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Abstract

The design of lightweight structures is a priority for the transportation industry, as it represents an
improvement in the structural efficiency and an associated reduction of the fuel consumed. For
the space industry, a possible path to tackling this issue is the development of self-deployable
structures, whose main advantage is the capability of being stored in a compact form and then
transitioning to an operational configuration by releasing the elastic energy stored during their
contraction. This characteristic leads to efficient use of the space available in the spacecraft, which
is further enhanced by the use of composite materials, reducing their total mass.

In most cases, the development of self-deployable structures addresses two main concerns.
The first concern is meeting the operational requirements necessary for a specific application,
which is usually a stiffness related requirement, such as a minimum pointing accuracy or the
natural frequency of vibration. The nature of these requirements contrasts with the need for
the self-deployable structure to be flexible enough to be stowed into a compact configuration,
which normally limits the maximum stiffness achievable in the design. The second concern is
predicting accurately the behaviour of the self-deployable structure once it is in orbit. In between
the contraction and the deployment of the structure, there is potentially a long period during which
the structure is transported, stored in the spacecraft, launched into space, and finally reaches the
intended orbit. This period may allow the occurrence of relaxation in the composite material and,
consequently, change the deployment behaviour of the structure. Therefore, the successful design
and application of a self-deployable structure depend on finding the optimal balance between two
opposing stiffness related requirements and on the accurate prediction of the influence of relaxation
phenomenon in the composite material.

Accordingly, this thesis presents a critical review of the state-of-the-art methods used to develop
composite self-deployable structures, using an advanced space-engineering problem as a benchmark.
The conclusions of this research indicate that the most challenging part of the design process, and
also most limiting in terms of potential applications, is the balance of the contradictory stiffness
requirements in the design process. To address this issue, two possible solutions are explored: the
use of a damage-tolerant design, and the use of topology optimization during the design process.

The possibility of using a damage-tolerant design is benchmarked against the state-of-the-art
approach, comparing the first natural frequency of two self-deployable composite elastic hinges.
Here, one is allowed to become damaged during the stowing phase, and another, follows the
state of the art where no damage is sustained during this phase. This work demonstrates that
the damage-tolerant design has a superior performance and potentially a wider range of possible
applications.

The use of topology optimization is then discussed, highlighting the similarities between stress
constrained compliance minimization problems and the design of a composite self-deployable
structure, identifying potential limitations during the process. Within the scope of this thesis and
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to promote further research in the field of topology optimization, an open-access Python code has
been developed and published. This code works in conjunction with the commercial finite element
software ABAQUS® and allows the application of different topology optimization approaches to
both 2 and 3-dimensional problems.

Keywords: Composite materials. Damage tolerance. Topology optimization. Deployable
structures.



Resumo

O projeto de estruturas com menor peso é uma prioridade para a indústria de transportes, represen-
tando uma melhoria na eficiência estrutural e uma consequente redução do consumo de combustível.
Para a indústria do espaço, uma possível tentativa de solucionar este problema é o desenvolvimento
de estruturas self-deployable, cuja principal vantagem é a capacidade de serem armazenadas numa
forma compacta e, posteriormente, transitarem para uma configuração operacional expandida
através da libertação da energia elástica acumulada durante a sua contração. Esta característica leva
a uma utilização otimizada do espaço disponível na aeronave, cujo benefício é melhorado com a
utilização de materiais compósitos, tendo como consequência a redução da sua massa total.

Na maioria dos casos, o desenvolvimento de estruturas self-deployable é focado em dois
pontos. O primeiro ponto é o cumprimento dos requisitos operacionais necessários para a aplicação
específica, geralmente associados a requisitos de rigidez, como um valor mínimo de precisão
direcional de abertura ou a frequência natural de vibração. A natureza destes requisitos contrasta
com a necessidade da estrutura self-deployable ser suficientemente flexível para atingir uma
configuração compacta, limitando a rigidez máxima atingível durante o projeto. O segundo ponto é
a previsão, com exatidão, do comportamento da estrutura self-deployable quando em órbita. Entre
o momento da compactação e de abertura da estrutura existe um período de tempo, potencialmente
longo, durante o qual a estrutura é transportada, armazenada na aeronave, lançada para o espaço e
colocada na órbita pretendida. Este período de tempo pode permitir a ocorrência de relaxamento
do material compósito e, consequentemente, mudar o comportamento da estrutura durante a sua
abertura. Assim, o projeto e aplicação com sucesso de uma estrutura self-deployable depende de
encontrar um equilíbrio ótimo entre dois requisitos de rigidez opostos e em prever, com precisão, a
influência de fenómenos de relaxamento no material compósito.

Como tal, esta tese apresenta uma revisão crítica dos métodos atualmente usados no desen-
volvimento de estruturas compósitas self-deployable, tendo como ponto de partida um problema
avançado de engenharia como referência. As conclusões desta investigação indicam que o maior
desafio neste processo de projeto, e também o mais limitador em termos de potenciais aplicações,
é encontrar o equilíbrio entre os requisitos de rigidez contraditórios. Na tentativa de apresentar
propostas para solucionar este problema, são exploradas duas soluções possíveis: o uso de uma
estrutura tolerante ao dano e o uso do método de otimização topológica durante o processo de
projeto.

O uso de uma opção estrutural tolerante ao dano é comparado com o método atualmente
reportado na literatura, avaliando a primeira frequência natural de vibração de duas articulações
elásticas self-deployable compósitas. Uma que inicia dano durante a compactação e outra que só
funciona em regime elástico. Este trabalho demonstra que o projeto tolerante ao dano tem uma
performance superior e, potencialmente, um maior número de possíveis aplicações.

Posteriormente, o uso do método de otimização topológica é discutido. Para tal, são destacadas
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as similaridades entre um problema de minimização de compliance, restringido por uma tensão
máxima, com o problema de projeto de uma estrutura self-deployable compósita e identificadas
potenciais limitações neste método. Dentro do âmbito desta tese, foi desenvolvido e publicado
um código Python, de acesso livre. Este código opera em conjunto com o software comercial de
método de elementos finitos ABAQUS® e permite a aplicação de vários métodos de otimização
topológica a problemas de 2 ou 3 dimensões.

Keywords: Materiais compósitos. Tolerância ao dano. Otimização topológica. Estruturas
deployable.
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2 Introduction

1.1 Motivation and Background

The need to efficiently transport payloads, store large equipment or cargo in a limited space, and

reduce the fuel necessary for the transportation are examples of requirements that can be found in a

wide variety of fields and industries, ranging from the automotive industry to military applications.

In space applications, particularly in spacecraft design, these dimensional and mass constraints are

set by the capability of the launcher. The difficulties associated to the development of launchers

with increased capacity has created a theoretical limit on the size and mass of the payloads. This

constraint limits the quality, the further development, and the launch of better performing equipment,

such as telescopes [1, 2]. To deal with this constraint, several researches have studied the possibility

of developing structures that change their configuration, allowing their storage in a compact form

and a transition into a large operating configuration when required. These structures are referred to

as “deployable structures” and can take on, at least, two possible configurations: one “retracted”

and another “deployed” [1–4]. One application of this concept is the elastic hinges in the monopole

and dipole antennas of MARSIS (Mars Advanced Radar for Surface and Ionosphere Sounding),

which allowed the folding of antennas with lengths of up to 20 m into segments with approximately

1.5 m in length [5].

Recently, the European Space Agency (ESA) identified telecommunication satellites as a

possible application for this technology, replacing mechanical arms with a lighter and more compact

solution. This trend is evident in projects proposed by ESA, such as the call for the development of

an antenna deployment arm with integrated elastic hinges, in 2016 [6]. Typically, the development

of advanced technology presents conflicting requirements. In the case of deployable systems,

the structure should be flexible to sustain high strain deformations and rigid enough to support

external loads and/or reach certain natural frequencies [2–5, 7–9]. Furthermore, the statement of

work presented by ESA [6] requests that the deployment arm developed for telecommunication

purposes should have a natural frequency higher than 1.0 Hz [6], which is 20 times larger than

what was considered in the monopole and dipole antennas developed for MARSIS [6] and 100

times larger than similar solutions reported in the literature [10]. This scenario presents a challenge

and the need for a significant scientific development if one is to have such an improvement over

the current state-of-the-art solutions. Excluding the possibility of redefining the requirements of

the structure, failing to find a balance between them can lead to one of two situations: either the

structure becomes too flexible, failing to meet the rigidity requirements necessary to operate, or the

structure becomes too rigid, making it impossible to retract without initiating damage.

Further research on the design and optimization of composite deployable structures is a possible

path to solve the challenges that arise from the use of these structures and enable their application in

telecommunication satellites. Additionally, the development of new design methodologies suitable

for composite materials has a significant potential for technological transfer, especially to industries

that benefit from structural weight reduction.
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1.2 Problem Statement

Due to its novelty, information regarding the design and optimization of deployable structures

considering multiple requirements is scarce. Similarly, limited research and study have been

performed on the evaluation of possible solutions that may lead to increased compatibility between

the requirements that characterize deployable structures.

It is the scope of this research to review the technical challenges associated with the design

of composite deployable structures, identify limiting factors in the design approaches currently

used, as well as to propose and evaluate new methodologies that may lead to relevant performance

improvements of the designs obtained.

Throughout this thesis, the design requirements presented by ESA in [6] will be used as a

reference and a starting point. It is important to note that, despite having been first published in

2016, these requirements are a representative example of an up-to-date engineering problem whose

project and development are still on-going. Furthermore, the requirements that define this problem

can be generalized to other engineering case studies involving the design of high-performing

composite structures.

1.3 Scientific Objectives

With this research, the following scientific and technical aims are foreseen:

• The identification and determination of material parameters for numerical models that predict

damage initiation and propagation during operation of a deployable structure.

• The analysis of the design methodologies currently used in the design of composite deploy-

able structures.

• The development and evaluation of a design method suitable for the optimization of the

topology of deployable composite structures.

• The inclusion and analysis of damage constraints in the design of deployable composite

structures.

1.4 Thesis structure

This thesis is constituted by a total of eight chapters, the bulk of the work is based on peer-reviewed

published articles. The attentive reader will notice that the sequence of chapters presented in this

thesis does not represent the chronological order in which this research was developed.1 This

1Throughout this thesis, it is possible to find footnotes with brief orientations that will guide the reader interested in
following the chronological order of research, which has a more linear increase in scientific complexity. Nonetheless,
summary overview of the chronological developments reported in this thesis would correspond to the following order
of chapters: section 2.2 of Chapter 2, Chapters 3 and 4, sections 2.3 through 2.4 of Chapter 2, and finally Chapters 5
through 7.
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change was intentional and meant for the sake of having a classic thesis structure, beginning with a

single state of the art review that provides a global perspective of the research developed. Therefore,

the thesis is organized in the following order.

Chapter 2 presents a state-of-the-art review of the topics addressed in this research and is divided

into two parts. The first part, section 2.2, reviews the methodologies used for the experimental

characterization, numerical modelling, design, and optimization of a self-deployable structure.

The information reviewed in section 2.2 is applied in Chapters 3 and 4. The second part, from

section 2.3 to section 2.4, presents a review of the methodologies applied to the design of composite

structures and on the use of damage tolerance concepts. This second part of the literature review is

applied from Chapter 5 onwards.

Chapters 3 and 4 apply the methods identified in section 2.2 to the challenges associated with

the design of a composite deployable structure. More specifically, Chapter 3 focuses on the design

and optimization of a self-deployable elastic-hinge, addressing the difficulties that arise from

balancing the flexibility and first natural frequency requirements listed by ESA [6], while Chapter 4

addresses the influence of relaxation on the deployment behaviour of a similar structure.

Since it was possible to accurately predict the influence of relaxation on the deployment

behaviour of an elastic-hinge but not to meet both design requirements defined, Chapter 5 evaluates

the possibility of using a multidisciplinary approach to improve the performance of self-deployable

composite structures. This chapter proposes and discusses the use of a damage-tolerant design as a

means to meet the first natural frequency requirements defined by ESA [6].

An alternative route to possibly meeting the design requirements set by ESA [6] is the appli-

cation of the method of topology optimization to the design of deployable composite structures.

However, the use of topology optimization to this particular design problem is scarcely reported

in the literature. The novelty of the method, the still on-going research on the application to

composite materials and on the implementation of stress and/or damage constraints, as well as the

reduced number of open-source implementations available to the public are some of the factors that

contribute to the limited use of this method. Therefore, Chapter 6 presents a Python script that can

be used in the commercial software ABAQUS® [11], which includes a possible implementation

of the state-of-the-art methods for stress-constrained topology optimization suitable for 2 and

3-dimensional problems.



Chapter 2

State of the art review on the design,
experimental characterization,
numerical modelling, and optimization
of self-deployable elastic hinges

The present chapter is based on the following refereed publication:

P. Fernandes, R. Pinto, N. Correia. (2021) Design and optimization of self-deployable

damage tolerant composite structures: a review. Composites Part B: Engineering, 221, 109029.

doi.org/10.1016/j.compositesb.2021.109029
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2.1 Introduction

For the space industry, the design of light and compact structures capable of deploying, once

the payload is in orbit, has been of significant interest for more than two decades [1, 2, 12, 13].

This interest is based on the consequent increase in efficiency of the design of spacecrafts, as

they become capable of transporting more equipment while reducing costs associated with fuel

consumption [1, 2]. Initial developments that used metals later used also more efficient and lighter

composite systems [3, 14–16].

Stored elastic energy deployable structures have been the leading candidates for space ap-

plications. These structures are designed to be stored in a retracted form with the capability of

self-deploying by releasing the elastic strain energy accumulated during the retraction/folding

process, which occurs in the elastic regime [1]. The simplest implementation of this concept is

usually referred to as “tape-springs” (figure 2.1), of which an example is the steel tape measure

(also known as carpenter tape). The first use of tape-springs as deployable structures dates to

1968 [17], which are a useful replacement to traditional hinge mechanisms since they provide high

repeatability and pointing accuracy. Well-known applications include the monopole and dipole

antennas of MARSIS in 2003 (figure 2.2) [5].

The use of composite deployable structures in telecommunication satellites has been proposed

by ESA in 2016 [6]. Doing so represents the possibility of replacing mechanical arms with a lighter

and compact solution but also a significant engineering challenge. Designing a deployable structure

for this application requires a delicate balance between structural flexibility, to fold and contract

the structure into a compact configuration, and structural stiffness, to reach a required minimum

first natural frequency. This challenge is aggravated by the intention of meeting requirements

significantly more ambitious than the solutions currently reported in the literature [10, 5].

In other fields of application of composite materials, the design methodologies have evolved

significantly. Concepts such as damage tolerance have been investigated, leading to an extensive

characterization of composite materials under a considerable plethora of loading cases and operating

conditions. Aeronautic and energy industries, amongst others, have adopted this concept as a means

of increasing the efficiency and/or factor of safety in the designed structures. Also, the cost reduction

is associated with the maintenance or disposal of damaged parts [19–22]. Similarly, topology

optimization methods have been under the spotlight of many researchers [23–25], developing more

refined methodologies that can be applied to more advanced materials.

Figure 2.1: Tape-spring hinge in a deployed (A), partially contracted (B) and fully contracted (C)
configurations (figure adapted from [18]).
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Figure 2.2: Elastic hinge used in the monopole and dipole antennas of MARSIS. a) detail view
of the elastic hinge; b) stowage process; c) experimental deployment of the prototype using a
helicopter (adapted from [5]).

Despite the novelty or interest of damage tolerance, topology optimization, and deployable

structures, the literature available on the combination of any two of these concepts and their

application to deployable structures is either scarce or non-existent. Furthermore, the review of the

combination of the three domains is unexplored.

Bringing together the benefits of damage tolerance and topology optimization can significantly

impact the design and application of deployable structures. This type of structural mechanism

has unique requirements and operating conditions. The need to meet flexibility and stiffness

requirements is a challenging and daunting task that, due to its contradictory nature, may not be

accomplished and will limit the use of deployable structures. However, since during the operating

life of most deployable structures only one deployment is expected, it may be acceptable to design a

structure that initiates damage, in a controlled manner, during its retraction process. As a result, the

need for a flexible design can be relaxed, making it easier to reach stiffness-related requirements.

Therefore, the benefits of using topology optimization to search for optimal solutions could be

enhanced with an approach that, not only leads to a more efficient design but also increases the

design space and the number of possible solutions suitable for the respective application.

This literature review explores the possibility of using topology optimization with a damage

tolerant design approach suitable for composite materials. To do so, the review is divided into
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three main sections. Section 2.2 reviews the methodologies applied to the design of self-deployable

structures, section 2.3 addresses the design methods of composite structures, and section 2.3.2

presents an overview of the different topology optimization methods. Section 2.3.3 reviews the use

of damage tolerance. Finally, the possibility of combining these concepts into a methodology that

leads to a topology optimized self-deployable damage tolerant composite structure is discussed in

Section 2.4.

2.2 Composite deployable structures

The compact configuration characteristic of deployable structures is the result of the retraction

process, which imposes the need for the structure to be flexible enough to sustain high-strain

deformations [1, 2].

Similarly to the design process used for composite structures in the aeronautic sector [26],

the following sub-sections overview the tools used to design deployable structures, including

experimental characterization methods, numerical simulation approaches and design methodologies.

For a more detailed review of different folding mechanism concepts and their trade-off, the interested

reader is referred to [1] and to [27] for a more detailed classification.

2.2.1 Experimental characterization of deployable tape-springs

Despite the first research dating back to 1973 [28], reporting that the deployment of a tape-

spring could cause a snap-through behaviour due to buckling loads, the literature available on

methodologies to characterize tape-springs is quite limited. It was only in 1999 that Seffen and

Pellegrino [14] proposed the first of five characterization methodologies used in the study and

development of tape-springs.

Research reported in [14] has shown that the experimental characterization of this component

can be performed by measuring the torque-angle relationship (figure 2.3). Due to the curvature

of the tape-spring, the behaviour is highly dependent on the direction in which the tape-spring is

bent. When the torque applied causes tensile stresses on the edges of the tape-spring (considered

positive torque, by convention), the tape-spring shows a linear behaviour followed by a sudden

bend, which flattens the tape and causes a return to the linear behaviour. When a negative torque is

applied, compressing the edges of the tape-spring, the linear behaviour ends sooner. Seffen and

Pellegrino [14] reported that this case of loading promotes the deployment to occur along the same

path, increasing the repeatability of the process. Later research [18, 8, 10, 29–35], more focused

on composite materials, further supports the results obtained on the behaviour of tape-springs and

on the use of torque-angle curves to characterize the retraction of tape-springs, leading to their

application in several studies.

While the methodology described above is suitable to assess the retraction of the tape-spring,

it does not address the dynamics involved in deployment. To study the release of the tape-spring,

several authors [14, 18, 10, 30, 37] have used high-speed cameras to measure the angle formed by

the tape-spring, or by the deployable structure, as a function of time. The main advantage reported is
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Figure 2.3: Example of an experimental setup used to measure the torque-angle curve (adapted
from [36]).

the possibility of measuring any over-shooting angle that may occur. In this context, over-shooting

angle refers to the angle formed by the tape-spring due to buckling caused by compressive loads

installed during the deployment process.

Due to the functioning and application of deployable structures, most of the developed de-

signs only deploy once throughout a mission. Nevertheless, research developed by Warren et al.

(2005) [33] analysed the stowage fatigue cycling of a deployable system. The experimental process

simply consisted of the automatic stowage of the structure every 20 seconds. In the case studied, no

damage was observed after 10,000 folding and deployment cycles.

A relevant factor to be considered when designing a deployable structure is creep behaviour. The

stowage of the deployable structure for long periods may cause anomalies in the deployment, as seen

in the case of MARSIS [38]. The study of this phenomenon is usually performed on tape-springs,

maintaining the retracted configuration for determined time periods [38–43], although temperature

has been used to accelerate the ageing process [44, 45]. Following this methodology, Kwok and

Pellegrino [43] have been able to detect energy reductions of up to 60 % when investigating the

storage of composite tape-springs.

In some cases, Gravity Offloading Systems (GOLS) have been used to offset the effect of

gravity. The purpose of this methodology is to replicate the operating condition of the tape-spring

during deployment in space. In 2017, Mao et al. [46] used a GOLS that consisted of a set of braided

cords that suspend the deployable structure. This allowed the structure to deploy along a plane

parallel to the ground, resorting to a set of soft extension springs that compensated for the changes

in distance between the hanging points.

In summary, the characterization of the mechanical properties and behaviour of tape-springs is

based on the experimental measurement of the torque involved in the retraction process and on the

observation of the deployment. However, for being applied in space, the main obstacle is recreating

the operating conditions. Offsetting variables such as the influence of gravity or air friction is a

difficult task that may hinder an extensive testing of a design, particularly for solutions with low
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deployed stiffness or low deployment torque.

2.2.2 Numerical modelling of composite deployable structures

The design and development of deployable structures require the validation of the respective

in-service conditions. However, replicating the operating conditions can be difficult, if not impossi-

ble [47]. This is evident in scenarios such as the one of MARSIS, where the deployable system

used had a low deployment torque. This caused the deployment to be compromised by factors such

as air friction and the influence of gravity [5]. Implementing numerical models that can accurately

predict the behaviour and performance of the deployable system, taking into account the majority

of factors that influence the process, would greatly aid the design process and allow a reduction in

the experimental campaign necessary to validate each concept. Several authors [14, 18, 10, 36, 48–

50, 30, 40, 43, 46, 47, 51–62] have published numerical modelling of deployable structures, where

this topic is explored at different scales, from the micro to the macro-scale.

In 2011, Mallikarachchi et al. [10, 51, 36] explored the possibility of using a micro-to-macro

scale approach to model an elastic hinge during both deployment and retraction processes. Here,

a failure criterion developed specifically to analyse plain-weave carbon fibre reinforced polymer

(CFRP) under in-plane, bending, and the combined effect of in-plane and bending loads was

considered. At the micro-mechanical scale, the authors estimated the elastic properties of the

tow using the rule of mixtures and semi-empirical relations, detailed in [63], to determine the

Poisson’s ratios, longitudinal and transverse extensional modulus, and the shear modulus. Then,

at a meso-scale level, the authors recreated the tow’s cross-section architecture, the waviness of

the fabric used and the ply arrangement considering geometric data obtained from the material

microscopic analysis. The tows were modelled as wavy beams, defined by a sine wave, according

to [64]. For the ply arrangement, Mallikarachchi included 6-node triangular prisms in the gaps

formed between tow surfaces, representing additional neat resin. This approach would later lead

the author to adjust the fibre volume fraction (FVF) within the tow to achieve a value equal to the

one measured experimentally. Before transitioning to the macro-scale, the representative volume

element (RVE) of the fabric was tested virtually and used to homogenize the ply properties.

The macro-scale model was implemented in ABAQUS® [11] using an explicit formulation that

considered the interaction of the elastic hinge with solid elements that replicate the experimental

testing process used to obtain the torque-angle curve. These solid elements represent the two

holders that support the elastic hinge on each end and are used to apply: 1) a torque that forces the

system to fold; and 2) a pair of solid plates, responsible for pinching the tape-springs and flattening

them before initiating the retraction process [36].

The sequence of steps of the retraction process recreated by the author is described in figure 2.4.

However, during the experimental validation of the numerical model, the author would suppress the

pinching step, reporting that this was a manual step and, therefore, its removal would increase the

repeatability and better standardize the experimental testing process. In other scenarios [10, 51], the

pinching step was included as a means of guaranteeing that the folding of the tape-springs would

occur at their mid-longitudinal section.
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Figure 2.4: Stages of the retraction (or folding) process simulation (adapted from [51]).

Regarding the experimental validation of the model, the author reported the presence of

instabilities reflected as an oscillating movement of the elastic hinge during the simulated retraction

process. This divergence between numerical and experimental results was overcome using a viscous

pressure parameter that functions as a damping mechanism. The value of the viscous pressure was

tuned iteratively, ensuring that the energy dissipated through viscous mechanisms remained below

1 % of the energy balance of the system [10, 51].

The research of Mallikarachchi et al. [10, 51] includes a numerical simulation of the deployment

behaviour. The numerical model is equal to the one used to simulate the retraction of the elastic

hinge but includes a step that releases the boundary conditions applied on one end of the structure.

The comparison between the experimental and numerical results indicates that the finite element

simulations could capture the behaviour of the elastic hinge. However, it revealed some significant

differences in the estimation of the maximum torque applied during the deployment stage. Further-

more, the maximum torque observed during the retraction process was, approximately, two times

larger than the maximum torque installed during deployment. The authors justify this difference as

a characteristic of structures with an unstable post-buckling equilibrium path [51], as described by

Brush et al. [65] and by Van der Heijden et al. [66].

Finally, Mallikarachchi et al. [52] defined a failure criterion suitable to analyse plain-weave

CFRP in three different loading cases: failure due to in-plane, bending, and in-plane plus bending

loads. According to this criterion, the absence of the pinching step would cause the initiation of

damage during the retraction process due to the installed torque [10, 51].

The research developed by Mallikarachchi et al. [18, 10, 36, 48–53] is quite significant in

the field of deployable structures for its extensive scope and approaches. However, several other

researchers made relevant contributions. Research with similar approaches include: Seffen and

Pellegrino (1999) [14] for the full deployment simulation and initial design of a single tape-spring,

Boesch et al. (2007), Givois et al. (2001) and Jeong et al. (2016) [30, 54, 55] for structures with

multiple tape-springs, Mao et al. (2017) [46] for integral slotted hinges, and Cook and Walker

(2016) [56] for the use of tape-springs in the deployment of an inflatable structure.
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In 2016, Dewalque et al. [57] performed a quasi-static analysis to assess the influence of

geometric and material parameters of a single beryllium copper tape-spring to assess the relationship

between the bending moment and the rotation angle. The parametric analysis and the optimization

process used in this research resulted in a tape-spring geometry that minimized the installed stresses,

according to the Von-Mises failure criterion, while maximizing the range of motion.

Nonlinear dynamic analysis was also used to evaluate buckling, hysteresis and self-locking

phenomena that characterize the deployment of tape-springs. Walker and Aglietti (2004) [58] ad-

dressed the retraction and deployment of a tape-spring but considered a complex three-dimensional

array fold. Hoffait et al. (2010) [59] addressed the hysteresis and buckling phenomenon observed

during the deployment using a geometry similar to the one patented in [17], while Dewalque et

al. (2015) [60] focused on using both numerical and structural damping to accurately simulate the

deployment behaviour of tape-springs.

The viscoelastic effect that tape-springs may suffer due to the long-term stowage has also

been addressed in the literature. Kwok and Pellegrino (2011, 2013) [40, 43] successfully captured

the viscoelastic effect of the stowage implementing finite-element simulations based on linear

viscoelastic material models. In 2012, the same authors [61] presented a micro-mechanical finite

element model and used it to study the deployment and recovery of a bent thin-walled viscoelastic

tape-spring. The outcome was a close agreement between numerical and experimental results.

Nevertheless, the model was difficult to implement in the deployment simulation of a complete

structure due to its expensive computational cost. In 2013, Peterson and Murphey [62] have shown

through experimental test results, modified micromechanics and classical laminate theory analysis

that the longitudinal and transversal bending stiffness of the tape-springs decreases with the shear

modulus over time. The results obtained were 10 % lower than expected, which were justified by

inaccuracies in the thickness of the material.

The literature on the numerical modelling of composite deployable structures focuses two

different topics: the stowage and/or deployment sequence and the structural behaviour. The analysis

of the stowage and/or deployment sequence is mainly concerned with the accurate representation

and prediction of the kinematic movement, especially those that result from the release of the strain

energy stored during the retraction process. On the other hand, the structural analysis addresses

the integrity of structure from two different points of view. The first, considering the internal

loads resulting from the deployment sequence, which can often rely on multi-scale approaches to

bring together the properties of the composite material observed at a micro-scale and the loads that

result from the movement of the structure at a macro-scale. The second, considers the changes

in properties of the material, especially due to relaxation phenomenon that result from extended

stowage periods.

2.2.3 Design of composite deployable structures

The successful design of a deployable structure relies on the capability of achieving the necessary

flexibility to sustain the high-strain deformations that allow their characteristic high-compact

ratio [1].
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Figure 2.5: Representation of the two-step retraction sequence. (a) Folding of side wall about line
H1H1; (b) folding of RF surface around the folded side wall (adapted from [67]).

Soykasap et al. (2004) [67] reported the design process of a deployable reflector concept. The

authors used the maximum strain failure criterion to theoretically estimate the minimum bend radius

that the CFRP sheets could sustain without initiating damage. The estimation was experimentally

validated but the authors mentioned that the use of angle plies on the outer surfaces of the plate

significantly decreased both the predicted and the minimum measured bend radius. The size of

the cut-outs was defined considering that, although they reduce the maximum strain in the region

close to the hinge, their dimension should be as small as possible to avoid the loss of stiffness in

the structure. Furthermore, the authors observed that reinforcing the stress concentration points

near the edges of the cut-out would increase the maximum stress due to the increased thickness

of the composite. Parameters such as the length and width of the cut-out were defined taking into

consideration the minimum bend radius that would allow a two-step retraction sequence (figure

2.5). In 2008, the authors also applied this approach to a similar structure, imposing a minimum

natural frequency requirement [68].

