles in Figures 13 and 14, respectively, indicate the path where all the strides related to
a certain activity should take place. If a stride is out of this path, it is considered as a Stride Out of
Trajectory (SOT). A SOT can be caused by the accumulative error of stride lengths and angle calculation
of previous strides. These zones were defined taking into account the coordinates of the chairs and
tables and the boundaries of the indoor environment.

Table 6. Averaged results of trajectory reconstruction of activities performed by the 56 participants in
the FAU dataset using the previous and the proposed TO and MS detection algorithms.

Activity
Activity
distance

SOT RPE

[31] New A. [31] New A.

meters # % # % meters % meters %
W-Slalom 31 1.1 5.2 1.1 5.2 1.7 5.5 1.7 5.5
W-Posters 21 1.0 8.0 1.0 8.0 1.9 9.0 1.8 8.8
W-Tables 20 3.1 25.9 3.1 25.9 2.8 14.1 2.8 14.1
W-Cards 6 1.3 30.5 1.3 30.5 1.6 27.4 1.6 27.4

W-20 40 3.7 13.1 3.7 13.1 1.7 4.2 1.7 4.2
J-20 40 7.5 34.2 3.9 17.9 5.5 14.2 2.0 5.1
R-20 40 4.1 22.5 3.1 17.0 5.2 13.9 2.5 6.0

W-Circuit 43 4.1 14.4 4.1 14.4 2.9 6.7 3.0 6.7
J-Circuit 43 6.4 30.2 4.5 20.4 14.5 33.7 3.6 8.8
R-Circuit 43 5.1 29.9 3.9 22.4 16.2 37.7 3.7 8.7

SOT: strides out of trajectory, RPE: return position error, [31]: previous TO and MS detection algorithms, New A:
proposed TO and MS detection algorithms.
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Figure 13. Trajectory reconstruction of non-circuit activities for all 56 participants of the FAU dataset.
Black, blue and orange lines denote R-20, J-20, and W-20, respectively. Red, green, violet and light green
lines represent W-Cards, W-Slalom, W-Posters, and W-Tables, respectively. Gray rectangles represent
zones where all the strides related to certain activity should take place.

 

 

Figure 14. Trajectory reconstruction of circuit activities for all 56 participants of the FAU dataset.
Black lines denote the trajectory follows by the participants. Gray zones represent the zone where all
the strides should take place.

Most of the trajectories were inside the zones (Figures 13 and 14). The trajectory reconstruction
of activities W-20, J-20, and R-20 describes two straight trajectories, joined by a 180-degree turn.
The trajectory reconstruction of W-Slalom allows sight of the area where the tables are located.
The W-Posters activity includes non-straight strides, which are well described in the trajectory obtained.
Regarding the circuit activities, although most of the strides are inside the activity zones, some
trajectories lead towards the outer part of the activity zone. Others lead towards the internal part of
the circuit (Figure 13).
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5. Discussion

We have proposed a pipeline for indoor trajectory reconstruction of walking, jogging, and running
activities. The proposed pipeline was evaluated with two datasets. The results showed that it is able to
reconstruct a person’s trajectory regardless of their gait speed.

5.1. Classification of the Type of Activity

It was found that the classification model obtained with the SVM algorithm is able to classify
the three types of activities performed: walking, jogging, and running. The classification between
jogging and running is the one in which the classifier made more mistakes. This is possibly due to the
jogging and running speeds of some participants being similar. The use of personal models to avoid
this problem could be promising.

5.2. TO and MS Detection

Previous studies focused on the reconstruction of the trajectory during walking and running and
do not show results of segmentation or detection of strides [18–22]. The two datasets used in this study
allow TO evaluation. In the case of MS detection, ground truth information was not available in the
FAU dataset. Therefore, it was not possible to evaluate MS detection in that dataset. However, a high
F-score was obtained in the detection of MS in the Unicauca dataset.

While the F-score obtained for the proposed TO and MS detection algorithms is similar to that
obtained for the previous algorithms for walking activities, the F-score achieved for the proposed TO
and MS detection algorithms outperformed that achieved for the previous algorithms for all jogging
and running activities. That suggests that the proposed algorithms can detect those gait events in
walking, jogging, and running strides. The number of false positives (FP) was always higher than the
number of false negatives (FN). This could indicate that the threshold used for stride segmentation
with msDTW might have been overestimated, since stride segmentation using a large threshold implies
that there is a large difference between the template used and the segmented strides, leading to the
detection of FP strides. However, it was checked that by reducing that threshold, the number of
FN increased, causing a decrease in the F-score. Threshold-free methods based on machine learning
techniques such as those used by Ren [20] and Wagstaff [22] would make the stride segmentation
process straightforward by avoiding setting any threshold.

The lowest F-scores are obtained for three walking activities: W-Posters, W-Tables, and W-Cards,
which might be due to the fact that those activities involve non-stride movements such as stopping,
sitting, lateral and backward steps. This could be because the signal generated for those foot movements
is different from the walking/running templates. This could be accounted for by using templates
generated by those specific movements, as previously demonstrated in [29], where specific templates
were generated for each specific activity such as ascending and descending stairs. Unfortunately,
the wide range of possible natural foot movements makes this alternative hard to implement.
A hierarchical hidden Markov model (hHMM) approach has proved to be a robust method for stride
segmentation of walking activities that include non-stride movements in Parkinson’s patients [14] and
for stride segmentation of jogging activities [15]. Furthermore, hHMM is a threshold-free approach,
therefore it should be explored in order to improve the results obtained for the walking activities
that include non-stride movements such as W-Posters, W-Tables, and W-Cards, as well as for stride
segmentation of jogging and running activities.

5.3. Trajectory Reconstruction

Usually, the foot-mounted IPDR systems have been evaluated in closed-loop trajectories and by
measuring the Return Position Error (RPE) [18–22]. The purpose of the Unicauca dataset was, therefore,
to provide a starting point to allow a fair comparison with the state-of-the-art papers.
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Sometimes the RPE is small, although the reconstructed trajectory does not fit the actual trajectory
performed by the person. That is why we proposed the number of strides out of the trajectory as an
additional evaluation metric. The RPEs obtained with the pipeline proposed in this paper for the three
trials collected in the Unicauca dataset are less than 1%. The results obtained by the works described
in the literature review section are also lower than 1%.

As a result of the better detection of TO and MS obtained by using the algorithms proposed in
this study, there is also a better trajectory reconstruction since there were fewer strides out of trajectory
(SOT) and shorter RPE for jogging and running activities. This demonstrates two things. The first is the
importance of performing a correct detection of TO and MS for trajectory reconstruction. The second is
that if the complementary filter does not have precise data to perform the ZVUs, it is not capable of
modeling errors in speed on its own, even if its parameters were tuned. It has also been demonstrated
that by properly detecting TO and MS, the complementary filter is capable of modeling errors in
walking, jogging, and running strides.

RPE obtained for trajectories in the FAU dataset are higher than for the Unicauca dataset. It is
important to highlight two limitations that the FAU dataset has for trajectory reconstruction. Firstly,
the position of the participants at the beginning and end of the activities is not exactly the same.
When analyzing the videos of the FAU dataset collection, it was concluded that these positions vary
approximately in a radius of one and a half meters, taking as reference the chairs that indicated the
start and end of the activities. Therefore, the RPEs calculated have an error of ±1.5 m. This fact should
be taken into account for the preparation of the protocol for the collection of a future dataset. Secondly,
it was not possible to subtract the gyroscope bias in all activities performed in the FAU dataset, because
the activities were performed continuously. A prerequisite for bias computation is that the person
stands still for a few seconds for the calculation of the mean of the gyroscope readings and then
subtracting it from the entire movement sequence.

The number of strides out of trajectory is directly related to the RPE obtained; the more strides out
of the acceptable path range, the higher the RPE. When observing the trajectory reconstruction of the
activities W-20, J-20, R-20, and W-Circuit, J-Circuit, R-Circuit, it appears that the difficulty in trajectory
reconstruction increases with stride velocity (from walking to jogging and running). This also occurred
in the five papers described in the literature review section [18–22]. In those papers, the evaluation was
performed with very few people. From our study, we can confirm that there is still a gap in trajectory
reconstruction using foot-mounted IPDR systems of jogging/running activities regarding the trajectory
reconstruction of walking activities.

The RPE of the trajectory reconstruction of W-Cards, W-Tables, and W-Posters activities are
particularly high, due to the bad detection of TOs. These activities should be treated with special care
in future works since they describe movements of daily living activities that happen frequently.

The trajectories obtained have a very well-defined shape and could be used for mapping an
indoor environment.

One important recommendation for future work in the field of trajectory reconstruction using
IPDR systems is that the datasets collected for evaluation are labeled at activity and stride/step levels,
as the FAU dataset used in this paper. Additionally, the participants of the data collection process must
start and end precisely at the indicated coordinates.

6. Conclusions

In this paper, we have proposed and evaluated a pipeline for trajectory reconstruction of walking,
jogging, and running activities using a foot-mounted inertial pedestrian dead-reckoning system.
The dynamic time warping method was adapted within this paper to segment walking, jogging, and
running strides. Stride length and orientation estimation were performed using a zero velocity update
algorithm adapted for walking, jogging, and running strides and empowered by a complementary
Kalman filter.
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The presented results showed that the proposed pipeline provides good trajectory estimations
during walking, jogging, and running. TO detection algorithm reached an F-score between 92% and
100% for activities that do not involve stopping, and between 67% and 70% otherwise. Resulting return
distance errors were in the range of 0.51% to 8.67% for non-stopping activities and 8.79% to
27.36% otherwise.

To the best of the authors’ knowledge, this is the most comprehensive evaluation of a foot-mounted
IPDR system regarding the type and number of activities and quantity of people included in the
datasets and can serve as a baseline for the comparison of future systems. Future work will be focused
on using hidden Markov models in order to improve stride segmentation and fusing symbolic location
from an RSSI signal to update the indoor localization when possible.
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Appendix A. Complementary Filter

The initialization of the Complementary Filter (CF) implies to establish a series of matrices. First,
the state of the CF includes the errors in orientation, position, and velocity. (A1) shows the state in an
array representation. Each array element is a 1 × 3 array containing the errors in the three-axis.

E =
[
Eo Ep Ev

]
(A1)

The error covariance matrix accumulates the error in orientation, position, and velocity produced
in each sample k:

Pk = [09x9] (A2)

The state transition function is a matrix that is multiplied with the previous state to get the next
state, as shown in (A7). ‘S’ is the Skew-symmetric cross-product operator matrix formed from the
n-frame accelerations and is the time step equals to 0.005 s, which results from dividing 1 s between
the IMU data collection frequency (200Hz).

Fk =

I3X3 03x3 03x3

03x3 I3X3 I3X3Δt
−SΔt 03x3 I3X3

(A3)

The process noise covariance matrix is calculated for each sample by multiplying the accelerometer
and gyroscope noise by:

Qk =
[(
σwx σwy σwz 0 0 0 σax σay σaz

)
Δt
]

(A4)
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The uncertainty in velocity during each ZUPT is represented using the measurement noise
covariance matrix (A5). It is a diagonal matrix because no correlation in velocity is supposed to exist
between axes.

R =

σ2
vx 0 0
0 σ2

vy 0
0 0 σ2

vz

(A5)

The measurement function matrix is used to move from the state variables space to the measurement
variables states. In this implementation, the measurements are the ZUPTs that is when velocity is
supposed to be zero. That way, the measurement function has to contain an identity matrix in the
position of the velocity error state as follows:

Hk = [(03x3 03x3 I3x3)] (A6)

Before running the CF, the gyroscope bias has to be removed. Gyroscope bias is obtained by
calculating the mean of the gyroscope readings while IMU is not moving just before the beginning of
the activity. The resulting value is subtracted to all gyroscope signals.

After gyroscope bias subtraction, the CF is executed. It has two phases: Prediction and update.
In the prediction phase, the error covariance matrix (Pk) is propagated using (A7):

Pk = FkPk−1FT
k + Qk (A7)

Only when a sample k is a ZUPT, the Update phase comes into play. In this case, the Kalman gain
is calculated with (A8), and with that gain, the error is obtained using (A9).

Kk = PkHT(HPkHT + R)−1 (A8)

E =
[
Eo Ep Ev

]
= KkVk (A9)

Finally, the velocity and position estimates are corrected as well as Pk:

Vk = Vk − Ev (A10)

Posk = Posk − Ep (A11)

Pk = (I9x9 −KkH)Pk (A12)
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Abstract: The aim of this study was to investigate whether variation in gait-related parameters
among healthy participants could help detect gait abnormalities. In total, 36 participants (21 men,
15 women; mean age, 35.7 ± 9.9 years) performed a 10-m walk six times while wearing a tri-axial
accelerometer fixed at the L3 level. A second walk was performed ≥1 month after the first (mean
interval, 49.6 ± 7.6 days). From each 10-m data set, the following nine gait-related parameters were
automatically calculated: assessment time, number of steps, stride time, cadence, ground force
reaction, step time, coefficient of variation (CV) of step time, velocity, and step length. Six repeated
measurement values were averaged for each gait parameter. In addition, for each gait parameter,
the difference between the first and second assessments was statistically examined, and the intraclass
correlation coefficient (ICC) was calculated with the level of significance set at p < 0.05. Only the CV
of step time showed a significant difference between the first and second assessments (p = 0.0188).
The CV of step time also showed the lowest ICC, at <0.50 (0.425), among all parameters. Test–retest
results of gait assessment using a tri-axial accelerometer showed sufficient reproducibility in terms of
the clinical evaluation of all parameters except the CV of step time.

Keywords: gait assessment; tri-axial accelerometer; CV; healthy subjects; test-retest

1. Introduction

Walking is naturally performed by humans without any deficits, and it is one of the indexes that
show normality of motor and/or cognitive function in healthy subjects and abnormality in patients [1–6].
In patients with neurodegenerative diseases such as Parkinson’s or Huntington’s disease, freezing
of gait or reduction of gait performance is often observed [7–9]. For assessing the gait in post-stroke
patients during the follow-up period, a special portable stride analyzer was used in a previous work [2].
This device consisted of special insoles with compression sensors in shoes, and the insole was connected
to a mobile data collection box worn on the belt. The other study to assess the gait in patients with
subcortical capsular encephalopathy also used a similar device [10]. On the other hand, an electronic
walkway that detects the spatial and temporal characteristics of footfalls during gait was used in
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the assessment of walking behavior in multiple sclerosis [11,12]. Then, a camera-based device was also
used for gait assessments in patients with spinal cord injury in addition to multiple sclerosis [1,13].
Various techniques for quantitative gait assessment have been proposed in previous works; however,
gait performance is difficult to assess, requiring the use of special or large machines and facilities in
clinical scene and/or multicenter trials [1,10–15]. In practice, qualitative assessments have often been
performed without any devices, but with the use of clinical scores [16,17], and no standard device for
quantitative gait assessment has been established.

The portable devices for gait assessment, particularly a tri-axial accelerometer [18–21], that have
been developed recently exhibit an accuracy equal to that of large devices such as treadmills in
the assessment of gait performance and are used in practical and clinical studies [18–24]. Tri-axial
accelerometers have the advantage of easy attachment to the body or foot of subjects with a belt
and the estimation of various gait parameters such as movements of the body trunk, step time, and
ground reaction force from the acceleration wave dataset in the three axial directions during walking.
On the other hand, the reproducibility of the accelerometer in healthy subjects remains unclear. In
the present study, we investigated whether gait-related parameters obtained by a tri-axial accelerometer
are reliable in terms of reproducibility by performing test-retest gait measurement in healthy subjects.

2. Materials and Methods

2.1. Subjects

All subjects participated in this study between July 2017 and October 2017 after providing written
informed consent and primary medical check interviewing history of disorders, age and height by
authors (S.S. and Y.N.). The inclusion criteria were as follows: >20 but <60 years of age; no history of
brain-related disorders, including surgical operation, irradiation, stroke, infection, remarkable atrophy,
or demyelinating disease; no history of hypertension, diabetes mellitus, atrial fibrillation, pulmonary
disease, leukoaraiosis, no musculoskeletal deficits or the other diseases showing gait abnormalities
without neurological deficits [24–27]. In the first stage, each subject performed a 10-m walk six times
with a tri-axial accelerometer (MG-M1110-HW, LSI Medience, Tokyo, Japan) fixed at the L3 level of
the subject by a nylon belt (Figure 1).

 

Figure 1. Tri-axial accelerometer (MG-M1110) with a switch cable for marking points of a 10-m
walking interval for the dataset (left) and the accelerometer fixed at the L3 level by a nylon belt in
a subject (right).
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The device can measure tri-axial (vertical, anteroposterior, and mediolateral) acceleration by
detecting limb and trunk movements at a sampling rate of 100 Hz during step-in and kick-offmotions.
The tests were performed on a 30-m straight walkway in our hospital. All subjects were instructed by
an author (S.F.) for walking at each usual pace and they walked 16 m, including 3 m before the starting
point and 3 m after the end point, as intervals to obtain the 10-m walking dataset in Table 1. To mark
the 10-m segment of the dataset, an operator (S.F.) pushed a button connected to the accelerometer
with a cable at both the start and end points while following the subject. The second test was also
performed with the same subjects under the same conditions (the tri-axial accelerometer, an operator,
and the walkway) within a 3-month period at least 1 month after the first evaluation. The statistical
comparison of two datasets, each showing 10% standard deviation relative to each mean value and
10% mean difference to an averaged value of the two mean values, requires the examination of more
than 28 subjects with alpha and beta levels less than 0.01 [28], indicating Type I error and Type II error,
respectively. Thus, we determined that the present study required more than 28 subjects in order to
compare the first and second tests.

2.2. Data Analysis

From each tri-axial acceleration wave dataset of six repetitions of the 10-m walk measurement,
the following nine gait parameters were calculated using commercial software (LSI Medience):
assessment time (s); number of steps (step); stride time (s; time from initial contact of one foot to
subsequent contact of the same foot); cadence (step/m); ground floor reaction (×9.8 m/s2); step time (s;
time from initial contact of one foot to initial contact of the other foot); coefficient of variation (standard
deviation/mean × 100) of step time (%; CV); velocity (m/min); and step length (cm). To calculate these
gait parameters, pre-processing, called “step extraction”, which marks each wave indicating a step in
the tri-axial acceleration wave dataset (Figure 2), was needed.

Figure 2. Wave dataset obtained using a tri-axial accelerometer during walking.

By a pre-processing “step extraction”, markers were automatically placed on top of each wave,
indicating one step.

During pre-processing with the software, the number of steps can be automatically estimated
from each 10-m walking wave dataset. If the number of steps was clearly low (e.g., less than half of
the number calculated using the other 10-m walking wave datasets in the same subject) by missing
the wave peak due to the limitation of the peak detection algorithm, the subject was excluded from
the analysis in this study without the manual error correction for the same conditions and protocols for
all wave dataset. Finally, the six values from each gait parameter obtained from the six measurements
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were averaged, and the averaged value was defined as the representative value of the parameter in
a subject. The protocol of this study was reviewed and approved by the institutional ethics committee.

2.3. Statistical Analysis

The differences in each gait parameter between the first and second assessments were examined
using the Wilcoxon signed-rank test. To validate the reproducibility in two gait assessments with
a tri-axial accelerometer, the intraclass correlation coefficient (ICC) was also calculated in each gait
parameter. Grading of the ICC was defined as follows: excellent, ICC ≥ 0.9; good, 0.7 ≤ ICC < 0.9;
moderate, 0.5 ≤ ICC < 0.7; and poor, ICC < 0.50. Subsequently, a Bland-Altman plot was performed
to confirm the tendency of the relationship between the two measurements in each parameter.
Furthermore, the correlation between height and each gait parameter at the 1st test was statistically
examined with Spearman’s correlation coefficient for confirming the effect from the individual factor.
All statistical analyses were performed on MedCalc ver. 17.9.7 (MedCalc Software bvba, Ostend,
Belgium) with a significance level of p < 0.05.

3. Results

Forty-four subjects were included in this study. Two of the 44 subjects could not perform the second
test within 3 months. The other 42 subjects performed the 10-m walk at both stages; however, some step
waves of the six measurements in six subjects could not be appropriately extracted for each 10-m walk
wave, indicating that step extraction errors during pre-processing for gait analysis occurred because
of the deterioration of the waveform and the limitation of the wave extraction algorithm. Finally,
36 subjects (Figure 3) (21 men and 15 women; mean age, 35.7 ± 9.9 years; range, 22–58 years) were able
to complete both the first and second analyses (mean interval, 49.6 ± 7.6 days; range, 40–65 days).

Figure 3. Flowchart for including the subjects.

Only the CV showed a significant difference between the first and second measurements (median
CV: first, 2.16; second, 2.50; p = 0.0188), while the other parameters showed no significant differences
(Table 1). Among all nine gait parameters, stride time (ICC: 0.803), step time (0.788), and cadence (0.784)
showed good correlation with a high ICC of ≥0.70. The number of steps (0.685), step length (0.663),
ground reaction force (0.615), velocity (0.598), and assessment time (0.565) showed a moderate ICC
between 0.50 and 0.70. The ICC of the CV indicated poor correlation and was the lowest value, being
<0.50 (0.425) in all the parameters (Table 1). The Bland-Altman plot in the CV showed a negative trend,
with the mean of the first and second assessments being larger, while those in the other parameters
showed no trends. The plot of the parameters shows good ICCs in Figure 4a–c, and the CV shows
poor ICC in Figure 4d.
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Table 1. Median and intra-correlation coefficient for each parameter at and between first and second
10-m walks in healthy subjects (n = 36).

1st 95% CI 2nd 95% CI p Value * ICC 95% CI

Stride time [sec] 1.02 1.01–1.05 1.03 0.99–1.05 0.689 0.803 0.647–0.894
Cadence [step/min] 119 115–120 117 114–121 0.765 0.784 0.616–0.884

Step time [sec] 0.505 0.500–0.523 0.515 0.500–0.523 0.697 0.788 0.624–0.886
Number of steps [step] 13.8 13.5–14.2 13.9 13.5–14.2 0.765 0.685 0.462–0.827

Step length [cm] 72.3 69.7–73.8 72.0 70.7–73.6 0.981 0.663 0.429–0.813
Ground reaction force [×9.8 m/s2] 0.360 0.330–0.383 0.355 0.327–0.373 0.980 0.615 0.361–0.784

Velocity [m/min] 85.3 82.1–87.1 84.3 82.3–86.3 0.753 0.598 0.339–0.773
Assessment time [s] 7.04 6.89–7.33 7.13 6.96–7.30 0.831 0.565 0.293–0.752

Coefficient of variance [%] 2.16 1.98–2.57 2.50 2.15–2.95 0.0188 0.425 0.129–0.655

ICC: intra-correlation coefficient; CI: confidential interval. * examined using Wilcoxon signed-rank test.

Figure 4. Bland-Altman plots of the gait parameters, showing good intraclass correlation coefficient
(ICC; (a) stride time, (b) step time, (c) cadence) and poor ICC ((d) coefficient of variation).

Height significantly correlated with number of steps (ρ, p-value and the 95% confidential interval:
−0.358, 0.0323, −0.614 to −0.0328), stride time (0.468, 0.0040, 0.164 to 0.690), cadence (−0.467, 0.0041,
−0.690 to −0.163), step time (0.483, 0.0028, 0.184 to 0.701) or step length (0.356, 0.0331, 0.0311 to 0.613).
On the other hand, no significant correlation was observed between height and assessment time
(ρ, p value and the 95% confidential interval: 0.0312, 0.8567, −0.300 to 0.356), ground force reaction
(−0.139, 0.4174, −0.447 to 0.198), CV (0.0464, 0.7883, −0.287 to 0.369), or velocity (−0.0340, 0.8441, −0.359
to 0.298).

4. Discussion

Portable devices for quantitative gait analysis have been developed, and these devices have
the advantage in clinical scenarios of needing only a walkway, rather than any large space or
facility [18,19,21–23,29–31]. In the present study, we validated the reproducibility of a tri-axial
accelerometer used in gait assessment by performing test-retest measurements within a 3-month period
1 month after the first evaluation. All gait parameters except the CV showed adequate reproducibility
for practical clinical use, with no significant differences and with practical ICCs between test-retest
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measurements. The present findings suggest that the tri-axial accelerometer can sufficiently evaluate
gait by using just the device and an operator, and without large machines and experts to analyze
the dataset.

Three gait parameters (stride time, step time, and cadence) showed good ICC in the present
study. In a previous work, the parameters showed no significant differences between controls
(patients showing transient ischemic stroke/asymptomatic carotid artery stenosis) and patients without
symptoms 1 month after stroke but significantly changed in patients with symptoms after stroke as
compared with controls [2]. These three parameters may be more robust than the other gait parameters
because they only change in cases that show severe deficits. Furthermore, the device we used may
have more sensitivity in such parameters than previous devices; thus, it may also indicate a remarkable
robustness in these three parameters.

By contrast, the parameters that show moderate ICC (number of steps, step length, ground
reaction force, velocity, and assessment time) may change depending on the condition and/or intention
of the subjects participating in the gait measurement. We presume that velocity and assessment time
can change more easily than the other parameters because the same pace is difficult for subjects to retain
between the first and second measurements, even if an operator carefully performs the measurements
with healthy subjects under the same conditions. Thus, when we use these parameters for clinical
research, it may be insufficient for identifying the gait abnormalities in the pathological groups to use
the standard cutoff values at the 95% confidential intervals (p = 0.05) from the healthy groups because
the sensitivity to detect the abnormalities may be low with the cutoff values, especially for assessing
improvement of ambulation by velocity [32] or assessment time [12,17], as described in a previous
study. We have to pay attention to the use of such gait parameters.

A previous report indicated that the CV was significantly larger in patients with Parkinson’s
or Huntington’s disease (HD) than in controls, and that the CV was the best predictor of HD [9].
On the other hand, the averaged value of each gait parameter during gait assessment showed no
significant difference between the pathological and control groups in the previous study. The CV
showed a significant difference in the present study and a poor ICC compared to that of the healthy
subject group. This result indicates that the CV in the previous work may potentially underestimate
the gait performance in the pathological group. With the high accuracy of the accelerometer used in
the present study, we could identify the significant variation in the CV observed even in the healthy
subjects. Therefore, the averaged value of each gait parameter during gait assessment may show
the significance in the pathological group if the tri-axial accelerometer that shows high sensitivity
is used.

The present study has some limitations. First, the sample size is not so large. Second, the gait
dataset may include errors due to a slight slipping of the nylon belt from the L3 level of the subject. Third,
the 10-m distance was marked by manually pushing a button connected to the accelerometer with a cable
in the present study. Only one operator performed the measurements for gait assessment; therefore,
interrater reliability remains unclear. In future studies, a comparison of the tri-axial accelerometer as
used in the present study with an accelerometer based on an infrared system (as proposed in a previous
study [31]) tell us the difference in the accuracy between manual and automatic procedures.

5. Conclusions

In the test-retest gait assessment using a tri-axial accelerometer, a reproducibility sufficient for
clinical research was observed in all parameters except the CV. The present results suggest careful
evaluation of the CV because it may potentially overestimate gait disturbance in the pathological group
owing to the comparably low reproducibility. Portable accelerometers can assess gait performance
noninvasively and with practical accuracy without the need for other huge machines. In future works,
the devices may be used for long-term gait assessment over a few days in the elderly and in patients
with neurodegenerative and/or spinal disease because subjects only need to attach the device to their
back with a belt.
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Abstract: Gait assessment and quantification have received an increased interest in recent years.
Embedded technologies and low-cost sensors can be used for the longitudinal follow-up of various
populations (neurological diseases, elderly, etc.). However, the comparison of two gait trials remains
a tricky question as standard gait features may prove to be insufficient in some cases. This article
describes a new algorithm for comparing two gait trials recorded with inertial measurement units
(IMUs). This algorithm uses a library of step templates extracted from one trial and attempts to detect
similar steps in the second trial through a greedy template matching approach. The output of our
method is a similarity index (SId) comprised between 0 and 1 that reflects the similarity between the
patterns observed in both trials. Results on healthy and multiple sclerosis subjects show that this new
comparison tool can be used for both inter-individual comparison and longitudinal follow-up.

Keywords: inertial measurement units; gait analysis; biomedical signal processing; pattern
recognition; step detection; physiological signals

1. Introduction

Gait semiology is of major importance in neurological practice, as abnormalities are associated
with high comorbidities. The quantification of gait using inertial measurement units (IMUs) has
become a democratic method for the follow-up of subjects with locomotion alterations in healthcare.
The use of such embedded technologies has already shown its usefulness in the detection of postural
strategies during walking [1], partitioning gait during the stance phase [2] or motor supplementation
for switch-activated simulators [3]. However, these clinical applications require the detection of
steps within the IMU signals. Spatio-temporal gait parameters can also be extracted for the healthy or
disabled and stored in databases that enable a longitudinal follow-up of patients with gait disorders due
to ageing [4], orthopedic or rheumatic diseases [4–6] or neurological alterations [4,7–9]. It has proven
useful to help clinicians refine the description of individual gait disorder and strengthen their insights
into the patients’ movements and compensation patterns. This quantification of characteristics related
to altered gait using signals from IMUs that are collected inside databases allows inter-individual
comparisons to assess the distance of the patients’ gait from a control group [10] or intra-individual
comparisons for longitudinal follow-up [11,12]. Common gait features most often rely on basic
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statistics such as averages or standard deviations over a whole exercise [13,14]. On the one hand,
they provide useful and interpretable information for the clinician. On the other hand, they have
not proven sensitive enough for detecting subtle changes in several pathologies [4,15,16]. Besides,
they display high inter-session variability for diseases that present with day-to-day changes [17].
To assure robustness of these parameters, it is usually necessary to increase the number of steps within
a trial [18–20]. However, repeated measures or treadmill exercises are incompatible with common
clinical practice in patients with limited walking perimeter, which is frequent in neurological practice.
In order to obtain a more integrative perspective, some authors resort to global indexes, which are
composed of several parameters [21,22]. These scores are promising but careful consideration should
be given to their evolution inasmuch as the absence of evolution of a multicomponent score does not
necessarily reflect the reproducibility of the gait pattern between two measurements [20]. Indeed,
maintaining a steady value of an overall score over time may mask gait adaptations. For instance,
gait velocity may be maintained despite a decreased step length if the cadence increases concomitantly.
What is more, these parameters heavily rely on accurate step detection, which is problematic in severely
altered steps: Some patients may require manual painstaking and time-consuming detection [23]. It is
therefore key to evaluate this detection or be exempt from it.

Progressive multiple sclerosis (pMS) is one of the disorders that benefits heavily from the use of
IMUs in routine clinical practice to assess indices of the disease evolution [24–26]. IMUs have been
applied to reliably monitor patients’ health status with regard to their risk of falling [27], their physical
abilities [28,29] or the neuromotor strategies used to adapt to their disability [22,30–32]. However,
patients suffering from severe pMS may impose high constraints both on measurements, which should
be short and controlled to abstract from fatigue and day-to-day variations, and processing, which
should adapt to very abnormal patterns and confounders such as false gait events triggered off by
loading and unloading of walking aids.

In this study, a new metric to compare two gait trials recorded with IMUs, which we called
“similarity index” (SId), is introduced. It aims at overcoming previously mentioned withdrawals
of statistical methods in pathologies such as pMS. The SId is an asymmetrical metric that takes as
input two gait trials and computes an index, comprised between 0 and 1, that assesses the similarity
between them. It is hypothesized that such a metric provides a valid characterization of a change
in gait patterns between two measurements, and can therefore be used either for inter-individual
comparison or longitudinal follow-up.

First, the SId is compared between pairs of trials of increasing distance. Second, it is evaluated
against more conventional features to estimate its capacity to assess changes in gait. Eventually,
its ability to indicate the level of confidence of the underlying step detection is appraised.

2. Data, Protocol and Subjects

2.1. Protocol

Two XSens® sensors (Xsens® Technologies, Enschede, the Netherlands)—hereafter XS—were
placed on the participant’s body (one on the dorsal part of each foot) using Velcro bands. The XS
showed high reliability at heel impact for the ankle joint in the sagittal plane (inter-correlation
coefficient (ICC) > 0.8) [33]. With a standard error of the mean (SEM) below 3°, between- and
within-rater reliability of kinematic variables obtained from XS across joints and planes, its consistency
is comparable to or better than that obtained from optoelectronic motion capture systems [34].
The GaitRite® mat—hereafter GR—exhibits strong concurrent validity [35,36] and excellent reliability
(with ICC > 0.8) for most temporo-spatial gait parameters in both young and older subjects [37–39].
The GR can be used to assess people with altered gait with good reliability even though walking ability
does influence it. The ICCs for the older subjects [37] or patients with neurological diseases [40,41] can
be somewhat lower but are still adequate for measuring step parameters of gait in these populations.
Based on this data, GR is used in this paper as the gold standard. The data were sampled at 100 Hz
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for the XS and at 120 Hz for the GR. Both systems were synchronized in time by using the PC clock
connected to the XS. Participants performed four walks of 12 m with a U-turn (6 m on the way in and
6 m on the way out): Two at the first visit (M0) and again two at the second visit six months later (M6).
The choice of a six-month period between measurement was driven by the fact that patients from the
pMS group undergo routine evaluation of their gait every six months. The protocol is schematized in
Figure 1.

Beginning of 
active surface

End of active 
surface

Beginning of

6m

7m

Beginning of 
walk

Y-axis

Angular speed 
around the Y-axis

XSens® 
sensors

Figure 1. Measurement protocol. The XSens® sensors (XS) inertial measurement units and the
GaitRite® mat (GR) are synchronized by using the PC clock connected to the inertial measurement
units. The active surface (green) is covered with pressure sensors. The rest of the mat (grey) is inactive
and does not detect any pressure from the subject.

2.2. Subjects

Twenty-two patients with progressive multiple sclerosis (pMS) and ten young healthy subjects
(HS) were enrolled in this longitudinal study. The characteristics of the subjects are displayed in Table 1.
pMS patients were consecutively recruited from the outpatient clinic of Percy Hospital (Clamart, France)
between June 2018 and September 2018. The inclusion criteria for participation in this cohort required
patients to be at least 18 years old, be diagnosed with primary progressive or secondary progressive
multiple sclerosis according to the 2010 International Panel criteria [42], be capable of walking 20 m
with U-turn and be free of any other conditions that affect gait. HS participants were recruited from
the hospital and research unit staff between June 2018 and September 2018. The inclusion criteria
were: No report of falls in the past five years prior to inclusion and no disease that could affect their
walk. The sex ratio was comparable between the two groups and no major differences were seen
between other anthropometric characteristics. pMS patients were aged 58 (±11) years old and the
HS group mean age was 26 (±2) years old. The two groups were not matched for age as one aim
of this analysis was to analyze the performance of the algorithm on two opposite groups, one with
highly altered steps (pMS) and one with the most normal steps. Severity of the disease was evaluated
using the Expanded Disease Status Scale (EDSS) [43], which is a score of 0 to 10, ranging from normal
neurological examination (0) to total impotence (9.5) or even death (10). Included participants in the
pMS group had an EDSS between 3.0 and 6.5, as disabilities greater than 7.0 impede walking even a
few steps. Seven out of the 22 participants had an advanced disease requiring permanent walking aid
(cane(s), walker and/or human help). Two patients needed human help to perform the walking test.
All subjects provided a written informed consent prior to their inclusion. The study protocol followed
the principles of the Declaration of Helsinki and was approved by the Ethics Committee “Protection
des Personnes Nord Ouest III” under the ID RCB: 2017-A01538-45.
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Table 1. Baseline characteristics of patients with progressive multiple sclerosis (pMS) and healthy
subjects (HS). For the age, height, weight, BMI, Multiple Sclerosis Walking Scale (MSWS) and Fatigue
Impact Scale (FIS), the mean and the standard deviation (SD) are displayed. For the Expanded Diseases
Status Scale (EDSS) and the functional scores (subscores of EDSS), the statistics are reported as median
and interval quartile range (IQR).

pMS (n = 22) HS (n = 10)

Sex (M/F) 9/13 4/6

Age (years) 58 (11) 26 (1)

Height (m) 1.71 (0.09) 1.72 (0.09)

Weight (kg) 71.2 (16.6) 58.2 (10.9)

BMI (kg/m2) 24.3 (5.1) 21.0 (3.0)

EDSS 5.0 [3.5–6] -
EDSS—pyramidal 3.0 [3.0–3.8] -
EDSS—cerebellar 1.5 [0.0–3.0] -

EDSS—bulbar 0 [0.0–0.8] -
EDSS—sensitive 2.0 [1.0–2.0] -
EDSS—cognitive 1.0 [0.0–2.0] -

MSWS 65.0 (17.3) -

FIS 43.4 (24.9) -

Use of walking aid for the walk test (/total number) 7/22 0/10
Cane (1 or 2) 4 -

Walker 1 -
Human help 1 -

Cane + human help 1 -

3. Method

We now define the similarity index (SId) between two gait trials. Let us consider two gait trials:

• One train trial denoted itrain and composed of both GR data and XS data.
• One test trial denoted itest, only composed of XS data.

The aim of the algorithm presented in this section is to compute a similarity index SIditest |itrain
,

comprised between 0 and 1, that will assess the proximity between trials itrain and itest. This metric is
based upon the following question: How well can the group of steps present in trial itrain predict those
observed in trial itest ?

The computation of this index is based on three main stages, detailed below and illustrated in
Figure 2.

1. The GR and XS data from trial itrain are used to build a library of templates Ptrain;
2. This library is used to detect the steps in trial itest, according to a greedy template-based approach

inspired by [44];
3. The Pearson coefficients between the detected steps in itest and the patterns in Ptrain used for their

detection are merged to compute the similarity index SIditest |itrain
.
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Construction of the library of templates1
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Figure 2. Main stages for the computation of the similarity index (SId). First, the GR and XS data from
the trial itrain are used to build a library of templates Ptrain. In the second stage, the library is used
to detect the steps in the trial itest, according to a greedy template-based approach inspired by [44].
Each detected step s is associated with one template ps. The correlation coefficients cs between the
steps s and their associated templates ps are then averaged to obtain the similarity index SIditest |itrain

.

3.1. Construction of the Library of Templates

Let us consider a train gait trial itrain composed of GR and XS data. We first use the GR
recordings to extract the exact timings for initial contacts (ICs) and final contacts (FCs). This process
is automatically performed thanks to the GR software. Only the steps occurring while the subject
is on the active surface of the instrumented mat are used; steps occurring during the U-turn are not
considered. Then, we use the XS synchronized data to build the library of templates. We consider
for each right/left foot XS sensor the Y-axis angular velocities (swing in the direction of the walk)
and construct a library of templates by extracting the steps in the XS signals. More precisely, given
a step identified with the GR with the initial contact time tIC and final contact time tFC, we consider
the XS signal xtrain corresponding to the adequate foot and define the pattern p = xtrain[tIC : tFC].
This pattern p can be seen as a signal of length Np = tFC − tIC + 1 that represents the typical angular
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velocity of a foot during a step. The process is iterated for all the steps and for both feet: Each step
identified with the GR forms a different pattern p. All patterns corresponding to the trial itrain are
stored in a library Ptrain.

3.2. Use of the Library to Detect the Steps

The library Ptrain is used to detect the steps for the trial itest (which does not necessarily belong to
the same subject and/or the same session). To that end, we consider the XS Y-axis angular velocity xtest

for trial itest. Each pattern p ∈ Ptrain is slid along signal xtest and for each possible shift we compute
the Pearson correlation coefficient. The final result is a matrix C of size NP × Ntest, where NP is the
number of templates in Ptrain and Ntest is the number of samples of signal xtest, where

∀ip ∈ �1, NP �, ∀it ∈ �1, Ntest� c(ip, it) = corr
(

p, xtest[it : it + Np − 1]
)

, (1)

and corr(., .) is the Pearson correlation coefficient.
The matrix C is then processed with an iterative and greedy detection strategy, described in [44],

which detects steps by iteratively selecting the largest Pearson correlation coefficients in the matrix
until all of them are lower than a threshold λ = 0.6. The influence of threshold λ is discussed in [44]
and the value 0.6 insures that the algorithm does not consider irrelevant matches. The main idea
behind this procedure is that we select the best possible templates in train trial itrain to detect the steps
in test trial itest.

The output of the algorithm is a list of steps Sitest |itrain
(steps of trial itest detected with the library of

trial itrain). For each detected step s ∈ Sitest |itrain
, we also have access to the template ps ∈ Ptrain that was

used for the detection, and to the Pearson correlation coefficient cs between s and ps. Those additional
outputs, which were not investigated in [44], are actually of interest since:

• Knowledge on ps allows to characterize the step s. Since we know that ps was the template in
Ptrain that most resembled step s, any available information on ps can be used to understand the
shape, duration, length, etc., of step s. For instance, several steps detected with the same template
are likely to be similar.

• Coefficient cs informs us of how strongly ps and s matched. A cs close to 1 implies that a
pattern exists in Ptrain that is very close to the phenomenon observed in step s; in other words,
the confidence in step s is high. If, on the contrary, cs is small, no templates in Ptrain exactly fitted
the detected step s. This could mean that the locomotion of trial itrain is different than the one
of itest.

3.3. Similarity Index

In order to use this additional information for the gait characterization, we propose to introduce
a new parameter, called SId (similarity index). Given a library of template Ptrain and a test trial itest,
this quantity is defined as

SIditest |itrain
= mean

s∈Sitest |itrain

(cs). (2)

The SId is the mean of the Pearson correlation coefficients computed between detected steps
and their respective closest templates. This quantity measures the ability of trial itrain to detect the
steps in trial itest. It can be interpreted as a similarity index between trials itrain and itest (assuming
that if both trials were identical the step detection would be easy to perform and would produce large
Pearson coefficients). It can also be seen as a confidence index on the detection (if this index is close to
1, it means that all detected steps were very similar to the annotated steps in the library and thus are
likely to be well detected).

Note that the SId is not symmetrical, as using steps in trial itrain to detect the steps in trial itest

might not be the same as using steps in trial itest to detect the steps in trial itrain.
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3.4. Use of the SId Index in Various Configurations

According to the chosen train and test sets, the SId index can be used either for longitudinal
follow-up or inter-individual comparison. In this article, we consider four different configurations
referred to as A1–A4.

• A1: Intra-individual intra-session. Two different trials belonging to the same subject and the
same session (M0|M0 or M6|M6).

• A2: Intra-individual inter-session. Two trials belonging to the same subject but not to the same
session (M0|M6 or M6|M0).

• A3: Inter-individual intra-group. Two trials belonging to different subjects of the same group
(pMS|pMS or HS|HS).

• A4: Inter-individual inter-group. Two trials belonging to two subjects in different groups
(pMS|HS or HS|pMS).

In order to investigate the properties of the SId index, we computed all SId between all trials of
all subjects and merged the SId values according to these four different configurations, as illustrated in
Figure 3.

Figure 3. Definitions of the different pairs of extraction/detection trials that are analyzed in the article.

3.5. Conventional Features

In addition to the SId, the following conventional gait parameters were computed:

• Average velocity: Velocity was computed for the way in (or the way out) as the total length of the
detection part of the GR divided by the total time of the way in (or the way out). The average
velocity was then the average of the velocity of the way in and the velocity of the way out.

• Step length: This parameter was extracted from the GR output.
• Step time: This parameter was computed as the average of the differences between the final

contact time and the initial contact times given by the GR.
• Double stance time: This parameter was computed as the average of the differences between

the final contact time of one foot and the initial contact times of the contralateral foot given by
the GR.

• Variation coefficient of step time: This parameter was computed as the standard deviation of the
differences between the final contact time and the initial contact times given by the GR divided
by the step time.

• Variation coefficient of double stance time: This parameter was computed as the standard
deviation of the differences between the final contact time of one foot and the initial contact times
of the contralateral foot given by the GR divided by the step time.
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Given two gait trials, we computed the differences between the parameter values and merged
these differences with the four different configurations illustrated in Figure 3.

3.6. Link to the Performance of the Step Detection

The similarity index (SId) can be interpreted as a confidence index for the step-detection algorithm.
Indeed, a large SId suggests that the patterns present in the train library fit those observed in the test
signal and are therefore likely to provide efficient detection. To investigate this question, we computed
the correlation between the SId values and some evaluation metrics commonly used for assessing
the performances of step-detection algorithms [44]. These metrics are based on the ground truth step
annotations provided by the GR.

• Precision (or positive predictive value). A detected step is counted as correct if the mean of its
start and end times lies inside an annotated step. An annotated step can only be detected one
time. If several detected steps correspond to the same annotated step, all but one are considered
as false. The precision is the number of correctly detected steps divided by the total number of
detected steps.

• Recall (or sensitivity). An annotated step is counted as detected if the mean of its start and end
times lies inside a detected step. A detected step can only be used to detect one annotated step.
If several annotated steps are detected with the same detected step, all but one are considered
undetected. The recall is the number of detected annotated steps divided by the total number of
annotated steps.

• F-measure (or F1 score). The F-measure is the harmonic mean of precision and recall.
• ΔStart. For a correctly detected step, this is the difference between the detected start time and the

annotated start time.
• ΔEnd. For a correctly detected step, this is the difference between the detected end time and the

annotated end time.
• ΔDuration. For a correctly detected step, this is the difference between the duration of the

detected step and the duration of the annotated step.

3.7. Statistics

All parameters were tested for normality using Shapiro-Wilks tests. Parametric tests were applied
for normal distributions and non-parametric tests were resorted to when this hypothesis was rejected.
Means and standard deviations (SD) were reported, except for ordinal distributions (EDSS) where
mean and interquartile range were reported.

3.7.1. Comparisons between Configurations

SId and change in gait conventional features were compared between configurations of pairs of
extraction/detection trials using the absolute difference between the mean value in the two groups.
For all these non-parametric variables, the Krustkall-Wallis test—a rank-based non-parametric test
used to assess more than two independent groups—was used. Rejection of the null-hypothesis was
followed by subsequent Wilcoxon tests to test differences in medians. All tests were corrected for
multiple comparisons using Bonferroni adjustment. For each group (HS and pMS, respectively),
the percentile score of SId from A2 was computed from the distribution of SId from A3. The percentile
score of SId from A2 was also computed from the distribution of SId from A4.

3.7.2. Correlations

SId was correlated to performance, accuracy and conventional gait features using Pearson moment
product correlation coefficients, which remains a valid method, even in the case of non-normal
datasets [45]. Pearson correlation coefficient is interpreted as very high for absolute values between 0.9
and 1.0, high for absolute values between 0.7 and 0.9, moderate for absolute values from 0.5 to 0.7, low
for absolute values from 0.3 to 0.5 and negligible for absolute values below 0.3 [46].
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Primary data analysis (extraction and detection process) was done using MATLAB® R2019a.
Statistical analysis was performed using R v3.5.1. All tests were corrected for multiple comparisons
using Bonferroni adjustment.

4. Results

In this section, we investigate the ability of this index to effectively compare two trials.
To investigate the potential of SId as a gait biomarker, three different and complementary questions
are investigated:

• Comparison of SId based on these four configurations: Comparing SIds computed within the
same session (A1), SIds computed from different sessions of the same subject (A2), SIds computed
between subjects of the same group (A3) and SIds computed between groups (A4).

• Correlation of SId with more conventional features used to characterize gait (average velocity,
step length, step time, double stance time, variation coefficient of step time, variation coefficient
of double stance time).

• Correlation of SId with the detection performance of the step-detection algorithm.

4.1. Comparison of SId Based on Configurations

In this experiment, the values of SId are compared between the four configurations:
Intra-individual intra-session comparison (A1), intra-individual inter-session comparison (A2),
intra-group inter-individudal comparison (A3) and inter-group inter-individudal comparison (A4).
Boxplots are displayed in Figure 4. SId shows its highest values for the A1 comparison (HS: 0.99
(0.00), pMS: 0.97 (0.01)) and decreases from A1 to A4, both in the HS and the pMS group (p-value
of the Krustkall-Wallis test: <0.0001, p-value of the subsequent Wilcoxon tests: <0.0001 for all paired
comparisons). In particular, it shows that trials from a given subject are closer to each other than
to trials from another subject both in the HS group (mean difference: 0.046; p-value: <0.0001) and
in the pMS group (mean difference: 0.055; p-value: <0.0001). Comparisons of A3 (inter-individual
intra-group) and A4 (inter-individual inter-group) show that SIds obtained for intra-group comparison
are larger than inter-group ones in the HS group (mean difference: 0.190; p-value: <0.0001) but not in
the pMS group (mean difference: 0.070; p-value = 0.52).

For a given individual k inside the HS or the pMS groups, SIds for comparison of one trial to
another trial are reproduced in Table 2. This table shows that, on average, trials from a given subject are
closer to other trials from the same subject than to trials from other subjects. For HS subjects, SId from
A2 prediction belongs to the 90th (SD: 14) percentile of the distribution of SId from A3 prediction
and is always higher than SId from A4. For pMS subjects, SId from A2 prediction belongs to the 96th
(SD: 8) percentile of the distribution of SId from A3 prediction and the 99th (SD: 2) percentile of the
distribution of SId from A4.
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Figure 4. Comparison of SId predictions across configurations: Intra-individual intra-session prediction
(A1) vs. intra-individual inter-session prediction (A2) vs. intra-group inter-individual prediction (A3)
vs. inter-group inter-individual prediction (A4).

Table 2. Similarity index scores for comparing one gait trial depending on the training trial
(intra-individual inter-session, intra-group inter-individual, inter-group inter-individual). Means and
standard deviations are displayed for both pMS and HS groups.

HS pMS

Individual k Other Individual Individual k Other Individual

HS (individual k) 0.98 (0.01) 0.93 (0.07) - 0.75 (0.09)
pMS (individual k) - 0.89 (0.04) 0.94 (0.05) 0.87 (0.09)

4.2. Correlation of SId with Conventional Features

Comparisons were also carried out for the average walking velocity (Figure 5a), step length
(Figure 5b), step time (Figure 5c), double stance time (Figure 5d), coefficient of variation of step time
(Figure 5e) and coefficient of variation of double stance time (Figure 5f), which are classical gait
features [4]. After controlling for multiple comparisons, difference in average velocity (Figure 5a) and
differences in double stance time (Figure 5d) proved significantly higher in the A2 (intra-individual
inter-session) comparison as compared to the A1 (intra-individual intra-session) comparison in the HS
group (p-values of 0.002 and 0.003, respectively, with a threshold of 0.017) and the pMS group (p-values
< 0.001 and < 0.0001, respectively, with a threshold of 0.017). Difference in step length (Figure 5b)
was also higher in the A2 comparison as compared to the A1 comparison in the HS group (p-values
of 0.007, with a threshold of 0.017). All other comparisons of configurations were highly significant
(p-value < 0.0001).
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Intra-individual intra-session prediction (A1) vs. intra-individual inter-session prediction
(A2) vs. intra-group inter-individual prediction (A3) vs. inter-group inter-individual prediction (A4)
for both cohorts : (a) Average walking velocity; (b) step time; (c) step length; (d) double stance time;
(e) coefficient of variation of step time; (f) coefficient of variation of double stance time.

To investigate how SId would correlate to change in these conventional features, SId, as measured
for each intra-group comparison (A1, A2, A3), was correlated to variation between the respective train
trial and test trial for each of the following conventional gait features: The average walking velocity
(Figure 6a), step time (Figure 6b), step length (Figure 6c), double stance time (Figure 6d), coefficient of
variation of step time (Figure 6e) and coefficient of variation of double stance time (Figure 6f).
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Figure 6. Correlation of SId to conventional features: (a) Average walking velocity; (b) step length;
(c) step time; (d) double stance; (e) coefficient of variation of step time; (f) coefficient of variation of
double stance time.

For both groups, low correlations were observed for difference in the average walking velocity
(Figure 6a) (HS: r = −0.38, p-value: < 0.0001; pMS: r = −0.31, p-value: < 0.0001), double stance time
(Figure 6d) (HS: r = −0.35, p-value: < 0.0001; pMS: r = −0.13, p-value: < 0.0001) and the variation
coefficient of step time (Figure 6e) (HS: r = −0.14, p-value: 0.004; pMS: r = −0.13, p-value: < 0.0001).
Moderate to high correlations were observed for difference in step time (Figure 6c) (HS: r = −0.74,
p-value: < 0.0001; pMS: r = −0.56, p-value: < 0.0001). Additional low correlation was seen for pMS
participants for the difference in step length (Figure 6b) (r = −0.13, p-value: < 0.0001) and the variation
coefficient of double stance time (Figure 6f) (r = −0.13, p-value: < 0.0001).

4.3. Correlation to Performance of the Step Detection

Performance and accuracy scores, along with their correlations to SId, are reported in Table 3.
In the HS group, SId correlates moderately to the F-measure, ΔStart and ΔDuration, and weakly to
ΔEnd. In the pMS group, SId correlates moderately to the F-measure and strongly to ΔStart and
ΔDuration, while a very low correlation is found with ΔEnd.

Table 3. Correlations between SId and the F-measure and accuracy scores for the step detected.
All configurations are pooled together and reported as mean (SD).

HS (n = 10) pMS (n = 22)

Value Pearson p-Value Value Pearson p-Value

F-measure 0.843 (0.213) 0.560 <0.0001 0.934 (0.130) 0.548 <0.0001
ΔStart 0.18 (0.164) −0.580 <0.0001 0.154 (0.170) −0.781 <0.0001
ΔEnd 0.066 (0.087) −0.306 <0.0001 0.026 (0.035) −0.084 0.0001

ΔDuration 0.234 (0.209) −0.548 <0.0001 0.173 (0.179) −0.771 <0.0001
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5. Discussion

This study shows that SId is a valid metric to compare two gait trials both between different
subjects or between two visits of a same subject to track changes in gait. In addition, in our small
sample of patients, SId seems to give an insight into the performance of the underlying template-based
step-detection method.

First, SId showed decreasing values from intra-individual intra-session (A1) to intra-individual
inter-session (A2) to intra-group inter-individual (A3) to inter-group inter-individual (A4) trial
comparisons for both the HS group and the pMS group. The difference in SId between A1 and A2
was expected for pMS individuals, for which symptoms vary from day to day depending, for instance,
on the level of exercise and physical therapy or the weather (Uhtoff effect [47–49]). This higher
change in HS participants between trials of different sessions compared to between trials of a same
session was also true for conventional features. Average velocity and double stance time, as well
as step length in the HS group, both displayed a higher difference when comparing inter-session
with intra-session trials. Still, for all features, the difference in A2 remains within the standard error
mean for inter-session comparison as found in the literature [50–52]. Furthermore, the hierarchy of
variability in gait parameters is also found in the literature in intra-class correlation coefficients for
both healthy subjects [19,53] and mixed groups of patients and subjects [10].What is more, SId shows
high variability in between-cohort comparisons as compared to intra-cohort comparison for the HS
group but not for the pMS group. Two participants from the pMS cohort can then be as distant as one
participant from the pMS cohort and one participant from the HS cohort. One explanation is that pMS
patients present with a wide range of gait alterations both in terms of the types of symptoms (which
can relate to balance deficit, spasticity, decreased muscular strength, etc.) and severity of symptoms.
In that regard, it can be observed in Figure 4 and Table 2 that the SId for the detection of steps from
HS individuals using steps from pMS individuals seems lower than the detection of steps from pMS
individuals using steps from HS individuals, which illustrates the non-symmetrical characteristic of
the SId. This difference may be due to the durations of the steps that are different for HS and pMS
subjects [23,54,55]. Due the greedy aspect of the matching procedure, it is easier for the algorithm to
detect one large step with several small steps than the opposite. Therefore, higher SId values can be
achieved by using HS templates to detect pMS steps than the opposite. One other explanation might
that the noise level is larger for pMS subjects, thus creating noisy templates that are more difficult to
match than HS smoother templates.

Second, as mentioned above, lower SId was associated with increased difference in step time
between the train and test trial, a parameter which also showed strong correlation with disease
severity as measured using the Expanded Disease Status Scale [16,23,54–56]. The SId has, therefore,
potential to give insight into the evolution of the disease, without needing any pre-processing and step
detection. However, even though most of them were significant, only low correlations were found for
the differences in other conventional features that are usually used to characterize gait. As a matter of
fact, very high variability in the difference of conventional features is seen, and one ought to be careful
in drawing conclusions before larger and longer studies are carried out.

Third, SId has been shown to provide key information on the underlying step-detection algorithm.
One major drawback of automatic step-detection algorithms is that it is tricky to assess their
performances in real-life conditions. In particular, when confronted with different types of gait
or cohorts, their accuracy may drop, which can have consequences if they are used in a clinical context.
As a matter of fact, most of the algorithms designed for a particular type of subject may suffer from
degraded performance in other cohorts [57]. Thanks to its construction, a large SId between two
trials means that templates used to detect the steps were close to these latter. Very low SId values can
therefore be interpreted as a discrepancy between the train and test trial, which is likely to cause a
poor step detection. Indeed, we showed in Table 3 a correlation between SId and performance as well
as accuracy scores. The SId values are therefore linked to the confidence in the underlying detection
algorithm, and could be used to report that the model used in the detection process does not suit the
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tested data. If several libraries of templates were available (e.g., one for each cohort or one for each
gait disability), the SIds could be used to select the most appropriate library and thus improve the
step-detection performances. These perspectives shall be investigated in future studies.

Eventually, these results can be applied to a wide range of pMS individuals, with mild as well as
severe diseases. Indeed, as patients using walking aids were also included, the conclusions also apply
to patients with EDSS 6 and 6.5, which fills a gap in the literature [23]. Comparisons of SId between
other populations should be informative to compare distances between gaits of patients disabled by
different Neurological illness and participates in the development of a new taxonomy. New matching
procedures may also be implemented, for instance, by using Dynamic-Time Warping (DTW), which
allows to match time series of different lengths. In particular, the use of this technique dedicated to
template matching may be useful in the context of step detection and recognition [58].

Our study has limitations. First, sampling fluctuations may have occurred due to the small sample
size, particularly of HS. Recruiting young healthy subjects was difficult due to the necessity of a six
month time period between both measurements. In particular, strong variability was found when
correlating conventional features with the SId. Even though results were significant, the clouds of
points are sparse.

6. Conclusions

In this article, we introduced a novel algorithm for comparing inertial signals of two gait trials.
The output parameter, a metric referred to as the similarity index (SId), is comprised between 0 and 1
and reflects how similar two gait trials are. This parameter shows promising results for the longitudinal
follow-up of participants, as it is sensitive to changes in gait features. Larger studies are needed to
confirm the potential of SId as a predictor of changes and a longer follow-up time could also allow
assessment of its prognostic value. Besides, as the SId correlates to the performance and accuracy of
the underlying step-detection algorithm, it provides immediate feedback of the detection, which is a
key aid for decision making.
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Abstract: Early diagnosis of Parkinson’s diseases (PD) is challenging; applying machine learning
(ML) models to gait characteristics may support the classification process. Comparing performance
of ML models used in various studies can be problematic due to different walking protocols and gait
assessment systems. The objective of this study was to compare the impact of walking protocols and
gait assessment systems on the performance of a support vector machine (SVM) and random forest
(RF) for classification of PD. 93 PD and 103 controls performed two walking protocols at their normal
pace: (i) four times along a 10 m walkway (intermittent walk-IW), (ii) walking for 2 minutes on a 25 m
oval circuit (continuous walk-CW). 14 gait characteristics were extracted from two different systems
(an instrumented walkway—GAITRite; and an accelerometer attached at the lower back—Axivity).
SVM and RF were trained on normalized data (accounting for step velocity, gender, age and BMI)
and evaluated using 10-fold cross validation with area under the curve (AUC). Overall performance
was higher for both systems during CW compared to IW. SVM performed better than RF. With SVM,
during CW Axivity significantly outperformed GAITRite (AUC: 87.83 ± 7.81% vs. 80.49 ± 9.85%);
during IW systems performed similarly. These findings suggest that choice of testing protocol and
sensing system may have a direct impact on ML PD classification results and highlight the need for
standardization for wide scale implementation.

Keywords: Parkinson’s disease; machine learning; classification; wearables; accelerometer; GAITRite;
multi-regression normalization; SVM; random forest classifier

1. Introduction

Parkinson’s disease (PD) is a complex neurodegenerative disorder which progresses over time [1]
and comprises both motor and non-motor symptoms [2], leading to poor disease management, poorer
quality of life [3], and increased health care costs [4]. Early diagnosis of PD is critical for optimal
management but remains challenging. Current diagnosis of PD is commonly based on subjective
clinical examination (clinical scales) [5] often in conjunction with expensive and time consuming brain
imaging techniques. Gait has been shown to act as a marker of global health and has been used to
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predict morbidity, mortality, falls risk and neurological disorders [6]. Recent work has shown that
objective gait quantification of motor impairments can support PD diagnosis, also at an early stage [7,8].

