

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SPLASH’10, October 17–21, 2010, Reno, Nevada, USA.

Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Querypoint Debugging

Salman Mirghasemi Claude Petitpierre
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne, Switzerland

{salman.mirghasemi,claude.petitpierre}@epfl.ch

John J. Barton
IBM Research – Almaden

San Jose, CA
 johnjbarton@johnjbarton.com

Abstract

To fix a bug, software developers have to examine the bug-

gy execution to locate defects. They employ different ap-

proaches (e.g., setting breakpoints, inserting printing

statements in the code) to navigate over buggy execution

and inspect program state at suspicious points. In this pa-

per we describe Querypoints, a new kind of compound

conditional breakpoint relating two execution points. De-

velopers specify Querypoints relative to a successfully

paused conventional breakpoint or conventional watchpoint

or to another Querypoint. The relative conditions contain

runtime data values, like the last time a value was changed,

or program statements, like the last conditional branch. The

Querypoint combines the program state information from

two execution points in the same execution; Querypoints

can be chained to work backwards from effects to causes in

a program.

We present basic Querypoint concepts, two sample Que-

rypoints, lastChange and lastCondition, and a description

of our implementation of these Querypoints. To demon-

strate that Querypoints are feasible we describe a prototype

that implements an alternative approach to finding a bug in

a graphical program analyzed previously with Whyline, one

of the new logging-based debuggers.

Categories and Subject Descriptors D.2.5 [Testing

and Debugging]: Debugging aids; D.2.6 [Programming

Environments]: Integrated environments; D.3.4 [Proces-

sors]: Debuggers; H.2.3 [Languages]: Query languages

General Terms Algorithms, Design, Human Factors,

Languages

Keywords Querypoint, TraceQuery, Conditional break-

point, watchpoints, Locating defects

1. Introduction

Software debugging is an inevitable part of software devel-

opment. Dealing with bugs is the everyday work of soft-

ware developers. Debugging is still hard and time-

consuming. To fix a bug, developers have to reproduce and

monitor the buggy execution several times to understand

the program’s unexpected behavior. According to [9], de-

velopers spend about fifty percent of their time debugging.

This shows the importance of improving tools and tech-

niques used by developers for debugging.

The examination of buggy execution is necessary for lo-

cating defects that cause a bug. Developers employ differ-

ent approaches to navigate over buggy execution.

Breakpoints are one of the basic tools in this regard. Break-

points (on source lines) and watchpoints (on value changes)

let developers pause program execution at determined

points and inspect the program state. However, breakpoint-

debugging suffers from serious issues. First, the developer

has to resume program execution after every pause. This

makes debugging an unpleasant task when a breakpoint is

hit several times before reaching the desired point. Second,

the developer gets easily lost when the number of break-

points and their occurrences increase. Third, breakpoints

are naturally built for forward navigation and developers

have to reason from effects they see back to causes.

Breakpoint-based debuggers support a few basic fea-

tures to mitigate the two first problems. First, they let the

developer pass a number of breakpoints to hit with no stop

(sometimes called hit count or pass count). Second, they let

the developer define additional conditions for breakpoints

and therefore make a smaller set of target breakpoint hits.

Unfortunately, these features are neither effective enough

nor practical enough to fulfill developers’ needs in debug-

ging [15]. In particular, moving backwards to find causes

remains tedious.

Omniscient debuggers have been proposed as a solution

for the problems of breakpoint-debugging [10]. These de-

buggers record all the events that occur during the buggy

execution and later let the developer to navigate through

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:johnjbarton@johnjbarton.com

the obtained execution log. In this approach there is no ex-

ecution to resume: moving backwards in the log can be

similar to moving forwards. Omniscient debuggers suffer

from a different set of issues. First, the recording step is

time expensive and it should be repeated in case of changes

in program [15]. Second, the execution log cannot fully

replace the live execution. There are other aspects of execu-

tion (e.g., program user interface, file system, database

tables, etc.) which are also important in debugging and are

not available to the developer in omniscient debuggers.

Third, querying collected data (e.g., to restore the program

state at a certain point) may not be efficient enough for

debugging of realistic programs.

In this paper we introduce a new kind of compound

conditional breakpoint based on iterative program re-

execution we will call a Querypoint. A Querypoint is a

compound conditional breakpoint relating two execution

points. Developers specify Querypoints relative to a suc-

cessfully paused conventional breakpoint or conventional

watchpoint or to another Querypoint. The relative condi-

tions contain runtime data values, like the last time a value

was changed, or program statements, like the last condi-

tional branch. The Querypoint combines the program state

information from two execution points in the same execu-

tion; Querypoints can be chained to work backwards from

effects to causes in a program.

The name Querypoint combines the query concept from

logging approaches with the point concept from break-

points. Ultimately our goal is to show that these Query-

points combine the flexibility of conventional breakpoint

debugging with the in-depth analysis possible with omnis-

cient logging approaches.

Our contribution here includes the basic Querypoint

concept, a unification of ideas from breakpoint and log-

ging-based debugging. Like breakpoints we stop the live

program at a point where we know the state is not correct;

like logging-based debugging, we repeat queries on the

state-changes leading up to this point. Live queries sample

any variations in execution similar to the way the variations

occur for users, we need not wait for a time consuming full-

logging run, and we can build directly on existing break-

point debuggers. We describe two sample Querypoints,

lastChange and lastCondition, and a description of our im-

plementation of these Querypoints. To demonstrace that

Querypoints are feasible we describe a prototype that finds

a bug in a graphical program analyzed previously with

Whyline[9], one of the new logging-based debuggers.