In 2010, Mallikarachchi and Pellegrino [48] addressed the capability of an elastic hinge to bend

at 180° through a parametric study using a finite element model. Each combination of parameters

was evaluated through a structural finite element analysis (FEA), assessing if there was initiation of

damage according to the maximum strain failure criteria. The authors then selected three possible

designs that were further analysed in [49]. This time, the elastic hinges were simulated considering

their stowage configuration around a satellite and were evaluated according to their failure criteria

proposed in [52], suitable for the evaluation of plain-weave CFRP.

Tan and Pellegrino (2006, 2012) [7, 69] reported the development of a cap that improved

the deployed stiffness of a deployable reflector. The stiffener was applied on the edges of the

tape-spring that deploys the structure. The authors applied the Hooke and Jeeves direct search

method [70] to identify the optimal angle and width of the stiffener, as well as the angles of slit at

end of the diameter. Each solution was evaluated through a FEA in ABAQUS® [11] to determine

the influence on the natural frequency of the deployed structure. This methodology led to an

improvement of the stiffness and natural frequency by a factor of 31 and 4, respectively, with a
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mass increase of only 16 % when compared to the same solution without the stiffener.

The use of shape memory materials (SMM) in deployable systems deserves to be mentioned.

To prevent the latch-up shock from the deployment of high-stiffness tape-springs, Jeong et al.

(2014) [55] included a shape memory alloy tape aligned with the tape-spring. The reason behind

this design is the transition from a dynamic, and possibly unstable, deployment to a quasi-static

one. A sequential quadratic programming algorithm was used to solve the optimization problem,

iterating over the length, thickness (number of plies) and width of the tape-springs. The dimensions

of the shape memory alloy used as a damping mechanism were selected considering the torque

applied by the tape-spring. The use of SMM has been a point of interest for several studies [71–76],

which are not within the scope of the present review. For more information and an updated review

on the use of SMM in deployable systems, the interested reader is referred to [71, 72].

Chu and Lei (2014) [77] presented a design theory and dynamic analysis of a lenticular boom

with a mechanism that aids the deployment and retraction process. The design process began

with the definition of a relationship between the geometry of the lenticular boom and properties

or factors, such as bending stresses, torsional stresses, the natural frequency of the structure and

the strain energy involved. The analytical expressions defined were then used in an optimization

cycle, using the sequential quadratic programming method. The objective of this optimization

was to minimize the stress installed in the structure considering geometric and natural frequency

constraints.

To design the tape-springs of a deployable solar panel, Dewalque et al. (2016) [57] used a

parametric study and an optimization algorithm to explore possible combinations of thickness,

radius of curvature and subtended angle of the tape-spring. In this case, and due to the nature of

the selected algorithm (fmincon in MATLAB [78]), the parametric study served as a means of

performing an educated initial guess of the optimal solution. The optimization algorithm was used

in conjunction with the software SAMCE [79], which simulated the performance of the geometry

selected by the algorithm when retracting 120° and posterior deployment.

Wu and Vinquerat (2017) [9] designed a braided bi-stable carbon-epoxy tube considering the

optimization of its natural frequency. To do so, the braid angles and stacking sequences were

optimized, using the coiled diameter of the structure as a constraint and the maximum and minimum

physically achievable braid angles as bounds. The authors utilized a pattern search method, available

in MATLAB global optimization toolbox [78], to define the parameters to be used by a Python [80]

script to generate the models to be simulated in ABAQUS® [11]. The implemented design process

allowed the authors to find a design that met the defined requirements. During this process, it

was also observed that the braid angle had a greater influence on the natural frequency than the

ply location within the stacking sequence for long slender designs, whereas both factors have a

significant influence on the natural frequency of shorter designs.

Between 2015 and 2019, Sakovsky et al. [35, 81–83] have researched the use of a dual-

matrix concept to design deployable antennas. According to the authors, thin shell deployable

structures offer efficient packaging but reduced surface precision, while elastomer composite

shells have a smaller fold radius upon packaging but are limited by the stiffness of the deployed
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structure. Therefore, the concept of a dual-matrix composite, consisting of a continuous CFRP

with localized elastomer matrix embedded in hinge regions, should allow for small fold radii,

strain energy deployment, high deployed stiffness, and enable larger antenna apertures. The

authors have compared dual-matrix structures with existing antenna designs considering both

structural and electromagnetic performances. This approach led to the design of a deployable

dual-matrix composite conical log spiral antenna to be used on CubeSats, which outperformed

existing off-the-shelf designs regarding gain, bandwidth, and packaging efficiency.

In another publication [84], Yang et al. (2019) presented the design of a self-deployable

composite boom with an N-shaped cross-section. The design process adopted by the authors

includes four distinct steps. First, a design of experiments approach was used, where the sampling

designs for the N-boom were created. Then, each design sample was evaluated through numerical

analysis in ABAQUS® [11]. The third step was the use of the response surface method to create a

surrogate model of the bending stiffness around the x and y axes (transverse) and torsional stiffness

around the z axis (longitudinal). Finally, the authors applied a modified non-dominated sorting

genetic algorithm (NDSGA) to perform a multi-objective optimization, maximizing the bending

stiffness around the x and y axes and the torsional stiffness around the z axis. A mass constraint was

imposed, and the two design variables were selected, defining the bonded web height and central

angle of the middle tape. The authors concluded that the final design obtained was feasible and that

the surrogate model predicted accurately the behaviour of the deployable system with a maximum

error of 8.81 %.

More recently, Ferraro and Pellegrino (2019) [29] explored the use of a topology optimization

approach to define the geometry of the cut-outs in a composite deployable corner joint. The adopted

topology optimization method differs from the original concept proposed by Bendsøe and Kikuchi

in 1988 [85], where the element of a material volume had their density changed depending on a

specific criterion (such as maximizing the stiffness). Instead, two different approaches were used

and compared in [29]: the first was the parametric optimization of the points defining a spline, and

the second was a LSM approach. In the first case, the design variables were eight points that could

move freely in a constrained space, defining the shape of a spline. The Basin-Hopping algorithm

was then used, considering the minimization of the failure index at each consecutive folding step,

while maximizing the bending stiffness of the deployed joint. The second approach allowed for

a broader exploration of shapes, number, position of the cut-outs. In this case, the definition of

the shape of the cut-out is achieved through the intersection of a cutting-plane with a 3-D basis

function, z = f (x, y). Two basis functions were investigated, a series of cosines squared, and a

series of cosines and sines squared. The optimization process then iterates over the z-coordinate

at which the plane will intersect the basis function. To increase the diversity of the solutions, the

authors allowed the cutting plane to have an inclination angle to the x-y plane. Both approaches

were used to generate the geometry to be simulated in a finite element model, in ABAQUS® [11],

that was previously developed and validated in [3]. Despite the innovative approach, the solutions

obtained by both methods did not meet the failure criteria. However, the authors mentioned that

the designs proposed by the optimization method led to a reduction of the area where damage was
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initiated [29].

In previous research, Fernandes et al. (2020) [86] attempted the optimization of a self-

deployable elastic hinge considering the requirements defined by ESA in the statement of work

published in 2016 [6]. The authors considered a total of 10 design variables, two defined the number

of plies and orientation of the composite laminate, and a set of eight variables described the geomet-

rical shape of a slot cut-out (inspired in the work of Mallikarachchi et al. [49]). The optimization

approach consisted of using a genetic algorithm (GA) to perform a global search, iterating over a

discrete version of the design variables, followed by a continuous and local search using a particle

swarm optimization (PSO) algorithm. The objective was the minimization of the maximum index

of failure resulting from the following set of criteria: Hashin’s, Azzi-Tsai-Hill, Tsai-Hill, Tsai-Wu,

and Maximum stress failure criteria. Additionally, the authors penalized solutions with a natural

frequency below the minimum requirement imposed in [6] equivalent to 1 Hz. Although the final

design obtained met the frequency requirement, the algorithm did not minimize the maximum index

of failure below the maximum acceptable value of 1.0, which indicates damage initiation. Using a

parametric analysis, the authors concluded that the design variables suggested in the literature are

scarce and limit the design space and possibly exclude better design possibilities. The definition

of the slot cut-out through a spline or the use of a topology optimization has been identified as a

possible subject of improvement.

In summary, the present literature review shows a clear evolution in the adopted methodologies

in the design of deployable structures. The first approaches were based on the analytical evaluation

of the stress-strain state of the composite material, establishing a relationship between the maximum

strain failure criteria and the folding radius [67, 68]. This methodology was followed by parametric

evaluations having finite element models as a valid resource, using either strain [48] or stress-

based [49] failure criterion. Finally, the latest observable trend is the inclusion of optimization

algorithms in the design process, as well as the inclusion of additional design constraints, such

as the natural frequency of vibration, deployed stiffness or the deployment torque [9, 29, 86, 35,

55, 57, 77, 81–84]. However, despite its novelty and popularity in several fields, it is notable the

absence of topology optimization-based methodologies, with only one research exploring this

possibility [29]. Additionally, it is relevant to note that all the design methodologies reviewed

share a conservative approach, disregarding the fact that most deployable structures are single use

systems. The use of damage tolerant designs, or allowing the initiation of damage, would allow

more demanding requirements, such as higher natural frequencies or a larger deployment stiffness,

which are yet to be addressed. 1

1The information reviewed and reported in this section was used in the development of the research described in
chapter 3 and chapter4. The reader interested in following the chronological order of the research developed during this
project should, therefore, read chapter 3 and chapter4 before moving on to section 2.3. In chapter 3, the limitations of the
design methodologies described so far are made evident through their application to the design problem proposed by
ESA [6]. On the other hand, chapter 4 demonstrates that the research currently available on relaxation phenomenon can
be used to accurately predict the deployment sequence of a self-deployable composite elastic hinge after long periods of
stowage. Since it is demonstrated that the influence of relaxation is a predictable problem, the following sections of
the literature review focus on design methodologies that may present a solution to meeting both design requirements
associated with the development of a composite deployable structure.
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2.3 Design of composite structures

Section 2.2 addressed the different methodologies used to design a composite deployable structure.

It became evident that the methodologies adopted usually involved the use of FEA and, more

recently, the use of optimization methods. The purpose of applying these methodologies is,

frequently, to achieve a high-strain capable design that complies with specific requirements, such

as: minimum natural frequency, deployed stiffness, or deployment torque.

In other fields of application, damage tolerant design [19, 20] and topology optimization [85]

are concepts and methods that have been extensively studied and applied to composite materials

and their applications. However, when it comes to deployable structures, the information available

on the use of these concepts is either scarce or non-existent.

The following three sub-sections review the literature available on the design of composite

structures (2.3.1), topology optimization (2.3.2) and damage tolerance (2.3.3). However, the

purpose is not to perform an extensive review on all the design and optimization methods but to

focus on assessing the possible application of damage tolerance, topology optimization or other

design methods to deployable structures and identify possible advantages of their use.

2.3.1 Design methods

In 2018, Xu et al. [87] and Nikbakht et al. [88, 89] have presented extensive state-of-the-art

reviews on the different design methodologies applied to composite materials and structures.

Both conclusions are similar, expressing the general interest of optimizing variables such as

fibre orientation in each ply, ply thicknesses, ply number, and stacking sequence. The authors

categorized the optimization methods into the following three groups: gradient-based methods,

heuristic methods, and hybrid methods. Both research groups concluded that gradient-based

methods are usually faster but may require information that is either unavailable or have a high

computational cost. In contrast, heuristic methods that do not require gradient information have

been widely used, with the most popular algorithms being GA, simulated annealing (SA), PSO, and

ant colony optimization (ACO). Finally, the authors have not observed a large application of hybrid

methods but consider them a promising tool in the future, when including artificial intelligence. Xu

et al. [87] mention the relevance of topology optimization applied to laminated composite structures

for allowing the simultaneous design of the structural layout and of the fibre orientations.

This section will report and develop on the information published since the release of the

reviews made by Xu et al. and Nikbakht et al. [87–89], sorting the work according to the use

of heuristic (2.3.1.1), gradient-based (2.3.1.2), or hybrid and other methods (2.3.1.3). A brief

discussion of these three sub-sections is presented at the end of section 2.3.1.3. For its potential,

interest and popularity, topology optimization methods will be addressed separately in section 2.3.2.
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2.3.1.1 Heuristic methods

In Jin et al. [90], the blending of a composite laminate (continuity of the composite stacking

sequences as defined in [91]), is addressed proposing the Permutation for Panel Sequence (PPS)

blending model, which is an improved version of the Ply Drop Sequence (PDS) concept. Both

approaches use a GA whose population has three chromosomes. The first two define the fibre

angle and guide distance. The third chromosome differs between PPS and PDS, representing a

permutation variable or the existence/absence of a given ply, respectively. The authors state that this

change allows the algorithm to avoid the problem of repeated search of discrete points in the design

space for the previous PDS blending model, leading to a faster convergence. An et al. (2019) [92]

also addressed the blending of the composite material but included design constraints. The approach

used is an extension of the two-level multi-point approximation method described in [93–95]. The

process is divided into two phases. The first begins with an initial stacking sequence design that

is used to generate a first-level approximation problem. A GA is used to decide the presence and

absence of each ply in the initial design. To ensure the continuity and blending of the different

laminate regions, the authors proposed a shared-layer and local mutation method, which forces the

individuals in the GA to satisfy the imposed blending rule. The second phase uses a second-level

approximation problem to optimize the thickness of the retained layers as continuous variables.

The authors efficiently obtained solutions that satisfy both design and manufacturing requirements

and successfully applied them to the design of a satellite cylinder.

Regarding performance optimization of the composite, Esmaeeli et al. (2019) [96] used a multi-

objective implementation of the ACO algorithm to optimize the characteristics of a multifunctional

laminated composite. By changing the angles of the plies and simulating an RVE of the material,

the authors were able to maximize the effective in-plane elastic constants. Conducting different

benchmark problems, the authors observed a quick and successful convergence towards optimal

ply angles and the determination of the Pareto optimal frontier regardless of the dimensions of

the problem. Similarly, although on the design of active composites, Hamel et al. (2019) [97]

studied and applied the use of an evolutionary-based design method for 4D printed composites,

where 4D refers to the time-evolving shape of 3D printed parts. To do so, the authors combined

an evolutionary algorithm with the finite element method to determine the distribution of active

and passive material elements. The authors demonstrated the application of this method to single-

objective and multi-objective optimization problems.

Neves Carneiro and Conceição António [98], applied a novel methodology, combining the

Reliability Index Approach (RIA) [99] with the Reliability-based Robust Design Optimization

(RBRDO) [100, 101], to the design of a composite laminate structure. This bi-objective optimiza-

tion problem aims at minimizing both the weight and the determinant of the variance-covariance

matrix of the response functionals of the system (robustness), while considering displacement and

stress constraints. The reliability assessment is performed in an inner cycle of design optimization.

The authors highlight the exclusive use of a GA with elitist strategy as the key concept of this

methodology, avoiding the need of sensitivity analysis, convexity and continuity of the search space,
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and guaranteeing global convergence. With this approach, the authors were able to optimize the

ply orientation and thickness of the laminate while considering uncertainty in both random design

variables and random parameters (robustness assessment), and uncertainty on the individual me-

chanical properties of each laminate (reliability assessment). More recently, Yoo et al. (2021) [102]

proposed a novel multi-fidelity modelling-based optimisation framework, aimed at the robust design

of composite structures. Through the use of high-fidelity model for exploitation and low-fidelity

model for the exploration of the design space, the authors were capable of achieving computational

time savings of at least 50% compared to conventional multi-fidelity and high-fidelity modelling

methods. This method was successfully applied to the robust design optimization of a stiffened

composite panel, considering design uncertainty under non-linear post-buckling regime.

Seeking the simultaneous optimization of both composite geometries and laminate stacking

sequence, San et al. (2019) [103] applied a multi-island genetic algorithm (MIGA) to maximize the

natural frequency of a composite structure. The design variables that characterized the geometry

were the points of a non-uniform rational B-spline (NURBS), defined as continuous variables. On

the other hand, the ply orientation was defined as a discrete variable with four possible values (0 °,

±45 °, and 90 °). San et al. reached two main conclusions. First, that a two-phase optimization

was seizing local suboptimal results, contrasting with a simultaneous optimization which led to

the global optimum. Second, that increasing the number of control points of the NURBS led to

improved optimal results due to the increase in degrees of freedom. These results are in line with

the conclusions obtained by Fernandes et al. (2020) [86] when using the same design variables

to optimize the design of a deployable elastic hinge. However, instead of a MIGA, Fernandes et

al. used a GA for a global discrete search, followed by a PSO approach for a continuous local

optimization.

2.3.1.2 Gradient-based methods

In 2018, Duan et al. [104] optimized the topology of a composite truss structure. The objective

was to maximize the first natural frequency of the system, made of filament-wound profiles with a

circular cross-section and a continuous winding angle. The design variables were the radius and

composite orientation angle of each profile. The authors determined the sensitivity of the objective

function to each variable and used the Method of Moving Asymptotes (MMA) [105] to update

the design variables. The approach was tested and validated in both two and three-dimensional

case-studies.

Nasab et al. (2018) [106] used a gradient-based approach to the thickness optimization of

stiffened composite skins, guaranteeing the blending of plies over individual panels. The approach

considered design guidelines such as symmetry, covering ply, disorientation, percentage rule,

balance, and contiguity of the layup. To do so, a stacking sequence table is generated and a

level-set gradient-based method is used to optimize the location of ply drops. The objective of

this procedure is to convert discrete design variables associated with the number of plies into a

continuous problem. The output is the optimum thickness distribution over the structure in relation

to a specific stacking sequence table. This method was applied to both the 18-panel Horseshoe
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Problem and the optimization of a composite stiffened skin of a wing torsion box. In comparison

with a GA, the authors concluded that the approach proposed was, in general, faster, and less

expensive. Avoiding the direct optimization of the ply-thickness and fibre orientation, Demir et al.

(2019) [107] applied a least-square optimization approach, with continuity constraints, to optimize

the lamination parameters of a composite [108]. The authors argue in favour of this parametrization

as it leads to the stiffness becoming a linear function of the lamination parameters, instead of a

nonlinear trigonometric function of the fibre angle, making it more suitable for gradient-based

methods. Additionally, this parametrization accounts for any number of layers and possible fibre

angles [108]. After obtaining the optimized lamination parameters, the authors used a material

library consisting of desired fibre angle and stacking sequences. The material whose lamination

parameters was most like the optimized result, was the material selected. In other research [109],

Shafighfard et al. (2019) followed the same approach to determine the lamination properties of

different open-hole composite plates, observing a 13 % improvement in compliance of the final

design when compared to other state-of-the-art optimization methods.

In 2019, Wang et al. [110] proposed the streamline stiffener path optimization (SSPO), a

multi-scale-based method for curved stiffener layout design of non-uniform curved grid-stiffened

composite structures with embedded stiffeners (NCGCs). The SSPO is based on 4 steps, starting

from a homogenization-based analysis to calculate the unstiffened global model. Then, a discrete

distribution of two-dimensional curved stiffener paths is converted into a continuous distribution of

a streamline function values (SFVs) on a 3D level-set surface. Projected points with the same SFVs

are then used to define one stiffener path. The contribution of stiffeners is considered in the global

model through the calculation of equivalent material properties of a parallelogram representative

cell configurations (RCCs), via homogenization. The third step is the optimization of the curved

stiffener layout, achieved using a sensitivity-based shape design of the local parallelogram RCCs

with analytical sensitivities. The final step is the maximization of the buckling load within a

given weight, considering manufacturing, stiffener spacing and angle constraints. Wang et al.

validated the effectiveness of steering the path of the stiffeners through the numerical evaluations

of a laminate panel under compressive loads.

Oriented towards the design of additively manufactured components, Fernandez et al. (2019) [111]

included manufacturing constraints of this process in the design of Direct Ink Writing (DIW) short

carbon fibre and thermoset resin composites. The authors defined the extrudate trajectory as the

contours of level-set functions, which define the orientation of the fibres, their FVF and hence the

structural response of the composite. Using nonlinear programming and the finite element method

to obtain information on the mass, compliance, and design sensitivities of the structure, it was

possible to find a local optimal. In this process, the authors imposed constraints such as: no-overlap,

no-sag, minimum allowable radius of curvature and continuity of the toolpaths that must begin and

end at a boundary. Finally, the authors formulated a traveling salesman problem to determine the

continuous shortest path for each layer, minimizing the manufacturing time. Shen and Branscomb

(2020) [112] studied how to find the optimal material orientation of an anisotropic material in

an additively manufactured structure. The authors proposed the use of a rationalized formula,
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referred to as normalized gradient by maximum (NGM), to calculate the step length of a gradient

descent method and find an optimal material orientation that minimized/maximized the compliance

of a structure under plane stress conditions. This method was compared with a stress-based and

a strain-based method. The strain-based method had the worst performance. The authors also

observed that although the stress based method had a faster convergence, the combination of the

NGM with the Barzilai-Borwein method (BB) provided a gradual change in orientation in the

process and searches the maximum as well, making it a more general method and better suited to

handle arbitrary constraints and loads in the finite element method.

In 2020, Nasab et al. [113] adopted a decomposition strategy for the structural optimization of

a fibre-reinforced aircraft wing box, dividing the problem into a system-level and subsystem-level

optimizations. The subsystem problem is the optimization of the ribs which are subjected to the

crushing loads resulting from the bending of the wing. The system-level problem is the optimization

of the wing-box skins, accounting for the effect of the skin design on the loads applied to the ribs.

A principal component analysis (PCA) was used to assess the influence of the changes in loads on

the ribs, increasing the numerical efficiency of the decomposition strategy. A level-set strategy that

allows the use of both coarse and fine finite element models was adopted to solve the optimization

problems in both system and subsystem levels. The results obtained by Nasab et al. show that the

decomposition strategy allowed the solving of a complex problem at a reasonable computation cost.

2.3.1.3 Hybrid and other methods

Rongrong et al. (2018) [114] applied a hybrid approach to the design and optimization of a

composite forward-swept wing. The authors generated a surrogate model of the aeroelastic torsion

divergence problem using radial basis function neural networks (RBFNNs), which was then solved

with a GA. The objective was to minimize the deformation of the wing by optimizing the number

of composite layers and their orientation, which were defined as a set of discrete possible values.

The authors report that this process allowed a 32.5% reduction of the displacement of the wing.

Still related to the use of artificial intelligence, a multi-scale optimization and design approach

is presented by Hai et al. (2020) in [115]. The authors aimed at maximizing the buckling load

of several composite shells, with different cut-out geometries in their centre, by modifying a set

of five parameters that define the geometry of the meso-scale RVE. The approach used begins

at the micro-scale, estimating the properties of a fibre bundle through a FEA in ABAQUS® [11].

This information is introduced into the open-source software TexGen [116], which can generate

meso-scale models of the RVE of the composite tow. This model is used to estimate the mechanical

properties of the material as a function of the configuration of the RVE. Finally, the mechanical

properties of the material are introduced into a macro-scale numerical model, estimating of the

buckling load. The data obtained from the buckling analysis was used to train a back-propagation

neural network (BPNN). The BPNN was then integrated, with an Efficient Global Optimization

(EGO) algorithm [117], allowing the iteration of the design variables and optimization of the design

problem with a reduced computational cost.
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Johnston et al. (2019) [118] proposed a methodology for the design of a composite hub-

web structure that integrates a hybrid composite-steel gear. The geometry consists of a planar

structure whose thickness decreases from the hub to the rim. The methodology proposed consists

of several steps. The first is the evaluation of an initial simple design. Then, the information on the

structural performance of the initial design is considered in a free-shape optimization, which applies

orthotropic composite properties to a 3D element mesh of the hybrid gear structure, represented by

a bulk volume model. This optimization step aims at minimizing stresses or strains in the part while

maintaining key design requirements, such as the connection to other components. The following

step is the stress-constrained topology optimization of the result obtained so far, minimizing the

weight or volume. In addition to the optimized topology, the expected output includes a loading map

of the cross-section of the gear, indicating where continuous-fibre layers are required for greater

strength and stiffness. Likewise, lower density filler layers can be added to more voluminous

regions where load-bearing capabilities are less required. In case the filler layer is made of a

different material from the continuous-fibre composite layer, a second free-shape optimization

step is performed to minimize stress or strain in the filler region. Finally, the laminate sequence is

optimized, leading to the final design.

Adopting the use of lamination parameters, Liu et al. (2019) [119] optimized the lay-up of

a composite laminate with the Wittrick-Williams algorithm [120]. Then, instead of selecting a

material based on an available library (as in [107, 109]), Liu et al. applied a logic-based procedure

combining the branch and bound method with a global layer-wise technique to find the optimal

stacking sequence that best matches the optimized lamination parameters. An alternative to this

second step is presented and validated by Viquerat (2020) in [121], where a set of up to 12

lamination parameters are used to define a laminate configuration through a polynomial homotopy

continuation (PHC) technique [122, 123]. The PHC treats the ply angles as continuous variables,

taking any value between -90° and +90°.

Khodaygan et al. (2020) [124] applied the multi-objective algorithm NSGA-II (Non-dominated

Sorting Genetic Algorithm II) to the design of a stiffened laminated composite cylindrical shell

with piezoelectric actuators. The objective was to maximize the buckling load and minimize the

total weight. The design variables considered were the thicknesses of the three layers (composite,

piezoelectric, and stiffener) constrained to a constant total shell thickness. To support the selection of

solution from the Pareto fronts, the authors used Shannon’s entropy-based TOPSIS algorithm [125,

126], avoiding the use of weighting factors of the objective functions when selecting the final

optimal design from the Pareto front. Considering similar approaches and conditions, Albanesi et

al. (2020) [127] describe the design of a composite wind turbine blade. First, the authors utilized a

GA to determine the optimal laminate layout in the outer shell skin of the turbine blade. Then, a

topology optimization approach was applied to remove material from the shear webs, considering

constraints on the tip displacement, stresses, natural vibration frequencies, and buckling phenomena.

The sequential use of a GA and a topology optimization approach led to mass savings of up to 23 %

according to the authors.

Although the definition of ply-orientation angles, considering a manufacturing or operational
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constraint, is a recurring purpose for the use of heuristic, gradient-based, or hybrid methods, the

approach selected to do so differs significantly. The publications reviewed that used heuristic

methods were more likely to optimize the ply-orientation considering a discrete set of values [90,

92, 96–98, 103]. On the other hand, research using gradient-based or hybrid methods preferred

continuous variables [104, 106, 112, 113], or the optimization of the lamination parameters followed

by a second optimization or selection criteria to choose the stacking sequence with the most similar

characteristics [107, 109]. This review does not have the extension of the work presented by Xu et

al. [87] and Nikbakht et al. [88, 89], limiting the validity of the statistical analysis on the popularity

of the different methods used in the literature. Nevertheless, in this sample, the GA and its variants

(NSGA, or MIGA) were the most referred optimization method, which is in line with the reviews

of Xu et al. [87] and Nikbakht et al. [88, 89].

2.3.2 Topology optimization

Topology optimization is one of the three sub-fields of structural optimization, amongst size and

shape optimization, and is usually applied in the early stage of structural design. Its purpose is

to find an optimal distribution of material [19, 128]. The method defines a design region, divided

into several finite elements, to be occupied by the structural component. According to an objective

function, the optimization method adjusts the density of each element, defining which elements

should have material and which should not [129]. This method also branches into the particular

classification of material optimization, when considering micro-structures.

The topology design approach has been applied to composite structures. However, the purpose

of this combination is to allow the simultaneous definition of material distribution and fibre

orientation. A simple procedure is to align the fibres in the direction of the first principal stress, as

adopted by Fuchs et al. (1999) [130] and Ma et al. (2006) [131]. However, this approach consists

of transforming a design variable into a constraint, rather than the optimization of both variables.

In 1999, Hansel and Becker [132] presented a layer-wise topology optimization that considered

both material density and fibre orientation. In each layer, the material was removed in areas

that either had low stress installed, or that had a fibre orientation that differed significantly from

the principal stress direction. The removal was done by changing the density of the element to

zero. According to the author, each “laminate element” is constituted by four layers with the

common lay-up [0°/±45°/90°], referred to as “single-layer elements”. Single-layer elements that

are not necessary for the load transfer are removed by reducing the layer thickness to zero. In later

research [133], Hansel et al. (2002) applied this method to design a laminated composite cantilever

plate and an L-shaped cantilever, using a GA to remove the unnecessary material.

To address the topology optimization of laminated composite plates, Stegmann and Lund

proposed the gradient-based method called Discrete Material Optimization (DMO), in 2005 [134].

The method is based on the idea of multiphase topology optimization, which does not select

exclusively between the inclusion of material or voids, but between the inclusion of any distinct

number of materials. The purpose is to find, for each element, one distinct material of the possible

candidates such that the objective function is minimized. Stegmann and Lund applied this method
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to design a structure subject to a four-point bending test [134] and Niu et al. (2010) [135] to design

a vibrating laminated composite plate for minimum sound radiation.

