567 research outputs found

    A Formal Methods Approach to Pattern Synthesis in Reaction Diffusion Systems

    Full text link
    We propose a technique to detect and generate patterns in a network of locally interacting dynamical systems. Central to our approach is a novel spatial superposition logic, whose semantics is defined over the quad-tree of a partitioned image. We show that formulas in this logic can be efficiently learned from positive and negative examples of several types of patterns. We also demonstrate that pattern detection, which is implemented as a model checking algorithm, performs very well for test data sets different from the learning sets. We define a quantitative semantics for the logic and integrate the model checking algorithm with particle swarm optimization in a computational framework for synthesis of parameters leading to desired patterns in reaction-diffusion systems

    Artificial intelligence for superconducting transformers

    Get PDF
    Artificial intelligence (AI) techniques are currently widely used in different parts of the electrical engineering sector due to their privileges for being used in smarter manufacturing and accurate and efficient operating of electric devices. Power transformers are a vital and expensive asset in the power network, where their consistent and fault-free operation greatly impacts the reliability of the whole system. The superconducting transformer has the potential to fully modernize the power network in the near future with its invincible advantages, including much lighter weight, more compact size, much lower loss, and higher efficiency compared with conventional oil-immersed counterparts. In this article, we have looked into the perspective of using AI for revolutionizing superconducting transformer technology in many aspects related to their design, operation, condition monitoring, maintenance, and asset management. We believe that this article offers a roadmap for what could be and needs to be done in the current decade 2020-2030 to integrate AI into superconducting transformer technology

    An overview of artificial intelligence applications for power electronics

    Get PDF

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Feature Selection for Fuzzy Models

    Get PDF

    A Review of Rule Learning Based Intrusion Detection Systems and Their Prospects in Smart Grids

    Get PDF

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner
    corecore