126 research outputs found

    Querypoint Debugging

    Get PDF
    To fix a bug, software developers have to examine the bug-gy execution to locate defects. They employ different ap-proaches (e.g., setting breakpoints, inserting printing statements in the code) to navigate over buggy execution and inspect program state at suspicious points. In this pa-per we describe Querypoints, a new kind of compound conditional breakpoint relating two execution points. De-velopers specify Querypoints relative to a successfully paused conventional breakpoint or conventional watchpoint or to another Querypoint. The relative conditions contain runtime data values, like the last time a value was changed, or program statements, like the last conditional branch. The Querypoint combines the program state information from two execution points in the same execution; Querypoints can be chained to work backwards from effects to causes in a program. We present basic Querypoint concepts, two sample Que-rypoints, lastChange and lastCondition, and a description of our implementation of these Querypoints. To demon-strate that Querypoints are feasible we describe a prototype that implements an alternative approach to finding a bug in a graphical program analyzed previously with Whyline, one of the new logging-based debuggers

    Revisiting Language Support for Generic Programming: When Genericity Is a Core Design Goal

    Get PDF
    Context Generic programming, as defined by Stepanov, is a methodology for writing efficient and reusable algorithms by considering only the required properties of their underlying data types and operations. Generic programming has proven to be an effective means of constructing libraries of reusable software components in languages that support it. Generics-related language design choices play a major role in how conducive generic programming is in practice. Inquiry Several mainstream programming languages (e.g. Java and C++) were first created without generics; features to support generic programming were added later, gradually. Much of the existing literature on supporting generic programming focuses thus on retrofitting generic programming into existing languages and identifying related implementation challenges. Is the programming experience significantly better, or different when programming with a language designed for generic programming without limitations from prior language design choices? Approach We examine Magnolia, a language designed to embody generic programming. Magnolia is representative of an approach to language design rooted in algebraic specifications. We repeat a well-known experiment, where we put Magnolia’s generic programming facilities under scrutiny by implementing a subset of the Boost Graph Library, and reflect on our development experience. Knowledge We discover that the idioms identified as key features for supporting Stepanov-style generic programming in the previous studies and work on the topic do not tell a full story. We clarify which of them are more of a means to an end, rather than fundamental features for supporting generic programming. Based on the development experience with Magnolia, we identify variadics as an additional key feature for generic programming and point out limitations and challenges of genericity by property. Grounding Our work uses a well-known framework for evaluating the generic programming facilities of a language from the literature to evaluate the algebraic approach through Magnolia, and we draw comparisons with well-known programming languages. Importance This work gives a fresh perspective on generic programming, and clarifies what are fundamental language properties and their trade-offs when considering supporting Stepanov-style generic programming. The understanding of how to set the ground for generic programming will inform future language design.publishedVersio

    First Class Copy & Paste

    Get PDF
    The Subtext project seeks to make programming fundamentally easier by altering the nature of programming languages and tools. This paper defines an operational semantics for an essential subset of the Subtext language. It also presents a fresh approach to the problems of mutable state, I/O, and concurrency.Inclusions reify copy & paste edits into persistent relationships that propagate changes from their source into their destination. Inclusions formulate a programming language in which there is no distinction between a programÂs representation and its execution. Like spreadsheets, programs are live executions within a persistent runtime, and programming is direct manipulation of these executions via a graphical user interface. There is no need to encode programs into source text.Mutation of state is effected by the computation of hypothetical recursive variants of the state, which can then be lifted into new versions of the state. Transactional concurrency is based upon queued single-threaded execution. Speculative execution of queued hypotheticals provides concurrency as a semantically transparent implementation optimization

    Modeling and programming with roles: introducing JavaStage

    Get PDF
    Roles are not a new concept, but they have been used in two different ways: as modeling concepts in a static view and as instance extensions in a dynamic view. For these views only the dynamic offers supporting languages. The static view, although proving the utility of roles in modeling, does not offer a programming language that allows developers to use roles all the way from modeling to programming. We try to overcome this by presenting our role language JavaStage, based on the Java language. We do this by designing and implementing a simple framework and then compare the results with its OO equivalent. Our results show that static roles are in fact useful when used in code and that JavaStage features expand role reuse