With the same purpose, Setoodeh et al. (2005) [136] developed a single criterion that simul-

taneously optimized the composite orientation and thickness of cantilever plates, minimizing the

strain energy expressed in terms of fibre orientations and pseudo-densities. To do so, the authors

extended the Solid Isotropic Material Penalization (SIMP) technique of topology design with a

cellular automata (CA) framework. SIMP is a material interpolation scheme used in topology

optimization that considers a continuous variable ρ (0 < ρ < 1) that resembles the density of the

material [137, 138]. The CA is a methodology used to simulate physical phenomenon based on

iterative local updates of both field and design variables. During its functioning, the CA divides

the domain of interest into several cells, which only interact with other adjacent cells, performing

local computations [139]. Combining both SIMP and CA, the displacements of the structure were

calculated and updated to satisfy the local equilibrium of CA cells. Similarly, the fibre angles and

density measures were updated based on the optimality criteria.

A different approach was proposed by Zhou and Li [140], in 2008, where the fibre orientations

were determined by solving the minimum compliance problem and the densities by a resizing

approach based on stress and strain energy. To avoid numerical instabilities, the approach did not

remove elements with low density. Instead, after the algorithm had defined the orientation and

density of the elements, the authors used a program that defined a truss-like structure based on the

orientation of the fibres and the densest areas of the structure. This second phase of the optimization

process is usually referred to as a discrete material selection problem. For not removing material

from the design volume, the authors deem it unsuitable for the topology optimization of structures

with empty spaces, such as a plate with holes.

Gao and Duysinx (2012) [141] proposed a bi-value coding parametrization method, reducing

the number of design variables. Instead of considering four different materials, with four design

variables representing the density of each possible candidate material, the author considers two

design variables with the possible values of -1 and 1. In this case, the material to be attributed to

each element is a result of the combination of the two design variables used, leading to a total of 4

possible combinations using only two design variables. These represent the number of candidate

materials in a logarithmic form, which makes this approach efficient to deal with large-scale

problems, as shown in [142].

In 2013, Huang et al. [143] introduced a topology optimization algorithm capable of designing

cellular materials and composites with periodic microstructures. The algorithm searches for

the microstructure that maximizes the stiffness of the resulting macrostructure. The method

is based on the bi-directional evolutionary structural optimization (BESO), which, unlike the

evolutionary structural optimization (ESO), considers both the addition and removal of material to

the structure [144, 145]. In its essence, the method proposed by Huang et al. considers a macro to

micro-scale analysis and vice-versa, using two macro-scale and micro-scale finite elements models.

The loads applied in the macro-scale are applied to an RVE whose phases are distributed using

BESO (figure 2.6). The properties of the new RVE are then used to estimate the behaviour of the
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Figure 2.6: Macro-structure composed of cellular or composite materials: (a) macrostructure; (b)
microstructure; (c) unit cell or RVE (image adapted from [143]).

structure at a macro-scale, aiming to maximize its stiffness [143]. Several case studies and a more

detailed analysis of the application of this method was described by the same authors in [146],

published one year later. The cases studied allow the authors to conclude that there was a strong

interaction between the two designs at both scales and that the two-scale optimization allowed a

better design to be obtained due to the significant increase in the degrees of freedom.

Ren et al. (2016) [147] presented a topology optimization method for composite beams. The

motivation to this work was the need to address various load cases characteristic of beams used

in aircrafts. The authors applied the finite element method to simulate the behaviour of the beam,

considering warping and shear deformations. A multi-material optimization model was employed,

considering the density of each candidate material at each element as the design variables. The

updates of each design variable were done according to a sequential linear programming method.

The authors state that the used approach led to a “checkerboard problem”. This issue, detailed

in [148], is overcome by applying a sensitivity filtering approach, which uses information regarding

the neighbourhood of the element under evaluation.

A year later, Wang et al. (2017) [149] proposed a level-set topology optimization method

(LSM) suitable for the optimization and design of metamaterials. The authors used a numerical

homogenization method to evaluate the effective properties of the microstructure and a multiphase

level-set model to evolve the boundaries of the multimaterial microstructure. The level-set model

was used to implicitly define the interfaces between the material phases by iso-contours of a

level-set function (LSF). Depending on the representation of the interface, the use of LSM may

improve the accuracy with which the numerical model captures the mechanical response in the

vicinity of the boundaries, thus avoiding ambiguities of intermediate material phases associated

with the use of density-based approaches [150]. Using the multi-phase level-set model, Wang

et al. [149] obtained a material geometry with distinct interfaces and smoothed boundaries that

facilitate the fabrication of the topologically optimized design. Its application allowed the authors

to define a microstructure with a negative Poisson’s ratio and a negative coefficient of thermal

expansion (figure 2.7). Similar research was reported by Nishi et al. (2018) [25], following the
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Figure 2.7: Convergence of the method towards a metamaterial with -0.5 Poisson’s ratio (image
adapted from [149]).

same two-scale topology optimization approach. Likewise, Anaya et al. (2019) used a similar

procedure but oriented towards the minimization of the effective thermal expansion coefficient of a

composite material. The potential improvements obtained through the use of this approach is also

supported by the results reported by Panesar et al. [151], who measured an improvement between

40% and 50% in terms of stiffness when using an approach that derives graded lattice structures

from topology optimized solutions. Furthermore, the strategies identified by Panesar et al. also

allow easier production of the structure through additive manufacturing.

Dai et al. (2017) [152] performed the topology optimization of a composite structure with

design dependent loads. To do so, the authors proposed a methodology based on the isoline

method, the sensitivity filter with density gradient weighting, and the solid isotropic material with

penalization (SIMP) method. The work published reports successful results but is limited to a

two-dimensional design.

Sousa et al. (2018) [153] analysed the design of multi-layered composite laminates and the

topological sensitivity in anisotropic elastistatics, considering the shape/topology of each ply and

the stacking sequence as the design variables. To do so, the authors combined a topological

sensitivity analysis and an ACO algorithm. The topological sensitivity analysis, based on the total

potential energy of the system, provided information on the region where new material should be

added. This information can be interpreted as a mapping of the different regions of the structure

based on their contribution to the resistance of the component. Then, the ACO method was used to

determine the orientation of the added material.

More recently, Tong et al. (2019) [24] applied a topology optimization method to design

a composite compliant mechanism. This type of mechanism is characterized by its monolithic

structure and for transmitting force, energy, and motion through self-deformation [154] (the reader

is referred to [155] for a detailed review on the topology optimization of compliant mechanisms).

Tong et al. designed compliant inverters and grippers, which are commonly used as benchmark

problems. The authors predefined the lay-up thickness and the orientation of the composite laminate.

The topology optimization was done considering the maximization of the deformation ability of the

structure based on the stiffness penalization model. Furthermore, the authors reported that each

update of the design variables was done considering a sensitivity analysis, evaluating its influence

on the structural behaviour of the component by FEA. Zhu et al. (2019) [23] reported a similar

research, differing on the use of the LSM and on the use of multi-objective optimization considering

one symmetry constraint. In this case, the design volume was limited to the flexible region of the

compliant mechanism and the multiple objectives are related to the combination of displacement
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and rigidity requirements.

Zhao et al. (2019) [156] performed the topology optimization of a compliant mechanism of

a composite wing leading edge. The authors used the discrete material optimization method to

distribute the multiphase composite material through the design volume. The objective of the

optimization was to minimize the least square difference between the deformed curve of the wing

and the desired aerodynamic shape. Despite the successful implementation and positive result, it

was observed that the number of design variables and consequent computational cost is a major

drawback in the discrete material optimization method.

Almeida et al. (2019) [157] proposed a methodology to optimize the cross-section of topologically-

optimized variable-axial anisotropic composite structures, maximizing specific stiffness. The

process relies on sequential optimizations of the topology using SIMP and then optimizations of the

cross-section using a GA. The objective was to optimize the number of carbon fibre rovings to be

placed at each truss section of a CFRP brake booster. During the topology optimization, the material

is considered to be isotropic. The fibre orientation is defined according to the loading direction in

the final topology. With this approach, the authors observed a 330 % increase in stiffness of a brake

booster system when compared to a commercially available solution.

Safonov (2019) [158] explored the use of topology optimization to design a structure rein-

forced with continuous fibre via a natural evolution method. The proposed method combined two

techniques, simultaneously searching for density distribution and local reinforcement layup in 3D

transversely isotropic composite structures. The direction of the reinforcement was aligned in each

iteration, considering the direction of the principal stresses and the local minimum compliance,

while the density distribution was optimized through a dynamical system method, which replaces

the optimization problem with an ordinary differential equation whose equilibrium points coincide

with the local optima [159]. When applied to the optimization of a simply supported 2D beam

under central point load and a 3D cantilever beam, the authors obtained a mass reduction of 66 %

and 90 %, respectively.

In the work published by Jong W. Lee et al. (2019) [160], the authors improved a stress-based

topology optimization method for laminated composites through the application of the layer-wise

theory. In this research, the stress constraint is set so that the composite does not exceed the

Tsai-Hill failure criteria. To obtain information on the sensitivity of the stress to the element

density and orientation, the authors used one of two types of p-norm stress approximations: one

considering all composite layers and another considering a specific layer. The authors observed

that the implementation of the proposed approach led to designs that avoided stress concentration

points, such as the corner of an L-bracket beam case study, and that the optimization of the laminate

angles allowed a further reduction of the used material.

Jaewook Lee et al. (2018) [161] proposed a sequential three-step optimization procedure. The

first step aims at finding the optimal topology design of matrix material when the FVF is set as zero.

Then, the second step determines the optimal density distribution and continuous orientation of

fibre material. The third step penalizes intermediate fibre orientations between target orientations,

leading to a more discrete design. Lee et al. confirmed the advantage of the procedure by comparing
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the objective functional in the design results with evenly fixed and optimized target orientations.

Furthermore, the authors confirmed that the approach could find the optimal layout of matrix and

fibre rich regions in functionally graded composite structures through numerical examples.

Zhou et al. (2018) [162] proposed a topology optimization method that simultaneously modifies

the topology and material orientation of multi-component composite structures. This approach

considers the existence of K components and three layers of design fields. The first layer contains

the density field for all components, representing the density of each element. The second layer

describes the inclusion of each design point into component k (where k=1,2,...,K). Finally, the

third layer determines the material orientation of each component k, considering a continuous

variation of the orientation angle as a function of the tension and material stiffness tensor field, for

anisotropic materials. The reader is referred to Nomura et al. [163] for a detailed description of the

material orientation process. Using a single load cantilever beam and a multi-load tandem bicycle

frame as benchmark problems, Zhou et al. observed that the proposed method generated designs

with better structural performance than conventional single-piece isotropic topology optimization

methods and a continuous orientation method.

In the work of Jiang et al. (2019) [164], the authors report the use of a continuous fibre

angle topology optimization method for polymer composite deposition additive manufacturing

applications. The authors performed a compliance minimization optimization considering two

design variables for each element: the element density and orientation. This parametrization

is suitable for the problem as the structure is manufactured layer by layer, avoiding a three-

dimensional orientation of the material and simplifying the parametrization of the problem. In [165],

Nomura et al. (2019) present a different perspective on the material orientation initially proposed

in 2015 [163]. This reformulated approach increased its versatility by introducing a different

orientation parametrization and by removing underlying assumptions, while still aiming for a

simultaneous optimization of the topology and material orientation. In this case, the orientation

design variable is formulated as a tensor field, equivalent to a reduced version of the orientation

tensor to represent a single direction at a point. This method avoids singular point issue that

occur in the rotation-based approach (equivalence of angle 0 and 2π radians) and ensures the

unique correspondence between each tensor value and material property. Nomura et al. observed

clear performance advantages in both two and three-dimensional problems, as well as single and

multi-load cases when compared to methods that define the topology first and then the material

orientation.

Tong et al. (2019) [166, 167] performed the topology optimization of a composite laminate, as

well as the optimization of the ply-angles considering the lamination parameters. This sensitivity-

based approach is divided into two steps. In the first step, the lamination parameters and the density

are set as the design variables, while the structural stiffness is parametrized by the lamination

parameters. Minimizing the compliance with a volume constraint led to a final topology and to

a set of lamination parameters that maximize the stiffness of the structure. Then, the orientation

of the plies is retrieved by solving a set of nonlinear equations. To solve this second problem, the

authors transformed it into a least-square optimization problem, finding the stacking sequence that
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best matches the initial lamination parameters.

Fu et al. (2019) [168] proposed a substructuring approach that allows the topology optimization

on both macro and micro-scales. The microstructure of the material is optimized considering its

element volume constraint while minimizing the mean compliance of the macrostructure. The

transition between the two scales is done through the homogenization of the material properties of

the RVE, which are then introduced in the macro-scale FEA. A similar approach was proposed by

Wu et al. (2019) [169] and Jansen and Pierard (2020) [170]. However, the authors used the multi-

scale design approach to hierarchical lattice structures and functionally graded lattice structures,

respectively. Regarding composite materials, Wu et al. (2020) [171] studied the robust concurrent

topology optimization (CTO [172–175]) of two-phase composite materials, using an improved

hybrid perturbation analysis (IHPA) method to assess the worst performance of the structure under

a random model based imprecise probability. More focused on fibre reinforced materials, Yan et al.

(2019) [176] presented a CTO design method that optimizes the topology of the macrostructure,

the material microstructure, and the material orientation. This two-scale approach is based on

the BESO method and utilizes the information of the local principal stress direction to determine

the orientation of the material in each element. Yan et al. observed that optimizing the topology

and microstructure improved the structural performance of the final design and that, usually, the

resulting microstructure was anisotropic. In later research [177] Yan et al. extended the application

of this method to three-dimensional case-studies, observing similar results. Gao et al. (2019) [178]

and Li et al. (2019) [179] followed a similar procedure but applied the SIMP and LSM methods

instead of BESO, respectively. Likewise, Zhang et al. (2020) [180–182] applied a multiscale

method to find the optimal topology that minimizes the frequency response of a cellular composite

within a given frequency range.

Focused on the definition of the material orientation, Silva et al. (2020) [183] revisited and

modified the normal distribution fibre optimization (NDFO) method. Therefore, the values of

angles are inserted directly into a normal distribution function and the output is modified with

a Helmholtz filter, ensuring the continuity of the fibres. This modification allowed the lifting of

some restrictions, such as imposing small strains, displacements, and rotations, and consequently

expanding the range of application of this approach.

In the current state of the art, it is possible to observe an evolution of the topology optimization

methods applied to composite materials. The focal point of research in this area has been the

inclusion of design variables and their efficient management. From a physical perspective, this

means the addition of material properties, such as the strength of the material [160], the orientation

of the fibre reinforcements [24, 132, 133, 136, 140, 141, 153, 158, 160, 162, 163, 165, 183],

lamination parameters [166, 167] or information on the microstructure of the composite and

its influence on a macro-scale level [25, 143, 146, 149, 168–170, 176–182, 184], the inclusion

of multiple materials [134, 135, 156], and manufacturing or process constraints [164]. A topic

of research scarcely explored is the inclusion of fracture or damage predictive models in the

topology optimization of composites, only referred to in [160] where the authors used the Tsai-Hill

failure criteria, which was imposed as a maximum stress constraint. In research not restricted
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to composite materials, the inclusion of damage tolerance or damage predictive models, in the

topology optimization process, has already been under investigation since 1998 [185, 186]. The

combination of these concepts has been used as a conservative approach, leading to designs with

multiple load paths that enable a structure to function in the presence of damage [187].

2.3.3 Damage tolerance

The existence of defects in composite materials, either resulting from the manufacturing process

or due to loads applied during operation, can cause changes in the performance of the structure.

The study of damage tolerance of materials has been a subject of research for many years, whether

motivated by increased performance and/or safety factors, or simply to avoid the costs of main-

tenance and discard of components [19, 20]. This concept defines the ability of a structure to

sustain a determined level of fatigue, corrosion, or impact damage able to be detected and repaired.

Traditionally, the damage tolerance of metallic structures is governed by damage resulting from

fatigue and crack propagation [21].

Whether the distinction between the relevant sources of damage, that is more harmful to each

type of material is correct or not, it is expected that the exposure to operating conditions and

external factors promotes the initiation, accumulation and propagation of damage [19]. This has

led researchers to perform extensive research on the influence of different load cases and exter-

nal conditions on the damage tolerance of composite materials, such as: the influence of fabric

architecture and resin toughness on the impact resistance ([188–196] and [194–204], respectively)

and damage tolerance ([194, 195, 205–208] and [203, 209–213], respectively) of CFRP, the effect

of fracture toughness [192, 193, 198, 202, 214–218], repeated impact [219–224], impact geome-

try [225–234], stacking sequence [201, 235–239], environmental conditions [240–247] including

radiation [248–251], and fabric [199, 200, 235, 252] or matrix hybridization [247, 252–256] on the

damage tolerance of the material.

The extensive research performed throughout the years has supported several industries, pro-

moting the adoption of damage tolerance concepts in the design of multiple structures. Braga et

al. (2014) [257] reviewed and discussed possible prospects of the major design philosophies that

have been employed in aircraft structures, including damage tolerance. In this sector, the concept

of damage tolerance introduced the assumption that initial structural damage exists in the structure,

making it a requirement that needs to be considered. The objective of this assumption was to

determine inspection thresholds and intervals. To do so, fracture mechanics evaluations of crack

growth and residual strength characteristics were coupled with damage detection assessments. The

data obtained from service-based crack detection procedures, combined with the residual strength

and fatigue crack growth data, is used to define detection reliability ratings, considering multiple

types of inspections. The definition of the inspection thresholds and intervals promoted the focus

of research on non-destructive inspection (NDI) techniques, such as: dye penetrant inspection,

magnetic particle inspection, radiography, ultrasonic inspection, Eddy currents, thermal imaging,

and digital image correlation (DIC).
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In 2015, McGugan et al. [20] proposed a design and maintenance methodology to be applied

in wind turbine rotor blades, assuming that either it is not possible to manufacture a perfect

structure, or that discarding or repairing defects in a structure is too costly. Besides the use of

a structural health monitoring system (SHM) to assess the state of the structure, one of the key

aspects of the design method proposed was the inclusion of a damage tolerance index, coupling

the materials and the structure. This methodology requires the use of materials whose strength is

significantly higher than the linear-elastic limit, to allow an easy detection of the damage and enable

the possibility of repairing or replacing the damaged part. Similarly, Yue et al. [258] proposed a

design philosophy that is based on the structural health monitoring and associated testing at different

levels of complexity, starting from a coupon level. According to the authors, using the information

obtained through the analysis of previous levels, it is possible to detect multiple barely visible

impact damage in large composite panels by outlier analysis using a reference pristine database

gathered from simple coupons. From a more general point of view, this bottom up approach of

increasing complexity provides valuable knowledge that will more accurately predict the health

status of the design component.

The interest of the industry in this concept, combined with the limitations of the analytical

solutions available, promoted the research and development of numerical tools capable of predicting

the damage initiation and propagation in a structure after a certain loading condition. Damage

modelling can be divided into four categories: failure criteria based, continuum damage-mechanics

based, fracture-mechanics based, and plasticity or yield-surface based models. Failure criteria-

based models use polynomial expressions to define a failure envelope that indicates the initiation

of damage as a function of the stress or strain installed. However, it does not include information

regarding the position, size, and progression of the crack. Fracture mechanics addressed this

issue through the inclusion of information regarding the energy required to create and propagate

a crack. In turn, fracture mechanics require information regarding the initial flaw. In composite

materials, the prediction of progressive damage can be achieved through the combination of these

two methods. For ductile composites, this approach can be complemented with plasticity-based

damage models [22].

Likewise, the prediction of damage tolerance is a topic of significant interest. However, sim-

ulating residual strength tests is quite challenging. Gonzalez et al. (2012) [208] simulated the

low-velocity impact and the compression after impact (CAI) tests, using both interlaminar and

intralaminar (LaRC04 failure criteria [259, 260]) damage models. This extremely expensive com-

putational model predicted the residual strength with a 20 % error, resulting from the comparison

between numerical and experimental results.

Rivallant et al. (2013) [261] and Hongkarnjanakul et al. (2013) [262] successfully captured the

permanent indentation resulting from a CAI test, as well as the crack propagation and buckling of

sub laminates due to the impact. The simulations were an improved version of the model proposed

by Bouvet, et al (2012) [263], considering the failure of fibres under compressive loads.

Camanho et al. (2015) [264], proposed a three-dimensional failure criterion for CFRP based on

structural tensors. The criteria for the transverse failure was formulated from the invariant theory,
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while the tensile fracture in the fibre direction is predicted using the maximum strain criterion. A

three-dimensional kinking model was used to predict the longitudinal compressive failure, capable

of accounting for the nonlinear shear response. The criteria was proved both accurate and useful in

the validation of failure under complex three-dimensional stress states.

Tan et al. (2015) [265] proposed a nonlinear shear-based damage model. In their research,

the authors aimed to predict the compressive residual strength of the composite through the

coupling of the matrix tensile failure criteria proposed by Puck and Schurmann (2004) [266] and

the compressive failure criteria proposed by Catalanotti et al. (2013) [267]. A three-step process

was used to simulate the low-velocity impact, stabilization of the specimen and update of the

boundary conditions, and the CAI analysis. The results report a high accuracy in the residual

strength predicted and successfully captured the permanent indentations.

Caputo et al. (2015) [268] simulated a low-velocity impact and CAI test in ABAQUS® [11].

Using a single step analysis allowed the authors to consider the effect of impact damage distribution

as the starting configuration of the CAI test. Through this methodology, the authors were able to

predict the interlaminar and intralaminar damage with a 9 % accuracy. Elias et. Al (2017) [269]

divided this method into a two-step process. The purpose of this division was to execute the

low-velocity impact first, to obtain the damage pattern, including indentation depth and damage

area, as well as the damage indices on each element. The second step focuses on estimating the

residual strength. The results further support an accurate prediction of the damage mechanisms.

A simplified approach to predict CAI strength in laminated composites was proposed by

Rozylo et al. (2017) [270]. In this research, a relationship between the thickness of the plies and

the impact energies was established. A progressive damage criterion describing the initiation of

damage according to the Hashin model was used, while the propagation was determined using the

established energy model. The numerical results were in good agreement with the experimental

data reported by Tan et al. (2015) [265].

Abir et al. (2017) [217] adopted a single-step approach using Tsai-Wu failure criteria for

damage initiation. The authors observed that local buckling and delamination growth caused

the failure of the composite under CAI. A high influence of the Mode II interlaminar and fibre

compressive fracture toughness was also observed, whose increase reduced the delamination size

and improved the damage tolerance.

In 2018, Cugnoni et al. [271] performed an extensive experimental testing campaign, addressing

the influence of ply thickness, fibre, matrix, and interlayer toughening on strength and damage

tolerance. The detailed characterization allowed the authors to obtain a master curve diagram,

modelling the reduced in-situ strength of the composite as a function of the ply thickness. This

master curve was further expanded for larger values of thickness using the models proposed by

Dvorak and Laws (1987) [272], and was later extended by Camanho et al. (2006) [273]. The master

curve obtained is overall conservative and suitable for first order estimates.

Liu et al. (2018) [197] presented a numerical model to simulate the CAI of hybrid unidirectional

or woven CFRP laminates. Through a user-defined material subroutine in ABAQUS® [11], the

authors implemented a three-dimensional damage model based on continuum damage mechanics
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and linear elastic fracture mechanics. The model considered interlaminar and intralaminar damage,

load reversal, and nonlinear shear profiles to account for matrix plasticity. The experimental results

agreed with the numerical predictions, with the numerical model capturing the behaviour of the

composite under compressive loading.

Recent research has studied the possibility of improving the damage tolerance through novel

materials. To improve the resistance of composite laminates to delamination when subjected to

impact loadings, Daelemans et al. (2019) [274] studied the influence of electrospun nanofibers on

the occurrence of delamination failure in composites. An increase of 60 % of the delamination

resistance under both Modes I and II was estimated. Dimoka et al. (2019) [275] have also

investigated the influence of nanomaterials in the damage tolerance of a CFRP laminate reinforced

with multi-walled carbon nanotubes (MWCNTs) subject to low-velocity impact and then tested

under compression loads. The results revealed an improved performance in the residual compressive

strength after impact when compared to the non-modified CFRP. For impact tests with high energy

levels (30 J), an increase in the delamination area was observed. However, the opposite phenomenon

was observed for impact energy levels of 8 J and 15 J.

Tie et al. (2020) [276] maximized the impact-resistance of a patch repaired CFRP laminate

using a surrogate-based model based on the Diffuse Approximation and Design of Experiments,

which obtained information from FEM of patch-repaired CFRP laminates that consider continuum

damage mechanics (CDM) and cohesive zone modelling (CZM). The outcome observed by Tie et

al. was a significant increase in the impact-resistance, decreasing the impact energy absorption and

the delamination surface area.

On the use of these numerical models towards the design of composite structures, Sellitto et al.

(2020) [277] applied a GA to optimize the stacking sequence of an aeronautical stiffened panel.

The optimization had two objectives: maximizing the buckling load and minimizing the weight

among the configurations capable of withstanding a low-velocity impact. The authors considered

four possible ply orientations [0°,+45°,-45°,90°] and applied a linear damage criterion to assess

the structural integrity of each configuration. This approach led to two possible configurations that

minimize the number of plies of the panel and maximize the buckling load. Similarly, Reddy et al.

(2020) [278] developed an enhanced bat algorithm (EBA) and used it to optimize the number of

plies and their orientation. The objective was the weight minimization of the laminate, constrained

by the initiation of damage according to the Tsai-Wu failure criterion.

Particularly concerned with the buckling and post-buckling behaviour of thin-walled composite

laminated beams and columns, Mittelstedt (2020) [279] reported and extensive literature research

on the topic. Mittelstedt has observed that almost all theoretical approaches toward the constitutive

modelling and global-local buckling analysis rely on either classical laminated plate theory or

first-order shear deformation theory, contrasting with the often need of using higher-order shear

deformation theory for composite laminated materials. Furthermore, Mittelstedt identifies the

need for further investigation on the influence of delamination on the static performance, buckling

resistance, buckling and post-buckling behaviour of thin-walled composite beams. The author also

suggests further investigation on progressive failure analysis, studying composite beams in the
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post-buckling considering damage accumulation models. For a more detailed analysis on each of

these topics, the interested reader is referred to [279].

A first special mention is given to Fedulov and Fedorenko (2020) [280], for combining topology

optimization concepts with the analysis of damage propagation in a composite material. The authors

proposed a method based on the inverse approach of a standard compliance minimization topology

optimization problem to estimate the residual strength of a laminated composite with barely visible

impact damage. In other words, the energy transmitted by a given impact is distributed in the

composite material through a sensitivity analysis, maximizing the compliance of the structure. This

energy is then used to degrade the material properties of the composite according to a progressive

degradation material model. A good correlation between predicted and experimental results was

observed.

A second, and final, special mention is given to the study of imperfections in the design of

deployable structures. As stated by Chen et al., kinematic singularity can frequently exist in

deployable structures, especially when adjacent links become coplanar, affecting the accuracy,

deployment performance and structural stiffness [281]. Addressing mechanisms on a more general

level, of which deployable structures are part of, Lengyel and You [282] have demonstrated that

the bifurcations of several mechanisms correspond to various catastrophe germs, highlighting

the influence of imperfections on the behaviour of the mechanism. An interesting approach is

taken by Steinboeck et al. [283], who investigated the necessary and/or sufficient conditions to

achieve an imperfection insensitive system based on Koiter’s initial post-buckling analysis [284].

Since kinematic bifurcation is generally unavoidable for deployable structures, Chen et al. [285]

follow a different route, proposing a methodology that decomposes the compatibility matrix of a

deployable structure and extracts new mechanism modes with lower-order symmetries associated

with independent bifurcation paths. Then, a prediction-correction algorithm is used, leading the

structure into the expected bifurcation paths.

Through the review of the state of the art, it is possible to infer that the concept of damage

tolerance is relevant for several industries. This interest has led to extensive research on the

influence of external factors and loads on the damage tolerance of materials, the simulation of

damage initiation and propagation, and the prediction of residual properties. More recently, the

development of new materials has promoted the study and research of the influence of nanomaterials

on the damage tolerance of the modified structure. However, the vast majority of these investigations

are focused on the development or improvement of existing tools to allow an accurate prediction of

the damage incurred in a given operating condition, with only a few recent articles actively using

this information in the design of a composite structure [29, 49, 86, 67, 276–278].

2.4 Final remarks on the design and optimization of self-deployable
damage tolerant composite structure

The present review explores the possibility of increasing the performance of a composite self-

deployable structure by means of the allowance of damage initiation during operation. The use of
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Table 2.1: Number of publications on the subject of composite structures design sorted by the
methodology and use, or not, of damage tolerance.