2. Querypoint Introduction

Typically a developer uses a breakpoint to examine the

program state and observes some values which seem incor-

rect according to their understanding of the program. Un-

less the suspect values are fully defined by code at the

breakpoint, the developer seeks to understand the opera-

tions which caused the suspect values. In breakpoint de-

bugging, the next step involves setting breakpoints or

watchpoints and re-executing the program, hoping to stop

the execution where those problematic operations occurred.

In Querypoint debugging, we query for the values dur-

ing re-execution. Querypoint debugging begins from a

halted program execution, for example, from a convention-

al breakpoint. Each re-execution causes the debugger to

interrupt the program at some points in the execution and

gather information, ultimately halting again at the same

logical place, e.g., at the conventional breakpoint. The in-

terrupt points are chosen by the debugger based on the con-

straints in the Querypoint, as we describe in section 5. The

information we want from the re-execution, say “what

caused this foo to be null”, determines were we interrupt

execution, e.g. where foo is changed. We don't halt at these

interrupt points because we can't tell which point imme-

diately preceded our breakpoint until we hit it again. When

we again arrive at the conventional breakpoint, we select

the correct values from among the values collected at those

interrupt points to show the developer. The developer sees

the causes for suspect values without repeated manual in-

sertion of watchpoint or breakpoints.

We illustrate the idea with an introductory example. The

example demonstrates a buggy java program (Figure 1) and

the Querypoint debugging steps taken by developer before

locating the defect (figure 2). This example resembles a

real case; however it is simplified for presentation purpos-

es.

The program processes a list in two consecutive loops

and calculates and sets new values for each item in the list.

Every item in the list has a boolean field with name bar.
// first loop

1 for (Object record : list){

2 record.bar = true;

3 try{

4 stmt1;

5 stmt2;

7 record.bar = expr1;

8 stmt3;

9 }catch(Exception exp){

10 //ignore

11 }

12 }

13 Object foo;

 // second loop

14 for (Object record : list) {

15 if (record.bar || cond) {

16 record.bar = false;

17 foo = expr2;

18 } else{

19 foo = expr3;

20 }

21 assert (foo != null);

22 }

Figure 1. Java Pseudo-code, Introductory Example.

 a)

 b)

 c)

 d)

 e)

Figure 2. Diagrams of the Querypoint debugging steps for

the Introductory example. Each of a-e correspond to a stage

in the debugging process. The horizontal line represents the

program execution steps; vertical lines schematically illu-

strate points in the execution selected by Query-points.

This value is set in the first loop and used in if-conditions

in the second loop. The bug appears when the program

throws an AssertionError exception in the second loop (line

21).

By setting a conventional conditional breakpoint on line

21 with condition (foo == null), the developer can halt

program execution when line 21 is executed and foo is

null. This point in the sequence of program execution

steps is labeled A in figure 2.a.

The null value is unexpected so the developer seeks its

origin. Looking at code, we see that this variable can get a

new value either in line 17 or 19. To figure out which path

was taken using conventional breakpoints, the developer

can put two breakpoints on lines 17 and 19 or a breakpoint

on line 15 and then steps forward to reach the target line.

As sometimes happens, many loop iterations succeed

before we hit the assertion. To reduce the number of break-

point hits, the developer has to use one of available fea-

tures: pass count or additional conditions. The pass count

solution is often tedious: the developer has to re-execute

multiple times to deduce an appropriate pass count for this

particular bug. The conditions solution needs added code

and the accompanying potential for new bugs.

In Querypoint debugging, the developer defines a Que-

rypoint to identify a point in the execution foo changed just

preceding execution point A. Note that this is not the same

as a watchpoint for the value of foo: that would be the first

point in the execution where foo changed. Instead this Que-

rypoint refers to an existing state, the execution point A,

and finds only that change of foo that immediately precedes

point A. In our example, Line 17 is where foo got its null

value and we show that schematically as point B in Fig. 2b.
Suppose that the developer expected that execution path

goes to the else branch (line 18) instead of if branch (line

15) and expects foo to get its value from expr3 instead of

expr2. To determine why the if-conditions became true,

the developer has to check record.bar and cond values in

line 15 just before point B. Consider that the developer

cannot know the record.bar value at this line due the new

value given to it in line 16. The developer defines a second

Querypoint corresponding to the last effective condition

before point B (i.e., the last condition that branches to point

B) and asks for record.bar and cond values at this point.

The developer re-executes the buggy execution and gets the

record.bar and cond values at point C (Figure 2.c). We

call this a lastCondition Querypoint. Here, point C is de-

fined dependent to point B which itself is de-pendent to A.
The value of record.bar is true at point C and the de-

veloper has to find the origin to this wrong value. Consider

that due to two separate loops, the last value assignment to

the specific record.bar object at point C is not necessarily

the last execution of record.bar assignment lines (i.e.,

lines 2 and 7) before point C. These assignment lines might

be executed many times for other items in the list before

reaching point C. Again, the developer defines a new Que-

rypoint as the last change of record.bar at point C. This

third Querypoint builds on the other two. The developer re-

executes the buggy execution and debugger shows point D

(Figure 2.d) which is surprisingly corresponding to line 2

where record.bar is initiated.

Thus an exception must have occurred before line 7 in

the try-catch block and prevents line 7 execution. To

identify the statement which causes the exception, the de-

veloper defines a fourth Querypoint corresponding to the

exception that occurs after point D and in the try-catch

block. The developer re-executes the buggy execution and

debugger shows point E (Figure 2.e) which is correspond-

ing to line 5 and the defect point.

This example illustrates the critical aspects of Query-

point debugging:

B A C: 15 if(record.bar||cond)

D: 2 record.bar=true

D E: 5 stmt2

A: 21 assert(foo!=null) (Assertion Error)

A B: 17 foo=expr2

A B C

A B C

1. The workflow resembles breakpoint debugging, with

cycles of data examination and re-execution, with

breaks at new points.

