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Person Re-Identification by Discriminative
Selection in Video Ranking

Taiqing Wang, Shaogang Gong, Xiatian Zhu, and Shengjin Wang

Abstract—Current person re-identification (ReID) methods typically rely on single-frame imagery features, whilst ignoring space-
time information from image sequences often available in the practical surveillance scenarios. Single-frame (single-shot) based
visual appearance matching is inherently limited for person ReID in public spaces due to the challenging visual ambiguity
and uncertainty arising from non-overlapping camera views where viewing condition changes can cause significant people
appearance variations. In this work, we present a novel model to automatically select the most discriminative video fragments
from noisy/incomplete image sequences of people from which reliable space-time and appearance features can be computed,
whilst simultaneously learning a video ranking function for person ReID. Using the PRID2011, iLIDS-VID, and HDA+ image
sequence datasets, we extensively conducted comparative evaluations to demonstrate the advantages of the proposed model
over contemporary gait recognition, holistic image sequence matching and state-of-the-art single-/multi-shot ReID methods.

Index Terms—Person re-identification, sequence matching, discriminative selection, multi-instance ranking, video ranking.

F

1 INTRODUCTION

F OR making sense of the vast quantity of video data
generated by large scale surveillance camera networks
in public spaces, automatically (re-)identifying individual
persons across non-overlapping camera views distributed at
different physical locations is essential. This task is known
as person re-identification (ReID). Automatic ReID enables
the discovery and analysis of person-specific long-term
activities over widely expanded areas and is fundamental
to many important surveillance applications such as multi-
camera people tracking and forensic search. Specifically,
for performing cross-view person ReID, one matches a
probe (or query) person against a set of gallery people
for generating a ranked list according to their matching
similarity. Typically, it is assumed that the correct match
is assigned to one of the top ranks, ideally the top-1
rank [1,2,3,4,5]. As the probe and gallery people are often
captured from a pair of disjoint camera views at different
times, cross-view visual appearance variations can be sig-
nificant. Person ReID by visual matching is thus inherently
challenging [6]. The state-of-the-art methods perform this
task mostly by matching spatial appearance features (e.g.
colour and texture) using a pair of single-shot person
images [2,3,7,8]. However, single-shot appearance features
of people are intrinsically limited due to the inherent visual
ambiguity caused by clothing similarity among people in
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(a) Cross-view lighting variations (b) Camera viewpoint changes

(c) Clothing similarity (d) Background clutter/occlusions
Fig. 1. Person re-identification challenges in public space
scenes [9]. (a-b) The two images in each bounding box refer to the
same person observed in different cameras.

public spaces and appearance changes from cross-camera
viewing condition variations (Fig. 1). It is desirable to
explore space-time information from image sequences of
people for ReID.

Space-time information has been explored extensively
for action recognition [10,11]. Moreover, discriminative
space-time video patches have also been exploited for
action recognition [12]. Nonetheless, action recognition
approaches are not directly applicable to person ReID
because pedestrians in public spaces exhibit similar walking
activities without distinctive and semantically categorisable
action patterns unique to different identities.

On the other hand, gait recognition techniques have been
developed for person recognition using image sequences
by discriminating subtle distinctiveness in the style of
walking [13,14]. Different from action recognition, gait
is a behavioural biometric that measures the way people
walk. An advantage of gait recognition is no assumption
being made on either subject cooperation (framing) or
person distinctive actions (posing). These characteristics are
similar to person ReID situations. However, existing gait
recognition models are subject to stringent requirements
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on person foreground segmentation and accurate alignment
over time throughout a gait image sequence (a walking
cycle). It is also assumed that complete gait/walking cycles
were captured in the target image sequences [15,16]. Most
gait recognition methods do not cope well with cluttered
background and/or random occlusions with unknown co-
variate conditions [17]. Person ReID is hence inherently
challenging for gait recognition techniques (Fig. 1).

In this study, we aim to construct a discriminative video
matching framework for person re-identification by select-
ing more reliable space-time features from person videos,
beyond the often-adopted spatial appearance features. To
that end, we assume the availability of image sequences
of people which may be highly noisy, i.e., with arbitrary
sequence duration and starting/ending frames, unknown
camera viewpoint/lighting variations during each image
sequence, incomplete frames due to uncontrolled occlu-
sions, no guaranteed high frame rates, and possible clothing
changes over time. We call these videos unregulated
image sequences of people (Fig. 1 and Fig. 5). More
specifically, we propose a novel approach to Discriminative
Video fragment selection and Ranking (DVR) based on
a robust space-time and appearance feature representation
given unregulated person image sequences.

The main contributions of this study are: (1) We de-
rive a multi-fragment based appearance and space-time
feature representation of image sequences of people. This
representation is based on a combination of HOG3D,
colour and optic flow energy profile of image sequence,
designed to break down automatically unregulated video
clips of people into multiple fragments. (2) We formulate a
discriminative video ranking model for cross-view person
re-identification by simultaneously selecting and matching
more reliable appearance and space-time features from
video fragments. The model is formulated using a multi-
instance ranking strategy for learning from pairs of image
sequences over non-overlapping camera views. The pro-
posed method can relax significantly the strict assumptions
made by gait recognition techniques. (3) We extensively
provide comparative evaluations of the proposed model
against a wide range of contemporary methods (e.g. gait
recognition, holistic sequence matching and state-of-the-art
person ReID models) on three challenging image sequence
based datasets.

2 RELATED WORK

Space-time features Space-time feature representations
have been extensively explored in action/activity recogni-
tion [10,18,19]. One common representation is constructed
based on space-time interest points [20,21,22,23]. They
facilitate a compact description of image sequences based
on sparse interest points, but are somewhat sensitive to
shadows and highlights in appearance [24] and may lose
discriminative information [25]. Therefore, they may not
be suitable for person ReID scenarios where lighting
variations and viewpoints are unknown and uncontrolled.
Relatively, space-time volume/patch based representations

[10] can be richer and more robust. Mostly these repre-
sentations are spatial-temporal extensions of corresponding
image descriptors, e.g. HoGHoF [26], 3D-SIFT [27] and
HOG3D [28]. In this study, we adopt HOG3D [28] as the
space-time feature of video fragment because: (1) It can be
computed efficiently; (2) It contains both spatial gradient
and temporal dynamic information, and is therefore poten-
tially more expressive [18,28]; (3) It is more robust against
cluttered background and occlusions [28]. The choice of
space-time feature is independent of our model.

Gait recognition Space-time information of sequences has
been extensively exploited by gait recognition [13,14,15,
16]. However, these methods often make stringent assump-
tions on the image sequences, e.g. uncluttered background,
consistent silhouette extraction and alignment, accurate
gait phase estimation and complete gait cycles, most of
which are unrealistic in ordinary person ReID scenarios.
It is challenging to extract a suitable gait representation
from typical ReID data. In contrast, our approach relaxes
significantly these assumptions by simultaneously select-
ing discriminative video fragments from noisy sequences,
learning and matching them without temporal alignment.

Temporal sequence matching One approach to exploiting
image sequences for ReID is holistic sequence matching.
For instance, Dynamic Time Warping (DTW) is a popular
sequence matching method widely used for action recogni-
tion [29], and recently also for person ReID [30]. However,
given two unregulated sequences, it is difficult to align
sequence pairs for accurate matching, especially when the
image sequences are subject to significant noise caused
by unknown camera viewpoint changes, background clutter
and drastic lighting changes. Our approach is designed to
address this problem while avoiding any implicit assump-
tions on sequence alignment and camera view similarity
among image frames both within and between sequences.

