
Revisiting Language Support for Generic Programming:
When Genericity Is a Core Design Goal

Benjamin Chetiouia, Jaakko Järvib, and Magne Haveraaena
a University of Bergen, Norway
b University of Turku, Finland

Abstract
Context Generic programming, as defined by Stepanov, is a methodology for writing efficient and reusable
algorithms by considering only the required properties of their underlying data types and operations. Generic
programming has proven to be an effective means of constructing libraries of reusable software components
in languages that support it. Generics-related language design choices play a major role in how conducive
generic programming is in practice.
Inquiry Several mainstream programming languages (e.g. Java and C++) were first created without generics;
features to support generic programming were added later, gradually. Much of the existing literature on
supporting generic programming focuses thus on retrofitting generic programming into existing languages
and identifying related implementation challenges. Is the programming experience significantly better, or
different when programming with a language designed for generic programming without limitations from
prior language design choices?
Approach We examine Magnolia, a language designed to embody generic programming. Magnolia is rep-
resentative of an approach to language design rooted in algebraic specifications. We repeat a well-known
experiment, where we put Magnolia’s generic programming facilities under scrutiny by implementing a subset
of the Boost Graph Library, and reflect on our development experience.
Knowledge We discover that the idioms identified as key features for supporting Stepanov-style generic
programming in the previous studies and work on the topic do not tell a full story. We clarify which of them
are more of a means to an end, rather than fundamental features for supporting generic programming. Based
on the development experience with Magnolia, we identify variadics as an additional key feature for generic
programming and point out limitations and challenges of genericity by property.
Grounding Our work uses a well-known framework for evaluating the generic programming facilities of a
language from the literature to evaluate the algebraic approach through Magnolia, and we draw comparisons
with well-known programming languages.
Importance This work gives a fresh perspective on generic programming, and clarifies what are fundamental
language properties and their trade-offs when considering supporting Stepanov-style generic programming.
The understanding of how to set the ground for generic programming will inform future language design.

ACM CCS 2012
Software and its engineering → Very high level languages;

Keywords Generic Programming, Algebraic Specifications, Graphs, Concepts, Boost Graph Library

The Art, Science, and Engineering of Programming

Submitted June 2, 2022

Published October 15, 2022

doi 10.22152/programming-journal.org/2023/7/4
© Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 7, no. 2, 2023, article 4; 39 pages.

https://doi.org/10.22152/programming-journal.org/2023/7/4
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Revisiting Language Support for Generic Programming

1 Introduction

It is routine in programming to parameterize algorithms and data structures by type to
make them reusable in different contexts. The mechanisms for implementing generic
code, however, vary from one language to the other. These details matter: Garcia et
al. [30] evaluated and compared the level of support for generic programming in
several programming languages (C++, SML, OCaml, Haskell, Eiffel, Java, C#, and
Cecil), and showed that many language design choices related to generics significantly
influence how conducive that language is in practice to generic programming. This
work has had an influence on the design of programming languages (see, e.g., C++’s
Concepts [42], Haskell’s associated types [14], and Siek and Lumsdaine’s idealized G
language [84, 86] for generic programming).
Generic features are now common features of most widely used languages, and for

many of them, these features were an afterthought. The list of such languages has
kept growing—examples of languages with recent or planned generic features include
Fortran [48], Go [43], ECMAScript, TypeScript, and FlowType. Retrofitting tends to
lead to compromises, which raises the questions whether the set of features for generic
programming would look the same for languages that incorporate support for generic
programming as part of their initial design, and how such potentially different designs
support generic programming in practice. This paper sheds light on these questions
by examining language designs rooted in algebraic specification. In particular, we
conduct a case study and analyse in details the features and programmability of
one language representative of the approach, and discuss the findings in the general
context of languages that follow the same algebraic design principles. The goal is
to inform future language designs, so that new languages could support generic
programming without pitfalls identified by Garcia et al.
Interpretations of generic programming vary depending on what kind of param-

eterization a programming language supports. Gibbons gives a taxonomy for some
interpretations of genericity [31] which we reuse here. Programs parameterized by
type constructors give rise to genericity by shape, through datatype-generic program-
ming (also called polytypism) [1, 31]. This is the interpretation chosen by, e.g., Generic
Haskell [52]. In the object-oriented world, generic programming refers primarily
to generics or parametric polymorphism [11, 56], that is genericity by type. We add
qualifiers such as bounded or constrained to these terms, and mean roughly the same
things. Algebraic specifications are the basis for another approach to generic pro-
gramming called parameterized programming. Parameterized programming has been
concretized prominently in the OBJ family of languages, e.g. in OBJ2 [28], OBJ3 [37],
CafeOBJ [24], and Maude [19, 20]. C++ concepts (as proposed for C++11), which de-
scribe syntactic and semantic requirements on data structures and algorithms [42],
also descend from this approach based on algebraic specifications. Concepts, as im-
plemented in C++20, only support syntactic requirements: we talk about genericity by
structure. In the fully-fledged version of concepts, when both syntactic and semantic
requirements are supported, we talk about genericity by property. C++ concepts were
born out of Stepanov’s work on generic programming [23, 60]. This paper, following
Garcia et al., takes the notion of generic programming as introduced by Musser and

4:2

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

Generic programming is a sub-discipline of computer science that deals with
finding abstract representations of efficient algorithms, data structures, and other
software concepts, and with their systematic organization. The goal of generic
programming is to express algorithms and data structures in a broadly adaptable,
interoperable form that allows their direct use in software construction. Key ideas
include:
• Expressing algorithms with minimal assumptions about data abstractions, and
vice versa, thus making them as interoperable as possible.
• Lifting of a concrete algorithm to as general a level as possible without losing
efficiency; i.e., the most abstract form such that when specialized to the concrete
case, the result is just as efficient as the original algorithm.
• When the result of lifting is not general enough to cover all uses of an algorithm,
additionally providing a more general form, but ensuring that the most efficient
specialized form is automatically chosen when applicable.
• Providing more than one generic algorithm for the same purpose and at the same
level of abstraction, when none dominates the others in efficiency for all inputs.
This introduces the necessity to provide sufficiently precise characterizations of the
domain for which each algorithm is the most efficient.

Figure 1 Definition of generic programming from Jazayeri, Musser, and Loos [58].

Stepanov in their seminal work in 1988 [69]. Figure 1 reproduces their structured
definition of generic programming, taken from Jazayeri, Musser, and Loos [58].
We employ Garcia et al.’s framework for evaluating languages for generic program-

ming to assess the approach based on algebraic specifications through an experiment
with the Magnolia programming language [2]. This research language was first de-
veloped more than a decade ago, and is now again under active development [16].
We repeat Garcia et al.’s experiment of implementing a subset of the Boost Graph Li-
brary [82] (BGL), rich in generic definitions, to put the generic programming facilities
of a language under rigorous scrutiny.
Magnolia is designed as an embodiment of a language for Stepanov-style generic

programming. Magnolia’s main type of genericity is thus genericity by property, as
the language allows the specifications of algebraic signatures along with semantic
requirements on their behavior, i.e., concepts. Magnolia does not offer any primitive
type (beyond predicates), and it is designed to be parameterized by a host program-
ming language and data structures implemented in that language. In the style of
Gibbons’s taxonomy, we coin the term genericity by host language to refer to the type
of generic programming enabled by this axis of parameterization. One can implement
composite operations in Magnolia—all base types and their operations, even loop
structures, come from libraries written in the host language. Magnolia has a transpiler
architecture, where the boundary between the language (Magnolia) and the base
library (written in the host language) is not predefined, but rather the programmer
can freely place it where convenient.
Garcia et al.’s work [30] to implement the same generic library in a variety of

languages led the authors to identify several language properties that are useful and/or

4:3

Revisiting Language Support for Generic Programming

necessary for effective generic programming. Siek and Lumsdaine, in the context of
developing the G programming language, extended this set of properties [86]. These
sets of properties served as the language evaluation framework in the above two works.
We adopt this framework on the one hand to assess Magnolia’s support for generic
programming and on the other hand to relate its somewhat unorthodox language
design to (more) mainstream languages. The listing of the identified properties, with
our additions, is shown in Figure 2.
Following the recipe of the prior works, we implement a fragment of a generic

graph library modeled after the BGL, in Magnolia, and analyze the result with regards
to each identified property. This experiment allows us to extract several insights into
generic programming, which we discuss in the paper. We highlight two particularly
noteworthy aspects of the Magnolia BGL fragment. First, we implement both C++ and
Python backend libraries. The same generic Magnolia code that captures the essence
of graph algorithms can then be transpiled to either of these languages. We achieve an
additional level of genericity, i.e., genericity by host language. Second, we show how a
(seemingly) sequential generic algorithm can be transformed into one that is parallel,
by picking appropriate backend data structures. This is achieved by abstracting the
iteration mechanism. Magnolia does not offer any built-in looping constructs, and
repetitions are thus necessarily expressed as generic abstractions.
The paper is structured as follows. Section 2 describes the landscape of languages

designed for generic programming based on algebraic specifications, and explains how
the approach is concretized, first in Maude and then in Magnolia. Section 3 presents
our small graph library and discusses its Magnolia implementation. Section 4 situates
Magnolia within the landscape of generic languages. It also makes connections and
comparisons with other languages, and discusses related work. Section 5 discusses
the performance of our implementation. Section 6 reflects on our approach and the
insights we gained by developing the graph library. All the code discussed in this
paper is made available [16].

2 Languages Designed for Generic Programming: The Approach of Algebraic
Specifications

Algebraic specifications are at the core of Stepanov’s work on generic programming [23,
60, 69, 87]. Highly influential early work in the field is Goguen’s parameterized
programming that emphasizes code reuse and modularity [29, 33]. Siek characterizes
parameterized programming as similar to Stepanov’s notion of generic programming,
but without the same emphasis on efficiency [84]. Parameterized programming thus
also aims at expressing algorithms in their most general form, making both their
syntactic and semantic requirements explicit, and well organized.

2.1 Algebraic Specifications and Maude

Algebraic specifications and Goguen and Burstall’s theory of institutions [36] have
guided the design of the OBJ language family [39] (OBJ2, OBJ3, CafeOBJ, Maude. . .).

4:4

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

These languages provide extensive support for parameterized programming by design.
OBJ2 and OBJ3 are both implementations of the OBJ logical programming language
that differ in their operational semantics [37]. Maude incorporates most features of
OBJ3 and significantly expands the capabilities of OBJ2 and OBJ3 for parameterized
programming. Maude and CafeOBJ are still under active development. We describe
below the general design of languages intended to support generic programming using
algebraic specifications, and explain how it is concretized in Maude. Maude is based
on rewriting logic [21, 34], and uses membership equational logic as its underlying
equational logic. Our discussion only touches upon the fragment of Maude related to
membership equational logic, where Maude’s support for parameterized programming
is concretized.
The general approach relies on a bilevel module system, with modules that allow for

specifying generic APIs on the one hand and modules that allow for writing concrete
programs on the other hand [38]. Modules of the same kind may be composed,
and program modules can be parameterized by specification modules. Specifications
consist of an algebraic signature defining sorts and (total and partial) operations,
along with semantic requirements on their behaviour called axioms. Satisfaction
relations can be expressed which describe how a program (or a specification) satisfies
the requirements of a given specification.
Specifications are given in Maude through functional theories—Goguen introduced

the notion of types as theories [35]. Functional theories allow expressing semantic
requirements using equations and conditional equations. In addition, Maude allows
the specification of subsorting relations along with membership axioms. This approach
allows flexible control of partiality and declaring relationships between types, e.g.,
natural numbers and integers. The choice of implementing partiality using subsorting
has consequences on other language features. For example, it poses restrictions on
overloading and thus also on the ability to compose two arbitrary theories—see
Listing 10 (in Appendix A) for an example. Note the similarity of this approach to
refinement types—where the refined type {t : T | P} is the subset of type T for which
the formula P holds [27, 40]. Refinement types are closely related to subtyping.
Maude’s functional modules allow for writing programs using the same constructs

as functional theories—where equations and conditional equations define functions
and data types in lieu of functional theories’ semantic requirements, and where the
rewriting system engendered by these equations must be confluent and terminating.
The semantics of a functional module in Maude is the initial algebra defined by the
module’s equations, and evaluation is performed using an equational rewriting engine.
Functional modules can be parameterized by functional theories: we speak of param-
eterized functional modules. Maude programs can be metarepresented as data and
manipulated to produce new programs. This powerful mechanism of reflection allows
generating so-called dependent parameterized modules such as n-tuples containing
n sorts and n projection functions [19, Section 21.3.1]. Maude’s built-in types are
efficiently implemented in C++. Contrarily to the previous OBJ2 and OBJ3, Maude
does not allow the user to implement custom primitive types in an external language.
Satisfaction relations in Maude are stated through views. Every sort (respectively

function) in the view’s source theory must be mapped (renamed) to a corresponding

4:5

Revisiting Language Support for Generic Programming

sort (respectively function) in the view’s target module, and the mappings must
preserve the subsorting structure of the source theory in the target module. It is also
possible to implement functions on the fly to resolve signature mismatches.