2. The internal operation resembles trace-based omnis-

cient debugging, with the debugger applying queries to

the program data without always halting.

3. The Querypoints related to each other, forming an ex-

plicit chain from effects back to causes, helping to cen-

tralize the information of a debugging session.

Every Querypoint re-execution returns us to the same

point in the program execution, but each time we have ga-

thered information from earlier points, working our way

back toward the defect. As we discuss in Sec. 6, developers

can choose to combine breakpoints with Querypoints, mov-

ing the halted execution effectively backwards.

3. TraceQueries

To implement a Querypoint we define a TraceQuery, A

TraceQuery is the operational equivalent of a Querypoint, a

conversion of the relative and symbolic definition in the

Querypoint to a series of debugger breakpoints, watch-

points, and runtime constraint tests. Each Querypoint is

translated into a traceQuery; each traceQuery relates low

level things the debugger can implement: breakpoints,

watchpoints, and constraints.

Conventional breakpoints can be considered as queries

with constraints that select a set of points on execution

trace. Simple breakpoints and watchpoints are defined by

structural constraints (e.g., line number, method name, field

name, exception class, etc.) for an event type (e.g., line

execution, method call, field value change, etc.). Condi-

tional breakpoints let developers to add dynamic con-

straints based on the program state and in this way leverage

runtime data for filtering unwanted points. TraceQuery is a

generalization to the conditional breakpoint or watchpoint

concept that includes dynamic constraints between two

points of execution.

To explain the traceQuery idea, we need to define a few

concepts. An Execution trace consists of the ordered list of

executed instructions during program execution. In this

paper we focus on common bugs which do not depend

upon process or thread interleaving. For every instruction

in the execution trace, we define a point corresponding to

the program state before the instruction execution. An event

is a special change to program state and specifies an inter-

val on the execution trace. A value assignment which is

only one instruction is the simplest form of an event. We

can consider other types of events such as method call or

object creation. Events are usually represented by the point

immediately preceding them.

A traceQuery combines an event type, a set of con-

straints to be tested at each such event, and the points se-

lected by the query. We name every point selected by a

traceQuery in execution trace an instance of the traceQuery

and all instances of a traceQuery form the result set of tra-

ceQuery. An index is an integer that uniquely identifies one

instance in traceQuery’s result set. A non-negative index is

corresponding to the instance position from the beginning

of the result set. A negative index is the instance position

from the end of the result set.

For example, if the event in the traceQuery is a function

call, then index zero is the first time the function is called

and minus one is the last time it is called. The Querypoint

and its traceQuery are defined in terms of program state

values and stack frames. To refer to objects and variables in

heap during an execution we use global object reference

(gor) with this syntax: pointid(frame number): object

reference. For example, P(1):x.y refers to field y of vari-

able or field x in the second frame (the newest stack frame

is numbered zero) at point P. The oldest stack frame is

number -1. If the pointid is not specified, it means the cur-

rent point should be considered. If frame number is not

specified, it will be assumed zero. If object reference starts

with a dot, it refers to an object accessible through the

event. For example, if the event type is fieldchanged, the

field’s owner object is specified by .owner.

We define two kinds of Querypoint in this paper:

 lastChange(global object reference) : Defines

the point corresponding to the last value change of glob-

al object reference on the execution trace. In the last sec-

tion’s example, point B is defined by

lastChange(A(0):foo) and point D is defined by last-

Change(C(0):record.bar).

 lastCondition(pointid) : Defines the point corres-

ponding to the last condition that branches to this point.

In the last section’s example, point C is defined by

lastCondition(B).

We define three types of inter-point constraints used for

translating defined Querypoints to traceQueries:

 before(pointid) : means a point is selected by the

traceQuery if it happens before the point. We call this

before constraint.

 sameness(gor1, gor2) : assures that two object ref-

erences refer to one object. We call this sameness con-

straint.

 mayAffect(pointid) : means a point is selected by

the traceQuery if the sequence of method calls in its

callstack matches to the beginning of the sequence of me-

thod calls in the point’s callstack. We call it mayAffect con-

straint.

In the next section we explain how debugger translates a

Querypoint to a traceQuery employing these constraints.

Table 1. Translation of Querypoints B, C and D to TraceQueries

4. Querypoint to TraceQuery

To locate a Querypoint, debugger translates it to a trace-

Query with an index. We explain how two defined. Que-

rypoints in the previous section translated to traceQuery.

We separate lastChange Querypoint to two cases depend-

ing on whether the global object reference refers to a field

or variable. For all cases the associated index is -1 which

means the last instance in the trace query result set.

4.1.1 lastChange(field)

Assume that the global object reference defined in this

form: P(n):objectref and refers to a field. P is a pre-

viously defined point and n is the frame number. The de-

bugger translates this Querypoint to a traceQuery with

field changed event type and two constraints, before(P)

and sameness(Q:.owner,P:fieldOwner).

The first constraint assures that this traceQuery only

selects points before P so index -1 exactly refers to the

last change. The second constraint assures that the field’s

owners are the same object. Debugger finds the right class

for owner object from runtime data at point P. Point D in

the introductory example (lastChange(C(0):

record.bar)) is such Querypoint which is translated in

Table 1.

4.1.2 lastChange(variable)

Assume that the global object reference defined in this

form: P(n):objectref and refers to a variable. The de-

bugger translates this Querypoint to a traceQuery which

includes the variable definition statement, all the variable

assignment statements in the variable block and three

constraints, before(P), sameness((-1):this, P(-

1):this) and mayAffect(P).