Multi-shot person re-identification Multiple images from
a sequence of the same person have been exploited for per-
son re-identification. For example, interest points were ac-
cumulated across images for capturing appearance variabil-
ity [31], manifold geometric structures in image sequences
of people were utilised to construct more compact spatial
descriptors of people [32], and the time index of image
frames and identity consistency of a sequence were used to
constrain spatial feature similarity estimation [33]. There
were also attempts on training a person appearance model
from image sets [34] or by selecting best pairs [35]. Multi-
ple images of a person sequence were often used either to
enhance spatial feature descriptions of local image regions
or patches [3,4,36,37], or to extract additional appearance
information such as appearance change statistics [38]. In
contrast, the proposed model aims to simultaneously select
and match discriminative video appearance and space-time
features for maximising cross-view identity ranking. Our
experiments show the advantages of the proposed model
over existing multi-shot models for person ReID.
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Fig. 2. The training pipeline of the proposed discriminative video ranking framework. (a) Training image sequences, Qai denotes the image
sequence of person pi from camera a (see Sec. 3.1). (b,c) Generating candidate fragments for each sequence (see Sec. 3.2). (d) Creating
cross-view fragment pairs as positive and negative instances and pooling them into positive and negative bags respectively (see Sec. 3.3
and Fig. 4). (e) Learning a ranking model by simultaneously selecting and ranking iteratively discriminative fragment pairs (see Sec. 3.3).

3 DISCRIMINATIVE VIDEO RANKING

We formulate the person re-identification problem as a
ranking problem [7,39]. Although image sequences of peo-
ple may provide intuitively richer content to learn discrim-
inative information about an individual’s visual appearance
when compared to a single still image widely used by
existing person ReID methods [35,40,41,42], the availabil-
ity of more (and often redundant) data poses additional
challenges in model learning, e.g. more random inter-
object occlusions and thus incomplete frames, arbitrary
sequence duration and uncertain starting/ending postures,
and potential clothing variations of some people over time.
Moreover, human annotators may implicitly and uncon-
sciously have the tendency to select carefully more clear
and better-segmented person images for learning image-
based ReID models. On the other hand, tracked sequences
of person bounding boxes in typical surveillance videos are
inherently more noisy and incomplete. Directly utilising all
the sequence data for constructing ReID models can easily
result in unstable models, which is undesirable. A selection
mechanism is required to be part of the learning method
in order to optimally explore the redundant information
available in sequence data.

In the context of relative ranking based person ReID
model learning, it is non-trivial to automatically learn a
robust discriminative ranking function from such contam-
inated and uncontrolled image sequence data. Inherently,
one needs to address the problem of how to mitigate
the negative influence of unknown noisy observations, e.g.
various types of occlusion and clutter in the background.
This is beyond solving the more common problem of
misalignment over time in sequence matching. In this work,
we formulate a novel discriminative re-identification model
capable of simultaneously selecting and ranking informa-
tive video fragments from pairs of unregulated person
image sequences captured in two non-overlapping camera
views. Our model not only mitigates unwanted data whilst
exploring useful information from image sequences for
person ReID, but also requires no rigid sequence alignment
as in the case of traditional methods, e.g. dynamic time
warping. Specifically, our model is based on : (i) Video
fragmentation by motion energy profiling (Fig. 2(b,c) and
Sec. 3.2) ; (ii) Learning a sequence based relative ranking

function by simultaneously selecting and ranking cross-
view video fragment pairs (Fig. 2(d,e) and Sec. 3.3) . Once
learned, our model can then be deployed to re-identify
previously unseen people given cross-view unregulated
image sequences (Sec. 3.4). An overview diagram of the
proposed approach is presented in Fig. 2.

3.1 Problem Definition
Suppose we have a collection of image sequence pairs
{(Qai , Qbi )}Ni=1, where Qai and Qbi denote the image se-
quences of person pi captured by two disjoint cameras a
and b, and N the total number of training people. Each
image sequence Q is defined by a set of consecutive frames
I as Q = (I1, ..., IT ), where T is not a constant because in
typical surveillance videos, tracked person image sequences
[43,44] are not guaranteed to have (1) a uniform duration
(arbitrary frame numbers), (2) the same number of walking
cycles, (3) similar starting/ending postures, (4) high video
frame rates, or (5) invariant clothing over time.

For model training, we aim to learn a ranking function
f(Qa, Qb) of image sequence pairs that satisfies the fol-
lowing ranking constraints:

f(Qai , Q
b
i ) > f(Qai , Q

b
j), ∀i = {1, ..., N}, ∀j 6= i, (1)

i.e. the sequence pair (Qai , Q
b
i ) of the same person pi is

constrained/optimised to have a higher rank over any cross-
view sequence pairing of person pi and pj with j 6= i.

Learning a ranking function holistically without dis-
crimination and selection from pairs of unsegmented and
temporally unaligned person image sequences will sub-
ject the learned model to significant noise and degrade
any meaningful discriminative information contained in
the image sequences. This is an inherent drawback of
any holistic sequence matching approach, including those
with dynamic time warping applied for non-linear mapping
(see experiments in Sec. 4). Reliable human parsing/pose
detection [45] or occlusion detection [46] may help, but
such approaches are difficult to scale, especially with image
sequences from crowded public scenes. The challenge is
to learn a robust ranking model effective in coping with
incomplete and partial image sequences by identifying and
selecting discriminative/informative video fragments from
each sequence suitable for extracting trustworthy fragment
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(a) 

(b) 

(c) 

(d) 

Fig. 3. (a) A person image sequence of 50 frames is shown, with the motion energy intensity for each frame given in (b). The red dots in (b)
denote the automatically detected local minima and maxima temporal landmarks in the motion intensity profile, of which the corresponding
frames are provided at the vertically-aligned positions in (c). (d) Two example video fragments (shown every 2 frames) with the landmark
frames highlighted by red bounding boxes.

features. Let us first consider generating a pool of candidate
fragments for each video, i.e. video fragmentation.

3.2 Video Fragmentation

Given unregulated image sequences of people, it is too
noisy to attempt to holistically locate and extract reliable
discriminative features from entire image sequences. In-
stead, we consider breaking down each sequence into a pool
of localised video fragments to allow a learning model to
automatically select the discriminative fragments (Sec. 3.3).

It can be observed that motion energy intensity induced
by the activity of human muscles during walking exhibits
regular periodicity [47]. This motion energy intensity can
be approximately estimated by optic flow computation. We
call this a Flow Energy Profile (FEP), see Fig. 3. This
FEP signal is particularly suitable to address our video
fragmentation problem due to: (i) the local minima and
maxima landmarks probably correspond to characteristic
gestures of a walking process, and thus help in detecting
them (e.g. one foot is about to land); (ii) it is relatively
robust to changes in camera viewpoint. More specifically,
we first compute the optic flow field (vx, vy) for each image
frame I from a sequence Q. Its flow energy is defined as

e(I) =
∑

(x,y)∈U

‖[ vx(x, y), vy(x, y) ]‖2, (2)

where U is the pixel set of the lower body, e.g. the
lower half of I . The FEP E of Q is then obtained as
E = [e(I1), ..., e(IT )], which is further smoothed by a
Gaussian filter to suppress noise.

Subsequently, we locate the local minima and maxima
landmarks { t } of E and for each landmark create a
video fragment s by extracting the surrounding frames
s = {It−L, ..., It, ..., It+L}. We fix L = 10 for all our
experiments, determined by cross-validation on the iLIDS-
VID dataset. Finally, we build a candidate set of video
fragments S = { s } by pooling all the fragments from Q.
Note that some fragments of each sequence can have similar
walking phases since the local minima/maxima landmarks
of the FEP signal are likely to correspond to certain
characteristic walking postures (Fig. 3). This increases the
possibility of finding temporally aligned video fragment
pairs (i.e. centred at similar walking postures) given a pair

of video fragment sets (Sa, Sb) from two disjoint camera
views, facilitating discriminative video fragment selection
and matching during model learning. Also, Fig. 3 shows
that the FEP signal can be sensitive to random occlusions
and background clutter that could lead to non-characteristic
fragments. However, this has limited impact on the overall
effectiveness of the proposed selection-and-ranking model
(Sec. 3.3), as it is designed specifically to identify and
exploit automatically discriminative video fragments from
largely redundant sets for training a ReID model.