2.2 Magnolia

As alluded to above, the Magnolia programming language is designed for Stepanov-
style generic programming—i.e. parameterized programming with an added emphasis
on efficiency. The language takes the same general approach based on algebraic
specifications as described above, and its module system is likewise based on Goguen
and Burstall’s theory of institutions.
Listing 1 shows uses of the different module types. A signature allows defining

types and operations. A concept is a signature augmented with axioms that restrict
the properties of the types and operations. A concept serves the same purpose as a
functional theory in Maude, and the signature and concept modules constitute the
specification layer of the module system. An implementation allows the same decla-
rations as a signature, but also the definition of generic operation implementations;
it is the equivalent of a parameterized functional module in Maude. A program is a
specific kind of implementation in which all the specified operations and types are
matched with (non-generic) concrete implementations; either Magnolia code that
has a concrete implementation or an implementation in the base library in the host
language. The implementation and program modules constitute the program layer
of the module system. Constructs analogous to Maude’s metaprogramming facilities
are under investigation for Magnolia through Syntactic Theory Functors (STFs) [50]
but the Magnolia compiler supports only specific instances of STFs at the moment [17].
Types (sorts) in Magnolia are opaque identifiers. One cannot explicitly parame-

terize them, nor can one define relations such as subtyping relations between them.
Operations can be functions, procedures, or predicates. Procedure calls are prefixed
with the call keyword, while function calls follow the usual uncurried call syntax.
Predicates are treated as functions with a built-in, non-reimplementable return type.
Magnolia’s approach to partiality is based on guarded algebras [51]: an operation can
be guarded by a predicate, which then acts as a precondition. In addition to their types,
a procedure associates modes to its arguments: obs (read-only), upd (can be read and
written to), and out (write-only, and must be written to) [5]. ExampleProgram in List-
ing 1 shows equivalent implementations of a multiplication by three as a procedure
(timesThreeUpdateRef) and as a function (timesThree). In the example’s pro-
gram, the int type and add function are externally defined in Python and come from
PyConcreteSemigroup. The line use Magma[T => int, bop => add] applies
a renaming function to the content of the Magma signature and brings it into scope.
The renaming maps T to a new name int, and bop to a new name add. It is assumed
that the primitives implemented in the host language do not have side-effects, except
for the modification of arguments to procedures where the argument mode is out or
upd.

4:6

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

Listing 1 The main Magnolia building blocks.
1 signature Magma = {
2 type T;
3 function bop(t1: T, t2: T): T;
4 }
5
6 concept Semigroup = {
7 use Magma;
8 axiom bopIsAssociative(t1: T, t2: T, t3: T) {
9 asser t bop(t1, bop(t2, t3)) == bop(bop(t1, t2), t3);
10 }
11 }
12
13 implementation PyConcreteSemigroup =
14 external Python lib.int_impl {
15 use Magma[T => int, bop => add];
16 use Magma[T => int, bop => mul];
17 }
18
19 program ExampleProgram = {
20 use PyConcreteSemigroup;
21 procedure timesThreeUpdateRef(upd i: int) {
22 i = add(add(i, i), i);
23 }
24
25 function timesThree(i: int): int {
26 var mutable_i = i;
27 c a l l timesThreeUpdateRef(mutable_i);
28 value mutable_i;
29 }
30 }
31
32 sa t i s f a c t i on ExampleProgramHasAddSemigroup =
33 ExampleProgram models Semigroup[T => int, bop => add];
34
35 sa t i s f a c t i on ExampleProgramHasMulSemigroup =
36 ExampleProgram models Semigroup[T => int, bop => mul];

4:7

Revisiting Language Support for Generic Programming

A satisfaction allows defining a modeling relation between an implementation
and a concept; or between two concepts—it is the equivalent of a view in Maude.
Signature mismatches are resolved through the renaming mechanism.
Magnolia semantics are tightly coupled to abstracting over hardware features:

primitive types and operations may directly represent characteristics of the underlying
hardware architecture, such as instruction sets, memory layout, etc. This enables
Magnolia code to run efficiently on a variety of hardware, and to explore software
for high-performance computing (HPC) [17]—making it suitable to address also the
efficiency aspect of generic programming. This feature enables the user to utilize
features of new hardware, e.g., posit numbers [44] by writing code directly in the
targeted host language.
The notion of concepts, around which specifications in Magnolia are constructed,

is from Stepanov and Musser [69]. These foundational building blocks of generic
specifications and programs manifested in C++ first as mere documentation, then as
library “hacks” [83, 89], and later as a language feature. The first proposals, see Siek’s
account of the history [85], were quite ambitious, including, e.g., semantic constraints
(like Magnolia’s axioms) and concept-based overloading, but their current form is
somewhat scaled back. It is clear that concepts as a notion and language feature has
been a highly influential contribution.1
We use Magnolia as a representative for languages designed for generic program-

ming based on algebraic specifications throughout the remainder of the paper. The
design of Magnolia and languages in the OBJ family draw from the same foundations,
and the conclusions we draw about Magnolia should apply to these languages as well.

3 Graph Library in Magnolia

The subset of the BGL we implemented is a bit larger than the subset that Garcia
et al. used. It consists of the six generic algorithms implemented by Garcia et al.,
i.e. Graph Search, Breadth-First Search (BFS), Dijkstra’s single-source shortest paths,
Bellman-Ford’s single-source shortest paths, Johnson’s all-pairs shortest paths, and
Prim’s minimum spanning tree, as well as a seventh algorithm, namely Depth-First
Search (DFS). Like in Garcia et al.’s first study, we omit discussion of most algorithms
for the sake of brevity—and discuss mainly our implementation of the BFS algorithm.
This implementation is at the core of the library we implemented, and follows the
same pattern as BGL’s sequential implementation of BFS, whose pseudo-code is given
in Listing 2.

1As a case in point, the 2021 ACM SIGPLAN International Conference on Software Lan-
guage Engineering’s “Most Influential Paper Award” was given to Design of Concept Li-
braries for C++ by Sutton and Stroustrup [90], https://twitter.com/bcombemale/status/
1449743946268221440.

4:8

https://twitter.com/bcombemale/status/1449743946268221440
https://twitter.com/bcombemale/status/1449743946268221440

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

We later show how careful choices in the instantiation of backend data structures
allow using the same (seemingly) sequential BFS code to realize a parallel breadth-first
graph traversal algorithm.

Listing 2 Pseudo-code for the BFS algorithm implemented in the BGL [82]. Taken
from https://www.boost.org/doc/libs/1_79_0/libs/graph/doc/breadth_first_search.
html with minor stylistic changes.

1 BFS(G, s)
2 for each vertex u in V[G] // initialize vertex u
3 color[u] := WHITE
4 d[u] := infinity
5 p[u] := u
6 end for
7 color[s] := GRAY
8 d[s] := 0
9 ENQUEUE(Q, s) // discover vertex s
10 while (Q != Ø)
11 u := DEQUEUE(Q) // examine vertex u
12 for each vertex v in Adj[u] // examine edge (u,v)
13 if (color[v] = WHITE) // tree edge (u,v)
14 color[v] := GRAY
15 d[v] := d[u] + 1
16 p[v] := u
17 ENQUEUE(Q, v) // discover vertex v
18 else // non-tree edge (u,v)
19 if (color[v] = GRAY)
20 ... // gray target (u,v)
21 else
22 ... // black target (u,v)
23 end for
24 color[u] := BLACK // finish vertex u
25 end while
26 return (d, p)

3.1 Implementing the Graph Algorithms

The BGL’s implementation is based on the textbook BFS algorithm from Cormen et
al.’s “Introduction to Algorithms” [22] that maintains the state of the traversal using
a color map indexed by vertices. BGL’s version adds to the algorithm various user-
parameterizable visitor events, shown by the commented out actions in Listing 2. E.g.,
the “discover vertex” action is performed every time a vertex is encountered for the first
time. The visitor events may modify the vertex queue (worklist) as well as an arbitrary
user-provided state. By carrying around the right state and providing appropriate
actions for each event, many algorithms can be built on top of the generic BFS
implementation. Dijkstra’s algorithm, for instance, can be implemented by carrying a

4:9

https://www.boost.org/doc/libs/1_79_0/libs/graph/doc/breadth_first_search.html
https://www.boost.org/doc/libs/1_79_0/libs/graph/doc/breadth_first_search.html

Revisiting Language Support for Generic Programming

state containing edge costs and vertex costs, and by updating the vertex costs every
time an edge is examined.
The corresponding Magnolia implementation is split up into several functions across

several modules and is rather lengthy. To improve readability, we put the full listings
accompanying this section in Appendix A, and intersperse only excerpts with our text
here. Listing 11 presents the GenericBFSUtils module, corresponding to lines 7 to
26 in Listing 2.

1 procedure breadthFirstVisit(obs g: Graph,
2 obs s: VertexDescriptor, upd a: A, upd q: Queue,
3 upd c: ColorPropertyMap) {
4 c a l l discoverVertex(s, g, q, a);
5 c a l l push(s, q);
6 c a l l put(c, s, gray());
7 c a l l bfsOuterLoopRepeat(a, q, c, g);
8 }

The entry point in GenericBFSUtils is breadthFirstVisit, which discovers the
initial vertex and adds it to the queue, before calling bfsOuterLoopRepeat. The
bfsOuterLoopRepeat procedure corresponds to the outer while loop in Listing 2
(lines 10 to 25), with the body of the loop implemented in bfsOuterLoopStep
(reproduced below); we discuss this in more detail in Subsection 3.3.

1 procedure bfsOuterLoopStep(upd x: A, upd q: Queue,
2 upd c: ColorPropertyMap, obs g: Graph) {
3 var u = front(q);
4 c a l l pop(q);
5 c a l l examineVertex(u, g, q, x);
6 var edgeItr: OutEdgeIterator;
7 c a l l outEdges(u, g, edgeItr);
8 c a l l bfsInnerLoopRepeat(edgeItr, x, q, c, g, u);
9 c a l l put(c, u, black());
10 c a l l finishVertex(u, g, q, x);
11 }

Next is bfsInnerLoopRepeat, which corresponds to the inner for-each loop in List-
ing 2 (lines 12 to 23). The inner loop’s body is implemented in bfsInnerLoopStep
(see Appendix A).
The initialization of the queue and the color map is done in search, which is part

of the GraphSearch module presented in Listing 3.
The search function is an entry point for simple graph searches in which an empty

constructor that takes no argument exists for the queue. This is the case for a FIFO
queue for instance, but not necessarily for a priority queue. For example, to implement
Dijkstra’s algorithm, we might want to use a priority queue that stores the shortest
measured distance from the source to each vertex. The empty constructor for such a
queue would take this information as a parameter—thus exposing a different API.
Listing 4 completes the implementation of the BFS: the types and operations are

renamed and the underlying queue data structure is set to be a FIFO queue.