Gait can be objectively quantified via a number of spatial-temporal characteristics and
features [9–12]. In order to maximize information for disease classification, analysis of multiple
characteristics can be enhanced using machine learning (ML) [6]. The most widely used ML models for
PD classification are the support vector machine (SVM) and random forest (RF) [13–19]. Classification
accuracy however is inconsistent across studies which may be largely due to methodological differences
(e.g., testing protocols, gait assessment systems and normalization of participants’ data) [13,14,17]. This
leads to difficulty comparing across studies and in turn to select the optimal gait protocol and outcomes
for classification purposes. For example, protocols used to measure gait have different durations,
distance and speed [10,20,21]. Moreover, gait assessment systems range from gold standards in the field
of gait analysis using camera based motion capture and instrumented walkways [11,12] to wearable
devices [22]. Practically, wearable sensors such as accelerometers, gyroscopes and magnetometers [23]
have advantages as they are not context specific and can be used in the clinic and home [10,24]. This is
relevant if gait proves useful for disease classification and clinical use.

For accurate disease classification the differences between participants should also be as low as
possible and this requires normalization of the selected features as an important and critical step [16].
Between-participants gait differences are related to demographic characteristics such as the age [25],
gender, and BMI [26,27]. Gait characteristics are also speed dependent [28–30] and normalization of
gait features with respect to speed is usually performed [16]. Robust normalization processes thus
optimize ML models and classification of PD [31].

The effects of walking protocol and gait assessment systems on the performance of ML models
and the impacts on disease classification remain unanswered questions. The objective of this study
was therefore to investigate the impact of different walking protocols and gait assessment systems on
the performance of SVM and RF models for PD classification. We also highlight the strengths and
limitations of protocols and devices to guide decision making in future studies. We compared the effect
from two different walking protocols at normal pace (four times along a 10 m walkway (intermittent
walk-IW); walking for 2 min on a 25 m oval circuit (continuous walk-CW)); and two different gait
assessment systems: GAITRite vs. Axivity.

2. Methods

2.1. Participants

Data from the “Incidence of Cognitive Impairment in Cohorts with Longitudinal Evaluation -
GAIT” (ICICLE-GAIT) study [11,32] encompassing 93 people with early PD and without dementia
at study entry, and 103 healthy controls (HC) were included in this cross-sectional analysis. PD was
diagnosed according to the UK Parkinson’s Disease Brain Bank criteria [21] by a movement disorder
specialist [32]. The study was approved by the “Newcastle and North Tyneside Research Ethics
Committee” (REC No. 09/H0906/82). All the participants gave their written informed consent before
participating in the study. Experiments were conducted according to the declaration of Helsinki.

2.2. Demographic and Clinical Measures

Demographic characteristics such as age, height, weight, and BMI were recorded for all the
participants. Cognition was assessed with the Mini-Mental State Examination (MMSE) [33] and
balance confidence was evaluated with the balance self-confidence scale (Activities specific balance
confidence scale; ABC) [34]. To assess PD motor severity, Hoehn & Yahr scale score [5] and the
modified version of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS)—section III [35] were used. Phenotypes in PD, namely postural instability and
gait difficulty (PIGD), indeterminate (ID) and tremor dominant (TD) subtypes, were also calculated
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from MDS-UPDRS [36]. Levodopa equivalent daily dose (LEDD mg/day) was calculated according to
defined criteria [37,38].

2.3. Walking Protocols and Data Collection

Two different protocols were used to assess gait. All PD participants were assessed one hour after
medication intake:

(1) Ten meter (m) intermittent walking test (IW). Participants were instructed to walk in a straight
line over a 10 m walkway (Figure 1a). They repeated this four times at their preferred speed.
The GAITRite mat was placed in the center of the walkway [21].

(2) Two minute continuous walking test (CW). Participants were asked to walk continuously around
at 25 m oval circuit at their preferred speed (Figure 1b).

 
Figure 1. Layout of experimental setup and testing protocols, (a) 10 m intermittent walking test (IW);
(b) 2 min continuous walking test (CW).

2.4. Gait Assessment Systems

Each participant was asked to wear a tri-axial accelerometer (Axivity AX3, dimensions:
23.0 × 32.5 × 7.6 mm) on the lower back (L5), held in place with double sided tape (BSN Medical
Limited, Hull, UK) [10]. The monitor measures the vertical, mediolateral and anteroposterior
accelerations during walking at 100 Hz sampling frequency (±8 g range, resolution up to 13-bit).
Data collected using Axivity were synchronized with real-time clock, and start and stop times of the
trials were noted by the experimenter to automatically segment and analyze the accelerometer data
via MATLAB®. Gait assessment was also conducted using an instrumented mat (Platinum model
GAITRite: 7.0 × 0.6 m) [12]. GAITRite has a spatial accuracy of 1.27 cm and temporal accuracy of one
sample (240 Hz, ~4.17 ms).
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2.5. Data Processing and Gait Characteristics Extraction

From each testing protocol and gait assessment system, 14 gait characteristics were extracted [10,11].
Methods described in our previous work were used for extracting gait characteristics from the 10 m test
and the 2 min test with GAITRite and Axivity [10]. For easy interpretation, these 14 gait characteristics
were grouped into five domains (pace, rhythm, variability, asymmetry, and postural control) as
described in our previous work [11].

2.6. Statistical Analysis, Gait Normalization and Classification Modeling

Multivariate analysis of variance (MANOVA) was performed on normalized gait characteristics
to examine the main effect and interactions of group (PD vs. HC), walking protocols (IW vs. CW)
and gait assessment systems (GAITRite vs. Axivity) on the gait characteristics. Independent t-tests
were performed to understand the between-group (PD vs. HC) differences of demographic and
gait characteristics to include as input to the ML model. Receiver operating characteristics (ROC)
analysis was used to measure the discriminative power of each gait characteristic. Pearson’s correlation
coefficients (r) were used to check the dependency among gait characteristics within each group.
Distribution of each gait characteristic was plotted using rain cloud plots [39] for each group, walking
protocol and gait assessment system. Gait characteristics were normalized for ML using multiple
regression normalization [16] performed with respect to preferred gait speed (step velocity in each
walking protocol from each gait assessment system), age, BMI and gender. This gave the ratio of the
original and predicted gait characteristics based on the following equations:

yi = β0 + β1 ∗Genderi + β2 ∗Agei + β3 ∗ BMIi + β4 ∗ StepVelocity(speed)i + εi (1)

where yi is the gait characteristics from the 5 domains of the conceptual gait model, ith participant. β0

is the intercept and β is the coefficient of the linear regression. εi ∼ N
(
0, σ2
)

is the residual for each
participant i. For each testing task and sensing system, the model coefficients were estimated using the
healthy control participants’ data based on Equation (1):

yi = ŷi + ε̂i (2)

where ŷi and ε̂i are the predicted value and residual error for the ith participant. Finally the normalized
gait features were obtained by dividing the original independent gait feature with the predicted
dependent gait feature by using following equation:

yn
i =

yi

ŷi
(3)

where yn
i is the final normalized gait characteristic for the ith participant and n is normalized. Based

on the Taylor’s series the expected value of the control group normalized gait characteristics should be
1. The resulting gait characteristics will be unit less due to the division of yi and ŷi as these have the
same measuring units.

The support vector machine with radial basis function (SVM-RBF) and random forest were used
because these are the most widely used ML models for PD classification [13–19,40]. The models were
trained on the same conceptual features from both sensing systems to compare the impact of walking
protocols and gait assessment systems. 10-fold cross validation repeated 100 times was used for the
evaluation of the models. Single measure, area under the curve was used for the model evaluation [41].
Importance of the gait characteristics was identified by extracting the square of the weight of the gait
characteristics in the SVM-linear classifier [42,43]. Gait characteristic importance is a unitless number
which was used to rank the variables based on their contribution in the classification by SVM model.
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This was calculated as the square of the weight calculated in the SVM model for each variable with the
following Equation (4):

Imporatnce = w2 =

⎛⎜⎜⎜⎜⎜⎝
k=N∑
k=1

αkxklk

⎞⎟⎟⎟⎟⎟⎠
2

(4)

where w2 gives the importance score and it is the entry wise square of the weight for each gait variable
in the model. αk represents the model parameter trained on data {xk, lk}, where k is 1 to N. N represents
the sample size, xk is each subject data with corresponding label lk. For ML, standard commands for
SVM with different kernels (RBF and linear) and default parameters (slack variable-C:1) were used
from SciKit-learn library in Python [44] for comparison among walking protocols and gait assessment
systems. Similarly in RF, 100 trees were used for final performance estimation.

3. Results

Demographic characteristics are shown in Table 1. Compared to HCs, PDs had comparable height,
weight, and BMI, included proportionally more males; were significantly younger; presented with
significantly lower balance confidence (ABC) and poorer cognition (MMSE). Mostly PDs were at mild
to moderate stage of the diseases based on the Hoehn & Yahr scale. PD gait was assessed within
23.8 months of clinical diagnosis while taking average 398 mg/day LEDD.

Table 1. Demographic and clinical characteristics of the participants.

Demographics
HC (n = 103)
Mean ± SD

PD (n = 93)
Mean ± SD

p

M/F 49/54 59/34 0.026

Age (years) 72.3 ± 6.7 69.2 ± 10.1 0.012

Height (m) 1.7 ± 0.09 1.7 ± 0.09 0.623
Mass (kg) 78.6 ± 14.3 78.6 ± 15.9 0.999

BMI (kg/m2) 1 27.2 ± 5.6 27.5 ± 4.7 0.750
MMSE (0–30) 2 28.9 ± 1.9 28.4 ± 1.6 0.102

ABCs (0–100)% 3 91.2 ± 13.8 80.6 ± 20.7 <0.001

LEDD, mg/day 4 397.7 ± 217.2
Disease Duration (months) 23.8 ± 4.2

Hoehn & Yahr (n) HY I: 8
HY II: 71
HY III: 14

MDS-UPDRS III 5 32.4 ± 10.3
(HY I: 17.4 ± 4.5)
(HY II: 32.9 ± 9.7)
(HY III: 38.1 ± 7.5)

Motor Phenotype (n) 6 PIGD: 34
7 ID: 16
8 TD: 43

1 BMI: Body Mass Index; 2 MMSE: Mini–Mental State Examination; 3 ABC: Activities specific balance confidence
scale; 4 LEDD: Levodopa equivalent daily dose; 5 MDS-UPDRS III: Movement Disorders Unified Parkinson’s Disease
Rating Scale part III; 6 PIGD: Postural instability and gait disorder phenotype; 7 ID: Indeterminate phenotype; 8 TD:
Tremor dominant phenotype. In bold significant p-values (p < 0.05).

Table 2 shows the main effects and interaction effect for the group (PD vs. HC), walking protocols
and gait assessment systems on gait characteristics. Table 3 shows the mean and standard deviation of
raw gait characteristics and the statistical difference for each normalized gait characteristic between
PD and HC for the two walking tasks (IW and CW) and two gait assessment systems (GAITRite vs.
Axivity). The results for the multi regression normalization are given in the supplementary Tables S1
and S2. Plots of the whole data set to check the distribution, outliers, confidence intervals, and AUC are
shown in Figure S1 in the Supplementary Material. Correlations among the gait characteristics are given
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in Supplementary Figure S2. Gait characteristics were categorized into five domains (pace, rhythm,
variability, asymmetry, and postural control) [11] based on a model of gait to help summarize findings.

Table 2. MANOVA to check the effect of walking protocols and gait assessment systems on gait
(* indicates interaction).

Effect Assessment on Gait
MANOVA

Wilk’s Lambda F p-Value

Group (HC & PD) 0.803 14.198 <0.001
Walking Protocols 0.463 67.337 <0.001

Gait Assessment Systems 0.067 805.792 <0.001
Group * Protocol 0.949 3.092 <0.001
Group * Systems 0.853 9.991 <0.001

Protocols * Systems 0.513 55.168 <0.001

Table 3. Mean comparison among PD and HC for gait characteristics obtained from walking protocols
and assessment systems (significant normalized gait characteristics are highlighted in grey color, in bold
significant p-values (p < 0.05) for normalized gait characteristics except step velocity).

Gait
Domains

Gait Characteristics

Intermittent Walk (IW) Continuous Walk (CW)

HC (n = 103)
Mean ± SD

PD (n = 93)
Mean ± SD

p
Value

HC (n = 103)
Mean ± SD

PD (n = 93)
Mean ± SD

p
Value

Gait Characteristics from Axivity

Pace
Step Velocity (m/s) 1.324 ± 0.153 1.252 ± 0.226 0.002 1.283 ± 0.155 1.186 ± 0.262 0.009

Step Length (m) 0.718 ± 0.094 0.717 ± 0.074 0.010 0.694 ± 0.121 0.690 ± 0.077 0.022

Swing Time Variability (s) 0.064 ± 0.084 0.123 ± 0.144 <0.001 0.037 ± 0.031 0.108 ± 0.082 0.058

Rhythm
Step Time (s) 0.554 ± 0.052 0.614 ± 0.129 0.001 0.538 ± 0.046 0.609 ± 0.133 <0.001

Swing Time (s) 0.394 ± 0.047 0.448 ± 0.116 0.001 0.386 ± 0.044 0.454 ± 0.125 <0.001

Stance Time (s) 0.705 ± 0.059 0.767 ± 0.141 0.003 0.689 ± 0.054 0.763 ± 0.144 <0.001

Variability

Step Velocity Variability (m/s) 0.174 ± 0.097 0.196 ± 0.078 0.273 0.137 ± 0.060 0.190 ± 0.076 <0.001

Step Length Variability (m) 0.101 ± 0.060 0.126 ± 0.059 0.022 0.072 ± 0.034 0.109 ± 0.044 <0.001

Step Time Variability (s) 0.093 ± 0.103 0.162 ± 0.157 <0.001 0.037 ± 0.033 0.114 ± 0.087 <0.001

Stance Time Variability (s) 0.094 ± 0.103 0.166 ± 0.158 0.001 0.039 ± 0.033 0.116 ± 0.088 <0.001

Asymmetry
Step Time Asymmetry (s) 0.031 ± 0.018 0.051 ± 0.034 0.610 0.021 ± 0.016 0.026 ± 0.025 0.268

Swing Time Asymmetry (s) 0.023 ± 0.017 0.039 ± 0.028 0.437 0.020 ± 0.018 0.023 ± 0.024 0.592
Stance Time Asymmetry (s) 0.030 ± 0.019 0.044 ± 0.027 0.771 0.020 ± 0.018 0.024 ± 0.02 0.419

Postural
Control Step length Asymmetry (m) 0.078 ± 0.053 0.119 ± 0.112 0.606 0.066 ± 0.052 0.126 ± 0.128 0.060

Gait Characteristics from GAITRite

Pace
Step Velocity (m/s) 1.338 ± 0.198 1.194 ± 0.223 <0.001 1.301 ± 0.192 1.135 ± 0.218 <0.001

Step Length (m) 0.697 ± 0.084 0.636 ± 0.098 <0.001 0.683 ± 0.083 0.616 ± 0.097 <0.001

Swing Time Variability (s) 0.013 ± 0.003 0.016 ± 0.008 0.327 0.013 ± 0.004 0.017 ± 0.009 0.010

Rhythm
Step Time (s) 0.525 ± 0.045 0.538 ± 0.047 <0.001 0.528 ± 0.044 0.548 ± 0.047 <0.001

Swing Time (s) 0.385 ± 0.030 0.382 ± 0.033 <0.001 0.385 ± 0.029 0.384 ± 0.031 0.001

Stance Time (s) 0.665 ± 0.068 0.695 ± 0.072 <0.001 0.674 ± 0.066 0.714 ± 0.074 <0.001

Variability

Step Velocity Variability (m/s) 0.051 ± 0.015 0.047 ± 0.014 0.946 0.050 ± 0.012 0.054 ± 0.014 0.005

Step Length Variability (m) 0.019 ± 0.006 0.020 ± 0.007 0.008 0.020 ± 0.006 0.023 ± 0.007 0.338
Step Time Variability (s) 0.014 ± 0.004 0.016 ± 0.007 0.173 0.014 ± 0.004 0.018 ± 0.006 0.018

Stance Time Variability (s) 0.016 ± 0.005 0.019 ± 0.011 0.260 0.017 ± 0.006 0.023 ± 0.012 0.011

Asymmetry
Step Time Asymmetry (s) 0.011 ± 0.008 0.018 ± 0.018 0.003 0.012 ± 0.009 0.019 ± 0.022 0.007

Swing Time Asymmetry (s) 0.007 ± 0.006 0.014 ± 0.014 <0.001 0.007 ± 0.006 0.014 ± 0.014 0.003

Stance Time Asymmetry (s) 0.007 ± 0.006 0.014 ± 0.014 0.476 0.007 ± 0.006 0.015 ± 0.015 <0.001

Postural
Control Step length Asymmetry (m) 0.020 ± 0.016 0.022 ± 0.018 0.048 0.019 ± 0.015 0.022 ± 0.020 0.036

Firstly, we established the effect of protocol and sensor system on gait characteristics as a first
step to evaluate ML performance. There were significant main and interaction effects of pathology,
walking protocols, and gait assessment systems on gait as shown in Table 2 and the individual gait
characteristics are displayed in Table 3.

For group (PD vs. HC) people with PD had worse gait performance compared to controls
irrespective of the protocol or gait assessment system. Grouping variables by domain [11], in general
PD pace and rhythm were significantly slower while variability and asymmetry were higher, in both
IW and CW protocols for both gait assessment systems.
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There was a main effect of walking protocol (IW & CW) on gait characteristics. Performance was
typically greater (higher pace, rhythm, variability, and asymmetry) in the IW protocol compared to
the CW protocol for both PD and HC. Similarly, there were significant main and interaction effects of
assessment systems on gait characteristics. In general, the values from Axivity tended to be higher
compared to GAITRite although only asymmetry was significantly different between the systems.

Table 4 shows the contribution of gait characteristics in the classification modelling. A higher
importance score indicates a greater contribution of each gait characteristic in the overall classification
model. The top 5 Axivity characteristics were from variability, rhythm, and pace domains for both CW
and IW. For GAITRite, CW contained gait characteristics from pace, rhythm and asymmetry domains,
while for IW pace, rhythm and variability were important. Results without gait normalization are
presented in the supplementary Table S3 and Figure S3.

Table 4. Importance of normalized gait characteristics in the classification of PD.

Sensing System
Intermittent Walk Continuous Walk

Characteristic Importance Characteristic Importance

Axivity

Mean Step Length 0.22 Step Velocity
Variability 1.10

Mean Stance Time 0.20 Mean Swing Time 0.72
Mean Swing Time 0.15 Mean Step Length 0.49

Swing Time
Variability 0.14 Stance Time

Variability 0.20

Mean Step Time 0.07 Step Length
Variability 0.12

GAITRite

Mean Step Time 0.23 Mean Step Length 3.80
Step Velocity

Variability 0.22 Mean Step Time 2.72

Step Length
Variability 0.15 Stance Time

Asymmetry 1.21

Swing Time
Variability 0.14 Mean Stance Time 1.10

Mean Step Length 0.09 Swing Time
Asymmetry 0.72

Both models (SVM-RBF & RF) behaved in the similar manner for both walking protocols and gait
assessment systems, with better performance of Axivity compared to GAITRite in both walking tasks
with RF. Overall, SVM-RBF performed better than RF. Therefore for comparison of walking protocols
and gait assessment, we only reported the results from SVM-RBF. The results of RF are given in the
supplementary Table S4.

Overall, the classification of PD was significantly more accurate with Axivity (<0.001) during the
CW test (AUC 87.83 ± 7.81% for Axivity and 80.49 ± 9.85% for GAITRite), while there was no difference
(p = 0.073) between the systems during the IW test (AUC resulted being 79.09 ± 10.11% for Axivity and
79.90 ± 10.06% for GAITRite) (Figure 2 shows the distribution of the model classification performance,
where the x-axis represents the classification performance (AUC), the top x-axis represents walking
protocols, and the y-axis represents the gait assessment system). For reference, SVM performance
results without gait normalization are presented in the Supplementary Figure S4.
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Figure 2. Distribution of SVM classification performance after normalization of gait characteristics.

4. Discussion

To the best of our knowledge this is the first study to investigate the impact of different walking
protocols and gait assessment systems on the performance of ML models for classification of PD.
Robust normalization techniques were carried out to reduce the effect of demographics and speed on
between participant differences within each group (PD and HC). A comprehensive group of 14 gait
characteristics were selected based on a validated gait model. Finally, widely used SVM-RBF and RF
models were trained for classification of PD and HC. The results show that different walking protocols
and gait assessment systems significantly affect gait characteristics and in turn the performance of ML
models. Harmonizing methods across multiple levels for comparative purposes is strongly advised to
optimize and implement ML in disease classification.

4.1. ML Performance: An Overview

In this study, we found that the combination of CW protocol and Axivity gave the highest PD
classification performance. In terms of protocols, ML performance was higher during CW with respect
to IW. In terms of systems, Axivity showed a significantly higher AUC (87.83 ± 7.81%) compared to
GAITRite (80.49 ± 9.85%) during CW. Similar pattern in results was achieved with RF, where Axivity
showed better results compared to GAITRite during both CW & IW. Therefore, walking protocols
and gait assessment systems materially impact on ML performance, which makes the comparison of
previous ML studies inconclusive. In fact, previous literature has shown that, when using wearables to
quantify gait, studies using 2 min CW protocols [18,19] achieved better results compared to those using
10m IW protocols [13,45]. In addition, studies showed that ML models derived from wearable inertial
and force feet sensors [14,19,45,46] performed relatively better when compared to studies based on
GAITRite data [17].

It’s important to underline that many factors can influence ML results: not only walking protocols
and gait assessment systems, but also cohort size, disease severity stage of PD, and validation method.
However, in the context of this study, we showed that walking protocol and gait assessment have a
significant impact on ML performance.

4.2. Effect of Walking Protocols on ML Model and Performance

In general, ML performance was higher during CW with respect to IW. There are a number of
possible explanations for this. The gait characteristics included in each ML model were different for
CW and IW, which may explain the differences in classification performances (i.e., CW higher AUC
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than IW). Indeed performance of ML models are influenced by the characteristics included in the
model and those characteristics are in turn influenced by the protocol used to assess gait. During IW
we observed higher gait performance (e.g., higher pace, etc.) for all characteristics and for both groups
(HC and PD). Acceleration and deceleration phases at the beginning and end of each IW increase the
dispersion of gait characteristics, especially variability and asymmetry compared to CW where gait
was sampled under more steady state conditions (lower variability and asymmetry values for both
walking systems).

Another aspect is that even though participants were instructed to walk at their normal preferred
pace for both protocols, it is clear that gait performance was faster during the IW compared to CW,
and this has been reported previously [21]. The reasons for this are most likely because attention to
performance is higher during short intermittent walking tests than a continuous steady state—where
walking is performed with less attention and conscious effort. However this will also influence the
dispersion of gait characteristics for PD and HC as seen by the standard deviations from Table 3.
For accurate classification between groups, this dispersion within each group for each characteristic
should be minimized to increase the distance between groups. This explains the need to overcome
between subject variability within each group to enhance ML performance.

Collectively, this suggests that the walking protocol should be selected carefully and protocols
that capture more steady state gait (in our case CW) may be optimal for classification and therefore
early identification of PD.

4.3. Effect of Gait Assessment Systems on ML Model and Performance

In general, Axivity showed significantly higher classification performance compared to GAITRite
during CW and comparable performance during IW. Gait characteristics quantified by the two systems
showed significant differences. Even if these two systems (GAITRite and Axivity) measured the
same spatial-temporal characteristics from the same walking tasks, the mechanism by which gait
characteristics are derived is different. GAITRite determines footfalls based on pressure sensors that
identify each step from which additional gait characteristics are derived [47]. Axivity, instead, uses
accelerometers which detect movement continuously: individual characteristics are then derived
from the raw signal. In previous work comparing gait characteristics from Axivity and GAITRite,
mean spatiotemporal gait characteristics (such as walking speed, step length and step time) showed
high agreement, while variability and asymmetry showed low agreement between the systems [10].
Gait characteristics extracted from GAITRite are more variable (wider dispersion) at slow speed [48].
Conversely, an accelerometer positioned at lower back may mis-detect gait events like initial and
final contacts which may impact on gait characteristic quantification [49]. An accelerometer close to
the center of mass of the body can capture small variations in body movement (variability) during
walking [50] with higher sensitivity compared to GAITRite. Analysis of the current study indicated
that Axivity is more sensitive to detect variability and asymmetry, particularly in PD. Collectively all
these factors most likely influence: (i) the observed differences in the gait characteristics quantified by
each system and (ii) ultimately the performance of the ML models.

The highest classification performance obtained with Axivity during the CW could also simply
be due to the higher amount of data available for Axivity vs. GAITRite during the walking protocol:
Axivity continuously sampled the entire 2 min while GAITRite sampled only each pass over the mat
(e.g., four passes) during the same time frame. This is in part corroborated by the fact that we found
comparable performances during the IW, when the amount of data was similar for both the systems.
A further explanation for the difference in performance could be related to the inclusion of gradual
turns with Axivity during the CW protocol which could have influenced the ML model. Axivity is
not able to quantify turning due to the lack of a gyroscope; to try and address this, we measured
turning from a sensor with an embedded gyroscope (Opal Mobility lab system APDM Inc., Portland,
OR, USA) collected concurrently in a subsample of the same cohort (PD: 31, HC: 49) during CW
and IW (Figure 3 shows the probability distribution of turning gait characteristics, where the x-axis
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represents the corresponding units and the y-axis represents the walking protocols). Turning time
and angular velocity were significantly different during IW and so the turning segment of the signal
was removed from Axivity analysis to delineate the gait characteristics. There were no significant
between-group differences in turning characteristics during CW, and so step data from the turning
component was retained for the analysis. However, we can’t rule out the possibility that steps from the
turning component during CW may have contributed to better classification between groups when
using Axivity.

 
Figure 3. Distribution of turning characteristics.

4.4. Effect of Gait Normalization on ML Performance

From our results, it is clear that participants walked faster during the IW as compared to CW
with both gait assessment systems (Table 3). This higher step velocity acts as a function of other gait
characteristics [28–30], which can be influenced by its high variability. To find the appropriate walking
protocol, multiple regression (MR) normalization using demographics and gait speed was important
to reveal important influencing variables and overcome between participant differences among groups.
Our findings support this approach, in fact we found that by controlling the effect of speed and
demographics, SVM was able to differentiate between PD and HC more accurately. SVM performance
increased by 5–7% in CW and 5–9% in the IW in both gait assessment systems (Supplementary Figure
S4). The results are in line with previous work where similar gait normalization approaches have
been used for better classification [16,31]. Thus, in short walks (IW), normalization may act as a
standardized technique to overcome the effect of gait assessment systems. During CW, the effect of gait
assessment systems was still significant. Normalization was also important to improve performance of
ML—irrespective of protocol or system. This means that, normalization may be important to ensure
standardization of walking protocol and gait assessment systems for optimal ML performance.

4.5. Limitations

This study had some limitations. Only two widely used ML models (SVM & RF) [13–19] were
used in this study to compare the effect of walking protocols and gait assessment systems. However,
future work should explore other classification models such as logistic regression and neural networks.
Turning features were not included in this work due to the use of an accelerometer. In order to
harmonize gait characteristics, step width and step width variability and a range of time series and
frequency based characteristics were not included in the analysis because they could not be calculated
from both systems. The inclusion of these additional variables may improve classification for respective
systems and should be explored in future studies to investigate their impact on ML models. PD
were assessed within 23.8 ± 4.2 months from clinical diagnosis, which is considered relatively early
disease. The cohort assessed in this study was relatively young and results may not be applicable or
generalizable to older, frailer people with PD with multi-morbidity.
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5. Clinical Implications

Based on this study, walking protocols (IW & CW) and gait assessment systems had significant
impact on the ML model performance. The extracted characteristics in CW with Axivity gave the
highest performance in the classification ML model. Our work emphasizes the importance of the use
of standardized walking protocols and wearable devices for ML PD classification purposes, to support
clinical decision making. With the recent advancements in this field, this study will help clinicians to
understand and select the appropriate walking protocols and gait assessment systems for optimal PD
diagnosis. In future studies, such as those looking at prodromal disease, CW assessed with Axivity
may give a more accurate reflection of gait changes. For better results, it is recommended to control for
demographics and walking speed for gait characteristics normalization in the PD ML classification
modeling. Intervention studies seeking to determine changes in particular gait characteristic(s) may be
advised to use this methodology.

6. Conclusions

In this study, the impact of different walking protocols (CW & IW) and gait assessment systems
(GAITRite & Axivity) on the performance of widely used ML models SVM and RF was investigated.
Gait characteristics were normalized with respect to demographic properties and walking speed to
overcome the between participants’ differences within each group (HC and PD) for each walking
protocol (CW vs. IW). Both ML models behaved in similar fashion for both walking protocols and
gait assessment systems. Higher performances were achieved with CW compared to IW. Axivity gave
higher classification performance compared to GAITRite. The highest PD classification performance
was obtained during CW with Axivity (87.83 ± 7.81%). This work supports the idea that direct
comparison of various ML studies using different walking protocols and gait assessment systems may
not be appropriate. The findings from this study suggest that the choice of the testing protocol and gait
assessment systems is important to achieve best classification results, which may have a direct impact on
future end points in intervention studies. In conclusion, there is a need for standardization of walking
protocols and gait assessment systems for wide scale implementation in clinical gait assessment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/24/5363/s1,
Table S1: Correlation of gender, age, BMI, and step velocity (speed) with gait characteristics before and after
normalization, Table S2: Coefficients from the regression model by using the healthy control participants, Table S3:
Importance of gait characteristics in the classification of PD before and after gait characteristics normalization,
Table S4: Random forest (RF) classification performance after gait normalization, Figure S1: Distribution of the gait
characteristics from 5 domains of conceptual gait model with statistical analysis, Figure S2: Correlations among gait
characteristics before and after normalization, Figure S3: Contribution of the gait characteristics in the classification
modelling in Support Vector Machine, Figure S4: SVM performance before gait characteristics normalization.
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Abstract: Asymmetry is a cardinal symptom of gait post-stroke that is targeted during rehabilitation.
Technological developments have allowed accelerometers to be a feasible tool to provide digital gait
variables. Many acceleration-derived variables are proposed to measure gait asymmetry. Despite a
need for accurate calculation, no consensus exists for what is the most valid and reliable variable.
Using an instrumented walkway (GaitRite) as the reference standard, this study compared the validity
and reliability of multiple acceleration-derived asymmetry variables. Twenty-five post-stroke
participants performed repeated walks over GaitRite whilst wearing a tri-axial accelerometer
(Axivity AX3) on their lower back, on two occasions, one week apart. Harmonic ratio, autocorrelation,
gait symmetry index, phase plots, acceleration, and jerk root mean square were calculated from the
acceleration signals. Test–retest reliability was calculated, and concurrent validity was estimated by
comparison with GaitRite. The strongest concurrent validity was obtained from step regularity from
the vertical signal, which also recorded excellent test–retest reliability (Spearman’s rank correlation
coefficients (rho) = 0.87 and Intraclass correlation coefficient (ICC21) = 0.98, respectively). Future
research should test the responsiveness of this and other step asymmetry variables to quantify change
during recovery and the effect of rehabilitative interventions for consideration as digital biomarkers
to quantify gait asymmetry.

Keywords: stroke; asymmetry; accelerometer; gait; trunk; reliability; validity

1. Introduction

Hemiparesis after stroke typically results in reduced walking speed, an asymmetrical gait pattern,
and a reduced ability to make gait adjustments that consequentially limit community ambulation
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and physical activity [1–4]. Reduction in both predisposes an already at risk population to further
cardiometabolic disease [5,6]. Therefore, the improvement of gait is a worthwhile and common target
for interventions after stroke. Gait asymmetry, if not addressed early in the recovery process, can
prolong and increase gait impairment due to compensatory mechanisms, leading to an increasingly
asymmetric gait pattern [7]. The latter is inefficient and requires increased energy expenditure.
Consequently, falls risk increases, further reducing levels of physical activity [8]. In order to quantify
asymmetry and its improvement from targeted rehabilitative interventions, it is essential to have both
valid and reliable tools that are able to quantify movement quality/compensatory strategies of the
whole body during gait.

Tests such as the 10 m walk [9] and scales such as the Dynamic Gait Index [10] are used to measure
gait after stroke. Although useful and practical for application to clinical settings, these tests are
susceptible to subjectivity and not specifically designed to capture the cardinal symptoms of gait after
stroke, such as asymmetry. Instrumented walkways can objectively measure asymmetry and have
shown excellent intra and inter-rater reliability in subacute stroke [11]. Practically, they are costly and
need a controlled dedicated environment with a trained specialist to operate; therefore, they are mainly
limited to research settings [12]. From a biomechanical perspective, they limit the number of steps
collected per trial and solely obtain information of the participant’s footfall. They are not designed
to measure the movement of the whole body, where synergistic compensatory movement strategy
information may be quantified such as compensatory movements of the pelvis [8,13]. Traditionally,
gaining this information would rely on three-dimensional motion analysis systems. However, due to the
even higher cost, required experience, and time to use relative to instrumented mats, their application
is also limited to research settings [12]. Therefore, a need exists for a valid tool that is capable of
quantifying whole body asymmetry, while also being feasible for routine clinical adoption.

Wearable accelerometers are a relatively low-cost alternative that are capable of measuring human
movement from a variety of contexts while capturing parameters that are difficult to quantify from
clinical inspection by the human eye [1,14]. Previous attempts to quantify measures of asymmetry
indicative of spatiotemporal information of the feet with accelerometers have shown their feasibility,
but also poor concurrent validity with reference standards of Gaitrite [1]. Therefore, the development
of algorithms to capture the complex nature of asymmetry post-stroke has been encouraged [1].
Numerous asymmetry variables exist that have been obtained from cyclical acceleration signals during
gait such as variables derived from the frequency domain [15,16]. These variables vary according to
the complexity of the sensor, the number of sensors used, their location, and the population on which
they were tested [17–19]. Relative to the discreet spatiotemporal movement of the feet equivalents,
variables quantifying asymmetry from the cyclical signals of the lower back better classified post-stroke
gait from controls [16,18,20]. Their advantage stems from considering the acceleration as a complete
waveform, not neglecting temporal information outside of the time domain, which may enable a more
complete description of the signal and a better characterisation of gait post-stroke [17].

Previously, studies quantifying asymmetry from acceleration signals of the trunk during post-stroke
gait typically focus on differences from a control group, adopt a minimal data set of variables, and to
our knowledge do not report the concurrent validity or reliability to reference standards. Knowledge
of the most robust asymmetry variables that are capable of quantifying similar information to reference
standards using clinically feasible tools is important to further the field. This study compares the
validity and test–retest reliability of a wide range of novel acceleration-derived variables to quantify
asymmetry post-stroke from a single sensor located on the trunk.

2. Materials and Methods

2.1. Study Design and Setting

This cross-sectional study was undertaken in the gait laboratory at the Clinical Ageing Research
Unit, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.
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2.2. Participants

The study was approved by the Greater Manchester West Research and Ethics Committee (NRES
Committee Northwest-Greater Manchester West 15/NW/0731). All subjects gave informed written
consent for the study according to the Declaration of Helsinki.

Inclusion criteria: Community-dwelling stroke survivor; at least one month post-stroke onset;
mild to moderate gait deficit defined by clinical observation of gait asymmetry including reduced
stance time, increased swing time in the affected limb and/or reduced gait speed/balance problems;
no changes in gait-related ability over the past month based on self-report and able to walk 10 m
with/without a stick.

Exclusion criteria: Medical problems other than stroke impacting on gait e.g., osteoarthritis.
Participants were recruited via advertisement or therapist referral. All eligible participants were
consecutively invited to participate in the study.

2.3. Demographic and Clinical Measures

The following data were collected at baseline: age, gender, height and weight, date of stroke, stroke
type (Oxford Community Stroke Project Classification [21]), stroke impairment (National Institute of
Health Stroke Scale [22]), presence of hemiplegia (clinical observation by two independent experienced
clinicians), walking stick use, ankle foot orthosis (AFO) use.

2.4. Test Protocol

Participants were asked to walk at their preferred pace in a straight line for 4 × 10 m intermittent
trials (see Figure 1). The trials were repeated on two occasions (Time 1 and Time 2) one week apart
(±2 days). A GaitRite instrumented walkway was positioned in the walk path (dimensions were
7.0 m × 0.6 m, spatial accuracy of 1.27 cm and temporal accuracy of one sample (240 Hz, ~4.17 ms)
(GaitRite: Platinum model GaitRite, software version 4.5, CIR systems, NJ, USA)). The participants
wore an AX3 wearable sensor located at their fifth lumbar vertebrae (L5). The AX3 is a single tri-axial
accelerometer-based wearable (AX3, Axivity, York, UK https://axivity.com/, cost ≈ £100, dimensions
23.0 mm × 32.5 mm × 7.6 mm). The AX3 weighs 11 g and has a memory of 512 Mb. AX3 data
capture occurs with a sampling frequency of 100 Hz (16-bit resolution) at a range of ±8 g. Recorded
AX3 accelerations were stored locally on the device’s internal memory and downloaded upon the
completion of each session.

2.5. Asymmetry Variables

Acceleration-derived asymmetry variables were selected based upon their ability to represent levels
of asymmetry from signals measured from a single accelerometer located at the trunk. The variables
that were selected as representative of asymmetry were the harmonic ratio [16], autocorrelation [20],
gait symmetry index [18], and phase plot analysis [23–25] (described in more detail below). Four
spatiotemporal variables extracted from GaitRite were selected as measures of asymmetry as defined
by Lord et al. [26]. The spatiotemporal asymmetry variables included step time asymmetry, stance
time asymmetry, swing time asymmetry, and step length asymmetry, and these were calculated as the
absolute difference between consecutive left and right steps.

2.6. Description of Acceleration-Derived Variables

All data analysis relating to the raw acceleration signals was performed using MATLAB (version
9.4.0, R2018a). For a full description for the algorithm and data segmentation techniques applied
to the accelerometer data, please see references [27,28]. In brief, the vertical acceleration underwent
continuous wavelet transformation to estimate the initial contact and final contact in the gait cycle [28].
To ensure that the steady-state gait was analyzed, the initial and final three steps were removed from
the signal. Prior to the calculation of additional variables, the acceleration signals were realigned to
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the earth’s gravitational constant [29,30] and a low-pass Butterworth filter with a cut-off frequency of
20 Hz. A full description of the following variables and the required algorithms is the supplied by the
provided references. Additionally, they have been summarised in Appendix A.

Figure 1. Indication of the instrumentation and the protocol used to collect the acceleration signal
and the asymmetry parameters from the GaitRite mat. Also pictured is the acceleration-derived
asymmetry variables and the means for the calculation of asymmetry following the processing of the
raw acceleration signal.

2.6.1. Harmonic Ratio

The harmonic ratio (HR) describes the step-to-step symmetry within a stride from calculating
a ratio of the odd and even harmonics of a signal following fast Fourier transformation [16,31].
This method has been shown previously to reflect increased asymmetry for those post-stroke relative
to age and speed-matched controls [16].
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2.6.2. Autocorrelation

The unbiased autocorrelation was also calculated due to its ability to reflect the step and stride
regularity and the symmetry between the two (autocorrelation symmetry) [20,32,33]. Previously, it has
been shown as better capable to characterise hemiplegic gait relative to footfall variables [20,32].

2.6.3. Gait Symmetry Index

The gait symmetry index (GSI) is a more recently proposed variable, which was calculated
based upon the concept of the summation of the biased autocorrelation from all three components of
movement and a subsequent calculation of step and stride timing asymmetry [18]. It has been shown
to be more sensitive than and highly correlated with levels of asymmetry measured with two sensors
located at the feet of participants post-stroke [18].

2.6.4. Phase Plot Analysis

Phase plot analysis (aka Poincaré analysis) was performed on vertical components of the
acceleration signal [23–25]. This method has had previous applications within electrocardiogram
studies. It works by plotting periodic signals as a function of their past values. The resulting ellipses or
orbits and the properties thereof can then assess asymmetries in the associated gait. Phase plot analysis
also offers the ability to assess intra step correlation i.e., the correlation of signals from immediately
successive step cycles, which necessarily corresponds to left-versus-right asymmetry.

2.6.5. Measures Indicative of Stability

Although not indicative of asymmetry, the root mean square of the acceleration signal (Acc RMS)
and also its first time derivative (Jerk RMS) were calculated for their potential to highlight synergistic
compensatory strategies during gait post-stroke [13,16]. Their test–retest reliability needs to be
established in the literature.

2.7. Statistical Analysis

Analysis was completed using SPSS v25 (IBM). The normality of data was tested with a Shapiro–Wilk
test. Descriptive statistics (median and interquartile range) were calculated for gait characteristics
measured by AX3 and GaitRite. Concurrent validity between the AX3 acceleration-derived variables and
those of the GaitRite at Time 1 were tested using Spearman’s rank correlation coefficients (RHO). For the
AX3 acceleration-derived variables, the test–retest reliability between Time 1 and 2 was established using
Spearman’s rank correlation coefficients (RHO), intraclass correlation coefficient (ICC21), and limits of
agreement (LoA) expressed as a percentage of the mean of the two variables and the 95% LoA. For all
analyses, statistical significance was set at p < 0.05. Predefined acceptance ratings for ICC21 were set at
excellent (≥900, 0.0%–4.9%), good (0.750–0.899, 5.0%–9.9%), moderate (0.500–0.749, 10.0%–49.9%), and
poor (50.0%) [1,34]. The selection for the most robust variable was based upon the variable with the
highest Spearman rank correlation coefficient with the asymmetry variable obtained from the GaitRite
while also recording an ICC21 greater than 0.8 for test–retest reliability.

3. Results

Twenty-five participants were recruited to the study. Data for two participants who wore a
fixed plastic AFO were removed from the analysis, because individual data analysis (including video
observations) revealed that the step detection applied were not appropriate for these two participants
due to a lack of possible plantar flexion. This was not the case for the remaining participants, as the
video analysis confirmed the step detection algorithm was effective to detect both heel strike and toe
off [1]. Demographic information for the remaining 23 participants is displayed in Table 1.
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Table 1. Participant characteristics.

Demographics (n = 23)

Gender (male/female) 19/4
Age (years) 63 ± 11
Body mass index 26 ± 4

Stroke characteristics

Time since stroke (months) 66 ± 48 (range
5–201)

Stroke subtype (OCSP)

Total anterior circulation 11
Partial anterior circulation 6
Lacunar 3
Posterior circulation 3

Stroke impairment

NIHSS score (0–40) 4 ± 3 (range 0–11)
NIHSS lower limb score (0–4) 1 ± 0.7 (range 0–3)
Walking speed (m/s) 0. 9 ± 0.4
Marked hemiplegia (Yes/No) 15/8
Walking aid (number (%)) 3 (13%)
Push Aequi ankle foot orthosis (number (%)) 4 (17%)

Where appropriate mean and standard deviation are displayed, OCSP (Oxford community Stroke Project),
NIHSS (National Institute for Health Stroke Scale).

3.1. Concurrent Validity of the Asymmetry Variables

Figure 2 shows the correlation between the asymmetry variables quantified using a GaitRite mat
(step time asymmetry, stance time asymmetry, swing time asymmetry, and step length asymmetry)
and the acceleration-derived variables proposed to measure asymmetry. Overall, step time asymmetry
correlated most with the acceleration-derived variables. Step regularity (vertical acceleration) had
the highest concurrent validity with step time asymmetry (−0.87). Six other variables had high levels
of agreement (+0.80) (HR V, step regularity (V), step regularity (AP), orbit eccentricity, orbit width
deviation, and intra step correlation). Five correlated with step time asymmetry and orbit width
deviation correlated with stance time asymmetry. The smallest correlations were achieved by the
outputs of the autocorrelation from the medial lateralcomponent of the signal and also a variety of the
outputs from the phase plot analysis.

Figure 2. Indication of the correlation between the asymmetry variables quantified using a GaitRite
mat and the variables proposed to measure asymmetry from the acceleration signals from the trunk.
Black indicates a strong positive or negative correlation. * and ** denotes significance at the 0.05 and
0.01 level, respectively. V = Vertical acceleration, ML =Medial lateral acceleration, and AP = Anterior
posterior acceleration.
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3.2. Test–Retest Reliability of the Variables

Table 2 demonstrates the test–retest reliability between the wearable variables measured one week
apart (Time 1 versus Time 2). The most reliable variables were step regularity (V) and HR (V), both
recording an ICC21 of 0.98. Taken from the ICC21 values, excellent reliability was achieved for 12 out
of the 27 variables tested. These came from the majority of autocorrelation outputs except for step
regularity (ML), stride regularity (AP), and autocorrelation symmetry (vertical acceleration (V) and
medial lateral acceleration (ML)) direction, the GSI, the HR in the V and AP direction, Jerk RMS, and
the short half-orbit segment angle form the phase plot analysis. Good reliability was achieved for a
further five variables (stride regularity (AP), autocorrelation symmetry (V), relative orbit inclination,
short half orbit eccentricity, and long half orbit eccentricity).

Table 2. Test–retest reliability (one week apart) for acceleration-derived variables.

Variables
Median (IQR) Agreement

T1 T2
Median

Difference
(%)

ICC21 LOA % (95% LoA) Rho

Harmonic ratio (V) 1.71 (1.37) 1.70 (1.23) −0.01 0.98 ** 1.94 (2.52, 1.36) 0.92 **
Harmonic ratio (ML) 1.38 (0.60) 1.57 (0.72) 0.14 0.71 ** 1.56 (2.80, 0.31) 0.71 **
Harmonic ratio (AP) 1.26 (0.97) 1.39 (0.92) 0.10 0.92 ** 1.54 (2.34, 0.73) 0.91 **
Step regularity (V) 0.53 (0.47) 0.52 (0.54) −0.02 0.98 ** 0.51 (0.67, 0.34) 0.96 **

Step regularity (ML) 0.42 (0.20) 0.44 (0.18) 0.04 0.73 ** 0.44 (0.69, 0.19) 0.61 **
Step regularity (AP) 0.51 (0.43) 0.40 (0.49) −0.20 0.92 ** 0.37 (0.68, 0.07) 0.87 **
Stride regularity (V) 0.70 (0.25) 0.68 (0.27) −0.03 0.94 ** 0.66 (0.85, 0.46) 0.88 **

Stride regularity (ML) 0.59 (0.14) 0.66 (0.20) 0.12 0.93 ** 0.57 (0.78, 0.37) 0.73 **
Stride regularity (AP) 0.74 (0.18) 0.75 (0.13) 0.01 0.87 ** 0.70 (0.92, 0.48) 0.74 **

Autocorrelation symmetry (V) 0.53 (0.26) 0.52 (0.29) 0.56 0.80 ** 0.18 (0.40, −0.03) 0.76 **
Autocorrelation symmetry (ML) 0.10 (0.19) 0.16 (0.25) 0.09 0.59 * 0.19 (0.44, −0.05) 0.49 *
Autocorrelation symmetry (AP) 0.18 (0.15) 0.19 (0.14) 0.61 0.93 ** 0.36 (0.62, 0.10) 0.79 **

Gait symmetry index 0.21 (0.37) 0.35 (0.43) −0.02 0.92 ** 0.47 (0.70, 0.23) 0.82 **
Orbit eccentricity 7.79 (6.27) 8.32 (15.13) 0.00 0.72 ** 0.97 (1.04, 0.91) 0.70 **

Relative orbit inclination 0.01 (0.01) 0.01 (0.01) 0.07 0.76 ** 11.02 (28.02, −5.99) 0.60 **
Orbit width deviation 0.01 (0.02) 0.00 (0.02) −0.07 0.66 ** 0.01 (0.05, −0.02) 0.65 **

Short half orbit eccentricity 5.32 (6.35) 4.12 (5.31) −0.38 0.73 ** 0.02 (0.07, −0.03) 0.87 **
Short half orbit segment angle 0.02 (0.05) 0.01 (0.04) −0.23 0.95 ** 7.74 (15.28, 0.20) 0.57 **

Long half orbit eccentricity 5.20 (10.73) 5.61 (6.55) −0.16 0.79 ** 0.04 (0.13, −0.05) 0.59 **
Long half orbit segment angle 0.89 (0.41) 0.88 (0.20) 0.08 0.45 7.77 (26.32, −10.78) 0.57 **

Intra step correlation 1.05 (0.04) 1.05 (0.04) −0.01 0.58 * 0.78 (1.29, 0.28) 0.68 **
Acceleration RMS (V) 0.18 (0.09) 0.17 (0.06) 0.00 0.03 1.03 (1.24, 0.83) 0.41

Acceleration RMS (ML) 0.25 (0.15) 0.24 (0.15) −0.06 0.90 ** 0.17 (0.24, 0.10) 0.68 **
Acceleration RMS (AP) 8.53 (8.00) 8.57 (7.47) −0.04 0.20 0.26 (0.62, −0.10) 0.21

Jerk RMS (V) 6.29 (4.18) 6.36 (4.15) 0.01 0.96 ** 9.32 (13.49, 5.14) 0.93 **
Jerk RMS (ML) 6.22 (4.89) 6.42 (6.88) 0.01 0.97 ** 7.39 (10.67, 4.11) 0.90 **
Jerk RMS (AP) 1.71 (1.37) 1.70 (1.23) 0.03 0.96 ** 7.26 (11.23, 3.28) 0.92 **

* and ** denotes significance at the 0.05 and 0.01 level, respectively. V =Vertical acceleration, ML =Medial lateral acceleration,
and AP = Anterior posterior acceleration, RMS = root mean square.

3.3. Selection of the Most Robust Variable

Table 3 highlights the variables that best correlated with spatiotemporal gait variables calculated
from GaitRite while also achieving an ICC21 greater than 0.8 for test–retest reliability. For the GaitRite
variables of asymmetry, step regularity (V) achieved the highest concurrent validity due to its correlation
with step time asymmetry (RHO = 0.87 and ICC21 = 0.98 **). The second highest concurrent validity
was the HR in the vertical direction, which correlated with swing time asymmetry (RHO = 0.73 and
ICC21 = 0.98 **).
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Table 3. Indication of what wearable sensor variable recorded the highest Spearman’s rank correlation
coefficient with each variable obtained by the GaitRite mat. The Spearman’s rank correlation coefficient
between the two devices and the intraclass correlation coefficient is displayed for each variable.

GaitRite Variable
Acceleration

Derived Variable

Spearman’s Rank
Correlation

Coefficient (RHO)

ICC21

(Test–Retest)

Asymmetry

Step time (s) Step regularity (V) 0.87 0.98 **
Swing time (s) Harmonic ratio (V) 0.73 0.98 **
Stance time (s) Step regularity (V) 0.72 0.98 **
Step length (m) Step regularity (V) 0.65 0.98 **

** denotes significance at the 0.01 level. V = Vertical acceleration.

4. Discussion

This study examined the concurrent validity and reliability of a comprehensive range of asymmetry
variables derived from a single accelerometer located on the trunk and identified step regularity as
the most robust outcome. Step regularity showed strong concurrent validity and excellent test–retest
reliability when compared with GaitRite outcomes reflecting asymmetry. This contrasts with previous
work based on the AX3 sensor, which achieved poor to moderate criterion validity (Spearman’s rank
correlation coefficient of RHO = 0.01 to 0.601) for variables engineered to replicate spatiotemporal
asymmetry variables calculated from GaitRite [1]. Although clinically more challenging to interpret
than traditional spatiotemporal variables, our results support the adoption of novel variables to
quantify asymmetry as robust digital variables for measuring asymmetrical gait post stroke.

With one exception (HR correlation with swing time asymmetry), variables calculated from
performing an autocorrelation procedure on the original acceleration signal were more strongly
correlated with GaitRite asymmetry. Hodt–Billington and colleagues [20] found that autocorrelation
variables taken from the trunk were better at discriminating gait post-stroke from controls relative
to GaitRite variables of asymmetry. The strength of the autocorrelation procedure may stem from
analysing continuous successive steps. Complex measures such as gait asymmetry are not simply
portrayed within a single discreet gait cycle; this concept has been highlighted before, whereby
continuous measures have been described to highlight different asymmetry causes, symptoms, and
gait strategies such as particular compensatory techniques [17]. Data from our study indicate that
participants with high asymmetry produced poor forward propulsion from the affected limb, instead
of relying on the more dominant limb to achieve progression at the end of each stride. This can be
observed by the lack of step regularity and its diminution relative to stride regularity in the AP, ML, and
V directions, replicating the gait strategy described by Balasubramanian et al. [35]. The autocorrelation
method is well designed to reflect this synergistic gait strategy, which might explain the high correlation
found from this sample of participants. However, this strategy will likely vary among a broader range
of participants and throughout recovery. Other methods may better reflect true levels of asymmetry at
different stages of recovery from acute, early subacute, late subacute, and chronic stroke, meaning that
they should still be considered as potential variables [17,20].

Previously, Iosa et al. [16] assessed symmetry together with upright gait stability post-stroke and
showed that relative to speed-matched controls, higher instabilities (Acceleration RMS) and reduced
symmetry of trunk movements (as measured using the HR) were recorded. In this study, HR in the
vertical direction was the only HR variable that performed favourably to autocorrelation variables due
to its correlation with swing time asymmetry (RHO = −0.73) while also recording excellent reliability
(ICC21 = 0.98). Since we did not assess control subjects, we could not determine the best measure to
characterise gait post-stroke and highlight the compensatory mechanisms adopted relative to healthy
controls. This is a broader aim for ongoing work. However, it has been previously highlighted that
compensation strategies may be beneficial to increase gait ability, but this occurs at the compromise
of stability. Thus, variables such as Acceleration and Jerk RMS should always be considered in
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addition to variables directly linked to asymmetry, aiming to provide a more holistic description of
gait patterns [13,16]. Future research should explore this relationship so that a holistic, multivariate
wearable approach can better assess gait strategies during recovery post-stroke. This potentially would
quantify what movements are beneficial to gait, while also highlighting the impact of compensation
strategies, consequently quantifying separate movements that can be targeted for rehabilitation.

Although previously suggested as a variable representative of asymmetry in stroke [18], the GSI
performed relatively poorer to the previously discussed variables, despite also being based on the
autocorrelation (biased) of accelerometry. This was unexpected, as GSI theoretically is designed to
detect the asymmetry within temporal footfall parameters. Equally, the autocorrelation symmetry
variables did not perform better than step regularity alone, despite being designed to the capture the
difference between step and stride regularity and therefore the symmetry between them. Potentially, the
GSI and the autocorrelation symmetry did not quantify the synergistic movement strategy that the step
regularity variable was suited to highlight and the reason for its favourable concurrent validity. The GSI
and the autocorrelation symmetry variables may be better suited to highlight different compensatory
synergies at different stages of recovery such as during acute, early subacute, late subacute, and chronic
stages, and therefore should not be neglected in future research.

Select phase plot variables achieved RHO values greater than 0.8 when compared to GaitRite
asymmetry values and also demonstrated good to excellent reliability, therefore highlighting their ability
to quantify symmetry post-stroke. Adaption to the algorithms to the other directional components
other than vertical and comparison with controls would better test their application as a biomarker.
Similar to the other variables capable of quantifying movements in the AP and ML direction, there is the
possibility that they can highlight a new domain of asymmetry separate from the asymmetry footfall
asymmetry variables captured by GaitRite. Future research should explore this upper and lower body
relationship post-stroke to examine the similarities and differences during gait and determine if added
value is obtained [36,37].

All data were collected in a controlled environment; however, wearable technology is not limited
by the testing environment and for improved ecological validity; obtaining data from the participant’s
community is desired [38]. To this goal, future research should utilise the variables tested in the
laboratory in the participant’s free-living environment. For free-living gait, the majority of walking
bouts for people with Parkinson’s disease and older adults have been found to be below 10 s, and
it has been inferred that these bouts are when the participants are indoors [39]. One limitation with
autocorrelation is that it relies on successive steps in a straight line. For free-living data, variables such
as the HR may be more useful during these short walking bouts due to their ability to be calculated
from a single stride in addition to successive steps [31,40]. Future research should assess the ability of
these variables to accurately and reliably quantify asymmetry during short walking bouts or if tested
refined spaces, as for this population, the median (and interquartile range) bout length was 16.3 (6.2)
seconds for data collected over seven days [1].

4.1. Limitations

The relatively small sample size and limited heterogeneity with respect to time post-stroke did not
allow us to determine what variables are the best at quantifying asymmetry for a more general sample
or recovery stage-specific populations [41]. Future work is required on a larger sample size that ranges
in time since stroke to discover what variables are the most capable to perform as objective biomarkers
over all stages of recovery as one variable may not be appropriate for all, and compensatory strategies
may change between the different stages of stroke recovery. Equally, future research should confirm
that these results are replicable with different accelerometers with differing sampling frequencies,
ranges, and resolutions. Further limitations stem from the reliance of the step detection algorithm.
Data from two participants was not analysed due to their use of a fixed AFO that impacted on heel
strike and the performance of the algorithm, which was based on the detection of initial and final
contact within the gait cycle. Future research should integrate/develop step detection algorithms
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for participants requiring fixed AFOs to broaden application. Alternatively, the variables should be
developed so that the cyclical nature of a signal may divide gait cycles (similar to the method used for
phase plots) as opposed to methods that rely on detecting the initial and final contact of the foot.

4.2. Applications

These results provide evidence that asymmetry can accurately and reliably be calculated using a
single accelerometer. Although much work is needed for accelerometers to be routinely adopted [42,43],
these results give evidence that asymmetry can be objectively quantified using a tool applicable for
many purposes. Consequently, the variables tested here may then act as a digital biomarker to
quantify the impact of targeted interventions proposed to improve gait timing mechanisms and gait
asymmetry (e.g., auditory rhythmical cueing) [44]. Accelerometers provide a potentially low burden
method for clinicians to collect data from a variety of environments, increasing the ability to objectively
quantify asymmetry during stroke rehabilitation. Alongside application within the clinic, accelerometer
data can be collected on gait asymmetry in naturalistic environments, thus removing the Hawthorn
effect/observer bias associated with clinical testing. With increased development, these variables
may provide continuous asymmetry focussed feedback for self-progress specific to each participant
during rehabilitation.

5. Conclusions

Gait asymmetry after stroke can be measured robustly using a single wearable sensor on the trunk.
Step regularity is the most valid and reliable asymmetry outcome, which is quantified by performing
autocorrelation on the vertical component of the signal. The variables tested performed favourably to
previous studies that also used GaitRite as the reference. Consequently, their adoption, in addition to
other wearable-derived spatiotemporal variables of gait, are encouraged as they provide a more holistic
description of gait that appears to indicate compensatory movement post-stroke. Future research is
encouraged on larger populations where asymmetry is expected, during recovery/interventions to
identify which wearable variables are biomarkers for gait asymmetry and compensatory mechanisms
during gait. This will allow for increased accuracy in determining effective interventions.
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Appendix A

Appendix A.1. Acceleration-Derived Variable Definitions

Table A1. Indication for the variables used from the signal-derived variables and their respective definitions.

Variable Definition

Harmonic ratio (V, ML, AP)
The step-to-step symmetry within a stride from calculating a ratio
of the odd and even harmonics of a signal following fast Fourier
transformation.

Step regularity (V, ML, AP)

Estimated as the normalized unbiased autocovariance for a lag of
one step time. Thus, this feature reflects the similarity between
subsequent steps of the acceleration pattern over a step. Values of
this feature close to 1.0 (maximum possible value) reflect
repeatable patterns between subsequent steps.

Stride regularity (V, ML, AP)
Estimated as the normalized unbiased autocovariance for a lag of
one stride time. Thus, this feature reflects the similarity between
subsequent strides of the acceleration pattern over a stride cycle.

Autocorrelation symmetry (V, ML, AP)
Difference between step and stride regularity designed to quantify
the level of symmetry between them and indicative of symmetry
during a straight walk.

Gait symmetry index
Calculated based upon the concept of the summation of the biased
autocorrelation from all three components of movement and a
subsequent calculation of step and stride timing asymmetry.

Orbit eccentricity (V) Average eccentricity of all fully fitted ellipses.

Relative orbit inclination (V) Average angle subtended by alternating fitted ellipses within a
bout of gait.