The first constraint assures that this traceQuery only

selects points before P so index -1 exactly refers to the

last change. The second constraint assures that selected

point occurs in the same thread as P occurs. The last con-

straint excludes all similar variable assignments happen in

lower frames. The need for the mayAffect constraint can

be illustrated by simple recursive call. If we have x in

method m() and this method calls itself recursively, then

x changes many times. To correctly choose the last event

we exclude the recursive frames.

Point B in the introductory example is such Query-

point and it is translated in Table 1. Depending on the

underlying debugger technology, the interrupts may be

considered watchpoints (on local variables) or breakpoints

(on lines where value assignments are made).

4.1.3 lastCondition

Assume that we have this Querypoint: lastCondi-

tion(P) where P is a previously defined point. Having

call stack at point P and program source code (or byte-

code) it is possible to find the statement corresponding to

the last condition. If we consider the code in all methods

in call stack as one big block, then the last execution is

one of the forks surrounding P. In most cases the last ex-

ecuted condition is the most internal fork containing P.

The exception is a do-while loop:

 if(cond1){

 do{

 XX_P_XX;

 }while(cond2);

 }

where it is not clear from the callstack alone whether P

happens in the first or next iteration. The last condition

may be the do-while condition or the outer fork surround-

ing it. The last condition may be do-while condition or the

outer fork surrounding that. If the surrending fork is again

a do-while loop, the outer fork should also be considered.

This process finally specifies all statements that may be

the last condition branched to point P. Debugger trans-

lates the Querypoint to a traceQuery which includes all

the fork statements resulted from mentioned process and

three constraints, before(P), mayAffect(P) and same-

ness((-1):this,P(-1):this).

The first constraint assures that this traceQuery only

selects points before P so index -1 exactly refers to the

last condition. The second constraint assures that selected

point occurs in the same thread as P occurs. The last con-

straint excludes all similar branches happen in lower

frames. Point C is such Querypoint and its translation can

be found in Table 1.

5. Implementation

We implemented a prototype of Querypoint debugger for

Java. This prototype works based on iterative program re-

execution. Whenever the developer introduces a new

Point Querypoint TraceQuery Index

B lastChange(A(0):foo) interrupt on lines 13, 17 and 19,
sameness((-1):this, P(-1):this), mayAffect(A), before(A) -1

C lastCondition(B) interrupt on line 15, sameness((-1):this, P(-1):this),
mayAffect(B), before(B)

-1

D lastChange
(C(0):record.bar)

 fieldchanged interrupt on field bar in the record’s class,
before(C),sameness(.owner, C:record)

-1

Querypoint, debugger adds it to Debug Model, translating

each Querypoint to a traceQuery as explained in the pre-

vious section and updates a dependency graph. The de-

pendency graph represents dependencies between

Querypoints created by inter-point constraints. A new

Querypoint can only refer to previously defined Query-

points and they are evaluated in order, so the graph is

acyclic. In the introductory example, point B is dependent

to point A due to three constraints conditions: before,

sameness and mayAffect. The dependency graph is used

to check interpoint constraints. Point B happens before

point A and therefore none of the sameness and mayaf-

fect constraints can be checked before debugger locates

point A. To manage this situation debugger keeps a list of

all points have the chance to be point B. When debugger

locates point A, it checks the constraint for all points in

the list and removes those that don’t satisfy these con-

straints.

While building the dependency graph, the debugger al-

so make a list of data should be collected at every point.

For example to check sameness constraint, the id of ob-

ject should be stored for both object references. For ex-

ample due to sameness dependency between points D and

C, the object id of .owner for every potential instance for

point D and the object id of record for every potential

instance for point C should be stored.

While (there is any unlocated Querypoint)

 Re-execute the buggy execution.

 While (there is any event)

 If (event is classload)

 Set required breakpoints for the class.

 If (event is new Querypoint by the user)

 Add it to debug model.

 Translate Querypoint to traceQuery.

 Update dependency graph.

 If (event is breakpoint hit)

 Find correponding traceQuery.

 Check runtime conditions.

 If there is any remained condition

 Add it to potential list

 Else

 Add it to resultSet

 If any queryopint matches

 Find all dependent Querypoints.

 Check dependent conditions for them.

 If any new queryoint matches,

 Redo this step.

 Resume the execution;

Figure 3. Outline for Locating Querypoints.

After adding a Querypoint to Debug Model, the de-

bugger re-executes the program and monitors the execu-

tion. The overall process is outlined in Fig. 3. Our

prototype uses Java Debug Interface (JDI) to launch to

the debuggee program and allows the user to add queries

to break program execution and to re-execute. Debugger

finds the result of a traceQuery in three stages. First, it

sets breakpoints or watchtpoints at statements which are

defined by the trace query. To do this, it listens to class

load events and sets necessary breakpoints for every

loaded class. We assume that debugger directly has access

to bytecode of all classes loaded to JVM.

Second, it monitors the execution and whenever a

breakpoint is hit, it finds the corresponding traceQuery

and checks conditions, skipping any conditions dependent

on points later in the execution. If all these conditions are

satisfied, it keeps the call stack structure and collects re-

quired data like values of fields or variables. If any condi-

tion was skipped, this point is added to the list of potential

instances for the traceQuery (so that these instances can

be tested later). Otherwise this point is added to the re-

sultSet of traceQuery.

Whenever an instance is added to a traceQuery result-

set, debugger checks whether this instance matches to a

Querypoint by checking the index. If the point matches to

a Querypoint debugger assigns this point to the Query-

point. Then debugger finds all dependent Querypoints to

this Querypoint and refines the list of potential points by

checking constraints. The debugger recursively repeat this

step until no new Querypoint is added.