4:10

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

Listing 3 Implementation of a graph search entry point in Magnolia.
1 implementation GraphSearch = {
2 use GenericBFSUtils;
3 require function empty(): Queue;
4
5 function search(g: Graph, start: VertexDescriptor,
6 init: A): A = {
7 var q = empty(): Queue;
8 var vertexItr: VertexIterator;
9 c a l l vertices(g, vertexItr);
10 var c = initMap(vertexItr, white());
11 var a = init;
12
13 c a l l breadthFirstVisit(g, start, a, q, c);
14 value a;
15 }
16 }

Listing 4 Implementation of a BFS in Magnolia.
1 implementation BFS = {
2 use GraphSearch[search => breadthFirstSearch,
3 Queue => FIFOQueue];
4 use FIFOQueue[A => VertexDescriptor,
5 isEmpty => isEmptyQueue];
6 }

By keeping the requirements on the queue implementation loose in the GraphSearch
module, we can produce a DFS implementation following the same pattern as in List-
ing 4—but using a LIFO queue (i.e., a stack) instead of a FIFO queue, and with
appropriate renamings. Listing 12 (in Appendix A) shows how.
Dijkstra’s algorithm is also implemented reusing the code in GenericBFSUtils,

this time using a priority queue.

3.2 Specifying and Instantiating Data Structures

Both the FIFO queue and the stack concepts are easily derived from the generic Queue
concept in Listing 5; the stack case is shown in Listing 6. Note that the concept of
a stack exposes an operation named top instead of one named front. Thanks to
the use of Magnolia’s powerful renaming mechanism, this is not a problem: we can
instantiate generic algorithms with data structures that provide the expected API up
to renaming.
The concept in Listing 6 describes a stack by virtue of the axioms that refine

a generic queue concept’s behavior. Magnolia allows specifying axioms as part of
concepts. They place restrictions on the behavior of operations’ implementations. The
pushPopTopBehavior axiom, for example, tells us that whenever a value a is pushed
to any stack s, calling top on the resulting stack s′ yields a; similarly, calling pop on
s′ yields s.

4:11

Revisiting Language Support for Generic Programming

Listing 5 Specification of a generic queue in Magnolia.
1 concept Queue = {
2 require type A;
3 type Queue;
4
5 predicate isEmpty(q: Queue);
6 procedure push(obs a: A, upd q: Queue);
7 procedure pop(upd q: Queue) guard !isEmpty(q);
8 function front(q: Queue): A guard !isEmpty(q);
9 }

Listing 6 Specification of a generic stack in Magnolia.
1 concept Stack = {
2 use Queue[Queue => Stack, front => top];
3
4 function empty(): Stack;
5 axiom pushPopTopBehavior(s: Stack, a: A) {
6 var mut_s = s;
7 c a l l push(a, mut_s);
8 asser t top(mut_s) == a;
9
10 c a l l pop(mut_s);
11 asser t mut_s == s;
12 }
13 axiom emptyIsEmpty() {
14 asser t isEmpty(empty());
15 }
16 }

Possible (hand-coded) user-provided backend data structure implementations for
the stack concept of Listing 6 are given in Appendix A in Listings 13 (for C++) and 14
(for Python).

3.3 Abstracting the Schedule of the Algorithms

When comparing the Magnolia implementation to the pseudo-code in Listing 2, one
can notice that the former has no loop structure. The outer (while) loop in the
pseudo-code is implemented by a triplet of operations: bfsOuterLoopCond, which
corresponds to the condition of the loop, bfsOuterLoopStep, which corresponds to
the body of the loop, and bfsOuterLoopRepeat, which is called to start the loop. The
inner for-each loop is implemented by a pair of operations, bfsInnerLoopRepeat
and bfsInnerLoopStep.
Though this may seem tedious, it is by design that Magnolia provides no loop

structure. The ideal manner to schedule and allocate computations (in a loop or
otherwise) depends heavily on the hardware architecture, and by not having loops
Magnolia forces this choice to remain a parameter, defined in a base library in the
host language.

4:12

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

Listing 7 Specification of a generic while loop in Magnolia.
1 concept WhileLoop = {
2 require type Context;
3 require type State;
4
5 require predicate cond(s: State, c: Context);
6 require procedure step(upd s: State, obs c: Context);
7 procedure repeat(upd s: State, obs c: Context);
8
9 axiom whileLoopBehavior(s: State, c: Context) {
10 i f cond(s, c) then {
11 // if the condition holds, then doing one step and
12 // completing the loop is the same as just completing
13 // the loop
14 var mutableState1 = s;
15 var mutableState2 = s;
16 c a l l repeat(mutableState1, c);
17 c a l l step(mutableState2, c);
18 c a l l repeat(mutableState2, c)
19 asser t mutableState1 == mutableState2;
20 }
21 else {
22 // otherwise, the state shouldn't change
23 var mutableState1 = s;
24 c a l l repeat(mutableState1, c);
25 asser t mutableState1 == s;
26 };
27 }
28 };

A generic specification of a while loop in Magnolia is presented in Listing 7, and a
corresponding C++ backend data structure implementation is shown in Listing 15—the
latter listing can be found in Appendix A. The WhileLoop concept describes an API
that takes two types (Context and State) and two operations (cond and step),
and provides a repeat procedure whose behavior must correspond to the constraints
expressed in the whileLoopBehavior axiom. By implementing projections on the
opaque Context and State types, and updates on State, we can carry around
arbitrarily complex contexts and states.
For the experiments described in Section 5, we implemented the loops of List-

ing 11 differently, to carry several state and context arguments. This was done for
performance reasons, to avoid the overhead of packing and unpacking the State
and Context objects. Magnolia lacks variadics, definitions that are generic on arity,
i.e. on the number of arguments. Such a feature could let us avoid the packing and
unpacking without the need to specify different concepts. We discuss this further in
Section 4.
Abstracting away the loop structure (instead of providing a native Magnolia con-

struct) has advantages: repetition can be implemented differently for different data
structures or different target architectures. In our small BGL fragment, we exploited

4:13

Revisiting Language Support for Generic Programming

this aspect of Magnolia to provide two different backend implementations (in C++) for
the inner for-each loop of the BFS algorithm: one that uses a sequential for loop and
another that uses a parallel for loop based on OpenMP [73]. This is possible because
the algorithm does not enforce a processing order on not-yet-visited vertices adjacent
to the current vertex—the iterations of the inner loop are independent. The parallel
version of the code also requires using explicitly thread-safe data structures for the
vertex queue (and for the user-provided state, depending on how it is modified by the
visitor events).
The difference in code when going from sequential to parallel is minimal: when con-

cretizing our generic BFS algorithm, it suffices to use three modules exposing the same
API as their sequential counterpart, but with different properties. By not committing
to a looping mechanism too early, we gain a new powerful axis of parameterization.

4 Generic Features: Evaluation

With an understanding of the Magnolia implementation of the generic graph library,
we can relate the code to the important language properties for generic programming
identified by Garcia et al. [30] and Siek and Lumsdaine [86]. Figure 2 summarizes
how Magnolia fares.
We should be cognizant that the list of properties is a reflection of the desire to

express generic programs well in mainstream multi-paradigm languages, and maybe
even based on experiences and programming idioms of C++. This is understandable:
while Stepanov’s and Musser’s generic programming notions evolved through many
languages, including Scheme and Ada, they materialized most prominently in C++. It
is thus the case that even though the evaluation with the listed properties revealed
shortcomings in programming languages, the properties arose from a C++-centric view
of generic programming. Some are artifacts of this view and others more of a means
to an end, rather than an essential part of a foundation for generic programming.
Indeed, despite the several empty bullets in Magnolia’s column in Figure 2, the BGL
experiment was successful, likely because Magnolia builds its generics on somewhat
different foundations than any of the languages studied by Garcia et al. (we like to
think that it is closer to Stepanov’s and Musser’s ideals).
We also note that while the list of properties is rather comprehensive, we did end up

adding two new items: variadics and property-based specifications. These are not rele-
vant only to Magnolia, but would have been interesting topics of study in the original
evaluation as well: variadic templates were studied after Garcia et al.’s evaluation [41]
and the feature is today part of standard C++; property-based specifications (axioms)
were proposed to be included in C++, e.g., for enabling optimizations, and the Haskell
GHC compiler supports such specifications (in compiler pragmas) for rewriting [74].
For each of the properties listed in Figure 2, we give below its definition as given by

Siek and Lumsdaine [86], motivate it briefly, and discuss its relevance and realization
in Magnolia. We do not do any reimplementation for the previously studied languages.
However, for the new properties we introduced, we also discuss their realization in
the most recent release of the previously studied languages at the time of writing.

4:14

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

C
+
+

SM
L

O
Cam

l

H
askell

Java

C# Cecil

C
+
+0X

G M
agnolia

Multi-type concepts -
Multiple constraints -

Associated type access
Constraints on associated types -

Retroactive modeling -
Type aliases

Separate compilation
Implicit argument deduction

Modular type checking
Lexically scoped models

Concept-based overloading
Same-type constraints -
First-class functions

Property-based specifications
Variadics

Figure 2 The level of support in Magnolia for properties for generic programming. For the
reader’s convenience, we reproduce here the original characterization of C++, SML,
OCaml, Haskell, Java, C#, Cecil, C++0x, and G from Siek and Lumsdaine [86]
(omitting footnotes with detailed commentary). indicates full support,
indicates poor support, and indicates partial support. The rating of "-" for C++

indicates that while C++ does not explicitly support the feature, one can still
program as if the feature were supported. The level of support for property-based
specifications and variadics is indicated for the latest release of each language at
the time of writing, i.e. respectively, for the first seven columns, C++20, SML’97,
OCaml 4.14, Haskell 2010, Java 18, C# 11, and Cecil 3.2 [15]. We evaluate C++0x
as it was envisioned, as opposed to its eventual partial adoption in C++11. To the
best of the authors’ knowledge, G has only had one release.

4:15

Revisiting Language Support for Generic Programming

Multi-type concepts
A concept can be implemented by a collaboration of several types.
Multi-type concepts in generic programming correspond to multi-sorted signatures

with axioms in algebraic specifications, and both arise naturally and often. Magno-
lia’s concepts can declare any number of types and define syntactic and semantic
requirements on any combination of them. Further, the partial order of concepts that
arises from Magnolia concept definitions and their use declarations is not in any way
constrained by the types declared in the concept that uses or the concept that is being
used. Any name conflicts that might arise are easily resolved with renaming types and
operations. Magnolia thus fully supports multi-type concepts.
By contrast, in many other languages, in particular in object-oriented ones, concepts

are approximated by interfaces/classes, which are types. These interface/class types
are treated differently from other types of the concept (defined as type parameters
to the generic interface), which introduces many restrictions, and obstacles for the
clean expression of generic programs [30, 57].

Multiple constraints
More than one constraint can be placed on a type parameter.
A few of the languages studied by Garcia et al. had restrictions when constraining

types by more than one concept; the reasons are technical, and discussed in prior
work [30]. In Magnolia there are no restrictions: multiple constraints merely mean
that a particular type appears in more than one use declaration. All definitions from
used concepts are brought to the same scope; the type’s constraints are thus a union
of its requirements in these concepts.

Associated type access
Types can be mapped to other types within the context of a generic function.
In most object-oriented languages studied by Garcia et al., the only way to declare

types of a concept is as type parameters of a generic. The evaluation called for a
mechanism for defining type members, “associated” types of the “main” type(s) of the
concept. One could do this in C++ with trait classes and in Haskell, at the time with
the functional dependencies extension, later with associated types [14]. Today, Rust
and Swift also have similar notions. Associated types solve problems of instantiating
concepts with positional type parameters, e.g., that they can shorten the parameter
lists considerably. Järvi et al. [57] detail these problems in Java and C#.
In Magnolia, there is no distinction between main types and associated types. All

types are opaque, and accessible by their name. Magnolia uses of concepts only
mention the types (and operations) that the programmer needs or wants to rename—
there is no need to anticipate which types are better expressed as main types, which
as associated types.

Constraints on associated types
Concepts may include constraints on associated types.
Declaring constraints on associated types leads to problems in several languages;

Java and C#, for example, require redundant constraints (for complex technical

4:16

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

reasons [57]). As discussed above, all types in a concept are treated the same in
Magnolia, and hence Magnolia supports constraints on associated types as it does for
any type.