Video fragment representation To encode both the dy-
namic and static appearance information of the subjects, we
represent video fragments with both space-time and colour
features. They complement each other, especially in the
context of person ReID. Colour features have been shown
to be significant for person ReID [2,39,48,49,50], implicitly
capturing the chromatic patterns of clothing independent
from space-time characteristics of a person’s appearance,
such as the way people walk. In contrast, the latter is
encoded by the space-time features.

Space-time feature – Particularly, we exploit HOG3D [28]
as the space-time feature representation of a video frag-
ment, due to its advantages demonstrated for applications
in action and activity recognition [18,28]. In order to
capture spatially more detailed and localised space-time
information of a person in motion, we decompose a video
fragment s spatially into 2 × 5 uniform cells according
to human biological body topology such as head, torso,
arms and legs. To capture separately the information of sub-
intervals before and after the characteristic walking posture
(Fig. 3 (d)) potentially situated in the middle of a video frag-
ment, the fragment is further divided temporally into two
smaller sub-phases, resulting in a total of 20 (i.e. 2×5×2)
cells for every video fragment. Two adjacent cells have 50%
overlap for increased robustness to possible spatio-temporal
fragment misalignment. A space-time gradient histogram is
computed in each cell and then concatenated to form the
HOG3D space-time descriptor xst of the fragment s.

Colour feature – We adopt the localised average colour
histogram as the appearance feature of a video fragment
from a great number of alternative descriptors [51] because
of its simplicity and effectiveness [2]. Specifically, for each
component frame in a video fragment, the colour features
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are extracted from rectangular patches (16×8 pixels in
size) sampled from each frame with an overlap of 8 and 4
pixels vertically and horizontally between each patch (i.e.
50% overlap between adjacent patches). In each patch, we
compute the mean values of the HSV and LAB colour
channels and form a framewise colour feature vector by
concatenating the mean values of all the patches in a
frame. To minimise noise and obtain a more reliable
colour representation, all the framewise colour features of
a fragment are averaged over time to produce a fragment-
wise appearance representation xa of that fragment s.

Finally, both space-time (HOG3D) and colour appear-
ance (Colour) features xst and xa are concatenated into
a fragment descriptor (ColHOG3D) x = [xst;xa]. Note,
the image frames of all sequences are normalised into a
fixed size (128 × 64 pixels in our implementation) before
computing any features.

Notations – Formally, for the m-th fragment sai,m from
the person pi’s image sequence captured in camera a, its
descriptor is denoted by xai,m. The same is for sbi,m and

xbi,m. We denote Xa
i = {xai,m}

|Xa
i |

m=1 and Xb
i = {xbi,m}

|Xb
i |

m=1

as the descriptor set for the fragments segmented from the
sequences Qai and Qbi of person pi in camera a and b
respectively, where |·| represents the set cardinality. The en-
tire collection of descriptors for N training image sequence
pairs {(Qai , Qbi )}Ni=1 is denoted as {(Xa

i , X
b
i )}Ni=1.

3.3 Selection and Ranking

As shown in Fig. 3, the fragments of a person image
sequence can be contaminated by unknown occlusions
and background dynamics, and may also be extracted
at an arbitrary time-instance of a walking cycle. Given
such noisy fragment pair collections generated from cross-
view image sequences, a significant challenge for sequence
matching based ReID is how to identify and select discrim-
inative/informative and temporally aligned fragment pairs
(rather than the entire sequences) to learn a suitable ranking
model. Formally, the objective is to learn a linear ranking
function on the entry-wise absolute difference of two cross-
view fragments xa and xb:

h(xa,xb) = w>abs(xa − xb). (3)

We assume that for each person, there exists at least one
cross-view fragment pair that is sufficiently aligned over
time and carries desired identity-sensitive information for
this person. Our aim is to construct a model capable of
automatically discovering and locating not only the best
cross-view fragment pair but also multiple cross-view frag-
ment pairs that are sufficiently aligned and discriminative
for person ReID. For model training with the best fragment
pair, it is equivalent to constraining a ranking function h to
prefer the most discriminative cross-view fragment pair of
the same person pi to the pairings over pi and any other
person pj , i 6= j, i.e.

( max
xa

i,·∈Xa
i ,x

b
i,·∈Xb

i

h(xai,·,x
b
i,·)) > h(xai,·,x

b
j,·), ∀ j 6= i. (4)
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Fig. 4. An overview of constructing the positive and negative bags
of inter-camera fragment-pairs. This is to generate the training data
from image sequences for DVR model learning. Examples of three
people are illustrated. In particular, sκi,j denotes the j-th fragment
from the i-th person image sequence captured by camera κ, κ ∈
{a, b}. We build separately a positive (B+

i ) and negative (B−i ) bag
for the i-th person. Consider the first person p1 as an example, the
cross-view pairings (blue lines) on fragments from p1 are used to
form the positive bag B+

1 , whilst other pairings (red lines) between
p1 and a different person pi, i 6= 1, shall create the negative bagB−1 .

For notation simplicity, we define y+
i,m = abs(xai,·−xbi,·)

as the m-th positive instance of person pi, i.e., the entry-
wise absolute difference of two cross-view fragments of the
same person pi, and y−i,m = abs(xai,· − xbj,·), j 6= i as the
m-th negative instance, i.e., the absolute difference of two
cross-view fragments of pi and another person. For each
person pi, we form a positive bag B+

i = {y+
i,m}

|B+
i |

m=1 by
pooling the positive instances, and a negative bag B−i =

{y−i,m}
|B−i |
m=1 by pooling the negative instances. The forma-

tion process of positive and negative bags for individual per-
sons is illustrated in Fig. 4. Note, we only consider a single
directional pairing (from camera a to b) without considering
the opposite direction when constructing negative bags.
This is because our empirical experiments suggest that the
addition of negative instances from camera b to a only gains
negligible (<0.3%) ReID performance advantage whilst the
additional cost is significantly more (>200%) and complex
in both bag construction and model learning. A plausible
explanation is that the negative instances from camera a
to b are sufficiently diverse (in our experiments) and bi-
directional negative sampling does not add meaningfully
richer data. This is also supported by that only 10% of the
full negative instances from camera a to b were utilised and
shown to be sufficient in model learning, with the added
benefit of reducing the number of pairwise constraints (the
first inequality constraint in Eqn. (7)) in model learning,
therefore speeding up the training process.

By redefining the ranking function h(xa,xb) =
g(abs(xa − xb)) = g(y), Eqn. (4) can be rewritten as

( max
y+
i,·∈B

+
i

g(y+
i,·)) > g(y−i,·),∀y

−
i,· ∈ B

−
i . (5)

With the ranking constraints in Eqn. (5), we aim to
automatically discover and select the most discrimina-
tive/informative and temporally aligned cross-view frag-
ment pair y+

i,· within the positive bag B+
i for each person

pi for learning an identity discriminative ranking model. To
that end, we introduce a binary selection variable vi with
each entry being either 0 or 1 and of unity `0 norm for
each person pi, and then obtain
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g(Yivi) > g(y−i,·),∀y
−
i,· ∈ B

−
i , (6)

where each column of Yi corresponds to one y+ ∈ B+
i ,

||vi||0 = 1, e>vi = 1 , and e denotes a vector of all “1”s.
To achieve good generalisation ability for the ranking

model given the ranking constraints in Eqn. (6), we for-
mulate our problem as a max-margin ranking problem by
defining the objective function as:

w∗ = arg min
w,v,ξ

1

2
||w||2 + Ce>ξ

s.t. v>i Y
>
i w − (y−i,m)>w ≥ 1− ξi,m,

ξi,m ≥ 0, ∀y−i,m ∈ B
−
i , m ∈ {1, . . . , |B

−
i |},

||vi||0 = 1, e>vi = 1, i ∈ {1, . . . , N}.