Composite structure
type

Damage
tolerance

Design approach

Analytical Numerical Topology
OptimizationHeuristic Gradient-based Hybrid

Elastic hinge Without 2 11 4 1 1
With 0 0 0 0 0

Others Without 1 8 9 7 48
With 0 3 1 2 1

a damage tolerant structure is identified as a possible solution to meet highly demanding design

requirements identified by the ESA for self-deployable telecommunication satellites [6]: achieving

a design that is, simultaneously, flexible to fold in the elastic regime, but also rigid enough to

reach high natural frequencies. Opting for a damage tolerant design, and relaxing the need for the

structure to operate in the elastic regime, is seen as a potential solution to reaching the required

natural frequency of vibration through the increase of the stiffness of the structure previously

limited by the requirement of an elastic design.

The proposal of a damage tolerant design is justified by two particularities of this application.

The first, is the life cycle of the structure, as most deployable systems are expected to perform a

single deployment operation once in orbit. While imposing the functioning of the deployable system

in the elastic regime does lead to a higher safety factor, it also implies a significant over-design

of the structure and, in this case, limits the maximum stiffness and its resulting natural frequency.

The second, is the expected life-time of a satellite. Apart from their size and cost, the development

of nanosatellites and CubeSats is also motivated by their reduced development time. Average or

large-sized satellites require between 5 and 15 years to be placed in orbit under normal parameters,

incurring the risk of no longer being market-relevant due to the pace of technological progress. In

contrast, CubeSats and nanosatellites require less than 8 months to reach orbit. This trend towards

a shorter development time allows a frequent renewal, guarantees the robustness of nano-satellite

constellations, and removes the need for a conservative long-term design [286–289]. However, it is

Figure 2.8: Venn diagram showing the number of publications on the subject of composite structures
design sorted by the methodology and use, or not, of damage tolerance.
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important to acknowledge a potential downside of using a damage tolerant design in this application,

which is the possible release of debris when the initiation of damage occurs. The inclusion of

containing systems, similar to a membrane that covers the elastic hinge, can be used to overcome

this phenomenon. Therefore, small debris will no longer be considered as a limiting factor to the

exploration of this concept.

Three research topics were surveyed to look for a suitable design methodology that could lead

to a composite self-deployable damage tolerant design. These research topics included: the design

of deployable structures (section 2.2), the design of composite structures (section 2.3.1), and the

use of damage tolerance in composite structures (section 2.3.3).

The survey of the design approaches applied to deployable structures allowed the observation

of a clear evolution from the use of analytical methods [67, 68] towards the use of numerical

approaches combined with optimization algorithms [9, 29, 86, 35, 55, 57, 77, 81–84]. The design

tools changed and stress [49] and strain-based [48] criteria were developed specifically for materials

used in deployable systems. However, the same conservative design philosophy was maintained

across all research: ensuring the functioning of the deployable system in the elastic regime.

Comparing the design methodologies used for deployable structures with methodologies used

for other composite structures, it is possible to identify similarities in the heuristic, gradient-based,

and hybrid methods. In all cases, it is common for the design process to involve the optimization of

the stacking sequence of the laminate, considering either a discrete or continuous ply-angle variation,

respectively, and the optimization of several geometrical variables. The only difference noticed was

the optimization of the lamination parameters, which was not observed when designing deployable

structures, probably due to the fewer publications on composite self-deployable structures.

On the other hand, the popularity of using a topology optimization is significantly different.

Only one research [29] explored the use of this approach to design an elastic hinge. In other

fields of application, the topology optimization of composite materials has evolved significantly, in

particular regarding the efficient inclusion of additional material properties such as the strength of

the material [160], the orientation of the fibre reinforcements [24, 132, 133, 136, 140, 141, 153, 158,

160, 162, 163, 165, 183], lamination parameters [166, 167] or information of the microstructure of

the composite and its influence on a macro-scale level [25, 143, 146, 149, 184, 168–170, 176–182],

the inclusion of multiple materials [134, 135, 156], and manufacturing or process constraints [164].

Once again, the inclusion of fracture or damage predictive models in the topology optimization

of composite materials is scarcely addressed [160]. This observation was unexpected. In research

not related to composite materials, this has been a topic of research since 1998 [185, 186] and

the outputs have been relevant in several industries [19, 20]. Regarding composite materials, the

capability to predict the initiation and the propagation of damage in composite materials, as well

as to estimate the residual properties has been extensively explored [188–202, 204–208, 203, 209–

247, 252–256] and is particularly relevant in industries such as aeronautics [290, 291], where

this information can be useful to ensure the functioning of the structure in anomalous conditions.

However, only few recent articles actively use this information in the design of a composite

structure [29, 49, 86, 67, 276–278].
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In summary, reviewing the published literature on these subjects allowed the identification

of several research topics that have not been addressed in the literature (highlighted in Table 2.1

and figure 2.8). The use of topology optimization coupled with damage has either been rarely or

never used in the design of self-deployable composite structures. The extensive research of these

concepts in other areas indicates that these approaches have reached a relevant maturity level that

could justify exploring their application to this particular scenario. Furthermore, no limiting factors

that could exclude the use of these concepts in the design of self-deployable composite structures

were identified in this review. Considering this information, modifying a stress-constraint topology

optimization approach to consider the maximum index of failure resulting from composite failure

criterion, the energy dissipated through material degradation, or a maximum area of damaged

material, could be a possible approach to consider damage tolerance in the topology optimization

of a self-deployable composite structure. 2

2The reader interested in following the chronological order of the research reported in this thesis should move to
chapter 5, where the use of a damage tolerant elastic hinge design is proposed and evaluated. Then, chapter 6 takes a
closer look at the method of topology optimization, analysing its possible implementation according to the state of the
art, and ultimately identifying some limitations that must be overcome before adapting it to consider a damage constraint.
From chapter 5 onwards, the chapter sequence matches the chronological order.
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3.1 Introduction

Given the difficulties involved in the design of deployable structures, the increasing requirements

and their potential use, this paper aims at applying optimization algorithms to find an optimal

solution of an elastic hinge. The damage and frequency requirements set by ESA in [6] are

used as an example of a state-of-the-art engineering problem. During this research, numerical

models capable of estimating the natural frequency and the structural integrity of the structure

were implemented. The structural model was experimentally validated using a representative

specimen of the elastic hinge, comparing the numerical and experimental folding behaviour and the

forces involved in the process. The experimental validation of the natural frequency model was

performed and reported in [82], therefore, it was not repeated in this investigation. The numerical

models were integrated into an optimization process that used them to estimate the frequency and

structural behaviour of possible elastic hinge designs. The optimization process was divided into

two sections: first, a global and discrete search that utilized a genetic algorithm, then, a local and

continuous search through a particle swarm optimization method. However, the output obtained did

not comply with the design requirements. Therefore, a second iteration of the slot hinge geometry

was investigated numerically, and the results were discussed.

3.2 Design requirements

In this research, the deployable structure considered is a composite arm with two integrated elastic

hinges. Each end of the arm should be connected to the satellite and to an antenna, respectively.

Figure 3.1 best describes the application.

The design requirements include geometric and functional requisites. From a functional point

of view, the deployable structure should have a natural frequency higher than 1.0 Hz and should

not initiate damage during operation. In this research, the damage requirement is evaluated using

different failure criteria: Hashin’s failure criteria, Azzi-Tsai-Hill, Tsai-Hill, Tsai-Wu and Maximum

Stress. It is assumed that no damage has been initiated during operation if the maximum index of

failure (Max. IF) of these criteria is lower than 1.0. From a geometric perspective, it is imposed

that the arm should have a circular cross-section, whose diameter cannot exceed 200.0 mm. These

correspond to the minimum requirements for this application, as reported in [6]. To obtain a more

robust solution, a safety factor of 10 % was applied to the frequency and damage requirements.

Therefore, the natural frequency should be higher than 1.1 Hz and the index of failure lower than

Figure 3.1: Description of the deployable system considered in this research.
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0.9 for all the criteria under assessment. Additionally, it is assumed that the location of the elastic

hinges in the deployable arm is fixed and that the antenna to be attached on its free-end has a mass

of 27 kg. The centre of mass of the antenna is located 1.4 m away from the tip of the arm. As

a result of these restrictions, the modifiable parameters are: the radius of the arm, the material,

number of plies, ply-orientation and the geometry of the slot that characterizes the elastic hinge.

3.3 Numerical details

Finite element analysis was carried out to estimate the natural frequency and structural integrity of

the system, using ABAQUS® [11]. In this section, the implemented numerical models are described.

Both models consider a parametrization of the modelled geometry, which is described in detail in

section 3.5.1, allowing an easy modification of the numerical models.

3.3.1 Natural frequency model

The natural frequency finite element model considers the integrated system composed of the

composite arm with two elastic hinges and the antenna attached to its free-end. The antenna is

represented as a point mass of 27 kg, located 1.4 m away from the tip of the composite arm and

connected to it through a beam multi-point constraint. The other end of the composite arm is fixed,

representing its attachment to the satellite. Figure 3.2 represents these boundary conditions applied

to a generic antenna arm.

The deployable arm was modelled with three-dimensional deformable shell elements with 4

nodes and reduced integration (S4R in ABAQUS® [11]). Each element had an average size of

2.5 mm. The material properties introduced in the numerical model are summarized in Table 3.1.

The natural frequency is determined using a linear perturbation analysis, which applies the Lanczos

algorithm. This approach has been used several times in the literature to estimate the natural

frequency of similar deployable structures [10, 53, 49] and even some different concepts [292].

It has been experimentally validated in [82], reporting an error of 6 % between numerical and

experimental results for the first natural frequency and 20 % for the higher-order frequencies. Since

the objective of the natural frequency model is to estimate the first natural frequency of the system

and that an error of only 6 % was observed through experimental validation, the numerical model is

considered suitable for this investigation. This numerical model considers a parametrization of the

geometry of the structure, allowing an easy modification of the geometry of the modelled structure.

This FEA is then solved through an implicit analysis.

Figure 3.2: Highlight of the boundary conditions considered in the natural frequency model.
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Figure 3.3: Highlight the different regions considered in the structural model. Each region is
represented with a different colour (blue, dark grey and light grey) and has a different mesh size.

3.3.2 Structural model

The structural model considers a segment of the composite arm, corresponding to only one of the

elastic hinge present in the design. Similarly to the natural frequency model, three-dimensional

deformable shell elements with 4 nodes and reduced integration (S4R in ABAQUS® [11]) were

used to model the elastic hinge. For optimization, convergence reasons and due to the non-linear

nature of the model, an explicit analysis was preferred and the elastic hinge was divided into three

regions, as shown in figure 3.3.

The central region, highlighted with a light-grey colour, corresponds to the area where the

slot of the elastic hinge is located and where the highest stress concentration occurs. Therefore,

the numerical model considers the existence of a composite layup feature with multiple plies in

this region, allowing a more detailed analysis of the stress and strain state of each element. The

elements in this region had an approximate size of 2.5 mm. The other two regions do not sustain

significant stresses or strains. This fact makes them only relevant for the analysis of the folding and

deployment behaviours of the elastic hinge to capture the full component rigidity behaviour when

solicited. Since the stress and strain states are not significant from a design point of view, these

were modelled as a single layer of elements with the homogenized properties of the composite. This

procedure reduces the number of calculations in the model and, therefore, the computational time.

The elements in the blue region had an approximate average size of 4.0 mm, while the elements

in the dark-grey region create a transition between neighbouring meshes. In order to replicate the

experimental testing equipment, the applied boundary conditions consider the existence of two

holders, responsible for supporting the ends of the composite arm. An angular rotation is applied,

forcing the arm to fold, and two plates, that pinch the tapes of the elastic hinge, force them to bend

before the folding of the component starts. These boundary conditions are per [10] and represented

in figure 2.4 (image cited from [10]).

3.4 Validation of the structural model

The structural model was validated experimentally by comparing the experimental and numerical

torque-angle curves. These curves indicate the total torque that is applied at the ends of the elastic

hinge to fold it, as a function of the folding angle, and were first used as a validation method in [49]

and [30]. The following sections describe in detail the materials used, geometry of the specimens,

experimental setup, calibration procedure and output comparison.
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Figure 3.4: Geometry of the specimen used for the experimental validation of the structural model.

3.4.1 Materials and specimens

The material considered in this research was AS4/8552, a unidirectional carbon/epoxy system

provided by Hexcel®. The mechanical properties implemented in the models are summarized in

Table 3.1, where E is the Young’s Modulus, v the Poisson’s ratio, G the shear modulus, X the

longitudinal strength, Y the transverse strength, S the shear strength, the subscripts 1, 2 and 3

indicate the longitudinal, transverse, and normal directions, and the subscripts t and c denote the

tensile or compressive strength.

The geometry of the specimens used in the experimental validation is described by figure 3.4.

This geometry consists of a tubular structure with two 0.18 mm thick plies (rounded to two decimal

places) oriented at ±45°, an internal diameter of 39 mm and a cut-out, defining the slot of the

elastic hinge. Each specimen was manufactured by hand lay-up and cured in an autoclave according

to the manufacturer specifications. Then, the slot was cut using a CNC machine.

3.4.2 Experimental setup and procedure

The torque necessary to fold the elastic hinge as a function of the folding angle was used to validate

the numerical model. A custom test rig (figure 3.5) was developed based on the work described

in [49, 30]. The rig consists of two sets of holders that support the composite tube, and can apply

torsion at both ends of the tube. The torsion is controlled by the movement of two stepper motors.

One of the stepper motors is fixed to the base of the machine, allowing the holder to rotate only

Table 3.1: Elastic and strength properties of AS4/8552, according to [208] and [293], respectively.

Property Value Unit

Elastic properties

E11 128 GPa
E22 7625 MPa
v12 0.35 -
v23 0.45 -
G12 4358 MPa

Strength properties

Xt 2300 MPa
Xc 1200 MPa
Yc 220 MPa
S12 100 MPa
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around a fixed axis. The other motor is fixed to a moving base, allowing the holder to rotate while

moving along a linear track. Figure 3.5 shows the mechanism.

Figure 3.5: Test rig used to measure the torque as a function of the folding angle.

The torque measurement is made using a±45°strain gauge attached to the shaft of the specimen

holder ring. The strain gauge is connected to a signal amplifier HX711, that delivers the information

to a User Interface using an Arduino based microcontroller. Before testing, each holder is calibrated.

The calibration procedure requires fixing a rod, with a known length, to the holder and placing a

calibrated weight on its end (figure 3.6). The torque is determined mathematically and the output

from the electronic system is recorded. The next step is to place, in the same location, another

calibrated weight, so the system output can be sensed and recorded. This step has to be repeated

until the estimated torsion value is reached corresponds to that of the calibrated weights. Once all

the data is collected, a simple linear, quadratic or higher-order regression has to be applied to fit the

data and obtain the torque equation for this particular system.

Figure 3.6: Calibration method using a rod and a calibrated weight.

Since the pinching process has to be applied manually, it was excluded from the numerical

model and experimental procedure during the validation phase, to improve repeatability and remove

the human stochastic component of the process.
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Figure 3.7: Representative curve of the torque applied to an elastic hinge as a function of the folding
angle.

3.4.3 Output comparison

The experimental procedure was repeated for three valid experiments, with different test specimens.

A representative curve of the torque-angle measurement is shown in figure 3.7 and compared

to the numerical prediction, revealing a good agreement between both results. It is possible to

observe some irregularities in the experimental curve, which do not exist in the numerical prediction.

This difference is caused by the use of the two stepper motors, which do not allow a continuous

movement, but rather a movement caused by a series of small increments. This factor, in conjunction

with the existence of friction, causes some irregularities in the experimental torque-angle curve. The

maximum torque values observed during the different experimental tests are reported in Table 3.2,

indicating consistent results with an average deviation of 0.06 Nm.

Table 3.2: Maximum torque according to experimental and numerical results.

Maximum torque
(N.m)

Experimental results

Sample 1 5.25
Sample 2 5.33
Sample 3 5.16
Average 5.25

Average deviation 0.06
Numerical results 5.14

Average difference (numerical and experimental) 0.11
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3.5 Design and optimization

This section describes the design and optimization process of the composite deployable arm,

including: the design variables, objective function, selected optimization algorithms, internal

parameters selected for each algorithm and an analysis of the obtained outputs. Section 3.5.1

describes the design variables used. This includes a description of the possible geometries that

can be obtained, using the selected parametrization, and a definition of the design space. The

description of the objective function (section 3.5.2) explains how the information obtained from

the numerical models is utilized to explore and improve possible solutions. The section dedicated

to the optimization process (section 3.5.3) explains how a genetic algorithm and a particle swam

optimization method were combined. In this integration, the respective discrete and continuous

natures of these methods were used to develop an optimization process divided into a global and

local search. This enables a quick overview of the design space, followed by a detailed search in

the neighbourhood of the most promising solution.

3.5.1 Design variables

The considered design variables define the geometry of the slot and the composite arm as a

combination of geometrical figures. This parametrization, described in figure 3.8, is inspired in

the work reported in [49] but allows a larger number of possible designs and the inclusion of

asymmetries, as shown in figure 3.9.

In total, nine design variables were considered. These include the number of plies of the

composite (Pn), ply angle (A) and the following geometric variables:

• Ri – Internal radius of the tube;

• R1 and R2 – Radius 1 and 2, defined as a percentage of Ri;

• R1r and R2r – Ratio between the slot’s width and R1 or R2 on the centre of each circle (visually

described by W1 and W2, where Wn = RnRnr, with n = 1,2);

• SL – Slot’s length, defined as the product of a scalar and Ri;

Figure 3.8: Visual representation of the design variables that define the geometry of the slot of the
elastic hinge.
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Figure 3.9: Examples of possible geometries considered by the parametrization used.

• SD – Slot’s displacement from the longitudinal axis of the tube. Defined as a percentage of

the largest value between R1 and R2;

Each variable has the minimum and maximum values shown in Table 3.3. These variables were

mainly defined as percentages and ratios to ensure that the algorithm cannot generate impossible

solutions by combining incompatible design values. An example of an impossible solution would

be a slot with R1 larger than Ri. Avoiding these unrealistic cases leads to a smaller design space

and a higher probability of success in finding the global optimum.

3.5.2 Objective function

The design process of the composite deployable arm considers geometrical, damage and frequency

requirements. The geometrical requirements, such as the diameter, which cannot exceed 200.0 mm,

can be addressed by restraining the domain of the design variable(s), as described in section 3.5.1.

The frequency requirement can be seen as another constraint, where solutions whose natural

frequency is lower than 1.0 Hz are rejected. These two considerations leave the minimization

of the installed damage as the only objective of the optimization process and avoid the use of

multi-objective optimization processes where the complexity is far greater. With this strategy in

mind, the objective function was defined as the minimization of the damage, where the damage

installed in each possible design was estimated using the structural numerical model described

in section 3.3.2. However, executing a structural analysis on every possible solution would lead

to an exceedingly large computational cost. To avoid this situation, each candidate solution had

its natural frequency estimated through the numerical model described in section 3.3.1. If the

natural frequency of a possible solution was larger than 1.1 Hz and lower than 1.25 Hz, it would be

Table 3.3: Maximum and minimum values of each design variable

Variable Minimum Maximum Unit
Ri 20 100 mm

R1,R2 15 80 %
R1r,R2r 0.1 1.0 -

SL 3 10 -
SD 0 100 %
Pn 1 4 pair(s)
A 0 90 º
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Figure 3.10: Graphic representation of the penalty factor as a function of the natural frequency of
the design considered.

evaluated through structural analysis and its performance value (Per f ) set equal to the maximum

index resulting from the application of the failure criteria included in the numerical model (listed in

section 3.2). If the natural frequency was not within this range, the performance value was set equal

to a penalty factor (Pf ) and the structural analysis skipped. Equation (3.1) shows the formula used

to determine the performance value of a solution, while figure 3.10 shows a graphic representation

of the penalty factor as a function of the natural frequency.

Per f = 15, if 0.0≤ f < 1.0 ∨ 1.25 < f < 1.5

Per f = 12, if 1.0≤ f ≤ 1.1

Per f = Max. IF, if 1.1≤ f ≤ 1.25

Per f = 20, if 1.5 < f <+∞.

(3.1)

Where Max. IF is the largest index of failure of the failure criteria included in the structural

analysis (listed in Section 3.2).

Solutions whose natural frequency was lower than 1.1 Hz received a penalty factor for not

meeting the frequency requirement. This penalty was more severe for solutions whose natural

frequency was lower than 1.0 Hz, since they were further away from the minimum requirement. The

penalty applied to solutions with a natural frequency above 1.25 Hz is justified by the proportionality

between the stiffness of a structure and its natural frequency. The increase in natural frequency

implicates an increase in stiffness, making the structure less flexible and less likely to fold without

initiating damage. Even more severe penalties were applied to solutions with a frequency larger

than 1.5 Hz, for the same reason.

3.5.3 Optimization process

The optimization process considered two different optimization algorithms: a genetic algorithm,

inspired by the theory of natural selection [294, 295] and a particle swarm optimization method, a

heuristic search method inspired by the collaborative behaviour of biological populations [296].

Considering the classic implementation of these algorithms, it is possible to classify the GA as

naturally discrete and the PSO as naturally continuous. This naturally implies that a classic GA

is more suitable to optimize discrete variables and that a classic PSO is more suitable to optimize

continuous variables. Given these characteristics, the optimization process was divided into a global

and a local search.
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The GA was applied during the global search, where only discrete values of the 9 design

variables were considered. This decision led to a reduction in the number of possible solutions

that the optimization algorithm had to explore. Once a solution was found, the local search was

initiated. The local search consisted of applying the PSO method to search for an optimal solution

in the neighbourhood of the solution found during the global search. The local search domain was

defined by a ±10% variation of each design variable, except for the number of plies, which was not

included in the local search. This sequence of operations allows for a quick survey of the design

space, followed by a more refined search near the optimum found. Convergence was assumed after

30 iterations with no improvement of the elite group, for the GA, or the best solution found, for the

PSO.

A detailed description of the GA and PSO methods implemented, as well as the internal

parameters chosen, can be found in Appendix A and Appendix B, respectively.

3.6 Results and discussion

Through multiple optimization attempts, it was observed that the best solutions found in each

attempt usually has a large slot radiae (R1,R2) and smaller widths (R1r,R2r). Cases a), b) and

c), shown in figure 3.11, are examples of this scenario. However, these solutions did not meet

the design requirements due to their Max. IF being 2.01, 2.04 and 2.05, respectively. Further

evaluation of the geometries generated by the optimization algorithm led to the discovery of case

d), which is also representative of this situation and corresponds to the solution with a lower index

of failure (1.86), but did not meet the natural frequency requirement (0.57 Hz). The best result

obtained through the optimization process is shown in figure 3.11 e) and has a Max. IF of 1.63,

according to Hashin’s failure criteria for matrix under compression, and a natural frequency of

1.22 Hz. However, despite having a natural frequency higher than 1.1 Hz, this solution fails to meet

the damage requirements. The indexes of failure of this solution are shown in Table 3.4, while the

design variables that define the geometry are shown in Table 3.5.

Furthermore, by analyzing the outputs of the structural models, it was possible to observe two

main stress concentration regions, highlighted in red and orange in figure 3.12. It was also observed

Table 3.4: Indexes of failure observed according to each failure criterion.

Criteria Value
Azzi-Tsai-Hill 1.24

Hashin

Fibre compression 1.04
Fibre tension 0.31

Matrix compression 1.63
Matrix tension 1.48

Maximum stress 1.22
Tsai Hill 1.25
Tsai Wu 1.40
Max. IF 1.63
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Figure 3.11: Best solutions found through the optimization processes. Cases b) and c) differ slightly
in the slot’s width. Case d) has a lower index of failure (1.86) but does not meet the frequency
requirement (0.57 Hz). Case e) is the solution with the lowest index of failure (1.63) that meets the
frequency requirements (1.22 Hz).

Table 3.5: Variables defining the slot geometry used to compare the influence of the boundary
conditions and the removal of material. (*) Rounded value in mm, after obtaining the product
between the percentage and Ri.

Variable Value Unit
Ri 85.0 mm
R1 35 %
R2 15 %
R1r 0.35 -
R2r 0.65 -
SL 480* mm
SD 4.0* mm
Pn 2 pair(s)
A 40 º
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that the amount of damaged material (red region) would decrease as the radius of the slot increased.

The location of the stress concentration points, as well as the type of geometry found during the

optimization process, is in agreement with the analysis reported in [49, 48, 51], which found similar

designs through a parametric analysis.

Additionally, it is noticeable that the solution with the lowest index of failure (case e) has an

asymmetric design, which results in a stiffer region located on one end of the slot. This solution

implies a direct relationship between the boundary conditions, that define the folding process, and

the installed damage initiation in the component. Therefore, the boundary conditions implemented

in the folding process need to be revised for their effect in the damage initiation to be minimized.

Figure 3.12: Highlight of the stress concentration zones. The regions marked in red have the largest
failure indexes, followed by the orange region.

Based on these observations, it can be theorized that further improvements on the design, at

the damage and frequency levels, of the elastic hinge should be achieved by implementing two

modifications. The first, concerning the boundary conditions. The loads installed on the edges of

the tapes of the elastic hinge are the result of the rotations applied to each holder. Therefore, as

an alternative, the folding process should consider the vertical displacement of the lowest tape,

resulting in a reduction of compressive loads. The second modification involves the design variables

for the optimization process of the slot geometry to consider the possible removal of material from

the stress concentration points highlighted in figure 3.12.

3.7 Conclusion

This research consisted of the integration of finite element numerical models, used to estimate the

structural performance and natural frequency of a deployable structure, in an optimization process

that involved a genetic algorithm, for a global search followed by a particle swarm optimization

method, for a local, more refined, search. Through this research, the following conclusions are

summarized:

• The numerical results obtained from the structural analysis of the elastic hinge were in good

agreement with the experimental results.

• Analysis of the results obtained led to the identification of limitations of the design variables

commonly used in the literature to design this type of structure. These variables do not

include geometries that may minimize the stress installed in the deployable structure.
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• A geometry capable of reaching a natural frequency of 1.22 Hz and a maximum index of

failure of 1.63 was found. This solutions meets the natural frequency requirement but initiates

damage during operation, and therefore is rejected.

• It is observed that the folding process directly affects the damage installed. This is the result

of a non-optimized folding process, which translates into large compressive loads observed

in the elastic hinge. An alternative folding process should allow the reduction of damage

installed and further enable the use of this type of methodologies.

• Future work should look towards including geometrical modifications to the stress hotspot

areas in the algorithm. This can be achieved through the redefinition of the design variables or,

potentially, the application of a different optimization method, such as topology optimization.

Doing so will allow the computational process to have new alternatives to test and provide

a better assessment of the slot geometry as well as further optimize the damage onset and

frequency, fulfilling the restrictions imposed by the design requirements.
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Influence of relaxation on the
deployment behaviour of a CFRP
composite elastic hinge
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4.1 Introduction

The tape-spring concept is most notable for its application as a support of the monopole and dipole

antennas of MARSIS, made of thin-walled S-Glass and Kevlar composite [5]. Regardless of the

success of the mission, which led to the discovery of liquid water on Mars in 2018 [297], the

hinges had an extremely low deployment moment (0.2 Nm), which translated to added challenges

in the experimental testing on earth. The structure was qualified for launching based solely on

simulations, component testing, and the experimental deployment of the structure using a helicopter

(figure 2.2), reporting “no significant damage to the full flight-representative hardware” [5]. Once

in orbit, these difficulties related to the experimental validation of the design contributed to a

half-deployed configuration that only completed its deployment after re-orienting the antenna

towards the sun, causing the thermal expansion of the tape-springs and the complete opening of

the elastic hinge [298, 38]. Due to the difficulties found during its development and operation,

MARSIS marked the use and application of deployable structures, leading to more focused research

on the characterization and numerical modelling of deployment mechanisms.

Several authors have used high-speed cameras to study the release of the tape spring, by

measuring the angle formed by the tape-spring, or by the deployable structure, as a function of time

(figure 4.1) [18, 14, 10, 30, 37]. The main advantage reported was the possibility of measuring any

over-shooting angle that may occur. In this context, over-shooting angle refers to the angle formed

by the tape-spring due to buckling caused by compressive loads that arise during the deployment

process.