Retroactive modeling
New modeling relationships can be added after a type has been defined.
Problematic languages concerning this property are languages where the declara-

tion that a data type satisfies a certain set of requirements (a concept or concepts)
takes place at the site of definition of the data type. This is the case for object-oriented
languages that fix the bases of a class when the class is defined. But even in Haskell,
where an instance declaration is distinct from both a datatype and a type class defini-
tion, retroactive modeling can be limited. An example is changes to Haskell’s standard
library and its type class hierarchy. In 2014 the Applicative typeclass was suggested
to be made a superclass of the Monad typeclass [46]. Such a change breaks Monad
instances (models) where the corresponding Functor and Applicative instances
are not implemented. This change occurred after the study of Garcia et al. [30], and
thus likely was not considered when evaluating the support of Haskell for retroactive
modeling—the study characterized Haskell as fully supporting retroactive modeling.
Listing 8 builds up to the concepts of a commutative magma with a left absorb-

ing element, and of a commutative magma with a right absorbing element. The
two concepts are equivalent, i.e., each concept models the other. Each modeling
relationship is expressed through a satisfaction relation (see CommutativeZeroLR
and CommutativeZeroRL). Satisfaction relations can be added at any point in the
program, hence Magnolia satisfies the retroactive modeling property.

Type aliases
A mechanism for creating shorter names for types is provided.
The problem of long names in generic programming often arise from a large

number of type parameters (due to the representation of associated types as type
parameters). In Magnolia, concepts are not represented by types—type names are
not parameterized, their names thus stay atomic. Magnolia does support type aliases
too, however, through the mechanism of renaming — see once again lines 15 and 16
in Listing 1. Magnolia does not allow declaring a new alias for a type (or operation) in
the same module expression. That being said, it is possible to make declarations with
different names in a module expression, and to later merge them using renaming,
therefore “retroactively” aliasing the two declarations.

Separate compilation
Generic functions can be compiled independently of calls to them.
The motivation behind separate compilation is attaining better compilation speed

by avoiding recompiling generic definitions every time their uses are compiled. All
languages but C++ in Garcia et al.’s evaluation have this compilation model; in C++ the
compiler generates a distinct piece of code for each different template instantiation.
While Garcia et al. bundled separate compilation andmodular type checking under one
language property, Siek and Lumsdaine [86] split them into two distinct properties.

4:17

Revisiting Language Support for Generic Programming

Listing 8 An example of equivalent specifications in Magnolia.
1 concept CommutativeMagma = {
2 type T;
3 function bop(t1: T, t2: T): T;
4 axiom commutativity(t1: T, t2: T)) {
5 asser t bop(t1, t2) == bop(t2, t1);
6 }
7 }
8
9 concept CommutativeMagmaWithLeftZero = {
10 use CommutativeMagma;
11 function zero(): T;
12 axiom leftAbsorption(t: T) {
13 asser t bop(zero(), t) == zero();
14 }
15 }
16
17 concept CommutativeMagmaWithRightZero = {
18 use CommutativeMagma;
19 function zero(): T;
20 axiom rightAbsorption(t: T) {
21 asser t bop(t, zero()) == zero();
22 }
23 }
24
25 sa t i s f a c t i on CommutativeZeroLR =
26 CommutativeMagmaWithLeftZero models
27 CommutativeMagmaWithRightZero;
28
29 sa t i s f a c t i on CommutativeZeroRL =
30 CommutativeMagmaWithRightZero models
31 CommutativeMagmaWithLeftZero;

This allows to more precisely characterize C++ after the concepts feature was added—
C++ today partially supports modular type checking but not separate compilation.
In Magnolia, generic operations are type checked where they are declared. They

may undergo name changes during renamings, but after these are resolved, a call
to a generic function needs only to be checked against the function’s declaration, so
Magnolia supports modular type checking. Adhering strictly to the definition given
above, Magnolia could be said to support separate compilation: each monomorphic
operation is transpiled to the host language independently of calls to it (and the com-
pilation of transpiled Magnolia code to executable code is host language-dependent).
However, a distinct piece of code is emitted for each instantiation of a generic function
definition — resulting in a compilation model similar to C++’s, and not one which
achieves the goals of the property.

4:18

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

Implicit argument deduction
The arguments for the type parameters of a generic function can be deduced and do
not need to be provided by the programmer. Also, the finding of models to satisfy the
constraints of a generic function is automated by the language implementation.
Garcia et al. describe the lack of implicit type argument deduction to result in

verbose generic algorithm invocations. Most languages avoid problems by deducing
the type parameters of a generic function from the types of its function arguments.
Magnolia avoids this problem in a different way: there are no implicit arguments to
deduce in the first place. Operations are always monomorphic, and each argument’s
type is resolved whenever renaming occurs. Whenever a call occurs, there is almost
always a single corresponding prototype in scope. The exception is when a call can
resolve to several functions overloaded solely on their return type. In that case, a type
annotation must be provided by the user to disambiguate between the matches.

Modular type checking
Generic functions can be type checked independently of calls to them.
Because of C++’s lack of modular type checking, debugging type errors in generic

code in C++ is often very difficult. The C++ concepts language feature fixes this problem
partially: uses of templates are checked against type parameter constraints but defini-
tions of templates are not checked. The bodies of C++ template functions are (still)
type checked only after their instantiation, which can delay catching a type errors
in the implementation of a generic library until it is used in client code. Magnolia
supports modular type checking of both the uses and definitions of generic code, as
described above in the discussion of Separate compilation.

Lexically scoped models
Model declarations are treated like any other declaration, and are in scope for the
remainder of the enclosing namespace. Models may be explicitly imported from other
namespaces.
Siek and Lumsdaine implement lexically scoped models in G [86], in order to be

explicit about which models are in scope. One motivation for this feature is to avoid
the problem of overlapping models (corresponding to overlapping instances in Haskell,
with concepts corresponding to typeclasses, models to typeclass instances). Suppose
we want to define an instance of the Semigroup typeclass for Int in Haskell. The
Haskell 2010 Language Report [65, Chapter 4] dictates that “A type may not be declared
as an instance of a particular class more than once in the program.”. However, there is
more than one intuitive instance of Semigroup for Int, as shown in Listing 9.
Attempting to call (<>) with both of these definitions in scope results in an error.

This can be worked around in awkward ways, e.g. using newtypes, or wrappers
around class methods [94]. The crux of the issue here is that typeclass instances are
not first-class in Haskell.
It is not clear if the lexically scoped models property is actually sufficient to solve

the problem of overlapping models. The approach works well when the different
models are used in different scopes, but does not seem to offer a solution when
one wants to have them in the same scope. One example of such a use case is united

4:19

Revisiting Language Support for Generic Programming

Listing 9 Overlapping instances in Haskell.

1 -- A.hs
2 instance Semigroup Int where
3 (<>) = (+)
4 -- B.hs
5 instance Semigroup Int where
6 (<>) = (*)
7 -- C.hs (imports A, B)
8 -- error: Overlapping instances for Semigroup Int
9 val = (2 :: Int) <> 3

monoids, an algebraic structure involving twomonoids with the same unit element [68].
Approaches such as named instances [59] or the CONCEPT pattern in Scala [71] can
address this issue.
The issue does not arise in Magnolia either: one can bring two different models

of the same concept into the same scope and resolve the overlap explicitly using the
renaming mechanism—see ConcreteSemiGroup in Listing 1 for an example. The
property is thus supported by design.

Concept-based overloading
There can be multiple generic functions with the same name but differing constraints.
For a particular call, the most specific overload is chosen.
The C++ standard library’s hierarchy of iterator concepts includes two concepts,

InputIterator and ForwardIterator, whose signatures agree—they differ only on their
operations’ semantic requirements. In particular, the former does not admit restarting
the iteration. There are well-motivated cases for overloading a function where the
overloads should be differentiated based only on whether their argument types model
one or both of these concepts [88]. However, overloading on semantics is problematic
in the general case. To specialize based on the semantics of two concepts with exactly
the same API, the compiler needs to partially order them. Consider the two concepts
CommutativeMagmaWithRightZero and CommutativeMagmaWithLeftZero from
Listing 8. If one specializes an algorithm on their semantics, the following happens:
if the compiler is unable to deduce that the specifications are equivalent, one
specialization is picked at each call site and compilation succeeds;
if the compiler is able to deduce that the specifications are equivalent, the compiler
cannot specialize and compilation fails.

This implies that once correct code may become incorrect as the compiler’s reasoning
abilities get more powerful and it can deduce more properties from the same axioms.
And indeed, C++ does not really do overloading on semantics. It equips each iterator
concept with a tag-type, creating thus a syntactic difference between the two concepts’
requirements, which is really what is used as a criterion in overload resolution.
Magnolia does not provide support for concept-based overloading. Arguments to

an operation are always instances of the exact types specified in the operation’s
prototype. In the absence of subtyping, classic overloading is sufficient to resolve

4:20

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

every call to the right implementation. The modular structure of Magnolia code allows
the programmer to defer the implementation of types and operations as long as is
necessary to sufficiently refine their semantic requirements and explicitly determine
which implementation should be chosen.

Same-type constraints
The notion of same-type constraints lacks a precise definition in Siek and Lumsdaine’s
work. We give it the following definition: It is possible to force two type parameters to
refer to the same type.
In Magnolia, two types are the same if they have the same name. The renaming

mechanism allows forcing different concepts to depend on the same type, by bringing
them into the same scope and renaming their type parameters to the same name.
This is slightly different from a type constraint: instead of requiring two constrained
type parameters, the resulting module has a single type parameter. This mechanism
is demonstrated lines 15 and 16 in Listing 1: the Magma module is brought into scope
twice, and its type parameter T is forced to the same name int.

First-class functions
Supporting anonymous functions with lexical scoping as first-class citizens of the language.
Magnolia does not support higher-order functions. This is intentional: it keeps

Magnolia programs simpler to reason about. We do not lose out on expressivity—in
lieu of higher-order functions, the Magnolia programmer can use a parameterized
module [32], and deal with potential naming conflicts by leveraging once more the
renaming mechanism. This is, however, certainly a trade-off on convenience. For
example, the most cumbersome aspects of implementing the graph library were the
looping structures, split into several concepts and functions (see e.g. Listings 7 and 15),
which with higher-order functions could have been implemented with a single function
parameterized by a function parameter.

Property-based specifications
Wedefine the property as follows: Arbitrary semantic constraints on types and operations
can be defined.
Property-based specifications are a desirable feature that can enable strong cor-

rectness guarantees and formal verification of code. Such semantic constraints are
mentioned in Garcia et al.’s study [30], but they are not evaluated due to the lack of
support for them in the studied languages. The way we specify properties in Mag-
nolia axioms is through assertions—and in fact, any programming language with
assertions can produce some sort of library support for property-based specifications.
We explicitly do not consider this to qualify as language support for property-based
specifications in Figure 2, but we mention some such libraries below.
C++20 implements a scaled back version of C++0x’s concepts which does not provide

support for semantic constraints—but only for same-type constraints and API modeling
constraints. Bagge et al. previously built a testing system atop concepts and axioms
implemented using template metaprogramming in C++11 [4].

4:21

Revisiting Language Support for Generic Programming

SML does not support property-based specifications. We note that property-based
specifications for SML programs can be expressed in Sannella and Tarlecki’s Extended
ML [77]. However, the semantics of Standard ML are not fully compatible with the
theory of algebraic specifications, and the approach suffers from a semantic gap
common in many approaches to formal verification of software [78].
OCaml does not support property-based specifications. Xu showed how OCaml

could be augmented with a contract declaration construct, along with both static
and dynamic contract checking features [92]. However, to the best of the authors’
knowledge, this research did not lead to the implementation of such a feature in
OCaml. Design by contract (DbC) is a common approach to software correctness
made popular by Eiffel [66, 67]. DbC has roots in Floyd-Hoare logic [26, 54] and uses
assertions to specify preconditions, postconditions, and invariants on programs. Bagge
et al. point out limitations with pre/postconditions for specifying generic APIs, e.g.,
difficulties of capturing properties like associativity or transitivity, and show how they
are subsumed by axioms [6].
Haskell’s support for property-based specifications is limited. One visible conse-

quence of this is that typeclass laws are typically stated only as documentation, and it
is up to the programmer of a typeclass instance to ensure that they hold. However,
the language’s powerful type system and extensions allow specifying and enforcing
sophisticated invariants. For example, Bailey and Gale encoded the full FIDE ruleset
at the type level [7]. Noonan shows a design concept for validating preconditions
at compile time by constructing proofs inhabiting phantom type parameters [70].
Haskell also offers good support for property-based testing, through the QuickCheck
library [18]. Like for OCaml, some work on enabling static contract checking in Haskell
was initiated, but did not lead to the implementation of such a feature in the language
to the best of the authors’ knowledge [93]. Also worthy of note is LiquidHaskell, a
static verifier for Haskell based on liquid types [76]. Liquid types are refinement
types [27] with logical predicates coming from a decidable sublanguage—allowing
decidable type checking and inference.
Java itself does not support property-based specifications. However, there exist

a number of tools extending Java to provide varying levels of support for property-
based specifications. One such tool is the Java Modeling Language (JML), which
draws from the design by contract approach and from algebraic specifications to
allow for specifying the behavior of Java modules [64]. Another one is JAxT, a tool
that generates JUnit test cases from static methods representing axioms [47, 49].
In addition, there exists several libraries implementing property-based testing à la
QuickCheck for Java—one example is junit-quickcheck [55].