(7)

where w is the parameter of the objective ranking function
defined in Eqn. (3), and N the number of people in the
training set. v is the concatenation of the binary selection
variables of all persons: v = [v1;v2; ...vN ]. ξ is the
flattened slack variable, formed by all the possible ξi,m. We
solve Eqn. (7) by iteratively optimising w and v between
a ranking step and a selecting step.
Ranking step We fix v to optimise w. Eqn. (7) turns into

w∗ = argmin
w,ξ

1

2
||w||2 + Ce>ξ

s.t. v>i Y
>
i w − (y−i,m)>w ≥ 1− ξi,m,

ξi,m ≥ 0, ∀y−i,m ∈ B
−
i , m ∈ {1, . . . , |B

−
i |},

i ∈ {1, . . . , N}.

(8)

With the fragment selections v known, Eqn. (8) is a
standard RankSVM problem and can be efficiently solved
with a primal training algorithm [52].
Selecting step We fix w to optimize v. The term on w
(i.e. 1

2 ||w||
2) can be eliminated and Eqn. (7) becomes

v∗ = argmin
v,ξ

e>ξ

s.t. v>i Y
>
i w − (y−i,m)>w ≥ 1− ξi,m,

ξi,m ≥ 0, ∀y−i,m ∈ B
−
i , m ∈ {1, . . . , |B

−
i |}

||vi||0 = 1, e>vi = 1, i ∈ {1, . . . , N}.

(9)

Considering that the person-wise vi is associated only with
{ξi,m}

|B−i |
m=1 and we are optimising the summation of all

possible ξi,m, Eqn. (9) is equivalent to optimising vi for
each person pi separately, as
v∗i = arg min

vi,ξi
e>ξi

s.t. v>i Y
>
i w − (y−i,m)>w ≥ 1− ξi,m,

ξi,m ≥ 0, ∀y−i,m ∈ B
−
i , m ∈ {1, . . . , |B

−
i |}

||vi||0 = 1, e>vi = 1.

(10)

where ξi = [ξi,1, . . . , ξi,|B−i |
]>. The inequality constraints

in Eqn. (10) can be transformed as

ξi,m ≥ 1− v>i Y >i w + (y−i,m)>w, s.t. ξi,m ≥ 0. (11)

Therefore, for any particular vi ∈ V that holds ||vi||0 = 1
and e>vi = 1 in the selecting space V , the entries ξ∗i,m of
the optimal ξ∗i that minimises the summation e>ξi shall be

ξ∗i,m = max{0, 1− v>i Y >i w + (y−i,m)>w}. (12)

It is obvious that the summation e>ξi is a function of vi,

q(vi) =

|B−i |∑
m=1

ξ∗i,m

=

|B−i |∑
m=1

max{0, 1− v>i Y >i w + (y−i,m)>w}.

(13)

Finally we can obtain the v∗i by optimising q(vi) via:
v∗i = arg min

vi∈V
q(vi)

= arg min
vi∈V

|B−i |∑
m=1

max{0, 1− v>i Y >i w + (y−i,m)>w},

s.t. ||vi||0 = 1, e>vi = 1.

(14)

For each person pi, we only have a limited number of vi in
V . Therefore Eqn. (14) can be efficiently solved even with
a greedy search.

To begin the model training process, we set vi = 1
|B+

i |
e

to initiate a balanced/moderate start since the quality of y+
i,·

is unknown a priori. The iteration terminates when vi does
not change any more. Typically, the training process stops
after 4 ∼ 5 iterations. For learning efficiency, 10% out of
all the y−i,· are randomly selected to form B−i . Since only
a single y+

i,· for each person pi is selected and utilised for
model learning, we call this model DVR(single).

3.3.1 Multiple Cross-View Fragment Pair Selection
Thus far we have detailed the procedure of training our
DVR(single) model via identifying the best cross-view frag-
ment pair in each positive bag B+

i (corresponding to person
pi) for learning the ranking function (Eqn. (3)). This allows
us to largely avoid the contamination effect from harmful
data. Nonetheless, we may simultaneously lose some useful
information from discarding the majority of instances y+

i,·
of each bag B+

i , because some of these ignored y+
i,· can

be of good quality. Identifying and exploiting these “good
though not the best” fragment data y+

i,· is likely to benefit
the model learning. To that end, we shall describe next our
multiple cross-view fragment pair selection algorithm for
better exploring image sequence data.

Our multiple fragment-pair selection algorithm is based
on a goodness/quality measure of individual y+

i,·. Once all
instances y+

i,· of person pi are measured by assigning a
score γi,· (higher is better) to each instance, we can easily
locate multiple (top k) discriminative y+

i,· from the ranked
list of all y+

i,· sorted in descending order of γi,·. Formally,
we define γi,· for each y+

i,· as

γi,· =

|B−i |∑
m=1

(1− ξ∗i,m). (15)

We denote 1 − ξ∗i,m as the ranking margin of y+
i,· against

y−i,m, which can be obtained by Eqn. (12). Given Eqn. (15),
the y+

i,· with a larger cumulated ranking margin over all
the negative instance y−i,m is preferred. This formulation
generalises the single selection case that searches for the
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Algorithm 1: DVR Model Learning

Input: Training image sequence pairs {(Qa
i , Q

b
i )}

N
i=1;

Output: The ranking function w (Eqn. (3));
1 (I) Video fragmentation (Sec. 3.2):
2 - Segment each Q into a set of fragments {s};
3 - Extract space-time and appearance features x from s;
4 (II) Bag construction (Fig. 4): for each person pi,
5 - Form a positive bag B+

i with positive instance y+
i,·;

6 - Form a negative bag B−i with negative instance y−i,·;
7 (III) Model Learning (Sec. 3.3):
8 /* Initialise selection vectors */ :
9 vi = 1

|B+
i
|
, i = 1, ..., N ;

10 while true do
11 /* Ranking step */ :
12 Obtain w∗ with fixed {vi} (Eqn. (8));
13 /* Selecting step */ :
14 for i = 1, ..., N do
15 if single selection then
16 Obtain v∗i (Eqn. (14));
17 end
18 else
19 /* Multiple selection */ :
20 Compute γi,· for each y+

i,· (Eqn. (15));
21 Rank y+

i,· in descendant order of γi,·;
22 Find the top-k y+

i,·;
23 Obtain k v∗i s (Sec. 3.3.1);
24 end
25 end
26 /* Convergence check */ :
27 if no vi changed then
28 Return w∗.
29 end
30 end

best v∗i (Eqn. (14)), i.e. the v∗i and the highest γi,· leads to
the same selection of positive instance y+

i,·.
After the top k y+

i,· for each person pi are found and
selected, we can obtain multiple (i.e. k) v∗i s by setting the
corresponding entry of each v∗i to “1” whilst the remaining
entries to “0”. We call this model DVR(topk). Similar
to the single selection model DVR(single), these ranking
constraints associated with the selected top k y+

i,· are then
employed for optimising w with Eqn. (8). In Sec. 4.1, we
shall evaluate the effect of different top k positive instances
on the person ReID performance. An overview of learning
the proposed DVR model is presented in Algorithm 1.

3.3.2 Model Complexity
We analyse the training complexity of the DVR model,
focusing on the ranking and selecting steps. For model
training, we adopt the primal RankSVM scheme [52] as
the ranking solver. Its complexity is O(cd2) + O(d3) due
to Hessian computation and the linear search in Newton
direction respectively, with c and d denoting the number
of ranking constraints (see Equations (4) and (8)) and the
feature dimensions. Suppose k positive instances per person
are selected in the training stage, then c = k

∑N
i=1 |B

−
i |,

where N is the total number of training people.
The cost for the selection process mainly involves mea-

suring the quality score of each positive instance of all
training people with Eqn. (12) and Eqn. (15). Its complexity
is O(cdu), where u =

∑N
i=1 |B

+
i | denotes the total number

of positive instances across all training data. The total
complexity of model training is thus O(cd2 + d3 + cdu).
We evaluated and reported the model training cost in our

experiments (Sec. 4.1).