6. Reproducible Non-deterministic Execution

Thus far we have not discussed problems caused by mul-

tiple threads or other sources of non-deterministic execu-

tions. We want to explain why we believe Querypoint

debugging is robust in the practically important case

where a bug is reproducible even though the execution

may not be deterministic.

Because Querypoints require re-execution, we rely on

reproducible but not necessarily deterministic execution.

A bug is reproducible for a developer when the developer

can start from a determined initial state, operate on the

program with a list of actions, and reproduce the symp-

toms of the bug. The details of the execution can change

each time we re-execute the buggy program, but the bug-

gy result is the same. The entire query chain reapplies

during each execution so the data we show the developer

will be internally consistent. The reproducibility of the

bug means that the defect is very unlikely to depend on

the order of events during the execution.

In this important case of reproducible bugs, Query-

points are more effective than breakpoints. In the case of

logically deterministic program execution, we can use the

result from a Querypoint operation to set a conditional

breakpoint then re-execute the program to position the

execution trace backwards from our first breakpoint.

(This may be a useful adjunct for Querypoint debuggers

to implement, but this backwards motion in the execution

logic is not required for Querypoint debugging.) Thus in

this case Querypoint debugging can do the same kinds of

things as conventional breakpoints just more automatical-

ly.

In the case of a non-deterministic program, a Query-

point is not equivalent to any series of conventional

watchpoints or breakpoints. Each time we re-execute a

non-deterministic program, the details of execution in-

struction order may change. For example, if we record the

source code lines every time a conventional watchpoint

hits, the record may differ each time we re-execute. Sup-

pose we consult one such record and set a breakpoint on

the last entry, the apparent lastChange source line. When

we re-execute, the breakpoint will hit, but the information

we gain may be incorrect: this may not be the lastChange

for this particular re-execution. The Querypoint method

co-records the values we need and the sequence of source

lines from all of the watchpoints, then analyzes the record

to select the correct lastChange point. The data shown to

the developer will be internally consistent, but of course it

may change from a previous re-execution, surprising the

developer. This is just a signal that the execution is not

deterministic. In future we hope to compare queries from

successive executions as a tool for learning about non-

deterministic executions.

7. Debugging a Painting Application

To demonstrate Querypoints are feasible we use a simple

painting environment introduced in [9]. This program lets

the user to draw graphics on the right white pane by

pressing and releasing the mouse button. User can selects

one of available drawing modes (e.g., pencil, eraser, line).

The color is also specified by three sliders which are cor-

responding to main three colors. Figure 4 shows the inter-

face of this environment.

The bug happens when user changes the sliders posi-

tions to draw a blue line (i.e., when both the red and green

sliders are at the left side while the blue slider is at the

right side). In this configuration, new lines’ color is black

Figure 4. Painting Application.

instead of blue. To reproduce the bug it is enough to res-

tart the program and put sliders in the same positions and

draw a line.

We assume the developer set a breakpoint that halts

execution after the bug appears. We'll call this point in the

execution trace P1. Figure 6 shows P1 definition as well

as the call stack and source code related to this point.

Using the debugger, the developer sees that

g.foregroundcolor is black, an unexpected value and pos-

sibly related to the defect. To explore this possiblity, the

developers asks for lastChange(P1:foregroundcolor).

Debugger reads the Java class of object g and puts a

watchpoint over the foregroundColor field. Every time

this watchpoint hits, the debugger stores the call stack and

an integer uniquely identifying the object g within this

execution. When execution again reaches P1, the debug-

ger works backwards through the traceQuery's potential

list stopping at the instance with a stored object id equals

to the object id of the reference g. We’ll name this in-

stance P2. Figure 6 shows the P2 definition, both the

Querypoint and its translation into a watchpoint and a

constraint as described in section 3. Fig. 6 also shows

collected data at both P1 and P2 at the last execution.

P1 and P2 happen in EventDispatch thread. Whenever

an event is fired which requires updating graphical inter-

face this thread calls repaint method on the parent com-

ponent and it recursively calls this method on children

should be updated. The repaint method is called non-

deterministically. Therefore, to locate P2 by traditional

watchpoints, the developer has to pause at every hit,

writes down call stack, object ids and then resume and

later compare all these collected data to find out which

ones are related.

The source code for point P2 shows that the foreground-

Color change depends on the value of the member field

color. Consequently the developer sets a new Querypoint

for the last change of field color of the PencilPaint ob-

ject. The next point, P3, is defined by last-

Change(P2(1):color).

Figure 5. Screenshot of the execution-trace viewer in a
prototype Querypoint debugger applied to the application
shown in Figure 4.

Point P1
Definition

Line Breakpoint: SunGraphics2D, line 2098

Condition: this.getColor() == Color.BLACK

Hit index: 0

Call stack

SunGraphics2D.java:drawLine():2098

PencilPaint.java:paint():56

PaintCanvas.java:paintComponent():42

JComponent.java:paint():1027

...

EventDispatchThread.java:run():122

Source Code

5 public class PencilPaint extends PaintObject {

 …

47 public void paint(Graphics2D g) {

…

56 g.drawLine((int) one.getX(), (int) one.getY(),

57 (int) two.getX(), (int) two.getY());

…

60 }

61 }

Point P2
Querypoint

Querypoint: lastChange(P1:foregroundColor)

TraceQuery

Event: FieldChange SunGraphics2D.foregroundColor

Conditions: sameness(.owner, P1:this), before(P1)

Index:-1

Call stack

SunGraphics2D.java:setColor():1653

PencilPaint.java:paint():50

PaintCanvas.java:paintComponent():42

JComponent.java:paint():1027

...