C# itself does not provide support for property-based specifications. Similarly to
Java, several tools exist that address this shortcoming. For example, Spec# is a superset
of C# which allows specifying and verifying method contracts (pre- and postcondi-
tions), object invariants, and loop invariants [8]. Code contracts are another approach
that enables design-by-contract programming in .NET programming languages [25].

Cecil does not provide support for property-based specifications.
Axioms were supported in C++0x concepts, and the language had full support for

property-based specifications.

4:22

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

Siek and Lumsdaine’s G [86] does not implement such semantic constraints, re-
stricting itself to same-type constraints and API modeling constraints (similarly to the
concepts implemented in C++20).
Magnolia supports property-based specifications in the form of axioms in con-

cepts. These formulas are boolean expressions with free variables, thus encompassing
equational and conditional equational specifications as common in algebraic spec-
ifications [10]. Boolean expressions have the benefit of being readily handled by
programming language compilers and tools, allowing us to compile axioms as test
oracles and systematically test a program’s compliance with its specification [4]. The
axiom formalism and the program code are semantically compatible, thus avoiding
the semantic gap mentioned previously [78]. Magnolia axioms can be leveraged in
practice for program optimizations [17] and for proving the correctness of Magnolia
specifications [45].

Variadics
We define the property as follows: Operations can have a variable number of arguments
of different types.

C++ and C++0x allow generic operations to take in a variable number of arguments
of different types through variadic templates [41]. In a variadic context, any type
expression can be repeated, including expressions containing the const qualifier, the
lvalue and rvalue reference declarators, or any concept constraint. We note that variadic
templates were introduced in C++11, a version of the language that postdates both
Garcia et al.’s and Siek and Lumsdaine’s studies. The version of C++ evaluated in the
previous studies did not support variadics, but C++0x did.
It is possible to implement functions that support a variable number of arguments

of different types in OCaml, as demonstrated in the current implementation of the
Format module [91]. This implementation of variadics relies on heterogeneous lists,
which are in turn implemented in OCaml with difference lists leveraging Generalized
Algebraic Data Types (GADTs) [75, 79]. There are limitations to this approach, related
to the mixing of GADTs and subtyping [75, 80].
Like for OCaml, there is no obvious way to define functions that take a variable

number of arguments of different types in Haskell [53]. It is however possible to
define variadic functions through type hackery, as demonstrated by the HList li-
brary [61, 63]. Haskell’s expressivity allows for several reasonable ways to create such
functions—as noted in the source code of HList [62]. Since 2015, heterogeneous lists
are implemented using a data family [81].
Support for variadics in Java is only partial. It is possible to define operations that

take a variable number of arguments of different, arbitrary types in Java by adding
an argument of type Object... to the end of their argument list. The ellipsis syntax
is syntactic sugar for passing in a single-dimensional array of the specified type as an
argument. Object is a superclass for every defined class in Java, ensuring that the
function can be called with parameters of any object type. Note that this excludes
primitive types, which are not subclasses of Object, and for which there is no obvious
solution.

4:23

Revisiting Language Support for Generic Programming

Support for variadics in C# is limited. It is possible to define functions that take a
variable number of arguments of different types in C# by using the params keyword
to pass in an arbitrary number of arguments of type either object or dynamic. The
params keyword is syntactic sugar for passing in an array as a parameter. Arguments
given the dynamic type can not be type checked at compile time, and will cause run
time exceptions if used inappropriately. Arguments converted to the object type
must eventually be unboxed to the correct type to be used. In this case, some errors
can be caught at compile time, and others at run time. It is also not possible to pass a
variable number of generic type parameters to a function.
None of SML, Cecil, and G [84, 86] (to the best of our knowledge) offer support

for variadics.
Because all types are opaque in Magnolia, data structures are characterized only

on the set of externally-implemented functions that construct or consume them. To
define a record-like type with n fields in Magnolia requires one type definition, along
with 2n+ 1 function definitions (one projection and one update for each field, and a
constructor). This quickly leads to a large number of functions. These projections and
updates may also be expensive, as discussed in Subsection 3.3; there, we solved both
problems by defining several loop concepts and backend implementations, each with
a carefully chosen number of state and context types and parameters. This solution
has its own drawbacks though: concepts and implementations are (mostly) duplicated,
including axioms. Adding support for variadics to Magnolia would achieve the same
outcomes, while eliminating the need for code duplication. We briefly discuss an
approach for supporting variadics in Magnolia in Section 6.

5 Performance

Another key idea in generic programming is that abstracting an algorithm should have
no impact on performance: when a generic algorithm is specialized to the concrete
case, it should be just as efficient as if the algorithm had been written directly as the
non-generic case. We tested whether Magnolia and its BFS implementation satisfy
this criterion. Figure 3 compares the performance of two instantiations of our BFS
implementations; for both, C++ was the host language. The figure also shows the
performance of BGL’s BFS implementation.
The two Magnolia implementations use the same generic algorithm with different

backend data structures. The red bars show the performance of an instantiation that
uses the same data structures as the BGL’s algorithm (blue bars). The yellow bars
show an instantiation of the Magnolia code that uses our own ad-hoc, prototype
data structures. The transpiled algorithms are identical to the one implemented in
the BGL. When using the same underlying data structures, the Magnolia and BGL
C++ implementations perform equally well, showing that our generic abstraction in
Magnolia is indeed cost-free.
Instantiating the algorithm with our prototype data structures produces code that

runs roughly 2.5–3.5 times slower, depending on the number of edges in the graph.
At the same time, these data structures offer more flexibility to the user by virtue

4:24

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

107 2× 107 3× 107
0

200

400

600

800

1000

1200

1400

Graph size (# edges)

W
al
l-c
lo
ck
tim
e
(i
n
m
s)

Figure 3 Performance comparison of running the sequential version of the BFS algorithm:
the leftmost columns (blue) are for BGL’s C++ implementation, the middle (red)
ones for the Magnolia implementation where the base library uses the same
data structures as BGL, and the rightmost (yellow) ones for the Magnolia imple-
mentation that moves the language-library border further towards the language,
providing highly parameterizable data structures. Both Magnolia implementa-
tions used C++ as the host language. Each implementation is run 10 times in
total, and the running times are averaged. Every implementation is tested against
the same 10 randomly generated graphs. Each graph is directed and contains
106 vertices. The test programs are compiled using g++ 10.2.0, with optimization
level O3, on an Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz.

of being more parameterizable—highlighting a trade-off between parameterization
and performance here. Magnolia allows fine-grained choice of level of abstraction on
the host language. This makes exploring the possible combinations of backend data
structures easy. No particular effort was put in tuning our prototype data structures
for performance: it is entirely possible that a more careful and as parameterizable
design could match the BGL implementation’s performance.
The transpilation of our Magnolia code to a host language does not add much

overhead: it takes less than a second to transpile the whole fragment of the BGL we
implemented. In contrast, compiling the final binary from the C++ code which imports
the BGL takes more than seventeen seconds.2
We did not run performance tests with Python as the host language. We can expect

the current implementation to be slow, because we left overload resolution to be
performed in Python (out of convenience), using multiple dispatch.

2Compilation times reported for an Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz.

4:25

Revisiting Language Support for Generic Programming

6 Discussion and Conclusion

Garcia et al.’s study [30] paved the way for evaluating support for generic programming
of languages. The properties the authors identify as important point out issues of
retrofitting generic programming into existing languages. This in fact led language
implementors to address these issues and improve their language’s support for generic
programming [13, 14]. Siek and Lumsdaine’sG demonstrates how a language based on
these properties enables generic programming. Our work takes a step back from these
works and looks at generic programming from the angle of algebraic specifications,
repeating the experiment [30] with Magnolia—a language representative of the
algebraic approach. Magnolia is not shoehorned into the properties that Garcia et al.
identified, yet provides extensive support for generic programming.
Our evaluation in Section 4 shows that the renaming mechanism plays a crucial

role in enabling generic programming in Magnolia. Renaming is Magnolia’s pragmatic
version of signature morphisms. It allows control over the naming of types and
operations, both to keep them separate as needed for implementations, but also to
coordinate naming within concepts when joining them together. This is somewhat less
powerful than the signature morphisms supported by CASL [10], yet powerful enough
to enable a high level of reuse between modules. Carette et al. recently investigated
union and renaming as a reuse mechanism for modular specification of mathematical
concepts [12].
Every programming language is its own formal system with its own advantages

and inconvenients, and Magnolia is no exception. For example, while the algebraic
approach gives extreme flexibility when it comes to parameterizing and combining
modules, this flexibility comes at a usability cost: when developing in Magnolia, it is
hard to keep track of what is in scope at a given line and where declarations come
from. The problem is further exacerbated by the renaming mechanism. Tool support
(e.g., in the form of an IDE) is crucial for Magnolia development. Bagge described
an implementation of an IDE for Magnolia integrated with Eclipse [3]. The newer
magnoliac compiler provides a basic interactive toplevel that allows users to inspect
the content of loaded modules [16]. The design and development of a fully-fledged
IDE for Magnolia will inform on whether the reasoning problems we faced when
implementing the BGL in Magnolia can be mitigated, and is a topic of future work for
us.
In Gibbons’ taxonomy of generic programming [31] we characterized Magnolia as

supporting genericity by property. This axis of genericity has been an inspiration of
new features for C++ (concepts), and there has been expectations that proper language
support for expressing semantic properties (axioms in concepts) will lead to domain-
specific optimization opportunities, more precise static checking of code for semantic
errors, and more flexible (concept-based) overloading. This experiment with Magnolia
accentuates some challenges that will remain, even with full language support for
properties. In particular, in our evaluation we discuss concept-based overloading
and why overloading based on semantic properties is problematic. Further, there
are challenges with the expression of semantic constraints in concepts. Sometimes
axioms are not expressible by using solely the operations that a concept is meant

4:26

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

to expose—additional operations need to be added to the concept just to be able
to express a semantic property [9]. Listing 16 gives an example: given g: Graph,
vertices(g) returns the collection of all vertices in g. Given v: Vertex a vertex of g,
adjacentVertices(g, v) returns the collection of all the vertices adjacent to v in
g. There is a subset relation between adjacentVertices(g, v) and vertices(g).
To state this property through an axiom, we would need additional operations on
VertexCollection, e.g., the ability to check whether a Vertex is a member of a
VertexCollection. These operations and the axiom are shown as commented out.
Another challenge we identified with Magnolia is the inability to express variadic

generic definitions. The general mechanism of syntactic theory functors [50] seems
well-suited for implementing variadics in Magnolia. In fact, also renaming can be
expressed as STFs. These connections are topics for future work for us.

Acknowledgements We offer our thanks to the anonymous reviewers for their thought-
ful insights on our paper. We also thankMikhail Barash for proofreading, and providing
insightful comments about our manuscript in early stages.

A Code Listings

Listing 10 Example of tension between overloading and subsorting in Maude specifications
(adapted from an example by Ölveczky [72, Chapter 2.5]). When calling f on
an argument of type s12, Maude can not determine which overload of f should
be called.