Orbit width deviation (V) Standard deviation of minor axes lengths of all fully fitted ellipses.
Analogous to Principle Component Analysis (second component).

Short half orbit eccentricity (V)
Difference in eccentricity of two ellipses fitted to each half-cycle of
a full orbit in the phase plot. Averaged over all orbits in a bout’s
phase plot.

Short half orbit segment angle (V)
Difference in inclination of two ellipses fitted to each half-cycle of a
full orbit in the phase plot. Averaged over all orbits in a bout’s
phase plot.

Long half orbit eccentricity (V)
Difference in eccentricity of two ellipses fitted to each half-cycle of
a full orbit in the phase plot. Averaged over all orbits in a bout’s
phase plot.

Long half orbit segment angle (V)
Difference in inclination of two ellipses fitted to each half-cycle of a
full orbit in the phase plot. Averaged over all orbits in a bout’s
phase plot.

Intra step correlation (V)
Average correlation of acceleration signal corresponding to step i
with that of step i-1. I.e., a lag-1 autocorrelation where a single lag
is one step cycle’s duration.

Acceleration RMS (V, ML, AP) The calculation of the root mean square of the acceleration signal.

Jerk RMS (V, ML, AP) The calculation of the root mean square of the first time derivative
of the acceleration signal (jerk).

Appendix A.2. Explanation and Equation for Each Acceleration Derived Variable for Asymmetry

Appendix A.2.1. Harmonic Ratio

The harmonic ratio is a measure based upon the premise that a stride contains two steps and
therefore, during continuous walking, accelerations should repeat in multiples of two. The variable
quantifies how well these accelerations are repeated in each stride compared to when accelerations
do not repeat and are therefore out of phase. Therefore, the ratio of in and out-of-phase accelerations
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is a measure of how symmetric the participant is walking. To calculate the harmonic ratio, it is
required to evaluate the harmonic content of the acceleration signal using the stride frequency from
the analysis of frequency components. Following a fast Fourier transform (using the FFT function in
MATLAB), a ratio be can created from the first 20 harmonics extracted from the Fourier series. Due to
the AP and V components of the signals being biphasic, the ratio for these components is determined
by the sum of the even harmonics (in phase movement) divided by the sum of the odd harmonics
(out-of-phase movement).

HRAP, V =
Σ Amplitudes of even harmonics
Σ Amplitudes of odd harmonics

For the ML component of the signal due to only showing only one dominant acceleration peak
within a stride cycle (whereby the odd harmonics are in-phase and even harmonic out-of-phase),
the opposite is performed.

HRML =
Σ Amplitudes of odd harmonics
Σ Amplitudes of even harmonics

As a gait measure, a higher harmonic ratio indicates a better symmetry between steps within a
single stride For the AP and V components.

Appendix A.2.2. Autocorrelation

Autocorrelation is calculated taking the complete signal of the time when the participant was in
contact with the GaitRite mat. Plots of an autocorrelation estimate are used to inspect the structure of a
cyclic component within a time series. To do this, the generic unbiased autocorrelation function of the
sample sequence x(i) was computed using the below equation:

Ad(m) =
1

N− |m|
N−|m|∑

i=1

x(i)·x(i + m)

where N is the number of samples and m is the time lag expressed as number of samples.
Since phase shifts can be performed with identical results in both positive and negative directions

relative to the original time series, an autocorrelation plot is conventionally organized symmetrically
with the zeroth shift located centrally. This central value was used to normalize the signal so that its
maxima was one. For a time series of trunk accelerations during walking, autocorrelation coefficients
can be produced to quantify the peak values at the first and second dominant period, representing phase
shifts equal to one step and one stride, respectively (see Figure 1 as an example). A tailored MATLAB
code was used to detect these peaks, particularly using the signals power density to determine the
windows in which the peaks would occur. For the symmetry between the step and stride regularity,
the absolute difference was calculated as a measure of asymmetry instead of the ratio, which is more
conventionally used. This was because the between-step and between-stride autocorrelations may
approach zero if the regularity between neighboring steps or neighboring strides is low.

Appendix A.2.3. Gait Symmetry Index (GSI)

Differently from the aforementioned autocorrelation measures, the gait symmetry index (GSI) uses
a second-order Butterworth low-pass filter with the cut-off frequency of 10 Hz to filter the complete
time series and then uses the biased version of the autocorrelation function as displayed below:

Ad(m) =
1
N

∑N−|m|
i=1

x(i)·x(i + m).
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The maximum time lag was 4 s (400 samples), which approximates 2.5 times a single stride
duration in post hemiplegic stroke patients. This window length was chosen to capture the repetition
of stride cycles in very slow walking. A coefficient of stride cycle repetition (Cstride) was the sum of
the positive autocorrelation coefficients of the three axes as a function of the equation displayed below:

Cstride(t) = ADv(t) + ADml(t) + ADap(t); if AD(t) <0, AD(t) = 0.

The coefficient of step repetition (Cstep) was the norm of autocorrelation coefficients as a function
of the equation displayed below:

Cstep(t) =
√

ADv(t) + ADml(t) + ADap(t); if AD(t) < 0, AD(t) = 0.

One stride time (Tstride) equals t when the Cstride had the maximum value. The hypothesis
was that in a perfect symmetric gait pattern, two consecutive steps have the same step duration of
0.5 × Tstride. Thus, the maximum value of Cstep was set at

√
3 when the autocorrelation coefficient of

each acceleration axis was 1 at zero-lag (t = 0). The gait symmetry index (GSI) was Cstep (0.5 × Tstride)
normalized to its value at zero-lag, as indicated in the below equation:

Cstep(t) = Cstep(0.5 ∗ Tstride)/
√

3.

Appendix A.2.4. Phase Plot Analysis

To create an ellipse to apply the following models, the vertical acceleration signal was first
transformed to a horizontal–vertical coordinate system and filtered with a low-pass fourth order
Butterworth filter at 20 Hz. Following piecewise integration, the full vertical excursion signal must be
restored via concatenation of the resultant integrals. Here, the phase shift is introduced. We restore
two such vertical excursion signals, one of which is exactly one step cycle lagged behind the other i.e.,:

PP1(tt) = PP0(tt− nn)

where n is the number of data points comprising a step interval in the vertical excursion signal and
PP1 and PP0 are the lagged and original vertical excursion signal, respectively.

The following conic model is fitted to the two-dimensional phase plot data. This fitting is performed
on each orbit in turn.

ax2 + by2 + cxy + dx + ey + f = 0

In the case of ellipse fitting to phase plot data, x and y are taken to be PP1 and PP0.
The above model defines an ellipse subject to the following constraint.

c2 − 4ab < 0

This constraint is used to ensure that an elliptical conic is fitted to the data as opposed to a
hyperbola or parabola. The model defined by the conic equation can be fitted using ordinary least
squares to find an estimate of Â =

(
â, b̂, ĉ, d̂, ê

)
. f is set equal to 1 to avoid a trivial solution.

The above form of an ellipse does not lend itself well to geometric interpretation, so the following
parameterisation is implemented:

(x− g)2

r 2
1

+
(y− k)2

r 2
2

= 1.

However, this form does not account for inclined ellipses. To account for the significant inclination
of ellipses, the following rotated coordinate system is introduced:
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x′ = (x− g) cos(θ) + (y− k) sin(θ)

y′ = (y− k)ycos(θ) + (x− g) sin(θ).

This form of ellipse and rotated coordinate system ensure more straightforward interpretation of
the ellipses and more intuitive feature extraction.

Figure A1. A single orbit with a fitted conic (ellipse).

This Figure A1 shows one such ellipse fitted to a single orbit of a phase plot. From this ellipse,
we can extract features relating to the eccentricity and inclination. In general, phase plots consist
of many orbits and their respective fitted ellipses (Figure A2). Further features can be extracted by
assessing the relative inclination of ellipses from alternating orbits. In general, these inclinations
oscillate about the value θ = π

4 .

Figure A2. Complete phase plot comprising 7 continuous gait cycles.

Features extracted from ellipses fitted to entire orbits are considered primary features. Ellipses can
be fitted to partial orbits; for example, two separate ellipses can be fitted to both halves of an orbit where
the orbit in question is halved according to its major/minor axes. This leads to four additional ellipses
fitted to each orbit of a phase plot (Figure A3). As an example, take the two ellipses fitted to either half
of the shown orbit following halving via the minor axis (Figure A3, lower two figures). Features are
extracted from these ellipses by extracting their relative characteristics e.g., their inclination relative to
the other, the ratio of their areas, etc. Features extracted from ellipses fitted to partial orbits in this way
are considered secondary phase plot features.
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Figure A3. Indication of the different conic (ellipses) fitted to the major/minor axis and the first/second halves.
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Abstract: Inertial measurement units (IMUs) allow accurate quantification of gait impairment of
people with multiple sclerosis (pwMS). Nonetheless, it is not clear how IMU-based metrics might
be influenced by pragmatic aspects associated with clinical translation of this approach, such as
data collection settings and gait protocols. In this study, we hypothesised that these aspects do
not significantly alter those characteristics of gait that are more related to quality and energetic
efficiency and are quantifiable via acceleration related metrics, such as intensity, smoothness, stability,
symmetry, and regularity. To test this hypothesis, we compared 33 IMU-based metrics extracted
from data, retrospectively collected by two independent centres on two matched cohorts of pwMS.
As a worst-case scenario, a walking test was performed in the two centres at a different speed along
corridors of different lengths, using different IMU systems, which were also positioned differently.
The results showed that the majority of the temporal metrics (9 out of 12) exhibited significant
between-centre differences. Conversely, the between-centre differences in the gait quality metrics
were small and comparable to those associated with a test-retest analysis under equivalent conditions.
Therefore, the gait quality metrics are promising candidates for reliable multi-centric studies aiming
at assessing rehabilitation interventions within a routine clinical context.

Keywords: multiple sclerosis; gait metrics; wearable sensors; test-retest reliability; sampling
frequency; accelerometry; autocorrelation; harmonic ratio; six-minute walk

1. Introduction

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system affecting
2.3 million people worldwide [1]. MS is the major non-traumatic cause of disability in young and
middle-aged adults [2], with a significant negative impact on independence and social participation [3].
Walking impairment is one of the most common functional deficits due to MS, even in the early stages
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of the disease [4]. Importantly, nearly 70% of people with MS (pwMS) reported that walking difficulty
is the most challenging aspect of their condition [5].

Given the high impact of gait impairment on pwMS, different rehabilitation interventions focused
on improving locomotion are currently applied to improve the quality of life in this population [6]. The
effects of these interventions, together with the progression of the disease, are usually assessed in clinical
practice using clinical scales, such as the expanded disability status scale (EDSS) [7] or timed tests,
such as the timed up and go test (TUG) [8], the timed 25-foot walk test (T25FW) [9], and the 6-minute
walk test (6MWT) [10]. Although widely used, these tests suffer from some limitations. Firstly, they
assess only the time taken to execute the test (e.g., TUG and T25FW) or the distance travelled in a given
time (6 min for the 6MWT), without providing objective measures of the different components and
characteristics of the task that could be useful to describe how the performance is possibly impaired [11].
Secondly, these clinical tests have a relatively limited sensitivity to change [9,12,13] and a flooring
effect [9,14] that makes it difficult to detect possible alterations in minimally impaired pwMS [15–17].

Instrumental methods may partly overcome these limitations by providing additional quantitative
information for a more complete characterisation of walking, which can be useful to tailor the
rehabilitative intervention and objectively assess its effects [11,18]. In particular, wearable inertial
measurement units (IMUs), including accelerometers, gyroscopes, and magnetometers, represent
cost-effective tools to perform objective assessments of walking in pwMS outside movement analysis
labs [19,20], and even during free-living and community contexts [21,22]. IMUs have been widely used
to analyse different locomotor tasks in pwMS, such as straight-line over ground [17,23–27] and treadmill
walking [28], standing up, walking, turning, and sitting down (e.g., the TUG) [15,29], walking with
head turns and over/around obstacles [30,31], walking while texting [32], and stairway walking [33].
During these tests, several parameters have been extracted from IMUs, including spatio-temporal
parameters [15,24,27,28,31,32,34], indexes of gait variability and stability [17,23,24,26,31,33], trunk
sway metrics [15,23,30,34], and angular variables [15,25,27,34]. Nonetheless, what does not yet clearly
emerge from current literature on pwMS is which of these could be more reliably adopted within the
clinical context.

Besides the issue of identifying among the above metrics those that are more capable of
characterising the disease progression, hence providing similar results for patients with similar
clinical conditions, and that have the sensitivity to detect changes associated with clinical interventions,
the clinical adoption of specific gait metrics also requires accounting for a number of pragmatic
limitations associated with testing conditions. These include an understanding of which output is more
robust to testing site characteristics (e.g., corridor lengths, lightening, noise, etc.), adopted measuring
instruments and their configuration (e.g., brand, location on the body, sampling frequency) [35–37],
type of gait test (e.g., a single pass, a 1-minute or a 6MWT), or instructions given to patients (e.g.,
self-selected or fast walking speed, use or not use of an assistive device) [28,38–45]. All these aspects are
particularly difficult to standardise in a busy clinical environment and most likely occur in combination
with each other.

The aim of this study was to identify those gait metrics that provide equivalent assessment of
pwMS with similar characteristics in terms of age, gender, and gait disability, despite these being
tested in different centres and in non-standardised conditions. Our hypothesis was that while pwMS
might be able to adjust their gait in terms of spatio-temporal parameters in response to different testing
conditions (e.g., if asked to increase their speed), they would not be able to control those aspects of gait
more related to its overall quality and energetic efficiency [46,47]. As a result, metrics extracted directly
from the acceleration signals and representative of intensity, smoothness, stability, symmetry, and
regularity were expected to be more robust to differences in the test settings. To verify this hypothesis,
we compared retrospective data from two matched cohorts of pwMS, which were collected by two
independent hospitals using protocols that differed for: (i) brand, size, and sampling frequency of the
IMUs; (ii) IMU positioning; (iii) subject instructing; (iv) length of the path. As a term of reference, we
also compared differences in IMU-based metrics between the two centres (between-centre differences)
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to those observable between two sessions performed by the same centre (between-day test-retest
reliability).

2. Materials and Methods

2.1. Participants

Two research centres, one located in Italy (centre A) and one in the United Kingdom (centre B),
provided retrospective IMU data collected while pwMS walked back and forth for 6 min along a hospital
corridor. The patients’ level of disability was assessed with the EDSS scale, scored by an experienced
neurologist. Patients were excluded if not free from any orthopaedic and/or musculoskeletal and
neurological disorders other than MS that may have affected their gait and balance. Since there were
no restrictions for MS subtypes, both patients with relapsing remitting MS who were relapse-free for
30 days prior to assessment (centre A) and patients with secondary progressive MS (centre B) were
included in the study. Thirteen pwMS were selected from each data set to form two cohorts, with
individual patients matched if having the same age, gender, EDSS score, and type of assistive device
(Table 1). As a result of this matching, the sample size, percentage of females, EDSS score distribution,
number of pwMS who required an assistive device, and type of assistive device used during the
walking test were the same in the two centres. The average walking speed was calculated as the total
distance walked during the test divided by the duration of the walking trial.

Table 1. Clinical characteristics of people with multiple sclerosis for centre A and centre B. Abbreviations:
expanded disability status scale (EDSS); people with multiple sclerosis (pwMS); Mann-Whitney U
(MWU) statistic; p-value (p); chi-square (X2).

Centre A
(n = 13)

Centre B
(n = 13)

Statistics

Age [years] 51 (35–63) 57 (34–64) U = 58, p = 0.18
Gender [men/women] 3/10 3/10 X2(1) = 0.00, p = 1.00

EDSS score (0–10) 4.5 (2.0–6.5) 4.5 (2.5–6.5) U = 83, p = 0.93
Mild (2.0–2.5) 1 1

Moderate (3.0–4.5) 6 6
Severe (5.0–6.5) 6 6

Assistive devices

Walker 1 pwMS 1 pwMS –
Cane 2 pwMS 2 pwMS –

Walking speed [m/s] 1.1 (0.5–1.4) 0.7 (0.4–1.0) U = 31, p < 0.01 *

Values are median (range) or numbers. * p < 0.05.

pwMS from centre B repeated the instrumented walking test on a second visit, which was held
7–14 days after the first test at the same time of the day. The testing procedures were also kept constant
between the two sessions. These data were used to assess between-day test-retest reliability.

Institutional review boards or ethics committees at the institutions in each country approved the
separate protocols (NRES Committee Yorkshire & The Humber-Bradford Leeds (reference 15/YH/0300)
and Ethical Committee of Don Carlo Gnocchi Foundation, Milan, Italy, references 29-03-2017 and
13-02-2019). Written informed consent was provided by all subjects. Data were collected in accordance
with the International Declaration of Helsinki.

2.2. Experimental Protocol

Acceleration and angular velocity data from three IMUs, located at the fifth lumbar vertebra and
around the right and left ankles, were recorded in both centres while pwMS walked back and forth
for 6 min along a straight corridor free of obstacles and other people. If needed, they could use an
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assistive device and take short resting breaks while standing. Each IMU was manually aligned along
the anatomical antero-posterior (AP), medio-lateral (ML), and vertical (V) axes.

The differences between the experimental protocols followed by centre A and centre B were:
(i) device manufacturers and sampling frequency used to record acceleration and angular velocity
signals; (ii) ankle IMU position; (iii) length of the walkway; (iv) instructions given to participants
(Figure 1). Specifically, Xsens IMUs (unit weight 16 g, unit size 47 mm × 30 mm × 13 mm; MTw, Xsens,
NL) with a sampling frequency of 75 Hz were used in centre A and OPAL IMUs (unit weight 22 g,
unit size 48.5 mm × 36.5 mm × 13.5 mm; OPAL, APDM Inc., Portland, OR, USA) with a sampling
frequency of 128 Hz were used in centre B. The IMUs around both ankles were placed laterally in
centre A and frontally in centre B. PwMS were requested to walk at their maximum speed along a
30-meter straight corridor in centre A and at preferred comfortable speed along a 10-meter straight
corridor in centre B.

Figure 1. Experimental protocols followed by centre A (red) and centre B (blue).

2.3. Data Processing

Data processing routines were developed in Matlab® (MATLAB R2019b, MathWorks, Inc., Natick,
MA, USA). A total of 33 IMU-based metrics were included in this analysis. IMU signals collected in
centre B were down sampled from 128 Hz to 75 Hz to match data from centre A, and the influence of
down sampling was investigated by comparing the outcome metrics from centre B as obtained before
and after the down sampling. Data from the lumbar IMU were reoriented to a horizontal-vertical
coordinate system [48] and filtered with a 10 Hz cut-off, zero phase, low-pass Butterworth filter.

The turning motion and resting breaks were detected and removed from IMU signals to isolate
steady-state walking bouts, which were used to compute the metrics of interest. The approach proposed
by Salarian, et al. [49] was adapted to determine 180◦ turns, which appear in the V component of
the lumbar angular velocity, ωz(t), as peaks of a given duration. The turning onset and offset were
identified from the trunk rotation angle around the V axis, θz(t), obtained after integrating the ωz(t)
signal. The turning components were evidenced in θz(t) as steep positive or negative gradients,
whereas walking components were evidenced as small oscillations round a flat line. Specifically, θz(t)
was first smoothed using a weighted least-squares linear regression. Abrupt change points and their
locations were then searched in θz(t) using a predefined Matlab® function based on the minimisation
of a linear computational cost function [50]. Resting breaks were automatically detected by checking in
2-s window increments if: (i) the norm of the lumbar IMU angular velocity was less than 0.5 rad/s;
(ii) the norm of the lumbar IMU acceleration was within ±10% of 9.81 m/s2 [51]. A 2-s window was
considered motionless if more than 50% of its samples fulfilled both criteria mentioned above.
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Twelve gait metrics were extracted from the angular velocities recorded from the ankle IMUs and
21 were extracted from the lumbar IMU accelerations. Following the suggestions of Lord, et al. [52] and
Buckley, et al. [53], these metrics were organised in independent gait domains (e.g., rhythm, variability,
asymmetry, intensity, stability, smoothness, symmetry, and regularity).

Initial and final foot contact instances, referred to as gait events (GE), were identified for each
steady-state walking bout as local minimum values of the ML angular velocity recorded from ankle
IMUs of both legs [54]. These minima occur just before and after the instant of maximum ML angular
velocity. Once the GE were determined, stride, step, swing and stance durations (representing rhythm
domain) were separately estimated for left and right sides. Variability (i.e., within-subject combined
standard deviation of left and right; variability domain) and asymmetry (i.e., absolute difference
between the mean of left and right time series; asymmetry domain) of these metrics were also computed,
applying the established formula in Galna, et al. [55] and Godfrey, et al. [56].

From processing the filtered acceleration signals in time and frequency domain, 21 additional
metrics, referred to as gait quality metrics [57], were separately extracted for each acceleration
component (AP, ML, and V): (i) intensity as the root mean square (RMS) of each acceleration component
around its mean value [44]; (ii) stability as the ratio of the RMS in a given direction to the RMS vector
magnitude [58]; (iii) smoothness as the RMS of the jerk [59]; (iv) symmetry represented by the harmonic
ratio (HR), defined as the ratio of the sum of the amplitudes of the in-phase harmonics to the sum of
the amplitudes of the out-of-phase harmonics [60,61]; (v) regularity as the ensemble of the following
three metrics obtained from the unbiased normalised autocorrelation [62]:

Step regularity = 1st peak o f (
1

N − |m|
N−|m|∑

i=1

x(i)·x(i + m)) (1)

Stride regularity = 2nd peak o f (
1

N − |m|
N−|m|∑

i=1

x(i)·x(i + m)) (2)

Regularity index =

∣∣∣Stride regularity− Step regularity
∣∣∣

mean(Stride regularity, Step regularity)
(3)

All metrics were calculated for the part of signals corresponding to the middle eight steps of each
pass along the corridor and then averaged over the whole trial. The choice of eight steps was due to
the maximum number of steps which subjects in centre B could walk in completely straight condition.
Since centre A adopted a three-times longer path, in order to process the same number of steps, only
one walking bout in every three was included for centre B.

2.4. Statistical Analysis

Statistical analyses were performed in R version 3.4.3 [63]. Participant characteristics from centre
A and centre B were compared using the independent Mann-Whitney U for age and EDSS scores and
Pearson’s chi-square for gender. Given the limited sample size and the non-normal distribution of most
of the investigated metrics (as a result of the Shapiro-Wilk test), non-parametric tests were performed.
The level of significance was taken at 5%. A Wilcoxon signed-rank test was performed to compare the
centre B metrics obtained from IMU data sampled at 128 Hz and those down-sampled at 75 Hz.

Between-day test-retest reliability of the metrics was evaluated for centre B through the intra-class
correlation coefficients (ICCs) with a 95% confidence interval (CI). ICCs were calculated using a
two-way random-effect model and absolute agreement (ICC2,k) [64]. An ICC lower than 0.39 was
classified as poor, an ICC between 0.40 and 0.59 as fair, an ICC between 0.60 and 0.74 as moderate, and
an ICC greater than 0.75 as excellent [65]. The minimum detectable changes (MDCs), representing
the smallest amount of change that can be considered above the bounds of the measurement error
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and/or within-subject variability, was also computed for each metric at the CI of 95%, according to
Equation (4):

MDC = 1.96· √2·SEM = 1.96· √2·SD· √1− ICC, (4)

where SEM is the standard error of the measurement and SD corresponds to the average of the standard
deviations from test and re-test sessions [66].

A Wilcoxon signed-rank test was used to determine if there was a median difference in centre B
metrics between the two sessions, whereas an independent Mann-Whitney U test was carried out to
compare IMU-based metrics from centre A and centre B.

In all the above tests, if the p-value was lower than 0.05, the null hypothesis (e.g., the two
population medians were identical) was rejected and the alternative hypothesis accepted. To avoid
misinterpretation of the p-values and to account for a type II error, the effect size (r) for non-parametric
tests was also calculated as follows:

r = z/
√

N (5)

where z is the z-score and N is the size of the study (i.e., the number of total observations) on which
z is based. Cohen [67] suggested thresholds of 0.1, 0.3, and 0.5 for small, medium, and large effect
sizes, respectively.

Median, inter-quartile range, minimum, and maximum values were finally calculated for
IMU-based metrics from centre A and centre B (both sessions).

3. Results

3.1. Effect of Sampling Frequency

The results of the comparison between the metrics calculated using the 128 Hz and 75 Hz sampling
frequencies are reported in Table 2. The HR, representative of the symmetry domain, was the only
metric that significantly differed between the two analyses.

Table 2. Effect of down-sampling of the acceleration and angular velocity signals on the investigated
gait metrics. Abbreviations: sampling frequency (FS), z-score (z), p-value (p), and effect size (r).

Domain Fs of 128 Hz Fs of 75 Hz z p r

Rhythm [s]

Stride duration 1.20 (1.01–1.74) 1.21 (1.01–1.74) −0.82 0.41 −0.16
Step duration 0.60 (0.51–0.87) 0.60 (0.50–0.87) 0.00 1.00 0.00

Stance duration 0.75 (0.61–1.18) 0.75 (0.61–1.18) −1.83 0.07 −0.36
Swing duration 0.44 (0.40–0.58) 0.44 (0.40–0.58) −1.85 0.06 −0.36

Variability [ms]

Stride duration 61 (32–100) 63 (32–98) −1.55 0.12 −0.30
Step duration 46 (20–69) 45 (20–68) −1.33 0.18 −0.26

Stance duration 65 (34–105) 65 (32–106) −0.18 0.86 −0.04
Swing duration 29 (23–74) 30 (21–76) −0.41 0.68 −0.08

Asymmetry [ms]

Stride duration 2 (0–7) 2 (1–7) −0.09 0.93 −0.02
Step duration 56 (0–238) 51 (0–242) −1.49 0.14 −0.29

Stance duration 61 (3–149) 69 (2–130) −1.58 0.11 −0.31
Swing duration 54 (1–155) 62 (0–138) −1.33 0.18 −0.26
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Table 2. Cont.

Domain Fs of 128 Hz Fs of 75 Hz z p r

Intensity [m/s2]

Antero-Posterior 1.10 (0.80–1.96) 1.10 (0.80–1.95) −0.94 0.34 −0.19
Medio-Lateral 0.93 (0.65–1.41) 0.93 (0.65–1.41) −1.44 0.15 −0.28

Vertical 1.37 (0.76–3.16) 1.38 (0.75–3.20) −1.28 0.20 −0.25

Stability [–]

Antero-Posterior 0.41 (0.37–0.61) 0.41 (0.37–0.61) −0.30 0.77 −0.06
Medio-Lateral 0.34 (0.25–0.52) 0.34 (0.25–0.52) −0.89 0.37 −0.18

Vertical 0.58 (0.36–0.62) 0.58 (0.36–0.63) −0.29 0.77 −0.06

Smoothness [m/s3]

Antero-Posterior 13.97 (8.86–30.75) 13.95 (8.93–30.82) 0.00 1.00 0.00
Medio-Lateral 13.92 (10.13–28.61) 13.87 (10.19–28.45) −1.06 0.29 −0.21

Vertical 23.31 (11.06–48.81) 23.21 (10.89–49.38) −0.75 0.45 −0.15

Symmetry (HR) [–]

Antero-Posterior 2.94 (1.49–3.73) 2.89 (1.50–3.49) −2.32 0.02 * −0.45
Medio-Lateral 0.44 (0.32–0.56) 0.45 (0.32–0.56) −2.19 0.03 * −0.43

Vertical 3.01 (1.21–4.84) 2.94 (1.23–4.78) −3.01 0.00 * −0.59

Regularity [–]

Step regularity
Antero-Posterior 0.60 (0.20–0.85) 0.60 (0.20–0.84) −1.70 0.09 −0.33

Medio-Lateral −0.62 (−0.74–−0.37) −0.60 (−0.73–−0.38) −1.89 0.06 −0.37
Vertical 0.81 (0.32–0.95) 0.80 (0.32–0.94) −1.44 0.15 −0.28

Stride regularity
Anterior-Posterior 0.86 (0.50–0.93) 0.86 (0.50–0.92) 0.00 1.00 0.00

Medio-Lateral 0.77 (0.58–0.85) 0.75 (0.59–0.85) −1.67 0.09 −0.33
Vertical 0.86 (0.34–0.95) 0.86 (0.34–0.95) −1.80 0.07 −0.35

Regularity index
Antero-Posterior 0.37 (0.04–0.82) 0.37 (0.04–0.83) −1.10 0.27 −0.22

Medio-Lateral −0.20 (−0.70–−0.08) −0.20 (−0.66–−0.08) −0.41 0.68 −0.08
Vertical 0.11 (0.02–0.59) 0.11 (0.02–0.59) 0.00 1.00 0.00

Values are median (range). * p < 0.05.

3.2. Between-Day Test-Retest Reliability

ICC, SEM, and MDC values for between-day assessment are shown in Table 3 for each metric
estimated for pwMS from centre B who completed two testing visits. Overall, 17 out of 33 metrics
revealed excellent test-retest reliability (ICC: 0.93–0.98; 95% CI: 0.76–0.93), 11 metrics showed moderate
test-retest reliability (ICC: 0.88–0.92; 95% CI: 0.62–0.74), and only 5 metrics exhibited poor to fair
test-retest reliability with ICC values between 0.72 and 0.86 and 95% CI between 0.13 and 0.52.
The Wilcoxon signed-rank test showed no significant differences in any of the metrics between the two
sessions (Figure 2 and Table 4).
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Table 3. Intra-class correlation coefficients (ICC) with a 95% confidence interval (CI), standard error of
the measurement (SEM), and minimum detectable change (MDC) for the investigated gait metrics.

Domains ICC
95% CI

SEM MDC
Lower Upper

Rhythm [s]

Stride duration 0.97 0.90 0.99 0.04 0.10
Step duration 0.97 0.90 0.99 0.02 0.05

Stance duration 0.96 0.86 0.99 0.03 0.09
Swing duration 0.97 0.91 0.99 0.01 0.03

Variability [ms]

Stride duration 0.92 0.73 0.97 8 21
Step duration 0.92 0.74 0.98 5 13

Stance duration 0.94 0.80 0.98 6 18
Swing duration 0.95 0.85 0.99 4 11

Asymmetry [ms]

Stride duration 0.72 0.13 0.91 1 4

Step duration 0.98 0.93 0.99 10 29
Stance duration 0.90 0.67 0.97 12 33
Swing duration 0.89 0.62 0.97 13 36

Intensity [m/s2]

Antero-Posterior 0.97 0.90 0.99 0.06 0.16
Medio-Lateral 0.98 0.93 0.99 0.04 0.11

Vertical 0.97 0.92 0.99 0.10 0.29

Stability [–]

Antero-Posterior 0.93 0.78 0.98 0.02 0.05
Medio-Lateral 0.93 0.76 0.98 0.03 0.08

Vertical 0.91 0.69 0.97 0.03 0.09

Smoothness [m/s3]

Antero-Posterior 0.92 0.73 0.97 2.46 6.83
Medio-Lateral 0.93 0.79 0.98 1.55 4.29

Vertical 0.95 0.82 0.98 2.31 6.41

Symmetry (HR) [–]

Antero-Posterior 0.95 0.85 0.99 0.14 0.38
Medio-Lateral 0.75 0.15 0.92 0.04 0.10

Vertical 0.92 0.74 0.98 0.21 0.59

Regularity [–]

Step regularity
Antero-Posterior 0.91 0.70 0.97 0.07 0.19
Medio-Lateral 0.86 0.52 0.96 0.04 0.11

Vertical 0.97 0.92 0.99 0.04 0.10

Stride regularity
Antero-Posterior 0.88 0.64 0.96 0.05 0.13
Medio-Lateral 0.85 0.50 0.96 0.04 0.10

Vertical 0.93 0.77 0.98 0.04 0.10

Regularity index
Antero-Posterior 0.76 0.17 0.93 0.17 0.47

Medio-Lateral 0.88 0.62 0.96 0.06 0.17
Vertical 0.89 0.63 0.97 0.09 0.24

Inertial measurement unit (IMU)-based gait metrics with poor to fair test-retest reliability are presented in bold.
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Figure 2. Minimum, first quartile (q1), median, mean, third quartile (q3), and maximum values of
each IMU-based metrics relative to centre A (red) and centre B for between-day test-retest assessment
(blue empty boxplots and blue filled boxplots). Values larger than q1 + 1.5(q3 + q1) or smaller than
q1 − 1.5(q3 − q1) are considered outliers and are represented with crosses (+). * p < 0.05. Note that, for
graphical convenience, the absolute values have been depicted for the step regularity and regularity
index in the ML direction.
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Table 4. Descriptive statistics for the investigated gait metrics from centre B (session1 and session2),
including the z-score (z), p-value (p), and effect size (r).

Domain Centre B (session1) Centre B (session2) z p r

Rhythm [s]

Stride duration 1.21 (1.01–1.74) 1.20 (0.97–1.74) −0.70 0.48 −0.14
Step duration 0.60 (0.50–0.87) 0.60 (0.48–0.87) −0.56 0.58 −0.11

Stance duration 0.75 (0.61–1.18) 0.77 (0.59–1.18) −1.57 0.12 −0.31
Swing duration 0.44 (0.40–0.58) 0.45 (0.38–0.56) −1.99 0.05 −0.39

Variability [ms]

Stride duration 63 (32–98) 58 (27–124) −0.35 0.72 −0.07
Step duration 45 (20–68) 40 (18–83) −0.35 0.72 −0.07

Stance duration 65 (32–106) 52 (24–132) −0.03 0.97 −0.01
Swing duration 30 (21–76) 28 (9–97) −0.53 0.60 −0.10

Asymmetry [ms]

Stride duration 2 (1–7) 4 (0–7) −1.34 0.18 −0.26
Step duration 51 (0–242) 65 (4–245) −1.30 0.20 −0.25

Stance duration 69 (2–130) 61 (10–104) −0.52 0.60 −0.10
Swing duration 62 (0–138) 61 (12–109) −0.38 0.70 −0.08

Intensity [m/s2]

Antero-Posterior 1.10 (0.80–1.95) 1.07 (0.76–2.04) −1.22 0.22 −0.24
Medio-Lateral 0.93 (0.65–1.41) 0.93 (0.53–1.42) −0.08 0.94 −0.02

Vertical 1.38 (0.75–3.20) 1.43 (0.68–3.14) −0.38 0.70 −0.08

Stability [–]

Antero-Posterior 0.41 (0.37–0.61) 0.43 (0.35–0.64) −0.28 0.78 −0.05
Medio-Lateral 0.34 (0.25–0.52) 0.32 (0.24–0.56) 0.00 1.00 0.00

Vertical 0.58 (0.36–0.63) 0.57 (0.28–0.69) −0.27 0.79 −0.05

Smoothness [m/s3]

Antero-Posterior 13.95 (8.93–30.82) 17.11 (2.76–37.32) −1.17 0.24 −0.23
Medio-Lateral 13.87 (10.19–28.45) 13.42 (8.04–26.07) −1.24 0.22 −0.24

Vertical 23.21 (10.89–49.38) 23.43 (10.67–50.74) −0.41 0.68 −0.08

Symmetry (HR) [–]

Antero-Posterior 2.89 (1.50–3.49) 2.64 (1.62–3.54) −0.31 0.75 −0.06
Medio-Lateral 0.45 (0.32–0.56) 0.46 (0.34–0.59) −0.82 0.41 −0.16

Vertical 2.94 (1.23–4.78) 2.75 (1.45–4.19) −0.51 0.61 −0.10

Regularity [–]

Step regularity
Antero-Posterior 0.60 (0.20–0.84) 0.57 (0.26–0.93) −0.12 0.91 −0.02

Medio-Lateral −0.60 (−0.73–−0.38) −0.58 (−0.71–−0.42) −0.07 0.94 −0.01
Vertical 0.80 (0.32–0.94) 0.78 (0.22–0.96) −1.26 0.21 −0.25

Stride regularity
Anterior-Posterior 0.86 (0.50–0.92) 0.87 (0.33–0.92) −0.98 0.33 −0.19

Medio-Lateral 0.75 (0.59–0.85) 0.73 (0.55–0.88) −0.03 0.97 −0.01
Vertical 0.86 (0.34–0.95) 0.83 (0.44–0.91) −0.52 0.60 −0.10

Regularity index
Antero-Posterior 0.37 (0.04–0.83) 0.34 (0.01–1.09) −0.04 0.97 −0.01

Medio-Lateral −0.20 (−0.66–−0.08) −0.27 (−0.65–−0.04) −0.14 0.89 −0.03
Vertical 0.11 (0.02–0.59) 0.14 (0.02–1.00) −0.43 0.67 −0.08

Values are median (range). * p < 0.05.
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3.3. Between-Centre Differences

As expected, the comparison between centre A and centre B via the independent Mann-Whitney
U test highlighted significant differences for all the temporal metrics (Figure 2 and Table 5; rhythm
domain), except for swing duration. Apart from asymmetry of step duration and asymmetry of swing
duration, variability and asymmetry of the temporal metrics were significantly lower in centre A
compared to centre B (Figure 2 and Table 5; variability and asymmetry domain). However, even
though the difference in asymmetry of swing duration between the two centres was non-significant
(U = 48.0; p = 0.06), a fairly moderate effect size was found for this specific metric (r = 0.37). Conversely,
a consistency between the two centres was found for 18 out of 21 metrics extracted from acceleration
signals (Figure 2 and Table 5; intensity, stability, smoothness, symmetry, and regularity domains). Only
the differences in the regularity index in the ML direction and in the HR in the AP and ML directions
were proved statistically significant between centre A and centre B (Figure 2 and Table 5).

Table 5. Descriptive statistics for the investigated gait metrics from centre A and centre B (session1),
including the Mann-Whitney U (MWU) statistic, p-value (p), and effect size (r).

Domain Centre A Centre B U p r

Rhythm [s]

Stride duration 1.03 (0.92–1.68) 1.21 (1.01–1.74) 43.5 0.04 * 0.41
Step duration 0.51 (0.46–0.84) 0.60 (0.50–0.87) 44.0 0.04 * 0.41

Stance duration 0.66 (0.52–1.12) 0.75 (0.61–1.18) 40.0 0.02 * 0.45
Swing duration 0.43 (0.37–0.56) 0.44 (0.40–0.58) 57.0 0.17 0.28

Variability [ms]

Stride duration 32 (23–74) 63 (32–98) 26.0 0.00 * 0.59
Step duration 21 (14–45) 45 (20–68) 27.5 0.00 * 0.57

Stance duration 28 (17–68) 65 (32–106) 30.0 0.01 * 0.55
Swing duration 19 (12–41) 30 (21–76) 33.0 0.01 * 0.52

Asymmetry [ms]

Stride duration 1 (0–4) 2 (1–7) 45.0 0.04 * 0.40
Step duration 19 (1–138) 51 (0–242) 68.0 0.40 0.17

Stance duration 17 (0–123) 69 (2–130) 46.0 0.04 * 0.39
Swing duration 17 (1–122) 62 (0–138) 48.0 0.06 0.37

Intensity [m/s2]

Antero-Posterior 1.30 (0.81–1.80) 1.10 (0.80–1.95) 68.0 0.41 0.17
Medio-Lateral 1.17 (0.53–1.69) 0.93 (0.65–1.41) 62.0 0.26 0.23

Vertical 2.17 (0.73–2.62) 1.38 (0.75–3.20) 59.5 0.21 0.25

Stability [–]

Antero-Posterior 0.40 (0.28–0.68) 0.41 (0.37–0.61) 69.0 0.44 0.16
Medio-Lateral 0.38 (0.23–0.48) 0.34 (0.25–0.52) 83.0 0.96 0.02

Vertical 0.57 (0.47–0.75) 0.58 (0.36–0.63) 72.5 0.55 0.12

Smoothness [m/s3]

Antero-Posterior 19.68 (8.56–31.85) 13.95 (8.93–30.82) 82.0 0.92 0.03
Medio-Lateral 24.01 (7.04–35.54) 13.87 (10.19–28.45) 52.5 0.11 0.32

Vertical 33.90 (11.56–42.39) 23.21 (10.89–49.38) 59.0 0.20 0.26

Symmetry (HR) [–]

Antero-Posterior 2.04 (1.36–3.54) 2.89 (1.50–3.49) 43.5 0.04 * 0.41
Medio-Lateral 0.57 (0.44–0.91) 0.45 (0.32–0.56) 14.0 0.00 * 0.71

Vertical 2.35 (1.39–3.89) 2.94 (1.23–4.78) 52.5 0.11 0.32
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Table 5. Cont.

Domain Centre A Centre B U p r

Regularity [–]

Step regularity
Antero-Posterior 0.75 (0.14–0.95) 0.60 (0.20–0.84) 55.5 0.14 0.29

Medio-Lateral −0.66 (−0.88–−0.23) −0.60 (−0.73–−0.38) 63.0 0.28 0.22
Vertical 0.89 (0.37–0.95) 0.80 (0.32–0.94) 51.5 0.10 0.33

Stride regularity
Anterior-Posterior 0.86 (0.67–0.93) 0.86 (0.50–0.92) 81.5 0.90 0.03

Medio-Lateral 0.69 (0.45–0.87) 0.75 (0.59–0.85) 63.0 0.28 0.22
Vertical 0.89 (0.59–0.96) 0.86 (0.34–0.95) 72.5 0.55 0.12

Regularity index
Antero-Posterior 0.08 (0.03–1.46) 0.37 (0.04–0.83) 50.0 0.08 0.35

Medio-Lateral −0.10 (−0.98–−0.05) −0.20 (−0.66–−0.08) 40.5 0.03 * 0.44
Vertical 0.05 (0.02–0.74) 0.11 (0.02–0.59) 51.5 0.09 0.33

Values are median (range). * p < 0.05.

4. Discussion

This study aimed to identify comparable gait metrics as quantified from IMU data measured from
two different hospital settings on two matched cohorts of pwMS (13 pwMS for each centre, Table 1),
under the hypothesis that those metrics associated with the overall balance control and coordination
of gait (i.e., gait quality metrics) would be robust, even when obtained from different experimental
protocols. Reported results overall corroborated this assumption and showed that between-centre
differences for most of these metrics were comparable to those obtained by the same centre in two
different sessions.

The small sample size, resulting from the attempt of maximising the cohort match, is certainly
a limitation of this study. It is worth noting, in fact, that while some of the investigated gait metrics
in centre A (e.g., asymmetry of swing duration from asymmetry domain and regularity index from
regularity domain) did not differ significantly from those in centre B, an observed medium effect size
suggested the opposite might hold true (Table 5). This is indeed likely to be due to the small sample
size and possibly due to the higher inter-subject variability observed in centre B.

Since MS is well known for heterogeneity of symptoms, high day-to-day fluctuations, and a large
variability in its course [68], care must be taken before generalising our findings to all pwMS with
different levels of gait impairment. Another limitation of this study might lie in the fact that patients
recruited by the two centres differed in the subtypes of MS. Nonetheless, Dujmovic, et al. [69] showed
that the altered gait pattern in pwMS did not depend on the disease phenotype. Additional studies are
of course needed to further investigate this aspect.

The comparison between centre A and centre B implied down-sampling the data from the latter.
As expected, this affected only the calculation of HR, which is the only metric based on frequency
analysis. In particular, changing sampling frequency from 128 Hz to 75 Hz led to decreased values in
the AP and V directions and increased values in the ML direction (Table 2). This is in line with what
was previously reported by Riva, et al. [35].

Moderate to excellent between-day test-retest reliability was observed for 28 out of 33 IMU-based
metrics with few exceptions, which exhibited poor to fair reliability (Table 3). Additionally, all the
investigated metrics were not significantly different between the two sessions (Figure 2 and Table 4),
even if some of these results (swing duration in particular) should be interpreted with care, due to the
medium effect size. These findings confirmed that sensor-based gait analysis is a reliable tool in pwMS,
as also reported in previous test-retest studies on pwMS [34].

Walking speed clearly affected the gait outcomes. In particular, the gait metrics representative of
rhythm, variability, and asymmetry domains were evidently lower in centre A compared to centre
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B (Figure 2 and Table 5) due to different instructions given to the participants in terms of walking
speed (i.e., walk at maximum speed versus walk at self-selected speed). This finding is in agreement
with previous studies on pwMS [28] and on people with other neurological conditions, such as
Parkinson’s disease [70], which observed a reduction of the above metrics with increasing walking
speed. The shorter length of the walkway used in centre B could also have contributed to these
differences. In fact, Storm, et al. [22] demonstrated that rhythm and variability metrics decreased
when walking longer distances (e.g., lower stride duration and lower variability of stride duration).
However, the data available for our study did not allow us to separate walking speed and path effects,
and further studies should hence be performed to this purpose.

Unlike the temporal metrics, the gait quality metrics appeared to be robust with respect to the
notable differences in the experimental gait protocols adopted by the two centres. Among these metrics,
in fact, only differences in the regularity index in the ML direction and the HR (representative of
symmetry domain) in the AP and ML directions were found to be statistically significant between
centre A and centre B (Figure 2 and Table 5). Again, this specific result could be explained both by the
different walking speed and by the different lengths of the walkway in the two centres. Indeed, an
association between walking speed and HR has been previously showed, both in healthy young [43,44]
and older subjects [39]. These authors observed that the HR increased at the self-selected comfortable
walking speed and decreased at slower and faster speeds. A similar trend emerged from our analysis,
except for the HR in the ML direction, but this specific metric should be handled with care due to
its observed low test-retest reliability (Table 3). The low number of steps (i.e., eight steps) used for
calculating the HR for each walking bout might also have contributed to reduce robustness and
reliability of this metric [57,71]. However, this choice was imposed by the reduced length of the
corridor in centre B. Testing the participants along a shorter path also implied a higher number of turns
over the 6 min, resulting in a minor validity of the HR as showed in the research by Riva, et al. [35] and
by Brach, et al. [40].

While further studies are of course needed to fully validate this hypothesis, our results suggest
that, in agreement with what is already reported for other neurological diseases, such as Parkinson’s
disease [53], the gait quality metrics extracted from the upper body accelerations should not be
considered as a simple reflection of gait spatio-temporal features and might bring complementary
informative content in quantifying patients’ gait ability. Additionally, these metrics have been recently
shown to be sensitive to fatigue and pathology progression in pwMS [72] and, as such, they are
promising candidates for quantification of disease progression and rehabilitation interventions in
these patients.

5. Conclusions

In conclusion, this pragmatic study showed consistency in the gait metrics from two matched
groups of pwMS, even when they were assessed in two different hospitals and under notably different
gait testing conditions. The identification of such robust gait metrics opens the possibility of comparing
retrospective data and paves the way for reliable multi-centre studies to be conducted in routine
hospital settings rather than in specialised gait research laboratories. This is essential to allow an
increase of sample size and statistical power of clinical trials in which rehabilitation interventions need
to be quantitatively assessed.
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Abstract: Lower back pain is an extremely common health problem and globally causes more disability
than any other condition. Among other rehabilitation approaches, back schools are interventions
comprising both an educational component and exercises. Normally, the main outcome evaluated is
pain reduction. The aim of this study was to evaluate not only the efficacy of back school therapy in
reducing pain, but also the functional improvement. Patients with lower back pain were clinically
and functionally evaluated; in particular, the timed “up and go” test with inertial movement sensor
was studied before and after back school therapy. Forty-four patients completed the program, and
the results showed not only a reduction of pain, but also an improvement in several parameters of
the timed up and go test, especially in temporal parameters (namely duration and velocity). The
application of the inertial sensor measurement in evaluating functional aspects seems to be useful
and promising in assessing the aspects that are not strictly correlated to the specific pathology, as well
as in rehabilitation management.

Keywords: back school; inertial sensor; lower back pain; rehabilitation; stability; timed up and go test

1. Introduction

Lower back Pain (LBP) is a well described and extremely widespread health problem [1]. LBP is a
pain that goes from the twelfth rib to the lower gluteal folds; pain can also spread to the lower limbs for
one day or more [1]. This condition is the main cause of absence from work and activity limitations in
much of the world. The consequence is a heavy economic burden for subjects, families, communities,
industry, and governments [2]. Of the 291 conditions studied in the 2010 Global Burden of Disease
(GBD) report, LBP had the highest load. LBP is the leading cause of disability globally [3].

The main components to treat this condition are education, reassurance, analgesic drugs, and
non-pharmacological therapies. During the treatment, periodic check-ups are recommended based
on individual patient needs, such as prognosis, treatment prescribed, and remaining concerns about
serious pathological abnormality [4].

Chronic LBP is defined as lower back pain that lasts for over 12 weeks. Generally, one-third of the
patients with LBP reported that in the year after an acute episode, lower back pain was of moderate
intensity [2]. In patients with chronic back pain, a multidisciplinary approach leads to better results
when combined with medical, rehabilitative, and psychological treatments [5].

Among other rehabilitation approaches, back schools (BS) are interventions that comprise an
education component and exercises. BS are training programs with lessons given by a therapist to
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patients or workers, with the aim of treating or preventing lower back pain [6]. Several studies have
demonstrated the efficacy of BS in reducing and managing lower back pain [7]. BS, due to the validity
of their educational exercises, enhance the quality of life, reduce disability induced by LBP [8,9], and
also improve mental well-being.

The aim of this study is to evaluate not only the efficacy of BS therapy in reducing pain but also in
functional improvement, an aspect strictly related to pain but normally not evaluated in the studies
that focus on assessing pain relief. A new and simple gait evaluation method is used to make the
analysis. In particular, stability and ability to perform functional tests, such as the timed “up and go”
test, are evaluated in order to verify if a rehabilitation program based on BS therapy is able to improve
stability and walking.

2. Materials and Methods

Patients were recruited from the Rehabilitation Ambulatory Service of Umberto I University
Hospital. All participants signed informed consent forms after receiving detailed information about
the study’s aims and procedures for the Declaration of Helsinki.

2.1. Eligibility Criteria

Patients were included in the study if they had lower back pain that had lasted for more than six
weeks that was associated with limitations of motion. The presence of vertebral infections; tumoral
metastasis; fractures and neoplasm; rheumatological, neurological, or oncological disease; previous
back surgery; severe cognitive impairments; or pregnancy was considered an exclusion criterion.

2.2. Intervention

The BS program was supervised by a multidisciplinary professional team. A total of 10 one-hour
sessions scheduled 3 times a week were carried out. The adopted rehabilitation program was chosen
by considering the effectiveness of the BS on LBP reported in previous studies. The details of the
program followed in this study are described below.

The first treatment session was used to provide subjects with basic anatomical knowledge of the
spine and its functions; the correct ergonomic positions to be maintained in everyday life were also
shown. During the following 9 sessions, the physiotherapists supervised the activities, which consisted
of exercises based on diaphragmatic breathing (10 min), self-stretching of the trunk muscles (10 min),
strengthening of erector muscles of the spine, abdominal strengthening, and postural exercises. The
tasks were divided into 3 sets of 10 repetitions for each one; 3 min of rest was provided between each
series. Explanations of the ergonomic position of the spine and how to introduce self-correction in
daily life were provided for the whole duration of the treatment.

2.3. Health State: Clinical Evaluations

Patients were evaluated before and after physiotherapy treatment with the following clinical scales:

1. The numeric rating scale (NRS) is a rapidly administered 11-point numeric scale used to roughly
measure any kind of pain, with a score ranging from 0 (no pain) to 10 (acute pain) [10];

2. The Oswestry disability index (ODI), also known as the Oswestry lower back pain disability
questionnaire, is considered the “gold standard” of lower back functional outcome tools and
consists of 10 sections, with a score varying from 0 to 5 for each one. A low score indicates
minimal disability; the disability is more severe for higher scores [11];

3. The performance-oriented mobility assessment (POMA) scale was developed by Tinetti in 1986 to
assess the mobility and risk of falling of the elderly [12]. This scale was chosen because it is very
reliable and widely used. In this study, we used the balance scale of the POMA, which evaluates
the positions and changes in position of the subject, assessing stability tasks. Each item is scored
on a two- or three-point scale, where the maximum is 18 [13];
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4. The timed up and go test (TUG) is a clinical test that evaluates the balance and mobility of a
subject [14,15]. In the traditional TUG test, a stopwatch is used to measure how long it takes a
subject to lift off a chair, walk 3 m, turn 180◦, return to the chair, and sit back down.

2.4. Biomechanical Evaluation

Instrumentation

In this study, we evaluated the TUG as both a time test and also using an inertial measurement
unit (IMU). The commercial name of the device used is a G-Sensor instrument (BTS SpA, Milan, Italy).
The communication with the receiving unit (personal computer) takes place via a Bluetooth connection.
The associated software (BTS® G-Studio) is used to acquire, process, and archive data. In the IMU
there is a triaxial accelerometer (16 bits/axes, up to 1000 Hz) with different sensitivities (±2, ±4, ±8,
±16 g), a triaxial 16-bit magnetometer (±1200 μT, up to 100 Hz), and a triaxial gyroscope (16 bits/axes,
up to 8000 Hz) with multiple sensitivities (±250, ±500, ±1000, ±2000◦/s). The G-Sensor is positioned at
level L5 using an elastic belt. It is important to keep the power connector facing upwards and the logo
outwards to correctly define the reference system (Figure 1a)

 
 

(a) (b) 

Figure 1. (a) Inertial measurement unit (IMU) position and (b) timed up and go test (TUG) phases.

The test begins with patients seated in a standard chair with their arms on either side of their
body. After a signal from the clinician, the subject rises from the chair, walks three meters in a straight
line at a speed that is normal for them, turns around an obstacle, and finally returns to the chair and
sits down. The software used is BTS G-Studio, which has a specific protocol capable of analyzing
the TUG test and automatically generates a TUG report with temporal parameters identifying the
duration of the different sub-phases [16]. The mathematical method used to identify each sub-phase
is the one described in the study by Salarian et al. [17]. Additionally, a detailed description of the
practical operation of BTS G-Studio in iTUG analysis, as compared with an optoelectronic system, is
provided in the study by Negrini [18].The test can, therefore, be divided into different phases: the first
is that of rising from the chair (sit-to-stand sub-phase), walking for 3 m until reaching an obstacle
(walking forward sub-phase), turning around the cone (mid-turning sub-phase), walking three m
back towards the chair (return walking sub-phase), and then turning and sitting down on the chair
(stand-to-sit sub-phase) without using the assistance of their arms, if possible. The test is concluded
when the subject is seated again. The final report of the TUG test shows all the spatiotemporal
parameters related to the walk for each sub-phase considered: the sit-to-stand, the steady-state gait,
the turning, and the turn-to-sit phases [17]. The parameters supplied automatically by the IMU for
each trial are: total time duration, sub-phase durations, mean velocity turning (mid-turning and final
turning sub-phases), and the maximum trunk flexion angle and its range of motion during sit-to-stand
and stand-to-sit sub-phases (Figure 1b).
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Furthermore, an instrumental evaluation of stability was carried out using a baropodometric
platform (P-Walk BTS Engineering). The stabilometry test measures the oscillations by evaluating the
elliptical area containing 95% of sway points, velocities with closed eyes (CE) and opened eyes (OE),
and the length of the excursion of the center of pressure. The test we performed had a duration of 30 s,
within which the position of the CoP was recorded during quiet standing [19]. Patients were adequately
informed about the procedure; the requirements were to maintain a natural standing position with the
arms alongside the body, the feet open at an angle of about 30◦, and the heels at a distance of about
3 cm. All tests were performed by the same examiner in order to reduce the inter-operator error and to
increase the reproducibility of the test; thus, the subjects were given the same information before each
test. For each trial condition (EO and EC), three tests were carried out, for which the median scores are
reported. Considering the EO condition, subjects were required to stare at a mark fixed at eye level on
a wall 1.5 m away.

2.5. Statistical Analysis

The statistical analysis was performed with SPSS software. To verify the normality of the
parameters, the Kolmogorov–Smirnov test was used. When the normality assumption was not fulfilled,
the median and range (minimum–maximum) were evaluated. The differences between variables were
evaluated using the Friedman test for paired samples. The probability level for statistical significance
in all tests was set at a p < 0.05.

3. Results

Forty-eight patients (mean age 71± 13.66) were recruited for this study; 4 patients did not complete
the rehabilitation program and were excluded from the study; a total of 44 patients (34 female and
10 male, mean age 70 ± 14.02) were evaluated before and after back school treatment.

We observed a global pain reduction in patients with LBP that attended the back-school program.
This reduction was also associated with clinical improvement of stability, as shown by the POMA
balance score increase. When the postural analysis data were examined, a variation was not registered
when considering the opened eyes test; instead, in the closed eyes test a significant reduction of the
length of CoP was registered (Table 1).

Table 1. Clinical scale and instrumental evaluation before and after back school cycle.

T0
(Median ± s.d.)

T1
(Median ± s.d.)

p Chi
Quadro

df

POMA Balance 12.88 ± 2.00 13.86 ± 1.92 0.000 17.19 1

NRS 6.11 ± 1.57 4.32 ± 1.99 0.000 33 1

ODI 30.51 ± 13.29 28.72 ± 14.91 0.60 0.273 1

Stabilometria Area OE (mm2) 210.27 ± 1012.07 231.84 ± 1007.86 0.75 0.1 1

Lenght OE (mm) 115.24 ± 76.58 126.28 ± 99.40 0.15 2.07 1
Area CE (mm2) 446.73 ± 2540.10 591.74 ± 3412.65 0.42 0.64 1

Length OE (mm) 167 ± 308.20 162.33 ± 221.95 0.02 4.9 1

TUG Total time (s) 13.37 ± 3.86 11.25 ± 2.16 0.00 19.70 1
Stand up (s) 1.65 ± 0.37 1.47 ± 0.29 0.02 5.15 1

Sitting (s) 2.20 ± 0.60 1.99 ± 0.42 0.50 0.44 1
Rotation velocity (◦/s) 77.71 ± 19.80 83.23 ± 22.45 0.04 8.52 1

Legend: POMA= performance-oriented mobility assessment; NRS= numeric rating scale; ODI=Oswestry disability
index; OE = opened eyes; CE = closed eyes; TUG = timed up and go; s = second.

It is interesting to notice that there was a significant reduction of the total duration of the TUG
test, and also of the stand-up and sitting phases (Table 1).
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The BS groups showed significant improvement in several instrumental TUG (iTUG) parameters,
especially in temporal (duration and velocity) parameters.

The BS treatment significantly reduced the total duration of the task and its sub-phases: the
stand-to-sit sub-phase and the sit-to-stand phase, the mean velocity of TUG, and of mid-turning and
final turning sub-phases increased at a significant level.

4. Discussion

As far as we know, this is the first paper to evaluate not only the pain aspect of lower back
syndrome after treatment, but also the functional aspect that is not strictly related to this pathology
(i.e., timed up and go evaluation). The TUG test provided in this study is an instrumented TUG. While
the TUG test taken by an expert operator using a stopwatch has excellent reliability, accuracy, and
precision, this measure is subjective and operator-dependent (i.e., a less experienced clinician could
affect the quality of the measure). The use of the stopwatch in the clinical setting has several limitations:
(a) the identification of the start time and the end time are not easily detectable by the operator; (b) the
evaluation of the TUG time requires a high level of attention by the operator, which could decrease
when many trials are required; (c) the quantification of sub-phases is not possible.

The instrumented TUG analysis is of considerable interest, as it evaluates the various sub-phases
of the test (chair transition, straight-ahead gait, and 180◦ turn); this allows a better understanding of
movement strategies. Considering, for example, the 180◦ turn, there is a variability between subjects
with different gaits and with or without balance impairment. A further variation is introduced for
patients using an assistive device, such as a walker.

Therefore, the IMU technology implementations for the iTUG quantification of pre- and
post- specific therapies have several benefits, including additional performance parameters, generation
of reports, fast assessment, and that the patient does not need to be undressed. In addition to this, it is
important to consider the ability for self-administration at home and in a clinical environment. This
could provide more details and insights about patient performance [16]. Although other variables
could have been derived using the data provided by the wearable sensor, as the purpose of this work
was to analyze the TUG, which is an automatic functional clinical test, the analysis focused mainly
on the evaluation of the duration of the task included in the test. It is known that lower back pain is
associated with functional impairment. In particular, the opportunity to analyze the different phases
of this test using an inertial measurement instrument made it possible to assert that back school
therapy may improve back function, increasing the promptness to position changes and speeding
up movements. The changes observed with iTUG represent the effect of the reduction of LBP on
functional ability. As the patients experience pain during the movement, the biomechanical result is
a slow movement and a higher TUG time. After treatment, the patients feel better, experience less
pain, and can get out of the chair faster. No changes are evidenced as far as postural acquisition is
concerned. In maintaining postural control, pain in the lumbar area has a minor effect in terms of
functional limitation, and therefore one can expect to have no obvious variations in postural control.