Figure 4.1: Deployment of an elastic hinge. Overshooting occurs between t=1.0 s and t=1.75 s
(adapted from [18]).
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In 2009, Mobrem and Adams [38] studied several factors that affected the deployment of

the MARSIS antenna. The research included the evaluation of the hinge buckling strength in a

four-point bending fixture, measurement of the torque-angle curve at room temperature and at

-70 °C, the evaluation of the stored energy through the deployment of the elastic hinge in a vacuum

chamber at -70 °C, natural frequency analysis, and a vertical pendulum test to assess the dynamic

buckling. The experimental data obtained was used to validate numerical models implemented in

both ABAQUS® [11] and ADAMS [299]. The authors observed that the thermal environment and

aging severely affected the properties of the elastic hinge, decreasing strength properties, reducing

the deployment torque, and enabling buckling phenomenon in locations adjacent to the hinge

section. Kwok and Pellegrino (2010) [39] investigated the shape recovery behaviour of a beam and

a tape-spring made of low-density polyethylene (LDPE), at room temperature. The authors obtained

the linear viscoelastic material properties of LDPE through creep tests and analysed the LDPE

beam under four-point bending, imposing a history of vertical deflection and reaction forces. The

numerical model proposed was capable of capturing the behaviour of the material, which recovered

its deployed shape regardless of the bending direction of the tape-spring. However, in 2011, further

research performed by the same authors [40] reported that the stowage of the tape-spring for

extended periods could result in a reduction of 60 % in the load resultant from the folding of the

tape-spring due to the relaxation phenomenon. In 2013, Kwok and Pellegrino [43] further detailed

this research with the inclusion of a relaxation modulus master curve in the numerical model,

capturing the effect of the compaction rate and temperature in the non-linear load-displacement

response during retraction, load relaxation over long stowage durations, short-term deployment,

and long-term shape recovery. In 2013, Brinkmeyer et al. [41] developed similar research, studying

the effect of viscoelasticity on the deployment of a "coilable" bistable tape-spring made of ultra-

thin CFRP. A viscoelastic analytical model was used to predict the relaxation of the structure

when contracted. Similar to the previous results, the authors observed that the stowage caused

an increase in the deployment time. This phenomenon was further aggravated with the influence

of high temperatures, reporting that the structure would not deploy after being stowed at 100 °C.

The analytical model used was capable of predicting the deployment behaviour of the structure

for short storage periods. More recently, Brinkmeyer et al. (2016) [44] enhanced their research,

including the master curve approach proposed by Kwok and Pellegrino [43] in 2013. Through

this work, Brinkmeyer et al. validated the use of this approach for ultra-thin CFRP materials and

were able to capture the long-term stowage time effect that was not accounted for in the initially

proposed analytical model. In 2017, Khan et al. [300] studied the energy dissipation of a composite

deployable tape-spring due to the viscoelasticity of the matrix. The authors used a finite element

model to simulate the stress-relaxation response of a CFRP laminate. After 6 months of relaxation,

the author observed a 22 % reduction of the original modulus.

In this research, the mechanical properties of a space certified carbon/epoxy composite system

were determined, and its relaxation behaviour was assessed experimentally. The experimental data

obtained was used to determine the relaxation master curve of the material that was introduced

in the finite element model code to simulate the deployment behaviour of a deployable elastic



56 Influence of relaxation on the deployment behaviour of a CFRP composite elastic hinge

hinge before and after material relaxation due to the stowage effect. The numerical model was

experimentally validated using the deployment behaviour of elastic hinges before and after the

material relaxation analysis.

4.2 Experimental work

The following sub-sections describe the experimental component of this investigation, including:

the material characterization experimental campaign, manufacturing details of both specimens and

representative prototypes, processing of the experimental data, and description of the obtained

experimental results. The accomplished test campaign served two main purposes. The first was

to characterize the material studied in this research, regarding both mechanical and relaxation

properties. The second was to obtain experimental data that could be correlated with the numerical

results, allowing the validation of the numerical models. Unless stated otherwise, all experiments

included a minimum of 3 valid test results. The data necessary to reproduce the work mentioned in

Section 4.2.2 is available in [301].

4.2.1 Material characterization

A space certified composite prepreg system made of carbon fibre and a high-performance tough

epoxy matrix was used (AS4/8552 provided by HEXCEL Composites®, Madrid) 1. Tensile,

compressive, and shear tests were conducted according to the applicable ASTM standards [302, 303]

to determine the elastic and strength properties of the composite system. The specimens were

cut from CFRP plates manufactured by prepreg hand lay-up and cured in an autoclave according

to the supplier recommendations: 1 hour at 110 °C followed by 2 hours at 180 °C, applying a

7 bar pressure (0.7 MPa) through the whole process. These conditions resulted in an average ply

thickness of 0.18 mm. The characterization was performed in an Instron 5900R universal testing

machine, under the conditions summarized in Table 4.1.

Table 4.1: Summary of the load cell, displacement control and data acquisition rate used for each
test. In the present document the "traction" term is adopted to define a positive stress, in the same
way that "compression" is used in reference to a compressive stress.

Test Ply orientation
(º)

Load cell
(kN)

Displacement control
(mm/min)

Data acquisition
rate (Hz)

Traction
0
90

200
200

1.0
1.0

2.0
5.0

Compression
0
90

100
100

1.3
1.3

5.0
5.0

Shear 45 30 1.0 1.0

1The material batch used in Chapter 3 is different than the one used in Chapter 4 onwards, justifying the difference
in the material properties reported.
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Table 4.2: Elastic and strength properties of AS4/8552.

Elastic properties Average
value

Standard
deviation Unit

E11
E22,E33
G12,G13

v12

122.84
8.04
4.90
0.29

±4.33
±0.21
±0.08
±0.03

GPa
GPa
GPa

-

Strength properties
Xt

Yt ,Zt

S12,S13
Xc

Yc,Zc

1987.15
51.83
139.05
963.03
258.13

±53.26
±1.25
±0.72
±43.77
±18.24

MPa
MPa
MPa
MPa
MPa

A digital image correlation (DIC) system was used to measure the strain during testing. The

measurement was performed considering a 2D deformation (2D-DIC), tracking the displacement of

scattered dots painted in the surface of the specimens. The image processing was done with the

commercial software DIC Replay, provided by INSTRON, using default settings. The mechanical

properties determined are indicated in Table 4.2, where E is the Young’s Modulus, η the Poisson’s

ratio, G the shear modulus, X , Y and Z are the longitudinal and transverse strengths, SL the shear

strength, the subscripts 1, 2 and 3 indicate the longitudinal, transverse, and normal directions, and

the subscripts t and c denote the tensile or compressive strength.

The remaining material resulting from the cut of the CFRP plates was used to determine the

density [304] and fibre volume fraction (FVF) [304, 305] of the composite according to ASTM

standards (following procedure G – matrix burn off of ASTM D3171 [305] to determine the FVF).

The average values and standard deviations for the density and FVF determined are, respectively:

1580.76± 2.38 kg/m3 and 58.37± 0.47 %. To assess the relaxation of the material, specimens were

manufactured according to the geometric specifications detailed in [306] (25 mm wide, 150 mm

long, thickness within 1 mm and 1.5 mm, and plies oriented at ± 45°). The relaxation tests were

performed using a load cell of 30 kN and at three different temperatures: room temperature (RT),

50 °C and 80 °C. These temperatures were selected based on the maximum temperature achievable

by the testing chamber, and defining a constant increment of 30 °C between each test. Each

specimen was loaded at a rate of 1 mm/min until a load of 2.6 kN, this represented a stress value of

35 MPa. This load was selected for being within the elastic regime of the material, whose yield

stress is approximately 40 MPa measured in a preliminary tensile test. The displacement necessary

to initiate the initial load of 2.6 kN was maintained for 3 hours, during which the load decay due to

the relaxation of the material was recorded. Figure 4.2 shows the relaxation of the material at the

different tested temperatures, reporting a load reduction of 13.27 %, 14.79 %, and 20.31 % at room

temperature, 50 °C, and 80 °C, respectively.
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Figure 4.2: Relaxation curves of AS4/8552 at room temperature, 50 °C and 80 °C.

4.2.2 Relaxation master curve

The adopted test procedure is based on the shear loading, due to the ply orientation of the laminate,

of a composite sample. Therefore, the load decay observed is the result of the relaxation of the

shear modulus G12 of the composite material, which includes the contribution of both fibre and

matrix. According to the rule of mixtures [307], the shear modulus of the composite material can

be determined according to:

G12 = Gm

(1+Vf )+
Gm(1−Vm)

G f

(1−Vf )+
Gm(1+Vm)

G f

 . (4.1)

where G and V represent the shear modulus and volume fraction of either fibre or matrix,

discriminated by the subscript f and m, respectively. In cases where G f is much larger than Gm

(G f � Gm), equation (4.1):

G12 = Gm

(
1+Vf

1−Vf

)
. (4.2)

In a uniaxial stress-relaxation test, the relaxation modulus is defined as:

E(t) =
σ(t)
ε0

(4.3)

where σ(t) is the stress installed as a function of time and ε0 is the constant strain applied

during the relaxation test. Additionally, considering an isotropic material and assuming that the

Poisson’s coefficient of a viscoelastic material is constant in time, it is possible to correlate the

shear modulus and Young’s modulus using:

E(t) = 2G(t)(1+ v). (4.4)
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Taking into account equations (4.2) and (4.4), it is possible to establish a direct relationship

between the load decay observed in the relaxation test and the decay in both Gm and Em, allowing

the determination of the curves shown in figure 4.3. Furthermore, the material that corresponds

to the fibre reinforcements in a composite material is less prone to suffer relaxation than the

matrix [307, 308]. Considering the relaxation time of 3 hours used in the experimental tests, it is

safe to assume that the relaxation observed is caused by the matrix and that the relaxation of the

fibre is negligible [43, 308, 309].

Figure 4.3: Relaxation of the matrix shear and Young’s modulus at each temperature.

According to the time-temperature superposition principle (TTS) [308, 310–313], the viscoelas-

tic behaviour of a polymeric material at two different temperatures, reference temperature T0 and

another temperature T , can be related using the change of the experimental time scale:

E(t,T0) = E(αT t,T ) (4.5)

where E and t are the relaxation modulus and relaxation time, respectively. This equation means

that the relaxation modulus determined at time t and temperature T0 is equivalent to the relaxation

modulus determined at time αT t and temperature T . The explanation behind this equation is that, at

low temperatures, the relaxation process requires a longer time for experimental observation, while

the opposite occurs at high temperatures. Therefore, the TTS assumes an equivalent exchange

between the testing temperature and the relaxation time, allowing the building of a master curve that

extends the relaxation modulus beyond the range of the testing time scale, at a given temperature.

Considering the TTS and the room temperature as the reference temperature, a master curve was

built by shifting the relaxation curves determined at 50 °C and 80 °C to the right, along the time

axis (increased time). The applied horizontal shift factors are a function of the temperature and

can be fitted using the Williams-Landel-Ferry equation (WLF) [310, 313]. The resulting master

curves are shown in figure 4.4. It is observable that the TTS allowed the prediction of the relaxation
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observed at room temperature after, approximately, 24 hours (105 s) based on the data gathered

during 3 hours of experimental testing at three distinct temperatures (RT, 50 and 80 °C).

Figure 4.4: Relaxation of the matrix shear and Young’s modulus at each temperature.

The obtained master curves show an approximately linear relaxation in a logarithmic scale,

commonly observed in the relaxation of several materials [314–317]. Both Young’s modulus and

shear modulus relaxation master curves can be approximated applying the following logarithmic

equations (also represented in figure 4.4), respectively:

Em(t)≈−0.034ln(t)+1.8233 (4.6)

Gm(t)≈−0.022ln(t)+1.2797. (4.7)

These approximations capture the linear relaxation observed between relaxation times between

10 and 104 s. The increase in slope of each experimental curve, observed at 105 s, was not included

in this approximation, allowing for a more conservative estimate of both shear and Young’s

modulus when extrapolating the experimental results to larger relaxation times (further detailed in

sections 4.3.1 and 4.3.2). The data necessary to reproduce this section is available in [301].

4.2.3 Elastic hinge manufacturing and deployment

Elastic hinge specimens were manufactured through the hand lay-up of two plies of AS4/8552

prepreg, oriented at ±45°, placed on an aluminium mandrel with an external diameter of 100 mm.

The elastic hinge specimens were cured in the same conditions as the samples used to determine

the mechanical properties of the material. After the curing process was completed, each specimen

was machined in order to obtain the final geometry of the elastic hinge, depicted in figure 4.5. This

geometry was selected based on the result of a finite element model (detailed in section 4.3.1),

developed and validated in previous research [51, 86], ensuring that no damage would initiate
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Figure 4.5: Geometry of the elastic hinge specimen.

Table 4.3: Maximum indexes of failure observed during the retraction of the elastic hinge specimen.

Failure criterion Maximum index of failure
Maximum stress

Tsai-Wu
Tsai-Hill
Azzi-Tsai

Hashin (matrix compression)
Hashin (matrix tension)

Hashin (fibre compression)
Hashin (fibre tension

0.80
0.77
0.80
0.80
0.20
0.65
0.01
0.01

during the retraction of the elastic hinge. Therefore, the results obtained from the experimental

testing were not influenced by the initiation of damage. Table 4.3 reports the maximum index

of failure, for several damage failure criteria, observed during the retraction of the elastic hinge

specimen according to the numerical model.

The deployment of each elastic hinge specimen was recorded with a camera at a rate of

120 frames per second. One end of each specimen was attached to a mandrel, fixed with plastic

clamps and placed in the vertical position in front of a scale, with incremental angle measurements

every 5°, as shown in figure 4.6. To allow a clearer measurement of the angle, the tape-spring seen

on the left side of the elastic hinge (shown in figure 4.6) was aligned with the vertical axis of the

scale, representing the 90° angle, and the folding of the elastic hinge was done to the right side in a

clock-wise motion. As a result, the deployment angle is equal to the angle formed by the left tape

in relation to the vertical axis.

The specimens were tested immediately after the manufacturing process. A typical set of

photographs from the deployment tests is shown in figure 4.7. As can be observed, the specimen

reaches a deployed configuration after, approximately, 0.4 s and no over-shooting occurs. From this

point onwards, only a small oscillation is observed.
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Figure 4.6: Representation of the setup used to evaluate the deployment of the elastic hinge.

Figure 4.7: Photographs of a typical deployment of an unaged elastic hinge specimen.
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4.3 Numerical analysis

4.3.1 Numerical modelling of deployable structures

The numerical modelling procedure described in this section is similar to the one described in

section 3.3. The main differences focus on the inclusion of the deployment step, and an adaptation

of the folding sequence, changing it from rotation to a displacement-driven movement. These

details and differences are listed as follows.

The finite element models used in this research were implemented in ABAQUS® [11], using

an explicit approach and a non-linear geometry. These consider the retraction, relaxation and

deployment of the elastic hinge. The composite material was modelled with two-dimensional

deformable shell elements with 4 nodes and reduced integration (S4R in ABAQUS® [11]). The

geometry of the elastic hinge includes two different sections, highlighted in blue and grey in

figure 4.8. In the central region, where the tape-springs of the elastic hinge are located, the

model considers the existence of a composite layup feature with multiple plies, allowing a detailed

analysis of the stress and strain state of each element. In this region, the integrity of the material is

addressed using several failure criteria, including: Hashin’s, Azzi-Tsai-Hill, Tsai-Hill, Tsai-Wu,

and Maximum stress. The region highlighted with a grey colour does not sustain significant stresses

or strains and is only used to apply representative boundary conditions and capture the rigidity

of the component. Therefore, the model assumes a single layer of elements with homogenized

properties in the material elastic regime. The mesh applied to both regions has an approximate size

of 2.5 mm.

Figure 4.8: Representation of the mesh and of the different regions included in the numerical model.

The sequence of retraction, relaxation and deployment of the elastic hinge was modelled

considering three different steps. The elastic hinge is folded by applying a 90° rotation on each end

of the tubular section along with the vertical displacement of a rigid plate, located below the lower

tape of the specimen, at its mid-length (figure 4.9). The vertical displacement of the rigid plate was

set equal to 280.0 mm, 20.0 mm less than half the length of the specimen to avoid tensioning of the

tape-springs. When compared to an equivalent process, without the rigid plate, the inclusion of

this component prevents the lower tape-spring from buckling due to the rotation applied on each

end of the part, minimizes the stresses installed during the folding process and promotes a more

repeatable folding sequence.

Applying this sequence of operations forces the elastic hinge specimen to transition towards

the folded configuration represented in figure 4.10.

The material properties were defined as a function of a fictitious temperature to simulate the

relaxation of the material; this is a procedure that is built into the ABAQUS® code [11]. This
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Figure 4.9: Representation of the boundary conditions applied to the elastic hinge tube specimen
and to the rigid plate component.

fictitious temperature does not represent the physical temperature of the specimen and its change

does not result in geometrical variations resulting from the thermal-expansion phenomenon or

any other change observed in nature. Instead, the change of this fictitious temperature causes

the numerical model to update the material properties of the composite from an unrelaxed to a

relaxed state, equivalent to the relaxation observed due to an extended period of stowage. The

properties of the relaxed material were estimated considering the matrix relaxation described by the

shear and Young’s modulus master curves determined in section 4.2.2 (equations (4.6) and (4.7)),

and assuming that the fibre properties are not affected by relaxation and the fibre volume fraction

is constant. Considering the rule of mixtures and the relation between shear modulus, Young’s

modulus and the Poisson’s coefficient in the different laminate directions [307], it was possible to

reach the values indicated in Table 4.4.

It is important to note that introducing the material properties listed in Table 4.4 assumes

an equal stress-strain state between the elastic hinge specimen, when folded, and the composite

specimen used in the relaxation experiments, when loaded. In reality, these two stress-strain states

are different. According to the maximum stress failure criterion, shown in Table 4.3, the elastic

hinge specimen is loaded at 80 % of its maximum strength, while the composite specimen used

in the relaxation experiments was loaded at 87.5 % of its strength (35 MPa out of, approximately,

40 MPa). Therefore, the properties listed in Table 4.4 assume a more critical stress-strain state,

which will lead to a more conservative prediction of the deployment behaviour of the elastic hinge

specimen after relaxation. Finally, after updating the material properties, the boundary condition

Table 4.4: Estimated material properties after 1, 6, 12, 18 and 24 months of relaxation.

Fictitious
temperature

Relaxation time
(months)

E1
(GPa)

E2,E3
(MPa)

v12,v13
(-)

v23
(-)

G12,G13
(MPa)

G23
(MPa)

0
1
2
3
4
5

0
1
6

12
18
24

122.84
122.46
122.44
122.43
122.42
122.42

8040.00
4133.17
3963.66
3896.47
3859.96
3831.82

0.29
0.28
0.28
0.28
0.28
0.28

0.43
0.68
0.68
0.68
0.68
0.68

4900.00
1925.63
1839.36
1805.35
1786.91
1772.72

2815.21
1960.50
1912.66
1893.30
1882.68
1874.45
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Figure 4.10: Representation of the elastic hinge specimen in a folded configuration.

applied to one of the ends of the elastic hinge specimen was removed. As a result, the elastic hinge

is allowed to deploy by releasing the stored elastic strain energy. During the analysis process, the

simulation takes into account the influence of the force of gravity (represented in figure 4.9 by the

yellow vector below the coordinate system). While this factor does not exist in operation, it was

included in the numerical model to allow a better correlation with the experimental tests.

The finite element simulation described in this section required an average CPU time of three

hours, considering the use of double-precision, four CPUs (Intel® Core(TM) i7-3820 @ 3.60 GHz)

at full capacity, and a mass scaling factor of 4.0× 10−7. The mass scaling factor was chosen

through an iterative process, ensuring that the resulting percentage mass increase per element was

lower than 0.5%.

4.3.2 Correlation with experimental data

To validate the numerical model, a finite element analysis was conducted with the relaxation step

suppressed. The objective was to allow a direct comparison between the gathered experimental test

data (detailed in section 4.2.3) and the numerical model prediction for the deployment behaviour of

the elastic hinge specimen. The deployment sequence predicted by the numerical model is shown

in figure 4.11, overlapping a set of photographs of a typical experimental deployment test. To better

compare the numerical and experimental data, each snapshot image was processed to accurately

measure the angle formed by the elastic hinge specimen as a function of time. Figure 4.12 compares

the numerically predicted deployment angle vs the average time of the experimentally collected

data.

Comparing the results, it is possible to observe that the experimental deployment is slightly

lagging behind the numerical prediction at the early stages of the deployment process. One possible

factor contributing to this difference is the existence of air friction during the experimental tests,

which is not included in the numerical model. The existence of air friction also explains the quicker

damping observed in the experimental deployment tests when compared to the numerical result.

Another difference between numerical and experimental results can be seen at the time instant of

0.3 s (figure 4.12), where the deployment angle of the experimental test is higher than the numerical
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Figure 4.11: Comparison between the numerical model and a set of snapshots of a typical deploy-
ment test.

Figure 4.12: Experimental and numerical angle measurements as a function of time.
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prediction. The reason behind this difference is that the numerical model predicted the extension to

the right-most tape-spring, pushing the left tape-spring while the latter maintained an angle close to

90°. According to the experimental tests, this phenomenon does occur but to a lesser extent: the

right tape-spring does push the left tape-spring but the angle formed by the left tape-spring is also

increasing during this process. Finally, the deployment time is properly captured by the model. As

can be observed, the full deployment occurs at 0.4 s, after this time mark, the elastic hinge slightly

overshoots the 0° angle and then stabilizes. All this behaviour is properly captured by the model.

Taking into account the observed behaviour and the obtained results, it can be concluded that the

finite element model allows an appropriate estimation of the deployment behaviour of the elastic

hinge specimen.

4.3.3 Prediction of the elastic hinge deployment behaviour after relaxation

It was shown that the model aforementioned described correlates well with the experimental data,

therefore it was used to estimate the influence of the material relaxation on the deployment of the

elastic hinge specimen. Due to the relaxation of the material, it is expected that the internal energy

of the elastic hinge decreases as a consequence of the rearrangement of the material towards a lower

energy state. This process should reduce the strain energy stored and lead to a slower deployment

behaviour. To estimate the influence of this phenomenon on the deployment of the elastic hinge, the

finite element model was used to estimate the effect of the 6 relaxation times described in Table 4.4.

These results allow a comparison between the different internal energies and between the different

angles formed by the elastic hinge specimen as a function of time. Figure 4.13 shows the different

internal energies obtained after relaxation predicting a reduction of 32.3 % of the internal energy

stored after the first month of stowage 2. The remaining numerically estimated cases do not indicate

a significant reduction of the internal energy from the first month onward, reaching a 34.65 %

reduction after 2 years of relaxation. This deceleration is to be expected as the relaxation measured

during the experimental characterization (detailed in sections 4.2.1 and 4.2.2) presented a linear

logarithmic behaviour.

The angle formed by the elastic hinge specimen as a function of time was also measured, for

the different conditions, and depicted in figure 4.14. These numerical results predict a reduction

in the deployment speed of the elastic hinge when compared to the unrelaxed case. As a result,

for relaxation times larger than 6 months, the numerical model predicts that the elastic hinge does

not reach a deployed configuration (0° deployment angle) within the 1.0 s analysed time interval.

Furthermore, the results indicate that the relaxation of the material causes the elastic hinge specimen

to deploy in an oscillating movement.

2The data reported in this graphic is not obtained directly from ABAQUS® [11] in a single numerical simulation.
The data reported is the internal energy observed if the elastic hinge was folded considering the material properties that
the composite would have after each stowage period.
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Figure 4.13: Estimated internal energy of the elastic hinge specimen, according to the finite element
model.

Figure 4.14: Estimated deployment behaviour as a function of time for different relaxation times,
according to the finite element model results.
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4.4 Conclusions

The present investigation studied the influence of material relaxation on the deployment behaviour

of an elastic hinge specimen, using experimental tests to characterize the material and validate

a finite element model. This model was later used to extrapolate the results obtained to larger

relaxation periods. The main conclusions that can be drawn from this work are the following:

• Exposing the test specimens to a constant deformation for 3 hours led to an average material

relaxation of 13.27 %, 14.79 %, and 20.31 % in the load applied at room temperature, 50,

and 80 °C, respectively.

• The time-temperature superposition principle (TTS) allowed the prediction of the relaxation

observed at room temperature after, approximately, 24 hours based on the data gathered

during the 3 hours of experimental testing at temperatures of up to 80 °C.

• The material relaxation observed for the AS4/8552 prepreg UD carbon epoxy composite

system followed a logarithmic linear behaviour.

• A finite element model was implemented to estimate the deployment behaviour of an elastic

hinge specimen. The predictions of this model correlated well with the experimental results.

• It was predicted that a 32.3 % reduction of the internal energy of the elastic hinge specimen

is observed as a result of the material relaxation within 1 month of stowage.

• For relaxation times larger than 6 months, the numerical model predicts that the elastic hinge

does not reach a deployed configuration within the 1.0 s time interval analysed.

• A topic not addressed in this work, that should be explored in future research, is the correlation

of the numerically predicted and experimental deployment behaviour of the elastic hinge

after relaxation. To do so, and to ensure an accurate correlation, it would be necessary to

guarantee constant temperature and humidity conditions during the ageing process, as well as

using a rig to hold and maintain the configuration of the elastic hinge specimens once stowed.

Furthermore, the influence of the air friction should be addressed, which can lead to a more

accurate correlation between the numerical and the experimental data.

• The bending stress-strain state installed in the elastic hinge may cause compressive and

tensile effects that contribute to a viscoelastic effect. Future research should also attempt to

quantify the influence of this factor on the deployment behaviour of the elastic hinge, leading

to a better understanding of which factor has a larger contribution to the increase of the

deployment time: the stowage period or the stress-strain state determined by the compaction

of the foldable elements.

The results reported in chapter 3 and chapter 4 indicate that, while it is possible to predict the

deployment behaviour of a composite deployable structure even with the influence of relaxation

phenomenon, the methodologies reported in the state of the art lead to some limitations in the

design of these structures. Therefore, the following chapters will focus on possible design methods

that may improve the performance of composite deployable structures 3.
3The reader interested in following the chronological order of research, should read sections 2.3 through 2.4 before

moving on to chapter 5





Chapter 5

Performance analysis of a damage
tolerant composite self-deployable
elastic hinge

The present chapter is based on the following article submitted for refereed publication:

P. Fernandes, R. Pinto, A. Ferrer, N. Correia. Performance analysis of a damage toler-

ant composite self-deployable elastic-hinge. (Submitted to the Journal of Composite Structures,

Elsevier)
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5.1 Introduction

The design of self-deployable composite structures is characterized by two main opposing re-

quirements [2, 3, 5, 4, 7–9]: flexibility of sustain high strain deformations; and rigidity to meet

a stiffness-related requirement (such as the pointing accuracy, natural frequency, or deployment

torque). The contradictory nature of these requirements leads to a challenging design process that

may not always be successful in meeting both.

In chapter 3, a parametric optimization approach explored different elastic hinge designs,

attempting to maximize the first natural frequency within a damage constraint [86]. Although the

methodology was in-line with the state-of-the-art methods used to design these structures, it was

not possible, for this specific case and geometry, to meet both design requirements. Failing to find a

balance between these requirements leads to one of two situations: either the structure becomes too

flexible, failing to meet the rigidity requirements necessary to operate, or the structure becomes too

rigid, making it impossible to retract without initiating damage. Between these two, failing to meet

the frequency requirement is the most detrimental as it completely invalidates the use of the elastic

hinge in the desired range of natural frequencies / applications.

As shown in chapter 2, creating a damage tolerant elastic hinge design, capable of functioning

even after initiating damage, has not been explored in the literature [318] and can be justified by

two particularities of this application. The first is the life-cycle of the structure, as most deployable

systems are expected to perform a single deployment operation once the spacecraft is in orbit.

The second is the expected lifetime of a satellite. Apart from their size and cost, the development

of nanosatellites and CubeSats is also motivated by their reduced development time [286–289].

Average or large-sized satellites require between 5 and 15 years to place in orbit under normal

parameters, at the risk of market relevance, due to the pace of technological developments. In

contrast, CubeSats and nanosatellites require less than eight months to place in orbit. This trend

towards a shorter development time allows a frequent renewal, guarantees the robustness of nano-

satellite constellations, and removes the need for a conservative long-term design [286–289]. As

a result, allowing a controlled and limited damage initiation can also be a potential solution for

developing a design capable of meeting the natural frequency requirements presented by ESA

in [6].

The purpose of this research is to explore this possibility, evaluating if a damage tolerant

design may be a valid design concept. The framework proposed herein includes the design of two

elastic hinges, both obtained through an optimization algorithm whose objective function is the

maximization of the first natural frequency. One of them is limited by a Max. IF < 1.0, imposing

the absence of damage, while the other is limited by a Max. IF ≤ 1.10, allowing a limited initiation

and propagation of damage. The damage tolerant design is numerically re-evaluated, leading to an

estimate of its natural frequency considering a stiffness reduction resulting from damage initiation.

The performance of both designs is then compared in terms of the first natural frequency, and the

applicability of a damage tolerant design is evaluated.

A subject not included within the scope of this research is the influence of material relaxation



5.2 Design requirements 73

on the deployment of the structure. Although it can be argued that the literature addressing this

issue does not account for the combined effect of damage and material relaxation [38–43, 319],

the applications discussed in this article should reach orbit within a short time-frame that does not

allow a significant development of this phenomenon.

Furthermore, it is not within the scope of this research the proposal of an optimization approach.

In this work, the optimization algorithms used serve as a means to avoid human bias and the

preference of one particular design over the other. For this reason, the hyper-parameters of the

optimization algorithms used may not be optimal, as the only requirement for this research is that

both possible designs may have equal opportunities of computational formulation and convergence.

5.2 Design requirements

The design requirements stated by ESA in [6] are used as a reference for the design problem, which

is detailed in section 3.2. Similarly, the following failure criteria are considered: Hashin’s failure

criterion, Azzi-Tsai-Hill, Tsai-Hill, Tsai-Wu, and Maximum Stress.