1 fth OVERLOADING is
2 sorts s1 s2 s12 u1 u2 .
3 op f : s1 -> u1 .
4 op f : s2 -> u2 .
5 endfth
6
7 fth SUBSORTING is
8 including OVERLOADING .
9 subsorts s12 < s1 s2 . --- error!
10 endfth

4:27

Revisiting Language Support for Generic Programming

Listing 11 Implementation of generic BFS utils in Magnolia.
1 implementation GenericBFSUtils = {
2 /* snip types and helper operation declarations */
3 procedure breadthFirstVisit(obs g: Graph,
4 obs s: VertexDescriptor, upd a: A, upd q: Queue,
5 upd c: ColorPropertyMap) {
6 c a l l discoverVertex(s, g, q, a);
7 c a l l push(s, q);
8 c a l l put(c, s, gray());
9 c a l l bfsOuterLoopRepeat(a, q, c, g);
10 }
11
12 predicate bfsOuterLoopCond(a: A, q: Queue, c: ColorPropertyMap,
13 g: Graph) { value !isEmptyQueue(q); }
14
15 procedure bfsOuterLoopStep(upd x: A, upd q: Queue,
16 upd c: ColorPropertyMap, obs g: Graph) {
17 var u = front(q);
18 c a l l pop(q);
19 c a l l examineVertex(u, g, q, x);
20 var edgeItr: EdgeIterator;
21 c a l l outEdges(u, g, edgeItr);
22 c a l l bfsInnerLoopRepeat(edgeItr, x, q, c, g, u);
23 c a l l put(c, u, black());
24 c a l l finishVertex(u, g, q, x);
25 }
26
27 procedure bfsInnerLoopStep(obs edgeItr: EdgeIterator,
28 upd x: A, upd q: Queue, upd c: ColorPropertyMap,
29 obs g: Graph, obs u: VertexDescriptor) {
30 var e = edgeIterUnpack(edgeItr);
31 var v = tgt(e, g);
32 c a l l examineEdge(e, g, q, x);
33 var vc = get(c, v);
34 i f vc == white() then {
35 c a l l treeEdge(e, g, q, x);
36 c a l l put(c, v, gray());
37 c a l l discoverVertex(v, g, q, x);
38 c a l l push(v, q);
39 } else i f vc == gray() then {
40 c a l l grayTarget(e, g, q, x);
41 } else { // vc == black();
42 c a l l blackTarget(e, g, q, x);
43 };
44 }
45 }

Listing 12 Implementation of a DFS in Magnolia.
1 implementation DFS = {
2 use GraphSearch[search => depthFirstSearch, front => top,
3 isEmptyQueue => isEmptyStack, Queue => Stack]; // LIFOQueue
4 use Stack[A => VertexDescriptor, isEmpty => isEmptyStack];
5 }

4:28

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

Listing 13 User-provided (hand-coded) implementation of a stack in C++.
1 template <typename _A>
2 s t ruc t stack {
3 typedef _A A;
4 typedef std::stack<A> Stack;
5
6 Stack empty() { return Stack(); }
7 bool isEmpty(const Stack &s) { return s.empty(); }
8 void push(const A &a, Stack &s) { s.push(a); }
9 void pop(Stack &s) { s.pop(); }
10 const A &top(const Stack &s) { return s.top(); }
11 };

Listing 14 User-provided (hand-coded) implementation of a stack in Python.
1 def stack(A):
2 c lass Stack:
3 def __init__(self): self.stack = []
4 def isEmpty(self): return not self.stack
5 def push(self, a: A): self.stack.insert(0, a)
6 def pop(self): self.stack = self.stack[1:]
7 def top(self): return deepcopy(self.stack[0])
8 def mutate(self, other): self.stack = other.stack[:]
9 def empty(): return Stack()
10 def isEmpty(s: Stack): return s.isEmpty()
11 def push(a: A, s: Stack): s.push(a)
12 def pop(s: Stack): s.pop()
13 def top(s: Stack): return s.top()
14
15 stack_tuple = namedtuple(' s t a ck ',
16 ['A ', ' Stack ', ' empty ', ' isEmpty ', ' push ', ' pop ', ' top '])
17
18 return stack_tuple(A, Stack, empty, isEmpty, push, pop, top)

Listing 15 User-provided (hand-coded) implementation of a while loop in C++. The repeat
procedure is always implemented in the host language, which makes the con-
nection between the three functions repeat, cond and body potentially difficult
to identify in a Magnolia program.

1 template <typename _Context, typename _State,
2 c lass _body, c lass _cond>
3 s t ruc t while_ops {
4 typedef _State State;
5 typedef _Context Context;
6
7 _body body;
8 _cond cond;
9
10 in l ine void repeat(State &state, const Context &context) {
11 while (while_ops::cond(state, context)) {
12 while_ops::body(state, context);
13 }
14 }
15 };

4:29

Revisiting Language Support for Generic Programming

Listing 16 A problem with constraining concepts.
1 concept Graph = {
2 type Graph;
3 type Vertex;
4 type VertexCollection;
5
6 function adjacentVertices(g: Graph, v: Vertex)
7 : VertexCollection;
8 function vertices(g: Graph): VertexCollection;
9 // predicate member(v: Vertex, vc: VertexCollection);
10 // axiom adjacentVerticesAreVertices(
11 // v1: Vertex, v2: Vertex, g: Graph) {
12 // assert member(v2, adjacentVertices(g, v1)) =>
13 // member(v2, vertices(g))
14 // }
15 }

References

[1] Roland Carl Backhouse, Patrik Jansson, Johan Jeuring, and Lambert G. L. T.
Meertens. “Generic Programming: An Introduction”. In: Revised Lectures of the
Third International Spring School on Advanced Functional Programming. Vol-
ume 1608. Lecture Notes in Computer Science. Springer-Verlag, 1998, pages 28–
115. isbn: 3-540-66241-3. doi: 10.1007/10704973_2.

[2] Anya Helene Bagge. “Constructs & Concepts: Language Design for Flexibil-
ity and Reliability”. [Last accessed 30-Sep-2022]. PhD thesis. PB 7803, 5020
Bergen, Norway: Research School in Information and Communication Tech-
nology, Department of Informatics, University of Bergen, Norway, 2009. isbn:
978-82-308-0887-0. url: http://www.ii.uib.no/~anya/phd/.

[3] Anya Helene Bagge. “Facts, Resources and the IDE/Compiler Mind-Meld”. In:
Proceedings of the 4th International Workshop on Academic Software Development
Tools and Techniques (WASDeTT’13). [Last accessed 30-Sep-2022]. Montpellier,
France, July 2013. url: http://wasdett.org/2013/submissions/wasdett2013_
submission_10.pdf.

[4] Anya Helene Bagge, Valentin David, and Magne Haveraaen. “Testing with
Axioms in C++ 2011”. In: Journal of Object Technology 10 (2011), 10:1–32. issn:
1660-1769. doi: 10.5381/jot.2011.10.1.a10.

[5] Anya Helene Bagge and Magne Haveraaen. “Interfacing Concepts: Why Dec-
laration Style Shouldn’t Matter”. In: Proceedings of the Ninth Workshop on
Language Descriptions, Tools and Applications (LDTA ’09). Edited by Torbjörn
Ekman and Jurgen J. Vinju. Volume 253. York, UK: Elsevier, 2010, pages 37–50.
doi: 10.1016/j.entcs.2010.08.030.

[6] Anya Helene Bagge and Magne Haveraaen. “Specification of Generic APIs, or:
Why Algebraic May Be Better Than Pre/Post”. In: Proceedings of the 2014 ACM

4:30

https://doi.org/10.1007/10704973_2
http://www.ii.uib.no/~anya/phd/
http://wasdett.org/2013/submissions/wasdett2013_submission_10.pdf
http://wasdett.org/2013/submissions/wasdett2013_submission_10.pdf
https://doi.org/10.5381/jot.2011.10.1.a10
https://doi.org/10.1016/j.entcs.2010.08.030

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

SIGAda Annual Conference on High Integrity Language Technology. HILT ’14.
Portland, Oregon, USA: ACM, 2014, pages 71–80. isbn: 978-1-4503-3217-0.
doi: 10.1145/2663171.2663183.

[7] Toby Bailey and Michael B. Gale. “Chesskell: A Two-Player Game at the Type
Level”. In: Proceedings of the 14th ACM SIGPLAN International Symposium on
Haskell. Haskell 2021. Virtual, Republic of Korea: ACM, 2021, pages 110–121.
isbn: 9781450386159. doi: 10.1145/3471874.3472987.

[8] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. “The Spec# Pro-
gramming System: An Overview”. In: Proceedings of the 2004 International
Conference on Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices. CASSIS’04. Marseille, France: Springer-Verlag, 2004, pages 49–69. isbn:
3540242872. doi: 10.1007/978-3-540-30569-9_3.

[9] Jan A. Bergstra and John V. Tucker. “Algebraic specifications of computable
and semicomputable data types”. In: Theoretical Computer Science 50.2 (1987),
pages 137–181. issn: 0304-3975. doi: 10.1016/0304-3975(87)90123-X.

[10] Michel Bidoit and Peter D. Mosses. CASL User Manual - Introduction to Using
the Common Algebraic Specification Language. Volume 2900. Lecture Notes in
Computer Science. Springer, 2004. isbn: 3-540-20766-X. doi: 10.1007/b11968.

[11] Luca Cardelli and Peter Wegner. “On Understanding Types, Data Abstraction,
and Polymorphism”. In: ACM Comput. Surv. 17.4 (Dec. 1985), pages 471–523.
issn: 0360-0300. doi: 10.1145/6041.6042.

[12] Jacques Carette, Russell O’Connor, and Yasmine Sharoda. Building on the
Diamonds between Theories: Theory Presentation Combinators. 2019. doi: 10.
48550/arXiv.1812.08079.

[13] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. “Associ-
ated Type Synonyms”. In: Proceedings of the Tenth ACM SIGPLAN International
Conference on Functional Programming. ICFP ’05. Tallinn, Estonia: ACM, 2005,
pages 241–253. isbn: 1595930647. doi: 10.1145/1086365.1086397.

[14] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and SimonMar-
low. “Associated Types with Class”. In: Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’05. Long
Beach, California, USA: ACM, 2005, pages 1–13. isbn: 158113830X. doi:
10.1145/1040305.1040306.

[15] Craig Chambers and the Cecil Group. The Cecil language: specification and
rationale, Version 3.2. [Last accessed 30-Sep-2022]. 2004. url: https://proj
ectsweb.cs.washington.edu/research/projects/cecil/www/Release/doc-cecil-
lang/cecil-spec.pdf.

[16] Benjamin Chetioui. magnoliac: A Magnolia Compiler. Dec. 2020. doi: 10.5281/
zenodo.6572953.

4:31

https://doi.org/10.1145/2663171.2663183
https://doi.org/10.1145/3471874.3472987
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1016/0304-3975(87)90123-X
https://doi.org/10.1007/b11968
https://doi.org/10.1145/6041.6042
https://doi.org/10.48550/arXiv.1812.08079
https://doi.org/10.48550/arXiv.1812.08079
https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/1040305.1040306
https://projectsweb.cs.washington.edu/research/projects/cecil/www/Release/doc-cecil-lang/cecil-spec.pdf
https://projectsweb.cs.washington.edu/research/projects/cecil/www/Release/doc-cecil-lang/cecil-spec.pdf
https://projectsweb.cs.washington.edu/research/projects/cecil/www/Release/doc-cecil-lang/cecil-spec.pdf
https://doi.org/10.5281/zenodo.6572953
https://doi.org/10.5281/zenodo.6572953

Revisiting Language Support for Generic Programming

[17] Benjamin Chetioui, Marius Larnøy, Jaakko Järvi, Magne Haveraaen, and Lenore
Mullin. “P3 Problem and Magnolia Language: Specializing Array Computations
for Emerging Architectures”. In: Frontiers in Computer Science 4 (2022). doi:
10.3389/fcomp.2022.931312.

[18] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming. ICFP ’00. New York, NY, USA:
ACM, 2000, pages 268–279. isbn: 1581132026. doi: 10.1145/351240.351266.

