1,751 research outputs found

    Investigations of the Unique Role of Alanines in the 'Elastin Puzzle' by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    A common beta-sheet architecture underlies in vitro and in vivo beta(2)-microglobulin amyloid fibrils

    Get PDF
    Misfolding and aggregation of normally soluble proteins into amyloid fibrils and their deposition and accumulation underlies a variety of clinically significant diseases. Fibrillar aggregates with amyloid-like properties can also be generated in vitro from pure proteins and peptides, including those not known to be associated with amyloidosis. Whereas biophysical studies of amyloid-like fibrils formed in vitro have provided important insights into the molecular mechanisms of amyloid generation and the structural properties of the fibrils formed, amyloidogenic proteins are typically exposed to mild or more extreme denaturing conditions to induce rapid fibril formation in vitro. Whether the structure of the resulting assemblies is representative of their natural in vivo counterparts, thus, remains a fundamental unresolved issue. Here we show using Fourier transform infrared spectroscopy that amyloid-like fibrils formed in vitro from natively folded or unfolded ÎČ2-microglobulin (the protein associated with dialysis-related amyloidosis) adopt an identical ÎČ-sheet architecture. The same ÎČ-strand signature is observed whether fibril formation in vitro occurs spontaneously or from seeded reactions. Comparison of these spectra with those of amyloid fibrils extracted from patients with dialysis-related amyloidosis revealed an identical amide I' absorbance maximum, suggestive of a characteristic and conserved amyloid fold. Our results endorse the relevance of biophysical studies for the investigation of the molecular mechanisms of ÎČ2-microglobulin fibrillogenesis, knowledge about which may inform understanding of the pathobiology of this protein

    Structure and Thermodynamics of Polyglutamine Peptides and Amyloid Fibrils via Metadynamics and Molecular Dynamics Simulations

    Get PDF
    Aggregation of polyglutamine (polyQ)-rich polypeptides in neurons is a marker for nine neurodegenerative diseases. The molecular process responsible for the formation of polyQ fibrils is not well understood and represents a growing area of study. To enable development of treatments that could interfere with aggregation of polyQ peptides, it is crucial to understand the molecular mechanisms by which polyQ peptides aggregate into fibrils. Many experimental techniques have been employed to probe polyQ aggregation, however, observations from these studies have not lead to a unified understanding of the properties of these systems, instead yielding competing, fragmented theories of polyQ aggregation. This dissertation addresses these gaps in knowledge by shedding light on important steps of the aggregation process. The structural motif of polyQ fibrils is not agreed upon in the field, which is worrying, given that these structures are the endpoint of polyQ aggregation. Here, molecular dynamics (MD) simulations paired with UV resonance Raman (UVRR) experiments show that short polyQ peptides adopt extended antiparallel ÎČ-sheet fibrils, contrary to ÎČ-hairpin structures oft predicted in the polyQ field. The structure of monomeric polyQ peptides was then studied to gain insight into the beginnings of the aggregation mechanism. Metadynamics MD simulations were used to characterize the conformational energy landscape of polyQ peptides, and this data was compared to experimental UVRR results. We found short polyQ peptides can adopt PPII-rich and collapsed ÎČ-strand monomeric structures, which establishes that polyQ can form distinct conformational states as monomers. The effect of increased polyQ repeat length was also tested, and it was found that increased repeat length corresponds to lower energy barriers between monomeric conformational states, which may explain why longer polyQ repeats are quicker to aggregate. Hydrogen bonding strengths of polyQ monomers and fibrils were also investigated with MD and UVRR, showing that polyQ peptides favor intrapeptide hydrogen bonds over those between peptide and water. Overall, the work in this dissertation deepens the understanding of the polyQ aggregation mechanism by determining the structure and thermodynamics of monomeric and fibrillar states, as well as identifying polyQ peptide hydrogen bonding as one of the driving forces in these systems. This knowledge can aid the development of molecular mechanisms to interfere with the formation of toxic polyQ aggregates that trigger the onset of polyQ diseases

    Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers

    Get PDF
    Antimicrobial peptides are postulated to disrupt microbial phospholipid membranes. The prevailing molecular model is based on the formation of stable or transient pores although the direct observation of the fundamental processes is lacking. By combining rational peptide design with topographical (atomic force microscopy) and chemical (nanoscale secondary ion mass spectrometry) imaging on the same samples, we show that pores formed by antimicrobial peptides in supported lipid bilayers are not necessarily limited to a particular diameter, nor they are transient, but can expand laterally at the nano-to-micrometer scale to the point of complete membrane disintegration. The results offer a mechanistic basis for membrane poration as a generic physicochemical process of cooperative and continuous peptide recruitment in the available phospholipid matrix

    Context Mediates Antimicrobial Efficacy of Kinocidin Congener Peptide RP-1

    Get PDF
    Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action against susceptible (S) or resistant (R) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA) strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized STS and CA strains at both pH, whereas permeabilization was modest for STR or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet, concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at pH 7.5. The present findings suggest that pH– and target–cell lipid contexts influence selective antimicrobial efficacy and mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context–specificity of antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal concomitant cytotoxicity

    Effect of metal Ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of L-phenylalanine, L-tyrosine, L-tryptophan and their zwitterionic forms

    Get PDF
    Methods of quantum chemistry have been applied to double-charged complexes involving the transition metals Ni2+, Cu2+ and Zn2+ with the aromatic amino acids (AAA) phenylalanine, tyrosine and tryptophan. The effect of hydration on the relative stability and geometry of the individual species studied has been evaluated within the supermolecule approach. The interaction enthalpies, entropies and Gibbs energies of nine complexes Phe‱M, Tyr‱M, Trp‱M, (M = Ni2+, Cu2+ and Zn2+) were determined at the Becke3LYP density functional level of theory. Of the transition metals studied the bivalent copper cation forms the strongest complexes with AAAs. For Ni2+and Cu2+ the most stable species are the NO coordinated cations in the AAA metal complexes, Zn2+cation prefers a binding to the aromatic part of the AAA (complex II). Some complexes energetically unfavored in the gas-phase are stabilized upon microsolvation

    Structure and Property of Polymers and Biopolymers from Molecular Dynamic Simulations

    Get PDF
    Natural and synthetic polymers and biopolymers have been studied for a variety of applications in food emulsion, biopharmaceutical purification, tissue engineering, and biosensor. The structure and property of polymers and biopolymers are critically important to determine their functions. Molecular dynamics (MD) simulations have a unique advantage to explore the structure and property of polymers and biopolymers from the molecular level. In the dissertation, MD simulations were conducted to study the mechanisms of various biological and chemical processes controlled by polymers and biopolymers based on real-world experimental results. Seven heptapeptides have been screened from a peptide library in our earlier study of the antibody purification. They have substantial binding affinities to the Fc fragment of IgG. In Chapter 2, the binding mechanisms between seven heptapeptides and the Fc fragment have been investigated by protein-ligand docking, free energy calculation and MD simulations. It is the first time that glycan residues are found to be the binding pocket for small ligands. The novel binding pocket is different from the CBS binding site for protein A and protein G. We also found out that, the results of free energy calculations are in good agreement with the ELISA experiments. The thermos-responsive polymer, PVCL (poly(N-vinylcaprolactam)) was grafted on the surface of a membrane as the responsive hydrophobic chromatography for the protein purification in our earlier study. In Chapter 3, significant efforts have been devoted to develop the force field parameters for PVCL. The coil-to-globule conformational transition of PVCL has been successfully observed in MD simulation for the first time. The water dynamics analysis provides significant insights into the interaction between PVCL and water molecules. The novel statistical analysis of VCL ring conformations and the distribution along backbone also elucidate the steric requirement in the coil-to-globule transition. In Chapter 4, MD simulations were conducted to investigate the biocompatibility, energetics and interaction mechanisms between the PVCL polymer chains and bovine serum albumin (BSA) in 1M NaCl and aqueous solutions. Water structures surrounding the polymer chains and BSA as well as their hydrogen bonding, electrostatic and van der Waals interactions were determined. Significant insights were obtained on the effects of polymer hydration state, polymer chain length as well as the presence of salt ions on the protein­ligand interactions. A novel polymeric solid acid catalyst consisting of two polymer chains grafted on a substrate for biomass hydrolysis was successfully synthesized. A poly (styrene sulfonic acid) (PSSA) polymer chain is immobilized on a substrate and used to catalyze biomass hydrolysis. A neighboring poly (vinyl imidazolium chloride) ionic liquid (PIL) polymer chain is grafted to help solubilize lignocellulosic biomass and enhance the catalytic activity. To elucidate mechanistically the catalytic actions and further optimize its performance, interactions among the PSSA, PIL, and cellulose chains were investigated using MD simulations in Chapter 5. Moreover, the free energies surfaces for the interactions between polymer chains and cellulose substrate were determined using combined MD and Metadynamics (MTD) simulations. The research clearly demonstrate that the solvent plays a critical role in the cellulose hydrolysis reaction catalyzed by novel enzyme mimic polymeric catalysts PSSA and PIL. It is found that PSSA chain is likely to form partially dehydrated interaction with cellulose in both aqueous and [EMIM]Cl solutions. PIL plays an important role to prevent the completely dehydrated interactions and facilitate partially dehydrated interaction between PSSA and cellulose chains