5. Conclusions

In conclusion, through the quantitative evaluation of the iTUG test, it is proven that the BS
could be considered a promising new rehabilitative treatment for LBP in improving motor functional
limitations. Moreover, as the IMU sensor can provide data that might provide many more temporal
and kinematic measures after successive elaboration, future development of this study should provide
additional data for a more detailed analysis, in order to show more important changes in patients’
movement patterns after the treatment.
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Abstract: Mobile gait analysis systems using wearable sensors have the potential to analyze and
monitor pathological gait in a finer scale than ever before. A closer look at gait in Parkinson’s
disease (PD) reveals that turning has its own characteristics and requires its own analysis. The goal of
this paper is to present a system with on-shoe wearable sensors in order to analyze the abnormalities
of turning in a standardized gait test for PD. We investigated turning abnormalities in a large cohort of
108 PD patients and 42 age-matched controls. We quantified turning through several spatio-temporal
parameters. Analysis of turn-derived parameters revealed differences of turn-related gait impairment
in relation to different disease stages and motor impairment. Our findings confirm and extend
the results from previous studies and show the applicability of our system in turning analysis.
Our system can provide insight into the turning in PD and be used as a complement for physicians’
gait assessment and to monitor patients in their daily environment.

Keywords: Parkinson’s disease; pathological gait; turning analysis; wearable sensors; mobile gait analysis

1. Introduction

Gait is an important part of mobility that is impaired in neurodegenerative diseases like Parkinson’s
disease (PD). As the disease progresses, gait fluctuations become more severe. Different locomotor patterns
in gait, such as straight walking and turning, require different levels of functioning and coordination.
For a person with impaired mobility caused, for example, by PD, turning is challenging and potentially
risky, even more than straight walking [1,2]. There have been attempts to identify and characterize turning
abnormalities in order to complement the physicians’ assessment of pathological gait.

Studies showed that turning deficits are manifested in mild PD even when there are no signs
of impairment in straight walking [3]. Difficulty while turning may lead to posture instability and,
potentially, even falls [4,5]. Risk of falling is higher during turning compared with straight walking [4,5].
Furthermore, deterioration of motor function during turning can cause progressive episodes of freezing
of gait (FoG) [6–8].

Some studies have attempted to utilize the definition of disease stages and motor impairments by
UPDRS-III [9] and H&Y [10] clinical scores and objectively assess turning deficits [11–15]. Studies on
spatio-temporal parameters quantifying turning have demonstrated decreased speed, longer duration
of turning, and a larger number of strides as the disease progresses [3,16–18]. Postural stability also
decreases during turning for PD patients in comparison to healthy controls, particularly during fast
walking [19].
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Outside the clinics and in the majority of standardized clinical tests, a gait sequence includes
both straight walking and turning. In order to differentiate between them during the course of a
gait, different definitions of turning have been presented in the literature. For example, turning
was defined as the movement between two pre-defined points that indicated the initiation and
termination of turning [5]. Salarian et al. [17] used mathematical modeling in order to isolate turns
from the whole gait sequence. Spatio-temporal parameters extracted from individual strides are
different in straight walking compared to turning. Many studies used characteristics and statistics
of spatio-temporal gait parameters to define turning [3,6,20]. Without a standard turning definition,
studies then presented some clinical validations to support their definitions—for example, they showed
that turning parameters were correlated to the established clinical scores [3,6,20].

Gait and turning can be measured by a variety of systems—from accurate but stationary motion
capture systems [19] to small wearable sensors [3,17]. The focus of this study is on wearable sensors,
since they give the opportunity to perform long-term monitoring of PD patients. Sensor placement
plays a crucial factor in designing wearable systems. Many turning studies place the sensors on the
upper extremity [3,6,20]. One advantage is that turning is easily detectable in the sensor signals [17].
However, gait disturbances such as FoG cannot be detected clearly from sensors on the upper extremity.
Such systems still need additional sensors on the lower extremity in order to quantify turning in terms
of spatio-temporal parameters [3,17]. In contrast, sensors on the lower extremity and, in particular,
on the shoe provide higher biomechanical resolutions. Panebianco et al. [21] examined different
sensor locations and showed that as sensors get closer to the foot, higher accuracy for gait events and
parameters can be obtained. Moreover, for long-term monitoring of patients, sensors integrated in the
footwear are less obtrusive and stigmatizing.

In order to measure gait, we used wearable sensors mounted on the lateral side of the shoe.
In order to isolate turning from gait, we used the statistics of spatio-temporal parameters. The goal of
this study is to show the applicability of the system in the objective analysis of turning and to evaluate
whether it confirms the findings of other studies. To this end, we first introduce our novel turning
isolation algorithm targeting data from a standardized 4 × 10 m gait test measured with wearable
sensors placed on the shoe. Then, we quantify the isolated turnings through several spatio-temporal
parameters that proved to be effective in detecting pathological gait [22–24]. Through meticulous
statistical analysis, we evaluate the turning abnormalities in a large PD cohort. The value of this
objective turning assessment was clinically validated by the correlation of the turn-derived parameters
to clinical scores, including motor impairment and disease stages in PD.

2. Methods

2.1. Wearable Measurement System

For our experiments, data was recorded with a Shimmer 2R/3 Inertial measurement unit (IMU)
(Shimmer Sensing, Dublin, Ireland), measuring acceleration and angular velocity at 102.4 Hz. Each
unit consisted of a tri-axial accelerometer (range Shimmer 2R: ±6 g, Shimmer 3: ±8 g) and a tri-axial
gyroscope (range Shimmer 2R: ±500◦/s, Shimmer 3: ± 1000◦/s). The sensor units were mounted
laterally on each shoe below the patient’s ankle. The measurements from both feet were included in
the experiments. Figure 1 shows the sensor placement on the shoe and the axes definition.

2.2. Study Population

We recruited 108 PD patients during their regular visit in the movement disorder outpatient
center at the University Hospital Erlangen. Sporadic PD was defined according to the guidelines of
the German Association for Neurology (DGN), which are similar to the UK PD Society Brain Bank
criteria [25]. Patients had to be able to walk independently (H&Y < 4, UPDRS gait item < 3) [10,26].
All PD patients were clinically (UPDRS-III) and biomechanically (gait analysis) investigated in stable
ON medication without the presence of clinically relevant motor fluctuations during the assessments.
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We had an exclusion criterion for a severe cognitive impairment. To obtain quantitative gait data from
controls, we recruited 42 age-matched controls with no signs of PD and/or other motor impairments.
With respect to age, height, and body-mass-index (BMI), PD and control cohorts were matched
(see Table 1). Data regarding laterality of the disease can be found in Table 1, where the UPDRS
sub-items of rigidity lower and upper extremities were reported. This data shows that patients
affected on the right and left sides are almost equally represented in our cohort. Written informed
consent was obtained from all participants (IRB-approval-No. 4208, 21.04.2010, IRB, Medical Faculty,
Friedrich-Alexander University Erlangen-Nürnberg, Germany).

Turning Angle

Path
Length

Stride 
Length

10m
(a) (b)

Swing 
Width

Figure 1. (a) Shimmer sensor placement and axes definition. (b) Definition of turning angle, stride
length, path length, and swing width.

Table 1. Clinical characteristics of patients with Parkinson’s disease (PD) and healthy controls.

PD (N = 108) Control (N = 42)

Age (years) 57.61 ± 10.42 [36–85] 58.78 ± 11.14 [41–84]

Sex (Male/Female) 74/34 25/17

Height (m) 1.74 ± 0.1 1.73 ± 0.07

BMI 25.81 ± 3.71 26.48 ± 3.76

Hoehn and Yahr stage 2.06 ± 0.84

I (<1) 28

II (1-2] 34

III (2<) 46

UPDRS-III total 18.24 ± 9.8 [2–50]

Low [0–12] 36

[13–22] 38

High [23<) 34

Laterality based on Rigidity item
(upper and lower extremity)

No rigidity or both sides 22%

Right side 42%

Left side 36%

Gait item

0 [0] 34

1 (0–1] 62

2 (1–2] 12

Postural stability item

0 [0] 46

1 (0–1] 49

2 (1–2] 13
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Participants walked freely at a comfortable, self-chosen speed in an obstacle-free and flat
environment for 4 × 10 m. After each 10 m of straight walking, participants were instructed to
turn 180◦ at a preferred direction.

2.3. Turning Isolation

The standardized 4 × 10 m walking included four straight gait bouts and three turnings in between
each two straight bouts. The goal was to isolate the three turnings from the whole gait sequence. To this
end, the gait sequence was segmented to individual strides semi-automatically [27,28]. These strides
should then be categorized as straight walking, turning, and transitions between straight walking and
turning. In order to differentiate between these categories, we used statistics of spatio-temporal parameters.

The change of azimuth between two successive mid-stances was defined as the turning angle
between consecutive strides (see Figure 1). The absolute values of turning angles were considered
since the sign of values only showed the direction of the turnings, which is not of importance in our
analysis. Similarly to Mariani et al. [20], strides with turning angles larger than 20◦ were classified
as turning.

In order to identify transition strides in a gait sequence [20], again, statistics over turning angles
were used, since this parameter is the best indicator of spatial foot movement during turning (see
Figure 1). The turning strides with angles larger than 20◦ were eliminated from the sequence. A gamma
distribution was then fitted to the tuning angels from the rest of the strides. We chose gamma
distribution due to the fact that the distribution is one-hand tailed, in a way that strides from straight
walking mainly centers on the mean. The highest 10% of the distribution was classified as the
transition if the strides were adjacent to the turning strides. In fact, the strides in the highest 10% of the
distribution were considered as anomalies in the distribution of straight strides. For turning analysis,
we only considered turning and transition strides.

2.4. Turning Parameters

After the turning isolation, we had three sets of strides related to three turns in the standardized
test. We extracted spatio-temporal parameters from these strides based on the algorithms in previous
works [20,22]. The algorithms for obtaining parameters from our wearable sensor-based system were
validated previously using a gold standard, such as an optical motion capture system or instrumented
walkway. To quantify turning, two sets of parameters were computed for each turning—per-stride
parameters and global parameters per-turn.

For the first group, a set of parameters was extracted from each stride: stride time, path length
(normalized on patient’s height), stride length (normalized on patient’s height), stride velocity, and
swing width. In turning, it is very likely that a stride has a curved trajectory, rather than a straight line.
In such cases, length of movement in the straight line between the beginning and end of a stride is
measured as stride length. In addition, path length was introduced to measure curve length between
the beginning and end of a stride (see Figure 1). All these parameters were calculated from mid-stance
of a stride to the successive mid-stance.

For the global parameters, we calculated the number of strides and total duration per turn.
This set of parameters measures characteristics of the whole turn.

2.5. Statistical Analysis

In order to determine whether parameters can distinguish between different groups (controls and
three stages of disease (see Table 1)), we applied the one-way analysis of variance (ANOVA). When a
significant difference was found, a post hoc analysis was performed using Bonferroni’s test to obtain a
pairwise comparison between the groups. The significance level was set at p < 0.05. For measuring
effect sizes, η2 was defined as the ratio of variability between groups to the total variation in the data
that was used. Cutoff values for small, medium, and large effect sizes were set at 0.01, 0.06, and 0.14,
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respectively, according to Cohen [29]. Statistical analysis and parameter computations were performed
using MATLAB R2015a.

3. Results

As the disease progresses, gait impairment associated with deteriorated mobility becomes more
prevalent. In this section, we examined whether spatio-temporal parameters that characterize turning
were able to reflect gait impairments.

Figures 2 and 3 show spatio-temporal parameters that are characteristic of turning for global
and per-stride parameters, respectively. Clinical scores in PD studies determine the severity of gait
impairment and disease stages: the H&Y, UPDRS-III score, and the UPDRS-III sub-items for gait and
postural instability. Patients with different levels of disease severity (see Table 1) and controls were
statistically compared using ANOVA, followed by Bonferroni’s post hoc test.
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Figure 2. Global parameters characterizing turning: number of strides per-turn and turning time were
calculated for controls and PD patients grouped according to H&Y disease stage, UPDRS-III total
score, and the single items, gait and postural instability of the UPDRS-III. Group data are displayed
as mean ± SEM and were compared using one-way ANOVA followed by Bonferroni’s post hoc test,
where * indicates p < 0.05.

As the disease progresses, stride velocity, path length, stride length, and swing width (per-stride
parameters) decreases, and as a result, patients need more strides and time (global parameters) to
complete a turn. This can be observed for all clinical scores, although the two sub-items of gait and
postural instability are showing larger differences between stages of the disease. Stride time shows no
clear change between different groups.

Global parameters showed that PD patients, in contrast to controls, need significantly more
time and a larger number of strides to complete a turn (see Figure 2). Number of strides per turn,
in particular, shows a significant difference between the control and even early stage of the disease
for the UPDRS-III score and its two sub-items. Moreover, there are significant differences between
stages of the disease in most comparisons. Per-stride parameters, except stride time, show a significant
difference between the controls, mild, and severe stages of the disease for all clinical scores. Stride
velocity, stride length, path length, and swing width are able to differentiate disease severity by means
of all tested clinical scores (see Figure 3).

To quantify effect sizes, η2 is reported in Table 2. The effect sizes range from small to large.
The largest effect sizes are obtained consistently over all clinical scores with p < 0.001 by the global
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parameters, number of strides per turn, and turning time. Path length showed consistently higher
effect sizes than stride length, which suggests that it is a more meaningful parameter for estimation of
spatial foot displacement in turning. The effect sizes of per-stride duration are very small.
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Figure 3. Per-stride parameters characterizing turning: stride velocity, path length, stride length, and
swing width were calculated for controls and PD patients who were grouped according to the H&Y
disease stage, UPDRS-III score, and the single items, gait and postural instability, of the UPDRS-III.
Group data are displayed as mean ± SEM and were compared using one-way ANOVA, followed by
Bonferroni’s post hoc test, where * indicates p < 0.05.
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Table 2. ANOVA test: η2 values for different parameters and clinical scores. Values with * correspond
to p < 0.001. Bold font indicates values with strong effect sizes.

Parameters H&Y UPDRS Gait Postural Instability

Number of Strides per-Turn 0.172 * 0.2 * 0.202 * 0.232 *

Turning Time 0.149 * 0.199 * 0.187 * 0.228 *

Stride Velocity 0.054 * 0.057 * 0.06 * 0.069 *

Path Length 0.054 * 0.054 * 0.06 * 0.063 *

Stride Length 0.03 * 0.03 * 0.034 * 0.038 *

Mid Swing 0.034 * 0.035 * 0.039 * 0.029 *

Stride Time 0.003 0.003 0.002 0.007 *

4. Discussion

The aim of the present study was to investigate whether an on-shoe, sensor-based gait analysis
system reflected turning abnormalities and whether it could objectively complement physicians’ gait
assessments. To this end, we recruited 108 PD patients and 42 age-matched controls, and measured
their gait during a 4 × 10 m walk by using our system. We then isolated the turnings from the
whole gait sequence and quantified them using several spatio-temporal parameters. The parameters
extracted using an on-shoe wearable system were previously validated against gold-standard systems,
such as an optical motion capturing system [30] or instrumented walkway [22], and results indicated
their technical validity. The clinical validation that followed turn quantification showed that turning
parameters extracted using our measurement system and the turn isolation algorithm can effectively
reflect gait abnormalities and be successfully used for the objective assessment of turning.

There have been many studies regarding turning analysis in PD [3,17,20]; yet, there is no unique
way to define turning. Turning has been defined using mathematical modeling [17], statistics of
spatio-temporal parameters [20], or the path between two pre-defined points [5]. One reason for
these diverse turning definitions is that, basically, there is no standard way to determine the start
and end of the turning. Common gold standards, such as motion-capture systems or videos, cannot
provide a ground truth for turning. Since transitions between straight walking and turning happen
gradually, it is inherently difficult to determine a specific start- and end-point for turning. A technical
validation seems impractical with the usual gold standards. Nevertheless, a specific definition of
turning, supported by some clinical validations that show its usability, can be an asset in objective gait
assessment [3,17,20].

Turns can have different lengths, angles, and bases of support. We can expect that different types
of turning require different levels of coordination [19]. In this study, we analyzed 180◦ during the
4 × 10 m walk test. Turnings with 180◦ were also analyzed in other standardized tests, like Timed
Up and Go (TUG) [16,31,32]. We studied a 4 × 10 m walk because it includes three turns, which makes
it statistically more meaningful to draw any general conclusions from the experiments. Regardless
of the type of the turns, the underlying concepts that were used in this study are valid, although the
turning isolation algorithm may need some adjustments to distinguish between straight walking and
turning in an optimal way.

The findings of this study confirm the results from other studies [11–15], showing that spatio-
temporal parameters can manifest gait deficits even in early stages of the disease. Results show that as
the total duration of a turn increases, the stride length and velocity decreases and more strides are
needed to complete a turn in the PD population. Such changes in parameters were scaled with PD
severity. Global parameters of turning, such as the number of strides per turn and the total duration of
the turn, can distinguish different groups. This is an important finding for PD studies, because gait
problems are difficult to detect by physicians in early stages of the disease, whereas sensor signals
can capture subtle differences between a healthy and abnormal gait in the early stages of the disease.
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The large effect sizes for global parameters further emphasized the efficiency of these parameters for
yielding statistical differences between different groups. Previous studies showed similar results for
such global turning parameters [3,16,17]. Per-stride parameters of stride velocity, path length, stride
length, and swing width can distinguish the majority of groups, although to a lesser extent in contrast
to global parameters. For example, the distinction between controls and early-stage PD patients is
more effective in global parameters. Furthermore, the effect sizes for per-stride parameters are in the
range of small to medium (see Table 2), which again proves to be less effective than global parameters.

The total duration of turns showed a clear correlation with clinical scores, but such a correlation
has not been obtained for per-stride timing. We may be able to explain this by considering two kinds
of compensatory actions taken by patients in order to complete the turning. One compensatory action
is to take smaller strides, and the other one is having longer pauses in a mid-stance phase in order to
secure balance. While the first compensatory action decreases the per-stride time, the latter increases it.
These compensatory actions may be different from patient to patient, and a patient may take both of
these actions to safely complete a turn. Hence, overall, we cannot see any clear increase or decrease in
the per-stride duration; however, the total turn duration did increase, because we may have a decrease
of time per stride but patients take more strides that compensate for the decrease in time per stride.
Having a long pause at mid-stance phases did not have any effect on stride and path length. These
parameters decrease as the disease progresses.

Established clinical scores have no sub-item to assess specific characteristics of turning. Turning
is evaluated as part of the gait in general; yet, our findings show that clinical scores reveal turning
deficits at different levels. Parameters consistently show a higher correlation with gait and postural
instability sub-items than with H&Y and UPDRS-III global scores, both in terms of p-values and effect
sizes. Postural instability and gait sub-items are widely used for assessing gait, balance, and risk of
falling in PD patients [23]. These two sub-items effectively demonstrate turning abnormalities, even at
early stages of the disease (see Figure 2).

Despite the importance, there has not been a study to objectively compare straight walking and
turning parameters in order to understand which set of parameters reflects gait abnormalities better.
However, parameters quantifying straight walking differentiate between controls and PD patients
in more moderate stages of the disease or higher levels of motor impairment [23]. Spatio-temporal
parameters characterizing gait abnormalities have been widely used in data-driven applications,
from PD diagnosis to disease monitoring [20,33]. However, most of such studies focus only on
analyzing straight walking. Our results suggest that turning analysis may improve the performance of
data-driven methods in medical applications.

One of the key goals of mobile gait analysis is to monitor patients outside of the clinics. Long-term
monitoring of patients during the course of a day can provide better insight into their disease condition,
in contrast to time-limited examinations inside the clinics [3]. Moreover, continuous monitoring of
patients can be supplemented with preventative strategies for falling and FoG. The fact that turning
during standardized tests demonstrates clear signs of deficiency emphasizes that turning analysis
needs to be integrated into the long-term gait analysis. Turning isolation during long-term monitoring
is even more challenging than in a standardized test, since the strides can be highly variable and
different types of turning may happen within the course of a day. Some studies successfully addressed
turning analysis in long-term monitoring [3,6], although they did not use on-shoe sensor systems.
More research is needed to understand how findings of the current study can be transferred using an
on-shoe sensor system to long-term monitoring.

Laterality of PD is another important factor in turning analysis, since turning to the direction of
the most affected side is more challenging for patients. However, analyzing the laterality of the disease
was beyond the scope of this study—here, the patients were instructed to turn at a convenient speed
and preferred direction.

A limitation of our study is that we were, at this stage, not able to analyze the asymmetry between
the left and right foot, since the sensors were not synchronized. Even better results may be obtained by
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an experiment design that takes into account the specific characteristics of PD patients and assessments
during OFF medication.

5. Conclusions

Mobile gait analysis using wearable sensors offers elaborate assessments of pathological gait,
leading to deeper insight into the motor deficits of PD. A high level of deficiency has been frequently
reported for turning in PD. We investigated the feasibility of turning analysis during standardized gait
tests using on-shoe wearable sensors. Turning measurements in our experiments clearly demonstrated
turning deficits in Parkinson’s patients. However, global parameters proved more effective than
per-stride parameters. This should be taken into account in designing gait analysis systems, and
has an important implication for PD clinical examinations, since physicians can readily assess global
parameters. The current result is in alignment with other studies of turning in Parkinson’s patients,
which proves the feasibility of turning analysis using on-shoe sensor systems. The results of the current
study can be applied to studies evaluating turning inside the clinic, and provide useful insight into
long-term monitoring outside the clinic.
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Abstract: Despite existing evidence that gait disorders are a common consequence of severe traumatic
brain injury (sTBI), the literature describing gait instability in sTBI survivors is scant. Thus, the present
study aims at quantifying gait patterns in sTBI through wearable inertial sensors and investigating
the association of sensor-based gait quality indices with the scores of commonly administered
clinical scales. Twenty healthy adults (control group, CG) and 20 people who suffered from a sTBI
were recruited. The Berg balance scale, community balance and mobility scale, and dynamic gait
index (DGI) were administered to sTBI participants, who were further divided into two subgroups,
severe and very severe, according to their score in the DGI. Participants performed the 10 m walk,
the Figure-of-8 walk, and the Fukuda stepping tests, while wearing five inertial sensors. Significant
differences were found among the three groups, discriminating not only between CG and sTBI,
but also for walking ability levels. Several indices displayed a significant correlation with clinical
scales scores, especially in the 10 m walking and Figure-of-8 walk tests. Results show that the use of
wearable sensors allows the obtainment of quantitative information about a patient’s gait disorders
and discrimination between different levels of walking abilities, supporting the rehabilitative staff in
designing tailored therapeutic interventions.

Keywords: wearables; inertial sensors; traumatic brain injury; dynamic balance; gait disorders; gait
patterns; head injury; gait symmetry; gait smoothness; acceleration

1. Introduction

Head injuries are considered a major health problem as they are associated with high mortality
and disability in young adults (<45 years of age) [1,2]. Nearly 70% of all brain-injury cases are males [3],
and most events are caused by falls (28%), followed by motor vehicle accidents (20%) and blows
(19%) [4]. Traumatic brain injuries (TBI) impress a significant burden on the health care system,
due to the need for therapy to address physical, communicative, and psychological problems [5].
Costs are usually more elevated when the traumatic brain injury is considered severe [5]; that is
with an initial Glasgow coma scale score (GCS) of 8 or less [6]. Neuropsychological and cognitive
impairments, such as anxiety and depression, selective/sustained attention, language, and executive
function deficits have been well documented in the literature [7–12]. Less attention has been placed on
motor impairments, in striking contrast with available data on other neurological populations, such as
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stroke and Parkinson’s disease ones [13–18]. The available studies mainly focused on impaired balance
and altered coordination. Specifically, Rinne and colleagues [19] described that well-recovered men
with TBI had impaired balance and agility compared to healthy controls. A recent review performed
by Williams and colleagues [20] evidenced that people with TBI walked more slowly than healthy
controls, primarily due to reduced step length. A few authors emphasized the impact of post-traumatic
parkinsonism or post-traumatic cerebellar syndrome [21,22], two conditions that interfere with walking
and balance performances in persons surviving from TBI. Additionally, balance abnormalities have
also been reported in terms of increased postural sway during quiet standing or functional tasks,
with altered sensory inputs [23–25]. Additionally, gait analysis has been used in few studies: Chou
and colleagues [26] showed that people who suffered from TBI usually present a gait pattern with
a significantly slower speed and a shorter stride length, confirming previous results [27]. Basford
and colleagues [28] reported that gait analysis, balance, and vestibular testing could document subtle
biomechanical changes among participants with TBI, suggesting the appropriateness of gait and
balance testing in this population, even when motor disorders are not clinically evident.

Taken together, evidence exists for persistent motor deficits after TBI. However, these studies have
focused on mild (GCS > 13) and moderate (GCS between 9 and 13) TBI, and to the authors’ knowledge,
no quantitative information is available about motor ability in people who have incurred a severe TBI
(sTBI). An objective characterization of their level of motor impairment could be an important step in
the rehabilitation process of this population, helping in obtaining not only physical improvements, but
also increasing the independence in daily life and the overall quality of life. This characterization, in
order to be helpful and informative, should be ecological and as non-intrusive as possible.

In this framework, attention is growing on miniaturized and wearable instruments that
quantify movement patterns in a non invasive way: inertial measurement units (IMUs), embedding
accelerometers and gyroscopes, have been widely used in the last two decades since they present
many advantages compared to the traditional gait analysis approach based on stereophotogrammetry
and force platforms. From the data measured by these units, spatiotemporal gait parameters [29] and
stability-related parameters [13,30] can be extracted, allowing fall risk to be assessed [31], and allowing
one to differentiate gait patterns between healthy and pathological populations [13,32–34]. However, in
the sTBI population, an instrumented approach with IMUs has never been proposed and no information
is available about their capability to discriminate among different levels of walking ability, as defined
by currently administered clinical scales, such as the dynamic gait index scale [35]. An integrated
approach based on the “gold standard” clinical evaluation method which relies on clinical scales and
the proposed sensor-based assessment would overcome the limitations of a subjective evaluation,
depending on the operator’s specific training, helping in revealing changes hardly detectable using
clinical scales. In addition, this integration would allow to assess patients in ecological contexts, where
they perform tasks more similarly to those of real life, providing objective motor ability characterization.

Given these premises, the aims of the present study were twofold: (i) to quantify gait patterns
in sTBI population using a set of wearable inertial sensors; (ii) to investigate the association of the
estimated gait quality indices with the level of walking ability and the scores of commonly administered
clinical scales. Specifically, spatiotemporal parameters and gait quality indices (dynamic stability,
symmetry, and smoothness) were investigated considering clinical performance tests commonly used
in the routine assessment [36,37].

The hypothesis is that the instrumental approach could be a valid support to the traditional
clinical evaluation in order to obtain quantitative and objective information about sTBI patients’ motor
impairments, discriminating between different levels of walking abilities, and helping clinicians with
defining and evaluating the efficacy of personalized rehabilitation treatments, as previously reported
in the literature [38]. Furthermore, the correlation analysis could help with simplifying and facilitating
routine evaluation in terms of time-consuming administration of clinical scales, possibly allowing a
reduction in the number of scales used, maintaining those necessary to characterize the investigated
population/motor task.
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2. Materials and Methods

The research was performed at the Santa Lucia Foundation and it was approved by the Local
Independent Ethics Committee of Fondazione Santa Lucia IRCCS (Rome, Italy) (protocol number:
CE/PROG.700).

2.1. Participants

Twenty healthy subjects (control group, CG) (age: 33.9 ± 9.5 years), 15 males and 5 females, and
20 people who suffered from a sTBI (age: 33.4 ± 10.5 years), 15 males and 5 females, were involved in
the study. This sample size complied with the minimum number of participants recommended by a
power analysis purposely performed (α = 0.05; power (1-β) = 0.95, effect size d: 0.7) for non parametric
comparisons [39]. Exclusion criteria for CG were the presence of any orthopedic, neurological, or other
co-morbidities which could have influenced the motor performance. Inclusion criteria for sTBI were:
(i) age between 15 and 65 years; (ii) Glasgow coma scale (GCS) score ≤ 8 (used to objectively describe
the severity of impaired consciousness at the time of injury) [6]; (iii) level of cognitive functioning
(LCF) ≥ 7 [40]; (iv) presence of disturbances in static and dynamic balance; (v) ability to understand
verbal commands. Almost all the patients selected suffered from a sTBI as a consequence of a traffic
accident (19 out 20 participants), whereas one person suffered from a sTBI due to a fall.

2.2. Procedures

2.2.1. Clinical Assessment

The following clinical scales were administered by an expert physiotherapist to all sTBI participants,
to assess static and dynamic balance, ambulation skills, and mobility deficits:

• Dynamic gait index (DGI)—to assess a subject’s ability to modify gait in response to changing task
demands. It consists of items rated from 0 to 3 (0 = severely impaired; 3 = normal performance),
yielding a maximum score of 24 points. A score lower than 19 points has been associated with
impairment of gait and fall risk [35,41].

• Berg balance scale (BBS)—to measure 14 different tasks related to balance and postural control.
It is scored from 0 to 4, with 0 indicating that the subject is unable to perform the task and 4 that
the subject fully meets the most difficult criteria required for the task [42].

• Community balance and mobility scale (CB&M)—to assess specific aspects of balance and mobility
which are necessary for independent functioning within the community [43]. This scale includes
several challenging tasks and it is based on 19 tests. Higher scores are indicative of better balance
and mobility.

To codify for different levels of walking ability, sTBI patients were further divided into two
sub-groups, according to their score in the dynamic gait index clinical scale: persons with a score >19
were considered severe (10 people, sTBI-1), while those with a score ≤ 19 were considered very severe
(10 people, sTBI-2), according to [35]. The demographic characteristics of each subgroup are reported
in Table 1.

Table 1. Demographic and anthropometric characteristics of the control group (CG), severe traumatic
brain injury 1 (sTBI-1), and sTBI-2. Mean ± standard deviation values are displayed.

CG sTBI-1 sTBI-2

Nr. of Participants 20 10 10
Nr. of Males 15 8 7
Age [Years] 33.9 ± 9.5 33.2 ± 9.6 36.1 ± 13.1

Body Mass [kg] 78.3 ± 14.9 75.9 ± 16.2 71.0 ± 14.7
Body Height [m] 1.78 ± 0.09 1.73 ± 0.11 1.70 ± 0.11

Time Since Trauma [days] - 308 ± 182 512 ± 476
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2.2.2. Motor Assessment

Each participant was asked to perform three different motor tasks in a randomized order: the
10 m walk Test (10mWT), the figure-of-8 walk test (F8WT), and the Fukuda stepping test (FST). All
tests were carried out in a fully dedicated quiet area at the Santa Lucia Foundation, where the surface
was accurately kept flat, and participants were asked to stay barefoot and to stand upright for at least 5
s at the beginning and at the end of each trial. Tasks were carefully explained and demonstrated by
an instructor before the testing. The instructor also gave the patients start and stop commands and
stayed close to participants to prevent dizziness and/or falls. A detailed description of the motor tasks
is reported below.

10 m Walk Test (10mWT)
The 10mWT is a widely used and recommended test for measuring gait speed in different

populations [44]. The experimental protocol of the assessment was selected according to previous
studies [13,45]: it consists of walking on a straight 14 m long walkway for three repetitions at the
participant’s preferred walking pace, with the middle 10 m marked on the floor and considered as
steady-state walking for further analysis. The time taken to walk the middle 10 m was measured using
a stopwatch and walking speed was calculated by dividing the distance covered (i.e., 10 m) by the
time taken.

Figure-of-8 Walk Test (F8WT)
The F8WT requires a person to walk a figure-of-8 shape, as illustrated in Figure 1, marked on

the floor with tape, with each circle diameter of 1.66 m (5.44 ft) [46]. Participants were instructed: (i)
to stand still with feet side-by-side in the start position facing the “8”; (ii) to begin walking at their
preferred pace when ready; (iii) to stop when returning to the start position, placing feet side-by-side
again. The test was performed three times for each F8WT direction (clockwise and counterclockwise),
alternating the two directions, and the entire trial was considered for further investigations.

Figure 1. Figure-of-8 shape used for the figure-of-8 walk test (F8WT). Clockwise and counterclockwise
directions are indicated with grey and black arrows, respectively.

Fukuda Stepping Test (FST)
The FST is a test used for the diagnosis of vertigo-associated disease [47] and an instrumented

version of this test has been recently proposed in the literature [48] and was adopted in this work.
Participants were instructed to stand upright blindfolded with both arms frontally outstretched,
creating a 90◦ angle between the arms and the body. Then, they were asked to step on the spot for
one minute and to remain still in the final position. Lateral and forward displacements, as well as the
amount and side of rotation, were marked on the floor by a piece of tape and subsequently reported as
clinical FST parameters. For what concerns the sensor-based parameters, the first and last three strides
were discarded in order to evaluate only steady-state stepping.
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2.3. Equipment

While performing the three above mentioned motor tasks, each participant was equipped with
five synchronized inertial measurement units (IMUs) (128Hz, Opal, APDM, Portland, Oregon, USA):
one located on the occipital cranium bone close to the lambdoid suture of the head (H), one on the
center of the sternum (S), and one at L4/L5 level, slightly above the pelvis (P), and were used to
assess the upper-body stability. The other two IMUs were located on both shanks, slightly above the
lateral malleoli, and were used for step and stride segmentation. Each IMU was securely fixed to the
participant’s body with Velcro straps, except for the head IMU, which was inserted in a tailored pocket
of a swim cap worn by each subject.

2.4. Data Processing

All data processing was performed using the Matlab software (The MathWorks Inc., Natick, MA,
USA). Each unit embedded three-axial accelerometers and gyroscopes (±6 g with g = 9.81 m·s−2, and
±1500 ◦/s of full-range scale, respectively) and provided the quantities with respect to a unit-embedded
system of reference. To guarantee a repeatable reference system for the three IMUs located on the
upper body, each unit was aligned with the corresponding anatomical axes (antero-posterior: AP,
medio-lateral: ML, and cranio-caudal: CC) following the procedure proposed by [49]. The following
spatiotemporal parameters were obtained, through a peak detection algorithm, on the ML angular
velocity signals measured by the two IMUs on the shanks: average stride duration (SD = time
to complete the test/total number of strides) and average stride frequency (SF = total number of
strides/time to complete the test). The following gait quality indices were estimated:

• Normalized root mean square (nRMS) values of the accelerations were calculated by dividing
the RMS, AP, and ML components by the CC component, at each upper-body level (P, S, H).
High RMS values have been associated with higher amount of acceleration, and hence, decreased
stability, as reported in [29].

• Attenuation coefficients (AC) [50] between each level pair of the upper-body, for each acceleration
component (j), defined as:

ACPSj =

(
1− RMSjS

RMSjP

)
,

ACPHj =

(
1− RMSjH

RMSjP

)
,

ACSHj =

(
1− RMSjH

RMSjS

)
.

Each coefficient represents the variation of the acceleration from lower to upper-body levels.
A positive coefficient indicates an attenuation of the accelerations, while a negative coefficient
indicates an amplification of the accelerations from the lower to the upper body level.

• Improved harmonic ratio (iHR), as proposed by [51], was calculated for each acceleration
component (j) measured at the pelvis level. This index is based on a spectral analysis of the
acceleration signals and is a measure of hemilateral symmetry when stepping (0% = total
asymmetry; 100% = total symmetry). It was calculated as follows:

iHRj =

∑
Power of intrinsic harmonics∑

Power of intrinsic harmonics +
∑

Power of extrinsic harmonics
·100.
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• SPectral ARC length (SPARC), as proposed by [52], calculated for each acceleration component (j)
measured at the pelvis level. The calculation of SPARC was performed as follows:

− න [( 𝟏
ῶ𝒄)𝟐ῶ𝒄𝟎 + (𝒅𝑨(ῶ)𝒅ῶ )𝟐]𝟏𝟐 𝒅ῶ; 𝑨(ῶ) =  𝑨(ῶ)𝑨(𝟎) ῶ𝒄 = 𝒎𝒊𝒏൛ῶ𝒄𝒎𝒂𝒙𝒎𝒊𝒏൛ῶ ∨ 𝑨(𝒓) < 𝑨,´ ∀𝒓 > ῶ , 

where A(ω̃) is the Fourier magnitude spectrum of the acceleration signal a(t) and A(ω̃) is the
normalized magnitude spectrum.

2.5. Statistical Analysis

Descriptive and inferential statistical analyses were performed using IBM SPSS Statistics software
(v23, IBM Corp., Armonk, NY, USA), and the alpha level of significance was set at 0.05. The normal
distribution of each parameter was verified using the Shapiro–Wilk test. As most of the parameters
were not normally distributed, the following non-parametric tests were performed:

• Mann–Whitney U test to investigate if significant differences existed between sTBI-1 and sTBI-2
for the clinical scale scores;

• Kruskal–Wallis H-test on the estimated biomechanical parameters, to investigate if significant
differences existed among the different levels of walking ability (“group” factor: CG, sTBI-1,
or sTBI-2);

• Spearman’s rank correlation coefficient (q) between gait quality indices and clinical scale scores,
considering the whole sTBI group.

3. Results

3.1. Clinical Scale Score Results

The scores of the administered clinical scales for sTBI-1 and sTBI-2 are reported in Table 2. Results
show that sTBI-2 group (defined as very severe TBI according to DGI scores; see methods) presented
worse, statistically significant scores in the three clinical scales compared to sTBI-1.

Table 2. Clinical scales results for sTBI. Mean ± standard deviation values are displayed. Statistically
significant differences are indicated with *.

sTBI-1 sTBI-2 p-Value

Dynamic gait index (DGI) 22.1 ± 1.7 * 15.0 ± 3.0 * 0.000
Berg balance scale (BBS) 49.8 ± 2.1 * 42.4 ± 3.9 * 0.000
Community balance and
mobility scale (CB&M) 42.0 ± 14.0 * 15.5 ± 8.9 * 0.000

3.2. Spatio-Temporal Parameters and Clinical FST Parameters

Results of temporal (stride frequency and stride duration) and clinical FST parameters (lateral
and forward displacements; amount and side of rotation) for the three groups are reported in Table 3.
Statistically significant differences were present for all three motor tasks when comparing CG with
sTBI-2 and sTBI-1 with sTBI-2. In addition, statistically significant differences between CG and sTBI-1
were found in the spatio-temporal parameters of the FST. Concerning clinical FST parameters, no
statistical differences are displayed in terms of lateral and forward displacements, or amount and side
of rotation among the three groups. Walking speeds (mean ± standard deviation) obtained during
the 10mWT were: 1.48 ± 0.20, 1.10 ± 0.23, and 0.53 ± 0.20, for the CG, sTBI-1, and sTBI-2 groups,
respectively. Significant differences were found between CG and both sTBI-1 and sTBI-2, as well as
between sTBI-1 and sTBI-2.
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Table 3. Temporal and FST parameters. * indicates statistically significant differences between CG
and sTBI-2 (p < 0.001); § indicates statistically significant differences between sTBI-1 and sTBI-2 (p <
0.05); # indicates statistically significant differences between CG and sTBI-1 (p < 0.001). Clinical FST
parameters: the values of the antero-posterior (AP) and medio-lateral (ML) displacements, the amount
of rotation and the side of rotation of the three groups of subjects (CG, sTBI-1, sTBI-2) in the three tasks
are reported (mean ± standard deviation).

Stride
Frequency

Stride
Duration

Rotation Side
Displacement

AP ML

[Stridesxs−1] [s] [Degrees] [% Right] [cm] [cm]

10mWT

CG 0.9 ± 0.0 * 1.1 ± 0.1 * - - - -
sTBI-1 0.8 ± 0.1 § 1.2 ± 0.1 § - - - -
sTBI-2 0.7 ± 0.1 *,§ 1.4 ± 0.2 *,§ - - - -

F8WT

CG 0.8 ± 0.1 * 1.2 ± 0.1 * - - - -
sTBI-1 0.8 ± 0.1 § 1.2 ± 0.2 § - - - -
sTBI-2 0.7 ± 0.1 *,§ 1.5 ± 0.2 *,§ - - - -

FST

CG 0.8 ± 0.1 *,# 1.2 ± 0.2 # 66 ± 66 30 146 ± 71 44 ± 33
sTBI-1 0.6 ± 0.2 §,# 1.8 ± 0.9 # 27 ± 17 40 141 ± 38 45 ± 46
sTBI-2 0.5 ± 0.2 *,§ 2.0 ± 1.4 28 ± 23 50 101 ± 60 27 ± 31

3.3. Root Mean Square, Attenuation Coefficients, Improved Harmonic Ratio, and SPARC

Significant differences were found for the three motor tasks (10mWT, F8WT, and FST) when
comparing both sTBI against CG and sTBI-1 against sTBI-2. Results regarding the 10mWT, the F8WT,
and the FST are reported in Figure 2a–c, respectively.
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Figure 2. Normalized root mean square (nRMS) values, attenuation coefficients (AC), improved
harmonic ratio (iHR), and SPectral ARC length (SPARC) for the sTBI sub-groups and for CG in 10mWT
(a), F8WT (b), and FST (c). Medians and interquartile ranges are reported. AP, antero-posterior;
ML, medio-lateral; CC, cranio-caudal; P, pelvis; S, sternum; H, head. The horizontal lines indicate
statistically significant between-groups differences. (a) 10 m walk test. (b) Figure-of-8 walk test.
(c) Fukuda stepping test.

3.4. Association of the Gait Quality Indices with the Clinical Scale Scores

Correlation analysis (Table 4) shows that several indices displayed a significant correlation with
the clinical scales scores in the three motor tasks, especially in the 10mWT and F8WT.
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Table 4. Spearman’s correlation coefficients (p) between each estimated parameter and each clinical
scale. Statistical significance is indicated by asterisks (* p < 0.05; ** p < 0.001). Abbreviations: BBS, Berg
balance scale; DGI, dynamic gait index; CB&M, community balance and mobility scale, RMS, root
mean square; AC, attenuation coefficient; iHR, improved harmonic ratio; SPARC, spectral arc length;
AP, antero-posterior; ML, medio-lateral; CC, craniocaudal; P, pelvis; S, sternum; H, head.

10mWT F8WT FST

BBS DGI CB&M BBS DGI CB&M BBS DGI CB&M

RMS_P
AP −0.243 −0.309 −0.254 −0.337 −0.335 −0.398 0.043 0.103 0.118
ML −0.656 ** −0.467 * −0.605 ** −0.730 ** −0.666 ** −0.819 ** −0.404 −0.445 −0.500 *

RMS_S
AP −0.555 * −0.585 ** −0.679 ** −0.491 * −0.484 * −0.600 ** −0.495 * −0.655 ** −0.500 *
ML −0.583 ** −0.503 * −0.733 ** −0.571 * −0.463 * −0.749 ** −0.460 * −0.516 * −0.695 **

RMS_H
AP −0.674 ** −0.641 ** −0.712 ** −0.594 ** −0.611 ** −0.665 ** −0.353 −0.309 −0.246
ML −0.781 ** −0.705 ** −0.821 ** −0.796 ** −0.708 ** −0.839 ** −0.618 ** −0.506 * −0.660 **

ACPH

AP 0.535 * 0.577 ** 0.451 0.481 * 0.349 0.418 0.608 ** 0.550 * 0.512 *
ML 0.493 * 0.491 * 0.595 ** 0.631 ** 0.598 ** 0.637 ** 0.630 ** 0.481 * 0.623 **
CC −0.061 −0.076 0.004 0.057 0.059 0.182 0.544 * 0.551 * 0.567 *

ACPS

AP 0.495 * 0.443 0.588 ** 0.477 * 0.453 0.454 0.627 ** 0.699 ** 0.539 *
ML 0.126 0.159 0.309 0.181 0.090 0.279 0.254 0.122 0.391
CC −0.247 −0.286 −0.367 −0.251 −0.190 −0.368 0.093 −0.129 −0.072

ACSH

AP 0.287 0.197 0.242 0.395 0.302 0.402 0.368 0.207 0.330
ML 0.663 ** 0.516 * 0.612 ** 0.599 ** 0.497 * 0.486 * 0.553 * 0.466 * 0.372
CC 0.172 0.094 0.337 0.346 0.224 0.451 0.431 0.506 * 0.530 *

iHR

AP 0.423 0.507 * 0.605 ** 0.196 0.221 0.361 0.365 0.433 0.391
ML 0.149 0.319 0.356 −0.143 −0.127 −0.019 0.109 0.188 0.012
CC 0.734 ** 0.733 ** 0.677 ** 0.693 ** 0.667 ** 0.658 ** 0.016 0.272 0.023

SPARC

AP 0.205 0.051 0.170 0.384 0.308 0.411 −0.056 0.011 −0.061
ML 0.285 0.390 0.456 * 0.195 0.192 0.160 0.086 0.092 −0.056
CC 0.390 0.512 * 0.251 0.525 * 0.601 ** 0.547 * 0.217 0.211 0.114

4. Discussion

The aims of this study were to quantify gait quality of a sTBI population with different levels of
walking ability using a set of wearable inertial sensors and to investigate the association of the estimated
gait quality indices with the scores of commonly administered clinical scales. Results show that the
instrumented approach allows (i) obtainment of quantitative and objective information about patient’s
motor impairments; (ii) discrimination between different levels of walking abilities; (iii) exploration of
the relationship between the estimated gait quality indices and the clinical scale scores. As expected,
clinical scale scores displayed a consistent increasing trend from low to high walking ability levels,
showing statistically significant differences between severe (sTBI-1) and very severe (sTBI-2) TBI
participants (Table 2). A similar trend was observed when considering the spatio-temporal parameters:
for what concerns walking speed, statistically significant differences were found between the control
group (CG) and sTBI-2, and between sTBI-1 and sTBI-2 (Table 3). These results are consistent with the
existing literature about healthy people [13,53] and TBI participants [26], and confirm the relevance
of walking speed as an informative and concise parameter to discriminate between different level of
walking ability.

In addition, the values of stride frequency and stride duration obtained in this study are consistent
with previously reported results. In particular, in persons with sTBI, a reduced stride frequency,
along with an increased stride duration, may be related to post-traumatic Parkinsonism [22,54,55].
Furthermore, as suggested in [56], it can be speculated that people with sTBI increase their stride
duration in order to compensate for gait instability and counteract the fear of falling. This significant
gait impairment was still observed despite the provision of optimal medication therapy, confirming
the very close relationship between altered gait and postural instability in this population [57,58].

Interesting results come from the estimated gait quality indices: almost all parameters in the three
motor tasks were able to discriminate between CG and both sTBI groups, especially the sTBI-2, as
expected. The actual added value of the proposed approach, however, lies in its ability to detect possible
differences between sTBI-1 and sTBI-2, facilitating discriminating between different levels of walking
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ability. In this respect, in the 10mWT, the two sTBI sub-groups presented differences in gait stability
and symmetry. Specifically, considering gait stability, sTBI-2 showed higher nRMS compared to sTBI-1.
High nRMS values have been associated with a higher amount of acceleration, and hence, decreased
stability [13,29,30,33,34,50]. Both sTBI subgroups, and especially sTBI-2, displayed a decreased stability
at the three upper body levels, particularly in the ML direction. This is consistent with previous studies
dealing with other neurological populations [13,15,59]. In addition, the attenuation coefficient from
pelvis to head in the ML direction discriminates between the two sTBI sub-groups, highlighting that
the sTBI-2 sub-group exhibits a limited bottom-up attenuation of upper body accelerations. This result
is related to a lack of ability to stabilize the head, impairing the consequent planning of adaptive motor
strategies. Concerning gait symmetry, the iHR in the CC component discriminated between sTBI-1 and
sTBI-2, showing a reduced gait symmetry, particularly evident in the sTBI-2. Reduced symmetry has
been widely associated with an increased fall risk [60,61], thus indicating this parameter as a biomarker
for the identification of patients at high risk of falling.

In the F8WT, the nRMS and iHR discriminated between sTBI-1 and sTBI-2, as reported for the
10mWT. In addition, differences were also pointed out considering the smoothness: in fact, the SPARC
discriminated sTBI-1 and sTBI-2 well, probably because of greater upper body rigidity in sTBI-2 than
sTBI-1 observed in this more difficult task. It is worth mentioning that, being characterized by a
curved trajectory, the execution of the F8WT involves the activation of different cortical areas than
those required in the planning of straight point-to-point movements. In fact, it is well known that
the trajectory planning during curved-path conditions requires additional preparation time [62,63].
The results of the present study show indeed that the F8WT seems to be the walking test that better
discriminates among different walking ability levels. This suggests that testing dynamic balance
abilities during curved trajectories could be useful for assessing gait in conditions more relevant to
cognitive-motor dual tasks, and thus, closer to daily living activities [64,65].

For what concerns the FST, results about clinical FST parameters confirm the previous
literature [48,66]: no differences were found in terms of AP–ML displacements, nor side and degree
of rotation among groups. The presence of rotation in either direction in the CG shows that turning
while stepping on the spot also occurs in healthy people, confirming that clinical FST parameters are
not able to distinguish between healthy and pathological subjects, confirming the doubts about its
clinical use also for this population. Conversely, when considering gait quality indices obtained from
the instrumented FST, the discrimination capability of the test greatly increased: in fact, significant
differences were found, not only between CG and both sTBI sub-groups, but also between the sTBI
sub-groups. Specifically, for what concerns stability, the nRMS did not discriminate between different
levels of walking abilities in pathological subjects, as observed in the 10mWT and the F8WT. On
the other hand, attenuation coefficients in the AP and CC directions distinguished between sTBI
sub-groups, with sTBI-2 showing less ability in attenuating upper body accelerations from lower to
higher levels. Additionally, a reduced symmetry was displayed by sTBI-2 with respect to sTBI-1, with
the AP component of the iHR displaying a significant difference between the two sub-groups. The
AP direction seems to be the most critical in very severe TBI and this result is in agreement with the
existing literature about stroke patients [48], indicating the AP component as the most informative
when comparing patients with different walking abilities. In addition, the absence of the visual input
during the FST plays an important role on the sensory reweighting, which has been acknowledged as
critical in the TBI population [67]. Therefore, these results confirm that the instrumented approach
in this test provides valuable information about patients’ motor strategies and useful data to tailor
rehabilitation protocols [48].

When considering the second aim of the study, several correlations were found between clinical
scales and gait quality indices, especially in the 10mWT and the F8WT. nRMS and attenuation
coefficients, parameters related to dynamic stability, correlated well with all clinical scales, while worse
correlations were present when considering the iHR and the SPARC in both the 10mWT and the F8WT,
with no correlations at all for these two parameters in the FST. It should be acknowledged that the
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proposed clinical scales do not consider tests in which the visual input is removed: this could be one
of the reasons why only few correlations have been found when considering the FST. These results
highlight the lack of specificity that some clinical scales exhibit [68], while confirming their ability to
determine whether or not a patient has a motor impairments. Therefore, the integration of traditional
scales and technology-based protocols could assist with improving current clinical routines and with
designing rehabilitation treatments, helping to bringing more sensitive, specific, and responsive motor
tasks to clinical practice.

Despite the promising results, this study presents some limitations: the main limitation is the
heterogeneity of the sample, mainly due to the severities and the locations of the brain injuries.
Increasing the sample would likely lead to reduce the heterogeneity of the sample. Furthermore, the
relationship between gait characteristics and specific neurological deficits, such as post-traumatic
parkinsonism or cerebellar syndromes, and the presence of possible cognitive and behavioral sequelae
of sTBI, were not investigated. Although such analyses were beyond the scope of the present study,
they could be considered in further studies, in order to obtain more detailed information and better
discriminate among people suffering from sTBI.

5. Conclusions

People who suffer a sTBI often complain of balance and gait impairments, but despite the evidence
that neuromotor deficits are a common consequence of a sTBI, the existing literature does not adequately
describe balance strategies adopted by sTBI survivors. This lack of information depends on various
factors: the heterogeneity and severity of the brain damage, the patient’s age, and the presence of
pre-morbid/co-morbid conditions are the most significant. Furthermore, subtle cognitive functioning
deficits, such as executive functions, which are detectable even in persons with good recovery after
sTBI [7,63], may interfere with dynamic performances.

The main contribution of the present work is represented by the analysis of gait stability, symmetry,
and smoothness indices which objectively describe gait quality in patients with sTBI. Specifically, the
lack of ability of both severe and very severe TBI patients to stabilize their head by attenuating body
accelerations may have a big impact. In fact, the vestibular system is located at head level; therefore, a
high head acceleration could be critical for the planning of adaptive motor strategies.

The data reported herein suggest the appropriateness of an integrated assessment using both
clinical scales and wearable sensors to objectively evaluate gait and balance impairments during
different dynamic tasks. This integrated approach may be useful to assessing the measures of changes
during rehabilitation training aimed at improving patients’ gait quality and limiting the risk of falling,
supporting rehabilitative staffwith designing effective and tailored interventions.
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Abstract: Currently, clinical evaluation represents the primary outcome measure in Parkinson’s disease
(PD). However, clinical evaluation may underscore some subtle motor impairments, hidden from the
visual inspection of examiners. Technology-based objective measures are more frequently utilized to
assess motor performance and objectively measure motor dysfunction. Gait and balance impairments,
frequent complications in later disease stages, are poorly responsive to classic dopamine-replacement
therapy. Although recent findings suggest that transcranial direct current stimulation (tDCS) can have
a role in improving motor skills, there is scarce evidence for this, especially considering the difficulty
to objectively assess motor function. Therefore, we used wearable electronics to measure motor
abilities, and further evaluated the gait and balance features of 10 PD patients, before and (three days
and one month) after the tDCS. To assess patients’ abilities, we adopted six motor tasks, obtaining 72
meaningful motor features. According to the obtained results, wearable electronics demonstrated to
be a valuable tool to measure the treatment response. Meanwhile the improvements from tDCS on
gait and balance abilities of PD patients demonstrated to be generally partial and selective.

Keywords: balance; gait; Parkinson’s disease; transcranial direct current stimulation; wearable
electronics; IMUs

1. Introduction

Wearable electronics are gaining increasing attention and importance as a valid tool for healthcare
practitioners in medical treatment [1–3] and patient monitoring [4–6]. In particular, wearable sensors
have been applied for assessing the motor performance of patients with neurodegenerative disorders,
as it is for Parkinson’s disease, in both home and clinical environments [7–12].

Parkinson’s disease (PD) can be characterized by motor deficiencies, such as bradykinesia and
a combination of rest tremor, rigidity, as well as gait and balance impairment [13]. In routine clinical
care, the evaluation of those deficiencies is mainly based on severity-rating standardized scales, such
as the Movement Disorder Society Unified Parkinson’s disease rating scale (MDS-UPDRS) [14], based
on patients’ reports and clinicians’ vision-based evaluations, and clinical investigators determine the
effectiveness of a therapy of a drug by using the MDS-UPDRS score [15]. Inconveniently, patient
reports can be affected by mood and unfamiliarity with forms, and clinicians’ evaluations can be

Sensors 2019, 19, 5465; doi:10.3390/s19245465 www.mdpi.com/journal/sensors131



Sensors 2019, 19, 5465

biased by personal beliefs, experiences, and a priori expectations, resulting in inter- and intra-rater
score variability [15,16]. Furthermore, the MDS-UPDRS is quantified according to a discrete scale
(0–4, unity step) only, and the human eyes of clinicians hardly detect subtle motor changes during
the monitoring of patients. These limitations compel investigators to employ more rigorous, and
thus costly, clinical trial designs, with a random assignment of patients, thus blinding investigators to
treatment assignment.

The aforementioned limitations can be in some way reduced or overcome through the use of
wearable inertial sensors (hereafter wearables), which provide measures of human postures and
kinematics, paving the way for objective assessment in clinical trials [17]. In fact, wearables can gather
motion parameters in a continuous (analog) or high-step density (digital) scale, and avoid intra- and
inter-rater variability, thereby reducing the sample size and simplifying the assessment of the patients,
objectively quantifying a possible beneficial effect of a therapeutic intervention. For this reason, even if
wearables are still poorly used (only 2.7% of ongoing clinical trials [15]), there is growing attention
given to this technological tool, and some pharmaceutical companies are working to develop their
own devices [18–20].

Our work approaches the utilization of wearables in the particular case of objectively demonstrating
the therapeutic beneficial effects, if any, of transcranial direct current stimulation (tDCS) treatment on
the motor impairments of patients affected by Parkinson’s disease.

The proven appeal of tDCS is evident as it is a non-invasive, inexpensive, painless brain stimulation
technique with many clinical and research applications, ranging from the treatment of depression to
neurorehabilitation [21,22]. It consists of applying a direct positive (anodal) or negative (cathodal)
1–2 mA current to the scalp. This stimulation supports the depolarization or hyperpolarization of
neurons, thus leading them closer to, or farther away from firing, acting on synaptic transmission or
synaptic plasticity [21,23]. Further, tDCS has been used alternatively to (or sometimes concurrently
with) dopaminergic drug therapy, because the latter can lose its efficacy during the natural course of
the disease, in particular regarding its benefit on postural and gait disorders. Gait is now considered
a higher level of cognitive function that involves the integration of attention, planning, memory and
other motor, perceptual and cognitive processes. In fact, walking and balance constitute a combination
of automatic movement processes, afferent information processing, and intentional adjustments that
require a delicate balance between various interacting neuronal systems. In PD, to compensate the loss
of motor task, cognitive resources as attention and executive function performed by the dorsolateral
pre-frontal cortex (DLPFC) plays a critical role in the relief of gait disorder [24]. In addition, previous
studies have shown that anodal tDCS stimulation to either the motor area (M1) or dorsolateral
prefrontal cortex (DLPFC) had a significant impact on the motor, non-motor, and balance functional
outcomes in PD patients. In fact, brain activation patterns in M1 and DLPFC are extremely involved in
successful locomotion performance in patients with PD [21,25–27]. Further, the effectiveness of tDCS
for alleviating gait and postural instability seems promising [28–31], however, evidence of its benefit
remains unclear and controversial [23,32] because different tDCS protocols and target areas of scalp
have been considered, leading to conflicting evidence on MDS-UPDRS scores [23,28].

Our work aims to objectively quantify the motor performance improvements, if any, due to tDCS
treatment in a population of patients with PD and gait disturbances. To this aim, we used wearables to
measure specific motor tasks, and analyzed the related results by means of the standardized response
mean (SRM) index, comparing them with those obtained by the clinical evaluation.

2. Materials and Methods

2.1. Subjects

Ten PD patients (Table 1) with postural and gait disturbances were recruited at Tor Vergata
University Hospital, Rome, Italy. Idiopathic PD was diagnosed according to the MDS clinical
diagnostic criteria for PD [13], and patients were enrolled at Hoehn & Yahr disease stages between 1.5
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and 4, and with MDS-UPDRS III scores related to a gait higher than 1. Exclusion criteria were age
(younger than 30 or older than 85), dementia (mini mental status evaluation, MMSE, score < 24 [33]),
therapy changes in the last three months, orthopedic comorbidities, other neurological disorders, and
therapy with drugs possibly interfering with motor function (e.g., antipsychotics).

Table 1. Patients’ information.

Age 77.2 ± 6.3 y
Gender 7 M, 3 F

Disease duration 10.37 ± 3.8 y
MDS-UPDRS II 15.6 ± 3.66
MDS-UPDRS III 35.2 ± 5.63
Hoehn & Yahr 2.9 ± 0.16

Levodopa equivalent daily dose 771.7 ± 213.58 mg

This study was conducted in agreement with the ethical principles of the Helsinki declaration.
Informed consent was obtained from each participant and ethical approval was obtained by the local
committee (RS 190/18). Patients consented to participate and did not change the therapy during the
study, from T0 to T2 (Figure 2), in order to minimize any alteration of motor performance due to
dopaminergic therapy variations.

2.2. Motor Tests

We requested each participant to perform six motor tasks which, according to clinical standards,
are relevant for a comprehensive evaluation of balance and gait. Tasks included stance feet together
(SFT), tandem stance (TS), the pull test (PT), timed up and go test (TUG), stop and go test (S&G),
and narrow walking test (NW). In particular, SFT and TS are useful to test balance; PT corresponds
to the item 3.12 of MDS-UPDRS III to test postural response; TUG, S&G and NW are used to assess
mobility and gait. Wearables were placed by means of Velcro strips on segments of the body, according
to the particular test, as schematized in Figure 1. The descriptions of the tests and corresponding
placements of the wearable sensors are specified in the following.