[19] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln,
Narciso Martí-Oliet, José Meseguer, Rubén Rubio, and Carolyn Talcott. Maude
Manual (Version 3.2.1). Feb. 2022.

[20] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and José F. Quesada. “Maude: specification and pro-
gramming in rewriting logic”. In: Theoretical Computer Science 285.2 (2002).
Rewriting Logic and its Applications, pages 187–243. issn: 0304-3975. doi:
10.1016/S0304-3975(01)00359-0.

[21] Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. “Principles of
Maude”. In: Electronic Notes in Theoretical Computer Science 4 (1996). RWLW96,
First International Workshop on Rewriting Logic and its Applications, pages 65–
89. issn: 1571-0661. doi: 10.1016/S1571-0661(04)00034-9.

[22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. 3rd. The MIT Press, 2009. isbn:
0262033844.

[23] James C. Dehnert and Alexander A. Stepanov. “Fundamentals of Generic Pro-
gramming”. In: [58], pages 1–11. isbn: 3540410902. doi: 10.1007/3-540-39953-
4_1.

[24] Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ report: The language, proof
techniques, andmethodologies for object-oriented algebraic specification. Volume 6.
World Scientific, 1998. isbn: 978-9810235130.

[25] Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. “Embedded Con-
tract Languages”. In: Proceedings of the 2010 ACM Symposium on Applied Com-
puting. SAC ’10. Sierre, Switzerland: ACM, 2010, pages 2103–2110. isbn:
9781605586397. doi: 10.1145/1774088.1774531.

[26] Robert W. Floyd. “Assigning Meanings to Programs”. In: Program Verification:
Fundamental Issues in Computer Science. Edited by Timothy R. Colburn, James H.
Fetzer, and Terry L. Rankin. Dordrecht: Springer Netherlands, 1993, pages 65–
81. isbn: 978-94-011-1793-7. doi: 10.1007/978-94-011-1793-7_4.

[27] Tim Freeman and Frank Pfenning. “Refinement Types for ML”. In: Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation. PLDI ’91. Toronto, Ontario, Canada: ACM, 1991, pages 268–
277. isbn: 0897914287. doi: 10.1145/113445.113468.

4:32

https://doi.org/10.3389/fcomp.2022.931312
https://doi.org/10.1145/351240.351266
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1016/S1571-0661(04)00034-9
https://doi.org/10.1007/3-540-39953-4_1
https://doi.org/10.1007/3-540-39953-4_1
https://doi.org/10.1145/1774088.1774531
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/113445.113468

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

[28] Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and José
Meseguer. “Principles of OBJ2”. In: Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. POPL ’85. New Orleans,
Louisiana, USA: ACM, 1985, pages 52–66. isbn: 0897911474. doi: 10.1145/
318593.318610.

[29] Kokichi Futatsugi, Joseph A. Goguen, José Meseguer, and Koji Okada. “Pa-
rameterized Programming in OBJ2”. In: Proceedings of the 9th International
Conference on Software Engineering. ICSE ’87. Monterey, California, USA: IEEE
Computer Society Press, 1987, pages 51–60. isbn: 0897912160.

[30] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah
Willcock. “An extended comparative study of language support for generic
programming”. In: Journal of Functional Programming 17.2 (2007), pages 145–
205. doi: 10.1017/S0956796806006198.

[31] Jeremy Gibbons. “Datatype-Generic Programming”. In: Proceedings of the 2006
International Conference on Datatype-Generic Programming. SSDGP’06. Not-
tingham, UK: Springer-Verlag, 2006, pages 1–71. isbn: 3540767851. doi:
10.1007/978-3-540-76786-2_1.

[32] Joseph A. Goguen. “Higher-Order Functions Considered Unnecessary for Higher-
Order Programming”. In: Research Topics in Functional Programming. USA:
Addison-Wesley Longman Publishing Co., Inc., 1990, pages 309–351. isbn:
0201172364.

[33] Joseph A. Goguen. “Parameterized programming”. In: IEEE Transactions on
Software engineering 5 (1984), pages 528–543.

[34] Joseph A. Goguen. “Tossing algebraic flowers down the great divide”. In:
Springer, New York, 1999, pages 93–129. isbn: 9789814021135.

[35] Joseph A. Goguen. “Types as Theories”. In: Topology and Category Theory in
Computer Science. USA: Oxford University Press, Inc., 1991, pages 357–385.
isbn: 0198537603.

[36] Joseph A. Goguen and Rod M. Burstall. “Introducing institutions”. In: Logics
of Programs. Edited by Edmund Clarke and Dexter Kozen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1984, pages 221–256. isbn: 978-3-540-38775-6.
doi: 10.1007/3-540-12896-4_366.

[37] Joseph A. Goguen, Claude Kirchner, Hélène Kirchner, Aristide Mégrelis, José
Meseguer, and TimothyWinkler. “An Introduction to OBJ 3”. In: 1st International
Workshop on Conditional Term Rewriting Systems. Orsay, France: Springer-Verlag,
1988, pages 258–263. isbn: 3540192425. doi: 10.1007/3-540-19242-5_22.

[38] Joseph A. Goguen and William Tracz. “An implementation-oriented semantics
for module composition”. In: Foundations of Component-based Systems. 2000,
pages 231–263. isbn: 0-521-77164-1.

4:33

https://doi.org/10.1145/318593.318610
https://doi.org/10.1145/318593.318610
https://doi.org/10.1017/S0956796806006198
https://doi.org/10.1007/978-3-540-76786-2_1
https://doi.org/10.1007/3-540-12896-4_366
https://doi.org/10.1007/3-540-19242-5_22

Revisiting Language Support for Generic Programming

[39] Joseph A. Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and
Jean-Pierre Jouannaud. “Introducing OBJ”. In: Software Engineering with OBJ:
Algebraic Specification in Action. Edited by Joseph Goguen and Grant Malcolm.
Boston, MA: Springer US, 2000, pages 3–167. isbn: 978-1-4757-6541-0. doi:
10.1007/978-1-4757-6541-0_1.

[40] Andy Gordon and Cédric Fournet. Principles and Applications of Refinement
Types. Technical report MSR-TR-2009-147. [Last accessed 30-Sep-2022]. Oct.
2009. url: https://www.microsoft.com/en-us/research/publication/principles-
and-applications-of-refinement-types/.

[41] Douglas Gregor and Jaakko Järvi. “Variadic Templates for C++0x”. In: Journal
of Object Technology 7.2 (Feb. 2008). Edited by Davide Ancona and Mirko Viroli.
OOPS Track at the 22nd ACM Symposium on Applied Computing, SAC 2007,
pages 31–51. issn: 1660-1769. doi: 10.5381/jot.2008.7.2.a2.

[42] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis,
and Andrew Lumsdaine. “Concepts: linguistic support for generic programming
in C++”. In: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications. Portland,
Oregon, USA: ACM Press, 2006, pages 291–310. isbn: 1-59593-348-4. doi:
10.1145/1167473.1167499.

[43] Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance Taylor,
Bernardo Toninho, Philip Wadler, and Nobuko Yoshida. “Featherweight Go”.
In: Proceedings of the ACM on Programming Languages 4.OOPSLA (Nov. 2020).
doi: 10.1145/3428217.

[44] John L. Gustafson and Isaac T. Yonemoto. “Beating Floating Point at its Own
Game: Posit Arithmetic”. In: Supercomputing Frontiers and Innovations 4.2 (Apr.
2017), pages 71–86. doi: 10.14529/jsfi170206.

[45] Hans-Christian Hamre. “Automated Verifications for Magnolia Satisfactions”.
Master’s thesis. The University of Bergen, 2022.

[46] Haskell Applicative => Monad Proposal. [Last accessed 22-October-2021]. 2014.
url: https://wiki.haskell.org/Functor-Applicative-Monad_Proposal.

[47] Magne Haveraaen. “Axiom Based Testing for Fun and Pedagogy”. In: Formal
Methods – Fun for Everybody. Edited by Antonio Cerone andMarkus Roggenbach.
Cham: Springer International Publishing, 2021, pages 27–57. isbn: 978-3-030-
71374-4. doi: 10.1007/978-3-030-71374-4_2.

[48] Magne Haveraaen, Jaakko Järvi, and Damian Rouson. Reflecting on Generics for
Fortran. Technical report. [Last accessed 30-Sep-2022]. 2019. url: https://j3-
fortran.org/doc/year/19/19-188.pdf.

[49] Magne Haveraaen and Karl Trygve Kalleberg. “JAxT and JDI: The Simplicity
of JUnit Applied to Axioms and Data Invariants”. In: OOPSLA Companion ’08:
Companion to the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications. Nashville, TN, USA: ACM, 2008, pages 731–
732. isbn: 978-1-60558-220-7. doi: 10.1145/1449814.1449834.

4:34

https://doi.org/10.1007/978-1-4757-6541-0_1
https://www.microsoft.com/en-us/research/publication/principles-and-applications-of-refinement-types/
https://www.microsoft.com/en-us/research/publication/principles-and-applications-of-refinement-types/
https://doi.org/10.5381/jot.2008.7.2.a2
https://doi.org/10.1145/1167473.1167499
https://doi.org/10.1145/3428217
https://doi.org/10.14529/jsfi170206
https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://doi.org/10.1007/978-3-030-71374-4_2
https://j3-fortran.org/doc/year/19/19-188.pdf
https://j3-fortran.org/doc/year/19/19-188.pdf
https://doi.org/10.1145/1449814.1449834

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

[50] Magne Haveraaen and Markus Roggenbach. “Specifying with syntactic theory
functors”. In: Journal of Logical and Algebraic Methods in Programming 113
(2020), page 100543. issn: 2352-2208. doi: 10.1016/j.jlamp.2020.100543.

[51] Magne Haveraaen and Eric G. Wagner. “Guarded Algebras: Disguising Partiality
so You Won’t Know Whether Its There”. In: Recent Trends in Algebraic Develop-
ment Techniques. Edited by Didier Bert, Christine Choppy, and Peter D. Mosses.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pages 182–200. isbn:
978-3-540-44616-3. doi: 10.1007/978-3-540-44616-3_11.

[52] Ralf Hinze and Johan Jeuring. “Generic Haskell: Practice and Theory”. In:
Generic Programming: Advanced Lectures. Edited by Roland Carl Backhouse and
Jeremy Gibbons. Volume 2793. Lecture Notes in Computer Science. Springer,
2003, pages 1–56. isbn: 978-3-540-45191-4. doi: 10.1007/978-3-540-45191-4_1.

[53] Ralf Hinze and Johan Jeuring. “Weaving a web”. In: Journal of Functional
Programming 11.6 (2001), pages 681–689. doi: 10.1017/S0956796801004129.

[54] Charles Antony Richard Hoare. “An axiomatic basis for computer programming”.
In: Communications of the ACM 12.10 (1969), pages 576–580.

[55] Paul Holser. junit-quickcheck: Property-based testing, JUnit-style. [Last accessed
30-May-2022]. 2014. url: https://pholser.github.io/junit-quickcheck/site/1.0/.

[56] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. “Featherweight Java: A
Minimal Core Calculus for Java and GJ”. In: ACM Transactions on Programming
Languages and Systems 23.3 (May 2001), pages 396–450. issn: 0164-0925. doi:
10.1145/503502.503505.

[57] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. “Associated Types
and Constraint Propagation for Mainstream Object-Oriented Generics”. In:
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA ’05. San Diego, CA,
USA: ACM, 2005, pages 1–19. isbn: 1595930310. doi: 10.1145/1094811.1094813.

[58] Mehdi Jazayeri, Ruediger Loos, and David Musser. Generic Programming: In-
ternational Seminar on Generic Programming Dagstuhl Castle, Germany, April
27–May 1, 1998 Selected Papers. Jan. 2000. isbn: 978-3-540-41090-4. doi:
10.1007/3-540-39953-4.

[59] Wolfram Kahl and Jan Scheffczyk. “Named Instances for Haskell Type Classes”.
In: Proceedings of the 2001 Haskell Workshop. Edited by Ralf Hinze. Volume 59.
2. Firenze, Italy, 2001.