It is assumed that the structure has not initiated damage if the Max. IF of these criteria is

lower than 1.0. Likewise, it is assumed that the material damaged has a Max. IF larger or equal

to 1.0. Therefore, one of the elastic hinges will have its Max. IF constrained to be lower than

1.0, imposing its functioning in the elastic regime, while the damage tolerant design will have its

Max. IF constrained to be less than or equal to 1.10, allowing a limited initiation and propagation

of damage. Note that the use of multiple failure criteria leads to a more conservative approach and

mitigates the potential flaws that may be associated to each individual failure criteria.

5.3 Numerical analysis

Two finite element models, implemented in the commercial software ABAQUS® [11], were used

to estimate and evaluate the natural frequency and structural integrity of the system. The natural

frequency model is identical to the one described in section 3.3.1. The structural model is identical

to one described in section 4.3.1 but with constant material properties (does not account for the

influence of relaxation) and without the deployment step.

The interested reader is referred to the dataset [320], which contains the ABAQUS® input files

for the structural and frequency models used.

5.4 Experimental work

The following sub-sections describe the experimental component of this investigation, including

manufacturing details of both specimens and representative prototypes, processing of the experi-

mental data, and description of the obtained experimental results. The composite system used in

this research was AS4/8552, a space-certified prepreg made of carbon fibre and a high-performance
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tough epoxy matrix, provided by HEXCEL Composites®, Madrid, whose material characterization

campaign has been previously described in section 4.2.1

The accomplished test campaign served two primary purposes. The first was to characterize

the material studied in this research regarding its mechanical properties. The second was to obtain

experimental data that could be correlated with the numerical results, allowing the validation of the

numerical models regarding the prediction of the stress and strain states of the composite material.

Unless stated otherwise, all experiments included a minimum of 3 valid test results.

5.4.1 Preliminary model validation

Preliminary numerical model validation was performed before proceeding with the design of the

two elastic hinges. This validation focused on correlating the strain installed in the composite

material, in the elastic regime, with the corresponding prediction of the structural model. The

reader is reminded that the natural frequency model has been experimentally validated by Sakovsky

et al. [82], as detailed in section 3.3.1.

A dedicated rig was designed and coupled to an Instron 5900R universal testing machine (CAD

representation shown in figure 5.1 a) to recreate the folding of the elastic hinge with the necessary

control repeatability. This rig has three main components: a pair of holder rings that are attached to

the ends of the elastic hinge, a guiding system that ensures a linear movement of the holder rings,

and a folding tool that pulls the elastic hinge, causing it to fold in half (shown in figure 5.1 b).

For this experiment, three elastic hinge specimens were manufactured according to the recom-

mendations and requirements of the material supplier (section 3.4.1) and each one was equipped

with seven tri-axial extensometer rosettes (Vishay model L2A-06-031WW-120), suitable to measure

large deformations up to 7000 micro strains. The extensometers measured the ±45°direction and

the direction transverse to the fibre. Deformation in the longitudinal fibre direction is then computed

using mechanics of materials basic concepts and reported accordingly. The output data of the

numerical models allow for the direct comparison of the strain in the direction of the fibre (direction

11, aligned with the longitudinal axis of the elastic hinge) and in the direction transverse to the fibre

(direction 22). The composite ply stacking sequence was [0°,90°,90°,0°] and, therefore, the outer

and inner layer of the composite material in the elastic hinge are aligned with the longitudinal axis

of the tube.

All specimens were loaded three times at a 50 mm/min displacement rate, leading to a total

of nine records of the local deformation for each one of the seven extensometers, acquired at a

frequency of 100Hz. The geometry of the specimen is described in figure 4.5 and the location of

the extensometer rosettes are illustrated in figure 5.2 and figure 5.1 c).

The strain in the elements within an approximate radius of 25 mm of the extensometer’s

physical location was extracted from the numerical simulations to correlate with the experimental

results. Both experimental and numerical results were then compared to evaluate the accuracy of

the numerical prediction versus the range of strains measured experimentally. For a more precise

analysis, the range of strains predicted by the numerical model was represented by two lines, “N.
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Figure 5.1: a) CAD representation of the rig used to fold the elastic hinge; b) setup of the rig with
an elastic hinge, shown without extensometers for a clearer interpretation; c) specimen equipped
with the extensometers.

min” and “N. max”, that respectively indicate the minimum and maximum strains expected in that

finite area (figure 5.3).

Due to the amount of data extracted during the experimental tests, the information regarding the

remaining extensometers and their respective comparison with the numerical results are summarized

in Table 5.1. For both numerical and valid experimental results (excluding sensors with abnormal

behaviour), the summary includes the minimum and maximum strains (in percentage) observed

during the folding of the elastic hinge, at the location of the different extensometers (direction 11

and 22). Each minimum and maximum was used to determine a range of deformation measured and

numerically predicted to exist in each location. The third column (Difference to Numerical) presents

the difference of the minimum, maximum, and range values between numerical and experimental

results. The last column ("Within numerical range?") indicates if the experimental range of strains

measured is within the numerical prediction. There are three possible results for this analysis:

either the experimental result is completely within the numerical prediction (“Yes”), outside of both

ranges of the numerical prediction (“No”), or outside of only one of either upper or lower range of

the numerical prediction (“Partially”), as visually described in figure 5.4. It is important to note that

being completely within the range of the numerical prediction indicates that the numerical result is
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Figure 5.2: Location of the seven extensometers installed in each elastic hinge.

either accurate or conservative, therefore validating its correct functioning.

The results summarized in Table 5.1 indicate that the majority of the sensors (9 out of 14 results)

validate the numerical predictions, with only five results partially complying with the numerical

predictions. The observed result discrepancies can be attributed to:

• The existence of out-of-plane torsion, which, although almost unnoticeable to the naked eye,

affects the recorded data in these locations due to the instabilities of the tape.

• The effect of the boundary conditions on the measurement, such as the fixation at both ends

(case M and DB).

• The numerical model considers that the elastic hinge is folded in a perfect scenario, while in

the experimental test, the tube is subjected to vibrations and instabilities due to the flexibility

of the tape. Furthermore, the model considers a linear movement of the holders, while

experimentally, a certain degree of friction is observed in the tool (affecting case MC). This

creates noise that is captured by the extensometer.

Therefore, it is assumed that the outputs obtained from the numerical model are either accurate

or conservative, validating the use of the structural numerical model for the design of the elastic

hinges proposed in this article.
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Figure 5.3: Example of the correlation between numerical and experimental strains observed at
location EC, in direction 22.

Figure 5.4: Possible correlations between experimental and numerical strain measurements.

Table 5.1: Correlation between valid experimental and numerical results. All results in this table
are in percentage to improve readability.

Extensometer Experimental Numerical Difference to Numerical Within
numerical range?Min. Max. Range Min. Max. Range Min. Max. Range

EC 11 -0.15 0.025 0.175 -0.125 0.025 0.15 0.025 0.0 -0.025 Partially
22 -0.15 0.01 0.16 -0.3 0.02 0.32 -0.15 0.01 0.16 Yes

MC 11 -0.4 1.0 1.4 0.0 6.0 6.0 0.4 5.0 4.6 Partially
22 -0.45 -0.4 0.05 -0.5 -0.25 0.25 -0.05 0.15 0.2 Yes

MB 11 0.3 0.45 0.15 0.15 0.5 0.35 -0.15 0.05 0.2 Yes
22 0.1 0.35 0.25 0.2 0.5 0.3 0.1 0.15 0.05 Yes

EB 11 -0.0025 0.01 0.0125 -0.01 0.02 0.03 -0.0075 0.01 0.0175 Yes
22 0.02 0.12 0.1 0.01 0.175 0.165 -0.01 0.055 0.065 Yes

M 11 -0.004 0.0325 0.0365 -0.005 0.02 0.025 -0.001 -0.0125 -0.0115 Partially
22 -0.0025 0.025 0.0275 -0.0025 0.009 0.0115 0.0 -0.016 -0.016 Partially

DC 11 -0.01 0.03 0.04 -0.015 0.04 0.055 -0.005 0.01 0.015 Yes
22 -0.01 0.04 0.05 -0.01 0.12 0.13 0.0 0.08 0.08 Yes

DB 11 -0.02 0.08 0.1 -0.08 0.06 0.14 -0.06 -0.02 0.04 Partially
22 0.02 0.085 0.065 -0.1 0.3 0.4 -0.12 0.215 0.335 Yes
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5.5 Elastic hinge design and optimization

This section describes the design and optimization process of the composite deployable arm,

including the design variables, objective function, and an analysis of the obtained outputs. The

optimization process was performed through a GA. A description of its functioning, differences

from the classic GA implementation and internal parameters chosen can be found in Appendix A.

Section 5.5.1 describes the design variables used. The description of the objective function

(section 5.5.2) explains how the information obtained from the numerical models was utilized to

explore possible solutions and improve them.

5.5.1 Design variables

The layup considered is always symmetric. The geometry of the elastic hinge is defined by its

internal radius (Ri) and by a double-symmetric spline (as shown in figure 5.5).

Figure 5.5: Parametrization of the design variables defining the slot cut-out of the elastic hinge.
The grey arrows indicate the direction in which the control points are allowed to move.

The coordinates of the control points (points A through F) are defined as a function of six

design variables (variable X1 through X6) and are proportional to Ri, promoting the scalability of

the parametrization used and allowing a wide range of possible geometries. The position of the slot

cut-out in relation to the longitudinal axis of the elastic hinge is defined by the design variable SD

(figure 5.5). Furthermore, a scaling factor L f was included to consider different lengths of the slot

cut-out.

The design variables are defined within the range shown in Table 5.2. Equations (5.1)

through (5.6) establish the relationship between the design variables and the coordinates of the

control points, leading to the minimum and maximum coordinates summarized in Table 5.3.
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In previous research addressing this specific design problem [86], it was concluded that the

composite layup should have four plies oriented at a ±40°angle, maximizing the first natural

frequency of vibration at a minimal increase of the Max. IF. For this reason and to reduce the

computational cost of the optimization algorithm, it was decided to exclude the number of plies

and their orientation angle from the optimization problem.

A =
(
−Ri×L f (2.05+0.1X1), −SD

)
(5.1)

B =
(
−Ri×L f (2.15+0.1X2), 0.15Ri−SD

)
(5.2)

C =
(
−Ri×L f (2.15+0.1X3), Ri(0.15X3 +0.15)−SD

)
(5.3)

D =
(
−2.15Ri×L f , Ri(0.1X4 +0.15)−SD

)
(5.4)

E =
(
−2Ri×L f , Ri(0.1X5 +0.05)−SD

)
(5.5)

F =
(
Ri×L f (0.9(0.1X5 +0.05)−2), Ri(0.1X5 +0.05)(0.2X6 +0.2)−SD

)
. (5.6)

Table 5.2: Minimum and maximum values of the design variables.

Design
Variable Min. Max. Increment Unit

Ri 50 100 10 mm
SD 0 100 20 % of Ri

X1, ...,X6 0 5 1 -
L f 1 1.5 0.1 -

Table 5.3: Minimum and maximum coordinates of the control points, normalized as a function of
Ri, L f and SD.

Control
Point

X × (1/Ri L f ) Y/Ri +SD

Min. Max. Min. Max.
A -2.05 -2.55 0 0
B -2.15 -2.65 0.15 0.15
C -2.15 -2.65 0.15 0.65
D -2.15 -2.15 0.15 0.65
E -2 -2 0.05 0.45
F -1.995 -1.595 0.01 0.54
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5.5.2 Objective function

The objective of the design problem is to achieve the highest natural frequency of vibration

within the damage constraints imposed. The design problem was defined as the minimization of

equation (5.7) for the elastic design and the minimization of equation (5.8) for the damage tolerant

design. As a result, the GA will first try to find solutions that meet the damage constraint, and

among them, the designs that have the highest first natural frequency.

Both objective functions are divided into two branches. The first branch evaluates the perfor-

mance of designs that do not meet the damage constraint (Max. IF<1.0 for the elastic design and

Max. IF≤1.1 for the damage tolerant design). In this situation, the performance (P) of the elastic

hinge design is set equal to its Max. IF. Therefore, the optimization algorithm will prefer solutions

that minimize the Max. IF and are considered suitable for this application. The second branch

evaluates the performance of designs that meet the damage constraint. In this case, the performance

of the solution is set equal to the symmetric value of the first natural frequency of vibration (−NF )

of the elastic hinge.

P =

Max. IF, i f Max. IF ≥ 1.0

−NF , i f Max. IF < 1.0
(5.7)

P =

Max. IF, i f Max. IF > 1.1

−NF , i f Max. IF ≤ 1.1.
(5.8)

Overall, the objective functions selected allow the optimization algorithm to search for solutions

within the damage initiation constraint and then promote the selection of characteristics that

maximize the first natural frequency of vibration (minimize the symmetric value of the natural

frequency of vibration).

5.5.3 Design evaluation

The optimization process described in section 5.5 was used to obtain two elastic hinge designs: an

elastic hinge that does not initiate damage during operation, resulting from the objective function

described in equation (5.7), and a damage tolerant elastic hinge, obtained from the objective

function detailed in equation (5.8). Table 5.4 summarizes the design variables that describe the

obtained solutions.

Despite converging, the optimization process that used equation (5.7) did not find a solution

with a Max. IF below 1.0. Therefore, the following comparison will assume the solution closest

to meeting this requirement. The best solution found has a Max. IF of 1.04 and a first natural

frequency of vibration of 1.16 Hz (shown in figure 5.6).

It is important to note several observations regarding this choice. First, no solution was found

with a Max. IF <1.0 highlights how severely this restriction affects the design space and the difficulty

of designing a structure in this condition. Second, the attentive reader will notice that not having a

solution with a Max. IF <1.0 implies that the algorithm only attempted to minimize the Max. IF
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Table 5.4: Design variables defining the elastic and damage tolerant designs.

Elastic design Damage tolerant
Ri 10 10
X1 4 1
X2 5 0
X3 3 3
X4 1 4
X5 5 5
X6 4 3
SD 1 1
L f 5 0

until an acceptable value was met, completely disregarding the second phase the optimization

process in which it to maximize the first natural frequency. Such reasoning would lead to an

argument stating that the first natural frequency of the elastic design could be higher than 1.16 Hz

and make this solution an unsuitable representative of the elastic design as a concept. However,

this possibility is improbable for two reasons. First, the Max. IF decreases with the stiffness of the

elastic design, which would cause a further decrease in the first natural frequency, as shown by

equation (5.9), where K and m are the global stiffness and mass of the elastic hinge, respectively.

The only exception to this argument is the possibility of existing a topologically optimized solution

such that the global stiffness of the elastic hinge is maintained but locally redistributed to avoid the

initiation of damage. However, the same argument could be made for the damage tolerant design

and potentially increase its natural frequency as well, this possibility has already been explored

by the GA when attempting to minimize the Max. IF. As a result, although it is not possible to

prove that a global optimum has been found, based on the number of solutions evaluated during

this design process and previous research [86], it is safe to assume that it is implausible that a

better elastic design solution exists. Therefore, it is reasonably safe to assume that, by choosing a

design that has a Max. IF = 1.04, we are overestimating the natural frequency that the elastic design

approach can reach, making this solution a valid representative of the elastic design as a concept.

NF =

√
K
m
. (5.9)

The damage tolerant elastic hinge design has a Max. IF of 1.095 and a first natural frequency of

vibration of 1.338 Hz. Figure 5.6 shows both elastic and damage tolerant designs obtained through

their respective optimization processes. Both designs have a diameter of 200.0 mm. The length of

the cut-out slot is approximately 795.0 mm for the elastic design and 490.0 mm for the damage

tolerant design. To better understand and explore the particularities of both solutions, the interested

reader is referred to the dataset [320], which contains the ABAQUS® input files for the structural

and frequency models used to simulate both designs.
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Figure 5.6: Representation of the elastic (a) and damage tolerant (b) designs.

5.6 Performance comparison and discussion

Figure 5.7 highlights, in grey, the location and extension of the regions that have initiated damage

during the folding process of the damage tolerant design. The natural frequency model was used to

estimate the influence of the damage initiation on the first natural frequency of the damage tolerant

design. The stiffness material properties of the elements highlighted in grey were multiplied by

a factor of 10−6, leading to a stiffness reduction of the structure. In these conditions, the natural

frequency of the damage tolerant design is reduced to 1.3374 Hz, equivalent to a reduction of

0.05 %. It is important to note that the stiffness reduction was applied to all layers of the composite

lay-up, which is a conservative approach. If damage had initiated in all layers of the composite

lay-up, the plot of Max. IF would have been symmetric, as the layup and the geometry are also

symmetric. Nonetheless, despite the plot of Max. IF being asymmetric, the numerical results

presented in this section still assume a pessimistic approach and account for the initiation and

propagation of damage across all plies.

Comparing the final natural frequencies of the elastic and damage tolerant designs, it is

observable that allowing the initiation of damage initiation is beneficial. It led to an increase of

15.3 % of the first natural frequency of vibration compared to the analogous parameter of the elastic

design. However, it is also noticeable that this improvement was only possible due to the very

localized initiation of damage in the damage tolerant design. A series of parametric analyses were

performed to better understand how the potential damage propagation affects the natural frequency,

and the performance comparison was discussed. As shown in figure 5.8, each case simulates the

propagation of damage to regions where the Max. IF is lower than 1.0. Then, for each of these

conditions, the value of the first natural frequency of vibration was re-determined, considering that

the elements with a Max. IF above the indicated threshold are damaged. Figure 5.9 illustrates the

reduction in the natural frequency of vibration as the damage propagation increases, in other words,

as the Max. IF threshold decreases.

Observing the graphic shown in figure 5.9, it is possible to conclude that the damage tolerant

design has a better performance than the elastic design as long as the damage does not propagate

beyond the material with a Max. IF = 0.92. As shown in figure 5.8, this scenario corresponds to

the propagation of damage through a length larger than half of the width of the lower tape-spring



5.6 Performance comparison and discussion 83

Figure 5.7: Max. IF observed in the damage tolerant design: a) bottom-up perspective view of the
damage tolerant elastic hinge; b) close-up view of the lower tape-spring. The grey colour in the
central section of the hinge highlights the regions where the Max. IF is higher than 1.0.

(Max. IF threshold between 0.91 and 0.92, in figure 5.8). To better understand the extension of the

damage propagation represented in this case, it is essential to note that the length of the damage

propagated corresponds to almost 20 % of the perimeter formed by the cross-section of both upper

and lower tape-springs.

Based on these observations, it is possible to conclude that at least one case has very well-

defined conditions in which a damage tolerant design has a better performance than the conventional

elastic design. These results are expectable and can be explained from two different perspectives.

From an optimization perspective, increasing the allowable Max. IF by a factor of 10 % represents

the relaxation of this constraint, allowing the optimization algorithm to search a region of the design

space that was previously unavailable and potentially find more suitable solutions. From a structural

perspective, it can be interpreted that the global stiffness increase has a more considerable benefit

in the first natural frequency of vibration than the prejudice caused by the local failure caused by

the damage initiation and its eventual propagation.

Finally, it is essential to note that this output is the result of allowing the Max. IF to reach a

maximum value of 1.1, which was selected as an initial guess. Allowing a higher or lower threshold

may further enable the damage tolerant design. Therefore, it is relevant to evaluate the influence

of this threshold on the structural performance of the damage tolerant design, as it will provide

significant insight on the possible influences of increasing or decreasing the allowable Max. IF.
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Figure 5.9: First natural frequency of both elastic and damage tolerant designs as a function of the
damage propagation. For each Max. IF, the material removed in the damage tolerant design is equal
to the elements highlighted in grey in Figure 5.8.

5.7 Conclusions

The present research studied the possibility of developing a damage tolerant elastic hinge design,

comparing the first natural frequency of vibration of a damage tolerant design with a design that

does not initiate damage during operation. Both elastic hinge designs used in this comparison were

obtained through an optimization process that utilized data estimated by two finite element models

that have been experimentally validated. Finally, the performance of the damage tolerant design

was evaluated considering the structural stiffness reduction resulting from the initiation of damage

during operation.

The main conclusions that can be drawn from this work are the following:

• The design of an elastic hinge that does not initiate damage during operation (Max. IF<1.0)

led to a maximum natural frequency of 1.16 HZ. On the other hand, the damage tolerant

design (Max. IF≤1.1) had a maximum natural frequency of vibration of 1.338 Hz.

• The very localized initiation of damage observed in the damage tolerant elastic hinge caused a

reduction of the first natural frequency of the vibration from 1.338 Hz to 1.3374 Hz, resulting

in a decrease of 0.05 %.

• A parametric analysis was performed to evaluate the influence of the potential further

propagation of damage. The results indicate that the damage tolerant design will maintain

a larger first natural frequency of vibration than the elastic design unless the length of the

damaged material is approximately larger than half the width of the lower tape-spring of the

damage tolerant design.
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Overall, the results obtained in this research indicate that the use of a damage tolerant elastic

hinge design may be a good approach to increasing the first natural frequency of vibration achieved.

Furthermore, it was observed that the damage tolerant design could meet the first natural frequency

requirements defined by ESA in [6].

The improvement in performance suggested by these results can be explained from two different

perspectives. From an optimization perspective, allowing the initiation of damage enables the

optimization algorithm to search a previously restricted region of the design space and potentially

find more suitable solutions. From a structural perspective, it can be interpreted that the global

increase in stiffness has a more beneficial influence than the prejudice caused by the initiation, and

propagation, of damage.

Nonetheless, further research is required before implementing a damage tolerant concept. From

a performance point of view, the definition of the Max. IF allowed during the optimization process

needs to be further studied, as it may lead to drastic changes in the design and performance of the

solution obtained. From an implementation point of view, the use of a damage tolerant solution

requires additional caution, as it is prone to the release of debris caused by the initiation of damage

in the composite material.



Chapter 6

Stress constrained topology
optimization

The present chapter is based on the following submitted article:

P. Fernandes, A. Ferrer, P. Gonçalves, R. Pinto, N. Correia. Python code for stress con-

strained topology optimization in ABAQUS® - Theory, implementation, and case studies. (Submitted

to the Journal of Structural and Multidisciplinary Optimization, Springer)

87
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6.1 Introduction

The popularity of topology optimization has led to the publishing of several educational articles.

These include the MATLAB codes written by Ole Sigmund [148], later revisited by Andreassen

el al. [321], and an equivalent implementation for 3D problems by Liu [322], all of them using

the Solid Isotropic Material with Penalization (SIMP) method [323, 324] to define the material

properties and the Optimality Criteria (OC) [325] to determine the optimal design variables.

Other publications include the MATLAB implementation of the level-set method [326, 327] by

Challis [328], and the implementations of the Bi-directional Evolutionary Structural Optimization

(BESO) method [329] in MATLAB and Python by Huang and Xie [330] and Zuo and Xie [331],

respectively. The problems solved by these codes focus on structural or thermal optimizations

considering a single material constraint, applied to the mass or volume of the structure.

The present chapter builds upon these publications, adding the implementation of stress con-

strained compliance minimization and stress minimization problem statements. Furthermore, in

addition to the possibility of using the OC (for discrete and continuous variables) and the MMA

algorithms, the code allows the use of Sequential Least Squares Programming (SLSQP) and the

trust-region algorithm ’Trust-constr’ available in the Python module SciPy [346].

The code provided is written in Python and uses ABAQUS® as an interface and finite element

method (FEM) module. By doing so, the user is given a means to easily apply the code to new

problems while taking advantage of ABAQUS® finite element analysis (FEA) capabilities. The

complete source code is available in appendix C and can be downloaded from the following

Dataset [332] or repository https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-

Topology-Optimization-in-ABAQUS.

The following sections of the article are organized as follows. Sections 6.2 and 6.3 formulate

the topology optimization problem statements and deduce the necessary function derivatives in both

continuous and discrete formulations, respectively. Section 6.4 describes the filter technique to avoid

numerical instabilities. Section 6.5 overviews the optimization algorithms available in the provided

code. Section 6.6 summarizes the most relevant aspects of the Python code implementation, while

in section 6.7 the case studies considered are presented. Section 6.8 demonstrates the suitability of

the code implementation to solve the case study proposed. The results of the topology optimization

processes are presented in section 6.9. Finally, section 6.10 summarizes the main conclusions of

the present work.

https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
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6.2 Continuous formulation of topology optimization problem state-
ments and sensitivities

6.2.1 Topology optimization problem

Consider the formulation of a generic topology optimization problem, defined as find ρ ∈ L∞(Ω)

such that:

min
ρ

: J(ρ,u(ρ)) (6.1)

subject to:

ρmin ≤ ρ ≤ 1 (6.2)

∫
Ω

ρ dx≤V ∗ (6.3)

and when considering a maximum stress constraint, also subject to:∫
Ω

σ
V M
a (ρ,u(ρ)) dx≤ σ

∗ (6.4)

where L∞(Ω) is the space of bounded functions, and u(ρ) are the displacement solutions of the

standard equilibrium equation presented as find u ∈ H1
0 (Ω), such that:

a(ρ,u,v) = l(ρ,v) ∀ v ∈ H1
0 (Ω) (6.5)

where H1
0 (Ω) are the space of functions with square integrable derivatives and homogeneous

values on the boundary. The bilinear form is:

a(ρ,u,v) =
∫

Ω

5suC(ρ)5s v dx (6.6)

with the external forces l(ρ,v) written as:

l(ρ,v) =
∫

Ω

f (ρ) v dx+
∫

∂Ω

t ·nv dx (6.7)

Here, the density ρ represents the design variables, which can vary within the interval [ρmin,1],

v the corresponding test function, n the normal direction pointing outwards of the boundary ∂Ω

of v, f (ρ) a generic volumetric load function, and Ω the domain of the topology optimization

problem. t indicates the applied boundary forces, if they exist. C(ρ) is the constitutive tensor. 5s

represents symmetric gradient, and thus the strains ξ (u) =5su are in accordance to linear elasticity.
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∫
ρ dx represents a generic volume constraint function, and V ∗ its allowable maximum value. It

is important to note that this material constraint can be applied to either the volume of mass of

the structure, following the same expressions. The volume constraint is preferred and used in this

research to conform with the most used term in the literature.
∫

Ω
σV M

a (ρ,u(ρ)) dx represents a

maximum stress constraint with a maximum allowable value σ∗.

6.2.2 Regularization and penalization

Regarding this particular work and implementation, it is important to note two adopted considera-

tions. The first one is the use of two penalization factors applied to the material stiffness, and stress.

These factors aim at making intermediate design solutions uncompetitive, and in turn promoting

black-and-white solutions.

The material stiffness is penalized by the SIMP penalization parameter P = 3.0, in accordance

to [137], when using continuous design variables (equation (6.8)). In this implementation, this

factor is also applied to the other material properties, as:

C(ρ) = ρ
PC0 (6.8)

where C0 is the material stiffness of a fully solid element. Note that C′(ρ) = PρP−1C0 for this

type of stiffness penalization.

The stress is also penalized according to a factor equal to ρβ , with β = 1
2 as adopted in [333],

following the initial proposal by Bruggi et al. in [334] with the exponent suggested in [335]. This

penalization leads to a non-physical stress for intermediate design densities, but not for black-

and-white solutions, and tends towards 0 when the design density decreases, avoiding singularity

problems [333]. Thus we define σa as the amplified stress, described by the following expression:

σa(ρ) = ρ
β

σ̂(ρ) (6.9)

with:

σ̂(ρ) = C05s u(ρ) (6.10)

where σ̂(ρ) is the stress vector, written in Voigt notation.

The second consideration is the use of a regularization approach, where removed or void

elements will maintain a minimum design density, ρmin = 0.01 by default, which contrasts with the

complete element removal. In the literature, these regularization techniques may be referred to as

"soft-kill" and "hard-kill" approaches [331]. The regularization approach was introduced in the

code implementation to avoid the stiffness matrix becoming singular, as well as allowing a constant

mesh in the finite element model during the topology optimization loop [331, 333].
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6.2.3 Sensitivity analysis

The derivative of the cost function in the direction ρ̃ ∈ L∞(Ω) is then defined as:

DJ(ρ,u(ρ))ρ̃ = DρJ(ρ,u(ρ))ρ̃ +DuJ(ρ,u(ρ)) Dρu(ρ)ρ̃ ∀ ρ̃ ∈ L∞(Ω) (6.11)

Taking the derivative in the equilibrium equation, in order to find DuJ(ρ,u(ρ)) Dρu(ρ)ρ̃ , we

have:

[Dρa(ρ,u(ρ),v)−Dρ l(ρ,v)]ρ̃ +Dua(ρ,u(ρ),v) Dρu(ρ)ρ̃ = 0

∀ v ∈ H1
0 (Ω), ∀ ρ̃ ∈ L∞(Ω).