3.4 Re-Identification by DVR
Once learned, the ranking model (Eqn. (3)) can be deployed
to perform person re-identification by matching a given
probe person image sequence Qp observed in one camera
view against a gallery set {Qg} in another disjoint camera.
Formally, the ranking/matching score of a gallery person
sequence Qg with respect to Qp is computed as

f(Qp, Qg) = max
xi,·∈Xp,xj,·∈Xg

w>abs(xi,· − xj,·), (16)

where Xp and Xg are the feature sets of the video
fragments extracted from the sequences Qp and Qg , re-
spectively. The same video fragmentation process as used
for model training (Sec. 3.2) is employed for deploying
a trained model. Finally, the gallery people are sorted
in descending order of their assigned matching scores to
generate a ranking list.
Combination with prior spatial feature based models
Our approach can complement existing spatial feature based
person re-identification approaches. In particular, we incor-
porate Eqn. (16) into the ranking scores Ri obtained by
other models as

f̂(Qp, Qg) =
∑
i

αiRi(Qp, Qg) + f(Qp, Qg), (17)

where αi refers to the weighting assigned to the i-th
method, which is estimated by cross-validation.

3.5 Discussions on Related Models
We discuss the relationship of our proposed DVR model
with other relevant contemporary models in the literature,
with a focus on their differences. First, most existing max-
margin ranking methods [7,52] do not consider uncertainty
in the ranking constraints during model optimisation. In
contrast, the proposed DVR model jointly optimises both
the selection of the ranking constraints and the ranking
function. This is necessary because the bag-level (e.g.
image sequences) supervision cannot directly determine the
instance-level (e.g. fragments) constraints (Sec. 3.3).

Second, our model also differs notably from other multi-
instance ranking models [56,57,58] in a number of aspects.
(1) Bergeron et al. [56] relaxed the selection vectors vi
(Eqn. (6)) to be continuous during model optimisation,
whilst our model searches for exact solutions of instance
selection. As shown in our evaluation (Sec. 4.1), Bergeron
et al.’s relaxation method can significantly increase the
cost of constraint selection when the training set is large,
though it does not compromise the model performance. (2)
The model presented in [58] focuses on encoding bag-level
(or sample-level) constraints into the ranking function by
modelling instance-level constraints, assuming all instances
can provide contribution to model optimisation. In contrast,
we emphasise the selection of discriminative/informative
instance data (e.g. fragments) for robust learning, nec-
essary for coping with very noisy and incomplete data
(e.g. unregulated image sequences), whilst the stronger
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(a) 

(b) 
Fig. 5. Example pairs of image sequences from the same people appearing in different camera views given by (a) iLIDS-VID [53], (b)
PRID2011 [54], (c) a 5fps (frames per second) camera pair (19, 40) from HDA+ [55], and (d) a 2fps camera pair (50, 57) from HDA+ [55]. Note,
severe appearance changes occur in HDA+ due to explicit clothing variation for some people in HDA+ ((c,d)); whilst significant appearance
changes also occur in iLIDS-VID due to severe occlusion (bottom pair of (a)), and mostly less extreme appearance changes exist in iLIDS-VID
and PRID2011 due to changes in viewpoint and lighting ((a,b)).

assumption made in [58] is less valid. (3) Different from
all these multi-instance models [56,57,58], the proposed
DVR model is unique in its capability for allowing different
quantities of explicit discriminative instance selection and
then exploitation, due to our formulation of a principled
instance quality measure (Eqn. (15)). This can potentially
increase the flexibility and scalability of our model in a
variety of problem settings (e.g. varying degrees of noise)
and applications (e.g. other sequence matching based tasks).

4 EXPERIMENTS
Datasets Extensive experiments were conducted on three
image sequence datasets designed for person ReID, iLIDS
Video re-IDentification (iLIDS-VID) [53], PRID2011 [54],
and HDA+ [55]. All three datasets are very challenging due
to clothing similarities among people, lighting and view-
point variations across camera views, cluttered background
and occlusions (Fig. 1 and Fig. 5).
iLIDS-VID – Our new iLIDS-VID person sequence
dataset [53] was created based on two non-overlapping
camera views from the i-LIDS Multiple-Camera Tracking
Scenario (MCTS) [9], which was captured at an airport
arrival hall under a multi-camera CCTV network (Fig. 5(a)).
It consists of 600 image sequences for 300 randomly
sampled people, with one pair of image sequences from
two disjoint camera views for each person. Each image
sequence has a variable length consisting of 23 to 192
image frames, with an average number of 73.
PRID2011 – The PRID2011 dataset [54] includes 400
image sequences for 200 people from two camera views
that are adjacent to each other (Fig. 5(b)). Each image
sequence has a variable length consisting of 5 to 675 image
frames1, with an average number of 100. Compared with
the iLIDS-VID dataset, it is less challenging due to being
captured in non-crowded outdoor scenes with relatively
simple and clean backgrounds and rare occlusions.
HDA+ – The HDA+ dataset [55] contains a total of 83
labelled people across 13 indoor cameras in an office

1. We used sequences of >21 frames from 178 people in the evaluation.

environment (Fig. 5(c,d)). HDA+ is characterised by (i) low
and variable frame rates, e.g. 2∼5fps (frames per second) of
HDA+ versus 25fps of both PRID2011 and iLIDS-VID; and
(ii) clothing variation over time. One limitation of HDA+ is
the small number of people re-appearing between camera
pairs whilst re-appearance is required for evaluating ReID.
In our experiments, we selected two camera pairs, (19, 40)
and (50, 57), that satisfy: (1) a sufficiently large number of
people reappearing across the camera views; (2) very low
video frame rates to evaluate its effect on space-time feature
based ReID models; (3) some people’s clothing changes
to evaluate the clothing-variation challenge. In particular,
camera pair (19, 40) provides pairwise image sequences
of 28 different people at 5fps. Each video has 15∼227
frames with an average of 88 frames. In contrast, camera
pair (50, 57) contains pairwise videos of 10 people at only
2fps, with sequence length varying between 1∼136 frames
with an average of 31 frames. For sequences <21 frames,
we expanded them up to 21 frames by interpolating new
frames using duplicates of the temporally-nearest frames
in a sequence. This is to enable fragmentation on them.
Note, little or no space-time information is available in very
short sequences, e.g. 1 frame. This is designed to test how
a space-time feature based model degrades with decreasing
space-time information available in the input video data.

Evaluation settings From every dataset, all sequence pairs
are randomly split into two subsets of equal size, one
for training and one for testing. Following the evaluation
protocol on the PRID2011 dataset [54], in the testing phase,
the sequences from one camera are used as the probe set
while the ones from another camera are the gallery set. The
results are measured by Cumulated Matching Characteris-
tics (CMC). Specifically, we show top rank matching rates.
As CMC values are proportional to the dataset size (the
overall population for the ranked pairs), we adopt Ranks
1∼20 for PRID2011 and iLIDS-VID, and Ranks 1∼4 for
HDA+ (<1/5 size of iLIDS-VID and PRID2011), so that
these values are approximately comparable across all four
datasets. To obtain stable statistical results, we repeat the
experiments for 10 trials and report the average results.
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TABLE 1
Compare different DVR variants. Fragments are represented by HOG3D & colour. RT: Ranking Time; ST: Selecting Time; Unit is second.

Dataset PRID2011 [54] iLIDS-VID [53] HDA+(5fps) [55] HDA+(2fps) [55]
Rank R (%) 1 5 10 20 RT ST 1 5 10 20 RT ST 1 2 3 4 RT ST 1 2 3 4 RT ST

DVR(float) 38.9 68.8 81.1 91.3 6 8 36.8 59.3 70.9 80.1 28 740 54.3 70.0 77.9 85.0 2.2 0.09 52.0 70.0 90.0 100 2.0 0.06
DVR(single) 38.9 68.8 81.1 91.3 6 9 36.8 59.3 70.9 80.1 28 97 54.3 70.0 77.9 85.0 2.2 0.06 52.0 70.0 90.0 100 2.0 0.01
DVR(top2) 39.4 70.6 83.7 91.8 13 9 37.7 60.1 71.1 81.4 42 97 - - - - - - - - - - - -
DVR(top3) 40.0 71.7 84.5 92.2 15 9 39.5 61.1 71.7 81.0 58 97 - - - - - - - - - - - -
DVR(top4) 40.0 71.6 84.0 92.8 20 9 39.2 62.3 71.7 81.9 70 97 - - - - - - - - - - - -
DVR(top5) 40.8 71.7 84.9 93.1 21 9 39.9 62.1 71.9 81.9 81 97 - - - - - - - - - - - -

TABLE 2
Compare different video fragment representations using the DVR(single) model.