EventDispatchThread.java:run():122

Source Code

5 public class PencilPaint extends PaintObject {

 …

47 public void paint(Graphics2D g) {

…

50 g.setColor(color);

…

56 g.drawLine((int) one.getX(), (int) one.getY(),

57 (int) two.getX(), (int)

two.getY());

…

60 }

61 }

Collected Data

P1:this <- ObjectId:1539,Class:SunGraphics2D

P2:.owner <- ObjectId:1539,Class:SunGraphics2D

Point P3
Querypoint

Querypoint: lastChange(p2(1):color)

TraceQuery

Event: FieldChange PencilPaint.color

Conditions: sameness(.owner, P2(1):this), before(P2)

Index:-1

Call stack
PaintObject.java:setColor():10

PaintObjectConstructor.java:mousePressed():60

Component.java:processMouseMotionEvent():6261

JComponent.java:processMouseMotionEvent():3283

...

EventDispatchThread.java:run():122

Source Code
9 public class PaintObjectConstructor implements

 MouseListener, MouseMotionListener {

…

13 private PaintObject temporaryObject;

…

52 public void mousePressed(MouseEvent e) {

…

60 temporaryObject.setColor(color);

…

66 }

…

100}

Collected Data
P1:this <- ObjectId:1550,Class:SunGraphics2D

P2:.owner <- ObjectId:1550,Class:SunGraphics2D

P2(1):this <- ObjectId:1536,Class:PencilPaint

P3:.owner <- ObjectId:1536,Class:PencilPaint

Point P4
Querypoint

Querypoint: lastChange(p3(1):color)

TraceQuery

Event: FieldChange PaintObjectConstructor.color

Conditions: sameness(.owner, P3(1):this), before(P2)

Index:-1

Call stack
PaintObjectConstructor.java:setColor():26

PaintWindow.java:stateChanged():26

JSlider.java:fireStateChanged():420

JSlider.java:stateChanged():337

…

EventDispatchThread.java:run():122

Source Code
10 public class PaintWindow extends JFrame

 implements PaintObjectConstructorListener {

…

23 private PaintObjectConstructor objectConstructor;

…

25 public void stateChanged(ChangeEvent changeEvent) {

26 objectConstructor.setColor(new Color(

 rSlider.getValue(),

27 gSlider.getValue(), gSlider.getValue()));

28 repaint();

29 }

 …

165}

Figure 6. Visited points (P1 to P4), their definition, call stack , source code and collected data by debugger.

The debugger translates the Querypoint into a trace-

Query and re-executes. The process is similar to the steps

for P2. The only difference is that P3 is dependent to P2,

and P2 is dependent to P1. Therefore, debugger has to

wait until the execution reaches P1 and then it can recog-

nize P2 and respectively P3. Figure 6, shows P3 and col

lected data at all three points. Managing this case by regu

lar watchpoints is even harder, because developer has to

keep track of hits for two different watchpoints.

After locating P3, developer seeks for the last change

of the field color of PaintObjectConstructor. This

point, P4, is corresponding to defect (Figure 6). As you

see in the code the value of green slider is used as the

value of blue slider and it’s the reason for wrong color.

Figure 5 is a screenshot of the execution trace viewer

in the prototype debugger, taken after applying the four

Querypoints described above. The smaller circles are

those points which are inspected but they have not satis-

fied all the constraints. The bigger circles demonstrate

points P1 to P4. Due to non-determinism, none of the

points P2, P3 and P4 are recognized before reaching P1.

Therefore developer cannot inspect program state by

pausing at those points. Instead, developer uses this inter-

face and asks debugger to collect needed data in the next

re-execution. Moreover the developer can define new

Querypoints from a point or print collected data at a point,

by selecting associated circle. Circles provide handles to

the developer to work with points which are not physical-

ly available but developer knows them.

8. Related Work

We have split the related work in three subsections. We

first compare our approach to other similar approaches

which attempt to provide the capability of backward

movement on buggy execution. Then we look at runtime

trace monitoring, and automated debugging.

Querypoint debugging supports obtaining information

about the execution state logically earlier in the control

flow. This support resembles a mixture of replay-based

and logging-based debugging. Replay-based approaches

capture limited data during execution and replay the bug-

gy execution to reach past points. In contrast, logging-

based approaches collect enough data during execution to

relieve developer from re-execution. Replay-based ap-

proaches impose much less runtime overhead (about two

orders of magnitudes) comparing to logging-based

appproches. However, developer has to re-execute the

buggy execution several times. Querypoint debugging

collects data on re-execution but this data is limited to the

current queries of developer.

Among replay-based debuggers we compare to bdb [4]

and reverse watchpoint [14]. A bidirectional C debugger,

bdb employs a step counter to locate the requested point

from the beginning of execution. It relies on deterministic

execution replay and records the results of non-

deterministic system calls and re-injects them into the

program when it is replayed. It makes use of checkpoints

to reduce the time needed for re-execution. Reverse

watchpoint, is proposed by Maruyama et al., analyses the

execution and moves the debugger to the last write access

of a selected variable by re-executing the program from

the beginning [14]. Similar to bdb it relies on determinis-

tic replay and uses a counter to correctly locate a point in

the next execution.

Querypoint also counts during replay but rather than

halting the execution to allow the developer to investigate

program state, it records query results to investigate pro-

gram state. For common deterministic bugs, these two

approaches should be similar; after a re-execution, Que-

rypoint can support backwards step or backwards watch-

point at the cost of one additonal replay. For non-

deterministic cases, Querypoint reports correct values

from one path of execution (also like the other two), but if

the developer asks for more information, causing another

re-execution, Querypoint will report correct values from

this new path. Since Querypoint does not require determi-

nistic replay it is much simplier to implement and in fu-

ture we may be able to support comparisons of query

result from different reexecutions as a tool for solving

non-deterministic bugs.