    The Solution Structures of Two Human IgG1 Antibodies Show Conformational Stability and Accommodate Their C1q and FcÎłR Ligands.

    Get PDF
    The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcÎłR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges of crystallization. To rectify this, we have studied the solution structures of two human IgG1 6a and 19a monoclonal antibodies in different buffers at different temperatures. Analytical ultracentrifugation showed that both antibodies were predominantly monomeric, with sedimentation coefficients s20,w (0) of 6.3-6.4 S. Only a minor dimer peak was observed, and the amount was not dependent on buffer conditions. Solution scattering showed that the x-ray radius of gyration Rg increased with salt concentration, whereas the neutron Rg values remained unchanged with temperature. The x-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions were unchanged in different buffers to indicate conformational stability. Constrained atomistic scattering modeling revealed predominantly asymmetric solution structures for both antibodies with extended hinge structures. Both structures were similar to the only known crystal structure of full-length human IgG1. The Fab conformations in both structures were suitably positioned to permit the Fc region to bind readily to its FcÎłR and C1q ligands without steric clashes, unlike human IgG4. Our molecular models for human IgG1 explain its immune activities, and we discuss its stability and function for therapeutic applications

    Supersonic jet spectroscopy of synthetic foldamers, multichromophores, and their water containing clusters

    Get PDF
    A central theme specific to this dissertation concerns the conformation-specific spectroscopy of flexible molecules in an effort to bridge the complexity gap. Generally, molecules in the complexity gap have several flexible coordinates yet conformational isomerization still occurs along a simple reaction coordinate on the potential energy surface. Molecules in this regime benefit greatly from experiments probing the potential energy surfaces and provide a means to develop and test new theories in an effort to explain more complex system. These measurements are possible through the utilization of a supersonic jet expansion to collisionally cool molecules into their vibrational zero-point levels, collapsing the distribution of conformational isomers to the lowest-energy minima on the potential energy surface. This collisional cooling afforded by the expansion allows researchers to study transient species, molecular cluters, radicals and ions in a conformation-specific fashion. Overall, this dissertation contains three sets of molecules in an effort to bridge the complexity gap: synthetic foldamers, multichromophores, and water containing complexes. ^ For the synthetic foldamers, a set of 21 conformations that represent the full range of H-bonded structures were chosen to characterize the conformational dependence of the vibrational frequencies and infrared intensities of the local amide I and amide II modes and their amide I/I and amide II/II coupling constants. These amide I/I and amide II/II coupling constants remain similar in size for α-, ÎČ-, and Îł-peptides despite the increasing number of C-C bonds separating the amide groups. These findings provide a simple, unifying picture for future attempts to base the calculation of both nearest-neighbor and next-nearest-neighbor coupling constants on a joint footing ^ There are numerous circumstances of fundamental importance in which two or more ultraviolet chromophores are in close proximity, influencing the intrinsic properties of the close lying, vibronically coupled excited states. Whether incorporated in the same molecule or present as separate monomers, the excited state properties depend on the distance, relative orientation, and strength of the electronic coupling between the two chromophores. Our focus here is then the conformational dependent vibronic coupling observed between ultraviolet chromophores, and the effects of adding a single water molecule or network of water molecules on the vibronic coupling
    • 

    corecore