Dataset PRID2011 [54] iLIDS-VID [53] HDA+(5fps) [55] HDA+(2fps) [55]
Rank R (%) 1 5 10 20 1 5 10 20 1 2 3 4 1 2 3 4

HOG3D 28.9 55.3 65.5 82.8 23.3 42.4 55.3 68.4 40.0 52.1 65.0 70.0 18.0 30.0 62.0 76.0
Colour 30.1 54.3 64.9 79.7 24.2 44.6 56.0 67.4 48.6 62.1 71.4 81.4 40.0 64.0 90.0 100
ColHOG3D 38.9 68.8 81.1 91.3 36.8 59.3 70.9 80.1 54.3 70.0 77.9 85.0 52.0 70.0 90.0 100

4.1 Evaluation on Model Variants

We evaluated and analysed the proposed DVR model in
three aspects: (1) effectiveness of the selection mechanisms;
(2) effectiveness of the fragment representations; (3) robust-
ness against low and variable video frame rates.

Effectiveness of the selection mechanisms – For the se-
lection mechanism, we conducted two comparisons: (a)
the DVR(single) model versus our preliminary model re-
ported in [53] which we call DVR(float) since its selection
involves a (float) weighted combination of instances in
contrast to our new single or multiple explicit instance
selection strategies, (b) single versus multiple fragment-pair
selection (Sec. 3). The results in Table 1 (the first two rows)
show that identical scores are obtained by DVR(single) and
DVR(float) [53]. This is further verified by the observation
that both models select almost identical discriminative
video fragments. On the other hand, the computational
cost/time required are different for the two models, in
particular when the visual content is more crowded and
selection becomes harder. More specifically, for model
training including both the ranking and selecting steps,
Table 1 shows that both models require similar time for the
ranking step on all datasets. This is because they are subject
to the same number of ranking constraints (Eqn. (8)).
However, although the time required for the selection
routine is similar for PRID2011 and HDA+, DVR(single)
is significantly faster than DVR(float) on iLIDS-VID, e.g.
over 7× speed up. This was performed on a 64-bit Intel
CPU Processor@2.7GHz with a MATLAB implementation
in Linux OS. These observations suggest no advantage in
treating the selection as a float weighted combination of
instances as originally proposed in [53,56].

One may ask the question how many discriminative
fragment pairs should be selected from each cross-view
image sequence pair of a person during model training.
To that end, we evaluated the performance of ReID using
different numbers of positive fragment pairs per person on
PRID2011 and iLIDS-VID2. It is evident from Table 1
that the use of additional discriminative fragment pairs can

2. This multi-fragment selection evaluation is not performed on HDA+
as some short image sequences have only one fragment.

Fig. 6. Three examples of the GEI gait features and the DVR
video fragment pairs. Top: from PRID2011; Middle: from iLIDS-VID;
Bottom: from HDA+(5fps). In each example, the leftmost thumbnail
shows GEI gait features, while the remaining thumbnails present
some examples of fragment pairs, with the automatically selected
pairs marked by red bounding boxes. A fragment is visualised as the
weighted average of all its frames with emphasis on its central frame.

further boost the overall performance of person ReID at
the price of increased model training time. This empirically
supports our analysis on the potential benefits of multiple
fragment pair selection and exploitation as discussed in
Sec. 3.3.1. However, the margin of improvement from
additional fragment data quickly diminishes. In our experi-
ments, we utilised up to the top 5 fragment pairs per person.
Any further addition of more pairs had very limited effect
in improving the learned ranking model. Moreover, it is
also observed that the construction of ranking constraints in
RankSVM is a time consuming process and its complexity
is linear in the number of constraints. Empirically, selecting
the top 3 discriminative fragment pairs from a matched
training image sequence pair for model learning provides a
good trade-off between ReID accuracy and model learning
cost. For the remaining experiments reported in this section,
DVR(top3) models were trained for PRID2011 and iLIDS-
VID and DVR(single) models for HDA+ in the comparative
evaluation against other baseline methods.

Effectiveness of the fragment representations – It is worth
pointing out that our preliminary work presented in [53] is
somewhat limited on fragment representation as no colour
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TABLE 3
Comparison with gait recognition and temporal sequence matching methods.

Dataset PRID2011 [54] iLIDS-VID [53] HDA+(5fps) [55] HDA+(2fps) [55]
Rank R (%) 1 5 10 20 1 5 10 20 1 2 3 4 1 2 3 4

Gait Recognition [16] 20.9 45.5 58.3 70.9 2.8 13.1 21.3 34.5 34.3 47.9 57.9 62.9 24.0 40.0 62.0 78.0
ColLBP [2]+DTW [59] 14.6 33.0 42.6 47.8 9.3 21.7 29.5 43.0 40.7 55.7 62.9 74.3 40.0 66.0 76.0 86.0
HoGHoF [26]+DTW [59] 17.2 37.2 47.4 60.0 5.3 16.1 29.7 44.7 11.4 22.1 32.9 48.6 36.0 46.0 58.0 84.0
ColLBPHoGHoF+DTW [59] 14.7 33.5 42.7 47.8 10.1 22.5 29.9 43.6 44.3 57.9 62.9 74.3 40.0 66.0 74.0 76.0
DVR 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0 54.3 70.0 77.9 85.0 52.0 70.0 90.0 100

appearance information is considered. Here we report a
significant improvement in performance from combining
the space-time features (HOG3D) with colour features
(Sec. 3.2). For the DVR(single) model, Table 2 shows
34.6%, 57.9%, 35.8% and 188.9% increase at Rank-1
recognition rate on PRID2011, iLIDS-VID, HDA+(5fps)
and HDA+(2fps) respectively, when comparing with the
results by HOG3D and ColHOG3D. This suggests that
colour plays an important role in re-identifying people,
also evident from the colour-only ReID performance in the
table. These results demonstrate the importance of utilising
both space-time and colour appearance information for
person ReID in image sequence data, further supporting
previous studies on the importance of leveraging colour
information for ReID [2,39,48,49,50]. Throughout the fol-
lowing experiments, ColHOG3D is adopted as the default
fragment representation in our DVR model, unless specified
otherwise.

Robustness against low and variable video frame-rates –
The proposed DVR model is expected to benefit more
from higher frame-rate videos, whilst its advantage over
appearance-only based models diminishes gradually with a
decrease in video frame rate as less space-time information
is available. The results in Table 2 show that the space-
time feature (HOG3D) only based DVR model produces
very competitive ReID accuracy compared to models using
colour features alone, given high (25fps) frame rate videos
from PRID2011 and iLIDS-VID. Encouragingly, HOG3D-
only based DVR retains credible ReID accuracies on 5fps
sequences from HDA+. However, when the frame rate
decreases more significantly to 2fps, the performance of
the HOG3D-only based model degrades considerably whilst
the colour-only based DVR is less affected. These results
are consistent with the expectation that space-time feature
alone based ReID models degrade when very limited or no
space-time information is available in very low frame rate
videos. Nevertheless, the space-time information selected
by the DVR model is still useful for ReID even at such a
low frame rate. It is also evident that the full DVR model
using the ColHOG3D representation selectively explores
the complementary information from both space-time and
colour appearance features for significant improvements on
ReID accuracies in all situations including very low video
frame-rates (the bottom row in Table 2). This illustrates
the strength and robustness of the DVR model in utilising
complementary visual information, even when space-time
information is very poor or even absent. This also demon-
strates the robustness and flexibility of the DVR model
in coping with significant variations in video frame rate

when extracting and exploiting discriminative space-time
information from unregulated surveillance videos.