[60] Deepak Kapur, David R. Musser, and Alexander A. Stepanov. “Operators and
Algebraic Structures”. In: Proceedings of the 1981 Conference on Functional
Programming Languages and Computer Architecture. FPCA ’81. Portsmouth,
New Hampshire, USA: ACM, 1981, pages 59–64. isbn: 0897910605. doi:
10.1145/800223.806763.

[61] Oleg Kiselyov. Functions with the variable number of (variously typed) arguments.
[Last accessed 24-May-2022]. June 2004. url: https://okmij.org/ftp/Haskell/
polyvariadic.html#polyvar-fn.

4:35

https://doi.org/10.1016/j.jlamp.2020.100543
https://doi.org/10.1007/978-3-540-44616-3_11
https://doi.org/10.1007/978-3-540-45191-4_1
https://doi.org/10.1017/S0956796801004129
https://pholser.github.io/junit-quickcheck/site/1.0/
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/1094811.1094813
https://doi.org/10.1007/3-540-39953-4
https://doi.org/10.1145/800223.806763
https://okmij.org/ftp/Haskell/polyvariadic.html#polyvar-fn
https://okmij.org/ftp/Haskell/polyvariadic.html#polyvar-fn

Revisiting Language Support for Generic Programming

[62] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. HList: Heterogeneous lists.
Version v0.5.2.0. [Last accessed 24-May-2022]. Feb. 2022. url: https://hackage.
haskell.org/package/HList-0.5.2.0/.

[63] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. “Strongly Typed Heteroge-
neous Collections”. In: Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell. Haskell ’04. Snowbird, Utah, USA: ACM, 2004, pages 96–107. isbn:
1581138504. doi: 10.1145/1017472.1017488.

[64] Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML. [Last accessed
20-September-2022]. 2006. url: https://www.cs.ucf.edu/~leavens/JML/jmldbc.
pdf.

[65] Simon Marlow, editor. Haskell 2010 language report. [Last accessed 22-October-
2021]. 2010. url: https://www.haskell.org/onlinereport/haskell2010/.

[66] Bertrand Meyer. “Applying ’design by contract’”. In: Computer 25.10 (1992),
pages 40–51. doi: 10.1109/2.161279.

[67] Bertrand Meyer. Eiffel: The Language. Prentice Hall, New York, NY, 1991. isbn:
0-13-247925-7.

[68] Andrey Mokhov. “United Monoids”. In: The Art, Science, and Engineering of
Programming 6.3 (Feb. 2022). doi: 10.22152/programming-journal.org/2022/6/
12.

[69] David R. Musser and Alexander A. Stepanov. “Generic Programming”. In:
Symbolic and Algebraic Computation, International Symposium ISSAC’88, Rome,
Italy, July 4-8, 1988, Proceedings. Edited by Patrizia M. Gianni. Volume 358.
Lecture Notes in Computer Science. Springer, 1988, pages 13–25. doi: 10.1007/
3-540-51084-2_2.

[70] Matt Noonan. “Ghosts of Departed Proofs (Functional Pearl)”. In: Proceedings
of the 11th ACM SIGPLAN International Symposium on Haskell. Haskell 2018.
St. Louis, MO, USA: ACM, 2018, pages 119–131. isbn: 9781450358354. doi:
10.1145/3242744.3242755.

[71] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. “Type Classes as
Objects and Implicits”. In: Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications. OOPSLA ’10.
Reno/Tahoe, Nevada, USA: ACM, 2010, pages 341–360. isbn: 9781450302036.
doi: 10.1145/1869459.1869489.

[72] Peter Csaba Ölveczky. Designing Reliable Distributed Systems - A Formal Methods
Approach Based on Executable Modeling in Maude. Undergraduate Topics in
Computer Science. Springer, 2017. isbn: 978-1-4471-6686-3. doi: 10.1007/978-
1-4471-6687-0.

[73] OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 5.1. [Last accessed 31-January-2022]. Nov. 2020. url: https://www.
openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf.

4:36

https://hackage.haskell.org/package/HList-0.5.2.0/
https://hackage.haskell.org/package/HList-0.5.2.0/
https://doi.org/10.1145/1017472.1017488
https://www.cs.ucf.edu/~leavens/JML/jmldbc.pdf
https://www.cs.ucf.edu/~leavens/JML/jmldbc.pdf
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1109/2.161279
https://doi.org/10.22152/programming-journal.org/2022/6/12
https://doi.org/10.22152/programming-journal.org/2022/6/12
https://doi.org/10.1007/3-540-51084-2_2
https://doi.org/10.1007/3-540-51084-2_2
https://doi.org/10.1145/3242744.3242755
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-1-4471-6687-0
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

[74] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. “Playing by the rules:
rewriting as a practical optimisation technique in GHC”. In: Proceedings of the
2001 Haskell Workshop. Edited by Ralf Hinze. Volume 59. 2. Firenze, Italy, 2001.

[75] Gabriel Radanne. Typing Tricks: Diff lists. [Last accessed 24-May-2022]. Aug.
2016. url: https://drup.github.io/2016/08/02/difflists/.

[76] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. “Liquid Types”. In: Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’08. Tucson, AZ, USA: ACM, 2008, pages 159–169.
isbn: 9781595938602. doi: 10.1145/1375581.1375602.

[77] Donald Sannella and Andrzej Tarlecki. “Extended ML: An Institution-
Independent Framework for Formal Program Development”. In: Category The-
ory and Computer Programming: Tutorial and Workshop, Guildford, U.K. Septem-
ber 16–20, 1985 Proceedings. Edited by David Pitt, Samson Abramsky, Axel
Poigné, and David Rydeheard. Springer Berlin Heidelberg, 1986, pages 364–
389. isbn: 978-3-540-47213-1. doi: 10.1007/3-540-17162-2_133.

[78] Donald Sannella and Andrzej Tarlecki. “Mind the Gap! Abstract Versus Concrete
Models of Specifications”. In: Mathematical Foundations of Computer Science
1996, 21st International Symposium, MFCS’96, Cracow, Poland, September 2-6,
1996, Proceedings. Edited byWojciech Penczek and Andrzej Szalas. Volume 1113.
Lecture Notes in Computer Science. Springer, 1996, pages 114–134. doi: 10.
1007/3-540-61550-4_143.

[79] Gabriel Scherer. The 6 parameters of (’a, ’b, ’c, ’d, ’e, ’f) format6. [Last accessed
24-May-2022]. Apr. 2014. url: http://gallium.inria.fr/blog/format6/.

[80] Gabriel Scherer and Didier Rémy. “GADTs Meet Subtyping”. In: Programming
Languages and Systems. Edited by Matthias Felleisen and Philippa Gardner.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pages 554–573. isbn:
978-3-642-37036-6. doi: 10.1007/978-3-642-37036-6_30.

[81] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulz-
mann. “Type Checking with Open Type Functions”. In: Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming. ICFP ’08.
Victoria, BC, Canada: ACM, 2008, pages 51–62. isbn: 9781595939197. doi:
10.1145/1411204.1411215.

[82] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002. isbn: 0-201-72914-8.

[83] Jeremy Siek and Andrew Lumsdaine. “Concept checking: Binding parametric
polymorphism in C++”. In: Proceedings of the First Workshop on C++ Template
Programming. [Last accessed 01-Oct-2022]. Erfurt, Germany, Oct. 2000, page 12.
url: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.427.

[84] Jeremy G. Siek. “A Language for Generic Programming”. PhD thesis. USA, 2005.
isbn: 0542308096.

4:37

https://drup.github.io/2016/08/02/difflists/
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1007/3-540-17162-2_133
https://doi.org/10.1007/3-540-61550-4_143
https://doi.org/10.1007/3-540-61550-4_143
http://gallium.inria.fr/blog/format6/
https://doi.org/10.1007/978-3-642-37036-6_30
https://doi.org/10.1145/1411204.1411215
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.427

Revisiting Language Support for Generic Programming

[85] Jeremy G. Siek. “The C++0x “Concepts” Effort”. In: Generic and Indexed Program-
ming: International Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010,
Revised Lectures. Edited by Jeremy Gibbons. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pages 175–216. isbn: 978-3-642-32202-0. doi: 10.1007/978-
3-642-32202-0_4.

[86] Jeremy G. Siek and Andrew Lumsdaine. “A language for generic programming
in the large”. In: Science of Computer Programming 76.5 (2011). Special Issue
on Generative Programming and Component Engineering (Selected Papers
from GPCE 2004/2005), pages 423–465. issn: 0167-6423. doi: 10.1016/j.scico.
2008.09.009.

[87] Alexander Stepanov and Paul McJones. Elements of Programming. 1st. Addison-
Wesley Professional, 2009. isbn: 032163537X.

[88] Andrew Sutton. “Overloading with Concepts”. In: Overload 24 (Dec. 2016).
[Last accessed 30-Sep-2022]. url: https://accu.org/journals/overload/24/136/
sutton_2316/.

[89] Andrew Sutton and Jonathan I. Maletic. “Emulating C++0x concepts”. In: Science
of Computer Programming 78.9 (2013), pages 1449–1469. issn: 0167-6423.
doi: 10.1016/j.scico.2012.10.009.

[90] Andrew Sutton and Bjarne Stroustrup. “Design of Concept Libraries for C++”. In:
Software Language Engineering. Edited by Anthony Sloane and Uwe Aßmann.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pages 97–118. isbn:
978-3-642-28830-2. doi: 10.1007/978-3-642-28830-2_6.

[91] Benoît Vaugon. A new format implementation based on GADTs. [Last accessed
24-May-2022]. May 2013. url: https://github.com/ocaml/ocaml/issues/6017.

[92] Dana N. Xu. “Hybrid Contract Checking via Symbolic Simplification”. In: Pro-
ceedings of the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Pro-
gram Manipulation. PEPM ’12. Philadelphia, Pennsylvania, USA: ACM, 2012,
pages 107–116. isbn: 9781450311182. doi: 10.1145/2103746.2103767.

[93] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. “Static Contract Checking
for Haskell”. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL ’09. Savannah, GA, USA:
ACM, 2009, pages 41–52. isbn: 9781605583792. doi: 10.1145/1480881.1480889.

[94] Edward Z. Yang. Type classes: confluence, coherence and global uniqueness. [Last
accessed 01-February-2022]. 2014. url: http://blog.ezyang.com/2014/07/type-
classes-confluence-coherence-global-uniqueness/.

4:38

https://doi.org/10.1007/978-3-642-32202-0_4
https://doi.org/10.1007/978-3-642-32202-0_4
https://doi.org/10.1016/j.scico.2008.09.009
https://doi.org/10.1016/j.scico.2008.09.009
https://accu.org/journals/overload/24/136/sutton_2316/
https://accu.org/journals/overload/24/136/sutton_2316/
https://doi.org/10.1016/j.scico.2012.10.009
https://doi.org/10.1007/978-3-642-28830-2_6
https://github.com/ocaml/ocaml/issues/6017
https://doi.org/10.1145/2103746.2103767
https://doi.org/10.1145/1480881.1480889
http://blog.ezyang.com/2014/07/type-classes-confluence-coherence-global-uniqueness/
http://blog.ezyang.com/2014/07/type-classes-confluence-coherence-global-uniqueness/

Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen

About the authors

Benjamin Chetioui is the corresponding author for this paper.
Contact Benjamin at benjamin.chetioui@uib.no.

Jaakko Järvi is a professor of Software Engineering at the Univer-
sity of Turku. Contact Jaakko at jaakko.jarvi@utu.fi.

Magne Haveraaen is a professor in Informatics at the University
of Bergen and the head of Bergen Language Design Laboratory
(BLDL). Contact Magne at magne.haveraaen@uib.no.

4:39

mailto:benjamin.chetioui@uib.no
mailto:jaakko.jarvi@utu.fi
mailto:magne.haveraaen@uib.no

	1 Introduction
	2 Languages Designed for Generic Programming: The Approach of Algebraic Specifications
	2.1 Algebraic Specifications and Maude
	2.2 Magnolia

	3 Graph Library in Magnolia
	3.1 Implementing the Graph Algorithms
	3.2 Specifying and Instantiating Data Structures
	3.3 Abstracting the Schedule of the Algorithms

	4 Generic Features: Evaluation
	5 Performance
	6 Discussion and Conclusion
	A Code Listings
	References
	About the authors