2.2.1. Stance Feet Together (SFT) and Tandem Stance (TS)

In SFT and TS tests, the patient has to stand and maintain the posture for 30 s. More particularly,
in the SFT with feet side-by-side and close together, in TS with feet in tandem position (i.e., one ahead,
aligned and close to the other). The wearables were placed on the posterior trunk at the level of T5 and
on the external parts of the calf segments of both legs.

2.2.2. Pull Test (PT)

The subject, comfortably standing upright with shoulders to the examiner, is rapidly and vigorously
pushed backward on his/her shoulders so as to be forced to make one, or more, steps backwards,
recovering his/her balance. The sensors were placed as for SFT and TS.

2.2.3. Timed Up and Go (TUG)

The subject starts seated on a straight-backed chair with arms across the chest, then gets up, walks
straight 6 m, turns around, walks straight back and, turning on his/her-self, sits down returning to the
initial condition. The sensors were placed on the patient’s pelvis at the level of L5, posterior trunk at the
level of T5, on the external parts of thighs and calf segments of both lower limbs, arms, and forearms.

2.2.4. Stop and Go (S&G)

The subject walks for six meters in a straight line, turns around, walks six meters back while the
examiner tells him/her to stop and go for 6 times. The sensors were placed on the patient’s pelvis at L5

133



Sensors 2019, 19, 5465

level, posterior trunk at T5 level, on the external parts of thighs and calf segments of both lower limbs.
The time, when the examiner tells the patient to stop was recorded.

2.2.5. Narrow Walking (NW)

The subject walks 6 m straight, but passing through a 70 cm narrow door in the middle of the
path. The sensors were placed on the patient’s pelvis at L5 level, posterior trunk at T5 level, on the
external parts of thighs, and calf segments of both lower limbs. The time, the time when the patient
passes through the door was recorded.

SFT, TS and PT S6,S8,S9 
TUG S1,S2,S3,S4,S5,S6,S7,S8,S9,S10 
NW & S&G S5,S6,S7,S8,S9,S10 

Figure 1. Sensors, labeled from S1 to S10, as located on the body of the patients. Different motor tests
resulted with a different number of used sensors.

2.3. tDCS Stimulation

Direct current (DC) was delivered to stimulate the left dorsolateral-prefrontal cortex (DLPFC)
by means of a tDCS low-intensity stimulator (BrainStim, EMS Srl, Bologna, Italy). Two saline-soaked
electrodes (35 cm2) were placed on F4 (according to the 10–20 international EEG nomenclature) and on
the right forearm, respectively. The stimulation was of 2mA DC (0.057 mA/cm2 in density) delivered
for 20 min (30 s step-up ramp, 30 s step-down ramp), repeated ten times, obtaining one session/day,
for five consecutive days. Such a stimulation session was followed by two non-stimulation days, and
again by another five days of long stimulation (Figure 2). During each tDCS application, patients were
at rest without any concurrent motor tasks.
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Figure 2. Flow diagram showing the study design and stimulation protocol.

2.4. Wearable Electronics

Different technologies can furnish data in terms of gait and balance performances. We can refer,
for instance, to pressure sensors embedded into the floor and electro-goniometers, etc., with the
optical-based systems considered as the gold standard because of their high accuracy. However,
optical-based systems have some important drawbacks, such as the necessities of a free line of sight,
time-consuming calibration procedures, necessity of skilled personnel and, above all, a very high cost.
Wearable electronics have none of those drawbacks, and have been demonstrated to perform with the
appropriate accuracy for our purposes [34,35].

Wearable electronics constitute a network of validated inertial measurement units (IMUs) termed
Movit (by Captiks Srl, Rome Italy) [7,34,35], each housing a 3-axis accelerometer (±8 g) and a 3-axis
gyroscope (±2000◦/s), synchronized to a personal computer receiver, with a 50 Hz data transfer rate.
A proprietary application, termed Motion Studio, processes and stores data.

The number of used IMUs and the position of patients’ bodies (by means of elastic bands) varied
according to the particular motor tasks performed. Measured data consist of accelerations, angular
velocities, and joint angles, computed from the related quaternions via Euler decomposition. In
turn, the quaternions are generated using a Kalman filter on data coming from the accelerometers
and the gyroscopes, sampled at 200 Hz. By means of a patented calibration procedure, the spatial
orientations of the dressed IMUs are represented on a computer screen as a human avatar, which
replicates patient movements, with his/her joint angles gathered with a forward kinematic procedure
in a parent-child hierarchy.

2.5. Features

For each task, we obtained several features, as reported in Table 2 and described in the
following paragraphs.

2.5.1. Stance Feet Together (SFT) and Tandem Stance (TS)

Eleven features from the sensor located on the trunk were taken into consideration: range of
accelerations, angular velocities and angles of the trunk in the medial-lateral (ML), anterior-posterior
(AP) and vertical (V) directions; Jerk and Sway Area. In particular, Jerk, gathered from the
accelerometers, represents the time derivative of acceleration [36], and is used as an empirical
measure of the smoothness of the movements [37,38]. The Sway Area is the area of the ellipse that
encompasses 95% of the values of medial lateral and anterior posterior accelerations around their
mean values.
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2.5.2. Pull Test (PT)

The PT test is useful to evaluate the postural responses to an unexpected external perturbation.
We extracted the 11 features as for the SFT, plus the number of steps following the pushing as resulted
from data gathered by the sensors placed on the ankles.

2.5.3. Time Up and Go (TUG)

TUG is one of the most widely used clinical tests and allows for the assessment of several aspects
of gait. Parkinsonian gait is characterized by a slowed speed, decreased arm swing, shuffling steps,
and difficulty to turn [39]. TUG is composed by four phases: the sit-to-stand phase (patient gets up
from the sitting position with arms across the chest), the walking phase (patient walks for 6 m forth
and back), the turning phase (the patient turns 180◦), and the turn-to-sit phase (the patient turns and
sit back on the chair). Each phase is segmented considering data gathered by the IMU on the trunk.
We detected the sit-to-stand and turn-to-sit phases considering the interval between the two local
minimum values before and after a local maximum of the accelerometer data, in the AP direction,
corresponding to the flexion/extension movement of trunk. The turning phase is identified using
thresholds on the trunk angle in the vertical direction (the turning component looks as a positive or
negative ramp, depending on the direction of the turn). Further details on the segmentation of TUG
test are reported in [7].

From these segmentations, 24 features were computer, as described in Table 2, including:

1. Temporal gait characteristics, such as number of steps, step duration, stance duration and
swing duration;

2. Features related to upper and lower limb movements, such as the range of motion of arms and
legs (Flex Arm, Flex Leg), the average angular velocity (Average Vel) of arms, forearms, legs and
thighs, and the asymmetry between right and left limbs (Asym Arm, Asym Leg);

3. Turning parameters, such as the angular velocity of the trunk (Peak Turning Vel), the turning
velocity (Turning Vel) and the number of steps (Steps Turning).

2.5.4. Stop and Go (S&G) & Narrow Walking (NW)

Parkinsonian gait problems are often triggered by some circumstances such as spaces with
a narrow passage (e.g., a door), unexpected visual or auditory stimuli, stressful situations, cognitive
load anxiety and difficulty in starting and stopping [39]. The results are a decreasing step length and
step time, decreasing velocity, and increasing variability of step length and time [40,41]. The S&G and
NW tests are used to provide evidence for these symptoms. We computed seven features for each task.

For the S&G test, we computed the duration of steps, stance and swing, as well as the angular
velocity of the leg of the first steps at the beginning of gait, thus, after each stop signal of the examiner
and the variability of the temporal step variables (CV Step, CV Stance, CV Swing).

For the NW test, we computed the same features but extracted them during the 3 s when the
patient was passing through the door.
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Table 2. Extracted Features from each motor test.

Task Feature Description

SFT, TS, PT
Jerk Time derivative of acceleration in ML and AP directions [42]

Sway Area The ellipse that encompasses 95% of the values of ML and AP
acceleration around their mean values [42]

Range The range of acceleration and angular velocity signals in all the
three directions (6 features in total)

PT # of Steps The number of steps performed by the subject following the push

TUG

TUG phases duration Include TUG time (duration of the entire test), sit-to-stand time,
walk time, turning time and turn-to-sit time

# of Steps Number of steps during the walking phase.

Gait metrics Include mean and coefficient of variation of step duration, stance
duration, and swing duration

Flex Arm, Flex Leg The angular flexion range of arms and legs

Asym Arm, Asym Leg Difference in angular flexion range between the faster and slower
arm/leg divided by the larger value (lv%)

Average Vel The average angular velocity of arm, forearm and thigh along the
medial lateral axis during the walking phase

Turning Vel The range of turning (180◦) divided by turning time

Peak Turning Vel The maximum achieved angular velocity of the trunk rotation in
the vertical axis during the turning phase

Steps Turning The number of steps during the turning phase

Average Vel SitStand The average angular velocity of trunk during sit-to-stand in in the
anterior posterior plane

S&G
Gait metrics

Mean and coefficient of variation of duration of step, stance and
swing computed on first four steps at the beginning of gait, after
each stop signal of the examiner

Step velocity The angular velocity of legs computed on first four steps at the
beginning of gait, after each stop signal of the examiner

NW
Gait metrics

Mean and coefficient of variation of duration of step, stance and
swing computed on the 3 s time with patient passing through the
door.

Step velocity The angular velocity of legs computed on the 3 s time with the
patient passing through the door

2.6. Clinical and Wearables-Based Evaluations

Motor test performances of each of the ten PD patients just before the stimulation protocol (T0
time), just soon after the protocol (T1 time), and 1 month after (T2 time) were evaluated in order to
quantify the effect of the tDCS and its persistence, if any.

The evaluations were performed both as standard clinical ones and by the analysis of data gathered
through the wearable electronics.

All patients were evaluated by a movement disorder specialist, with general neurological
examination, clinical tests, and questionnaires. Clinical tests consisted in the administration of MDS
unified Parkinson’s disease rating scale (MDS-UPDRS) and the Berg balance scale (BBS) [43], a clinical
five-point ordinal scale that assess balance. Each patient was also evaluated with the freezing of
gait questionnaire (FOG-Q) [44], a 6-item questionnaire used to assess gait disturbance severity in
patients with PD, and the Hoehn and Yahr scale (H&Y) [45], a commonly used system for describing
the progress of symptoms.

To evaluate the responsiveness of a treatment, we considered two aspects. First, we assessed the
ability of wearable features to detect change over a particular time frame. Then, we evaluated the
relationship between a change in the feature values and the external measure (e.g., the clinical score).

The standardized response mean (SRM) [46] was used to assess the responsiveness to the tDCS
therapy. A reason for choosing SRM is because, differently from the paired t-test, it has no dependence
on sample size [47]. The SRM expresses the ratio of TT:SDC, where TT is the mean change between T1
and T0 and between T2 and T1, and SDC the standard deviation of the change. Empirically, an SRM
value of 0.20 represents a small, 0.50 a moderate, and 0.80 a large responsiveness, respectively.

We used Spearman’s rank correlation coefficient to investigate the relation between the clinical
scores and the features. Stance feet together (SFT) and tandem stance (TS) tasks were used to evaluate
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the static balance, assessed by the clinicians using the BBS scale. Features extracted from SFT and TS
are compared with the BBS score. PT features were correlated to the corresponding UPDRS III item
3.12 score (PT is part of UPDRS III tasks). Features extracted from gait related tasks (TUG; ST and NW)
were correlated with the UPDRS III gait item score (3.10). The significance level was set at 0.05.

3. Results

Table 3 shows the mean, standard deviation values, and SRM of the clinical evaluation results.
Tables 4–9 report the motor features of SFT, TS, PT, TUG, S&G and NW tests, and correlation analysis
between the features and the corresponding clinical evaluation.

Table 3. Clinical evaluation.

Clinical
Evaluation

T0 Mean ±
SD

T1 Mean ±
SD

T2 Mean ±
SD

SRM
(T0 vs. T1)

SRM
(T0 vs. T2)

SRM
(T1 vs. T2)

MDS-UPDRS II 15.6 ± 3.67 13.9 ± 3.21 14.3 ± 3.23 −0.53 −0.42 0.23

MDS-UPDRS III 35.2 ± 5.64 30.5 ± 6.8 30.4 ± 3.47 −0.67 −1.15 −0.01

Gait item (3.10) 2.20 ± 0.60 1.60 ± 0.49 1.50 ± 0.50 −0.90 −0.90 −0.33

PT item (3.12) 1.80 ± 0.75 1.20 ± 0.75 1.60 ± 0.49 −0.65 −0.23 0.82

FOGQ 13.4 ± 3.69 12.5 ± 3.47 12.4 ± 2.11 −0.62 −0.33 −0.04

BBS 42.3 ± 12.35 47.2 ± 7.97 49.3 ± 6.96 0.79 0.82 0.50

Table 4. Stance feet together (SFT): feature values at T0, T1, T2; values of SRM comparing times;
correlation with BBS score.

Feature (SFT)
T0 Mean ±

SD
T1 Mean ±

SD
T2 Mean
± SD

SRM
(T0 vs. T1)

SRM
(T0 vs. T2)

SRM
(T1 vs. T2)

Correlation
with BBS

Jerk 0.08 ± 0.03 0.07 ± 0.03 0.07 ± 0.03 −0.22 −0.72 −0.15 −0.38 *

Sway Area 0.32 ± 0.22 0.32 ± 0.3 0.32 ± 0.26 −0.01 −0.01 0.01 −0.22

Range Acc V 0.66 ± 0.53 0.61 ± 0.42 0.5 ± 0.34 −0.13 −0.53 −0.39 −0.60 *

Range Acc ML 0.56 ± 0.16 0.59 ± 0.28 0.59 ± 0.24 0.12 0.18 0.05 −0.46 *

Range Acc AP 0.99 ± 0.35 0.92 ± 0.38 0.9 ± 0.37 −0.14 −0.22 −0.07 −0.17

Range Gyr V 7.76 ± 3.45 10.71 ± 5.77 9.04 ± 5.13 0.53 0.24 −0.28 −0.48 *

Range Gyr ML 11.66 ± 5.78 10.95 ± 6.81 9.88 ± 4.87 −0.08 −0.32 −0.20 −0.55 *

Range Gyr AP 4.55 ± 2.35 5.05 ± 4.05 4.32 ± 2.49 0.13 −0.10 −0.27 −0.44 *

* p value < 0.05.

Table 5. Tandem stance (TS): features values at T0, T1, T2; values of SRM comparing times; correlation
with BBS score.

Feature (TS)
T0 Mean ±

SD
T1 Mean ±

SD
T2 Mean ±

SD
SRM

(T0 vs. T1)
SRM

(T0 vs. T2)
SRM

(T1 vs. T2)
Correlation
with BBS

Jerk 0.78 ± 1.32 0.21 ± 0.14 0.42 ± 0.45 −0.41 −0.33 0.44 −0.43 *

Sway Area 3.05 ± 4.44 1 ± 0.75 1.14 ± 1.28 −0.43 −0.41 0.13 −0.37 *

Range Acc V 2.79 ± 2.4 1.42 ± 1.36 1.32 ± 1.23 −0.47 −0.62 −0.11 −0.45 *

Range Acc ML 2.73 ± 2.45 1.73 ± 1.48 2.52 ± 2.45 −0.33 −0.08 0.29 −0.51 *

Range Acc AP 3.04 ± 2.88 1.87 ± 0.82 1.77 ± 1.19 −0.39 −0.43 −0.08 −0.35 *

Range Gyr V 40.01 ± 27.54 26.24 ± 12.28 40.06 ± 41.53 −0.42 0.00 0.35 −0.54 *

Range Gyr ML 58.97 ± 73.46 20.48 ± 13.44 29.28 ± 30.11 −0.47 −0.37 0.29 −0.53 *

Range Gyr AP 27.67 ± 26.98 14.68 ± 10.79 15.18 ± 10.01 −0.42 −0.46 0.04 −0.52 *

* p value < 0.05.
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Table 6. Pull test (PT): feature values at T0, T1, T2; values of SRM comparing times; correlation with
UPDRS item 3.12 (PT) score.

Feature (PT) T0 Mean ± SD T1 Mean ± SD T2 Mean ± SD
SRM

(T0 vs. T1)
SRM

(T0 vs. T2)
SRM

(T1 vs. T2)
Correlation

with PT Item

Number of Steps 4.5 ± 1.8 4.2 ± 1.25 4.2 ± 2.27 −0.15 −0.09 0.00 −0.10

Jerk 11.03 ± 13.43 13.87 ± 18.82 13.64 ± 13.88 0.28 0.40 −0.02 −0.22

Sway Area 99.28 ± 140.03 83.99 ± 91.55 66.66 ± 63.16 −0.22 −0.38 −0.38 −0.27

Range Acc V 15.05 ± 6.23 14.92 ± 5.95 15.71 ± 5.95 −0.02 0.10 0.16 −0.45 *

Range Acc ML 16.33 ± 8.07 15.46 ± 6.17 15.89 ± 8.59 −0.11 −0.06 0.05 −0.28

Range Acc AP 11.52 ± 6.59 13.85 ± 8.27 12.33 ± 6.14 0.34 0.14 −0.23 −0.23

Range Gyr V 238.32 ± 209.22 246.18 ± 166.59 207.18 ± 104.41 0.08 −0.16 −0.27 −0.32

Range Gyr ML 456.96 ± 241.32 340.59 ± 230.85 402.52 ± 228.77 −0.34 −0.22 0.31 −0.47 *

Range Gyr AP 114.13 ± 111.22 91.72 ± 30.45 80.3 ± 31.42 −0.19 −0.33 −0.27 −0.16

* p-value < 0.05.

Table 7. TUG: feature values at T0, T1, T2; values of SRM comparing times; correlation with UPDRS
item 3.10 (Gait) score.

Feature (TUG)
T0 Mean ±

SD
T1 Mean ±

SD
T2 Mean ±

SD
SRM (T0
vs. T1)

SRM (T0
vs. T2)

SRM (T1
vs. T2)

Correlation
with Gait Item

Tug Time 32.19 ± 10.24 28.27 ± 9.7 26.8 ± 6.49 −0.48 −0.93 −0.24 0.55 *

Sit-to-Stand Time 3.03 ± 2.64 1.94 ± 0.99 2.12 ± 0.89 −0.41 −0.39 0.13 0.28

Walk Time 20.58 ± 6.96 17.92 ± 6.02 17.81 ± 4.62 −0.52 −0.78 −0.04 0.56 *

Turning Time 3.9 ± 1.71 3.92 ± 2.24 3.09 ± 0.89 0.01 −0.68 −0.44 0.53 *

Turn-to-Sit Time 4.67 ± 1.66 4.48 ± 1.16 3.78 ± 1.2 −0.11 −0.48 −0.67 0.23

Number of Steps 40.13 ± 10.3 37.78 ± 11.76 38.3 ± 9.38 −0.05 −0.57 −0.21 0.49 *

Step duration 1.17 ± 0.08 1.14 ± 0.11 1.15 ± 0.1 −0.34 −0.24 0.21 0.24

Stance 57.94 ± 3.53 55.9 ± 7.88 57.56 ± 3.31 −0.23 −0.30 0.18 0.20

Swing 42.26 ± 3.62 43.97 ± 7.52 42.44 ± 3.31 0.20 0.20 −0.17 −0.22

CV step 0.07 ± 0.03 0.06 ± 0.03 0.09 ± 0.08 −0.24 0.17 0.54 0.47 *

CV Stance 0.08 ± 0.04 0.36 ± 0.89 0.08 ± 0.03 0.30 −0.09 −0.29 0.12

CV Swing 0.13 ± 0.1 0.11 ± 0.08 0.1 ± 0.04 −0.17 −0.27 −0.08 0.21

Flex Leg 23.41 ± 4.43 23.37 ± 7.39 23.91 ± 6.32 −0.01 0.09 0.10 −0.54 *

Flex Arm 30.38 ± 13.57 28.53 ± 18.85 28.1 ± 14.63 −0.13 −0.22 −0.05 0.28

Asym Leg 12.68 ± 6.62 17.03 ± 20.31 16.22 ± 13.22 0.19 0.22 −0.05 0.20

Asym Arm 40.06 ± 27.2 43.99 ± 22.93 40.81 ± 22.05 0.15 0.04 −0.22 −0.07

Average Vel Thigh 38.08 ± 6.56 43.61 ± 8.07 41.66 ± 7.55 0.62 0.49 −0.31 −0.60 *

Average Vel Leg 72.72 ± 17.24 89.6 ± 17.35 88.24 ± 16.19 0.83 0.83 −0.15 −0.52 *

Average Vel Arm 24.42 ± 12.82 25.41 ± 11.03 23.57 ± 9.24 0.14 −0.10 −0.27 0.11

Average Vel Forearm 38.82 ± 17.6 40.26 ± 21.41 34.79 ± 10.74 0.11 −0.28 −0.34 0.06

Turning Vel 51.82 ± 14.09 58.92 ± 23.8 62.47 ± 14.75 0.32 0.93 0.22 −0.53 *

Peak Turning Vel 91.12 ± 18.8 105.04 ± 30.13 101.76 ± 26.65 0.61 0.60 −0.19 −0.25

Steps Turning 5 ± 1 6.5 ± 3.67 5.6 ± 2.65 0.39 0.31 −0.22 0.48 *

Average Vel Sit Stand 27.27 ± 7.96 34.42 ± 11.1 33.37 ± 10.46 0.93 0.61 −0.09 −0.43 *

* p-value < 0.05.
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Table 8. Stop and go (S&G): feature values at T0, T1, T2; values of SRM comparing times; correlation
with UPDRS item 3.10 (gait) score.

Feature
(S&G)

T0 Mean ±
SD

T1 Mean ±
SD

T2 Mean ±
SD

SRM
(T0 vs. T1)

SRM
(T0 vs. T2)

SRM
(T1 vs. T2)

Correlation
with Gait Item

Step duration 1.44 ± 0.38 1.33 ± 0.29 1.34 ± 0.17 −0.21 −0.31 0.04 −0.42 *

Stance 0.99 ± 0.39 0.91 ± 0.33 0.86 ± 0.21 −0.14 −0.35 −0.13 −0.18

Swing 0.45 ± 0.06 0.42 ± 0.07 0.48 ± 0.08 −0.44 0.34 0.86 −0.22

Step velocity 179.34 ± 46.87 184.93 ± 60.03 174.42 ± 47.18 0.08 −0.10 −0.24 −0.08

CV step 0.15 ± 0.12 0.1 ± 0.06 0.1 ± 0.06 −0.35 −0.34 0.05 0.02

CV Stance 0.31 ± 0.22 0.24 ± 0.18 0.33 ± 0.16 −0.21 0.06 0.48 −0.13

CV Swing 0.17 ± 0.04 0.18 ± 0.05 0.17 ± 0.05 0.13 0.04 −0.14 0.07

* p-value < 0.05.

Table 9. Narrow walking (NW): feature values at T0, T1, T2; values of SRM comparing times; correlation
with UPDRS item 3.10 (gait) score.

Feature (NW)
T0 Mean ±

SD
T1 Mean ±

SD
T2 Mean ±

SD
SRM (T0
vs. T1)

SRM (T0
vs. T2)

SRM (T1
vs. T2)

Correlation
with Gait Item

Step duration 1.18 ± 0.09 1.09 ± 0.08 1.11 ± 0.09 −1.60 −0.91 0.77 0.25

Stance 0.65 ± 0.12 0.63 ± 0.08 0.65 ± 0.07 −0.17 0.02 0.49 0.05

Swing 0.5 ± 0.03 0.46 ± 0.05 0.47 ± 0.04 −1.58 −0.90 0.50 −0.01

Step velocity 266.98 ± 40.93 297.96 ± 50.31 284.76 ± 39.79 1.56 0.92 −0.66 −0.44*

CV step 0.1 ± 0.05 0.07 ± 0.03 0.08 ± 0.04 −0.59 −0.23 0.27 −0.02

CV Stance 0.14 ± 0.07 0.12 ± 0.04 0.14 ± 0.08 −0.27 −0.01 0.21 0.04

CV Swing 0.13 ± 0.06 0.09 ± 0.03 0.11 ± 0.04 −0.74 −0.37 0.60 0.35*

* p-value < 0.05.

3.1. Clinical Evaluation

MDS-UPDRS sections two and three, BBS, and FOG-Q (Table 3) demonstrated moderate
responsiveness to tDCS at the end of the treatment. The effect appears stable after one month
with some improvement in BBS and MDS-UPDRS Section 2 score.

3.2. Stance Feet Together (SFT) and Tandem Stance (TS)

Jerk demonstrated a decrement, but only in a small percentage, in SFT (Table 4) and TS (Table 5)
in both T1 and T2. During TS, Sway Area, range of the accelerations and angular velocities in the three
directions decreased in T1 with a responsiveness around 0.4. The effect is stable at T2 compared to T1
with low improvements in some features.

The BBS score correlates significantly with almost all the features extracted from SFT and TS
such as Jerk, Sway area (only TS, r = −0.37) and range of the accelerations and angular velocities. So,
features highly reflect the clinical evaluation in this case.

3.3. Pull Test (PT)

During the PT, the obtained results (Table 6) showed an unchanged number of steps after tDCS
treatment, a small increment of Jerk, and a small reduction of Sway Area at the end of the treatment
and one month after.

Regarding the clinical evaluation, only few features (Range Acc V, r = −0.45; Range Gyr ML, r =
−0.47) correlated with the UPDRS PT sub score.
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3.4. Time Up and Go (TUG)

It was found that tDCS showed a moderate effect on the duration of sit-to-stand and walking
phase in T1 and T2, as compared to the baseline (Table 7). A lower duration of the Turning phase
is present only at T2. In correlation with a lower duration of the walking phase, our results show
a reduction of the number of steps and stance duration. No changes were found in features related to
the upper limbs. Conversely, the velocity of the lower extremities meaningfully increased. Finally,
patients increased the velocity to turn and sit at T1 and T2, with comparison to the baseline values.

The UPDRS gait item score correlates significantly with several features extracted from TUG.
Significant correlations regard the features representing the duration of the TUG phases (namely tug
time, walk time and turning time). So, patients that take time to complete TUG have higher score on
gait item. Weak correlation was for the temporal gait characteristics with the exception of number of
steps and CV step. Gait item correlates significantly with features related to lower limb movements
(Flex Leg, Average Vel Thigh, and Average Vel Leg) and the turning phase (Turning Vel, Steps Turning).

3.5. Stop and Go (S&G) & Narrow Walking (NW)

Both S&G (Table 8) and NW (Table 9) tests show a shorter duration of the step and swing phase
and decreased variability of step duration in both T1 and T2 with respect to the baseline. The velocity
remained unchanged in S&G but increased in NW. Large responsiveness is found in NW related to
step duration, swing duration, velocity, and all the temporal step variability features.

One feature from S&G (step duration, r = −0.42) and two features from NW (Step Velocity, r =
−0.44; CV Swing, r = 0.35) are significantly related to the UPDRS gait item.

4. Discussion

The response to dopaminergic drug replacement therapy in PD may lose its effectiveness during
the course of the disease. Postural and gait disturbances, in particular, are symptoms that are difficult
to treat with currently available pharmacological therapies.

Recent studies suggest a potential positive impact of tDCS on gait and balance in PD patients,
symptoms of the late stage of PD, poorly responding to the classic dopaminergic treatment.

Our work focused on objectively quantifying the effect of tDCS on gait and postural stability from
measured data gathered by wearable electronics used during motor tests of Parkinson’s disease patients.

Within this context, the obtained results demonstrate the impact of wearable electronics with
respect to standard clinical evaluation, allowing for interesting insights on the range of change on
motor performance following the therapy. In fact, wearable electronics can evidence key elements of
postural instability or gait abnormalities, both for evaluating the progression in PD and even to identify
the disease at early stages [7,48–50]. Accordingly, in this study, specific motor tests were considered to
assess the effects of tDCS therapy on balance and gait disturbances, taking into account the effects on
measured motor features, soon after the delivery and one month later.

For balance assessment, three different motor tests were adopted to evaluate the equilibrium in
three different conditions: SFT for static balance, TS to assess the balance when a low perturbation
is introduced, and PT to assess postural responses to an unexpected perturbation. According to the
kinematic assessment, Jerk is the only feature that presents a significant variation in SFT, TS and PT,
suggesting that it is a highly sensitive measure of balance. This confirms the finding reported in
previous studies, wherein Jerk was suggested as a valid biomarker of PD [7,49].

For gait assessment, the TUG test was useful to evaluate the slower speed, decreased arm swing,
shuffling steps and difficulty to turn. Further S&G and NW tests were useful to evaluate step time,
velocity, and variability of steps, due to the difficulty to start/stop and pass through a narrow door.

Our results show a reduction of step and stance duration and an increment of lower limb
velocity during TUG, S&G and NW tests. These achievements confirm the findings reported in other
works, which evidenced some improvement of hypokinetic gait in PD after tDCS treatment [29,30,51].
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The effect is more evident in NW test, where we observed a large responsiveness to tDCS. The reason
why PD patients tend to decrease step time and velocity when approaching a narrowed space is
not completely understood [39], however tDCS in some way improves this aspect. We evidenced
an improvement of gait in turning and standing tasks during TUG test too, when patients increased
the velocity to turn and sit after the stimulation protocol. In particular, changes in turning are one of
the early motor deficiencies in PD, as previously reported [50]. The wearable impact in analyzing this
complex motor task is relevant. In fact, clinical evaluation alone demonstrated an amelioration in gait
and pull test items but was not able to disclose which features of these two motor functions improved.
Being able to thoroughly phenotype patients’ motor performances is crucial to understanding the effect
of a therapeutic intervention and to allow for speculation with respect to its dynamics.

In order to provide clinical validity for our approach, we investigated the relation between the
clinical scores, given by the examiners, and the measured features. Clinical vs. wearables outcomes
demonstrated general significant results (Tables 4–9). In particular, a higher correlation was found
between features extracted from static balance tasks (SFT and TS) and BBS scores and between TUG
features and UPDRS gait item scores.

Not all of the features presented a perfect correlation with clinical rating, and this is also expected
since these measures should be more sensitive than clinical scales, mostly due to the fact that clinical
examination is based on a rating scale with only a few steps, while wearables produce a density scale
with a high number of steps [52]. For example, in the TUG test, the duration of the performance
is a significant parameter for both the classical clinical exam and “technology-based assessment”.
Conversely, the average velocity of lower limbs was significantly and accurately measured only by the
wearable sensors. The same consideration applies for the other features extracted from the balance
and gait tests. These results are in accordance with a recent work [7], evidencing that several features
extracted by sensors were able to detect subtle abnormalities in early stage PD patients where the
corresponding clinical score, obtained by visual examination, was considered normal for the majority
of subjects.

It could be argued that a better sensitivity can be clinically irrelevant, detecting differences too
small to have a real impact on a patient’s life and functioning. Alternatively, it allows investigators to
better phenotype motion alterations and their changes after a therapy, and to objectively measure the
benefit from a standard intervention, in view of its customization and relevant optimization.

We are aware of some limitations of the present study. First, tDCS was adopted for patients
under other medical treatments that had already been adjusted for the optimal dose. We did not
use a test-retest design, thus we cannot exclude variability due to participants’ physical or mental
conditions, or to drug response fluctuations. To minimize the effects of the aforementioned limitations,
we performed the study at the same time of the day for every patient, and no modification to the
therapy was allowed in the three months preceding the study and during its course. The study cannot
exclude a placebo effect. Moreover, we performed the experiment on a small sample size. Indeed,
further studies, on larger cohorts, are mandatory in order to confirm our findings.

5. Conclusions

Our study aimed to demonstrate the advantages of outcomes from technology-based measures
in clinical trials. These advantages are particularly important for revealing the effectiveness of tDCS
protocols in late stage PD patients. This is because the benefit of tDCS remains unclear and controversial,
thus the outcomes from electronic wearables can help the clinical rating of the tDCS effectiveness. In
particular, our results provide evidence of the wearable electronic impact, as a complementary tool to
the standard clinical evaluation.

The adoption of wearables furnished a number of motor features, some of them with a good
correlation with standard clinical assessment, others adding information not evident to human eyes.

Nonetheless, even if wearables can provide motor features for an insight of each patient’s motor
performances, they remain rarely adopted in clinical trials. We believe that relevant reasons for this
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can be ascribed to the lack of an integrated platform that can be easily used by nurses and clinicians,
and a lack of regulatory approval and appropriate cost–benefit ratios [15,52]. However, the idea to
develop and integrate technologies into the assessment of therapy effectiveness has become so evident
that several academic centers and companies have started to bring them to the market.
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Abstract: Progressive gait dysfunction is one of the primary motor symptoms in people with
Parkinson’s disease (PD). It is generally expressed as reduced step length and gait speed and as
increased variability in step time and step length. People with PD also exhibit stooped posture
which disrupts gait and impedes social interaction. The gait and posture impairments are usually
resistant to the pharmacological treatment, worsen as the disease progresses, increase the likelihood
of falls, and result in higher rates of hospitalization and mortality. These impairments may be caused
by perceptual deficiencies (poor spatial awareness and loss of temporal rhythmicity) due to the
disruptions in processing intrinsic information related to movement initiation and execution which
can result in misperceptions of the actual effort required to perform a desired movement and maintain
a stable posture. Consequently, people with PD often depend on external cues during execution of
motor tasks. Numerous studies involving open-loop cues have shown improvements in gait and
freezing of gait (FoG) in people with PD. However, the benefits of cueing may be limited, since
cues are provided in a consistent/rhythmic manner irrespective of how well a person follows them.
This limitation can be addressed by providing feedback in real-time to the user about performance
(closed-loop cueing) which may help to improve movement patterns. Some studies that used
closed-loop cueing observed improvements in gait and posture in PD, but the treadmill-based setup
in a laboratory would not be accessible outside of a research setting, and the skills learned may
not readily and completely transfer to overground locomotion in the community. Technologies
suitable for cueing outside of laboratory environments could facilitate movement practice during
daily activities at home or in the community and could strongly reinforce movement patterns and
improve clinical outcomes. This narrative review presents an overview of cueing paradigms that
have been utilized to improve gait and posture in people with PD and recommends development of
closed-loop wearable systems that can be used at home or in the community to improve gait and
posture in PD.

Keywords: Parkinson’s disease; cueing; gait; posture; rehabilitation; wearable sensors

1. Introduction

Parkinson’s disease (PD), which is the second most common progressive neurodegenerative
disease, results in motor and non-motor dysfunctions caused by the degeneration of
dopamine-producing cells of the substantia nigra and other brain regions [1,2]. Clinical motor
symptoms include bradykinesia, tremor, rigidity, freezing of gait, and instability of posture and
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gait [3–6]. Some of the common manifestations of PD that affect gait and posture are stooped posture
and shuffling of gait, increases in gait asymmetry and double support time, reductions in step length
and walking speed, impairments in postural responses to perturbations, and increases in variability
of step/stride time as well as step/stride length [7]. Considerable efforts are being taken to improve
options for treating mobility deficits in persons with PD because of the associated risk of falls and loss
of independence.

Pharmacological and deep brain stimulation (DBS) surgical treatments have been demonstrated
to be partially effective in managing some of the manifestations of gait impairments and postural
instability. As the primary pharmacological treatment in PD, the dopamine replacement therapy
(i.e., levodopa) improves stride length, gait speed, and double support time variability, whereas
it does not have any significant benefits on cadence and other temporal characteristics of gait [8].
The effects of levodopa on postural sway is controversial [9,10]. Regarding inadequate postural
responses (compensatory stepping) leading to falls in PD, levodopa seems to offer no benefit [11,12].
Thus, the effects of levodopa on gait and posture in PD is inconsistent.

Concerning the effects of the DBS, stimulation of subthalamic nucleus (STN-DBS) consistently
improved stride length but no effects on stride time and its variability were found. Stimulation of
globus pallidum internus (GPi-DBS) significantly improved gait velocity but without any significant
improvements in stride length. Also, many people with PD reported postoperative worsening of gait
and increased risk of falls [13]. In the case of the stimulation of pedunculopontine nucleus (PPN-DBS)
at 15–70 Hz, improvements in postural instability and gait disorder, including freezing of gait and falls,
have been noticed. However, the improvements varied depending on the duration of follow-up and
types of outcome measures obtained [14]. Low-frequency STN-DBS and GPi-DBS (below 100 Hz) have
shown encouraging beneficial effects on axial symptoms in PD; however, higher levels of evidence
with randomized and blinded studies are needed to confirm the benefits [15]. Also, the overall benefits
of low-frequency STN-DBS decrease with long-term use [16].

2. Pathophysiology of Motor Dysfunction in PD

The loss of dopaminergic neurons in the substantia nigra pars compacta within the basal
ganglia leads to classical parkinsonian motor symptoms. The basal ganglia play significant roles
in the production and control of automatic and well-learned motor movements. First, the basal
ganglia generate internal cues or trigger to facilitate the initiation of movement sequences without
attention. Second, they contribute to the cortical “motor set”, i.e., they aid in the preparation and
maintenance of motor schemes in a state of action readiness thereby enabling appropriate motor
function execution. The widely accepted model of basal ganglia consists of two circuits, the direct
and indirect pathways, which originate from striatal neurons and project to various output structures.
The direct pathway is postulated to promote movement by direct inhibitory projections to the globus
pallidus internus/substantia nigra reticulata (GPi/SNr), whereas the indirect pathway is hypothesized
to inhibit movement projecting to the GPi/SNr through globus pallidus externus (GPe) and subthalamic
nucleus (STN). In PD, striatal dopaminergic depletion results in the reduced inhibitory direct pathway
and increased indirect pathway output onto the GPi/SNr and, subsequently, increased GPi/SNr
inhibition to the output structures. This consequently leads to deficiencies in the execution of a
movement [6,17–19] (Figure 1). This deficiency in execution results in hypokinesia, a central feature in
PD, or lack of movement together with muscular rigidity.

Evidence indicates that the basal ganglia are also important for sensorimotor integration. Striatal
cells are robustly activated when a sensory event functions as a cue for a movement. In addition,
the caudate nucleus and substantia nigra contain a large proportion of cells that are multisensory;
such cells could be used to integrate sensory inputs and form a multimodal representation of the
environment in the basal ganglia. Disruption of basal ganglia processes enhances the response of
pallidal neurons to passive limb movement, suggesting an impaired gain mechanism because of
dopamine depletion [2,4,20]. A common consequence of striatal dopamine loss is attenuation of
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the transfer of critical information to the basal ganglia which leads to a decrease in the ability to
detect relevant internal sensory and or movement cues [1,21,22]. Such a disruption of information
flow to the basal ganglia may worsen impaired movement selection and sequencing in striatum with
dopamine loss thereby resulting in gait impairments [23]. The pattern of deficits in people with PD is
consistent with a disruption of this integration mechanism. Persons with PD may become increasingly
dependent on external stimuli to initiate and shape motor output and may be unable to effectively
execute movements because of the lack of critical proprioceptive information [24–27].

 

Figure 1. (A) Sensory-motor areas for movement execution in the basal ganglia and the impaired
motor pathways in Parkinson’s disease (PD) with the prevalence of the indirect pathway over
the direct pathway and the affected SN’s input to the circuit. SN—Substantia nigra, GPi—globus
pallidus internus, GPe—globus pallidus externus, Put—putamen, Th—thalamus, CN—caudate nucleus,
STN—sub-thalamic nucleus. This results in increased neuronal firing activity in the output nuclei of
the basal ganglia that leads to excessive inhibition of thalamo-cortical and brainstem motor systems
which, in turn, interferes with movement onset and execution [28,29]. (B) Representation of brain areas
activated during external cueing reported from findings of image analysis studies conducted on people
with PD during cueing experiments [17,30–32].

The presentation of cues in PD is hypothesized to compensate for the pathology by increasing
cortical activation which diminishes pathological activity (10–30 Hz) in the basal ganglia [33], mainly
by suppressing the subthalamic nucleus through direct pathways [34]. In the case of visual cues,
the unaffected visual-motor pathways are believed to play a major role in facilitating movements
bypassing the basal ganglia [35].
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3. Methodology

In this review, the current state of scientific knowledge associated with cueing to improve gait
and posture in PD is presented. The search for research articles involving cueing/feedback to improve
gait/posture in PD used combinations of the following keywords: Parkinson’s disease, cueing/cues/cue,
real-time feedback, gait, and posture. From the set of 304 articles returned by the search, only studies
that used quantitative gait and posture outcome measures (e.g., step length, stride length, walking
speed, cadence, and posture) were included. The set of studies were then categorized by type of
feedback implemented (visual, auditory, somatosensory), by wearability/non-wearability of the cueing
device/mechanism, and by study duration (single-session or long-term training). References cited in
the selected publications were also examined for other relevant studies to be considered. Studies were
excluded if they were not directed for people with PD, did not measure spatiotemporal parameters of
gait and/or posture, or used non-cue-based gait and posture rehabilitation strategies.

4. Cueing for Rehabilitation in PD

Given the limited ability of pharmacological and surgical treatments to address gait and postural
impairments in PD, various forms of external cueing (visual, auditory, or somatosensory) are being
investigated for inclusion in neuromotor rehabilitation programs. Cueing can be defined as a mechanism
of applying a spatial or a temporal stimulus to facilitate initiating or maintaining motor activity [32].
Numerous studies have shown that external cueing can improve the amplitude and timing of the
intended movement by increasing body position/movement awareness, making it a suitable modality
for gait and posture rehabilitation [25,26,36–40]. In addition, cueing has also been increasingly used in
helping with the initiation of a movement [41].

Cueing studies could be classified as open-loop cueing or closed-loop cueing based on how the
cue is presented. In open-loop cueing, the user is presented a series of cues in a periodic or preset
manner that is independent of the user’s performance. Metronome beats and a set of lines on the
floor separated by a preset distance are examples of open-loop temporal and spatial cues, respectively.
Open-loop studies have most widely utilized auditory or visual forms of cues to improve gait in people
with PD. While auditory cues have most often been delivered as rhythmic auditory stimulation (RAS)
or metronome beats in accordance to the user’s preferred gait speed or cadence [36,42–46], other types
of cues such as highly rhythmic music or verbal instructions have also been investigated in some of
the studies [43,44,47]. Most forms of visual cueing present lines or markers on the floor as targets for
foot placement. Markers such as stripes/tapes on the floor, projections from laser pointers, and lights
mounted on the user or embedded on a walking stick or walker [48–52] have been utilized. Visual cues
were spaced at distances based on the subject’s average step/stride length measured at baseline trials.
A few studies have investigated the use of somatosensory cues [53–55] using vibrating wrist-worn
devices and a combination of audio/visual and or/somatosensory cues for rehabilitation [40,56,57].

Studies of open-loop cueing used as a therapeutic modality have demonstrated short-term and
long-term gait improvements [41–43,48,58–61]. Short-term studies investigated immediate effects
with and without different cue interventions [62–64]. Laboratory-based long-term training studies
compared walking with cues to without cues [50]. One long-term auditory cueing study investigated
differences between ecological-based footstep cues (sound recorded while walking on gravel) to
artificially synthesized RAS [43] and compared walking with auditory cues to walking with visual
cues [40]. In the studies that presented cues as training, cues were provided progressively [65] or in
combination with physical therapy improved step time variability [59], posture and bradykinesia [66],
stride length, gait speed, and cadence [42].

In contrast with open-loop cues, closed-loop cueing provides feedback on the user’s performance
in real-time which can facilitate modifying one’s performance to achieve the desired movements.
Real-time feedback of step length [67–70] and uprightness of posture [69] have been investigated for
targeting PD-specific gait and posture deficits. However, these studies used treadmill-based cueing
systems and, therefore, are not suitable for overground locomotion during free-living conditions.
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Many studies have been performed using virtual reality (VR) which provides visual stimuli
that can help in motor and cognitive training [60,62,71–76]. These studies have used augmented
visual/auditory- or somatosensory-based feedback for training, but a meta-analysis [77] indicated that
there is only limited evidence of improvements in gait and balance due to the use of VR compared to
an active intervention without the VR component. Importantly, most of these VR systems require a
very sophisticated and expensive setup and may not be suitable for use at home.

5. Benefits of Open-Loop Cueing on Gait in PD

Evaluation of the acute/immediate effects of cues demonstrated that gait variables, such as
cadence [48,52,56,59,78,79], speed [48,52,57,59,80], and step length [42,44,45,48,63,80], increased during
walking with rhythmic auditory stimulation (RAS) when compared to walking without cues. In some
instances, the improvements in step length were reported to be a consequence of using a cadence that
was higher than the baseline. In addition to improving stride length and temporal measures, RAS also
reduced stride-time variability [81] and helped persons without freezing of gait (FoG) more than those
with FoG [79]. It was suggested that RAS might provide an external rhythm that can compensate for
the defective internal rhythm of the basal ganglia in PD [45,50,80].

Use of visual cues, on the other hand, consistently improved step/stride length [49–51,70,71,73] with
or without increasing walking speed or cadence. Plausible explanations for these acute effects could be
that visual cues may help fill in for the motor set deficiency by providing visual-spatial data [17,82] and
help in focusing attention on gait [57,73]. However, in studies that involved visual cueing during treadmill
walking, it is not clear whether the gait benefits were due to the visual cueing or to the external pacemaker
effect of the treadmill. Also, treadmill walking at speeds greater than the comfortable speed may demand
more attention to the task of walking itself, which may result in worsening gait automaticity (ability to
perform upper and lower limbs movements automatically during gait with little attention) which is already
reduced in PD compared to age-matched controls [52,83]. An investigation of a visual cueing strategy
that used a subject-mounted light device to present step length cues at a preset distance in front of the
user reported improvements in stride length and gait speed [49]. Cueing studies that combine auditory,
visual, or somatosensory cues [40,56] also reported improvements in cadence, gait speed, and stride length.
Moreover, studies that focused on attention strategy by asking people with PD to think about taking larger
strides were found to be effective in normalizing gait deficits observed in PD [47,57].

Notably, studies that have investigated the impact of long-term training demonstrated that RAS
was effective in improving both temporal and spatial gait measures, such as walking speed, cadence,
and step/stride length, regardless of the type of sound stimulation (ecological, synthetic auditory cue)
that was provided. A follow-up evaluation conducted after three months revealed that the effects of
the training were still largely maintained. When RAS was used for one-week training in PD people
with FoG [58], walking speed was increased, but no change in freezing episodes was noted, whereas,
in another study that used RAS for a three-week training, stride length, walking speed, and cadence
were significantly increased [42]. Effects of long-term gait training with and without visual cues
showed increases in step length and gait speed [50]. An open-loop cueing study that demonstrated
improvements in both temporal gait parameters and stride length attributed temporal improvements
with the use of auditory cues and improved stride length to the visual cues [40]. Results from a similar
study [66] showed improvements in postural stability and bradykinesia (as measured using Unified
Parkinson’s Disease Rating Scale (UPDRS)-Part III items) that were retained six weeks after the training
period was completed.

6. Benefits of Closed-Loop Cueing on Gait in PD

Closed-loop cueing provides feedback based on the user’s movements in real-time so that the
user can be aware of their performance and modulate it to achieve the desired/target performance.
Studies that investigated closed-loop cueing are fewer in number and are more recent as compared
to open-loop strategies. Both single-session and long-term training studies using closed-loop cueing
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were conducted using auditory, visual, somatosensory, and combined cueing strategies to evaluate
their effects on gait and posture. Studies that used closed-loop feedback systems have demonstrated a
higher degree of gait and posture improvement as well as residual carry-over effects in comparison
with open-loop, feed-forward systems [39,81]. This could be because performance-based cues have
been shown to help the user understand the delivered cue.

A single-session closed-loop study provided visual feedback based on the patient’s own motion
using eye-glasses and observed acute improvements in walking speed and stride length [84]. Two
studies used treadmill walking with closed-loop visual cueing to demonstrate that people with PD
could successfully follow the cues and improve the targeted gait parameters; one involved projection
of target step length and uprightness cues (only one type of feedback was used at a given time) on
the monitor in front of the treadmill [69] and the other projected visual cues (transverse lines) on
the treadmill belt [70]. A few studies developed smartphone applications and utilized data from
inertial measurement units to measure surrogates of current gait performance, which were obtained
by calculating an average of the parameter over several steps, and provided feedback when the gait
parameter was not in the target zone [85,86]. The feedback was provided to the user only when the
gait pattern was insufficient and was referred to as “on-demand” feedback [86]. Of the closed-loop
cueing studies listed in Table 1, two of them examined the immediate/acute effects of auditory cues in
a single session using a wearable sensor system. The Ambulosono sensor system and the StepPlus
system [87,88] were developed to provide auditory feedback to inform users when their current
spatiotemporal gait parameters are out of a specified target range. Both systems [87,88] were designed
for use by people with PD but have not yet been tested in people with PD. Preliminary results on
a control population (a group of individuals without PD) showed improvements in stride length,
stride length CoV, and cadence. The Armsense device, a portable device to measure arm-swing and
provide tactile feedback, was tested in a single-session study on individuals with PD and demonstrated
improvements in spatiotemporal gait parameters [89].

With mounting evidence suggesting greater gait and posture improvements as a result of
closed-loop cueing training, a pilot study [69] was extended to assess the performance of cues on
improving gait and posture in PD in a six-week training study [90,91].

Other long-term training studies using closed-loop visual and auditory cueing evaluated
the effects of closed-loop cueing on a variety of gait parameters: gait speed [67,68,70,86,92,93],
cadence [70,86], stride length [67,68,70,86], fall incidences [94], and other gait and dynamic balance
measures [74,84,95] at follow-up and post-training. Only two of the long-term training studies used a
wearable sensor-based, closed-loop system [86,95].

Some closed-loop training studies used augmented reality devices and game-based motion therapy
for combinational cueing [72,75,77,84,96,97]. Results from these studies suggested that the closed-loop
sensory feedback with or without long-term training was an effective non-pharmacologic intervention
for gait and balance improvement in PD. The abovementioned studies involving virtual reality and
game-based visual cueing have provided feedback to the user using monitors placed at the eye-level
which may help people with PD to be upright at least while following the feedback.

The regular practice of being upright during the training and any sustained benefits may
reduce the issue of stoopness experienced by people with PD. To date, only a few closed-loop
studies [70,74,86,94,95] included a randomized control trial (RCT) research design to confirm that the
gait and posture improvements observed are mainly due to the presentation of cues.
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7. Discussion

7.1. Different Cueing Types May Engage Different Mechanisms

Findings from the literature indicate that both types of cueing (i.e., auditory and visual) result in
improved gait and posture in individuals with PD. The hypothesized neural mechanism for external
cueing, suggested by Morris et al. [92], bypasses the hypoactive basal ganglia-supplementary motor
cortex (SMA) circuit by slightly altering the way the neural circuits control movement in individuals
with PD [31,35,99]. In general, sensory cues are known to enable the dorsolateral pre-motor control
system [30,32,63] which bypasses the SMA that is deficient in PD. Specifically, it has been suggested
that auditory cues help in improving the temporal parameters, such as cadence and gait speed, and that
external cues help because they are able to bypass the internal rhythm deficit associated with PD.
Visual cues, on the other hand, are believed to enable the visual–cerebellar motor circuit that influences
the spatial aspects of gait, such as step/stride length [71,82,92,100].

7.2. Effect of Disease Stage on Cueing Strategy

The effect of cueing in PD rehabilitation may depend on the stage of the disease and the type of
dominant symptoms being experienced. The studies included in this review focused predominantly
on individuals classified as Hoehn and Yahr stages II, III, and IV. For people in the early stage of
disease severity, external cues can compensate for small deviations from their normal gait pattern
thereby maintaining optimal gait quality and preventing deconditioning through training. Severely
affected individuals with PD rely on external cues to compensate for deficits in the automatic control
mechanisms (i.e., the ability to automatically generate normal stride length in a timely manner) thus
improving gait and reducing the incidence of falls and freezing of gait [30,32,37,55].

7.3. Open-loop Cueing: Challenges and Limitations

The primary challenge in cueing, whether open-loop or closed-loop, is to present the cue in a
manner that is informative, but does not have detrimental side effects on gait or balance. Despite
numerous studies that demonstrated the benefits of cues on gait in PD, most of them did not investigate
cues effects on balance control. Also, studies that specifically used cues to improve balance control in
PD are very limited, and they were focused on improving posture during quiet stance, sit-to-stand,
and dynamic balance maneuvers [101–103]. It is possible that the presentation of visual cues in the form
of markers on the floor or on the treadmill belt [38,70,81] may further degrade posture and stability
because it requires people with PD, who may already experience stooped posture, to look down.

Similarly, the use of auditory cues provided via earphones may reduce the awareness of
environmental sounds which may make it unsuitable for use outside of a laboratory environment.
This could be particularly problematic if sounds are provided continuously, i.e., with every step.
Another major limitation associated with open-loop systems is that the user is required to detect any
mismatch between the cue and their performance and decide how to respond in a manner that will
get them entrained (in sync) with the cues. For auditory cues, the user might have to make a quick
or a long-duration step in order to get in phase with the cues; for visual cues, the user might have
to make a short or a long step in order to get in phase. Finally, although the literature on open-loop
cueing in PD includes several studies that observed considerable improvements in spatiotemporal
parameters, future studies along these lines could help to move the field forward by documenting
how well users are able to follow the cues and by utilizing an RCT research design. Documentation of
performance in following the cues could provide insight into the limitations of the cue presentation
technique and could help to document the progression of learning throughout an intervention; the use
of an RCT design would provide more reliable and actionable evidence for a decision to use a technique
in the clinic.
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7.4. Closed-loop Cueing: Challenges and Limitations

As with open-loop cueing, closed-loop strategies must also present information in a manner that
is informative and does not have detrimental side-effects on gait. In addition, closed-loop paradigms
must also measure/calculate the feedback parameter in real-time and, if it is to be useful outside of
the laboratory, the entire system should be wearable and affordable. Setups that use motion capture
systems in the laboratory or clinic are expensive and require travel and staff time. Treadmill-based
systems pose limitations because some people with PD do not feel comfortable walking on a treadmill,
whether that be at home or a facility with supervision. For these reasons, a low-cost wearable system
that could readily be used on a daily basis during overground walking might be more widely accepted.
However, there are technical challenges in measuring gait parameters from wearable sensors in
real-time and conveying feedback in a manner that is safe and easy-to-use. Our group and others
are working to develop low-cost, wearable systems for real-time feedback in home or community
environments [87,104,105]. Once the technical development challenges are overcome, these systems
will be evaluated for accuracy and safety and then clinical efficacy will have to be assessed in an RCT.
These types of technologies have potential for widespread use, but they would require regulatory
approval before commercialization and marketing.

8. Conclusions

Based on the review of the literature presented here, it is clear that cueing can be an effective
component of locomotor therapy for people with PD who experience gait deficits. Rhythmic auditory
cueing has been the most widely used technique, but it is most effective only in influencing the temporal
parameters of gait. Visual cueing techniques have been used to increase spatial parameters, such as
step/stride length, and to reduce step/stride length variability and asymmetry. Such improvements
could have a high clinical impact, as they are important factors in gait and posture rehabilitation for
people with PD. However, the usefulness of visual cueing techniques has been limited by challenges in
presenting cues in a manner that is practical outside the laboratory and in a manner that encourages
upright walking. To overcome the limitations of currently available techniques, several groups are
developing unobtrusive wearable systems for closed-loop cueing to provide feedback of performance
on a step-by-step or on-demand basis. These systems seek to improve locomotion during activities of
daily living by providing feedback of gait and posture parameters that are often deficient in PD and by
providing it in a way that can be readily used on a regular basis in the home or the community. Recent
engineering developments have produced technology that is suitable for applications that require
wearable sensors. Current challenges are to develop algorithms to interpret information from the sensors
in real-time and to present it to the user in a manner that is intuitive, non-distracting, and actionable.
Such advances that lead to technology for cueing that is effective, affordable, and wearable may
enable adoption of these techniques by individuals with PD for use on a regular basis at home and in
the community.
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Abstract: The aim of this review is to summarize that most relevant technologies used to evaluate
gait features and the associated algorithms that have shown promise to aid diagnosis and symptom
monitoring in Parkinson’s disease (PD) patients. We searched PubMed for studies published between
1 January 2005, and 30 August 2019 on gait analysis in PD. We selected studies that have either used
technologies to distinguish PD patients from healthy subjects or stratified PD patients according to
motor status or disease stages. Only those studies that reported at least 80% sensitivity and specificity
were included. Gait analysis algorithms used for diagnosis showed a balanced accuracy range of
83.5–100%, sensitivity of 83.3–100% and specificity of 82–100%. For motor status discrimination the
gait analysis algorithms showed a balanced accuracy range of 90.8–100%, sensitivity of 92.5–100%
and specificity of 88–100%. Despite a large number of studies on the topic of objective gait analysis in
PD, only a limited number of studies reported algorithms that were accurate enough deemed to be
useful for diagnosis and symptoms monitoring. In addition, none of the reported algorithms and
technologies has been validated in large scale, independent studies.

Keywords: Parkinson’s disease; gait analysis; diagnosis; symptoms monitoring; wearable;
home-monitoring; machine learning

1. Introduction

Parkinson’s’ disease (PD) gold standard for diagnosis and symptoms monitoring is based on
clinical evaluation, which includes several subjective components. The lack of objective and quantitative
biomarkers for diagnosis and symptoms monitoring leads to significant direct and indirect healthcare
cost. Based on the current diagnostic criteria [1], the diagnostic error rate is around 20% [2]. In addition,
PD is a dynamic disease (i.e., symptoms changes during the disease course) that requires continuous
adjustment of therapy.

In the early stages of PD, the most effective treatment to alleviate motor symptoms is oral
L-DOPA [3]. However, during moderate and advanced stages, in addition to cardinal motor symptoms,
the patient may show motor fluctuations and dyskinesia. During this stage, the brain becomes very
sensitive to dopamine level fluctuations, and a continuous stimulation (instead of pulsatile drugs
administration) may help in controlling motor fluctuations, dyskinesias and cardinal motor symptoms.
This stimulation may be pharmacological with levodopa [4–6] or dopamine agonists [7], or provided
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by DBS (deep brain stimulation) [8–12]. During moderate and advanced stages, gait problems, like
freezing of gait and reduced balance and postural control, become more evident and unlike cardinal
motor symptoms, PD patients respond less to conventional therapy (i.e., oral L-DOPA).

In line with cardinal motor symptoms, to date, gait problems are evaluated with semiquantitative
rating scales like the unified Parkinson’s disease rating scale (UPDRS) [13] or the movement disorders
society unified Parkinson’s disease rating scale (MDS-UPDRS) [14]. In an effort to improve PD
management and move towards a quantitative and home-oriented assessment and recognition
of PD motor symptoms, different technologies have been used to evaluate bradykinesia [15–17],
rigidity [17–20], tremor [21–23] and axial symptoms [24–27].

Gait impairment is an evolving condition and different patterns of gait disturbances can be
detected throughout the progression of the disease [28]: reduced amplitude of arm swing, reduced
smoothness of locomotion, increased interlimb asymmetry [29], low speed, reduced step length [29],
shuffling steps, increased double-limb support, increased cadence [28], defragmentation of turns (i.e.,
turning en block), problems with gait initiation [30], freezing of gait and reduced balance and postural
control [28].

Some gait features in PD are specific, and get worse during the disease course. An objective
and quantitative gait analysis system could, therefore, potentially improve the current practice
(semiquantitative gait evaluation) that may aid in diagnosis, symptom monitoring, therapy
management, rehabilitation and fall risk assessment and prevention in Parkinson’s disease patients.
Among all these promising applications of gait analysis in Parkinson’s disease, we have confined
the scope of our review to two main unmet needs in this disorder: the diagnostic error, and the lack
of objective biomarkers for motor status discrimination. Therefore, the main aim of this overview
is to summarize the most important technologies used to evaluate gait features and the associated
algorithms that have shown promise in using gait analysis to aid diagnosis and symptom monitoring
in Parkinson’s disease (PD) patients. The scope of the review was confined to studies that showed any
promise of being clinically useful (i.e., are both highly sensitive and specific defined as those with at
least 80% sensitivity and 80% specificity) for diagnosis or motor status discrimination.

1.1. Gait Features

Human gait is a sequence of involuntary movements, cyclically repeated and triggered by
voluntary movement. Several components could be used to objectively measure and analyze gait
cycle. These components are typically categorized into spatiotemporal, kinematics and kinetics
features [31,32].