(6.12)

Since a(ρ,u(ρ),v) is linear, we have:

Dua(ρ,u(ρ),v) Dρu(ρ)ρ̃ = a(ρ,Dρu(ρ)ρ̃,v) (6.13)

thus equation (6.12) can be rewritten as:

−a(ρ,Dρu(ρ)ρ̃,v) = [Dρa(ρ,u(ρ),v)−Dρ l(ρ,v)]ρ̃ ∀ v, ρ̃. (6.14)

Solving equation (6.14) for all values of ρ̃ would be too expensive. For this reason, the use of

the adjoint method is preferred. To do so, we define an adjoint variable λ , solution of:

a(ρ,λ ,w) =−DuJ(ρ,u(ρ))w ∀ w ∈ H1
0 (Ω)⇔

⇔−a(ρ,Dρu(ρ)ρ̃,λ ) = DuJ(ρ,u(ρ)) Dρu(ρ)ρ̃ ∀ ρ̃.
(6.15)

Then, taking w = Dρu(ρ)ρ̃ in equation (6.15):

DuJ(ρ,u(ρ)) Dρu(ρ)ρ̃ =−a(ρ,λ ,Dρu(ρ)ρ̃) =

=−a(ρ,Dρu(ρ)ρ̃,λ ) = [Dρa(ρ,u(ρ),λ )−Dρ l(ρ,v)]ρ̃
(6.16)

where the self-adjoint property of a(ρ,λ ,w) and equation (6.12) are applied.

The generic optimization process, which can be defined in four main steps, is proposed:

1. find u(ρ) solution of: a(ρ,u,v) = l(ρ,v) ∀ v

2. find λ solution of: a(ρ,λ ,w) =−DuJ(ρ,u(ρ))w ∀ w

3. compute the derivative as DJ(ρ,u(ρ))ρ̃ = [DρJ(ρ,u(ρ))+aρ(ρ,u(ρ),λ )− lρ(ρ,λ )]ρ̃

4. update the design variables using the gradient information.

The first two steps correspond to solving the state and adjoint problems, respectively. The third

step is the gradient calculation, which is defined in terms of the state and adjoint variables. The

fourth and final step consists on using the gradient (here represented by the letter g) to determine the

next value of the design variables. This step, which can be performed by any suitable optimization
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algorithms (such as the algorithms described in section 6.5), is here represented in a generic form

in the fourth step.

6.2.4 Compliance functional

In the particular problem statement of compliance minimization, the objective function can be

rewritten as:

J(ρ,u(ρ)) =
∫

Ω

f u dx (6.17)

and its derivative in the direction w ∈ H1
0 (Ω) is then:

DuJ(ρ,u(ρ))w =
∫

Ω

f w dx = l(w). (6.18)

Notice that in this case, it is assumed that the external loads do not depend on ρ , therefore:

a(ρ,u,v) = l(v). (6.19)

In this particular case, the adjoint variable leads to the same expression shown in equation (6.15),

and by the definition of equation (6.5), we can also imply that:

a(ρ,λ ,w) =−DuJ(ρ,u(ρ))w ∀ w

⇔−a(ρ,u,w) =−DuJ(ρ,u(ρ)) =−l(w).
(6.20)

Note that equation (6.20), which describes the adjoint problem of the compliance minimiza-

tion problem statement, returns the definition of the state problem, setting them equal to each

other. Functionals that are "self-adjoint" lead to clear computational benefits since equations (6.5)

and (6.15) can be solved with the same computation, a single FEA in the case of the code provided.

Since l(v) and l(w) do not depend on ρ , the terms DρJ(ρ,u(ρ))ρ̃ = Dρ l(w)ρ̃ = Dρ l(v)ρ̃ = 0

and thus the derivative is just:

DJ(ρ,u(ρ))ρ̃ =−Dρa(ρ,u(ρ),u(ρ))ρ̃. (6.21)

Following the definition of the compliance, the derivative of the bilinear form is:

Dρa(ρ,u(ρ),v) =
∫

Ω

5svC′(ρ)5s uρ̃ dx (6.22)

Finally, considering the stiffness penalization used, equation (6.22) can be introduced in (6.21)
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obtaining:

DJ(ρ,u(ρ))ρ̃ =
∫

Ω

5su(Pρ
P−1C0)5s uρ̃ dx =

∫
Ω

gρ̃ dx (6.23)

where g is the gradient of the compliance objective function, thus obtained as g=5su(PρP−1C0)5s

u. For this particular case, the first three optimization steps can be rewritten as:

1. find u solution of: a(ρ,u(ρ),v) = l(v) ∀ v

2. take λ =−u, since a(ρ,λ ,w) =−DuJ(ρ,u(ρ))w =−l(v) ∀ w is exactly the same problem

as the first step.

3. compute: DJ(ρ,u(ρ))ρ̃ =−aρ(ρ,u(ρ),u(ρ))ρ̃ =
∫

Ω
5su(PρP−1C0)5s uρ̃ dx

6.2.5 Stress functional

In the stress minimization or stress-constrained compliance minimization problem statements,

the derivative of the stress norm functional should also be taken. Here, the maximum function

is approximated by means of a modified p-norm function. This approximation is necessary to

provide a derivable function that approximates the maximum function, which is non-differentiable.

Adopting the modified p-norm approximation proposed in [333], we can redefine the maximum

function generically represented in equation (6.4) as:

J(ρ,u(ρ)) =
(∫

Ω

(
σ

V M
a (ρ,u(ρ))

)q
dx
) 1

q
(6.24)

where q is the exponential factor, and the von Mises amplified stress norm is σV M
a = (σaMσa)

1
2 ,

with M being the von Mises matrix.

The term DρJ(ρ,u(ρ))(ρ̃) is defined as:

DρJ(ρ,u(ρ))(ρ̃) =

=

(∫
Ω

(
σ

V M
a (ρ,u(ρ))

)q
dx
) 1

q−1

q
∫

Ω

σ
V M
a (ρ,u(ρ))q−1Dσaσ

V M
a (Dρσa(ρ̃)) dx

(6.25)

where:

Dρσa(ρ̃) = βρ
β−1C05s uρ̃. (6.26)

The derivative in the direction w, which allows us to define the adjoint problem, is:

DuJ(ρ,u(ρ))(w) =

=

(∫
Ω

(
σ

V M
a (ρ,u(ρ))

)q
dx
) 1

q−1 ∫
Ω

σ
V M
a (ρ,u(ρ))q−1Dσaσ

V M
a (Duσa(w)) dx

(6.27)
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where:

Dσaσ
V M
a (Duσa(w)) = (σaMσa)

− 1
2 σaMDuσa(w) (6.28)

with:

Duσa(w) = ρ
βC05s w. (6.29)

Finally, before determining the value of DJ(ρ,u(ρ))ρ̃ , it is required to find Dρa(ρ,u(ρ),λ ) as

follows:

Dρa(ρ,u(ρ),λ )ρ̃ =
∫

Ω

5s
λC′(ρ)5s uρ̃. (6.30)

As stated previously, note that 5sλ and 5su represent the strains of the adjoint and state

problems, respectively. Therefore, in the provided code implementation, these terms are obtained

directly from the ABAQUS® FEA. Also, note that for the stress functional Dρ l(λ ) = 0. Finally, the

first three optimization steps can then be rewritten as:

1. find u solution of a(ρ,u(ρ)v) = l(ρ,v)

2. using equation (6.27), find λ such that a(ρ,λ ,w) = −DuJ(ρ,u(ρ))w ∀ w. Note that this

functional is not self-adjoint, leading to a different procedure than the one shown in the

previous section.

3. compute DJ(ρ,u(ρ))ρ̃ = [DρJ(ρ,u(ρ)) + Dρa(ρ,u(ρ),λ )]ρ̃

6.3 Discrete formulation of topology optimization problem statements
and sensitivities

In this section, the topology optimization problem statement and sensitivity analysis defined in

section 6.2 are now presented in their discretized versions. This information is included here to

bridge the gap between the continuous framework shown in section 6.2 and the implementation

used in the code provided with this work, allowing an easier understanding of both theoretical and

implementation fundamentals of a topology optimization method.

6.3.1 Topology optimization problem

The discrete version of problem (6.1) results in:

min
ρ

: J(ρ,u(ρ)) (6.31)

subject to:

ρmin ≤ ρe ≤ 1 ∀ e = 1, ...,N (6.32)
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V (ρ) = ∑
ρ

ρeve ≤V ∗ (6.33)

and when considering a maximum stress constraint, also subject to:

σ
PN(ρ)≤ σ

∗ (6.34)

where u(ρ) is the solution of the state problem:

F = K(ρ)u. (6.35)

J(ρ) is the cost function; F and u are the force and displacement vectors, and K(ρ) is the

stiffness matrix. K(ρ) and F can be defined as:

K(ρ) =
∫

Ω

BT
a CBadx (6.36)

F =
∫

Ω

N f dx+
∫

∂Ω

N t ·n dx (6.37)

with N representing a linear shape function, f a generic load function, and Ba the strain-

displacement matrix in the evaluation point a. V (ρ) is the total volume, with ve representing the

volume of element e when its design density is 1, and V ∗ is the maximum value of the volume

constraint. σPN(ρ) represents the maximum stress and σ∗ its maximum allowable value.

Note that the penalization factors and regularization process described in section 6.2.2 are not

changed.

6.3.2 Sensitivity analysis

The gradient of the cost function can be defined as:

5ρJ =
∂J
∂ρ

+
∂J
∂u

∂u
∂ρ

. (6.38)

In order to find ∂J
∂u , we can reorganize the state equation, multiply it for a generic vector v and

derive the expression, leading to:

vT
[

∂K(ρ)

∂ρ
u(ρ)− ∂F(ρ)

∂ρ
+K(ρ)

∂u(ρ)
∂ρ

]
= 0 (6.39)

therefore:

−
(

∂u(ρ)
∂ρ

)T

KT (ρ) v = vt
[

∂K(ρ)

∂ρ
u− ∂F(ρ)

∂ρ

]
. (6.40)
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As stated in section 6.2, solving equation (6.40) for all values of ρ would be too expensive,

motivating the use of the adjoint method. Defining the adjoint variable as λ = v such that KT (ρ)λ =

− ∂J
∂u , we get:

−
(

∂u(ρ)
∂ρ

)T

KT (ρ)λ =

(
∂u
∂ρ

)T
∂J
∂u

= λ
T
[

∂K(ρ)

∂ρ
u− ∂F(ρ)

∂ρ

]
. (6.41)

Thus, we can finally rewrite the gradient as:

5ρJ =
∂J
∂ρ

+
∂J
∂u

∂u
∂ρ

=
∂J
∂ρ

+λ
T
[

∂F(ρ)

∂ρ
− ∂K(ρ)

∂ρ
u
]
. (6.42)

With this information, we can rewrite the equivalent three step process described in section 6.2.3:

• find u such that: K(ρ)u = F(ρ)

• find λ such that: K(ρ)λ =− ∂J
∂u

• compute: 5ρJ = ∂J
∂ρ

+λ T
[

∂F(ρ)
∂ρ
− ∂K(ρ)

∂ρ
u
]

6.3.3 Compliance functional

The compliance can be defined as C(ρ) = F u(ρ) and its sensitivity can be determined as fol-

lows [336–338]:
∂C
∂ρe

= F
∂u
∂ρe

(6.43)

since u(ρ) = K−1(ρ)F and ∂u
∂ρe

=−K−1 ∂K
∂ρe

K−1F , equation (6.43) becomes:

∂C
∂ρe

=−FK−1 ∂K
∂ρe

K−1F =−u
∂K
∂ρ

u. (6.44)

Considering that K = A
∫

Ωe
BT

a CBa dx, with A being the assembly operator, and that ρ is

constant in Ωe, we can write ∂K
∂ρ

as follows:

∂K
∂ρ

=
∫

Ωe

BT
a C′Ba dx =

∫
Ωe

BT
a Pρ

P−1C0Ba dx =
∫

Ωe

P
ρ

BT
a CBa dx =

P
ρ

K. (6.45)

Introducing equation (6.45) in (6.44) leads to:

∂C
∂ρe

=−P
ρ

ρ
PuT

e K0ue =−P
Ee

ρ
(6.46)

where ue and K0 are the elemental displacement vector and stiffness matrix of a fully solid

element (i.e. ρ = 1.0). The term ρPuT
e K0ue is the strain energy (Ee), missing only the 1

2 constant.

However, because this constant is applied to all elements, it can be neglected and set the term

ρPuT
e K0ue equal to the strain energy (Ee) automatically calculated in ABAQUS®.
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In this particular case, the first three steps of the generic optimization process can be simplified

and rewritten as follows:

• find u such that: K(ρ)u = F(ρ). This procedure can be done using an ABAQUS® FEA.

• take λ =−u, since the problem is self-adjoint.

• compute: ∂C
∂ρe

=−P Ee
ρ

. Note that Ee can be obtained from the ABAQUS® FEA executed in

the first step.

This information is included to allow an easier understanding of the code implementation and

its correlation with the formal mathematical formulation.

6.3.4 Stress functional

The maximum function is approximated by means of a modified p-norm function. This approxima-

tion is necessary to provide a derivable function that approximates the maximum function, which

is non-differentiable. This implementation adopts the modified p-norm approximation proposed

in [333]:

σ
PN(ρ) =

(
1
Ni

∑
Ω

(
σ

vM
a (ρ)

)q

) 1
q

(6.47)

where q is the exponential factor, Ω is the set of stress evaluation points in the topology

optimization problem, and σ vM
a is the value of the amplified von Mises stress in point a.

The derivative of the p-norm approximation with respect to the design density of an element can

be obtained by the chain-rule, multiplying three intermediate terms. The first term is the derivative

of the p-norm approximation w.r.t the amplified von Mises stress:

∂σPN(ρ)

∂σ vM
a

=

(
1
Ni

∑
α∈Ω

(
σ

vM
a (ρ)

)q

) 1
q−1

1
Ni

(
σ

vM
a (ρ)

)q−1
. (6.48)

The second term is the derivative of σ vM
a w.r.t. the stress vector in point a. Since σ vM

a can be

written in matrix form as σ vM
a = (σaMσa)

1
2 , its derivative becomes:

∂σ vM
a (ρ)

∂σa(ρ)
= (σa(ρ)Mσa(ρ))

− 1
2 ×σa(ρ)M

∂σa(ρ)

∂ρ
. (6.49)

The third and last term, is the derivative of the stress vector σa w.r.t. the design density.

Considering equations (6.9) and (6.10):

∂σa(ρ)

∂ρ
= βρ

β−1C0Bau(ρ)+ρ
βC0Ba

∂u(ρ)
∂ρ

. (6.50)
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The term ∂u(ρ)
∂ρ

is obtained from the state equation (6.35):

∂K(ρ)

∂ρ
u(ρ)+K(ρ)

∂u(ρ)
∂ρ

=
∂F(ρ)

∂ρ
= 0⇔

⇔ ∂u(ρ)
∂ρ

=−K−1(ρ)
∂K(ρ)

∂ρ
u(ρ)

(6.51)

and, therefore, with β = 1
2 :

∂σa(ρ)

∂ρ
=

1
2

ρ
− 1

2C0Bau(ρ)−ρ
1
2C0BaK−1(ρ)

∂K(ρ)

∂ ρ
u(ρ). (6.52)

Note that it is assumed that ∂F(ρ)
∂ρ

= 0. This assumption is valid for static load-driven problems,

where the load applied is constant and independent of the material distribution. For displacement-

driven problems, this assumption is not valid, as the forces resulting from displacement applied

will change depending on the material distribution.

With equations (6.48) through (6.51) and applying the chain rule, it is possible to define ∂σPN(ρ)
∂ρ

as:

∂σPN(ρ)

∂ρ
=

∂σPN(ρ)

∂σ vM
a

∂σ vM
a (ρ)

∂σa

∂σa(ρ)

∂ρ
=

=
∂σPN(ρ)

∂σ vM
a

∂σ vM
a (ρ)

∂σa

(
1
2

ρ
− 1

2C0Bau(ρ)−ρ
1
2C0BaK−1(ρ)

∂K(ρ)

∂ρ
u(ρ)

)
.

(6.53)

Renaming these two terms as ∂σPN
sp f (ρ) (equation (6.54)), referring to the component of the

derivative that is dependent on the stress penalization factor, and ∂σPN
u (ρ) (equation (6.55)),

referring to the component of the derivative that is dependent on the nodal displacement:

∂σ
PN
sp f (ρ) =

∂σPN(ρ)

∂σ vM
a

∂σ vM
a (ρ)

∂σa

(
1
2

ρ
− 1

2C0Bau(ρ)
)

(6.54)

∂σ
PN
u (ρ) =

∂σPN(ρ)

∂σ vM
a

∂σ vM
a (ρ)

∂σa

(
−ρ

1
2C0BaK−1(ρ)

∂K(ρ)

∂ ρ
u(ρ)

)
. (6.55)

Notice that ∂σPN
sp f (ρ) can be easily determined, since the only information required is the stress

vector (σ̂a(ρ) = C0Bau(ρ)) and the design densities. ∂σPN(ρ)
∂σ vM

a
can be determined with a simple

summation, and ∂σ vM
a (ρ)
∂σa

through the product of two vectors and a matrix.

The term ∂σPN
u (ρ), on the other hand, requires the explicit definition of the matrices Ba,

K−1(ρ) and ∂K(ρ)
∂ρ

, which are dependent on the element formulation used in the numerical model.

Furthermore, for topology optimization problems where the number of design variables is larger
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than the number of constraints, the most efficient way to determine ∂σPN
u (ρ) is using an adjoint

model, defining the adjoint variable as:

K(ρ)λ =
∂σPN(ρ)

∂σ vM
a

∂σ vM
a (ρ)

∂σa
C0Ba⇔

⇔ λ =
∂σPN(ρ)

∂σ vM
a

∂σ vM
a (ρ)

∂σa
C0BaK−1(ρ).

(6.56)

Therefore, the adjoint variable can be extracted from a finite element analysis, where the load

applied on each node is equal to ∂σPN(ρ)
∂σ vM

a

∂σ vM
a (ρ)
∂σa

C0Ba, and λ is equal to the node displacement.

Introducing the adjoint variable in equation (6.54) then leads to:

∂σ
PN
u (ρ) =

∂σPN(ρ)

∂σ vM
a

∂σ vM
a (ρ)

∂σa

(
−ρ

1
2 λ

∂K(ρ)

∂ ρ
u(ρ)

)
. (6.57)

Finally, since K can be defined as K = ABT
a C(ρ)Ba, since Baλ and Bau are equal to the

deformation vectors of the adjoint and state models (ξad j and ξs, respectively), equation (6.57) can

be simplified to:

∂σ
PN
u (ρ) =

∂σPN

∂σ vM
a

∂σ vM
a

∂σa

(
−ρ

1
2 ξ

T
ad j(ρ)C′(ρ)ξs(ρ)

)
. (6.58)

With this information, the first three steps of the generic optimization process can be rewritten

as follows:

• find u such that: K(ρ)u = F(ρ). This procedure can be done through an ABAQUS® FEA.

• find λ such that: K(ρ)λ = ∂σPN(ρ)
∂σ vM

a

∂σ vM
a (ρ)
∂σa

C0Ba

• compute: ∂σPN(ρ)
∂ρ

= ∂σPN
sp f (ρ)+ ∂σPN

u (ρ), using ξad j = Baλ and equation (6.58) to find

∂σPN
u (ρ).

As demonstrated in equations (6.55) through (6.58), determining ∂σPN
u (ρ) is significantly more

complex and computationally expensive, due to the necessity of using the adjoint model. Some

researchers [339] have proposed approximating this term as ∂σPN
u (ρ) = 0, in an attempt to reduce

the complexity and computational cost of stress dependent topology optimization problems. While

doing so does have evident advantages, the results obtained for each element of the case study

described in section 6.7.2 show that, on average, |∂σPN
u (ρ)|> |∂σPN

sp f (ρ)|. As a result, assuming

that ∂σPN
u (ρ) = 0 would lead to an average error larger than 50% in the calculation of the maximum

stress sensitivity, at least for the particular case of the benchmark problem described in section 6.7.2.

The error in this approximation is aggravated by the fact that ∂σPN
u (ρ) has a negative sign from

equation (6.53), and, as a consequence, ignoring this term could potentially point the optimization
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algorithm in the opposite direction of the gradient. Therefore, the simplification proposed in [339]

is not adopted in this work.

6.3.5 Volume constraint

The value of the sensitivity of the volume constraint to changes in the design density of each

element is equal to the value of its volume, as defined in equation (6.59). Note that the equivalent

sensitivity can be obtained for a mass constraint, replacing the volume of the element with its mass.

∂V (ρ)

∂ρe
=Ve. (6.59)

6.4 Mesh-dependency and data filtering

In order to obtain a mesh-independent solution and avoid the "checkerboard" instability, the raw

sensitivities and/or design densities are processed with a blurring filter [340, 148]. This work adopts

the filter scheme used in [331], which is a simplification of the scheme proposed by Huang and

Xie [341], described as follows:

ρe = ∑
j

(
w(re j)

∑ j w(re j)
ρ j

)
(6.60)

where the value of w(re j) is equal to the difference between the maximum range of the filter

(rmax) and the actual distance between the central element e and the j elements in its neighbourhood

(re j), defined as follows:

w(re j) = max(0,rmax− re j). (6.61)

This parameter can be interpreted as a pondered measurement of how close the two elements

are. Note that the code implementation provided allows the user to select if the blurring filter should

be applied to the sensitivities (excluding volume constraint sensitivities, or equivalent), design

densities, or both.

6.5 Optimization algorithms

6.5.1 Optimality criteria - OC

The OC method implemented in this research follows the approach proposed by Bendsøe [338] and

implemented by Sigmund in [148]. It is usually applied to problems of compliance minimization
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with a volume constraint. According to this procedure, the design variables can be updated

according to the following expression:

ρ =


ρlower, if ρBη

e ≤ ρlower

ρBη
e , if ρlower ≤ ρBη

e ≤ ρupper

ρupper, if ρupper ≤ ρBη
e

(6.62)

ρlower = max(ρmin,ρ−δρ) (6.63)

ρupper = min(1.0,ρ +δρ) (6.64)

where ρlower and ρupper represent the design densities move-limits imposed by the parameter

δρ . η is a numerical damping coefficient set equal to 0.5 in accordance with [148]. Be is a

parameter obtained from the optimality condition, described as the ratio between the gradient of

the objective and constraint functions divided by the Lagrangian multiplier (ψ), as follows:

Be =
− ∂C

∂ρ

ψ
∂V
∂ρ

=
− ∂C

∂ρ

ψVe
. (6.65)

The Lagrangian multiplier ψ can be found using a bisection method, updating its value until

the volume of the solution meets the imposed constraint.

This method can also be simplified in order to obtain an equivalent version suitable for discrete

design variables. This simplification corresponds to the approach used by Zuo and Xie in [331].

For the current iteration, the code determines the sensitivities of all elements. Then, a bisection

method is used to determine a threshold sensitivity. All elements with a sensitivity larger than

the threshold become solid (i.e. ρ = 1.0), while the other elements are removed according to the

"soft-kill" approach (i.e. ρ = ρmin). Similarly to the continuous version, the value of the sensitivity

threshold is updated until the mass or volume of the structure meets the volume constraint imposed.

When using the OC method, especially the discrete version, it is usual to consider a fully solid

design for the initial iteration, and gradually reducing the volume constraint in each iteration until

the target value is reached. This procedure is adopted to obtain a convergent solution, and can be

defined through the following equation:

V k+1 = max(V ∗,V k(1.0− evol)) (6.66)

where k is the number of current iteration, and evol is the ratio at which the volume constraint

decreases in each iteration, until the target volume constraint (V ∗) is reached.

Nonetheless, it is important to understand that this discrete version should be regarded as an

heuristic, that was observed to work well when solving compliance minimization problems. How-

ever, this procedure can be criticized from an optimization perspective, as there is no mathematical

guarantee that the objective function will decrease during each iteration.
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6.5.2 Method of moving asymptotes - MMA

The MMA is a non-linear programming method that can be applied to structural optimization

problems. Its functioning is based on an iterative process, generating a series of strictly convex

approximating sub-problems. As an input to generate the sub-problem approximation, the MMA

takes the value of the objective function, value of the constraints, and respective gradients as inputs.

Then, using dual methods such as [342, 343], the sub-problem is solved and the solution is taken as

the value of the design variables in the next iteration of the main optimization problem [105].

The popularity of the application of the MMA to topology optimization problems is justified by

several factors. From a computational point of view, the use of an approximation sub-problem and

gradient information provides a means to reduce the number of structural problems solved, which

are usually expensive. Furthermore, the versatility of the method and capability of handling multiple

types of constraints make it suitable and applicable to a wide range of cases, from simple compliance

minimization problems with a single volume constraint, to cases where multiple constraints with

different natures are applied. Its stability is also a positive characteristic, even for initial non-fully

solid designs. Due to its extension and complexity, the interested reader is referred to [105] for a

detailed explanation of this method.

The present code establishes a connection between ABAQUS® and the implementation of the

MMA created by Deetman [344] (’mmasub’ and ’subsolve’ functions of the code provided), which

is a Python version of the MATLAB code created by Svanberg [345].

6.5.3 Sequential Least-Squares Programming - SLSQP

SLSQP is a sequential least-squares programming algorithm that utilizes the Quasi-Newton method

to obtain an optimal solution. The strategy behind this algorithm consists on approximating

the objective function with a quadratic equation, and using the minimum of the approximation

function as a possible solution in the next iteration. To improve the efficiency, the SLSQP can use

Quasi-Newton methods to approximate the objective function Hessian.

The code provided uses the SLSQP implementation available in the SciPy module [346], which

is a library of numerical routines for the Python programming language that provides fundamental

building blocks for modeling and solving scientific problems.

6.5.4 Trust-constr

Trust-constr is a trust-region algorithm for constrained optimization, available in the SciPy mod-

ule [346]. Both line search methods and trust-region methods generate steps with the help of a

quadratic model of the objective function. However, while line-search methods use a step length

along a given search direction, trust-region methods define a region around the current iteration,

within which they trust that the quadratic model is an accurate approximation [347].

This algorithm utilizes the trust-region interior point method described in [348] to solve the

inequality constraints imposed in the topology optimization problem statement. The strategy behind

this interior point method [348] consists of solving inequality constraints by introducing slack
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variables. Then, the process is repeated for a sequence of equality-constrained barrier problems

with progressively smaller values of the barrier parameter.

6.6 Python implementation and usage

The following sub-sections present a brief guide on how to use the Python code provided in

appendix C, and available in digital format in Dataset [332] or repository https://github.com/pnf

ernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS. A brief

overview of the most important details of the main code classes and functions is also included

in these sub-sections. The detailed information of each class and function can be found in their

respective doc-string.

This code can be called in ABAQUS® using the Run Script command in the File tab or by

copying it into the command line. Note that the Run Script command loads the code faster

but automatically assumes that the user intends to solve the topology optimization in its totality.

Copying it into the command line leads to a slower input but allows a line-by-line execution, which

may be useful to understand the functioning of the code implementation.

The PEP8 [80] Python style guide was followed as closely as possible. However, the interested

reader is warned that some exceptions exist, caused by compatibility constraints with the data

structures and pre-defined variables existing in ABAQUS®. An example of these exceptions includes

the naming of constant material properties without full-capital letters, since these names are already

used by ABAQUS® in a different data structure.

6.6.1 Code usage

Upon executing the code, ABAQUS® will create a series of prompt dialogue boxes. This allows the

user to select the model database file (.cae), structural part, material, problem statement, optimiza-

tion algorithm, and the internal parameters to be considered during the topology optimization.

Besides being fully functional, the ABAQUS® model does not require any specific formatting,

except for the following considerations:

• Within the same part, the user can define specific elements to be optimized, dividing the part

in two regions: one with editable elements, and another with elements that should not be

included in the optimization process (i.e. passive elements, from this point onward referred

to as ’frozen region’ or ’frozen elements’). To do so, the user should create a set named

’editable_elements’, containing the elements to be edited. If this set does not exist, the

whole part will be optimized. Note that the name ’editable_elements’ is case sensitive. This

is done in order to promote the optimization only of the targeted area and also to reduce

computational cost.

• The region to be optimized should not have a material section assigned to it, as the code will

automatically assign the material properties and sections directly to the elements. Therefore,

https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
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if the user defined a set with the editable elements, only the elements not included (frozen

elements) should have a material section assigned to them.

• It is possible to allow the frozen elements to be considered during the filtering operations. To

do so, the user should create a second element set with the case sensitive name ’neighbour-

ing_region’.

• If multiple copies of the part to be optimized are included in the model assembly, only the

first copy will be optimized.

6.6.2 Model formatting, job submission, and sensitivities (lines 28-3452)

The ModelPreparation class modifies the ABAQUS® model file (.cae) in order to allow the as-

signment of material properties and material sections to each individual element, as well as the

property update during each iteration. Furthermore, this class requests the output of the strain

energies, external work, and the node strains if solving a stress dependent problem. In ABAQUS®,

the strain energies of geometrically non-linear problems are stored in the variables "SENER" and

"PENER", respectively for the elastic and plastic strain components. Note that, according to the

literature [349, 328, 341, 337, 331], the sensitivity of each element in a geometrically nonlinear

compliance minimization problem is given by the sum of the elastic strain (Ee
e ) and plastic strain

components (E p
e ), as described in equation (6.67). However, for geometrically linear problems,

the plastic strain component is zero, and ABAQUS® stores the strain energies in the variable

"ESEDEN". The external work is only requested for a critical analysis of the result, as it should be

equal to the objective function considering no energy dissipation.