Among logging-based approaches are "omniscient"

debuggers ODB[10] and Unstuck[8]. Both approaches

keep the log history in memory and hence can only record

and store the complete history for a short period of time.

A more scalable approach has been proposed by Pothier

et al. [15]. Their back-in-time debugger, TOD, addresses

the space problem by storing execution events in a distri-

buted database. Comparing to Omniscient debuggers our

approach is lightweight and more flexible. Developer can

start debugging just after reproducing bug without a cap-

turing step. Changing inputs or environment settings and

re-executing to investigate the bug works as in conven-

tional breakpoint debuggers.

Two new directions in logging debuggers explore

more detailed use of the log and more effective logging

approaches. WhyLine[9] provides visual interface to col-

lected runtime information and let developer to move on

execution log using queries expressed in terms of the pro-

gramming objects. WhyLine stores the program user in-

terface in addition to program trace and provides answers

to why and why not questions to the user. Jive[6] depicts

the history of execution by a sequence diagram and lets

user to query on events database. Both tools suffer from

similar issues with omniscient debuggers; both provide

models for extending Querypoint debugging to obtain a

better user interface while retaining the flexible conven-

tional replay model of debugging.

 A recent work by Lienhard et al.[12] suggests virtual

machine level support for keeping the object flow. It rep-

laces every object reference with an alias object which

keeps the history of changes to the object reference. In

this way, when an object is collected by garbage collector,

its track of changes (if it is not referenced by other alias-

es) will be also collected. Though this approach incurs

less runtime overhead (7 times to 115 times) in compari-

son to omniscient debuggers, it adds memory overhead.

Querypoint debugging uses re-executions to gather infor-

mation requested by the developer: the memory overhead

depends on the query not the entire program. Moreover,

the Lienhard et al. debugger significantly changes the

virtual machine, while our approach is a generalization to

conditional breakpoints and available debugger infrastruc-

ture can be adapted to support it.

Querypoint debugging does rely on a conventional

breakpoint to begin queries, a requirement not shared by

full logging solutions. Here we leverage past experience

of developers, but there are also new tools [3] to help with

this problem in the case of graphical and event based sys-

tems.

Lencevicius et al. proposed Query-based debugging

which consists in identifying events that match a query

expressed in a high-level language [11]. In their work, a

query defines a set of constraint for the program state and

debugger finds those execution points which satisfy these

conditions. In contrast, our approach is focused on navi-

gation from already defined points with a high-level lan-

guage.

PQL[13], PTQL[7], JavaMOP[5], QVM[2] and Tra-

cematches[1] provide means to find a sequence of events

in executions that matches to a determined pattern.

Though these approaches are similar to our approach in

locating a point with specific characteristics, they are not

developed for debugging but finding similar patterns of

events (e.g, to prevent similar bugs) or verifying some

properties about the execution.

9. Conclusions and Future Work

We have described Querypoints, an extension of condi-

tional breakpoints supporting queries that extract informa-

tion from points in the execution logically earlier in the

program execution A Querypoint is the high-level query

building on previous Querypoints and on information

obtained in previous queries. The goal is that developers

specify new points by Querypoints instead of setting low-

level breakpoints and watchpoints.

Developers use lastCondition Querypoints to examine

program state before the last branch, analogous to a

backwards single step; they use lastChange Querypoints

to examine program state at a state change, analogous to a

backwards watchpoint. It is the debugger’s responsibility

to correctly and efficiently locate these backwards points

and developer has not to deal with filtering unwanted

breakpoint hits and making complex breakpoints. Moreo-

ver, this high-level provides an abstract central reference

view over the buggy execution during debugging. Infor-

mation about the execution accumulates in the Query-

points as we work backwards towards the cause of the

bug.

By using queries with constraints Querypoints com-

bine some of the advantages of breakpoint debugging

with some from query-based debuggers. Querypoints can

be added onto existing breakpoint debuggers and the re-

execution behavior should be familiar to developers. We

don't require deterministic replay so the infrastructure for

replaying external inputs is not required. We only record

selected information on each re-execution so memory

overhead should resemble breakpoint debugger over-

heads. We have demonstrated using the queries for two

forms of backwards movement, lastChange and lastCom-

parison. We believe more kinds of queries can be sup-

ported for more sophisticated types of logical motion or

runtime dynamic analysis.

Querypoints also potentially share some of the draw-

backs of query-based debuggers: forming queries can be

technically demanding limiting the appeal of the solution

for already overburdened developers and complex queries

could impact debugger performance in unpredictable

ways. The WhyLine debugger [9] points to one path for

avoiding these problems: the debugger can present the

query possibilities to the developer in terms of concrete

program constructs rather than abstractions. In this way

we may combine the flexibility of a breakpoint solution

with some of the power of the 'omniscient' debugger ap-

proaches.

Practical implementations of Querypoint debugging

will need to explore the space-time tradeoffs of Query-

points. At one extreme we store very little data from each

interrupt and the developer must issue new queries and re-

execute to learn about the state of the program at earlier

execution points. At the other extreme we checkpoint the

execution so all the information about the state is availa-

ble to the developer after each re-execution. More likely

will be simple compromises where we record the local

variables, arguments to functions, and objects referenced

in a function or where simple analysis of the source

guides data collection.