4.2 Comparing Gait Recognition and Temporal
Sequence Matching
We compared the proposed DVR model with contem-
porary gait recognition and temporal sequence matching
methods for person (re-)identification. (I) Gait recogni-
tion (GEI+RSVM) [16] is a state-of-the-art gait recognition
model using Gait Energy Image (GEI) [15] (computed from
pre-segmented silhouettes) as sequence representation and
RankSVM [52] for recognition. A challenge for applying
gait recognition to unregulated image sequences in ReID
scenarios is to generate good gait silhouettes as input.
To that end, we first deployed the DPAdaptiveMedianBGS
algorithm provided by the BGSLibrary [60] to extract sil-
houettes from image sequences given by each dataset. This
approach produces better foreground masking than other al-
ternatives. (II) ColLBP/HoGHoF/ColLBPHoGHoF+DTW
applies Dynamic Time Warping [59] to compute the simi-
larity between two sequences, using either ColLBP [2] or
HoGHoF [26] or their combination as the per-frame feature
descriptor. This is similar to the approach of Simonnet
et al. [30], except that they only used colour features.
In comparison, ColLBP is a stronger representation as it
encodes both colour and texture. Alternatively, HoGHoF
encodes both texture and motion information.

Table 3 presents the comparative ReID results among
DVR, GEI+RSVM (gait), ColLBP+DTW, HoGHoF+DTW,
and ColLBPHoGHoF+DTW. It is evident that the pro-
posed DVR outperforms significantly any competitor on all
datasets. Gait recognition [16] gives significantly weaker
performance than the DVR model on every dataset. In
comparison, its ReID accuracy on PRID2011 and HDA+
is much better than that on iLIDS-VID. This is because the
GEI gait features are very sensitive to background clutter
and occlusions, as shown by the examples in Fig. 6. It
is obvious that the extracted gait foreground masks from
the iLIDS-VID person sequence (middle) are contaminated
more heavily by cluttered background and other moving
objects, compared to those from either PRID2011 (top) or
HDA+ (bottom). Our DVR model trains itself by simulta-
neously selecting and ranking only those video fragments
which suffer the least from occlusions and noise. More-
over, DTW based sequence matching methods using either
ColLBP, HoGHoF, or their combination also suffer notably
from the inherently uncertain nature of ReID sequences
and perform significantly poorer than the proposed DVR
approach. This is largely due to: (1) Person sequences have
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TABLE 4
Comparing spatial appearance feature based ReID methods. SS: Single-Shot; MS: Multi-Shot.

Dataset PRID2011 [54] iLIDS-VID [53] HDA+(5fps) [55] HDA+(2fps) [55]
Rank R (%) 1 5 10 20 1 5 10 20 1 2 3 4 1 2 3 4

SS-ColLBP [2] 22.4 41.8 51.0 64.7 9.1 22.6 33.2 45.5 35.7 47.1 55.0 58.6 16.0 52.0 74.0 90.0
SS-SDALF [3] 4.9 21.5 30.9 45.2 5.1 14.9 20.7 31.3 27.1 45.7 53.6 55.0 26.0 54.0 68.0 80.0
MS-SDALF [3] 5.2 20.7 32.0 47.9 6.3 18.8 27.1 37.3 36.4 47.1 59.3 67.9 46.0 52.0 74.0 86.0
eSDC [8] 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9 - - - - - - - -
MS-ColLBP 34.3 56.0 65.5 77.3 23.2 44.2 54.1 68.8 47.9 56.4 60.0 66.4 34.0 50.0 68.0 84.0
DVR 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0 54.3 70.0 77.9 85.0 52.0 70.0 90.0 100

different durations with arbitrary starting/ending frames,
also potentially different numbers of walking cycles. There-
fore, attempts to match entire sequences holistically in-
evitably suffer from mismatching with erroneous similarity
measurement; (2) There is no clear (explicit) mechanism to
avoid incomplete/missing data, typical in crowded scenes;
(3) Direct sequence matching is less discriminative than
learning an inter-camera discriminative mapping function,
which is explicitly built into the DVR model by exploring
multi-instance (fragment-pair) selection and ranking.

4.3 Comparing Spatial Feature Representations

To evaluate the effectiveness of discriminative video frag-
ment selection and ranking using both spatial appearance
and space-time features for person ReID, we compared the
proposed DVR model against a wide range of contemporary
ReID models using spatial features, either in single-shot or
multi-shot (multi-frames). In order to process the iLIDS-
VID dataset for our experiments, we mainly considered
contemporary methods with code available publicly. They
include (1) SDALF [3] (single-/multi-shot versions); (2)
eSDC3 [8]; (3) SS-ColLBP which uses RankSVM [52]
as model and colour&LBP [2] as representation; (4) We
also extended SS-ColLBP to multi-shot by averaging the
ColLBP features of each frame over an image sequence to
focus on stable appearance cues and suppress noise, in a
similar approach to [61]. We call this method MS-ColLBP.
Moreover, we discuss the effect of clothing variation on
person ReID methods, a challenging topic which is mostly
ignored and under-investigated currently in the literature.

Comparing with spatial feature based methods – The results
in Table 4 show that the proposed DVR model outper-
forms significantly all the spatial feature based methods
on all datasets, e.g. it gains 55.0% and 287.3% Rank-
1 improvement over eSDC; it also yields 16.6%, 70.3%,
13.4% and 52.9% Rank-1 improvement over MS-ColLBP
on PRID2011, iLIDS-VID, HDA+(5fps) and HDA+(2fps)
respectively. Note that the improvement margin achieved
by the DVR model on iLIDS-VID (a more challenging
dataset) is much more significant than those on PRID2011
and HDA+. This demonstrates the effectiveness of the
proposed selective sequence matching method in coping
with challenging real-world data for learning a robust re-
identification ranking function. More concretely, the power

3. The eSDC model [8] cannot be evaluated on the small HDA+ dataset
as it requires additionally saliency statistics modelling with two large
reference sets which are not available on HDA+.

of our DVR model can be largely attributed to identity-
sensitive space-time gradient cues learned by our discrim-
inative fragment selection based matching and ranking
mechanism, beyond the conventional models of only learn-
ing from the spatial appearance data, e.g. colour and texture.

Clothing change challenge – Existing person ReID stud-
ies typically assume no changes in clothing. However,
this assumption is not always valid. Realistically, clothing
may change for some people within and/or across cam-
era views. Specifically, while there is no (0%) explicit
clothing change among the people in both PRID2011 and
iLIDS-VID, 35.7% people changed their jacket/coat/shirt
in HDA+(5fps) and 50.0% in HDA+(2fps), resulting in
substantial change in appearance (Fig. 5(c,d)). Whilst only
partial appearance variation may arise from changes in
viewpoint and lighting, severe occlusion can also cause
significant appearance change (Fig. 5(a,b)). Given this
observation, we compared the performance of DVR against
other appearance-based ReID models on the four different
datasets with different degrees of clothing changes. We pay
special attention to multi-shot models as they are expected
to be more robust under clothing changes. The results in
Table 4 show that MS-SDALF benefits consistently from
multiple shots on all four datasets, either with clothing
changes or not. This is largely due to its body-part selective
matching strategy, i.e. using the best-matched patch pairs
during matching. However, this method can also give weak
ReID accuracy due to the inherent difficulties in obtaining
explicitly reliable body-part segmentation in surveillance
images. In comparison, MS-ColLBP suffers considerably
more from clothing changes, evident from a decreased
performance advantage over SS-ColLBP on HDA+(5fps)
and worse still on HDA+(2fps), when compared with
those on PRID2011 and iLIDS-VID. This suggests that the
advantage of MS-ColLBP over SS-ColLBP decreases when
clothing changes are abrupt at low frame rates. Under such
conditions, averaging without selection is a poor strategy
to cope with clothing changes. In contrast, the proposed
DVR model not only explores discriminative space-time
ReID information less sensitive to appearance change,
but also selects automatically the best-matched fragments
for appearance consistency, sharing a similar principle of
MS-SDALF but being more flexible and robust without
requiring explicit part segmentation. We show in Fig. 7 two
examples of model selected discriminative fragment pairs
across camera views for person ReID. Note, this selection
is driven by both static appearance and dynamic motion
information embedded in our DVR model design. This
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TABLE 5
Complementary effect of the DVR model to existing spatial appearance feature based models. MS: Multi-Shot.