1.2. Spatiotemporal Features

Several spatiotemporal features can be used for gait analysis (Table 1). These features are the
more commonly used types of features to objectively describe the gait pattern in healthy subjects and
patients with several diseases. Spatiotemporal features could refer to the global gait cycle or to the
stride cycle.
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Table 1. Spatiotemporal gait and stride features.

Gait Cycle
The time from initial contact to initial

contact on the same foot including both the
stance phase and swing phase.

Stance Phase
The period during which the foot is in

contact with the support surface during one
gait cycle.

Swing Phase
The period during which the foot is airborne

during one gait cycle.

Double Limb Support
The period during which both feet are in

contact with the support surface during one
gait cycle.

Single Limb Support
The period during which only one foot is in
contact with the support surface during one

gait cycle.

Step Duration
The period between 2 successive events of

the same type on opposite limbs.

Stride Length
The linear distance between 2 successive
events (initial contact) on the same limb.

Step Length
The linear distance between 2 successive
events of same type on opposite limbs.

Step Width
The horizontal distance between 2 points on

opposite limbs.

Foot Progression Angle
The angle between the longitudinal axis of

the foot and the line of gait progression.

Each gait cycle starts with the initial contact of one foot and ends with a new initial contact of the
same foot (Figure 1). One single cycle is composed of a stance and a swing phase: the stance phase is
the period during which the foot is in contact with a support surface, and the swing phase is the period
during which the same foot is airborne in preparation for the next gait cycle. During the gait cycle, the
legs can be individually or simultaneously placed on the ground, so it is possible to identify a single
limb support stage, that is the phase during which only one foot is on the surface, and a double limbs
support stage during which both legs are on the support surface during a one step cycle (Table 1).

Figure 1. Human gait cycle.

The step and the stride are defined as the length/duration between 2 successive events of same
type on opposite limbs, and on the same limb, respectively (Table 1; Figure 2).
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Figure 2. Stride analysis of a single gait cycle.

The step width represents the horizontal distance measured between the position of the feet on
the same event. Finally, foot progression angle can be measured, this represents the angle between the
longitudinal axis of the foot and the line of gait progression (Table 1).

1.3. Kinetics Features

The kinetics analysis (or dynamics of gait) is the study of the forces and their effect on motion. The
dynamics forces are the causes of the motion that result in the kinematic movements. Commonly, these
forces are represented by the ground reaction force (GRF) on the hip, knee and ankle joints calculated
on the sagittal plane. GRF is described only when feet are in contact with the ground (stance phase)
and represents the effect of gravity on a body area counterbalanced by the contact with ground and the
limb muscular activation [31,32] (Figure 3). GRF refers to a center of pressure (CoP) that is the point of
force application.

Figure 3. Gait kinetics (dynamics) features.

1.4. Kinematics Features

Kinematics features describe the movements without taking the forces causing the movements
into account [31,32]. Kinematics analysis could describe gait features based on the sagittal, horizontal
or frontal plane for several body areas and joints such as the ankle, knee, hip and pelvis. Kinematics
features could be extrapolated both from the stance and swing phases. The kinematic analysis of the
position, velocity and acceleration of a body part can be determined. Angular kinematics objectively
quantify (as degrees) the joint’s motion around axes in different gait phases (Figure 4).
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Figure 4. Gait kinematics features.

1.5. Gait Analysis Technologies

Several technologies can be used for quantitative gait analysis. Technologies can be divided into
two main subtypes: wearables and non-wearables [33]. Wearable sensors used for gait analysis are
inertial sensors [34], goniometer [35], pressure and force sensors [36], electromyography (EMG) [37,38],
IR-UWB (impulse radio ultra-wideband) [39] and ultrasound [40]. Among non-wearable sensors, the
most common types are floor sensors [41,42] and image processing-based technologies (such as a single
or multiple cameras [43–45], time of flight [46–48], stereoscopic vision [49,50], structured light [51] and
IR thermography [52]).

Accelerometers, gyroscopes and magnetometers can be the component of the same inertial
measurement unit (IMU) device (Figure 5), one of the most widely used type of sensors in gait analysis
especially in PD [33,53]. It can measure velocity, acceleration, orientation and gravitational forces and
can be used to study gait initiation [54], assess standing balance [55] and quantify bradykinesia [56].

Figure 5. The same inertial measurement unit (IMU) device composed by accelerometers (A), a
gyroscope (B) and a magnetometer (C). Legend: (A) ax, ay and az = linear acceleration on the three axis
x, y and z; (B) αx, αy and αz = angular acceleration on the three axis x, y and z and (C) μx, μy and μz =

magnetic moment on the three axis x, y and z.

Accelerometers are composed of a mechanical sensing element with a proof mass attached to a
mechanical suspension system, with respect to a reference frame, that can be forced to deflect by the
inertial force according to the acceleration of gravity. The acceleration can be measured electrically
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using the physical changes in the displacement of the proof mass with respect to the reference frame [34].
Accelerometer can be attached to the feet, legs or waist [33]. Gyroscope is based on the property that
all body that revolves around an axis develop rotational inertia determined by the body’s moment
of inertia [33]. Basically, a gyroscope is an angular velocity sensor. Magnetometer is based on the
magneto resistive effect and can estimate changes in the orientation of a body segment in relation to
the magnetic north. It can provide information that cannot be determined by both an accelerometer
and gyroscope [34].

Goniometers work with resistance that changes depending on how flexed the sensors is. When
flexed, the resistance increases proportionally to the flex angle. Goniometers are easy to set up and use
a simple algorithm [33]. Goniometers are commonly used to study the angles for ankles, knees, hips
and metatarsals [35].

Pressure and force sensors measure the force applied on the sensor without considering the
components of this force on all other axes [33].

Force sensors measure the ground reaction force under the foot and return a current or voltage
proportional to the pressure measured. Usually this kind of sensor is easily integrated into instrumented
shoes [36]. Pressure and force sensors have been used to study stride length variability in PD patients
with freezing of gait (FOG) [57]. Electromyography is a neurophysiologic technique that registers the
electrical signals associated with motor unit activity, both voluntary and involuntary. The electrical
signal can be recorded with surface electrodes (non-invasively) or needle electrodes (invasively) [58].
Some EMG electrodes are commercialized in combination with wireless technology and play an
important role in evaluating walking performance during gait [38]. EMG can be used to study postural
disorders in Parkinson’s disease patients, like exploring muscular activity in the Pisa syndrome [59].

The impulse radio ultra-wideband (IR-UWB) technique can detect and track movements
non-invasively with high resolution and accuracy through emitting impulse radio waves of very short
duration, and receiving the reflected waves from the target body [60]. It has been used to quantify
activity measurement in movement disorders [61]. This technology also shows a good penetrating
power able to detect the motions of internal organs. This technique can also be used for a wearable
healthcare system to continuously estimate foot clearance due to its high temporal resolution, low
power consumption and multipath immunity [62]. This technology can be used for step and gait phase
detection [39].

Ultrasonic sensors can measure the time a sound takes to send and receive the wave produced as it
is reflected from an object. Knowing the time and the speed, we can estimate the distance between two
points [33]. This kind of technology is useful for step length measurement and gait phase detection [40]
to analyze bilateral gait symmetry and coordination [63].

Among non-wearable sensors, the single camera image processing system is composed of single
or multiple cameras that can be used to obtain information about gait in selected individuals. This
technique allows individual recognition and segment position localization. Image processing has been
used to identify people by the way they walk [44] and has several medical applications such as gait
recognition considering changes in the subject path [64], and study of the gait kinematic [65].

Time of flight (TOF) systems are based on cameras using signal modulation that measure distances
between the camera and the subject based on the phase-shift principle [46]. The TOF system can
detect the segment position, gait phase, foot plantar pressure distribution and are useful for individual
recognition [47]. TOF systems have been used to assess medication adherence in patients with
movement disorders [66].

Stereoscopic vision is used to determine the depth of points in the scene by using a model through
the calculation of similar triangles between the optical sensor, the light-emitter and the object in the
scene. This could be useful in gait phase detection, segment position and individual recognition [49].

Structured light is the projection of a light pattern under geometric calibration on an object
whose shape is to be recovered [33]. This technology is used for segment position study and gait
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phase detection. Kinetic sensor is one of the most common devices using this technology to create a
marker-based real-time biofeedback system for gait retraining [51].

Infrared thermography (IR) creates visual images based on surface temperatures. For studying
human gait, its functioning is based on skin emissivity. This method has been applied to recognize the
human gait pattern [52].

1.6. Machine Learning Algorithms Application for Gait Analysis

There has been increasing use of machine learning (ML) in medicine including neurology to aid
diagnosis, and patient management using risk stratification [67,68]. ML algorithms learn from data
(past experiences) by identifying underlying patterns and relationships. The field of ML can broadly
be categorized into supervised, unsupervised and reinforcement learning.

Supervised learning (SL) begins with the aim of predicting a known output or target. Indeed,
an SL algorithm takes a known set of input data (the training set) and known responses to the data
(output), and trains a model to generate reasonable predictions for the response to new input data. In
such algorithms, the artificial intelligence (AI) is approximating what a trained physician is already
able to perform with high accuracy. This approach means that the learning algorithm generalized the
training data to previously unobserved situations in a “reasonable” way.

All forms of SL algorithms can be classified as either classification or regression. Classification
techniques predict discrete responses. Regression techniques, instead, are used to predict continuous
responses. They can also be used for modeling the risk, meaning that the computer is doing more
than merely reproducing the physician skills. These algorithms are also capable of discovering new
associations not apparently evident to human’s preliminary interpretation.

Differently from SL, in the unsupervised learning (UL) algorithm, we were no longer interested in
predicting outputs. Instead, we aimed to discover naturally occurring patterns or groupings within the
data. It is important to emphasize that the examples given to learners were unlabeled; thus, there was
no error or reward signal to evaluate a potential solution. Common UL clustering algorithms could
broadly divided into three groups: hard clustering, where each data point belongs to only one cluster,
and soft clustering, where each data point can belong to more than one cluster; and dimensionality
reduction techniques.

Reinforcement learning (RL) is an approach in ML that states what actions an agent should take
in an environment to capitalize on the idea of an increasing reward. RL is different form standard SL in
that correct input/output pairs are never presented, nor are suboptimal actions explicitly corrected.
The primary goal is the direct performance, which involves finding a balance between exploration of
unknown datasets and exploitation of current knowledge [69].

The most widely used ML technique in gait analysis is SL, with varying levels of complexity and
interpretability. Table 2 describes the most used algorithms in this field.
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Table 2. Machine learning algorithm used for gait analysis.

Algorithm How It Works
Interpretability

(+): Min
(+++++): Max

k Nearest Neighbor (kNN):

Categorizes objects based on the classes of the
nearest neighbors in the dataset. The function is

estimated only locally and all of the calculations are
delayed up to the prediction or classification. The

kNN method is sensitive to the dataset [70].

+++

Linear Support Vector Machine
(SVM):

Classifies data by finding the linear decision
boundary (hyperplane) that separates all data points

of one class from those of the other class [71]. The
best hyperplane for an SVM is the one with the

largest margin between the two classes, when the
data is linearly separable [72,73].

+++

Kernel Support Vector Machine
(Kernel SVM):

Similar to SVM but additionally uses the “kernel
trick” to transform the input data (not linearly
separable) into a new feature space (linearly

separable)

++

Artificial Neural Networks
(ANNs)

Inspired by the connectivity of neurons in the human
brain, a neural network consists of highly connected

networks of neurons that relate the inputs to the
desired outputs [74]. Each nonlinear function in the

network can be used for the mapping from the
training inputs to the training outputs.

+

Naïve Bayes (NB)

A naïve Bayes classifier assumes that the presence of
a particular feature in a class is unrelated to the

presence of any other feature and uses the Bayes
theorem to determine the posterior probability

+++

Linear Discriminant Analysis
(LDA)

It classifies data by finding linear combinations of
features. Discriminant Analysis (DA) assumes that
different classes generate data based on Gaussian

distributions. The distributions parameters are used
to calculate boundaries, which can be linear or

quadratic functions.

++++

Decision Tree (DT)

It predicts responses to data by following the
decisions in the tree-algorithm from the root

(beginning) down to a leaf node. DTs can solve a
classification problem by continuously dividing the
input space to build a tree on which the nodes are as
pure as possible and contain points of a single class.
DTs are considered naïve algorithms; however, they

have great performances in prediction and
classification applications.

+++++

Random forest

An ensemble technique that uses a very large
number of decision trees, often resulting in improved

accuracy over DTs at the expense of
reduced interpretability

+

2. Materials and Methods

In line with the study of Sánchez-Ferro, et al. [75] we used a similar search string for axial
symptoms in Parkinson’s disease patients, in PubMed for articles published between 1 January 2005,
and 30 August 2019 (Table 3). We identified studies that used technologies to distinguish PD patients
from healthy subjects or to differentiate PD motor status or different disease stages. We only selected
studies that declared a sensitivity and specificity of at least 80% when using gait analysis for either
diagnosis or motor status discrimination. Additionally, further relevant articles based on the author’s
knowledge of the state of the art in this field were also added.
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Table 3. Search strategy.

Domain Search String

Disease
(“Parkinsonian Disorders” OR “Parkinson disease” OR “Parkinson
Disease, Secondary” OR “Basal Ganglia Diseases” OR “Parkinsonism”
OR “Parkinson’s Disease”) AND

Technology

(“Technology” OR “Technologies” OR “Diagnostic Techniques,
Neurological” OR “Assessment” OR “Patient Outcome Assessment” OR
“Symptom Assessment” OR “Evaluation” OR “Diagnostic Self
Evaluation” OR “Investigative Techniques” OR “Wireless Technology”
OR “Remote Sensing Technology” OR “Biomedical Technology” OR
“Technology Assessment, Biomedical” OR “Medical Informatics” OR
“Cloud Computing” OR “Point of Care systems” OR “Biomedical
Engineering” OR “Machine Learning” OR “Artificial Intelligence” OR
“Kinesis” OR “Mobile Applications” OR “Cell Phones” OR
“Smartphones” OR “Software” OR “Software Validation” OR “Platform”
OR “Accelerometer” OR “Gyroscope” OR “Magnetometer” OR
“Actigraph” OR “Wearable” OR “Device” OR “Big Data” OR “Sensor”
OR “Internet of Things” OR “Closed-loop System” OR “Hybrid” OR
“Home monitoring” OR “Quantitative” OR “Algorithm” OR
“Telemetry” OR “Instrumented” OR “Virtual Reality”) AND

Axial symptoms
(“Gait” OR “Gait Disorders, Neurologic” OR “Posture” OR “Posture
Balance” OR “Freezing of Gait” OR “Gait Disturbances” OR “Postural
Instability” OR “Falls” OR “Fall”) AND

Time range (“2005/01/01”[PDAT]: “2019/08/30”[PDAT])

For each selected study, we collected data about the technology, the algorithm used and its
performance metrics like accuracy, sensitivity and specificity. In addition for studies, which declares
only the regular accuracy ((true positives + true negatives)/(true positives + true negatives + false
positives + false negatives)), the balanced accuracy ((sensitivity + specificity)/2) was calculated. This
is because for unbalanced test sets, balanced accuracy is a better index for accuracy than regular
accuracy [76].

3. Results

3.1. Discrimination of Parkinson’s Disease from Healthy Subjects

According to the inclusion and exclusion criteria, after the literature search and studies screening,
10 studies were selected that focused on distinguishing Parkinson’s disease patients from healthy
subjects with gait analysis. To distinguish PD from healthy subjects, several technologies can be used
(Tables 4 and 5). One study used the data collected from wireless inertial sensors (Micro-attitude
and heading reference system (AHRS) model, MicroStrain, Inc, Williston, VT, USA) placed on the
foot in PD patients and healthy subjects to detect peculiar gait features and distinguish PD patients
from controls [77]. In particular, authors detected physical kinematic features of pitch, roll and yaw
rotations of the foot during walking and used principal component analysis (PCA) to select the best
features that were subsequently used for the SVM method to classify PD patients, with and without
gait impairment, and healthy subjects. From 67 collected features, they selected 15 kinematic features
divided in three categories: pitch, roll and yaw features. The proposed classification has very high
sensitivity, specificity and positive predict values (93.3%, 95.8% and 97.7% respectively) to distinguish
PD patients from healthy subjects [77].
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Table 4. Parkinson’s disease vs. healthy subjects discrimination.

Ref Algorithm
N.

Features
N.

Patients/Healthy
Regular

Accuracy
Balanced
Accuracy

Sensitivity (%) Specificity (%)

[77] SVM 15 NA 94.6% 93.3% 95.8%

[78] Decision
tree 13 25/45 95% 92.3% 88.8% 95.8%

[78] Neural
Network 13 25/45 99% 100.0% 100.0% 100.0%

[79] LDA 12 27/16 NA 87.0% 88.0% 86.0%

[80] NA 3 10/17 96.3 97.1% 100.0% 94.1%

[81] SVM 8 5/5 NA 90.0% 90.0% 90.0%

[82] Random
forest 23 10/10 NA 98.1% 98.5% 97.6%

[83] Bayesian
probability 2 18/33 92.2% 93.3% 94.4% 92.2%

[83] Bayesian
probability 2 18/33 94.1% 94.2% 94.4% 93.9%

[84] SVM 19 40/40 85.0% 83.5% 85.0% 82.0%

[85] SVM 13 29/18 95.7% 95.5% 94.4% 96.6%

[85] Random
forest 13 29/18 89.4% 89.3% 88.9% 89.7%

[85] kNN 13 29/18 85.1% 84.8% 83.3% 86.2%

[85] Decision
tree 13 29/18 87.2% 87.6% 88.9% 86.2%

[86] Tensor
decomposition 16 93/72 100.0% 100.0% 100.0% 100.0%

Abbreviations: CoP: center of pressure; CV: coefficient of variation; kNN: k-nearest neighbor, LDA: linear
discriminant analysis; NA: not available; SVM: support vector machine; VGRF: vertical ground reaction force.

Table 5. Parkinson’s disease vs. healthy subjects discrimination features selected.

Ref Algorithm Features

[77] SVM

Pitch

- Pitch range of motion
- Maximum angle of dorsiflexion
- Maximum angle of plantar flexion
- Plantar flexion SD
- Single-step maximum of maximum angle of

plantar flexion

Roll

- Roll range of motion
- Maximum positive roll angle
- Maximum negative roll angle

Yaw

- Yaw range of motion
- Maximum positive yaw angle
- Maximum negative yaw angle
- Overall 3D SD
- Maximum cadence

Additional

- Single-step maximum of maximum negative
roll angle

- Single-step minimum of maximum negative
roll angle
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Table 5. Cont.

Ref Algorithm Features

[78]
- Decision tree
- Neural Network

- Absolute difference between i) average distance
between right elbow and right hip and ii)
average distance between right wrist and
left hip.

- Average angle of the right elbow.
- Quotient between maximal angle of the left

knee and maximal angle of the right knee.
- Difference between maximal and minimal

angle of the right knee.
- Difference between maximal and minimal

height of the left shoulder.
- Difference between maximal and minimal

height of the right shoulder.
- Quotient between i) difference between

maximal and minimal height of left ankle and
ii) maximal and minimal height of right ankle.

- Absolute difference between i) difference
between maximal and minimal speed
(magnitude of velocity) of the left ankle and ii)
difference between maximal and minimal
speed of the right ankle.

- Absolute difference between i) average distance
between right shoulder and right elbow and ii)
average distance between left shoulder and
right wrist.

- Average speed (magnitude of velocity) of the
right wrist.

- Frequency of angle of the right elbow passing
average angle of the right elbow

- Average angle between (i) vector between right
shoulder and right hip and (ii) vector between
right shoulder and right wrist.

- Difference between average height of the right
shoulder and average height of the
left shoulder.

[79] LDA

Step features

- Step duration
- Rise gradient of swing phase
- Fall gradient of swing phase
- Standard deviation of minima
- Maxima minima difference

Signal sequence

- Variance
- Integral
- Entropy

Frequency analysis

- Dominant frequency
- Energy ratio
- Energy in band 0.5–3
- Energy in band 3–8

[80] NA

- High intensity,
- Periodicity,
- Biphasicity
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Table 5. Cont.

Ref Algorithm Features

[81] SVM

EMG statistics

- Variance
- Skewness
- Kurtosis
- RMS Energy

EMG frequency

- Dominant Frequency
- Mean Frequency
- Median Frequency
- Total Power

[82] Random forest

- Mean
- Standard deviation
- 25th percentile
- 75th percentile
- Inter-quartile range
- Median
- Mode
- Data range (maximum – minimum)
- Skewness
- Kurtosis
- Mean squared energy
- Entropy
- Cross-correlation between the acceleration in x

and y axis
- Mutual information between the acceleration in

x and y axis
- Cross-entropy between the acceleration in x

and y axis
- Extent of randomness in body motion
- Instantaneous changes in energy due to

body motion
- Autoregression coefficient at time lag1
- Zero-crossing rate
- Dominant frequency component
- Radial distance
- Polar angle
- Azimuth angle

[83] Bayesian probability
- Stride length,
- Gait speed

[83] Bayesian probability
- Stride length,
- Age
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Table 5. Cont.

Ref Algorithm Features

[84] SVM

- Step time
- Step time asymmetry
- Stance % of cycle
- Swing time
- Swing time CV
- Stride time
- Stride time CV
- Stride time asymmetry
- Single support time CV
- Heel off on time
- Heel off on std- deviation
- Double support time
- Double support time CV
- Double support load % of cycle
- Step length asymmetry
- Stride length
- Stride length CV
- Heel-to-heel support base
- Heel-to-heel support base CV

[85]

- SVM
- Random forest
- kNN
- Decision tree

- CV of swing time
- CV of stride time
- Mean CoP of x-coordinate
- Standard deviation CoP of x-coordinate
- Mean CoP of y-coordinate
- Standard deviation CoP of y-coordinate
- Mean peak force at heel strike
- Mean peak force at toe strike
- Standard deviation of peak forces at heel strike
- Standard deviation of peak forces at toe strike
- Mean kurtosis
- Mean skewness
- Mean Peak power of VGRF signal

[86] Tensor decomposition - VGRF measurements from 8 sensors for the foot

Another study compared two machine learning algorithms (decision-tree and neural networks)
to differentiate healthy subjects gait patterns in different disease conditions in an elderly population
(including patients affected by PD, hemiplegia, leg pain and back pain). Authors used movements
data obtained from 12 retroreflective tags placed on the body captured by an infrared camera (Smart
IR motion capture system) [78]. They studied 45 healthy controls and 25 PD patients. Predictors were
based on velocity and calculated body distances (i.e., difference between average distance between
right elbow and right hip and average distance between right wrist and left hip or the angle between
two body segments). Global classification accuracy was high for both systems and reached over 95%
for decision tree and more than 99% for neural network [78].

Moreover, Barth, et al. [79] demonstrated a good sensitivity and specificity (88% and 86%
respectively) to differentiate healthy subjects and early PD patients using only a single mobile inertial
sensor (gyroscope and accelerometer, integrated in the SHIMMER Company system) placed over the
shoes. The patients performed standardized gait tests and from this data step, signal sequence and
frequency features were extrapolated and used as predictors for the linear discriminant analysis (LDA).
Moreover, they demonstrated that this system was able to distinguish between mild and severe gait
pattern with high sensibility and specificity (100%).

Another approach was used by Yoneyama, et al. [80]: they used a single accelerometer placed
on the waist and performed gait analysis to compare a continuous 24-h assessment of 10 PD patients
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and 17 healthy controls [80]. They used a gait detection algorithm based on the gait cycle (i.e.,
stride-to-stride time interval) and gait-induced acceleration relationship using 3 features of gait (high
intensity, periodicity and biphasicity of gait) that introduced a set of indices in order to quantify
subject’s walking mode and to assess daily gait characteristics. All the calculated indices were smaller
in the PD group, and the proposed method was able to distinguish the PD gait from the normal gait with
100% sensitivity, 94.1% specificity and 96.3% accuracy. These results suggest that the afore-mentioned
systems could differentiate normal subjects from those with movement disorders [80].

To easily and objectively assess the difference between PD patients and healthy subjects, Kugler,
et al. [81] proposed a classification algorithm based on data collected from surface wireless EMG
(Delsys Trigno, Delsys Inc., Boston, MA, USA) positioned on two inferior limbs muscles during the
performance of standardized gait tests in five PD patients and five healthy subjects [81]. Furthermore,
data from accelerometers (Trigno sensor) placed on heels were collected and used for step segmentation.
Statistical and frequency features from EMG signals were used to train an SVM algorithm for step
detection. The proposed step detection method reached 98.9% sensitivity and 99.3% specificity and the
classification accuracy to distinguish between PD and healthy subjects reached 90% sensitivity and
90% specificity (average value).

Arora, et al. [82] investigated the feasibility and the accuracy of smartphones’ built-in tri-axial
accelerometer (in LG Optimus S) developing an app to objectively assess PD patients and distinguish
them from healthy subjects [82]. They studied 10 PD patients and 10 controls for 1 month and during
execution of the gait tests to extract 23 features of frequency and time domain from accelerometer
and subsequently used a random forest method to distinguish between PD and controls. This system
reached a 98% balanced accuracy, 98.5% sensitivity and 97.6% specificity.

Another study proposed the use of a Bayesian gait recognition method based on data acquisition
by video infrared camera system (Microsoft Kinect depth sensors) [83]. This system consisted of
an infrared projector and two infrared cameras (on left and right) that follow the structured light
principle. The collected data are converted in the depth frame matrix, depth frame contour, image frame
matrix and skeleton numbering. Then the acquired data were further analyzed through MATLAB
software. Eighteen PD patients, eighteen healthy subjects and fifteen healthy students were assessed
and probabilistically classified according to their detected gait featured (stride length and gait speed)
through skeletal tracking. This Bayesian system used the stride length, gait speed and age as features
and was able to distinguish between PD patients and controls with 92.2% accuracy combining stride
length and gait speed, and 94.1% accuracy combining stride length and patient/healthy subjects’ age.

Djurić-Jovičić, et al. [84] used an electronic walkaway to distinguish between the PD patient and
controls. Authors compared 40 de novo PD patients and 40 controls while walking selecting three
different tasks: normal pace walking, dual motor task (as walking and carrying a glass of water)
and walking during mental task execution. The most relevant predictor variables were selected (19
features) including the stride length, stride length coefficient of variation (CV), swing time, step time
asymmetry and heel-to-heel base support CV. These features were selected with the random forests
algorithm and the classification accuracy of these selected features was tested with the support vector
machine. The overall accuracy combining the three conditions was 85% to identify de novo PD patients
from healthy subjects, with a sensitivity of 85% and a specificity of 82%. Their study also found that
step time asymmetry and the support base CV are the most relevant factors that contribute to global
system accuracy.

Alam, et al. [85] proposed a novel mathematical method to assess the gait in PD patients and
controls using data from eight sensors below each foot and extrapolated features from vertical ground
reaction force (VGRF) data recorded during subjects walking [85]. Twenty-nine PD patients and
eighteen healthy subjects were enrolled in this study. Three different algorithms (sequential forward
selection, minimum redundancy maximum relevancy feature selection (MRMR) and the mutual
information-based feature ranking method) were applied to select the best features extracted from
VGRF data and 13 features (like CV swing time, CV stride time and centre of pression data) were
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chosen. Finally, four different machine learning classifiers (SVM, k-nearest neighbor-kNN, random
forest and decision trees) were compared to distinguish the gait pattern between healthy subjects and
PD patients. The accuracy of the machine learning methods ranged from 85.21% (kNN) to 95.7% (SVM
cubic kernel). SVM with cubic kernel showed a sensitivity of 94.4% and a specificity of 96.6%.

Finally, Pham and Yan [86] used a tensor decomposition algorithm called canonical polyadic
decomposition (CPD) also known as Parallel Factor Analysis (PARAFAC), a generalization of PCA, to
differentiate the multisensors time series of the gait between PD and controls in a previous published
dataset of 93 PD patients and 72 controls [86]. Data were collected from load sensors (Ultraflex
Computer Dyno Graphy, Infotronic Inc., Vriezenveen, NL, USA) placed on each shoe that recorded
force in a function of time. Tensor-decomposition factors of control and PD patients showed a distinct
relationship. This system used the full length of the VGRF time without considering the minimum
number of strides required for effective tensor decomposition analysis of the gait dynamics. This
system can be applied for very short time duration signals and can resolve the problem of obtaining
several trials for stable and trustable results. Authors showed 100% of accuracy, sensitivity and
specificity to distinguish PD and controls.

3.2. Parkinson’s Disease Motor Status Discrimination

According to the inclusion and exclusion criteria, after a literature search and studies screening,
only three studies were selected and these papers aimed at identifying different motor statuses in
Parkinson’s disease (Tables 6 and 7). Sensors can be used to discriminate the different motor status in
individual PD patients, in a single disease’s stage, monitoring the motor fluctuations, or can be used in
a longitudinal way to monitor the motor status changes during the disease evolution.

Table 6. Parkinson’s disease motor status discrimination.

Ref Algorithm
N.

Features
N.

Patients
Regular

Accuracy
Balanced
Accuracy

Sensitivity (%) Specificity (%)

[79] LDA 12 27 NA 100.00% 100.00% 100.00%

[87] SVM 1 12 91.81% 90.80% 92.52% 89.07%

[88] NA NA 41 NA 92.50% 97.00% 88.00%

Abbreviations: LDA: linear discriminant analysis; NA: not available; SVM: support vector machine.

Table 7. Parkinson’s disease motor status discrimination features selected.

Ref Algorithm Features

[79] LDA

Step features

- Step duration
- Rise gradient of swing phase
- Fall gradient of swing phase
- Standard deviation of minima
- Maxima minima difference

Signal sequence

- Variance
- Integral
- Entropy

Frequency analysis

- Dominant frequency
- Energy ratio
- Energy in band 0.5–3
- Energy in band 3–8

[87] SVM - Motion fluency value

[88] NA NA
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Samà, et al. [87] focused their research on automatic detection of bradykinesia, the cardinal
symptom of PD [87]. They proposed a mathematical algorithm to automatically identify bradykinesia
in PD patients at home using an SVM classifier (that detects strides) based on data collected from
a single accelerometer placed on the waist combined with a video-recording of the examination,
they correlated the stride frequency with the UPDRS bradykinesia score. Their methods showed a
high accuracy (>90%) to identify bradykinesia, a high sensitivity and specificity (92.52% and 89.07%,
respectively) and a good correlation with UPDRS specific items.

To objectively detect the motor on–off fluctuations, an integrated system like REMPARK (personal
health device for the remote and autonomous management of Parkinson’s disease, FP7 project
REMPARK ICT-287677) was used [88]. The REMPARK system consists of an algorithm added in an
app inside a smartphone that used the data from an accelerometer placed on the iliac crest. This system
was developed for longitudinal evaluation. In this study, 41 PD patients were enrolled for a 3-day
monitoring. For the on/off state discrimination, authors developed an algorithm, which analyzed
gait [89] and dyskinesias [90]. The algorithm responses were compared to a self-reported on–off diary.
The REMPARK system showed 97% sensitivity in detecting off states and 88% specificity in detecting
on phases compared to diaries.

Barth, et al. [79] demonstrated, in a cohort of 14 early stage PD patients and 13 intermediate PD
stage patients, that a mobile and light inertial sensor (gyroscope and accelerometer, integrated in the
SHIMMER system) placed over the shoes allows differentiation between the two groups with 100%
sensitivity and specificity with using a linear discriminant analysis (LDA) classifier that combines step,
signal sequence and frequency features as predictors [79].

4. Discussion

Several studies aimed at detecting specific patterns of gait alterations in Parkinson’s disease
by using a quantitative technology-based assessment [28,29,91,92]. Gait impairment is an evolving
condition throughout the progression of the disease and different patterns of gait disturbances can be
detected in early, mild to moderate and advanced stages [28].

Early specific alterations include reduced amplitude of arm swing, smoothness of locomotion and
increased interlimb asymmetry [29]. Impaired muscle contraction, rigidity and postural instability
contribute to reduced forward limb propulsion, which, in turn, can negatively affect spatiotemporal
gait parameters, such as speed and step length [29]. In particular, reduced step length seems to be a
specific feature of Parkinson’s disease gait [92]. Sensor-based observations showed that the increased
variability in gait reflects increased gait instability that can be detected early in the disease and can be
a useful marker of disease progression [91,93]. To carry out two tasks at the same time, a paradigm
known as dual-task interference, is particularly complex in PD patients because of two independent
effects influencing gait: the first is an age-associated reduction in gait performance unrelated to
pathology, and the second one is a PD-specific effect due to a dual-task coordination deficit interfering
with postural control. The latter suggests reduced stability and ability to adapt to PD patients under
dual-task conditions [93]. Arm swing outcomes provide a sensitive measure of decline in gait function
in PD under dual-task conditions [91]. On the other hand, one of the most representative early feature
of Parkinsonian gait, reduced speed, is not disease specific [28].

In the mild-to-moderate stage, symptoms spread bilaterally so that asymmetry might decrease [94].
Gait problems worsen and shuffling steps, increased double-limb support and increased cadence
become common [28]. Motor automaticity becomes further impaired, resulting in fragmented motor
function, such as defragmentation of turns (i.e., turning en block) and problems with gait initiation [30].

Further worsening in gait characterizes the advanced stage of the disease, with more frequent
freezing of gait (FOG) and motor blocks, reduced balance and postural control, motor fluctuations and
dyskinesia [28].

The use of several sensors technologies to objectively assess Parkinson’s disease (PD) symptoms
has exponentially increased in the last twenty years. Despite different features such as analysis
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of the face [95,96], speech [97,98], bradykinesia [15–17], rigidity [17–20] and tremor [21–23] being
explored for objective PD evaluation, gait analysis has received widespread attention as part of an
objective assessment for PD patient examination. Gait analysis is based on capturing movement
with a motion capture device that can be wearable or non-wearable. The analysis of the acquired
signals used different statistical or machine learning algorithms like the support vector machine (SVM),
dynamic neural network (DNN), naïve Bayes, random forests or decision tree. For machine learning
algorithms, the more complex the algorithm, the more likely it is able to determine an optimal decision
boundary and hence improved accuracy. However, this improvement in accuracy comes at the cost
of reduced interpretability. Among the algorithms included in this survey, decision trees are the
most interpretable. All the algorithms used data derived from several features of the gait pattern,
which can be grouped into three parameters groups: spatiotemporal, kinematic and kinetic [85].
Spatial parameters measure the physical distance between two steps (like strength length); temporal
parameters evaluate the time spent to complete a gait cycle (like the cadence, duration of swing and
stance phase) and kinematic parameters evaluate the movement of an object without consideration of
its cause while kinetic parameters measure the force that cause the movement (like the ground reaction
force during walking) [85].

The majority of these studies assessed if the motion capture device and associated algorithms can
distinguish between PD patients and healthy subjects. Other studies investigated if these tools could
help to classify different motor status of PD or identify various disease stages.

Among studies focused on discriminating PD vs. healthy subjects, various studies showed
high accuracy (more than 90%; Table 4). In addition, regarding studies focused on motor status
discrimination, Bayes, et al. [88] were able to discriminate the on/off state by merging an algorithm,
which analyzed gait and dyskinesia; instead Barth, et al. [79] were able to differentiate the early vs.
intermediate PD stage, with 100% sensitivity and specificity (Table 6). However, it should be considered
that all these algorithms need to be validated on larger and representative populations in order to avoid
overfitting the problem, which makes the algorithm valid only for the analyzed sample. In addition,
the simplest algorithms that provide acceptable accuracy are preferable (i.e., logistic regression and
decision trees) over more complex algorithms (e.g., SVM and neural networks) that may provide
slightly higher accuracy but are less interpretable.

5. Conclusions

The present overview showed that among the high volume of literature, published on the topic
of objective gait analysis in PD, only few studies showed accurate algorithms that can potentially be
clinically useful for diagnosis and symptoms monitoring. However, none of those studies have been
independently validated or tested on a large scale.
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Abstract: Balance impairment is a major mechanism behind falling along with environmental hazards.
Under physiological conditions, ageing leads to a progressive decline in balance control per se.
Moreover, various neurological disorders further increase the risk of falls by deteriorating specific
nervous system functions contributing to balance. Over the last 15 years, significant advancements
in technology have provided wearable solutions for balance evaluation and the management of
postural instability in patients with neurological disorders. This narrative review aims to address
the topic of balance and wireless sensors in several neurological disorders, including Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, stroke, and other neurodegenerative and acute clinical
syndromes. The review discusses the physiological and pathophysiological bases of balance in
neurological disorders as well as the traditional and innovative instruments currently available for
balance assessment. The technical and clinical perspectives of wearable technologies, as well as
current challenges in the field of teleneurology, are also examined.

Keywords: wireless sensors; wearables; balance; posturography; Alzheimer’s disease; Parkinson’s
disease; multiple sclerosis; cerebellar ataxia; stroke; vestibular syndrome

1. Introduction

Countries are globally experiencing a demographic shift in the distribution of the population
towards older ages [1] and every year up to 35% of people aged 65 and over fall, often requiring
hospital admission after mild to severe injuries [2]. Falls account for 40% of all injury-related deaths [2],
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Sensors 2020, 20, 3247

and even when non-fatal, commonly cause a “post-fall syndrome”, a psychomotor regression condition
responsible for psychological, postural and gait dysfunction in elderly [3]. In terms of the economic
burden of falls, in 2015 the estimated medical costs attributable to fatal and non-fatal falls increased
to 50 billion dollars in the United States [4]. Falls represent a major public health concern and have
an enormous economic impact on society, thus requiring the development of effective strategies to
prevent underlying causes. Among these, balance impairment is one of the leading determinants of
falls along with ecological factors, such as environmental hazards [5]. Ageing significantly impacts on
postural ability due to age-related changes in the sensorimotor and cognitive function [6]. Moreover,
balance impairment frequently affects patients with neurological disorders who are twice as likely to
fall compared to an age-matched healthy population [7].

To date, a history of falls is the strongest predictor of future falls [8,9], thus underscoring the need
for predictive measures to determine early preventive interventions. However, clinical assessment is
subjective and is not sensitive enough to identify early balance control dysfunction [10]. Conversely,
traditional laboratory evaluation, including posturography through force platforms and optoelectronic
systems, is objective and sensitive enough to identify subtle abnormalities but does not always reflect
real-life situations. Over the last 15 years, advancements in healthcare technology have allowed
analysing physiological measures of motor and non-motor behaviour objectively and unobtrusively [11].
Indeed, the availability of wearable devices has opened to the instrumental evaluation of clinical
phenomena in free-living conditions. Accordingly, several authors have made a great effort to use
wireless sensors in the study of balance impairment in patients with neurological disorders, thus
offering new solutions for diagnosis and rehabilitation [12].

Despite several previous reviews discussing specific technical or clinical aspects of balance
assessment through wearables, this narrative review aims to discuss the whole topic of balance
evaluation, through wireless sensors, in patients with neurological disorders. Accordingly, in this
review, we first introduce the physiology and pathophysiology of balance, including the main
mechanisms underlying postural dysfunction in several neurological disorders, and report clinical
tools commonly used for balance assessment. We then summarise the instrumental assessment of
balance, including static and dynamic posturography. Moreover, we analyse wearable technologies
available for balance assessment in neurological disorders. Finally, we speculate about prospects and
challenges of wireless sensors for balance assessment in teleneurology and telerehabilitation.

2. Physiology and Pathophysiology of Balance

Balance is the ability to maintain body orientation in space under static and dynamic conditions [13],
respectively intended as postural stability at rest and in response to active movement or external perturbations.
Over the course of evolution, the complexity of this function greatly increased with the acquisition of
vertical posture and bipedalism in humans, representing the main transformation in primates [14].
A composite sensorimotor-control system based on a closed-loop circuit dynamically coordinates body
segments according to environmental hazards through feedback and feed-forward strategies [15].

The central nervous system oversees balance maintenance by integrating sensory inputs from
the peripheral nervous system (e.g., receptors and nerves) and motor outputs to the musculoskeletal
system [15,16] (Figure 1). Brainstem nuclei, along with basal ganglia, the cerebellum, and other
subcortical structures (e.g., thalamus) play crucial roles in the integration of sensory cues from the
somatosensory, vestibular, and visual systems, which continuously provide an overall representation
of body movement, acceleration, and position in space [15,17] (Figure 1A). By encoding an internal
postural model based on reciprocal connections with the parietal cortex, the cerebellum contributes to
dynamic balance control through postural responses that serve as an error-correction mechanism [16]
(Figure 1B). Finally, the cerebral cortex oversees attentional and visuospatial balance requirements
and manages anticipatory postural adjustments (APAs) before and during voluntary movements [18].
Cognitive-motor processes are responsible for postural optimisation based on prior experience, current
context, and learning through long-latency components of postural responses [19].
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The main goal of physiological mechanisms underlying balance control is the maintenance of
postural stability by managing the spatio-temporal relationship between the body’s centre of mass
(COM) and base of support (BOS) [22]. While reactive postural responses compensate for unexpected
external perturbations, proactive postural responses allow balance control under expected external
perturbations or self-produced balance disturbances through a motor prediction strategy [22]. When
an external balance perturbation occurs, different postural strategies are adopted to maintain the COM
projection within the BOS. Indeed, minor postural perturbations are usually counteracted by corrective
strategies involving body rotations around the ankle (ankle strategy) or hip (hip strategy) that move
the COM projection. Conversely, major postural disturbances require a broadening or displacement of
the BOS in order to maintain the COM projection within the BOS (protective strategy) [22] (Figure 1C).

Three main pathophysiological mechanisms are responsible for balance dysfunction: (i) abnormal
acquisition, transmission, or perception of sensory signals (Figure 1A); (ii) abnormal sensorimotor
integration and motor planning (Figure 1B); (iii) impaired transmission of motor output or
musculoskeletal system damage [23] (Figure 1B,C). In patients with impaired afferent sensory
information (e.g., somatosensory, vestibular or visual inputs), balance control requires compensatory
strategies including attentional resources [24] and sensory reweighting [25].

Ageing is commonly associated with a progressive loss of sensorimotor function, including
structural and functional changes in the somatosensory, visual, and vestibular systems, along with
a decline in central neural processing and muscle strength [6]. Accordingly, ageing leads to slower
reaction times and reduced limits of stability, thus worsening balance control mainly under cognitive
loads and unexpected postural perturbations [6,26].

Patients with neurological disorders may manifest balance dysfunction as a result of impairment of
at least one physiological component responsible for balance control significantly increasing the risk of
falls compared to age-matched healthy subjects [7]. Pathophysiological mechanisms leading to balance
impairment in various neurological disorders are summarized in Table 1 along with the main nervous
system structures underpinning postural dysfunction. Understanding the physiological mechanisms
underlying balance control in humans is the necessary background to measure balance objectively,
through conventional as well as wearable technologies, in patients with neurological disorders.
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3. Clinical Assessment of Balance

The clinical assessment aims at recognizing balance impairment and identifying possible
underlying causes [63]. Neurological examination routinely involves several clinical manoeuvres,
including the Romberg’s test [64], the pull test [65], and the tandem gait test [66], designed to examine
individual balance performance qualitatively (Table 2). In addition to these clinical manoeuvres, several
standardized scales and tests provide a semiquantitative evaluation of balance (Table 2). A secondary
task during motor performance (i.e., dual task) is commonly used to assess the involvement of cognitive
function in balance control.

Table 2. Standardised clinical tests and scales for balance assessment.

Clinical Test or Scale
Aim of the
Test/Scale

Procedures Outcome Measures

Romberg test [64]
Postural ability and
pathophysiological

mechanisms

The subject stands with feet close together, arms by
the side, and with eyes open, and then closes eyes
while maintaining the same position (removal of

vision possibly compensatory
proprioceptive deficits)

Unbalance and fall

Pull test [65] Postural ability
The subject undergoes a sudden body displacement
by a quick and forceful pull on the shoulders during

upright stance

Number of backward
steps or falling

(qualitative)

Tandem gait test [66] Postural ability
The subject walks a straight line while touching the
heel of one foot to the toe of the other (narrowed base

of support)

Unbalance, falls or need
to enlarge the base of

support

One-leg stance test [67] Postural ability The subject stands unassisted on one leg with
opened eyes and arms on the hips as long as possible

Time of performance in
seconds

Timed up and go test [68] Gait and postural
ability

The subject sits on a chair, stands up, walks 3 m,
turns around, walks back and sits down

Time of performance in
seconds

Tinetti balance and
mobility scale -

Performance-oriented
mobility assessment [69]

Gait and postural
ability

The subject performs postural and walking motor
tasks reflecting common daily activities, such as

rising from a chair, maintaining upright stance after a
nudge, walking and turning (total 24 items

consisting of 14 balance items and 10 gait items)

Total score (sum of gait
and balance scores) by

using a 2/3-point ordinal
scale for each item

Functional reach test [70] Postural ability The subject reaches as far forward as he can with
arms at 90◦ flexion, keeping feet on the floor

Maximum distance (cm)
that the subject can reach

forward beyond arm’s
length

Berg balance scale [71] Postural ability

The subject performs functional activities reflecting
different components of postural control, such as

reaching, bending, transferring and standing (total
14 items)

Total score by using a
5-point ordinal scale for

each item

Activities of balance
confidence scale [72] Postural ability

The subject performs a self-report questionnaire on
subjective impact of balance dysfunction on 16 daily
activities, such as walking in different environmental

and postural conditions (total 16 items)

Average score in
percentage (each item

rated from 0% to 100% of
balance confidence)

Physiological profile
assessment [73]

Pathophysiological
mechanisms

The subject performs different sensorimotor tasks to
assess vision (e.g., dual contrast visual acuity chart),
lower limb sensation (e.g., tests of proprioception),

legs strength, step reaction times, vestibular function
(e.g., visual field dependence) and postural sway

Falls risk assessment
based on the scores of

sensorimotor tasks

Balance evaluation
systems test [74]

Pathophysiological
mechanisms

The subject performs several motor tasks reflecting
different systems underlying balance control (e.g.,

stance on a firm or foam surface, stepping over
obstacles, alternate stair touching); (total 36 items

categorised into 6 underlying systems:
"Biomechanical Constraints," "Stability

Limits/Verticality," "Anticipatory Postural
Adjustments," “Postural Responses,” “Sensory

Orientation” and “Stability in Gait”)

Total score in percentage
referring to the partial
score of systems that

involve a 4-point ordinal
scale for each item

When considering the clinical assessment of balance, several issues should be taken into account.
First, the clinical assessment unlikely detects early postural abnormalities since it identifies balance
impairment when significant pathological changes in the nervous system have already occurred.
Second, the clinical assessment provides qualitative rather than quantitative evaluations of postural
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ability, thus representing a subjective tool. Third, standardised clinical scales or indices, such as the
Berg balance scale [75] or the dynamic gait index [76], are semiquantitative evaluations of balance,
but are time-consuming and suffer from floor and ceiling effects. Lastly, the clinical setting usually
involves rather predictable environments with poor ecological value. As a result, evaluation through
instrumental tools, such as wearable sensors, would contribute to providing more sensitive, objective,
multidimensional, long-term and ecological measures.

4. Static and Dynamic Posturography

Posturography refers to the instrumental assessment of balance [77–79] under static or dynamic
conditions [80,81]. Static posturography examines body postural sway while subjects maintain a static
stance on a non-movable surface [79,81]. During the upright stance, the human body can be considered
an unstable system in which force gravity and body inertia generate torques to be balanced [82]. Indeed,
the vertical projection of the whole body mass constantly varies over time, deviating from the ankle
joint centre of rotation [83]. Human standing balance can be represented by a reduced number of joints
resembling an unstable single-link inverted pendulum [84].

Unlike static evaluation, dynamic posturography includes several postural tests and ad-hoc
instruments designed to assess balance under experimentally-induced external perturbations [85].
External disturbances are often designed to simulate environmental hazards occurring in daily activities
including a set of visual and motor challenges [85,86]. Postural responses to external perturbations
can be assessed by a non-motorised movable platform, such as the Biomechanical Ankle Platform
System [87], or more complex commercial robotic systems, such as the Equitest system (Neurocom
International, Clackmas, OR, USA) [85], the Balance Master (Micromedical Technologies, Chatham, IL,
USA) [88], or Caren (Motek, Amsterdam, the Netherlands) [89].

Several non-commercial robotic platforms have been recently designed to provide various
patterns of mechanical perturbation [90–94]. Common approaches include unidirectional [95]
or multidirectional [85,96,97] disturbances, such as rotational [93,98–101] and translational
perturbations [96,102–104], or forces applied to specific body segments [105,106]. Abrupt perturbations
allow the examination of reactive postural responses, whereas continuous and oscillatory perturbations
are used for the assessment of anticipatory postural strategies [101,102,104,107,108]. Postural
perturbations can be also defined as predictable or unpredictable according to the subject’s awareness.
The predictability/unpredictability of a specific perturbation allows the experimental investigation of
reactive or anticipatory postural strategies [105,106,109]. Mechanical perturbations are often merged
with visual, vestibular, and proprioceptive disturbances such as visual scene movements, imposed
head accelerations, galvanic vestibular stimulation, and tendon vibration [81,85,89,110,111]. The most
common tests used are the Sensory Organization Test (SOT) [112], the Motor Control Test (MCT) [113],
and the Adaptation Test (AT) [81]. In the SOT, subjects are elicited through visual, vestibular, and
proprioceptive modifications of the support surface and visual surroundings to create sensory conflict
conditions. The MCT consists of antero-posterior perturbations at different intensity levels, while in
the AT subjects experience toes-up and toes-down rotations.

Several biomechanical parameters quantify balance dysfunction [114,115] by referring to two
main variables: the centre of pressure (COP) and COM [116]. The COP is the application point of the
total ground reaction force vector, whereas the COM refers to the average position in 3D space of all
body segment positions according to their specific masses [116]. COM can be considered representative
of the movements of the entire human body [116]. Several indices considering acceleration, velocity,
displacement of single or multiple body segments, joint angles, and muscle activity can be measured
using both traditional and wearable instrumentation (Table 3).

192



Sensors 2020, 20, 3247

T
a

b
le

3
.

M
ai

n
bi

om
ec

ha
ni

ca
lp

ar
am

et
er

s
fo

r
ba

la
nc

e
as

se
ss

m
en

tt
hr

ou
gh

tr
ad

it
io

na
la

nd
w

ea
ra

bl
e

in
st

ru
m

en
ta

ti
on

.

N
a

m
e

M
e

a
n

in
g

S
ta

ti
c

D
y

n
a

m
ic

R
A

N
G

E
R

an
ge

of
ac

ce
le

ra
tio

n/
di

sp
la

ce
m

en
ti

n
th

e
A

P,
M

L,
an

d
V

di
re

ct
io

n.
Im

pa
ir

ed
m

ot
or

st
ra

te
gi

es
re

po
rt

hi
gh

va
lu

es
of

R
an

ge
In

de
x

[1
14

,1
17

,1
18

]
[1

11
,1

19
]

ST
D

St
an

da
rd

de
vi

at
io

n
of

re
fe

re
nc

e
bo

dy
la

nd
m

ar
ks

.I
ti

s
an

in
de

x
of

av
er

ag
e

am
pl

itu
de

of
bo

dy
di

sp
la

ce
m

en
ts

.
[1

02
,1

04
,1

20
,1

21
]

D
IS

T
M

ea
n

di
st

an
ce

fr
om

th
e

ce
nt

re
of

ac
ce

le
ra

ti
on
/d

is
pl

ac
em

en
tt

ra
je

ct
or

y.
It

is
an

in
de

x
of

de
se

rt
io

n.
In

st
at

ic
ev

al
ua

ti
on

,h
ig

h
va

lu
es

in
di

ca
te

po
or

m
ot

or
co

nt
ro

l.
[1

14
,1

17
,1

22
,1

23
]

R
M

S
R

oo
tm

ea
n

sq
ua

re
of

th
e

ac
ce

le
ra

tio
n/

di
sp

la
ce

m
en

ti
n

A
P,

M
L,

an
d

V
di

re
ct

io
n.

H
ig

h
va

lu
es

re
pr

es
en

tl
ar

ge
r

di
sp

er
si

on
an

d
po

or
m

ot
or

co
nt

ro
l.

[1
14

,1
17

,1
22

–1
27

]
[1

28
]

M
EA

N
A

ve
ra

ge
ac

ce
le

ra
ti

on
/v

el
oc

it
y/

di
sp

la
ce

m
en

ti
n

th
e

A
P,

M
L,

V
di

re
ct

io
n.

H
ig

h
va

lu
es

re
pr

es
en

tu
ns

ta
bl

e
po

st
ur

al
ad

ju
st

m
en

ts
an

d
po

or
m

ot
or

co
nt

ro
l.

[1
18

,1
22

,1
27

]

PA
TH

To
ta

ll
en

gt
h

of
th

e
ac

ce
le

ra
ti

on
/d

is
pl

ac
em

en
ti

n
st

at
ic

co
nd

it
io

n
la

rg
er

va
lu

es
re

pr
es

en
tp

oo
r

m
ot

or
co

nt
ro

l.
[1

14
,1

17
]

[2
6,

10
2,

12
8]

M
V

M
ea

n
ve

lo
ci

ty
.I

ti
s

th
e

fir
st

de
ri

va
tiv

e
of

th
e

ac
ce

le
ra

tio
n

si
gn

al
in

th
e

A
P,

M
L

an
d

V
di

re
ct

io
n.

Im
pa

ir
ed

m
ot

or
st

ra
te

gi
es

re
po

rt
H

ig
h

va
lu

es
of

M
ea

n
Ve

lo
ci

ty
In

de
x.

[1
14

,1
17

]

A
R

EA
To

ta
la

re
a

th
at

en
ca

ps
ul

at
es

th
e

to
ta

ls
w

ay
pa

th
in

A
P

an
d

M
L

di
re

ct
io

ns
.I

n
a

st
at

ic
co

nd
it

io
n,

hi
gh

er
va

lu
es

re
pr

es
en

tp
oo

r
m

ot
or

co
nt

ro
l.

[1
14

,1
17

,1
18

,1
23

,1
27

]

EA
95

95
%

el
lip

se
sw

ay
ar

ea
.I

ti
s

th
e

el
lip

se
ar

ea
th

at
en

ca
ps

ul
at

es
th

e
95

%
of

th
e

sw
ay

pa
th

in
th

e
A

P
an

d
M

L
di

re
ct

io
n.

H
ig

h
va

lu
es

re
pr

es
en

tp
oo

r
m

ot
or

co
nt

ro
l.

[1
14

,1
17

,1
26

,1
27

]

JE
R

K
Ti

m
e

de
ri

va
ti

ve
of

th
e

ac
ce

le
ra

ti
on

si
gn

al
.I

tr
ep

re
se

nt
s

th
e

ra
ng

e
of

ch
an

ge
s

in
th

e
ac

ce
le

ra
ti

on
si

gn
al

.H
ig

h
va

lu
es

re
pr

es
en

ta
cc

el
er

at
in

g
an

d
de

ce
le

ra
ti

ng
pa

tt
er

n
at

te
st

in
g

m
or

e
un

st
ab

le
co

nd
it

io
n

an
d

po
or

m
ot

or
co

nt
ro

l.
[1

14
,1

17
,1

18
,1

22
,1

25
]

C
ro

ss
-c

or
re

la
ti

on
C

ro
ss

-c
or

re
la

ti
on

be
tw

ee
n

di
sp

la
ce

m
en

ts
of

tw
o

bo
dy

po
in

ts
.I

ti
s

an
in

de
x

of
co

up
lin

g
be

tw
ee

n
th

e
m

ot
io

n
be

ha
vi

ou
r

of
tw

o
bo

dy
se

gm
en

ts
or

be
tw

ee
n

th
e

m
ov

ab
le

pl
at

fo
rm

an
d

th
e

hu
m

an
bo

dy
[1

02
,1

04
,1

20
,1

29
]

PW
R

To
ta

lp
ow

er
of

th
e

po
w

er
sp

ec
tr

um
of

th
e

ac
ce

le
ra

ti
on

si
gn

al
.

[1
14

,1
23

]
[1

02
]

F9
5

or
F5

0
Fr

eq
ue

nc
y

be
lo

w
w

hi
ch

is
pr

es
en

tt
he

95
%

or
50

%
of

th
e

to
ta

lp
ow

er
.H

ig
h

va
lu

es
in

di
ca

te
a

la
rg

er
am

ou
nt

of
po

st
ur

al
ad

ju
st

m
en

ts
an

d
po

or
m

ot
or

co
nt

ro
l.

[1
14

,1
18

]

193



Sensors 2020, 20, 3247

T
a

b
le

3
.

C
on

t.

N
a

m
e

M
e

a
n

in
g

S
ta

ti
c

D
y

n
a

m
ic

C
F

C
en

tr
oi

da
lf

re
qu

en
cy

of
th

e
si

gn
al

in
th

e
A

P,
M

L
an

d
V

di
re

ct
io

n.
It

is
th

e
fr

eq
ue

nc
y

at
w

hi
ch

th
e

po
w

er
is

ba
la

nc
ed

,i
.e

.,
th

e
to

ta
lp

ow
er

ab
ov

e
th

is
fr

eq
ue

nc
y

is
eq

ua
lt

o
th

e
on

e
be

lo
w

.P
oo

r
m

ot
or

co
nt

ro
li

s
id

en
ti

fie
d

by
lo

w
va

lu
es

of
C

F.
[1

14
,1

17
,1

22
]

FD
Fr

eq
ue

nc
y

di
sp

er
si

on
.I

ti
s

a
m

ea
su

re
of

th
e

va
ri

ab
ili

ty
of

th
e

fr
eq

ue
nc

ie
s

of
th

e
po

w
er

sp
ec

tr
al

de
ns

it
y.

V
al

ue
s

cl
os

e
to

ze
ro

in
di

ca
te

pu
re

si
nu

so
id

al
pa

tt
er

ns
of

th
e

si
gn

al
an

d
a

m
or

e
st

ab
le

m
ot

or
co

nt
ro

l.
[1

14
,1

17
,1

18
,1

22
]

En
tr

op
y

It
is

th
e

po
w

er
sp

ec
tr

um
en

tr
op

y
of

th
e

si
gn

al
.I

ti
s

an
in

de
x

of
m

ov
em

en
t

sm
oo

th
ne

ss
an

d
th

e
in

ab
ili

ty
to

re
gu

la
te

po
st

ur
al

flu
ct

ua
ti

on
s.

[1
27

,1
30

]

M
ag

ni
tu

de

It
th

e
ar

ea
be

lo
w

th
e

EM
G

cu
rv

e
ov

er
a

sp
ec

ifi
c

ra
ng

e
of

tim
e,

st
ar

tin
g

fr
om

th
e

on
se

t
of

th
e

pe
rt

ur
ba

tio
n.

M
os

tly
th

is
in

de
x

of
m

us
cu

la
r

in
te

ns
ity

is
co

m
pu

te
d

du
ri

ng
th

e
ea

rl
y

re
sp

on
se

(0
–2

00
m

s)
,t

he
in

te
rm

ed
ia

te
re

sp
on

se
(2

01
–4

00
m

s)
an

d
th

e
la

te
re

sp
on

se
(4

01
–6

00
m

s)
.I

m
pa

ir
ed

po
st

ur
al

st
ra

te
gi

es
re

po
rt

lo
w

er
va

lu
es

of
m

us
cl

e
ac

ti
va

ti
on

.

[1
11

,1
19

]

O
ns

et
la

te
nc

y
Ti

m
e

de
la

y
be

tw
ee

n
on

se
to

fp
er

tu
rb

at
io

n
an

d
m

us
cl

e
ac

ti
va

ti
on

.I
tr

ep
re

se
nt

s
ho

w
fa

st
a

m
us

cl
e

re
ac

ts
af

te
r

a
pe

rt
ur

ba
ti

on
.I

m
pa

ir
ed

ba
la

nc
in

g
st

ra
te

gi
es

re
po

rt
hi

gh
va

lu
es

of
on

se
tl

at
en

cy
.

[8
6,

90
,1

11
,1

19
]

Ti
m

e
to

pe
ak

Ti
m

e
be

tw
ee

n
th

e
on

se
to

fp
er

tu
rb

at
io

n
an

d
th

e
m

ax
im

um
ac

ti
va

ti
on

of
th

e
m

us
cl

e
or

th
e

m
ax

im
um

pe
ak

of
jo

in
ta

ng
le

.I
ti

nd
ic

at
es

ho
w

qu
ic

kl
y

a
m

us
cl

e/
jo

in
tr

ea
ch

es
it

s
m

ax
im

al
va

lu
e.