    Locking Discipline Inference and Checking

    Get PDF
    Concurrency is a requirement for much modern software, but the implementation of multithreaded algorithms comes at the risk of errors such as data races. Programmers can prevent data races by documenting and obeying a locking discipline, which indicates which locks must be held in order to access which data. This paper introduces a formal semantics for locking specifications that gives a guarantee of race freedom. The paper also provides two implementations of the formal semantics for the Java language: one based on abstract interpretation and one based on type theory. To the best of our knowledge, these are the first tools that can soundly infer and check a locking discipline for Java. Our experiments com-pare the implementations with one another and with annotations written by programmers

    Revisiting Language Support for Generic Programming: When Genericity Is a Core Design Goal

    Get PDF
    ContextGeneric programming, as defined by Stepanov, is a methodology for writing efficient and reusable algorithms by considering only the required properties of their underlying data types and operations. Generic programming has proven to be an effective means of constructing libraries of reusable software components in languages that support it. Generics-related language design choices play a major role in how conducive generic programming is in practice.InquirySeveral mainstream programming languages (e.g. Java and C++) were first created without generics; features to support generic programming were added later, gradually. Much of the existing literature on supporting generic programming focuses thus on retrofitting generic programming into existing languages and identifying related implementation challenges. Is the programming experience significantly better, or different when programming with a language designed for generic programming without limitations from prior language design choices?ApproachWe examine Magnolia, a language designed to embody generic programming. Magnolia is representative of an approach to language design rooted in algebraic specifications. We repeat a well-known experiment, where we put Magnolia’s generic programming facilities under scrutiny by implementing a subset of the Boost Graph Library, and reflect on our development experience.KnowledgeWe discover that the idioms identified as key features for supporting Stepanov-style generic programming in the previous studies and work on the topic do not tell a full story. We clarify which of them are more of a means to an end, rather than fundamental features for supporting generic programming. Based on the development experience with Magnolia, we identify variadics as an additional key feature for generic programming and point out limitations and challenges of genericity by property.GroundingOur work uses a well-known framework for evaluating the generic programming facilities of a language from the literature to evaluate the algebraic approach through Magnolia, and we draw comparisons with well-known programming languages.ImportanceThis work gives a fresh perspective on generic programming, and clarifies what are fundamental language properties and their trade-offs when considering supporting Stepanov-style generic programming. The understanding of how to set the ground for generic programming will inform future language design.</p

    Cautiously Optimistic Program Analyses for Secure and Reliable Software

    Full text link
    Modern computer systems still have various security and reliability vulnerabilities. Well-known dynamic analyses solutions can mitigate them using runtime monitors that serve as lifeguards. But the additional work in enforcing these security and safety properties incurs exorbitant performance costs, and such tools are rarely used in practice. Our work addresses this problem by constructing a novel technique- Cautiously Optimistic Program Analysis (COPA). COPA is optimistic- it infers likely program invariants from dynamic observations, and assumes them in its static reasoning to precisely identify and elide wasteful runtime monitors. The resulting system is fast, but also ensures soundness by recovering to a conservatively optimized analysis when a likely invariant rarely fails at runtime. COPA is also cautious- by carefully restricting optimizations to only safe elisions, the recovery is greatly simplified. It avoids unbounded rollbacks upon recovery, thereby enabling analysis for live production software. We demonstrate the effectiveness of Cautiously Optimistic Program Analyses in three areas: Information-Flow Tracking (IFT) can help prevent security breaches and information leaks. But they are rarely used in practice due to their high performance overhead (>500% for web/email servers). COPA dramatically reduces this cost by eliding wasteful IFT monitors to make it practical (9% overhead, 4x speedup). Automatic Garbage Collection (GC) in managed languages (e.g. Java) simplifies programming tasks while ensuring memory safety. However, there is no correct GC for weakly-typed languages (e.g. C/C++), and manual memory management is prone to errors that have been exploited in high profile attacks. We develop the first sound GC for C/C++, and use COPA to optimize its performance (16% overhead). Sequential Consistency (SC) provides intuitive semantics to concurrent programs that simplifies reasoning for their correctness. However, ensuring SC behavior on commodity hardware remains expensive. We use COPA to ensure SC for Java at the language-level efficiently, and significantly reduce its cost (from 24% down to 5% on x86). COPA provides a way to realize strong software security, reliability and semantic guarantees at practical costs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/170027/1/subarno_1.pd