Dataset PRID2011 [54] iLIDS-VID [53] HDA+(5fps) [55] HDA+(2fps) [55]
Rank R (%) 1 5 10 20 1 5 10 20 1 2 3 4 1 2 3 4

DVR 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0 54.3 70.0 77.9 85.0 52.0 70.0 90.0 100
MS-ColLBP 34.3 56.0 65.5 77.3 23.2 44.2 54.1 68.8 47.9 56.4 60.0 66.4 34.0 50.0 68.0 84.0
MS-ColLBP+DVR 42.5 70.1 83.5 92.8 41.0 62.1 73.6 82.5 59.3 74.3 78.6 86.4 52.0 76.0 94.0 100
MS-SDALF [3] 5.2 20.7 32.0 47.9 6.3 18.8 27.1 37.3 36.4 47.1 59.3 67.9 46.0 52.0 74.0 86.0
MS-SDALF+DVR 44.2 71.2 85.1 92.5 40.9 62.7 72.1 82.1 59.3 75.7 82.9 85.0 54.0 76.0 98.0 100
eSDC [8] 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9 - - - - - - - -
eSDC+DVR 48.2 75.2 87.0 94.2 41.0 63.7 72.7 83.3 - - - - - - - -
eSDC+MS-SDALF 25.1 42.9 52.0 62.2 10.2 25.3 35.2 52.9 - - - - - - - -
eSDC+MS-SDALF+DVR 48.3 74.9 87.3 94.4 41.3 63.5 72.7 83.1 - - - - - - - -

TABLE 6
The effect of space-time video fragment selection. SS: Single-Shot; MS: Multi-Shot.

Dataset PRID2011 [54] iLIDS-VID [53] HDA+(5fps) [55] HDA+(2fps) [55]
Rank R (%) 1 5 10 20 1 5 10 20 1 2 3 4 1 2 3 4

SS-ColHOG3D 25.7 49.1 61.0 75.5 15.5 33.7 47.5 61.4 40.7 57.1 64.3 72.9 30.0 54.0 78.0 90.0
MS-ColHOG3D 29.6 54.9 70.8 86.1 19.9 42.4 53.6 67.6 50.7 65.0 68.6 73.6 30.0 60.0 90.0 96.0
DVR 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0 54.3 70.0 77.9 85.0 52.0 70.0 90.0 100

Fig. 7. Examples of automatically selected cross-camera fragment
pairs (indicated with red bounding box) from the HDA+ dataset during
person ReID by our DVR model. Top row: from HDA+(5fps); Bottom
row: from HDA+(2fps). A fragment is visualised as the weighted
average of all its frames with emphasis on its central frame.

demonstrates the potential advantage of the DVR model in
addressing the clothing change challenge in person ReID,
a problem under-studied in the current literature.

4.4 Complementary to Spatial Features
We further evaluated the complementary effect between
the DVR model and existing colour/texture feature based
ReID approaches. The results are reported in Table 5. It is
evident that for any existing appearance model, significant
performance gain is achieved by incorporating the DVR
ranking score (Eqn. (17)) into its ranking result. More
specifically, on PRID2011 and iLIDS-VID, the Rank-1
ReID performance of using multi-shot colour and texture
features (MS-ColLBP) is boosted by 23.9% and 76.7%;
Rank-1 of eSDC is improved by 86.8% and 302.0%;
Rank-1 of eSDC+MS-SDALF is increased by 92.4% and
304.9%, respectively. Similar improvements are gained on
low frame rate sequences from HDA+ by MS-ColLBP and
MS-SDALF. Such a performance step-change in improving
conventional spatial feature based models is primarily due
to the exploration of discriminative space-time features
and the fragment selection based matching scheme by the
proposed DVR model. This space-time selective matching
process discovers mostly independent source of information
when comparing with all static appearance features, there-
fore playing a significant complementary and beneficial role

to contemporary spatial feature based models. It is also
worth pointing out that most existing spatial feature based
methods benefit more from combining with DVR when
tested on iLIDS-VID, and less on PRID2011 and HDA+.
This observation highlights the importance and necessity of
discriminative fragment selection for robust model learning
given video data from more crowded public scenarios where
blind learning from all the sequence data without selection
leads to poorer and degraded models.

In addition, it is evident from Table 5 that the DVR model
can benefit from combining with other spatial feature based
ReID models, although slightly. This gain may be explained
as the result of drawing from diverse sources of spatial
features.

4.5 Evaluation of Space-time Fragment Selection

To evaluate the space-time video fragment selection mech-
anism in the proposed DVR model, we implemented two
baseline methods without this selection mechanism: (1)
SS-ColHOG3D represents each image sequence by Col-
HOG3D features of a single fragment randomly selected
from the image sequence; (2) MS-ColHOG3D represents
each image sequence by the averaged ColHOG3D features
of four fragments uniformly selected from the sequence. In
both baseline methods, RankSVM [52] is used to rank the
person sequence representations. For a fair comparison, the
length of these fragments used for both baselines is set the
same as that in our DVR model.

The results are presented in Table 6. The DVR model
outperforms SS-ColHOG3D and MS-ColHOG3D in Rank-
1 by 55.6% and 35.1% on PRID2011, by 33.4% and
7.1% on HDA+(5fps), and by 73.3% and 73.3% on
HDA+(2fps). The performance advantage of DVR over
SS-ColHOG3D and MS-ColHOG3D is even greater on
the more challenging iLIDS-VID dataset, i.e. yielding
154.8% and 98.5% Rank-1 improvement respectively. This
demonstrates clearly that in the presence of significant
noise and given unregulated person image sequences, it is
indispensable to automatically select discriminative space-
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time fragments from raw image sequences in order to
construct a more robust model for person ReID. It is also
noted that MS-ColHOG3D outperforms SS-ColHOG3D by
suppressing noise using temporal averaging. Although such
a straightforward averaging approach can have some bene-
fits over single-shot methods, it loses out on discriminative
information selection due to uniform temporal smoothing.

5 CONCLUSION AND FUTURE WORK

Conclusion We have presented a novel DVR framework for
person re-identification by video ranking using discrimina-
tive space-time and appearance feature selection. Our ex-
tensive evaluations show that this model outperforms a wide
range of contemporary techniques from gait recognition
and temporal sequence matching to state-of-the-art single-
/multi-shot(or frame) spatial feature representation based
ReID models. In contrast to existing ReID approaches
that often employ spatial appearance of people alone, the
proposed method is capable of capturing more accurately
both appearance and space-time information discriminative
for person ReID through learning a cross-view multi-
instance ranking function. This is made possible by the
ability of our model to discover and exploit automatically
the most reliable and informative video fragments extracted
from inherently incomplete and inaccurate person image
sequences captured against cluttered backgrounds, without
any guarantee on person walking cycles, starting/ending
frame alignment, video frame rates, and clothing stability.
Moreover, the proposed DVR model significantly comple-
ments and improves existing spatial appearance features
when combined for person ReID. Extensive comparative
evaluations were conducted to validate the advantages of
the proposed model over a variety of baseline methods on
three challenging image sequence based ReID datasets.
Future work Person re-identification remains largely an
unsolved problem [6], and our future work includes: (1) In
addition to space-time information, how to exploit automat-
ically other knowledge sources, e.g. the topology structure
of a camera network, or the semantic description (e.g. mid-
level attributes nameable by human) of people’s appearance
and walking style; (2) How to cope with open-world person
re-identification settings [39,62,63] where the probe people
are not guaranteed to appear in the gallery set.
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