In
dy

na
m

ic
ev

al
ua

ti
on

,l
ow

er
va

lu
es

in
di

ca
te

hi
gh

ca
pa

bi
lit

y
in

co
un

te
ra

ct
in

g
pe

rt
ur

ba
ti

on
.

[8
6,

90
,1

11
,1

19
,1

29
,1

31
]

C
oa

ct
iv

at
io

n
It

is
th

e
ra

ti
o

be
tw

ee
n

th
e

m
ag

ni
tu

de
of

th
e

ag
on

is
ta

nd
an

ta
go

ni
st

m
us

cl
es

ac
ti

vi
ty

.
Im

pa
ir

ed
po

st
ur

al
st

ra
te

gi
es

pr
es

en
ta

n
in

cr
ea

se
d

co
ac

ti
va

ti
on

of
ag

on
is

t-
an

ta
go

ni
st

m
us

cl
es

.
[8

6,
90

]

Pe
ak

an
gl

e
Pe

ak
of

th
e

an
gu

la
r

di
sp

la
ce

m
en

to
ft

w
o

ad
ja

ce
nt

bo
dy

se
gm

en
t.

[8
6,

12
9,

13
1]

A
PA

s–
C

PA
s

A
nt

ic
ip

at
or

y
an

d
co

m
pe

ns
at

or
y

po
st

ur
al

ad
ju

st
m

en
ts

.E
M

G
ac

ti
vi

ty
an

d
pr

in
ci

pa
l

co
m

po
ne

nt
an

al
ys

is
ar

e
es

ti
m

at
ed

ov
er

fo
ur

-t
im

e
w

in
do

w
s

in
re

la
ti

on
to

pe
rt

ur
ba

ti
on

on
se

t,
i.e

.,
A

PA
1

(f
ro

m
−2

50
m

s
to
−1

00
m

s)
;A

PA
2

(f
ro

m
−1

00
m

s
to

+
50

m
s)

;C
PA

1
(f

ro
m
+

50
m

s
to
+

20
0

m
s)

;C
PA

2
(f

ro
m

20
0

m
s

to
+

35
0

m
s)

.I
m

pa
ir

ed
m

ot
or

co
nt

ro
lr

ep
or

ts
sm

al
le

r
an

d
de

la
ye

d
A

PA
s

du
ri

ng
un

ex
pe

ct
ed

pe
rt

ur
ba

ti
on

.

[9
5,

10
5,

10
6,

10
9]

A
P:

an
te

ro
-p

os
te

ri
or

;A
PA

:a
nt

ic
ip

at
or

y
po

st
ur

al
ad

ju
st

m
en

t;
C

PA
:c

om
pe

ns
at

or
y

po
st

ur
al

ad
ju

st
m

en
t;

EM
G

:e
le

ct
ro

m
yo

gr
ap

hy
;M

L:
m

ed
io

-l
at

er
al

;V
:v

er
ti

ca
l.

194



Sensors 2020, 20, 3247

Overall, classical laboratory posturography through force plates and optoelectronic systems
provides reliable, accurate, and comprehensive measurements for balance assessment. However,
these techniques are generally expensive, encumbering, and also require supervised settings as
well as technical expertise, thus precluding their use for long-term monitoring in daily life situations.
Accordingly, current research on posturography has recently moved on wearable technologies [132–137]
possibly providing objective, long-term and free-living monitoring of postural ability at a negligible cost.

5. Wearable Technologies

Recent advances in microelectronics have led to the production of small flexible sensors, even
integrated into clothing (“e-textile”) [138], thus making wearable devices suitable for free-living
applications [139]. To date, the main wearable technologies available for balance assessment include
mechanical devices, such as inertial and pressure sensors, and physiological devices, such as surface
electromyography sensors (sEMG) (Figure 2). Wireless inertial sensors are the most used solution in
wearable systems and have been widely adopted for balance and gait assessment [115,140–142]. Half
of the previous studies used commercial inertial measurement unit (IMU) sensors including triaxial
accelerometers and gyroscopes, and half adopted stand-alone accelerometers [143] or gyroscopes [144].
The combination of triaxial accelerometers, triaxial gyroscopes and magnetometers compose magnetic
and inertial measurement units. Sensor placement depends on the specific postural task under
investigation [115]. For instance, wearable sensors can be placed over the waist or trunk in order to
measure postural sway and trunk acceleration. Other possible body locations include the lower limbs,
sternum, upper limbs and forehead. Triaxial sensors can capture spatio-temporal and 3D kinematic data
including joint and segment angles [145–147]. Overall, the combination of accelerometers, gyroscopes,
and magnetometers provides accurate information on body spatial orientation and motion (Figure 2A).
Besides inertial devices, wearable sEMG sensors evaluate specific patterns of muscle activation
during static and dynamic postural perturbations. sEMG, therefore, allows a better understanding
of physiological mechanisms responsible for balance control [148,149] (Figure 2B). Lastly, wearable
pressure sensors are instrumented insoles placed or integrated into the shoe to measure pressure
changes between the foot and ground [150]. The accuracy of this discrete sensor system is comparable to
non-wearable technologies such as the laboratory force platform (Figure 2C). In addition to mechanical
and physiological devices, there are wearable sensors able to continuously monitor the concentration
of specific biochemical markers in biofluids, through miniaturized and flexible devices [151]. These
innovative sensors would open to interesting prospects also referring to the assessment of balance.
For instance, monitoring L-Dopa or dopamine concentration by microneedle patches would be a
helpful tool to correlate postural ability with dopaminergic treatments in patients with Parkinson’s
disease [152,153]. Currently, several wearable sensors, mostly including inertial devices, are available
on the market for approved clinical use in balance assessment [154], also including self-adhesive
biosensors (for further details see www.clinicaltrials.gov).
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The large volume of data produced by wearable sensors requires the development of specialised
algorithms and machine learning algorithms to select clinically-valuable measures [138]. Owing to
the considerable processing capacity of wearable devices, embedded algorithmic sets can be used for
the online and remote execution, but at the expense of the battery charge duration. To optimise the
performance of these algorithms in recognising clinical phenomena, a common approach leverages
the so-called “sensor fusion”, which consists of the combination of sensory data and signals derived
from distinct sources so that the resulting information is more accurate (e.g., integration of inertial
and electromyography signals) [155]. Accordingly, the emerging trends in wearables are moving
towards the design of integrated sensors, including devices composed of IMUs and sEMG [148],
to be user-friendly, waterproof and unobtrusive. Table 4 summarises the strengths, limitations and
challenges of each type of wireless sensors currently used for balance assessment. Moreover, Table S1
reports all the previously published reviews on balance assessment through wearable devices in
healthy subjects and patients affected by various medical conditions.

Table 4. Strengths, limitations and challenges of wireless sensors currently available for balance
assessment.

Wireless Sensor Strengths Limitations Challenges

IMU Low cost and high
accuracy

Possible magnetic interferences,
errors of misalignment,

orthogonality and offset and energy
consumption

New algorithms for
position and orientation

correction

sEMG Noninvasive analysis
and unobtrusiveness

Crosstalk due to adjacent muscles,
skin-electrode interface noise and

electrode positioning

New implantable EMG
sensors and dry

electrodes composed of
conductive fabric

Pressure Outdoor measurements
and easy integrability

Low comfortability during gait,
limited sensitive area and high cost

New capacitive sensors
composed of fabric

IMU: Inertial Measurement Unit; sEMG: surface electromyography

6. Literature Research Strategy and Criteria

Literature research of studies investigating balance impairment through the use of wireless sensors
in neurological disorders was performed using the following databases: MEDLINE, Scopus, PubMed,
Web of Science, EMBASE and the Cochrane Library. Literature criteria included the following terms:
“wireless sensors” OR “wearables” OR “inertial measurement unit” OR “surface electromyography”
OR “pressure sensors” AND “neurological disorders” OR “Alzheimer’s disease” OR “stroke” OR
“Parkinson’s disease” OR “multiple sclerosis” OR “vestibular disorders” OR “cerebellar ataxia”
OR “traumatic brain injury” OR “Huntington’s disease” OR “neuropathy” AND “balance” OR
“posturography” OR “postural control.” Eligible studies were experimental studies published from
January 2005 to March 2020, examining balance through wireless sensors in patients suffering from
the above reported neurological disorders. The reference lists of retrieved articles were also manually
searched for additional studies. Reviews, reports, conference proceedings, and articles in languages
other than English were not considered in the evaluation of eligible studies.

7. Wearable Technologies in Neurological Disorders

Previous studies using wearable sensors have investigated balance impairment in Parkinson’s
disease [114,122,124,125,156–168], multiple sclerosis [118,146,169–177], stroke [52,178–184], traumatic
brain injuries [123,126,185–189], cerebellar ataxia [130,190–195], vestibular syndromes [196–199],
neuropathies [199–201], Alzheimer’s disease [32,202,203], and Huntington’s disease [46,204]. Most of
these studies have compared patients affected by neurological disorders with healthy subjects. However,
a minority of authors [52,167,176,178,180,187] have analysed postural ability only in a group of patients
with neurological disorders without including a control group.
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Concerning the type of sensors used for balance assessment, most of the existing studies have
applied inertial devices, primarily accelerometers and gyroscopes. Several authors [46,162,163,183,184]
have even used inertial sensors installed in common tablet computers and smartphones. Conversely, no
authors have used pressure sensors, while only a few have adopted wireless sEMG sensors [166–168] to
analyse balance impairment in patients with Parkinson’s disease. Strengths and limitations of each type
of sensor are shown in Table 4. Each type of sensor technology would be implemented by addressing
some challenges, including the elaboration of new algorithms, the development of implantable EMG
tools and, finally, the use of unobtrusive “e-textile” devices (see Table 4). Also, future studies would
benefit from the integration of various sensor technologies (i.e., sensor fusion) to optimize the measure
of balance dysfunction in patients with neurological disorders.

Regarding the number and body location of sensors, authors have used 1 to 8 inertial devices
and multiple body segments, including the upper (10 studies) and lower limbs (21 studies), head
(1 study), trunk (18 studies), and waist (48 studies), depending on the static or dynamic postural task
chosen for balance assessment. Indeed, some authors who investigated postural evaluation during gait
(e.g., [122,146,161,169,172,175]) and instrumented versions of clinical tests, such as the push and release
test [171] and the Fukuda Stepping Test [182], have usually applied more sensors than those evaluating
static balance during upright stance (e.g., [52,114,125,157,158,163,177,183–185,188,191–194,199,203,204].
However, despite one study [204], all authors have included the lumbo-sacral region as the main
location of inertial sensors for the analysis of postural sway, according to the COM position. Conversely,
multiple sEMG sensors have been placed mainly on lower limbs to monitor muscle activity during
postural perturbations [166–168]. The number of sensors and their placement on the body is a relevant
issue for balance assessment, also requiring to consider a proper cost and energy-benefit analysis,
as well as the efforts for patients and caregivers. The number of sensors to be used depends on the
specific clinical phenomenon under investigation (e.g., postural sway for balance control) and the need
for maintaining high-quality measurements, through appropriate sampling rate and estimated energy
consumption. Indeed, though more informative, a high number of devices would be computationally
demanding and expensive, as well as uncomfortable to be applied in a domestic environment.

Considering the accuracy of sensors in balance assessment, some authors [52,114,156,157,159,
162,164,171,173,174,186,191,193,194,200] have compared wearable device measurements with those of
standardised laboratory measurement systems, such as force plates and 3D motion-capture systems.
These authors have agreed on the moderate or strong correlation between specific inertial indices
(e.g., root mean square of acceleration time series [114], acceleration peaks of anticipatory postural
adjustments [156,159], time to reach stability [171]) and COP or optical measures, thus suggesting an
accurate performance of inertial wearable devices compared to standardised instrumentations in the
laboratory. However, validation studies in unsupervised settings are warranted to further support the
reliability of wireless sensors for balance assessment in domestic environments.

Most authors [32,52,114,118,123–126,130,146,157,158,163,165,169,170,173,174,176–178,183,185–195,
197–204] have performed a static balance evaluation by analysing maintenance of the upright stance
with different amplitudes of the BOS (e.g., side-by-side, tandem, single-leg stance). These protocols
have also included the assessment of sensory and cognitive contribution to balance control by removing
visual and/or proprioceptive cues (e.g., closed eyes, foam surface) and by increasing cognitive load
(e.g., dual-task). Moreover, a large number of authors [46,118,122,146,156,159–162,164,166–169,171–
173,175,179–182,190,196] have investigated dynamic postural control, mostly through the use of
walking tasks, instrumented versions of clinical tests (e.g., Timed-Up and Go, stand and walk, and
push and release tests), and external or self-triggered postural perturbations. Although several
authors [46,123,125,157,161,166–168,171–173,178–181,190,196,202] have assessed balance during tasks
possibly reflecting daily postural challenges, all research protocols have been conducted in a laboratory
setting. However, since supervised laboratory settings only partially reflect challenging “real-life”
situations, these studies do not provide firm conclusions about the application of wireless sensors in a
domestic environment.
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Concerning biomechanical measures, previous studies have used filtered acceleration signals
by inertial sensors to measure body sway in all the neurological disorders here considered, but have
evaluated APAs during gait initiation only in patients with Parkinson’s disease. Overall, these measures
have shown increased postural sway in patients with neurological disorders and decreased APAs
during gait initiation in patients with Parkinson’s disease, as compared to age-matched healthy subjects.
These parameters have also identified subclinical postural abnormalities (e.g., in vestibular syndromes)
correlating with the amount of clinical disability [114,118,124,146,163,165,170,171,175,176,184,190,195].
A few authors [166–168] have measured muscle postural synergies with sEMG sensors in patients with
Parkinson’s disease. Given that no studies have directly compared biomechanical indices in patients
with different neurological disorders, it is unclear whether any of the measures may discriminate the
various conditions. These findings overall have shown that wireless sensors can accurately quantify
several kinematic measures, including the time and frequency COM dynamics [114,174,200], the 3-D
trajectory of body sway angles [191], the joint range of motion [205], the stepping latency [171],
and the APAs [159]. Conversely, the evaluation of kinetic measures, including the analysis of internal
forces and moments acting on human joints, by wearable systems remains quite challenging [206].
Although the novel approach by wearables would help to partially overcome this issue with inertial and
pressure sensors, inverse dynamics techniques, through motion capture systems and force platforms,
are currently more suitable to achieve these measures. Moreover, to date, other dynamic variables,
including the joint power and the energy cost of a movement, have not yet been evaluated by wearable
sensors. Specifically concerning APAs, in addition to inertial measurements, wearable technologies
would also allow long-term APAs recordings, through wearable sEMG, in more ecological environments.
However, APAs recordings through wearable sEMG would require advanced algorithms for pattern
recognition to achieve consistent observation. A further consideration concerns the generalizability
to more ecological environments of behavioural measures observed in the laboratory setting. Unlike
motor performance under “real-world” postural perturbations, experimental measures under a
supervised laboratory setting would improve per se patients’ motor behaviour owing to unspecific
and disease-unrelated factors, such as attentional and emotional aspects. The appropriate selection of
a standardised measure for balance assessment would promote more consistent evaluation among the
various neurological disorders. Table 5 provides an overall overview of the methodological approaches
and findings from studies here examined. Also, a more detailed description of these studies is shown
in Table S2. Finally, Figure 3 shows the positive trend of published studies on wireless sensors for
balance assessment in the various neurological disorders.
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8. Teleneurology and Telerehabilitation for Balance: Prospects and Challenges

Along with the ageing of the population, the prevalence of neurological disorders will also
significantly increase in the next decades [207]. Accordingly, public health challenges will burden
society and healthcare systems, which will face a heavy demand for the neurologic care of acute
and chronic conditions. By allowing long-term monitoring for preventive and recovery strategies,
wireless sensors will promote teleneurology and telerehabilitation and take some of the burden off of
healthcare facilities.

Concerning the role of teleneurology for balance assessment through wireless sensors, so far,
a few studies have addressed this topic in patients with neurological disorders. Nevertheless, several
advantageous clinical prospects related to this issue should be considered. First, access to care
for patients with balance impairment is quite challenging due to transportation difficulties and
dependence on caregivers. Wireless sensors would be a sensitive and objective tool for the domestic
measurement of balance control during the performance of validated instrumented tasks, such as
maintenance of an upright stance. Moreover, other symptoms commonly associated with postural
dysfunction, such as gait disorders [208], would also be measured, thus providing more detailed
clinical information. Current evidence suggests that teleneurology promotes a reduction of patient
and caregiver burden [209]. Second, medical visits in a hospital setting do not always reflect real-life
situations, which commonly present insidious postural challenges. Therefore, the long-term monitoring
of postural ability during common daily activities could provide ecological data on patient balance
control in free-living conditions. This approach would help to identify early subclinical changes
of balance, allow the objective assessment of fall risk and design individualised strategies for fall
prevention (e.g., use of mobility aids and changes of environmental hazards). Third, the real-time
identification of situations at high risk of falling would also allow patients to benefit from temporary
preventive or rescue interventions. For instance, the detection of near-falls could be used for the
automatic activation of protective tools, such as inflatable hip pads aimed to prevent fall-related
injuries [210]. A further strategy would include the improvement of balance control by wearable-based
sensory biofeedback, able to enhance patients’ awareness and in turn, prevent falls [211,212].

Along with fall prevention strategies, rehabilitation is the main therapeutic approach for improving
balance in patients with neurological disorders. The main goal of rehabilitation is to enhance individual
postural skills, supporting patient independence in ecological settings. To this aim, by using information
and communication technologies, telerehabilitation would provide rehabilitative services directly at
home [213] with similar effectiveness to conventional therapy [214]. Wireless sensors would allow
monitoring of individual postural ability in a domestic environment, increasing adherence to the
rehabilitative programme, and thus promoting tailored therapeutic approaches [215]. Moreover,
wireless sensors would also support home-based interactive rehabilitation programmes by providing
real-time feedback during unsupervised training. Nowadays, the increasing use of mobile phones
and other technological tools in multiple aspects of daily life is promoting a widespread technological
education in the general population, including the elderly. Accordingly, in the next decades, user-friendly
wearables will be increasingly used to increase adherence to telerehabilitation strategies. Owing to
remote and continuous evaluation by physicians and physical therapists, telerehabilitation would
reduce the number of periodic hospital admissions. However, some initial education to patients and
caregivers concerning wearables applications for therapeutic purposes is likely required. So far, several
clinical trials have already adopted sensor-based measurements to objectively evaluate balance and its
response to pharmacological as well as non-pharmacological interventions [216] (for further details
see www.clinicaltrials.gov). However, only a few authors [216–220] have examined the effectiveness
of sensor-based balance training in patients with neurological disorders. Furthermore, most of these
studies involved a laboratory or clinical setting supervised by experienced staff [216]. Hence, to reach
some firm conclusion, new randomised controlled trials should assess large samples of patients in
ecological settings, including the domestic environment [216].
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The main current challenge is the technological migration of wireless sensors from the laboratory
setting to a domestic and unsupervised environment. The technological feasibility of sensor systems
primarily depends on the variables to be measured as well as on the computing-capacity integrated
into the wearables. Unlike conventional laboratory systems, the domestic use of wearable sensors
would imply some limitations such as autonomy and interface capabilities (e.g., interaction with
the user, communication with external devices and servers for information sharing). Concerning
IMUs, challenges include the calculation capacity, which mainly depends on the running algorithms
thus influencing the selection of a specific device, processing characteristics, memory capacity and
communication protocol. Overall, the technological migration of wireless sensors from the laboratory
setting to a domestic environment would benefit from the identification of standardized and accurate
measures. To this aim, understanding the physiological and pathophysiological mechanisms underlying
balance is the background for selecting, measuring and interpreting the specific postural variables to
be assessed. Also, the improvement of communication between wearable sensors and external devices,
as well as the implementation of standardized and low energy-consuming algorithms are additional
limitations to overcome. To support this migration process, current commercialization efforts are
reducing sensor dimensions to ensure the unobtrusiveness of the devices, though maintaining safety
and accuracy standards. “Real-world” evidence aimed at monitoring balance disorders through
wireless sensors in ecological settings (e.g., patients’ home or nursing home) will further clarify
strengths and limitations in the telemedicine and telerehabilitation approaches.

Several open questions remain when considering teleneurology and telerehabilitation approaches.
To date, only a few randomised controlled trials have addressed this topic in patients with neurological
disorders, thus pointing to the weak internal validity of the current clinical evidence. Future studies
should propose easier solutions to be applied in unsupervised settings without requiring technical
expertise (e.g., issues related to data storage, access platforms and software/app usage). As a possible
solution, machine-learning algorithms, including those using artificial neural networks (deep learning
algorithms) [221], would be suitable tools for the automatic storage, interpretation and management
of healthcare data [222–224]. Indeed, by learning from massive amounts of longitudinal data,
machine-learning systems could lighten the burden of technical expertise and improve clinical decision
making through a tailored approach. Another relevant point concerns some ethical issues, such as the
security of the overwhelming amount of healthcare sensitive data derived from the use of wireless
sensors, possibly leading to the generation of discriminatory profiles, manipulative marketing or
data breaches [225]. Accordingly, limiting the wireless transmission to a small number of selected
data (e.g., fall episodes) would help to preserve the confidentiality of a large amount of recorded
information in case of privacy violation. Using proper encryption technology and increasing the
users’ awareness of privacy rights would help to address ethical issues. Nonetheless, strict regulations
for data management should also be adopted to guarantee users’ confidentiality and integrity [226].
The use of inertial sensors included in smartphones would address the issue of the cost and availability
of wearable sensors [227].

9. Conclusions

Over the last 15 years, wearable devices have been largely used for the assessment of balance
in patients affected by neurological disorders, providing valuable data compared with standard
laboratory instrumentation. Indeed, a great experience in the use of wireless sensors for balance
evaluation has been achieved in the laboratory setting. Conversely, much still needs to be done for
the technological migration of wearable devices from the laboratory to the domestic unsupervised
environment. This migration would open several valuable prospects, including teleneurology and
telerehabilitation approaches.
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Abstract: Maintaining balance stability while turning in a quasi-static stance and/or in dynamic motion
requires proper recovery mechanisms to manage sudden center-of-mass displacement. Furthermore,
falls during turning are among the main concerns of community-dwelling elderly population. This
study investigates the effect of aging on reactive postural responses to continuous yaw perturbations
on a cohort of 10 young adults (mean age 28 ± 3 years old) and 10 older adults (mean age 61 ± 4
years old). Subjects underwent external continuous yaw perturbations provided by the RotoBit1D

platform. Different conditions of visual feedback (eyes opened and eyes closed) and perturbation
intensity, i.e., sinusoidal rotations on the horizontal plane at different frequencies (0.2 Hz and 0.3 Hz),
were applied. Kinematics of axial body segments was gathered using three inertial measurement
units. In order to measure reactive postural responses, we measured body-absolute and joint absolute
rotations, center-of-mass displacement, body sway, and inter-joint coordination. Older adults showed
significant reduction in horizontal rotations of body segments and joints, as well as in center-of-mass
displacement. Furthermore, older adults manifested a greater variability in reactive postural responses
than younger adults. The abnormal reactive postural responses observed in older adults might
contribute to the well-known age-related difficulty in dealing with balance control during turning.

Keywords: aging; reactive postural responses; yaw perturbation; kinematics; postural stability;
dynamic posturography

1. Introduction

Falls are among the most common leading causes of accidental death, hospitalization, or injuries,
such as broken bones, head, and spinal cord injuries [1]. Since falling still represents a challenging
social, medical, and economical matter [2], several research efforts have been spent in understanding
the mechanisms leading to falls in the elderly [3]. A possible theory for explaining the increased risk of
falling in the elderly population is that age compromises balance capability. However, understanding
the effects of aging on balance is still an unanswered question.
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Exploring dynamic balance control of upright stance through imposed external perturbations has
the main objective to identify deficit in reactive postural responses. According to the amplitude of
COM dislocation and the intensity of perturbation, different reactive strategies, such as hip and ankle
strategies and/or stepping responses, prevent imbalance [4,5].

Various imposed posture manipulations, such as mechanical, visual, and vestibular perturbations,
have been designed to reproduce free-living imbalance conditions and to investigate risk of
fall [6–9], especially in elderly [10–14]. In a mechanical perspective, popular approaches focused on
rotational [8,13,15–17] and/or translational support surface movements [9,18,19] or on body release
paradigms [20,21] to simulate common postural disturbances (e.g., standing on a bus, slipping on
a slippery surface, and falling due to a sudden boost). In this context, the majority of the literature
studies focused on the postural responses under forward/backward perturbations to assess risk of fall
in the elderly. Across this range of perturbation paradigms, older adults exhibited greater difficulty
than young adults in recovering loss of balance through protective postural strategies, such as stepping,
especially in case of a forward fall. Accordingly, a lower maximum body lean angle [20], smaller peak
knee extensor torques, and larger peak extensors torques at hip and ankle joints [21] were reported in
older adults during step response in forward perturbations. Conversely, when considering backward
perturbations, older adults showed shorter reaction times than during forward perturbations to avoid
fall [22].

Age-related postural deficits were also investigated considering different perturbation paradigms
such as sinusoidal translating perturbation in the anterior-posterior direction [14], random rotations
around sagittal axis [17], slippery floor surface [23], and mixed forward/backward and left/right
platform translations [24]. More specifically, Nardone et al. found a greater head stabilization strategy
and a looser coupling between head and hip motion in the eyes opened condition in older adults [14].
While, in the study of Cenciarini et al., older adults presented significantly higher active stiffness as
compared to young adults to maintain body balance and to counteract destabilizations effects [17].
Moreover, impaired motor patterns in older adults have been also linked to an abnormal postural sway
under forward/backward and left/right perturbation directions as attested in the study of Liaw et al. [24].

Although much has been learned about postural responses of older adults exposed to the
before mentioned perturbation paradigms, the motor strategies involved in maintaining balance
under perturbations around the vertical axis are still unclear. In healthy subjects, reactive postural
responses during rotational perturbations around the vertical axis imposed by a robotic platform have
been investigated only by few studies [10,11,15]. Earlier postural responses of the distal compared
to the proximal body segment were observed both in kinematics [10] and in muscle activity [11].
The evaluation of reactive postural responses in term of COM displacement control, coordination
of body segments and body sway response during this specific rotation would offer an ecological
analysis of fall-inducing factors in everyday life. In fact, in the elderly, falls frequently occur within a
narrowing familiar environment, such as the kitchen and the bathroom, during activities required for
basic mobility, such as turning in place [25].

Over the last decade, measuring motor impairments through portable and wearable devices
have demonstrated to be of great impact in managing neuromotor and aging deficits [26–28]. In fact,
the several advantages of wearable sensors, such as the low cost, the high portability, the limited size
and the ease-of-use, encourage the use of these technologies in clinical setting as a useful tool for
monitoring assessment [29,30]. In this context, the aim of this study is to investigate the effects of aging
on reactive postural responses to rotational perturbations around the vertical axis, by using a rotating
platform and wearable inertial sensors in different visual conditions. Clarifying changes of dynamic
postural control in older adults during rotational perturbations around the vertical axis would help to
understand the mechanisms leading to falls when turning. This in turn, would be useful for the design
of effective strategies for falls prevention.
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2. Materials and Methods

2.1. Subjects

A cohort of ten healthy older adults (six females and four males, mean age 61 ± 4 years old,
mean body mass 68 ± 9 kg, and mean height 170 ± 6 cm) and a cohort of ten young adults (five
females and five males, mean age 28 ± 3 years old, mean body mass 63 ± 14 kg, and mean height
169 ± 11 cm) were enrolled. All participants were community-dwelling, medically stable, and able
to walk and stand independently without aids. Subjects with intellectual, vestibular and/or visual
deficits, neuromuscular diseases, orthopedic and/or neurological surgery interventions in the last three
years were excluded from this study. All participants gave written consent before being included in
the experimental session. The protocol was designed and conducted in accordance with the Ethical
Standard of the 1964 Declaration of Helsinki.

2.2. Experimental Setup

The RotoBit1D was used in this study to provide sinusoidal perturbations around the vertical
axis [15]. It is a rigid, round, flat robotic platform with a diameter of 0.5 m that allows a comfortable
upright bipedal stance without narrowing feet. The mechanical design consists of a servo motor
(SANYO DENKI) with maximum torque of 1.96 Nm, an incremental encoder, a toothed belt (PowerGrip
HDT), speed reducer, and a polyethylene rotating disk. The robotic platform was computer-controlled
by an ad-hoc LabVIEW software program (v.2014, National Instruments, Austin, TX, USA). Two
sinusoidal perturbations around vertical axis were designed with fixed peak amplitude of ± 55◦ C
and frequencies of (i) 0.2 Hz and (ii) 0.3 Hz, namely lower (L) and higher (H) frequency, respectively.
The peak angular velocity was 80 ◦C/s and 100 ◦C/s for the lower and higher frequency, respectively.
To avoid sudden variation in starting/stopping velocity, a sigmoidal wave was added at the start/end
of the sinusoidal trajectory. In pilot trials, we chose rotation parameters as those able to provide a high
perturbation intensity without requiring stepping response of subjects. Inertial Measurement Units
(IMUs) (MTw, Xsens Technologies—NL) including a 3-axes accelerometer (± 160 m/s2 FS), a 3-axes
gyroscope (± 1200 ◦C/s FS), and a 3-axes magnetometer (± 1.5 Gauss FS) were used for gathering
kinematic data of pelvis, trunk, and head. More specifically, the pelvis-sensor was placed centered
on the median sacral crest and just below the anterior sacral promontory. The trunk-sensor was
placed under the suprasternal notch on the sternum body; while, the head-sensor was placed on the
frontal bone over the superciliary arch. Each subject was instrumented by the same expert operator, to
guarantee consistent sensor location on body segment.

IMUs were placed by means of suitable elastic belts to avoid relative movement between sensor
and body. Sampling frequency was set at 40 Hz. Equipment was simultaneously triggered at both
the beginning and the end of each acquisition. More specifically, the ad-hoc LabVIEW software
was designed to simultaneously drive the RotoBit1D servo motor and provide an external trigger,
i.e., a square signal ranging from 0 to +5 V, to the IMUs Awinda Station through an NI USB-6212 DAQ
board. The Awinda was set to start and end the IMUs’ acquisition on the rising and the falling edge of
the trigger signal, respectively.

2.3. Experimental Procedure

The experimental protocol was conducted at the Department of Physical Medicine and
Rehabilitation, Sapienza University of Rome, Italy. Before each session, all tested subjects were
asked to perform a Functional Calibration procedure advised by an operator. The FC procedure
provided sensor orientations with respect to body segment, to complete the body-to-sensor alignment
procedure [31]. The FC procedure consisted of a standing and sitting task, each lasting 5 s. Afterwards,
all subjects stood in a comfortable upright bipedal position with vertically hanging arms and externally
rotated feet at a preferred angle with a symmetrical placement, on the top center of the robotic platform.
All subjects were asked to wear heelless shoes. The experimental procedure included two different
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perturbation frequencies (lower and higher frequency) and two different visual conditions (eyes
opened (EO) and eyes closed (EC)). More specifically, the participants’ reactive postural responses were
measured under four balance tasks: standing with EO during platform rotation at (i) lower (EO-L)
and (ii) higher (EO-H) frequencies; and standing with EC considering both (iii) lower (EC-L) and (iv)
higher (EC-H) platform frequency rotations. In the EO condition, subjects were asked to stare at a
fixed point placed on the wall at 2 m from the platform.

Each task was performed three times randomizing the task order across subjects to avoid bias in
results due to similar task sequences. In addition, subjects were not advised about frequency, to avoid
habituation of postural responses or anticipatory strategies due to predictability [32].

2.4. Data Analysis

All data were analyzed off-line using MATLAB (v.2015b, MathWorks, Natick, MA) program.
Angular rotations around the vertical axis, i.e., yaw angles, of the platform (pt), the head (h), the
trunk (t), and the pelvis (p) segments were considered for the data analysis. Comparisons between
rotation of the platform and body segment rotations in the transversal plane were obtained via the
fast Fourier transform analysis, by considering Gain ratio (G) and phase shift (ϕ) indices, akin to [15].
G was computed as the ratio between the maximum amplitude value of the fundamental wave of
the first signal and the amplitude value of the second signal at the same frequency. ϕ was obtained
as the difference of the phase angles of the Fourier transform of the two signals at the frequencies
having the maximum amplitude in the Fourier domain. Before transforming in Fourier domain, each
body segment rotation in the transversal plane was demeaned. Among angular rotation around
the vertical axis of the three body segments and platform, 6 pairs were considered for the analysis:
platform-head, platform-trunk, platform-pelvis, head-trunk, trunk-pelvis, and head-pelvis. The
following nomenclatures were chosen for G and ϕ indices to indicate the 6 pairs:

f Gs, fϕs (1)

where f and s represent the first and second sine waves considered, respectively. Perfect agreement in
amplitude and timing between the first and the second element of the pair were observed considering
a G value close to 100% and a ϕ value close to 0 ◦C. Instead, an anticipation/delay in phase angle of the
second sine wave compared to the first one was defined as a positive/negative phase shift. For sake of
clearness, ptGh, ptGt, ptGp, ptϕh, ptϕt, and ptϕp were addressed as G-absolute and ϕ-absolute, because
each of the yaw body angles (second sine wave) is referred to the yaw platform angle (first sine wave).
While, hGt, tGp, hGp, hϕt, tϕp, and hϕp were addressed as G-relative and ϕ-relative, because both the
first and the second sine wave are referred to a body segment sine wave.

To assess inter-joint coordination on the transversal plane, the continuous relative phase (CRP)
technique was computed on yaw body angles, i.e., body rotation on transversal plane [33]. The CRP
analyzes the differences in phase angles of two body segments during a particular motion task.
Differently from ϕ index, which provides the average phase shift of the specific sine wave above
described, the CRP refers to all the frequency components of a signal, reporting coupling behaviors of
two body segments over the entire motor task. Concerning the CRP analyses, the phase space usually
consists of the time-dependent measured signal and its first derivative. Thus, the CRP for a particular
task is obtained as the four-quadrant arctangent phase angle from the phase space. Several methods
have been developed for the calculation of the phase angles based on phase portrait analysis or the
Hilbert transform [33–35]. Among those methodologies, the Hilbert transform-based method has been
proved to be more robust than the phase angles in performing the phase portrait, especially regarding
none-purely sinusoidal signals [33]. The Hilbert transform allows the transformation of any real signal
into complex, analytic signal according to:

ζ(t) = x(t) + iH(t) (2)
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at time ti, the phase angle can be computed by:

θ(ti) = arctan
(

H(ti)

x(ti)

)
(3)

The continuous relative phase CRP between two signals can be defined as the differences of the
phase angles:

CRP(ti) = θ1(ti) − θ2(ti) = arctan
(

H1(ti)x2(ti) −H2(ti)x1(ti)

x1(ti)x2(ti) + H1(ti)H2(ti)

)
(4)

where H1(t) and H2(t) are the Hilbert transform of signals of the proximal and distal segment, respectively.
The CRP index can assume values between 0◦ and 180◦. Values close to 0◦ indicate in-phase coupling of
the two segments, while values close to 180◦ represent an out-phase coupling of signals.

To identify differences in inter-joint coordination between young and older adults, the mean
absolute relative phase (MARP) was computed by averaging the absolute values of the curve points
considering the overall trial duration [36], as in the following equation:

MARP =

p∑
i=1

∣∣∣CRPi
∣∣∣

p
(5)

where p is the number of time points in each trial. Similar consideration done for the CRP can be
adopted for the MARP value.

Furthermore, the Deviation Phase (DP) was analyzed in order to assess variability among trials in
inter-joint coordination [36]. The DP can be assessed by averaging the standard deviation among trials
of the CRP(ti) over the trial duration, as in the following equation:

DP =

p∑
i=1

SDi

p
(6)

where SDi represents the standard deviation of the CRP among the three trials at the i-th time instant.
The DP is a measure of the stability organization provided by the neuromuscular system [36]. DP
values close to 0 ◦C attest less intra-subject variability of the inter-joint coordination.

In order to assess postural control of body motion in the anterior-posterior and medio-lateral
directions in response to external balance perturbations, body displacements of the head, the trunk
and the pelvis were estimated via a strap-down integration of the acceleration signal, similarly to [37].
Body displacement of pelvis-sensor obtained through this method can be addressed as an estimation of
the COM displacement, as authors reported [37]. However, differently from [37], in our study, we used
the rotation matrix obtained from the quaternion output of the IMUs for the strapdown integration.
In the original work [36] the authors rather used the gyro output for obtaining an estimation of the
rotation matrix, as the system available for them did not provide the quaternion as an output.

To estimate the displacement, the acceleration signal was firstly rotated in the global coordinate
frame to remove gravitational acceleration. After the gravitational acceleration removal, the acceleration
signal of the inertial sensor in the global coordinate frame was straightforwardly integrated. Velocity was
then high-pass filtered and the displacement was obtained through a second integration and filtering.
The applied filters were zero-lag first-order Butterworth filters with a cut-off frequency of 0.2 Hz for the
anterior-posterior (AP) and medio-lateral (ML) components and 0.5 Hz per the vertical (V) component.

Considering the body displacement, the following kinematic parameters were obtained for the
statistical analysis: (i) the range of motion of the body segment displacement in the ML (RoMML) and
AP (RoMAP) directions expressed in mm; (ii) the total path length of the body displacement normalized
to the task duration (PATH) and (iii) the maximum velocity of the displacement (MV) expressed in m/s.
The before mentioned parameters were considered for the head, trunk, and pelvis displacements.
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2.5. Statistical Analysis

All data were tested for normality by means of the Shapiro-Wilk test. Statistical analysis was
performed with the SPSS package (IBM-SPSS Inc., Armonk, NY, USA). Two unpaired t-tests were
conducted to assess differences in body mass and height between the two groups. In order to test
differences in postural strategies induced by aging and different perturbation frequencies, a 2 × 2
two-way mixed ANOVA, with AGE as a between-subject factor (two levels: young adults and older
adults) and FREQ (two levels: lower and higher frequency) as a within-subject factor was used
separately for the EO and the EC conditions. When the assumption of sphericity was violated, the
Greenhouse-Geisser correction was considered. A paired t-test within each group and an unpaired
t-test between the two groups were performed when the interaction between the main effects was
significant. The Bonferroni corrections were considered for all the statistical analysis. The significance
level was set at 0.05 for all the statistical tests.

3. Results

All subjects were able to complete the experimental procedures without losing balance and/or
experiencing fatigue.

No statistical differences were found in body mass and height between groups.
Considering all statistical analysis, the 2 × 2 two-way mixed ANOVA reported no significant

interactions between main effects AGE and FREQ.

• G- and ϕ-absolute:

In Table 1, mean and standard deviation of G-absolute and ϕ-absolute values and p-values
are reported.

With regards to AGE main effect in the EO task, older adults showed a significant lower G-absolute
value of trunk and head than young adults. The pelvis body segment of young adults reached the
highest mean values of G-absolute in both frequency conditions (57.04% and 48.00%), see Table 1 and
Figure 1. Compared with younger population, older adults exhibited a smaller amount of the axial body
motion. In the EC condition, a similar reduction of motion amplitude was found in G-absolute values
of head and pelvis of older subjects. Considering the main effect FREQ, upper body G-absolute values
statistically decreased as a function of rotation frequency increment, regardless of visual condition for
all body segments.

Concerning AGE main effect, no differences were found in the EO condition related to ϕ-absolute.
While the main effect of FREQ was found statistically significant for all the body segments. In the
EC task, ϕ-absolute values of the pelvis were statistically different between young and older adults,
according to AGE main effect. To face external yaw postural perturbations, older adults anticipated
pelvis motion while younger adults adopted a delayed motion strategy. Head and pelvis phase shifts
were found statistically significant in the main effect FREQ.

• G- and ϕ-relative:

In Table 2, mean and standard deviation of G-relative and ϕ-relative values and p-values are
reported. In the EO task, the main effect AGE of the G-relative values were found to be statistically
different for all the considered segment-couples. More specifically, young adults reported G-relative
values close to 100% attesting a similar amplitude pattern between the rotation around the vertical axis
of the proximal and the distal segment. By contrast, older adults exhibited lower values of G-relative
attesting a reduction in amplitude pattern of the distal body compared to the proximal. As regard to
the main effect FREQ, statically differences were found for all the considered body segment-couples.
In the EC condition, similar trend of the EO condition was found for the main effect AGE. While
regarding the main effect FREQ, statistical differences were found for the head-pelvis and trunk-pelvis
couples, attesting that the amplitude value of the distal segment decreased as a function of frequency
perturbation increment.
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Figure 1. (a) Mean (solid line) and standard deviation (dashed lines) of pelvis angle in the transverse
plane for the eyes opened condition during the low frequency task. (b) Mean (solid line) and standard
deviation (dashed lines) of pelvis angle in the transverse plane for the eyes opened condition during
the high frequency task. The orange curves refer to young group, the blue ones to the older adults
while the black curve is platform trajectory.

Regarding ϕ-relative, significant differences were found in the head-pelvis couple between young
adults and older ones, in EO condition. More specifically, the distal segment of older adults appeared
delayed with respect to the proximal one, while in the young group, synchronization strategies were
adopted between segment couples. Increasing frequency motion, a higher delay was observed in the
distal segment, especially in older adults.

• Continuous relative phase: MARP and DP:

In Table 3, mean and standard deviation of MARP and DP indices expressed in [◦] are reported.
In the EO task, age-related differences were found for all the segment-couples. Higher MARP
values were reached by older populations who preferred a more anti-phase motion strategy in
response to balance rotational disturbance. An in-phase coupling strategy was observed in the young
subjects. Increasing perturbations intensity, similar in-phase motion strategy was observed for all
segment-couples. Considering the EC condition, a similar trend was found both regarding AGE as
main effect. While considering FREQ as main effect, a more anti-phase strategy was observed in both
groups when increasing perturbation intensity.

As regards coordination variability, older adults exhibited higher values of DP in all the
segment-couples compared to young adults, regardless of the task condition (see Figure 2). Although the
aforementioned results reported a wide amount of motor engagement, with the increase perturbation
intensity, coordination variability of the trunk-pelvis couple increased as well in both visual conditions.

• Body displacement: RoMML, RoMAP, PATH, and MV:
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Figure 2. (a) and (b) are phase portraits of the trunk and head body segment of one healthy young
subject and one older subject during EO condition at low frequency, respectively. (c–f) Mean (solid line)
and standard deviation (dashed lines) of CRP of the head-trunk couple for the EO and EC condition for
the low frequency task and EO and EC conditions for the high frequency task, respectively. The orange
curves refer to the young group, the blue ones to older adults.

In Table 4, mean and standard deviation of upper body displacement measures and p-values of
the mixed ANOVA are reported. In EO condition, RoMML, PATH, and MV of the head and pelvis
displacements were statistically lower in older adults compared to young adults. Regarding FREQ as
a main effect, statistical differences were found considering PATH, MV in all upper body segments.
Additionally, frequency increment effect was also found in RoMML and RoMAP in trunk displacement.
A similar trend was reported in the EC task for both main effects.
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4. Discussion

In our study, age-related changes were found in balancing continuous yaw perturbations,
regardless of visual condition and perturbation frequency. A more conservative and less destabilizing
motion was observed as a postural strategy in the older population, suggesting that older adults
compensate for their reduced physical capabilities by becoming more cautious while performing a
postural task.

• G- and ϕ-absolute:

As the fast Fourier analysis on yaw segment angles reported, young adults showed a matching
strategy between the body displacement and the platform rotation, taking into account the amplitude of
the trajectories. Conversely, older adults exhibited a smaller amount of motion amplitude of the upper
body to counteract an unbalanced rotational state. This reduction in amplitude was observed in all the
upper body yaw angles in older adults, especially regarding the distal segments. As observed in our
results, this stabilization strategy progressively decreases from proximal to distal segment, becoming
noticeable especially in the head motion of the older adults when perturbation frequency increases.
In this context, the different balance response of adults could be caused by different perceptions of
the vestibular system. Perceiving risky head rotations, the vestibular system tends to modify body
dynamics by minimizing head oscillations, regardless of visual information. Moreover, avoiding
visual feedback, a delayed motor strategy of the proximal segment was found in comparison with
the platform motion in the older population, attesting the incapability of older adults to manage
perturbation with anticipatory adjustment of the axial body.

As reported in literature, continuous and predictable perturbations are more easily managed
compared to discontinuous and impulsive perturbations [18]. However, contrarily to sudden
perturbations, during continuous perturbation subjects blend two primarily postural mechanisms.
Subjects focused on the adjustment of their body motion in accordance with the actual external
perturbation [18]. Moreover, subjects anticipate the body motion predicting the mechanical effect of
the reflexes triggered by the displacement itself. In this context, pursuing the external movement of
the perturbation by complying balance response with the platform displacement was observed to be
the most functional and less-expensive postural strategy adopted by healthy younger adults [14,18].
Similar postural strategies were observed in our results by healthy younger subjects in balancing
continuous yaw perturbations.

• G- and ϕ-relative:

By considering the fast Fourier analysis on segment-couples, proximal and distal segments of
the younger group were in perfect agreement regarding amplitude rotation as well as time shift.
Conversely, older population motor response reported a reduction and a delay in distal segment
rotation in comparison with the proximal one, especially considering the head-pelvis segment-couple.
Basically, younger subjects were able to oscillate in accordance to platform motion. As a consequence,
younger subjects adopted a strategy that minimized the active effort by generating a lower torque
couple among body segment. Older adults instead reacted differently from young adults, adopting
more complex motor control strategies targeted to head stabilization. These findings can be ascribed to
the greater difficult of older subjects to manage head-trunk movements, as also demonstrated during
walking tasks [38].

• Continuous relative phase: MARP and DP

As regards the coordination pattern, the CRP technique provides a measure of the coupling or
the phase relationship between the actions of body segment-couples. Since coordination impairment
represents a common sign among musculoskeletal [39] and neurological disease [40], the age-related
differences in the coordinative compensatory strategy were investigated in this study. Segment-couple
coordination patterns of the upper body were different in the two groups. During EO condition,
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compared to the older adults, the younger population responded coupling body segments across
the trial and reporting a less variable intra-subject trial-to-trial relationship between the actions of
the segment-couples. Older adults also tended to balance yaw perturbation moving joints in and
out-of-phase opposite fashion with an increased variability among trials. These outcome can be
justified by the well-known loss of spatio-temporal coupling of muscles during postural responses, as
reported in [41].

Increased variability in coupling relationship due to the aging was already reported in Yen et al. [42]
during the obstacle-crossing task. This age-related biomechanical modification is associated to a lower
ability of older adults to maintain a stable body displacement when crossing obstacles with different
heights. A similar trend was observed in our results when subjects shifted from eyes open to the eyes
closed condition. The segment-couple coordination of the upper body assumed more in-phase motion
behaviors. Avoiding out-phase segment movements might be a coordination strategy adopted in the
process of mastering redundant degrees of freedom of the upper body in a more unsafe scenario.

• Body displacement: RoMML, RoMAP, PATH, and MV:

In terms of displacement of body segments, the analysis of the upper body unveiled that subjects
behave as a double inverted pendulum, mainly in the frontal plane. As Figure 3 shows, both groups
tended to assume a more oscillating displacement in the medio-lateral fluctuation of the head and the
pelvis body segment with respect to the trunk. In particular, when visual information was allowed,
head and pelvis medio-lateral movements were found to be both in a wider range, while the trunk
stood noticeably more stable, acting as a center pivot. The upright balance was continuously reach
by actively counteracting the head body segment with respect to the pelvis one, as they appear in
almost perfect phase opposition (see Figure 3). In Figure 3, results of the eyes opened condition
during the high frequency task were reported. However, a similar trend was observed in all the
experimental tasks. Despite subjects were challenged with a rotational perturbation in the transversal
plane, results highlighted motor behaviors similar to those of the double inverted pendulum already
observed in previous studies, in which subjects were exposed to purely translational perturbations.
This aspect could be justified considering the effect of the centrifugal force. In our interpretation, the
rotational perturbation generated a centrifugal force, which tended to displace the body center of mass
in medio-lateral direction. Subjects counteracted by translating head in the opposite direction. Head
trajectory, in fact, appeared to be perfectly in opposition with respect to the pelvis one (see Figure 3),
similarly to what happens due to the hip strategy in the case of translational perturbations [6].

Despite the before-mentioned trend reported in both groups, a prominent age-dependent stiffening
strategy was witnessed by a smaller amount of medio-lateral oscillation, a lower path length and a
lower mean velocity of the pelvis and head displacements. As previously reported in the literature,
in the upright balance, humans can be sketched as an Acrobot [43], consisting in a series of inverted
pendulums related to feet, legs and torso. When a large deflection of the base of support occurs, a quick
shift of the COM is required to maintain the upright stance. In a human model, a proper displacement
at the hip level modulates the torque created by the gravitational force on the shifted body, allowing the
subject to keep the COM over the base of support and the foot flat on the ground [44]. By approximating
the human torso as a single link, the head displacement acted in the opposite direction, allowing the
generation of the counteractive moment of the gravitational head force.
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Interestingly, a different motor strategy was observed when vision was denied. The absence of
visual inflow changed the body motion strategy adopted to keep the balance. Since the hip strategy was
apparently preserved, the head displacement in the sagittal plane appeared more evident, overshooting
pelvis motion in both groups. As a consequence of visual condition, the counteraction of body inertia
was mainly in charge of the somatosensory and vestibular reference control, which reported a less
effective role compared to the visual reference control in maintaining head stabilization. Similarly
to findings in Nardone et al. [14], in which subjects were exposed to continuous anterior-posterior
external perturbation, head oscillations were found more prominent during eyes-closed tasks. On the
contrary to [14], older adults stimulated by continuous yaw perturbation presented a lower amount
of head displacement compared to younger population, both regarding the eyes-open and the
eyes-closed conditions.

By summarizing, our results highlighted age-dependent differences in rotational, translational,
and coupling motor behaviors of the upper body of subjects elicited by external yaw perturbations.
Future developments could be focused on the design of rehabilitation programs targeted to restore
those impaired motor strategies. Those programs will be beneficial in reducing the risk of fall in older
adults, especially those occurring during turning tasks, which still represent the 13% of all real-life
falls [45].

Although this study provides insight into contributing factors to manage unbalanced conditions,
some limitations should be taken into account. The small sample size and the large variability in
the phase shift parameters could have affected the statistical analysis biasing results. In a future
study, it will be necessary to increase the number of the participants to enforce statistical results
regarding age-related differences, and design rehabilitation program aimed to enhance motor deficit of
older population.

5. Conclusions

In this paper, we addressed the question of how aging affects postural control by examining the
kinematic response under external yaw perturbation. The fundamental age-related postural change
was mainly observed in the head stabilization strategy. Outcomes of older adults reported a decreased
amount of the rotational and the translational body motion with a tendency of delayed behaviors and
an out-phase and highly-varied coordinative compensatory strategy of the upper segment-couples.
During low-frequency perturbation, postural strategies implied an easier following-strategy of the
platform motion reporting a more complex reflex response than an anticipatory postural adjustment.
During a more demanding frequency yaw rotation, a counteractive motor response was observed by
the stiffening of the upper body motion and by strongly acting on the body inertial control.
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Abstract: Background. Patients suffering from cerebellar ataxia have extremely variable gait kinematic
features. We investigated whether and how wearable inertial sensors can describe the gait kinematic
features among ataxic patients. Methods. We enrolled 17 patients and 16 matched control subjects.
We acquired data by means of an inertial sensor attached to an ergonomic belt around pelvis, which
was connected to a portable computer via Bluetooth. Recordings of all the patients were obtained
during overground walking. From the accelerometric data, we obtained the harmonic ratio (HR),
i.e., a measure of the acceleration patterns, smoothness and rhythm, and the step length coefficient
of variation (CV), which evaluates the variability of the gait cycle. Results. Compared to controls,
patients had a lower HR, meaning a less harmonic and rhythmic acceleration pattern of the trunk,
and a higher step length CV, indicating a more variable step length. Both HR and step length CV
showed a high effect size in distinguishing patients and controls (p < 0.001 and p = 0.011, respectively).
A positive correlation was found between the step length CV and both the number of falls (R = 0.672;
p = 0.003) and the clinical severity (ICARS: R = 0.494; p = 0.044; SARA: R = 0.680; p = 0.003).
Conclusion. These findings demonstrate that the use of inertial sensors is effective in evaluating gait
and balance impairment among ataxic patients.

Keywords: inertial sensors; cerebellar ataxia; movement analysis; gait analysis; balance; personalized
medicine; rehabilitation

1. Introduction

Patients suffering from cerebellar ataxia exhibit peculiar spatiotemporal and kinematic features
that contribute to an unstable gait [1–5]. The gait impairment typically worsens over time, in parallel
with the functional decline associated to the neurodegenerative process [6,7]. While stable gait
is characterized by repeatable walking patterns [8], steadiness in the case of perturbations [9–13],
and effectiveness in maintaining upright balance [14,15], ataxic gait is extremely variable over gait
cycles [1] and exhibits inefficient coordination between upper and lower segments of body, even in
the absence of external perturbations [16]. Taking into account such conditions, it is reasonable to
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hypothesize that when perturbation occurs in ataxic patients, the consequent fall risk increases, and the
gait pattern can be defined as unstable [6,7].

The evaluation of gait instability and fall risk is, therefore, pivotal in the study of ataxic gait to
prevent further disabilities, and in order to maximize and optimize the information we gather from such
evaluation, it should be performed in a real-life environment outside the motion analysis laboratory
for a long period of time. In this context, wearable magnetic and inertial measurement units (MIMUs),
consisting of a three-axial accelerometer, a gyroscope, and a magnetometer, represent a self-contained
alternative to conventional laboratory-based motion capture systems [17–19]. This technology estimates
the three-dimensional (3D) orientation of MIMUs with respect to a global coordinate system by specific
sensor fusion algorithms, using angular velocity, gravity and magnetic field vectors.

A series of biomechanical stability measures based on MIMU evaluations have been proposed
in several studies on neurological gait disorders with dynamic unbalance [3,20–22]. The maximum
Lyapunov exponent (λmax) is an available method to evaluate gait instability [4] and fall risk [3]
in ataxic patients, but the relationship between λmax and clinical severity has not been definitively
established, since it has been demonstrated to be both positively [4] and negatively [3] correlated
to International Cooperative Ataxia Rating Scale (ICARS) scores. A possible explanation could be
found in the heterogeneous etiologies of the study samples, respectively acquired cerebellar lesions
after tumor resection [4], and neurodegenerative ataxia [3]. Another important issue is that λmax
properly explores the nonlinear dynamic local stability of the trunk during locomotion when at least
150 continuous strides are recorded [15]. However, such stride numbers are often not practically
feasible in ataxic patients, and this could have influenced the correlation analysis between λmax and
clinical severity.

To the best of our knowledge, no other studies in the literature have used additional indexes of
stability, like harmonic ratio (HR) and the coefficients of variation (CV) based on MIMU data to detect
the instability of ataxic patients. Therefore, the aim of this study is to evaluate these indexes of stability
and, in particular, examine the ability of each index to detect the instability of ataxic patients compared
to healthy controls and determine the fall risk. HR was chosen to evaluate the trunk acceleration
patterns, a key feature in determining the severity of the ataxic gait [5,16], while CV was chosen to
evaluate the variability of step length, an important compensatory mechanism in ataxic patients.

2. Materials and Methods

2.1. Participants

Seventeen patients affected by primary degenerative cerebellar ataxia were enrolled in the study.
Table 1 summarizes the patients’ clinical features and genotype.

The complete neurological assessment included (1) cognitive evaluation according to mini-mental
state examination (MMSE) scale, (2) cranial nerve evaluation, (3) muscle tone evaluation, (4) muscle
strength evaluation, (5) joint coordination evaluation, (6) sensory examination, (7) tendon reflex
elicitation, and (8) disease severity measured by International Cooperative Ataxia Rating Scale (ICARS)
and Scale for the Assessment and Rating of Ataxia (SARA) [23,24]. We excluded patients with gait
impairment due to extracerebellar symptoms or orthopedic disorders. Regarding the extracerebellar
disorders affecting gait, we excluded patients with spasticity, polyneuropathy, cognitive deficits,
and extrapyramidal disorders. Of the recruited patients, no one presented with signs of spasticity,
hyposthenia, hypoesthesia, and/or cognitive impairment (MMSE > 24). All patients were able to
walk alone without any kind of assistance or aid, and were receiving physical therapy, including
active and passive exercises for upper and lower limbs as well as balance and gait re-education.
Furthermore, no patient had significant visual deficits according to the Snellen visual acuity test.
Almost all of the patients had non-disabling oculomotor abnormalities, such as nystagmus or square
wave jerks pursuit movements, because of the underlying disorder. A brain MRI showed that all
patients had cerebellar atrophy. Regarding the fall risk assessment, all patients had to complete a
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specific questionnaire designed to evaluate the number of falls in the previous year, the characteristics
of such falls (side, associated injury), and the circumstances in which they occurred. The number of
falls in the last year was used for correlation analysis. Sixteen age-matched healthy adults (age, ataxic
patients 53.53 ± 12.12 years, healthy controls, 50.94 ± 8.79 years, p > 0.05) were enrolled as the control
group. We obtained informed consent from each patient and healthy subject, which complied with the
Helsinki Declaration and was approved by the local ethics committee.

Table 1. Ataxic patients’ clinical and anthropometric characteristics.

Number/Total % Mean (SD)

Male 9/17 52.9 -

Female 8/17 47.1 -

Age (years) - - 53.53 (12.12)

Height (m) - - 1.65 (0.09)

Weight (kg) - - 71.03 (12.74)

ICARS - - 24.70 (10.80)

SARA - - 12.20 (4.25)

Disease duration (years) - - 12.11 (4.52)

Diagnosis

SAOA 9/17 52.9 -

SCA1 2/17 11.8 -

SCA2 3/17 17.6 -

SCA3 1/17 5.9 -

SCA8 1/17 5.9 -

FRDA 1/17 5.9 -

SAOA: sporadic adult onset ataxia of unknown etiology; SCA: spinocerebellar ataxia; FRDA: Friedreich’s ataxia.

2.2. Gait Analysis

We acquired data with an inertial sensor (BTS GWALK, BTS, Milan, Italy), attached to an ergonomic
belt placed around the pelvis at the level of the L5 vertebra, connected to a portable computer via
Bluetooth. The sampling rate was 100 Hz, and the sensor, endowed with a tri-axial accelerometer (16
bit/axes), a tri-axial magnetometer (13 bit), and a tri-axial gyroscope (16 bit/axes), measured the linear
trunk accelerations and the trunk angular velocities in three space directions (i.e., AR: anterior-posterior;
ML: mediolateral; VT: vertical direction).

2.3. Task Description

Before starting the experimental session, participants were asked to walk along a predetermined
route in order to familiarize themselves with the procedure. Recordings of all the patients were
obtained during overground walking. We asked participants to walk along a corridor (3 m wide and
20 m long) at their preferred speed. Control subjects were asked to walk at a low speed in order to
match the two groups for speed (ataxic patients, 0.939 ± 0.195 m/s; controls, 0.924 ± 0.239 m/s; p > 0.05).

2.4. Inertial Sensor Data Processing

The ‘walking protocol’ of the inertial sensor (G-STUDIO, BTS, Milan, Italy) was used to detect: (1)
trunk acceleration patterns, (2) right and left heel strikes, and (3) toe-off. The HR and the CV were
calculated using MATLAB software (MATLAB 7.4.0, MAthWorks, Natick, MA, USA).
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Harmonic ratio. The harmonic ratio (HR), initially described by Gage [25] and later modified by
Smidt et al. [26], provides an indication of the acceleration patterns, smoothness, and rhythm. Since
the unit of measurement from a continuous walking trial is a stride (two steps), a stable, rhythmic
gait pattern should be characterized by multiples of two repeated acceleration patterns within any
given stride. Accelerations patterns that do not repeat in multiples of two generate out of phase
accelerations, reflecting irregular accelerations during a walking trial and, therefore, an unstable gait
pattern. The harmonic content of the acceleration signals can be analyzed in each spatial direction using
stride frequency as the fundamental frequency component. Based on each stride time, 20 harmonics
were calculated. Trunk accelerations of each stride were broken down into individual sinusoidal
waveforms using discrete Fourier transform (DFT).