    Exploring Automated Code Evaluation Systems and Resources for Code Analysis: A Comprehensive Survey

    Full text link
    The automated code evaluation system (AES) is mainly designed to reliably assess user-submitted code. Due to their extensive range of applications and the accumulation of valuable resources, AESs are becoming increasingly popular. Research on the application of AES and their real-world resource exploration for diverse coding tasks is still lacking. In this study, we conducted a comprehensive survey on AESs and their resources. This survey explores the application areas of AESs, available resources, and resource utilization for coding tasks. AESs are categorized into programming contests, programming learning and education, recruitment, online compilers, and additional modules, depending on their application. We explore the available datasets and other resources of these systems for research, analysis, and coding tasks. Moreover, we provide an overview of machine learning-driven coding tasks, such as bug detection, code review, comprehension, refactoring, search, representation, and repair. These tasks are performed using real-life datasets. In addition, we briefly discuss the Aizu Online Judge platform as a real example of an AES from the perspectives of system design (hardware and software), operation (competition and education), and research. This is due to the scalability of the AOJ platform (programming education, competitions, and practice), open internal features (hardware and software), attention from the research community, open source data (e.g., solution codes and submission documents), and transparency. We also analyze the overall performance of this system and the perceived challenges over the years

    Object-Centric Reflection: Unifying Reflection and Bringing It Back to Objects

    Get PDF
    Reflective applications are able to query and manipulate the structure and behavior of a running system. This is essential for highly dynamic software that needs to interact with objects whose structure and behavior are not known when the application is written. Software analysis tools, like debuggers, are a typical example. Oddly, although reflection essentially concerns run-time entities, reflective applications tend to focus on static abstractions, like classes and methods, rather than objects. This is phenomenon we call the object paradox, which makes developers less effective by drawing their attention away from run-time objects. To counteract this phenomenon, we propose a purely object-centric approach to reflection. Reflective mechanisms provide object-specific capabilities as another feature. Object-centric reflection proposes to turn this around and put object-specific capabilities as the central reflection mechanism. This change in the reflection architecture allows a unification of various reflection mechanisms and a solution to the object paradox. We introduce Bifr\"ost, an object-centric reflective system based on first-class meta-objects. Through a series of practical examples we demonstrate how object-centric reflection mitigates the object paradox by avoiding the need to reflect on static abstractions. We survey existing approaches to reflection to establish key requirements in the domain, and we show that an object-centric approach simplifies the meta-level and allows a unification of the reflection field. We demonstrate how development itself is enhanced with this new approach: talents are dynamically composable units of reuse, and object-centric debugging prevents the object paradox when debugging. We also demonstrate how software analysis is benefited by object-centric reflection with Chameleon, a framework for building object-centric analysis tools and MetaSpy, a domain-specific profile

    RML: Runtime Monitoring Language

    Get PDF
    Runtime verification is a relatively new software verification technique that aims to prove the correctness of a specific run of a program, rather than statically verify the code. The program is instrumented in order to collect all the relevant information, and the resulting trace of events is inspected by a monitor that verifies its compliance with respect to a specification of the expected properties of the system under scrutiny. Many languages exist that can be used to formally express the expected behavior of a system, with different design choices and degrees of expressivity. This thesis presents RML, a specification language designed for runtime verification, with the goal of being completely modular and independent from the instrumentation and the kind of system being monitored. RML is highly expressive, and allows one to express complex, parametric, non-context-free properties concisely. RML is compiled down to TC, a lower level calculus, which is fully formalized with a deterministic, rewriting-based semantics. In order to evaluate the approach, an open source implementation has been developed, and several examples with Node.js programs have been tested. Benchmarks show the ability of the monitors automatically generated from RML specifications to effectively and efficiently verify complex properties
    • …
    corecore