References

[1] Allan, C., Avgustinov, P., Christensen, A. S., Hendren,

L., Kuzins, S., Lhoták, O., de Moor, O., Sereni, D., Sit-

tampalam, G., and Tibble, J. 2005. Adding trace match-

ing with free variables to AspectJ. SIGPLAN Not. 40, 10

(Oct. 2005), 345-364. DOI=

http://doi.acm.org/10.1145/1103845.1094839

http://doi.acm.org/10.1145/1103845.1094839

[2] Arnold, M., Vechev, M., and Yahav, E. 2008. QVM: an

efficient runtime for detecting defects in deployed sys-

tems. In Proceedings of the 23rd ACM SIGPLAN Confe-

rence on Object-Oriented Programming Systems

Languages and Applications (Nashville, TN, USA, Oc-

tober 19 - 23, 2008). OOPSLA '08. ACM, New York,

NY, 143-162. DOI=

http://doi.acm.org/10.1145/1449764.1449776

[3] Barton, J.J. and Odvarko, J. 2010. Dynamic and Graphi-

cal Web Page Breakpoints. In Proceedings of the 19th

international Conference on World Wide Web. WWW

'10.

[4] Boothe, B. 2000. Efficient algorithms for bidirectional

debugging. In Proceedings of the ACM SIGPLAN 2000

Conference on Programming Language Design and Im-

plementation (Vancouver, British Columbia, Canada,

June 18 - 21, 2000). PLDI '00. ACM, New York, NY,

299-310. DOI=

http://doi.acm.org/10.1145/349299.349339

[5] Chen, F. and Roşu, G. 2007. Mop: an efficient and ge-

neric runtime verification framework. In Proceedings of

the 22nd Annual ACM SIGPLAN Conference on Object-

Oriented Programming Systems and Applications (Mon-

treal, Quebec, Canada, October 21 - 25, 2007). OOPSLA

'07. ACM, New York, NY, 569-588. DOI=

http://doi.acm.org/10.1145/1297027.1297069

[6] Czyz, J. K. and Jayaraman, B. 2007. Declarative and

visual debugging in Eclipse. In Proceedings of the 2007

OOPSLA Workshop on Eclipse Technology Exchange

(Montreal, Quebec, Canada, October 21 - 21, 2007). ec-

lipse '07. ACM, New York, NY, 31-35. DOI=

http://doi.acm.org/10.1145/1328279.1328286

[7] Goldsmith, S. F., O'Callahan, R., and Aiken, A. 2005.

Relational queries over program traces. In Proceedings

of the 20th Annual ACM SIGPLAN Conference on Ob-

ject-Oriented Programming, Systems, Languages, and

Applications (San Diego, CA, USA, October 16 - 20,

2005). OOPSLA '05. ACM, New York, NY, 385-402.

DOI= http://doi.acm.org/10.1145/1094811.1094841

[8] Hofer, C., Denker, M., Ducasse, S.: Design and imple-

mentation of a backward-in-time debugger. In Proceed-

ings of NODE’06. Volume P-88 of Lecture Notes in

Informatics,Gesellschaft f¨ur Informatik (GI) (September

2006) 17–32

[9] Ko, A. J. and Myers, B. A. 2008. Debugging reinvented:

asking and answering why and why not questions about

program behavior. In Proceedings of the 30th interna-

tional Conference on Software Engineering (Leipzig,

Germany, May 10 - 18, 2008). ICSE '08. ACM, New

York, NY, 301-310. DOI=

http://doi.acm.org/10.1145/1368088.1368130

[10] Lewis, B. and Ducasse, M. 2003. Using events to debug

Java programs backwards in time. In Companion of the

18th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Appli-

cations (Anaheim, CA, USA, October 26 - 30, 2003).

OOPSLA '03. ACM, New York, NY, 96-97. DOI=

http://doi.acm.org/10.1145/949344.949367

[11] Lencevicius, R., Hölzle, U., and Singh, A. K. 2003. Dy-

namic Query-Based Debugging of Object-Oriented Pro-

grams. Automated Software Engg. 10, 1 (Jan. 2003), 39-

74. DOI= http://dx.doi.org/10.1023/A:1021816917888

[12] Lienhard, A., Grba, T., and Nierstrasz, O. Practical Ob-

ject-Oriented Back-in-Time Debugging ECOOP '08:

Proceedings of the 22nd European conference on Ob-

ject-Oriented Programming, Springer-Verlag, 2008,

592-615

[13] Martin, M., Livshits, B., and Lam, M. S. 2005. Finding

application errors and security flaws using PQL: a pro-

gram query language. In Proceedings of the 20th Annual

ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (San

Diego, CA, USA, October 16 - 20, 2005). OOPSLA '05.

ACM, New York, NY, 365-383. DOI=

http://doi.acm.org/10.1145/1094811.1094840

[14] Maruyama, K., Terada, M.: Debugging with reverse

watchpoint. In Proceedings of the Third International

Conference on Quality Software (QSIC’03), Washing-

ton, DC, USA, IEEE Computer Society (2003) 116

[15] Pothier, G., Tanter, É., and Piquer, J. 2007. Scalable om-

niscient debugging. SIGPLAN Not. 42, 10 (Oct. 2007),

535-552. DOI=

http://doi.acm.org/10.1145/1297105.1297067

http://doi.acm.org/10.1145/1449764.1449776
http://doi.acm.org/10.1145/349299.349339
http://doi.acm.org/10.1145/1297027.1297069
http://doi.acm.org/10.1145/1328279.1328286
http://doi.acm.org/10.1145/1094811.1094841
http://doi.acm.org/10.1145/1368088.1368130
http://doi.acm.org/10.1145/949344.949367
http://dx.doi.org/10.1023/A:1021816917888
http://doi.acm.org/10.1145/1094811.1094840
http://doi.acm.org/10.1145/1297105.1297067