Since a stable smooth gait pattern is characterized by acceleration signals in VT and AP directions
that repeat in multiples of two during a single stride, HRs in the VT and AP directions were calculated
as the ratio of the sum of the amplitudes of the first 10 even harmonics divided by the sum of the
amplitudes of the first 10 odd harmonics. In the ML direction, acceleration signals were repeated once
for any given stride, so HRs in the ML direction were calculated as the sum of the amplitudes of the
odd harmonics divided by the sum of the amplitudes of the even harmonics. We used a high-pass
filter with cutoff at 20 Hz to eliminate noise signals.

HRs per stride were determined and averaged across a steady walk, resulting in a mean HR. HR
in AP and VT, and in the ML direction, were calculated as below [19]:

HR in anterior–posterior and vertical directions

HR =

∑10
i=1 A2i∑10

i=1 A2i−1

HR in the medio-lateral direction

HR =

∑10
i=1 A2i−1∑10

i=1 A2i

where A2i denotes the amplitude of the first 20 even harmonics and A2i–1 indicates the amplitude of
the first 20 odd harmonics. The higher the HR value, the smoother the walking pattern.

Coefficient of variation. In order to compute the step length CV, the step length was estimated
using the upward and downward movements of the trunk, as proposed by Zijlstra and Hof [27].
Assuming a compass gait type, the body’s center of mass (CoM) movements in the sagittal plane follow
a circular trajectory during each single support phase. In this inverted pendulum model, changes in
height of CoM depend on step length [27]. Thus, step length can be deduced by known height changes

and predicted from geometrical characteristics as follows: step length = 2
√

2lh− h2.
In this equation, h is equal to the change in height of the CoM, and l represents the pendulum

length. Changes in vertical position were calculated by a double integration of the vertical acceleration.
A high-pass filter (fourth-order zero-lag Butterworth filter at 0.1 Hz) was used in order to avoid
integration drift. The difference between highest and lowest position during a step cycle was used
to determine the amplitude of changes in the vertical position (h). Leg length was considered as
pendulum length (l). Step length was calculated as the mean of step lengths observed during seven
subsequent steps of each subject.

Then, the step length coefficient of variation (CV) was computed as follows: CV = 100 SD
mean where

mean is the mean step length and SD is the standard deviation over the entire step length for each
subject [1]. The CV is a measure of the variability of a data set; the closer to 0 the CV is, the less variable
the data are.
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2.5. Statistical Analysis

We used the SPSS 17.0 software (SPSS Inc. Chicago, IL, USA) for statistical analysis. All data were
expressed as mean ± standard deviation; p < 0.05 was considered statistically significant. We assessed
the normality of distributions using the Shapiro-Wilk test.

Mean and standard deviation within subjects were computed for speed and stability indexes.
We used the independent-samples t test to look for differences between the stability indexes of ataxic
patients vs. controls. Cohen’s d index was used to assess the effect size of the stability indexes in
the three spatial directions [28,29]. We used the Pearson’s test to investigate any correlation We used
the Pearson test to investigate any correlation of acceleration HR and step length CV with (1) age, (2)
height, (3) weight, (4) disease duration, (5) total ICARS and SARA scores and (6) number of falls in the
last year.

3. Results

Looking at the low scores of ICARS and SARA, the recruited patients mainly showed cerebellar
symptoms (see Table 1).

HR in all three directions and step length CV were all significantly different when compared to
the controls (Table 2). Briefly, the HR of patients was lower than the HR of healthy subjects, meaning a
less harmonic and rhythmic acceleration pattern of the trunk, while the CV of step length was greater
in patients than in the controls, indicating a more variable step length in ataxic patients. Both HR and
CV of step length showed a high effect size in distinguishing patients and controls, but HR in all three
directions showed a higher effect size score when compared to the CV (Table 2).

Table 2. Comparisons of the stability indexes between 17 ataxic patients and 16 controls at matched
gait speed.

Parameter Patients Controls t p Cohen’s d

HR-AP 1.665 ± 0.300 2.414 ± 0.540 4.964 <0.001 1.714
HR-ML 1.639 ± 0.282 2.347 ± 0.559 4.631 <0.001 1.599
HR-VT 1.694 ± 0.304 2.549 ± 0.715 4.519 <0.001 1.556

Step length CV (%) 21.249 ± 10.293 13.205 ± 6.004 −2.720 0.011 0.955
Step length (m) 0.499 ± 0.087 0.569 ± 0.067 −2.382 0.024 0.112

Speed (m/s) 0.939 ± 0.195 0.924 ± 0.239 −0.207 0.838 0.069

Mean ± standard deviation values, the results of the independent samples t-test and Cohen’s d are reported. Values
of p lower than 0.05 were considered statistically significant. HR-AP: harmonic ratio in the anterior–posterior
direction; HR-ML: harmonic ratio in the mediolateral direction; and HR-VT: harmonic ratio in the vertical direction.

Surprisingly, no correlation was found between HR in all directions, falls/year, and clinical severity
(ICARS and SARA scores) (Table 3), while a significant positive correlation was found between the CV
of step length and the falls/years and ICARS and SARA scores (Figure 1).

Table 3. Correlation analysis between HR in all directions and ICARS, SARA, and falls/year.

Parameter ICARS (R, p) SARA (R, p) falls/year (R, p)

HR-AP −0.35, 0.24 −0.35, 0.13 −0.10, 0.66
HR-ML −0.47, 0.10 −0.36, 0.11 0.02, 0.92
HR-VT −0.41, 0.88 −0.43, 0.06 −0.01, 0.99

The reported values represent Pearson correlation value (R) and statistical significance value (p). HR-AP: harmonic
ratio in the anterior–posterior direction; HR-ML: harmonic ratio in the mediolateral direction; and HR-VT: harmonic
ratio in the vertical direction.
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Figure 1. Correlations between the maximum step-to-step coefficient of variation and the falls/year,
ICARS-total, and SARA-total scores in 17 ataxic patients. Pearson’s R coefficient (R) and significance
(p) are reported.

4. Discussion

In the present study, we found that trunk acceleration smoothness, as described by HR values,
and the variability of step length, as described by the CV, may provide insights about gait stability
in subjects with degenerative ataxia. Furthermore, the variability of step length correlated with both
clinical severity and fall risk.

Regarding the acceleration patterns of the trunk, the HR of patients significantly differed from
that of healthy controls in all three spatial planes. Moreover, it showed a high effect size, according to
Cohen’s d index (Table 2). This means that ataxic patients, compared to healthy subjects, exhibit a
substantial reduction of trunk movement smoothness. When discussing these findings, we should bear
in mind that the trunk has a great functional importance in minimizing the magnitude of linear and
angular displacement of the head, ensuring clear vision [30,31], facilitating the integration of vestibular
information [32], contributing to the maintenance of balance [5,6,16,33,34], and acting as a driving force
for locomotion [35]. Consequently, investigating upper body stability in patients with degenerative
cerebellar ataxia is essential, since the lack of motor control [5] and coordination [16] makes the trunk
itself generate perturbations in a sort of vicious circle in parallel to the clinical decline [2]. In this context,
trunk acceleration smoothness, as described by the HR values, provides a deeper insight into gait
disturbances [14,36]. From the literature, we know that trunk acceleration smoothness during walking
is predictive of gait dysfunction [37,38] and fall risk in older people [14,39]. Moreover, HR has already
been found to be abnormal in patients who have suffered a stroke, Parkinson’s disease, or multiple
sclerosis [19,20,22,40].

Overall, these findings suggest that HR can substantially describe trunk accelerative behavior
abnormalities among patients with degenerative ataxia [41]. On the other hand, we did not find any
correlation between HR, the number of falls, and clinical severity. This last result is apparently in
contrast with previous studies that found a relationship between clinical severity, increased range of
motion of trunk [5] and trunk–thigh coordination deficit [16]. Considering the small sample size of our
study, we cannot exclude a type II error. Nevertheless, another possible explanation might come from
the different implemented technologies and protocols. In fact, previous studies assessed the kinematic
patterns of the upper segment of the head and the trunk via optoelectronic systems [5,16]. This means
that the body markers were located on body segments (i.e., the head and upper trunk) whose range
of movements was wider than the lumbar one, as investigated by a BTS GWALK device located on
L5 vertebra. Further studies will assess such differences, evaluating the role of the ergonomic belt
placed around the thorax just underneath the axilla, and will validate inertial sensor findings against
optoelectronic systems.

The other parameter we considered was the CV of step length, which has been reported to
be significantly different in subjects with cerebellar ataxia when compared to healthy subjects [42].
During the progression of the disease (i.e., >4 years from the onset, as in our sample), subjects with
degenerative ataxia tend to lose the ability to both enlarge their step width and fasten their walking
speed and—maintaining the same step width and speed—they shorten their step length in order to
reduce their single support time [43], with a significant increase in step length CV that can lead to an
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increased risk of falls. In fact, we found that the CV of step length was higher in patients with ataxia
than the controls and, unlike HR, the CV of step length significantly correlated with the ICARS and
SARA scores and with the number of falls per year. These findings differ from those from a previous
study, where a correlation between the CV of step length and clinical severity was not detected [1].
This difference might be due to both the use of different movement analysis technologies (inertial
sensor vs. optoelectronic system) and different investigated samples (sporadic adult onset ataxia of
unknown etiology (SAOA)/ spinocerebellar ataxia (SCA) vs. SCA/SAOA/Friedreich’s ataxia (FRDA)).
Since a camera-based optoelectronic system can capture a smaller change of gait than MIMUs, our
data should be interpreted with caution. However, the investigation of a large number of patients
with FRDA in Serrao et al. [1] might explain, at least in part, such discrepant results. In this view,
patients with FRDA and those with SCA and SAOA may show a different relationship between clinical
features and gait stability; further studies are needed to explore this issue. However, our aim was not
to obtain an alternative measure of step length, but to detect the relationship between the multifactorial
gait impairment [5,6,16,33,34], clinical severity, and the fall risk. Because the MIMU-measured CV of
step length is influenced by movements of the trunk [27], and trunk–thigh coordination is impaired in
ataxic patients [16], our MIMU-measured CV might reflect trunk–thigh coordination variability. In this
respect, the aforementioned limitation might come in handy, being such a multifactorial parameter
able to summarize factors that, put together, explain gait instability in ataxic patients.

Finally, our results cannot be generalized as representative of the ataxic population because they
refer to patients with a disease duration of at least 8 years, preserved walking ability, and without
extracerebellar symptoms as disabling oculomotor abnormalities. Moreover, our findings highlight the
need to investigate the relationship between each MIMU-measured index and the corresponding ones
measured by traditional optoelectronic systems in order to have proper validation.

5. Conclusions

In conclusion, the present study highlighted that both HR and CV differed between ataxic patients
and healthy subjects. However, when considering the correlation with clinical severity and fall risk,
only MIMU-measured CV of step length was able to describe the burden of ataxic symptoms and to
draw clinical attention towards a possible increased fall risk. These MIMU-based parameters might
provide real-world information on patients’ disabilities and falls, since they are obtained through
wearable and comfortable devices.
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Abstract: Falls are a significant cause of loss of independence, disability and reduced quality of
life in people with Parkinson’s disease (PD). Intervening quickly and accurately on the postural
instability could strongly reduce the consequences of falls. In this context, the paper proposes and
validates a novel architecture for the reliable recognition of losses of balance situations. The proposed
system addresses some challenges related to the daily life applicability of near-fall recognition
systems: the high specificity and system robustness against the Activities of Daily Life (ADL). In this
respect, the proposed algorithm has been tested on five different tasks: walking steps, sudden curves,
chair transfers via the timed up and go (TUG) test, balance-challenging obstacle avoidance and
slip-induced loss of balance. The system analyzes data from wireless acquisition devices that
capture electroencephalography (EEG) and electromyography (EMG) signals. The collected data
are sent to two main units: the muscular unit and the cortical one. The first realizes a binary
ON/OFF pattern from muscular activity (10 EMGs) and triggers the cortical unit. This latter unit
evaluates the rate of variation in the EEG power spectrum density (PSD), considering five bands of
interest. The neuromuscular features are then sent to a logical network for the final classification,
which distinguishes among falls and ADL. In this preliminary study, we tested the proposed model
on 9 healthy subjects (aged 26.3 ± 2.4 years), even if the study on PD patients is under investigation.
Experimental validation on healthy subjects showed that the system reacts in 370.62 ± 60.85 ms with
a sensitivity of 93.33 ± 5.16%. During the ADL tests the system showed a specificity of 98.91 ± 0.44%
in steady walking steps recognition, 99.61 ± 0.66% in sudden curves detection, 98.95 ± 1.27% in
contractions related to TUG tests and 98.42 ± 0.90% in the obstacle avoidance protocol.

Keywords: near falls; loss of balance; pre-impact fall detection; activities of daily life; bio-signals;
EEG; EMG

1. Introduction

Recently, freezing of gait (FOG) and falls received increasing recognition as strongly debilitating
features of Parkinson’s disease (PD) [1,2]. By contrast with the tremor, which dominates the early stage
of PD [2], falls and FOG are most common in advanced PD stages. The two phenomena seem related to
each other, according to the study in [2], in which it is shown how sudden FOG can disturb the balance
and, thereby, represents a common cause of falls in PD. Epidemiologic prospective studies conducted
with 1-year, or 6-months, follow up [1–6], showed that the 45–68% of people with PD experience at
least one fall per year, with a large portion (50–86%) falling recurrently [3–5]. It is not surprising that
including the “near falls” this rate increases up to ~90% [6]. In this context, a near fall is a situation in
which, despite a loss of balance, the body-ground impact could be avoided by grasping a support [6].

The clinical presentation in [2] shows that in PD patients most falls result from sudden changes in
posture (in particular, turning movements of the trunk), rapid changes in the walking tasks (curve,
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Sensors 2020, 20, 769

transfers from the bed or the chair, etc.) or because they try to perform more than one activity
simultaneously with walking or balancing.

In this context, the advances in wireless sensors networks, wearable acquisition devices, and new
and more reliable digital signal-processing approaches for kinematic and biosignals analysis prompted
the scientific community to develop technological solutions for early fall detection (FD).

The systematic review of FD solutions in [7] showed that body-worn accelerometers can be used to
detect impacts and changes in orientation associated with falls. In the same context, the authors in [7]
conclude that the accuracy of these FD systems may be improved by jointly using multiple sensors,
e.g., signals from smartphone gyroscopes or barometers to define the height changes associated with
falls [7–9]. These technologies aim to provide fast detection of falls but, at the moment, they are still
not able to fully prevent injuries resulting from falls (e.g., hip fractures and traumatic brain injury) [8,9].
For this purpose, the focus of research contextually moved on fall risk assessment. This area of interest
oversees the identification of the people’s risk of falling, facilitating in this way early interventions
via FD systems. Currently, fall risk-assessment procedures take into account the clinical evaluation of
multiple domains such as balance control, mobility, physiology (strength, vision), psychology (fear of
falling), cognition and environmental risk [7].

In this context, detecting near-falls (or recoverable imbalances) provides new opportunities to
identify people with a high risk of falling before an actual fall occurs [10]. Near falls are defined as
loss of balance that does not result in a fall because corrective action is taken to recover balance. They
typically consist of slips, trips, and missteps. Moreover, since older people who frequently experience
near falls are at increased risk of future falls [7,10], remote monitoring of these events during daily life
could provide useful information to target falls and related circumstances as part of fall prevention
initiatives [7].

Ultimately, an accurate algorithm for the detection of near falls could enhance the quality of
existing fall detection systems by reducing false alarms [7].

In this respect, Table 1 summarizes state-of-the-art solutions [11–15] declared to be able to
recognize near falls. The table reports the architectures in terms of used acquisition equipment,
fall indicators (i.e., the feature(s) to be monitored and classified) and chosen classification method.
Table 1 also dedicates a field to the Activities of Daily Life (ADL) and near-fall scenarios included in the
discrimination. Finally, the last two rows summarize the declared system performance (i.e., accuracy
and efficiency) and the applicability of proposed systems to daily-life and/or ambulatory contexts,
as well as their suitability in the context of real-time near falls detection and fall prevention. All the
studies selected for the comparison analyze unexpected slippages, classifying them as near falls because
all the perturbations analyzed in [11–15] led to balance recovery.

Table 1 shows that the most used technologies in the loss of balance detection are motion capture
systems (MCS) [12,13,15] and inertial measurement units (IMU) [11,14]. Solutions based on MCS are
classified as context-aware and typically consists of a set of reflective markers and fixed cameras.
For this reason, MCS-based fall detection systems present two limits: they are expensive and only
suitable for ambulatory applications [12,13]. Pointing at daily-life applicability, authors in [11,14]
propose wearable solutions mostly based on IMU sensors. More in detail, the authors in [11] analyze
acceleration and angular velocity from 7 IMU sensors via a machine-learning (ML) approach. In a
similar way, the authors in [14] exploit acceleration data from a single device, placed on the waist,
to record vertical velocity from trials belonging to the chosen classification clusters (i.e., ADL vs. near
falls). In terms of adopted classification methods, the result is that the most used approaches are still
based on thresholds, in order to preserve a good speed in system response [12,14,15].
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Machine-learning based solutions have been also investigated by authors in [11,13]. In this respect,
noteworthy is the approach in [13], where the authors use an artificial neural network (ANN) to classify
acceleration independent components, providing an interesting tradeoff between overall accuracy and
fall-detection timing.

Table 1 reports the most investigated performance in FD and near-fall detection applications:
the fall/imbalance recognition accuracy and the detection time [16]. The system accuracy parameter
is composed of the sensitivity and the specificity. For the sake of comparison, all the analyzed
works [11–15] share the same sensitivity and specificity definition. The first (i.e., sensitivity, Se (%) in
Table 1) is defined as the ratio between the number of successfully detected falls/losses of balance over
the total number of recorded perturbations. While, the specificity (Sp (%) in Table 1) is determined
by the ratio between the number of successfully detected ADL over the total number of ADL-related
trials. Finally, the detection time (DT in Table 1) characterizes the system efficiency. It is defined as
the time difference between the fall initiation (that can be uniquely defined) and fall detection. This
parameter gives an idea on how rapid the fall-detection system responds to a fall.

Concerning the applicability field of Table 1, the device’s wearability and the proper specificity
characterization relate to the suitability of the application to ordinary-life contexts. While, the detection
time under a balance recovery limit (i.e., ~550 ms) [17] determines the system suitability for pre-impact
FD strategy improvement.

In this paper, we propose and preliminarily validate a digital architecture for the loss of balance
recognition during unexpected slippages potentially inducing fall. The main contributions of the
paper concern:

• Fall Indicators. The architecture exploits a novel joint analysis of bio signals: electromyography
(EMG) and electroencephalography (EEG).

• High Sensitivity and Specificity. The algorithm robustness is tested both in presence of unexpected
slippages (near-fall scenarios) and during four ADL-like tasks: (i) steady walking, (ii) sudden
curves, (iii) chair transfers via timed up and go (TUG) test and (iv) balance-challenging
obstacle avoidance.

• Quick Loss of Balance Recognition. The system detection time reached by the proposed
architecture is conservatively below the maximum intervention time limit for the countermeasures
implementation [17].

• Wearability. The proposed architecture is fully based on wireless and wearable sensors,
ensuring—together with the high-specificity constraint—the suitability in ordinary life applications.

The architecture proposed here exploits medical evidence from recent studies [18–23], according to
which the cerebral cortex can regulate the postural stability according to environmental demands [18].
Specifically, the authors in [19,20] proved that low-frequency cortical rhythms (f < 13 Hz) are related to
perception and cognitive control. In the loss of balance context, the modulation of the bands θ (4–7 Hz)
and α (8–12 Hz) seems to be related to the visual field stabilization and active decoding of data from
the vestibular system. Contextually, authors in [21–23] concluded that high-frequency cortical rhythms
(f > 13 Hz) are commonly related to highly specific motor functions. Specifically, the β bands (i.e., β I,
β II, β III), play a main role in muscle firing operations to compensate balance.

Besides the cortical dynamics’ characterization, the muscular behavior could also be uniquely
characterized. In this respect, the authors in [22–25] demonstrated that for accelerations or decelerations
of the supporting surface (e.g., slippage) a low latency response (70–300 ms) occurs in the muscles
near the ankles. It results in a muscular pattern characterized by co-contractions between agonist and
antagonist muscle bundles [24].

Keeping this evidence in mind, the novel architecture exploits electrophysiological measurements
from 10 EMG electrodes, to assess the muscular activity, and 13 EEG channels, to analyze the subject’s
cortical involvement during reactive response or normal motor planning.
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Electrophysiological signals (i.e., EEG/EMG) are synchronously acquired via a central gateway.
The gateway streams data to two computational units that distinctly analyze muscular and cortical
activity. The unit dedicated to the muscular characterization has two main roles: realizing a binary
ON/OFF pattern from muscular activity and triggering the cortical analysis unit. Once triggered,
this latter unit quantifies the cortical involvements as the rate of variation in the EEG power spectrum
density (PSD), considering the five bands of interest identified by authors in [18–23]. The parameters
extracted from these units define some neuromuscular features of the subject under monitoring. As a
final step, these features are sent to a logical network, which embeds a set of dynamic thresholds
from the system calibration phase. In this application, the system calibration progressively builds a
conservative range in which the neuromuscular features can be considered as “standard” and, thus,
safe for the balance. The expectancy is that the ADL do not strongly affect the cortico-muscular
parameters as, instead, happens during a loss of balance.

The paper is structured as follows. Section 2 outlines the experimental protocols, the setup and the
implemented algorithm. Section 3 is dedicated to experimental results. Section 4 proposes a discussion
about the system outcomes and Section 5 concludes the paper, presenting future perspectives.

2. Materials and Methods

2.1. Participants

Nine young and healthy volunteers (8 males, 1 female, 26.3 ± 2.4 years old, 64.5 ± 9.8 kg,
1.71 ± 0.06 m) were enrolled for this study. Six of them contributed to a near-fall scenarios test,
while three subjects were actively involved in the system robustness test via ADL-like tasks. Before
starting the experimental sessions, all the participants signed the informed consent. Research procedures
were in accordance with the Declaration of Helsinki and was approved by the Local Ethical Committee
(Protocol n. 2019_0025904).

2.2. Architecture Overview

Figure 1 shows a block diagram of the proposed loss of balance detection architecture. According
to the figure, the system can be divided in four main sections: the acquisition unit, the muscular
and cortical units and, finally, the classification block. As depicted in Figure 1, the proposed digital
architecture synchronously operates on a STM32L4x microcontroller for the muscular analysis, and by
means of Simulink real-time modeling to assess the cortical involvement. The Simulink model has been
fully realized by blocks from the Digital Signal Processing (DSP) library in order to be implemented on
a microcontroller.

The system working principle is inspired by our previous works [26,27], which laid the
methodological bases for the joint analysis of EEG and EMG signals in the fields of gait analysis and
involuntary movements detection. The overall processing chain is detailed in Figure 1.
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Figure 1. Proposed architecture block diagram. The figure shows the electroencephalography/
electromyography (EEG/EMG) experimental setup, as well as the graphical representation of the
working flow of each involved block.

2.2.1. Acquisition Unit

The acquisition unit consists of a multi-sensing interface that jointly collects data from 10 surface
EMGs and an EEG headset. The acquisition equipment has been selected to be fully wireless and
wearable, allowing the subject complete freedom of movement.

In more detail, during the test and data collection phases, subjects wore a 32-channels EEG
wireless headset (g.Nautilus Research by g.Tec [28]) and a set of 10 wireless surface EMG electrodes
(Cometa WavePlus by Cometa srl [29]). According to the experimental measurement setup sketch in
Figure 1, thirteen EEG sites have been monitored: F3, Fz, F4, C3, Cz, C4, Cp5, Cp1 Cp2, Cp6, P3, Pz, P4,
according to the international 10–20 system. The O2 electrode was used for noise suppression, AFz as
ground and the A2 (right earlobe) as the reference electrode. The EEG data were sampled at 500 Hz
with 24-bit resolution.

On the muscular side, 10 surface EMG channels were monitored from following bilateral muscle
groups: Anterior tibialis (AT), Lateral gastrocnemius (LG), Vastus medialis (VM), Rectus femoris (RF),
and Biceps femoris (BF). The EMG signals were recorded with a sample rate of 2048 Hz and down
sampled to 500 Hz (@16-bit resolution) before the transmission.

Data from the 10 EMG nodes are wirelessly streamed to a dedicated gateway, which is mounted on
a Nucleo STM32L476RG board via a dedicated Printed Circuit Board (PCB) shield. Then the Muscular
Unit algorithm runs on the microcontroller, analyzing the signals sample-by-sample.

Data from the EEG headset are sent to a base station connected via USB to a central computation
unit that runs the Simulink model. The base station is also equipped with a 26-pin D-SUB connector
used for the parallel reception of 8 digital input pins (DIN). These DINs will be used to receive data
and triggers from the microcontroller. On the Simulink model side of the cortical unit, data from the
monitored channels are continuously sent to nch = 13 circular registers, waiting for the enable signal
from the muscular block. In this application, the central computation unit that runs the Simulink model
consist of a HP Y5L00AE computer embedding an AMD A10-9600P processor (Hewlett-Packard—Palo
Alto, CA, USA).

Pre-processing. The EEGs were progressively band-filtered between 1 Hz and 40 Hz by using a
built-in 8th order Butterworth filter before the transmission [30]. The EMG node band-pass filters the
signal between 15 Hz and 250 Hz before to be sent data to microcontroller [31]. Finally, a numeric
notch filter 48–52 Hz has been implemented via the Simulink model for both EEG and EMG signals.
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2.2.2. Experimental Protocols

To test the robustness of the algorithm proposed here and to ensure system suitability for daily-life
contexts, the system response was assessed during four different ADL-like tasks. Figure 2 shows,
through a snapshot grid, the experimental protocols carried out by the participants. Each row in the
figure is composed of 6 frames, realizing a demonstrative sequence of the four experimental tasks:

1. Steady walking to near fall (slip). During this protocol, already presented in [26], the participants
were asked to manage a slippage, unexpectedly provided during the steady walking by a
mechatronic platform, called SENLY [32]. Specifically, the involved subjects underwent a series of
10 consecutive trials where their steady walking was unexpectedly perturbed by a slipping-like
perturbation delivered in a pseudo-randomized order. Slippages consisted of a sudden and
unexpected movement of one belt toward the antero-posterior (AP) direction. A demo of the
protocols is shown in Figure 2a, panels (1) to (6).

2. Steady walking with sudden curves. In this protocol, the participants were asked to manage a
tight turn around a preset delimiter by keeping the walking speed as constant as possible. The
panels (3) and (4) of Figure 2b provides an idea of the protocol described. To evaluate the system
specificity against the ADL-like task response, only the contractions related to the sudden curves
were collected.

3. Chair transfer via timed up and go test. During the TUG test, the participants were asked to
stand-up from a chair, walk toward a delimiter, carry out a tight turn around it and go back to the
chair to sit- down again. The Figure 2b summarizes in 6 frames the TUG protocol. In this case,
the contractions related to the sudden curves are kept in the sudden curves specificity database,
while sit-down and stand-up contractions are collected in the dedicated TUG database.

4. Balance-challenging obstacle avoidance. This protocol is shown via the 6-frame sequence
in Figure 2c. In this protocol, the participants were asked to manage a sequence of obstacle
avoidances, by alternating the support foot for every trial. Obstacle avoidance-related contractions
have been collected in the dedicated database for the system specificity computation.

 

Figure 2. Experimental protocols grid. Each row in the panel represents a 6-frame demo sequence of
the experimental protocol carried out by the participants. (a) Steady walking to near fall (slip) protocol;
(b) Chair transfer via timed up and go test; (c) Balance-challenging obstacle avoidance.
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2.2.3. ON/OFF Muscular Pattern Extraction

The muscular unit operates on the collected EMGs, generating an ON/OFF binary pattern of
muscular activation (OOM—Figure 1) starting from the electrophysiological signal of each monitored
muscle. Briefly, the implemented algorithm set OOM = 1 when the muscle is contracted, otherwise
reset OOM = 0. This binarization procedure is entrusted to a moving threshold approach detailed
in [26,33], because it demonstrated to be able in following the muscle tone changes (e.g., due to fatigue).

The ON/OFF muscular pattern extraction routine implemented on the STM32L4 μC can be briefly
summarized by the following steps: the system progressively stores, for each muscle, a time-window
containing the last M = 250 samples received.

It then extracts two data blocks: the first one containing the full EEG time-window (M = 250
samples, i.e., ~500 ms) and the second one that includes only the last N = 125 samples (i.e., ~250 ms).
The algorithm squares these two vectors, averaging their elements. The resulting EMG power value
for the longer time window (PM) acts as adaptive threshold, while the same parameter for the shorter
time window (PN) as the instantaneous power. Finally, the two values are compared: if PN > PM,
the system set OOM = 1, otherwise OOM = 0. The PM and PN values refresh and progressively adapt
to each sample.

This ON/OFF muscular pattern digitization step (Figure 1) generates 10 parallel OOMs (one per
muscle), which are sent to the muscular activity pattern (MAP) step according to the block diagram in
Figure 1.

Two OOMs from both the Gastrocnemii are selected to trigger the Cortical Unit. These OOMs will
be named master trigger (MT, Figure 1) hereafter.

To exclude, from the computation, the cortical activity that it is not strictly related to the specific
movement, protecting from false alarms in the EEG unit, we selected as MT the gastrocnemius because
it uniquely intervenes during the midstance gait phase.

2.2.4. Cortical Involvement Assessment

Once enabled via MT (side independent), the cortical unit extracts from the circular buffers 13
time-windowed EEGs of 400 samples (~800 ms) preceding the MT onset.

As a first step, these subset of EEG data undergo the on-line Riemannian artifact subspace
reconstruction (rASR) [34]. The rASR is an online/offline artifacts attenuation method for mobile EEG
data based on an ASR with Riemannian geometry.

The cortical unit analyzes these artifacts-free brain signals, quantifying the rate of variation in the
EEGs power within the five bands of interest identified by authors in [18–23]: θ (4–7 Hz), α (8–12 Hz),
β I, β II, β III (13–15, 16–20, 21–40 Hz). In more detail, the power spectrum density measurements are
done by applying a sliding-window fast Fourier transform (FFT) on the considered EEG subset. For
the purpose, the artifacts-free EEG subset is split in 20 overlapped windows long 200-samples with a
step of 10 samples, covering the entire length of the subset.

Considering a single EEG window, the application of the FFT leads to a spectral resolution
of 2.5 Hz (considering fsEEG = 500 sps and Lwin = 200 samples), which is suitable for the band
multiplexing [26,35].

For each evaluated window, the system extracts a matrix named SBoI ∈ Rnch, nBoI, with nch = 13
and nBoI = 5 number of bands involved in the multiplexing.

Each SBoI element is the sum of the spectral contents falling within the selected j-th band due to
the multiplexing:

SBoI(i, j) =

∑
k=(jth band)(S(k))

∣∣∣
dB

Rg
i = 1 : nch, j = 1 : nBoI, k = 1 : Rg (1)

where the j-th band can mean the θ (k = 2:3), α (k = 3:5), β I (k = 6:7), β II (k = 8:10), β III (k = 11:16)
band range, while Rg is the maximum k index (i.e., length of the j-th band).
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The SBoI is then extended to the 20 overlapped windows, generating a 3D matrix: Y ∈Rnch, nBoI, nW

with nW = 20 number of measurements.
For the sake of clarity, considering a single band of interest (e.g., α band), data from the 20 FFT

steps undergo a linear fitting via an ordinary least squares (OLS) estimator according to the equation:

p̂(i)
∣∣∣α = A\Y(i,α, 1 : nW) (2)

where p̂(i)
∣∣∣
α

is the OLS-based parameter vector for the i-th channel on the α band. It contains,
in the order, the estimated linear model intercept q̂ = p̂(i)

∣∣∣α[1] and the estimated straight-line slope
m̂ = p̂(i)

∣∣∣α[2] . In the same equation (i.e., Equation (2)), A is the matrix of the basic functions containing
a column of 1 and column of time vector (t = 20:800 ms, step 20 ms). Finally, Y(i,α, 1 : nW) is the
vector that contains the FFT measurements on the i-th channel and the α band. The resulting linear
models (OLS estimation—Figure 2) permit to approximate the cortical involvement parameter as the
straight-line slope, m̂. More details about the EEG computation branch implementation has been
provided in our previous works [26,33]. The OLS-based estimation procedure is contextually applied
to 13 channels and 5 band of interests, generating 65 m̂ values.

2.2.5. Muscular Activity Pattern Extraction

The muscular unit hosted by the microcontroller operates in parallel with the cortical involvement
analysis. In this frame, the muscular unit analyzes the 10 parallel OOMs via the MAP extraction
routine. This stage aims to analyze the contraction status of each analyzed muscle “in correspondence”
of the MT rising edge. Specifically, is time windows of 20 ms (11 samples), 10 ms before and 10 ms
after the MT rising edge, is considered. The resulting OOM observation is named wOOM ∈ RnEMG, Lw,
where nEMG is the number of monitored EMG nodes and Lw is the number of samples composing
the subset. In this application nEMG is 10, while Lw is 11. Also, the element wOOM(i,j) corresponds
to the j-th sample of the i-th OOM observation window. In view of this, the MAP vector could be
mathematically extracted as follows:

MAP(i) =

∑Lw
j=1 wOOM(i, j)

Lw
=

{
1 MAP(i) > 0.5
0 otherwise

(3)

According with Equation (3), the outcome of this computation block consists of a 10-element vector
(i.e., MAP). Each vector element corresponds to a muscle and it is 1 if the considered muscle is active
(contracted) for more than half of the observation time, otherwise 0 (i.e., time predominance rule).

All the MAPs collected during a first brief stage of unperturbed gait or other ADL allow the
system to build a first muscular behavior statistic. Specifically, they are used to extract a set of weights.
These weights are based on the occurrence of a specific muscle contraction in correspondence of the
MT contractions comprising the database. Two weights vectors are derived, one for the right leg (RL)
movements and one from the left leg ones (to avoid asymmetry issues). In this way, it is possible
to extract the most probable muscular pattern and, thus, a scoring method able to provide a high
score if the incoming MAP is similar to the standard pattern, otherwise a low score (in presence of
anomaly such as a perturbation). The weights vectors are continuously updated when requested by
classification block, according to changes in user rhythms.

2.2.6. Muscular Activity Pattern (MAP)-Based Scoring Section

In a real-time application context, the MAP-based scoring block (Figure 1) analyzes the incoming
MAP binary vector by dot-multiplying it by the related weight vector. For instance, MAP coming
from the right Gastrocnemius contraction is dot-multiplied by the right leg-related weight vector and,
finally, normalized. The score assignment outcome tends to 1 if the incoming MAP is similar to the
muscular standard, otherwise, it tends to 0.
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Naming WR ∈ R1, nEMG the weight vector from right leg movements, and MAPR the resulting
vector from Equation (3) when the MT is the right Gastrocnemius, the contraction score can be
mathematically derived as:

Score RL =

∑nEMG
i=1 MAPR(i)WR(i)∑nEMG

i=1 WR(i)
(4)

where score RL is the score related to a generic MT contraction from the right leg. Equation (4) can
be easily extended to a MT contraction of the left leg MT, by changing the subscript R with L. In this
latter case, the score is named score LL (LL, left leg) and it is derived via Equation (4) by considering
the proper weight vector WL and MAPs from the left leg, MAPL. A demonstrative example of the
general muscular score during experimental walking to slip test is shown in Figure 3. The general score
includes scores from right leg contractions (score RL) and, also, from left ones (score LL). The figure
also shows a preview of the dynamic threshold extracted during the Calibration phase, detailed in
Section 2.2.8 (red dotted line).

Figure 3. General muscular score (score right leg (RL) ∧ score left leg (LL)) during experimental
walking to slip test (Sub. 3 – Trial 4).

2.2.7. Cortical Scoring Section

The score assignment embedded in the cortical unit passes through two main steps:
the generalization and the lateralization assessment. The generalization step aims to reduce the
data to be analyzed (65 vectors of m̂ values from 13 channels and 5 bands of interest), providing a
qualitative control about the subject’s general cortical involvement. In this respect, the generalization
step considers the m̂ values on four cortical groups, which roughly identify functional macro areas:

• Supplementary motor area (SMA): F3, Fz, F4;
• Motor area (M1): C3, Cz, C4;
• Sensory-motor area (S1): Cp5, Cp1, Cp2, Cp6;
• Parietal area (PPC): P3, Pz, P4.

This means that, considering an incoming i-th contraction, the system extracts 20 m̂ values (one
per each functional group extended to 5 bands of interests). To clarify the concept, let us consider the α

band involvement on the SMA. The generalized m̂ value on the functional group SMA, considering the
α band on the i-th contraction can be derived by the following equation:

m̂SMA,α(i) = (m̂C3,α(i) + m̂C4,α(i) + m̂Cz,α(i)) (5)

The notation can be easily extended to the other formula parameters.
By contrast with the generalization step, the lateralization one evaluates the incidence of the

power increment on a specific side (i.e., left or right) by analyzing the ratio between two specific macro
areas: the left side containing {F, C, P}3 and the averaged {Cp1, Cp5}, and the right side that involves
{F, C, P}4 and the averaged {Cp2, Cp6}.
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The double-check implementation (i.e., generalization and lateralization) is justified by literature
findings [19–23], which demonstrated that a reactive response leads to a widespread cortical
involvement, while during unperturbed steps or non-challenging ADL, the cortical response remains
more lateralized according to the limbs involved in the movement.

The Cortical Scoring block provides 20 values from the generalization step (one per each functional
group on 5 bands of interests) and 5 values from the lateralization one (ratio between left and right-side
involvement).

2.2.8. Logic Network-Based Classification

The logic network-based classification block concludes the system workflow according to Figure 1.
It consists of two phases: the system adaptive calibration and the logic-network based classifier.

The system adaptive calibration oversees extracting dynamic thresholds (Thr—Figures 1 and 3)
for every neuromuscular parameter involved in the classification, i.e., muscular score and the 25 values
from the cortical generalization and lateralization steps.

Since the proposed architecture does not embed a learning phase, providing an auto-adaptive
turnkey solution, these thresholds are continuously refreshed, contraction by contraction, by means
of a sliding observation time window. In this window, the system checks the presence of thresholds
lowering via statistical methods (some ADL can drag down the thresholds more than others). If a
lowering is recorded, the thresholds are automatically adapted to the next value.

The role of these thresholds is to make the neuromuscular values as handleable as possible,
for example, by associating a binary alert to each unexpected behavior. For instance, if the muscular
score is below its dedicated threshold (red arrows in Figure 3) the muscular alert goes ON.

In a similar way, the procedure can be applied to the resulting m̂ values.
The main goal of the implemented classifier is to cross-relate, among each other, these binary

alerts from muscular and cortical sides. Specifically, the classification stage implements a logic network
developed on 3 levels as shown by Figure 4.

 

Figure 4. Logic network-based classifier. The flags that contribute to the classification stage are reported
in red dotted boxes.

The 1st level considers the binary alerts from the 4 macro cortical areas (e.g., m̂SMA,α(i)- Figure 4)),
all over the 5 bands of interest. The system verifies the presence of a widespread increase in brain
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signal power. If more (>) than 2 cortical areas, for each evaluated band, are involved in the power
increment, the architecture sets a generalization flag (GFα—Figure 4) to 1, otherwise 0.

Generalization flags (GFs) from all the evaluated bands are further analyzed. If more (>) than 2
bands are involved in the brain power increase, the 1st level flag, F1 (i) in Figure 4, goes to 1.

The 2nd level analyzes the ratio between the left and the right cortical side (x/y—Figure 4) as
described in Section 2.2.7. If the ratio is higher than 1+ε or lower than 1-ε, with ε specific tolerance
(~), a lateralized increment is formally recorded. Similarly, the system generates a binary flag, named
LFα in Figure 4, which is equals to 1 if a lateralized brain activity is recognized. The system checks
the number of lateralization flag as shown in Figure 4: if less (<) than 2 lateralization flags are active,
the 2nd-level outcome (F2 (i) in Figure 4) goes to 1.

According to Figure 4, both the 1st-level output (i.e., F1 (i)), from generalization assessment,
and the 2nd-level output (i.e., F2 (i)), from lateralization check, are sent to a final AND gate. If both
the flags are ON, it means that the system recognized a not-lateralized increment of the cortical
involvement. Finally, the classifier runs the 3rd level. This level considers the outcome from the AND
gate, toggling the presence of a muscular alert (MA(i)—Figure 4) from the MAP-based scoring block
(Figure 1).

Ultimately, if a not standard muscular behavior, jointly with a widespread and not lateralized
cortical behavior, is found, the system classifies the i-th contraction as a potential loss of balance.

The classification output of this logical network can be used to enable a fall-prevention strategy
(e.g., through wearable robotics and exoskeletons).

3. Results

The proposed system has been validated in near-fall scenarios and ADL-like tasks. During the
walking-to-slip test protocol all the participants were secured by a safety harness attached to an
overhead as shown in Figure 2a and no falls were reported during the trial. Participants were able to
perform multistep recovery reaction to find back their balance.

Before starting the experimental sessions, all participants signed informed consent. Research
procedures were in accordance with the Declaration of Helsinki and were approved by the Local
Ethical Committee (Prot. no. 0028266/2019).

Section 3.1 briefly recaps general performance: sensitivity, detection time and specificity concerning
steady walking steps versus near fall scenarios. Section 3.2 focuses on the daily life suitability of the
system, discussing the method robustness against ADL. Section 3.3 briefly outlines the acquisition
equipment features.

3.1. Architecture Performance: Loss of Balance versus Steady Walking

As already stated in the state-of-the-art comparison, the performance of a near-fall detection
strategy is usually quantified in terms of accuracy and efficiency. According to all the evaluated
works [11–15], the accuracy can be evaluated by considering the sensitivity and specificity parameters.
Mathematically, the sensitivity can be defined as:

Se (%) = (#(TrNF)/NLoB)·100 (6)

where #(TrNF) is the number of correctly detected near fall events (i.e., induced slippages) and NLoB

represents the total number of evaluated loss of balance situations.
In a complementary way, the specificity is identified as:

Sp (%) = (#(TrADL)/NADL)·100 (7)

where #(TrADL) is the amount of successfully detected ADL-like actions (i.e., walking steps, sudden
curves, TUG and obstacle avoidance) and NADL is the total number of the evaluated ADL related trials.
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In this section, we analyze results recorded during a real-time application of the walking-to-slip
protocol. Two data pools were built: the first dataset is composed of 60 contractions from near-fall
scenarios (10 perturbations per 6 subjects), while the second dataset includes 2091 contractions from
the steady walking of all the subjects.

The experimentally extracted sensitivity, specificity (related to walking steps) and the detection
time values are summarized in Table 2. The proposed multi-sensor architecture shows a sensitivity of
93.33 ± 5.16% and a walking steps vs. loss of balance (slip) specificity of 98.91 ± 0.44%.

Table 2. Proposed architecture accuracy and efficiency: near falls vs. steady walking.

Subject Se (%) SpWS 1(%)
DT (ms)

μ±σ Max|Min

1
90.00
(9/10)

99.22
(386/389) 369.83 ± 97.49 536.11 | 202.02

2
100.00
(10/10)

98.32
(292/297) 436.72 ± 86.66 634.21 | 371.15

3
90.00
(9/10)

98.71
(308/312) 299.76 ± 107.99 432.00 | 194.60

4
90.00
(9/10)

98.55
(339/344) 355.85 ± 151.38 581.35 | 198.73

5
90.00
(9/10)

99.46
(370/372) 446.72 ± 112.89 626.45 | 374.36

6
100.00
(10/10)

99.20
(374/377) 314.82 ± 105.34 501.23 | 160.42

Avg 2 93.33 ± 5.16 98.91 ± 0.44 370.62 ± 60.85 634.21 |160.42 3

1 SpWS: specificity strictly related to walking steps as not loss of balance actions; 2 Avg: averages among all the
analyzed subjects (Sub. 1-6); 3 Values refer to the highest maximum and lowest minimum values among the
reported data.

The system detection time is about 370.62 ± 60.85 ms, of which—on average—only 21.75 ms are
dedicated to the overall computation chain for muscular and cortical units. The computation time
comprises: (i) muscle ON/OFF pattern extraction (ii) sliding window FFT, (iii) band multiplexing,
(iv) generalization and lateralization step (v) logic network-based classification and (vi) re-calibration
of thresholds. Table 2 also shows that in the worst case (i.e., Sub 2, Trial 5) the system demands about
634 ms to intervene, while in the best case (i.e., Sub 6, Trial 4), the system recognizes the loss of balance
in about 160 ms.

3.2. Architecture Performance: System Robustness against Activities of Daily Life (ADL)

To ensure the daily-life applicability of the proposed architecture, the wearability of the device
is not the only constraint. Another important applicability limit lies in the system’s robustness
against movements that usually a subject does in his/her domestic environment. These are generally
named Activities of Daily Life (ADL). In this respect, this section focuses on the system specificity
characterization considering three ADL-like actions as: (i) sudden (and tight) curves, (ii) chair transfers
(via TUG test) and (iii) obstacle avoidance.

For the sake of completeness, distinct datasets have been created starting from a real-time
application of the system to the three tasks. Each test trial shown in the following consisted of a mixed
pattern of these three tasks: walking with sudden curve, TUG and obstacle avoidance. Overall, the
offline extraction of specific contractions resulted in a first dataset of 331 contractions (3 subjects)
related to tight curves, a second dataset of 512 contractions (3 subjects) from the TUG test and, finally,
a dataset that includes 352 contractions (3 subjects) related to the obstacle avoidance.

255



Sensors 2020, 20, 769

The steady walking specificity has been evaluated in the previous section by using a dataset of
2091 unperturbed steps (no recovery and near perturbed steps), leading to a value of 98.91 ± 0.44%
that we assume as a final characterization parameter for the sake of readability.

Figure 5 provides a graphical characterization of the system robustness against the ADL.

Figure 5. Cortico-muscular involvement planes for the 3 analyzed subjects. The figure merges
contractions from three different Activities of Daily Life (ADL): curves (black), timed up and go (TUG)
test (red) and obstacle avoidance (blue). The panels show the false alarms (red circles) and a comparison
group (blue crosses) that represents the typical values occurring during a fall-related master trigger
(MT) contraction.

The figure shows three panels per subject, except for Sub. 2 that did not perform the obstacle
avoidance during the third test trial. Each single panel shows a 2D plane in which the x-axis reports the
muscular score (MS in the following) as defined in Section 2.2.3, while the y-axis refers to the m̂SMA,α

values, obtained according to Equation (5). Each point on the plane has coordinates {MS(i), m̂SMA,α(i)}
where “i” is the i-th MT contraction that led to features extraction. Each single point identifies two
features that contributes to the final classification of the specific contraction.

The panel also shows 3 thresholds that are constant along the x-axis (solid red, blue and black
lines). These thresholds are those that operate on the muscular score (i.e., MS), acting as shown in
Figure 5 by considering the median on an observation window of 15 consequent contractions.

This means that the system slowly adapts to the worst thresholds among the evaluated ones.
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For example, considering The Sub.1–Test: 2, the worst MS-related threshold is linked to the ADL3:
obstacle avoidance (Figure 5). It means that during its steady functioning, the system will recognize as
a real dangerous situation only MS below the obstacle avoidance related threshold (i.e., ADL3 Musc.
Thr.—Figure 5).

The panels also provide y-axis constant thresholds that refers to virtual upper limits for m̂SMA,α.
These thresholds act in a similar manner of the previously presented ones. Considering for example data
from Sub.3–Trial 2 in Figure 5, this means that during its steady functioning the system will recognize
a dangerous situation only for m̂SMA,α above the obstacle avoidance threshold (i.e., ADL3 m̂SMA,α

Thr.—Figure 5). Ultimately, real dangerous situations for both muscular and cortical involvements lie
in the top-left rectangles delimited by the leftmost MS-related threshold and the highest m̂SMA,α-related
threshold. On these panels, some contractions wrongly recognized as losses of balance highlighted via
red circles. In this context, we must consider it as incorrect classification, reducing the specificity as per
Equation (5).

Finally, for the sake of comparison, Figure 5 reports as blue crosses some slip-related coordinates
{MS (i), m̂SMA,α(i)}. These coordinates have been extracted from the walking versus slip dataset
(Section 3.1) considering two points per each analyzed subject. This shows how the two groups
ADL1,2,3 and slips could be easily divided in clusters.

To give a complete overview of the system robustness against ADL, Table 3 summarizes the
experimental results in terms of specificity from each protocol carried out (ADL 1, 2 and 3 Sp. (%)),
as well the single test (Tasks 1, 2, 3 Sp. (%)) and subject-related (Sub. Sp. (%)) specificities. Analyzing
data in Table 3 and in Figure 5 it is possible to state that, overall, the system showed a specificity
of 98.91 ± 0.44% in steady walking steps’ recognition (see Table 2), 99.62 ± 0.66% in sudden curves
successfully detection, 98.95 ± 1.27% of correct recognition in contractions related to TUG tests. Finally,
during the balance-challenging obstacle avoidance protocol the specificity reached 98.43 ± 0.88%.

Table 3. ADL-related specificity extraction.

Curves Task 1 Sp. (%) Task 2 Sp. (%) Task 3 Sp. (%) Subject Sp. (%) ADL1 Sp. (%)

Sub. 1 96.55
(28/29)

100.00
(23/23)

100.00
(26/26) 98.85 ± 1.99

99.62 ± 0.66
Sub. 2 100.00

(34/34)
100.00
(36/36)

100.00
(35/35) 100.00

Sub. 3 100.00
(51/51)

100.00
(48/48)

100.00
(49/49) 100.00

TUG Task 1 Sp. (%) Task 2 Sp. (%) Task 3 Sp. (%) Subject Sp. (%) ADL2 Sp. (%)

Sub. 1 97.50
(39/40)

98.21
(55/56)

96.88
(62/64) 97.52 ± 0.67

98.95 ± 1.27
Sub. 2 97.91

(47/48)
100.00
(56/56)

100.00
(48/48) 99.30 ± 1.20

Sub. 3 100.00
(64/64)

100.00
(64/64)

100.00
(72/72) 100.00

Obst.
Avoidance

Task 1 Sp. (%) Task 2 Sp. (%) Task 3 Sp. (%) Subject Sp. (%) ADL3 Sp. (%)

Sub. 1 95.24
(40/42)

98.61
(71/72)

98.44
(63/64) 97.48 ± 1.89

98.43 ± 0.88
Sub. 2 100.00

(30/30)
97.22

(35/36) - 98.61 ± 1.96

Sub. 3 100.00
(30/30)

97.61
(41/42)

100.00
(36/36) 99.21 ± 1.37

In order to provide a comparison with the state-of-the-art solutions, already presented in the
introduction, Table 4 summarizes some specific features for each analyzed work. In particular, Table 4
focuses on recognized classes, the system performance in terms of accuracy and efficiency and the
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applicability tabs. Data from Table 4 show how the proposed system ensures very competitive
specificity value (i.e., 98.9%).

Table 4. Comparison of proposed architecture’s performance.

Reference
Recognized Classes System Performance Applicability

ADL Near Falls Se (%) Sp. (%) DT (ms) OL Clin. FD

[11]

Walking, Standing,
correct chair transition,

lying, picking up objects,
ascending and

descending stairs

Slip, trip, incorrect
chair transfer,

misstep (recovery)
80.0–96.0 90.8 – 99.2 offline � � �

[12] Walking, Standing Slips (recovery) 88.5 92.9 680.00 � � �

[13] Walking, Standing Slips (recovery) 92.7 98.0 351.00 � � �

[14]

Walking, Standing,
correct chair transition,

lying, picking up objects,
ascending and

descending stairs

Slip, trip, incorrect
chair transfer,

misstep (recovery)
95.2 97.6 469.00 � � �

[15] Walking, Standing Slip (recovery) 97.6 98.0 403.00 � � �

This
Work

Walking, Standing,
Sudden curves, Chair

transitions (TUG),
Obstacle avoidance

Slips (recovery) 93.3 98.9 1 370.62 � � �

1 The Sp(%) value has been evaluated as the average between the four specificity values (i.e., steady walking, curves,
TUG, obstacle).

3.3. Acquisition Equipment Features

Once the algorithm robustness against ADL recognition is verified, the system’s applicability
to ordinary life imposes another constraint: wearability. The chosen equipment should address the
wearability constraints, which according to [36] can be summarized briefly in three macro-categories:
(i) encumbrance (ii) biomechanical effects and (iii) comfort.

Considering the former constraint, the physical dimensions of the wearable will be paramount.
These dimensions include the size, weight and the distribution of the weight of the wearable on
the body.

Secondly, the functional placement of the sensor nodes may affect the posture and musculoskeletal
loading of the wearer. Finally, the sensors’ node placement must avoid discomfort, favoring regular
movements (e.g., walking or sitting) and non-biased postures.

To continuously analyze and characterize the subjects’ cortical and muscular dynamics in several
different ordinary life scenarios, the here-proposed experimental setup consists of a 32-channel wireless
EEG headset (g.Nautilus Research) by g.Tec [28] and 10 wireless surface EMG nodes (Cometa Wave
Plus) by Cometa Systems srl [29]. Table 5 provides information about the acquisition equipment
comprising the set-up. For each device, the table reports the number of monitored nodes or channels,
equipment features such as the size and weight, as well as the electrode characteristics and device
parameters: wireless transmission range and protocol, resolution and sampling frequency. Table 5
demonstrates how the equipment choice ensures a fully wireless and low-encumbrance solution,
validating the applicability in an indoor monitoring scenario. Despite this, the use of gel-based or
pre-gelled electrodes could be considered uncomfortable for long-time acquisition. In this respect,
the system can be considered reliable for 4 hours’ acquisition, before the need to refill the gel to ensure
the right input impedance to the amplifier.
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Table 5. EEG/EMG acquisition devices features.

Signal Num. Equipment Features
Electrode

Transmission Range
Resolution
(Sampling

FrEquation)Size (mm) Type

EEG 13 channels

EEG Headset:
Back Head Station:

70 × 55 × 30 mm
Weight: 145 g

Headset:
Full-scalp elastic cap

Weight: 12 g
Wireless

10 h continuous acquisition @
500Hz

16 × 10 × 5

Active
Gel based
Sintered
Ag/AgCl

probe

Modulo RF:
XVV-MEGA22M00

(IEEE 802.15.4 WPAN @
2.4GHz)

Indoor Range:
17 m with 2.3–2.9dBm

24 bit (@500 Hz)

EMG 10 nodes

EMG Single Node:
33 × 23 × 19 mm

Weight: 12 g
Wireless

12 h continuous acquisition @
2048 Hz

18 × 12 × 5

Active
Pre-Gelled

Sintered
Ag/AgCl

holder ring

Private protocol:
Y9SMPTX

2.402–2.48 GHz
Indoor Range:
15 m (+3dBm)

16 bit
(@2048 Hz ↓ 500 Hz)

4. Discussion

The detection of near falls is an emerging area of research that is contextually growing with
the development of an increasing number of miniaturized and power-efficient wearable devices [7].
Supported by accumulated evidence on fall detection [7–23], the clinical utility of this investigation
involves the unobtrusive and continuous monitoring of activities of daily life in populations at high
risk of falling. This kind of strategy (i.e., near fall detection) can be useful to identify issues to be further
addressed to prevent falls, associated injuries or simply improve the efficiency of already existing
pre-impact fall-detection architectures.

In this study, we have proposed a novel wearable architecture that exploits electrophysiological
signals from brain and lower limb muscles to discriminate a near-fall scenario (i.e., unexpected
slippages) from an activities of daily life. The proposed system realizes a turnkey solution, which can
adapt its function to the user neuromuscular rhythms, without any long and fatiguing learning stage.

Results in Section 3.1 showed how the proposed architecture demands about 370.62 ± 60.85 ms
to carry out a binary classification (i.e., ADL vs. near fall). As stated in the same section, the overall
computation chain of muscular and cortical units requires, on average, 22 ms to be completed.

The remaining time, i.e., ~350 ms, with its high variability (see Table 2), is related to the muscle
that has been selected as a master trigger. In fact, it should be reminded that the system starts working
from the contraction onset of the gastrocnemius (right or left independently).

The times related to this physiological process remain hard to determine with certainty. In this
respect, the response times of the gastrocnemius constitute unavoidable delays in recognizing losses of
balance and largely determine the efficiency of the system. Further investigation should be conducted
in order to find another muscle bundle that can: (i) uniquely define a gait phase, (ii) activate itself faster
in a perturbation context, (iii) ensure repeatability during the contraction timing when the near-fall
scenario occurs.

The detection times achieved are competitive with respect to the state-of-the-art solutions,
highlighting the system applicability in contexts of postural recovery strategies implementation [17].

Concerning the results in Section 3.2 that analyze the system robustness against the ADL,
an interesting evaluation should be undertaken into the losses of balance detected below the worst
thresholds, such as Sub1-Test1 and Sub2-Test2 in Figure 5. In these cases, offline checks verified that
the threshold was slowly adapting to the final value, causing transitional “false alarm” (wrongly loss
of balance detection). Within this, the threshold adapting procedure should be improved and speeded
up, while keeping high sensitivity and specificity.

Another noteworthy case is that shown in Sub3- Test 2 (Figure 5). In that case, it seems that
a loss of balance is detected below the cortical thresholds. It is important to remember that these
panels show only the m̂SMA,α values, nevertheless, we must consider that the analyzed problem is
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hyper-dimensional, because we should take into account other four bands of interest and the remaining
3 cortical groups.

Moreover, in Figure 5 it is notable that the Sub. 1 experienced a high number of false alarms with
respect to the following two subjects. This result could be related to the protocol improvement asked
on-going to the last two participants. This improvement mainly concerns the sit-down and stand-up
movements during the TUG. In fact, since the rejection algorithm rASR has not been optimized to
reject the muscular artifacts from strong contractions of the deltoids, the EEG acquisitions were spoiled
by unpredicted artifacts. In this respect, further investigations are still ongoing aiming to extend the
range of applicability of the implemented rASR algorithm.

5. Conclusions

In this paper, we proposed and validated a novel architecture for the losses of balance recognition.
The proposed system, optimized for unexpected slippages, addressed some still open challenges
related to the daily life applicability of this kind of system. Design and verification constraints mainly
concern the need for high specificity and system robustness against ADL. In this respect, the proposed
algorithm has been tested on five different tasks: sudden curves, chair transfers via the timed up and
go test, balance-challenging obstacle avoidance and, of course slip-induced loss of balance. To ensure
the ordinary life suitability, the proposed architecture has been fully based on wearable and wireless
acquisition devices. Specifically, the architecture exploits electrophysiological measurements from 10
EMG electrodes and 13 EEG channels. The collected data are analyzed by the muscular unit, hosted by
a STM32L4 microcontroller, and the cortical unit, which is implemented on a central computation unit
via Simulink modeling. The first realizes a binary ON/OFF pattern from muscular activity (10 EMGs)
and triggers the cortical unit that evaluates the contraction-related cortical involvements in terms of
EEG responsiveness.

This parameter is evaluated as the variation behavior in the EEG PSD, considering five bands of
interest. The neuromuscular features from both the computation units are sent to a clinical evidence
based logical network. It embeds a set of automatically adaptive thresholds, which follow the user
rhythms. Experimental validation on 9 healthy subjects showed that the system could react in a time
compliant with fall-detection architectures constraints (i.e., 370.62 ± 60.85 ms). It also ensures a fall
detection sensitivity of the 93.33 ± 5.16%. During the ADL tests the system showed a specificity of
98.91 ± 0.44% in steady walking steps’ recognition, 99.61 ± 0.66% in successful sudden curves detection,
and 98.95 ± 1.27% of correct recognition in contractions related to TUG tests. Finally, during the
balance-challenging obstacle avoidance protocol the specificity reached the 98.42 ± 0.90%.

These preliminary results show promising accuracy values that, jointly with the system wearability
(wireless acquisition devices), make the system potentially suitable for daily life application. Moreover,
the achieved detection time (i.e., ~371 ms) is conservatively below 550 ms, which is considered as the
maximum intervention limit for the implementation of countermeasures aimed at restoring the balance
of the subject [17]. It ensures the system applicability to improving a fall-detection strategy.

Some drawbacks that need future larger and higher quality studies concern the acquisition devices
and the generalization of the implemented method. In fact, the use of wireless sensors (EEG/EMG)
theoretically ensures the system’s wearability. Nevertheless, future perspectives concern the study
of more comfortable solutions able to provide the same electrophysiological patterns, e.g., by using
textile-based sensors arrays. The second weak point under investigation is the muscle to be selected
as the master trigger to provide a quasi-deterministic delay, improving the system efficiency as a
logical consequence.
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