∂C
∂ρ

= Ee
e +E p

e . (6.67)

The submission of the FEA simulations for the state and adjoint models is managed by the

classes AbaqusFEA and AdjointModel, respectively. AbaqusFEA is also responsible for determining

the sensitivity of the compliance objective function
(

∂C
∂ρ

)
, which is stored as the class attribute ’ae’.

On the other hand, the AdjointModel class also applies the adjoint loads and determines the stress

sensitivity. The stress sensitivity
(

∂σPN(ρ)
∂ρ

)
, and its most relevant intermediate terms (∂σPN

sp f (ρ)

and ∂σPN
u (ρ)) are stored as attributes of this class, along with the stress and strain vectors. In

particular:

• ’elmt_stress_sensitivity_continuous’ stores the values of ∂σPN(ρ)
∂ρ

in a mesh-independent and

mesh-independent form, making more suitable the comparison of the value of this derivative

with the results obtained through finite differences.

• ’elmt_stress_sensitivity_discrete’ stores the values of ∂σPN(ρ)
∂ρ

in a mesh-dependent form,

which is more suitable to be used as an input to optimization algorithms, since they generally

do not have access to information of the mesh used in the FEA model. The difference
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between ’elmt_stress_sensitivity_discrete’ and ’elmt_stress_sensitivity_continuous’ is the

multiplication by the determinant of the Jacobian matrix.

• ’d_pnorm_spf’ stores the values of ∂σPN
sp f (ρ).

• ’d_pnorm_displacement’ the values of ∂σPN
u (ρ).

• ’stress_vector’ and ’stress_vector_int’ store the stress vectors determined at the element

nodes and integration points.

• ’deformation_vector’ and ’deformation_vector_int’ store the strain vectors determined at the

element nodes and integration points.

The sensitivity of the material constraint is determined by the material_constraint_sensitivity

function, accounting for the possibility of having a non-uniform mesh with elements of different

sizes, and the use of either a volume or mass constraint.

6.6.3 Material and stress constraints (lines 3453-3607)

The values of the material and maximum stress constraints are determined by the MaterialConstraint

class and the stress_constraint_evaluation function, respectively. The maximum stress value is

approximated with the modified p-norm function described in equation (6.47), which is determined

by the p_norm_approximation function.

6.6.4 Data filtering (lines 3608-3846)

The blurring filter is defined by the DataFilter class, which determines how each element is

influenced by its neighbourhood. The neighbourhood of each element is defined by the elements

that are fully within a maximum search radius defined by the user. The code lines 3760-3762,

intentionally left commented to reduce computational cost, generate element sets that allow an easy

visual interpretation of the neighbourhood of each element.

6.6.5 Optimization algorithms: OC, MMA, SLSQP, and Trust-constr (lines 3847-
5622)

The present code provides five optimization algorithms, described in section 6.5, that can be used

to solve the topology optimization problem.

The discrete and continuous version of the OC algorithm, implemented in the functions

oc_discrete and oc_continuous, are only suitable for compliance minimization problems. The

remaining optimization algorithms are suitable for all problem statements included.

The mma function is a decorator that links ABAQUS® to the mmasub and subsolv functions

implementated by Arjen Deetman [344]. Therefore, the main purpose of the mma function is the

processing of the inputs necessary to apply the MMA [345] as a function of the problem statement

selected by the user.
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The functioning of the oc_discrete, oc_continuous and mma functions is managed by the

main program loop, described in section 6.6.11. However, this is not the case for the SLSQP and

Trust-constr algorithms available in this code, as they belong to the SciPy module [346]. To be

fully functional, the SLSQP and Trust-constr algorithms require the additional freedom to decide

when and how many times to call the objective, sensitivity, and constraint functions. Furthermore,

the problem statement must be defined using unique data structures. For these reasons, class

SciPyOptimizer is responsible for:

• Calling the SLSQP and Trust-constr methods from the SciPy module [346].

• Re-defining the problem statement with the correct data structure required by the algorithm

selected.

• Providing the freedom for these algorithms to call the objective, sensitivity, and constraint

functions as many times and in any given order necessary.

• Trying to record the data of each iteration as accurately as possible. However, it is expectable

that the data recorded may include information from intermediate evaluation points.

Finally, there are two details that should be considered before using the SLSQP and Trust-

constr algorithms. One is that both have internal convergence criteria. To change them, the user

may be required to edit the code provided with this manuscript. The second detail is that the

initial solution must be feasible, otherwise the optimization process will stop. This is particularly

relevant when defining the initial material distribution and/or when using a P-norm continuation

approach (described in section 6.6.11). The OC and MMA methods implemented do not have these

restrictions for the initial guess.

6.6.6 Display definition (lines 5623-6207)

The SetDisplay class is capable of changing the color codes of the element sets. In compliance

minimization problems, this allows the user to plot a gray-scale representation of the material

distribution. In stress dependent problems, the user has the additional options of plotting the

distribution of the element stress or element amplified stress, both of which can be raised to

the P-norm exponential factor. The element stress plotted is equal to the average of the stresses

determined at the integration points of the element.

The graphic representation(s) plotted at each iteration are automatically saved to a .png file.

To allow an easier interpretation of 3D material distributions, the SetDisplay class has a built-in

method (function of a class) named hide_elements, whose input is a design variable threshold value.

This method will hide all elements whose design variable is below the threshold input.
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6.6.7 Data recording (lines 6208-6349)

At the end of each iteration, the save_data function will create a text file that records the values of

all variables necessary to describe the current solution, as well as the internal parameters selected

by the user.

This text file can also be used to restart the topology optimization process, starting from any

iteration. However, as mentioned in section 6.6.5, note that the algorithms SLSQP and Trust-constr

may require the current iteration to be feasible with respect to the constraints imposed.

At the end of the optimization process, the save_mdb will create a separate ABAQUS® .cae

file with the final solution obtained and a record of the objective function and material constraint

values.

6.6.8 Element formulation and stiffness matrix (lines 6350-7283)

To solve stress dependent problems, it is necessary to have access to information that depends on

the element formulation (as shown in section 6.3.4), such as the Ba, K, C and Jacobian matrix, and

the definition of the element shape functions and their derivatives. The code provided includes the

information required to use one 2D element with 4 nodes and one 3D element with 8 nodes. The

2D element is referred in ABAQUS® by the code 2DQ4, and more specifically as CPS4 or CPE4

for plane-stress and plane-strain cases, respectively. The 3D element is referred in ABAQUS® by

the code C3D8. The information of these elements is included in the ElementFormulation class,

while the stiffness matrix C is created by the c_matrix_function function.

Although not used in the present research, the ElementFormulation class also includes the

formulation of a shell element (referenced by the code S4 in ABAQUS®). This information was

included in order to promote the development of topology optimization methodologies suitable to

this particular type of element.

6.6.9 Parameter input request, domain definition, and variable generation (lines
7284-8854)

The ParameterInput class generates the prompt boxes that appear when running the code. The

information introduced by the user is then used to create the global variables required for the code.

A detailed list of these variables and their purpose can be found in lines 8366-8461.

This information is then used by the EditableDomain class, to define the design space of

the topology optimization problem, and by the VariableGenerator class, to create the lists and

dictionaries that record the relevant data gathered during the topology optimization process. For a

detailed description of these variables, please refer to the code lines 8721-8827.

6.6.10 Auxiliary functions (lines 8855-9013)

Finally, there are 4 auxiliary functions to be briefly mentioned.
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• average_ae outputs the average of the compliance sensitivity of each element over the last

three iterations. This leads to an easier convergence of the OC algorithms, especially when

considering discrete variables.

• The update_past_info function updates the variables that record the design variables and

compliance sensitivity used in the previous two iterations.

• The evaluate_change function creates a ratio that describes how the objective function

has changed over the last 10 iterations, which is used as a convergence criterion in the

implementation provided.

• The remove_files function will allow an automatic removal of the temporary files created by

ABAQUS® after each FEA.

6.6.11 Main program (lines 9014-9307)

The main program is divided in two phases. Between lines 9014-9110, the code creates the classes

required for the problem statement selected and prepares the ABAQUS® model accordingly. The

optimization process and the convergence criteria are defined in lines 9111-9307.

The optimization process considers two loops. The first is applicable for stress dependent

problems, allowing a continuous increase of the P-norm exponential factor between Qi and QF .

This functionality, here referred to as "P-norm continuation approach" allows the stress constraint

to be applied gradually and may be useful to improve the convergence of the algorithm. The

continuation approach contrasts with the constant approach, which only considers one constant

value for the P-norm factor. Note that for stress independent problems (where Qi is not used but set

to 1.0) and when using the constant approach, Qi = QF , leading to a single loop.

The second loop represents the convergence criterion. The code assumes that the algorithm

has converged if the objective function has not changed more than 0.1 % over the last 10 iterations.

It was selected as the default convergence criterion to allow an easy and relatively fast recreation

of the results detailed in this chapter, as well as for being similar to the criterion adopted in [331].

The interested user is reminded that this criterion does not apply to the SLSQP and Trust-constr

algorithms (as mentioned in section 6.6.5) and is encouraged to create a convergence criterion

adapted to the topology optimization problem studied.

6.7 Topology optimization case studies

6.7.1 Cantilever beam case study

The purpose of including this case study is to validate functioning of the compliance objective

function and volume constraint implemented in the code provided, before addressing more complex

stress dependent problems, such as the L-bracket detailed in section 6.7.2.

This problem was modelled using a regular mesh with an element size of 5.0 mm and the

element type CPS4. The load F is equal to 100.0 N applied in a single node, in the corner represented
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Figure 6.1: Dimensions and boundary conditions of the Cantilever beam numerical model.

in figure 6.1. The problem was solved using an implicit analysis and considering a material with

70 GPa Young’s modulus, 0.33 Poisson’s ratio, and a material density of 2.7×10−9 ton/mm3.

The ABAQUS® models necessary to reproduce all the results described in this work are available

in the Dataset [332] or repository https://github.com/pnfernandes/Python-Code-for-Stress-Constrai

ned-Topology-Optimization-in-ABAQUS.

6.7.2 L-bracket case study

The L-bracket case study was chosen as a more challenging benchmark problem [333, 350, 185],

characterized by its initial geometry containing a stress-concentration point in the internal corner.

Unconstrained compliance minimization problems tend to ignore the stress concentration point,

leading to an angular shape. On the other hand, stress minimization or stress constrained compliance

minimization problems tend to create rounded shapes that avoid the stress concentration. For

these reasons, the L-bracket case study will be used in this research to validate and demonstrate

the functioning of the code implemented when solving stress-dependent topology optimization

problems. Furthermore, the strain and stress state generated by this L-bracket geometry is used in

section 6.8 to validate the correct implementation of the element formulations and maximum stress

differentiation process.

The dimensions and boundary conditions considered are represented in figure 6.2. Unless stated

otherwise, this problem was modelled using a regular mesh with an element size of 3.0 mm and

the element type CPS4. The load F is equal to 1500.0 N, with this value being distributed over

the nodes included in the 12.0 x 12.0 corner represented in figure 6.2. The elements within the

12.0 x 12.0 corner are not editable during the optimization process. The problem was solved using

an implicit analysis and considering a material with 70.000 MPa Young’s modulus, 0.33 Poisson’s

ratio, a material density of 2.7×10−9 ton/mm3.

The ABAQUS® models necessary to reproduce all the results described in this work are available

in the Dataset [332] or repository https://github.com/pnfernandes/Python-Code-for-Stress-Constrai

ned-Topology-Optimization-in-ABAQUS.

https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
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Figure 6.2: Dimensions and boundary conditions of the L-bracket numerical model.

6.8 Code validation

The data necessary to solve compliance minimization problems can be directly obtained from

ABAQUS®, which is a commercially certified software. However, stress dependent problems

required the explicit programming of the element formulation and of the derivation process of

the maximum stress function. The purpose of the following subsections is to present a brief

validation of the code implementation. Section 6.8.1 validates element formulations implemented,

comparing the strains and stresses determined by the code and by ABAQUS® at each integration

point. Section 6.8.2 compares the derivative of the maximum stress determined by the code with

the derivative obtained through finite differences.

In this section, the L-bracket case study described in section 6.7.2 is used. The reason behind

this choice is that the L-bracket problem leads to a complex strain and stress state, allowing a more

challenging and generic testing of elements over a wider variety of loading conditions than the

Cantilever beam problem.

6.8.1 Validation of the element formulation

The analysis of the element formulation is based on the measurement of a pondered error, described

as follows:

E i
rr = δγi

γi
|γ|

. (6.68)

Where E i
rr is the pondered error determined for the component i of a generic vector γ , and δγi

is the difference between the component determined by ABAQUS® and its code counterpart. E i
rr is
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Table 6.1: Average pondered error between the elements implemented in the code and the
ABAQUS® output. The dimensions are represented in millimeters.

CPS4 CPE4 S4 C3D8

E i
rr (%)

Int. Points
E i

rr<1% (%)
E i

rr (%)
Int. Points

E i
rr<1% (%)

E i
rr (%)

Int. Points
E i

rr<1% (%)
E i

rr (%)
Int. Points

E i
rr<1% (%)

ξ11 0,05 99,65 0,90 63,39 0,49 97,29 0,44 96,37
ξ22 0,15 99,55 0,97 63,31 0,44 97,60 0,44 96,37
ξ33 - - - - - - 0,44 96,37
ξ12 0,04 99,51 0,04 99,51 1,95 32,45 <0,01 100,0
ξ13 - - - - - - <0,01 100,0
ξ23 - - - - - - <0,01 100,0
σ11 0,00 99,88 1,85 31,74 0,61 95,89 1,45 44,81
σ22 0,15 99,65 2,00 63,41 0,61 97,29 1,45 96,36
σ33 - - - - - - 1,45 44,82
σ12 0,01 99,55 0,01 99,55 0,77 77,44 <0,01 100,0
σ13 - - - - - - <0,01 100,0
σ23 - - - - - - <0,01 100,0

determined as the product of δγi by the ratio between the component γi and the magnitude of the

vector γ .

This metric is preferred over the direct comparison of δγi, since the latter is highly influenced

by floating point errors. One of the reasons for this influence is that, while ABAQUS® operates

internally with double precision, the output received by the code is in a single precision format.

This difference reduces the number of decimal places considered in each value and could lead to

disproportional artificial errors in the vector components that contribute the least to the magnitude

of the vector or in vectors whose magnitude tends towards zero. The second reason is that δγi tends

to estimate large error values for vector components that have a significantly smaller magnitude

when compared to the magnitude of the vector.

Table 6.1 summarizes the average pondered error observed for each integration point of four

variants of the L-bracket numerical model described in section 6.7.2, each with a different element

type. For the particular case of using a 3D element (element type C3D8 in ABAQUS®), a thickness

of 1.0 mm was considered for the L-bracket geometry. Since the largest average pondered error

observed is equal to 2.0 %, it can be concluded that the element formulations included in the code

provided have been implemented successfully for the case study selected. Furthermore, for each

element type, the table indicates the percentage of integration points with a pondered error smaller

than 1.0 %.

Although not included in the present work due to its extension, the interested reader is informed

that the Dataset [332] and repository https://github.com/pnfernandes/Python-Code-for-Stres

s-Constrained-Topology-Optimization-in-ABAQUS associated with this research include a

detailed comparison of the every integration point, considering both the pondered and regular error

measurements.

https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
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Table 6.2: Analysis of the continuous maximum stress derivative determined by the Python code
and the derivative obtained through finite differences.

Mesh
size

Number of
elements

P-norm (MPa)
@ ρ = 1.0

Element
location

Element
Label

∆ρ
P-norm (MPa)
@ ρ = 1-∆ρ

Finite
differences

Continuous
derivative

0,5 102400 314,27741

A 69184
0,1 335,12679 -208,4939

-129,6819
0,01 315,23590 -95,8493

B 102332
0,1 314,27740 0,0000

0,0001
0,01 314,27741 0,0000

C 63841
0,1 314,28104 -0,0363

-0,0301
0,01 314,27784 -0,0438

1 25600 272,96255

A 17269
0,1 272,87736 0,8519

0,4426
0,01 272,95502 0,7534

B 25560
0,1 272,96249 0,0006

0,0004
0,01 272,96255 0,0000

C 23901
0,1 272,97007 -0,0752

-0,0685
0,01 272,96326 -0,0713

3 2889 221,08948

A 1953
0,1 232,36352 -112,7404

-65,2413
0,01 221,48312 -39,3637

B 2875
0,1 221,08923 0,0025

0,0029
0,01 221,08941 0,0066

C 2683
0,1 221,13180 -0,4232

-0,4054
0,01 221,09332 -0,3842

6.8.2 Validation of the maximum stress derivative

To validate the stress norm derivative of the code provided, its result was compared with the

derivative obtained through finite differences. To do so, the design density of the elements located

in points A, B, and C (shown in figure 6.2) were changed individually, and the value of the maximum

stress approximation was used to apply the finite differences. This procedure was repeated for

the three elements, considering three different mesh sizes of 3.0 mm, 1.0 mm, and 0.5 mm, each

increasing the order of magnitude of the total number of elements by 1, and different design density

changes of 0.1, and 0.01. The results obtained are summarized in Table 6.2.

It can be observed that the results obtained through finite differences are in good agreement

with the derivative obtained by the Python code implemented, especially when the mesh size and

the design density decrease.

Table 6.3 indicates the average values of ∂σPN(ρ)
∂ρ

and its components ∂σPN
sp f (ρ) and ∂σPN

u (ρ)

observed in the L-bracket model as a function of the element mesh size and design density. This

data indicates that the approximation proposed in [339] (described at the end of section 6.3.4)

should not be adopted for the present case study.
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Table 6.3: Average value of the stress derivative, and its components, observed in the L-bracket
model at different design density values, considering three different mesh sizes.

Mesh size ρ
∂σPN(ρ)

∂ρ
∂σPN

sp f (ρ) ∂σPN
u (ρ) |∂σPN

u (ρ)|
|∂σPN

sp f (ρ)|

0,5
1 -0,0088 0,0004 -0,0092 24,037

0,5 -2304,3703 0,5426 -2304,9129 4248,295
0,1 -90,9833 1,2132 -92,1965 75,996

1
1 -0,0305 0,0013 -0,0318 23,864

0,5 -7949,4335 1,8849 -7951,3184 4218,445
0,1 -313,8380 4,2147 -318,0527 75,462

3
1 -0,2140 0,0096 -0,2236 23,289

0,5 -3,4697 0,1086 -3,5784 32,936
0,1 -2206,1706 30,3676 -2236,5382 73,649

6.9 Topology optimization results

Figure 6.3 summarizes the results obtained for the compliance minimization of the Cantilever

beam. Figure 6.4 summarizes the results obtained for the topology optimization of the L-bracket

considering the different problem statements, plotting the objective function at each iteration and

illustrating one of the final geometries obtained.

The results obtained for each problem statement and any particular choice of parameters is

discussed in the following subsections. In common, these examples share the volume constraint

V ∗ = 0.5. In the particular case of the solution "OC - Discrete and decreasing", the initial density

is set to 1.0 and gradually reduced by a factor evol = 0.05, while the remaining cases consider an

initial density equal to 0.5. The maximum move-limit is equal to 0.2 for the OC or MMA and 1.0

for the SciPy algorihtms SLSQP or Trust-constr, corresponding to their pre-default values. The

blurring filter was applied to both sensitivity and design densities with a maximum search radius

of 8.0 mm for the L-bracket and 12.0 mm for the Cantilever beam, except for the discrete version

of the OC, which only applied the blurring filter to the sensitivity. The influence of the frozen

elements was also considered during the application of the blurring filter. For stress-dependent

problem statements, a P-norm exponential factor Qi = 8.0 was used.

Overall, the Trust-constr and SLSQP algorithms tend to require a larger number of iterations to

reach convergence. The reason for this difference is justified by their internal convergence criteria,

as described in section 6.6.11.

In the results shown, the existence of few elements with intermediate design densities is,

generally, to be expected for two reasons. First, applying a blurring filter will cause a gradual

transition between the solid and void regions, avoiding a full "black-and-white" solution. Second,

as described in section 6.6.11, the convergence criterion depends only on the values of the objective

function and does not impose a strict restriction on the final solution being constituted only by

solid elements. These two factors justify the apparent better performance of the discrete version of

the OC, since it only uses solid elements and did not have a blurring filter applied to the element

densities. However, it is most likely that this optimization method converged to a better local
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minimum.

Nevertheless, it is also relevant to note that the mesh size has an influence regarding the use of

elements with intermediate design densities.

Finally, the problems solved in these sections could also be replicated in the 3D space. This is

possible as the code provided includes the implementation of a 3D element (C3D8 in ABAQUS®)

and as the problem solving process does not require any particular adaptation when being converted

to the 3D space.

The interested reader is informed that the Dataset [332] and repository https://github.com/pnfer

nandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS contain all

the solutions obtained by each optimization algorithm. Due to its large extension, the information

presented in this section is limited to the most relevant solutions.

6.9.1 Cantilever beam: compliance minimization results

The objective function obtained by each of the different optimization algorithms are in good agree-

ment, converging towards an approximately equal value of compliance. However, a different trend

can be observed for the "OC - discrete and decreasing". In this particular case, the initial solution

considers a fully solid design that must gradually reduce its mass to meet the volume constraint,

causing a consequent reduction of the structural stiffness and an increase of the compliance value.

This observation is also in line with the volume constraint graphic, which shows a gradual

decrease until the value 0.5 is reached. On the other hand, the remaining algorithms maintained the

volume constraint within a feasible domain.

The final cantilever geometry obtained is similar across all cases considered and illustrated,

in figure 6.3, with the solution found by the MMA. In this particular case, the elements with

intermediate densities may also be the result of using a coarser mesh.

6.9.2 L-bracket: compliance minimization results

The solutions obtained for the compliance minimization problem are similar across all the algorithms

used, differing only on the use of intermediate design densities in some elements. The solution

obtained by the continuous version of the OC is shown in figure 6.4 A) as an example of this

geometry.

The volume constraint was respected across all iterations. This behaviour was also observed for

the problem statements presented in section 6.9.3 and section 6.9.4. For this reason, the graphic

representation of the constraints was not included in these sections.

6.9.3 L-bracket: stress constrained compliance minimization results

The stress constrained compliance minimization problem statement considered a maximum al-

lowable stress σ∗ = 200.0 MPa. Imposing this constraint causes the MMA to converge towards a

curved geometry, shown in figure 6.4 B), avoiding the creation of a stress concentration point in the

inner corner of the L-bracket. This transition is in agreement with the results presented in [333].

https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
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It is important to note the transition from an angular geometry to a curved geometry (from case

A to B of figure 6.4) is dependent on several factors and not guaranteed to occur. First, the use of the

modified P-norm approximation (equation (6.47) proposed in [333]) may lead to an underestimate

of the maximum stress installed. This fact may cause the optimization algorithm to overlook

the influence of the stress concentration point, and justifies the selection of σ∗ = 200.0 MPa, a

relatively low maximum value for the stress constraint. Second, the algorithm selected may adopt a

strategy that is more or less prone to explore and accept solutions that do not respect the imposed

constraints. The solution obtained by the SLSQP algorithm has a slightly curved shape closer to

the region where the load is applied but does not avoid the internal angular geometry. The solution

obtained by the Trust-constr region is equal to the one obtained in the compliance minimization

problem statement, as the implementation available in SciPy only determines the maximum stress

sensitivity for the first iteration. Although this strategy reduces the computational cost, it does not

allow a rigorous evaluation of the influence of each element in the maximum stress.

Finally, it is also important to note that the P-norm exponential factor has a significant influence

in the result obtained, especially in the use of elements with intermediate densities.

6.9.4 L-bracket: stress minimization results

Defining a stress minimization problem statement may also lead to a transition from an angular to

a curved geometry. This is particularly evident in the solution obtained by the SLSQP algorithm,

shown in figure 6.4 C).

Observing the graphic in figure 6.4, it is noticeable that the SLSQP has a more unstable

evolution of the objective function than the Trust-constr algorithm. Evaluating the solutions created

by these algorithms at each iteration, it becomes evident that the SLSQP was more likely to perform

larger density re-distributions than the Trust-constr algorithm, which may be a result of the strategy

adopted by the SciPy implementation of these algorithms, and a result of the influence of their

internal parameters, which largely affect the solutions obtained.

Similarly to the previous problem statement, the P-norm exponential factor has a significant

influence in the result obtained, especially in the use of elements with intermediate densities. Also,

although the MMA is removing material from the stress concentration area, further research should

be done to find appropriate tolerance parameters.

6.10 Conclusions

This paper presents the implementation of a Python code capable of solving topology optimization

problems, whose finite element analysis are executed in ABAQUS®. This implementation allows

the user to apply the Optimility Criteria, Method of Moving Asymptotes, Sequential Least Square

Quadratic Programing, and Trust-constr algorithms to solve compliance minimization, stress

constrained compliance minimization, and stress minimization problems.

This represents a relevant contribution for the field of topology optimization. On one hand, it is

the first code to include the validated tools necessary to solve stress-dependent problems, which is
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a significant obstacle that requires an extensive work to be overcome and could potentially hinder

further research. This is particularly true due to the complexity involved in solving the adjoint

problem in ABAQUS®. On the other hand, it is a contribution particularly relevant to the large

community of ABAQUS® users, allowing a better understanding, interpretation, and control over an

optimization process that is often hidden behind a black-box, in commercially available FEA codes.

The code (appendix C), as well as the ABAQUS® models necessary to recreate the work

reported in this paper, can be downloaded from following Dataset [332] or repository https://github

.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS.

Although this content is intended mainly for educational purposes, the modularity of the code

allows for an easy extension of its functionalities and applicability to different optimization cases

and engineering design problems.

https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
https://github.com/pnfernandes/Python-Code-for-Stress-Constrained-Topology-Optimization-in-ABAQUS
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7.1 On the design of composite elastic hinges

The research reported in this thesis studied the design and optimization of composite deployable

structures. The engineering problem presented by ESA in [6] was considered as a benchmark case

study, as it is a representative example of an up-to-date design challenge.

Through the state of the art review, detailed in chapter 2, it was possible to identify two main

challenges in the development of deployable structures. The first is the balancing of flexibility and

stiffness requirements, to allow the structure to contract without compromising its functionality

during operation. The second is accounting for the influence of relaxation phenomenon that may

occur in the period between the storage and the deployment of the structure once it is in orbit.

Both of these challenges were addressed in chapters 3 and 4 using the information already

available in the literature, leading to two observations. On one hand, this information was sufficient

to enable an accurate prediction of the deployment behavior of a composite elastic hinge considering

the influence of the relaxation phenomenon. On the other hand, the attempt made at designing

and optimizing a composite elastic hinge with the requirements defined in [6] was not successful.

Although it can be argued that the requirements were ambitious compared to other state-of-the-art

solutions [10, 6], it is important to identify the limitations of the method adopted and propose

possible solutions.

The design variables of the parametric optimization used in chapter 3 allowed the arrangement

and combination of different geometrical shapes, which would define the geometry of the cut-out

of the elastic hinge. Despite the agreement with the literature, it was observed that the achievable

shapes did not allow the removal of material in the stress concentration points. A parametric

analysis then made evident that this limitation was excluding a relevant part of the design space,

hindering the optimization algorithm from generating geometries that could further reduce the

Max. IF observed without significant reductions of the first natural frequency. Therefore, a possible

point of improvement is the redefinition of the design variables. Within the scope of parametric

optimization, the redefinition of the design variables is limited to including additional geometric

shapes or to using a set of coordinate points to the create a contour line (as implemented in chapter 5).

Nonetheless, the topology optimization method has a much larger potential of overcoming this

limitation, as each element of the FEM could be removed. Therefore, with a sufficiently refined

mesh, the topology optimization method could virtually explore all possible design geometries.

Having identified the limitations of the design approach adopted, it is time to discuss the design

requirements set [6]. The first natural frequency requirement is directly related to the operating

conditions of the antenna of the telecommunication satellite. Therefore, it is not reasonable to

propose changes to its value, as doing so could limit the telecommunication technology being

used in the satellite or reduce its functionality. On the other hand, the same generalization cannot

be applied to the Max. IF requirement, which imposes the elastic hinge to function in the elastic

regime of the composite material. The elastic hinge should be capable of transitioning between

two configurations: one contracted configuration that is used to store inside the satellite, and a

deployed configuration that meets the operation requirements. The deployment, during which the
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transition between both configurations occurs, should be repeatable and predictable. While having

the contraction, deployment, and operation of the elastic hinge occurring in the elastic regime

of the composite material does promote the repeatability and predictability of the process, it is

not a necessary condition. Damage initiating during the contraction process does not necessarily

imply an unpredictable and unreliable deployment sequence, nor a catastrophic failure of the

component. Furthermore, the literature review reported in chapter 2 indicates the prediction of

residual properties as a relevant topic of research. Based on this information, it is possible that

this requirement may be relaxed, allowing the design of a damage-tolerant elastic hinge. Doing

so has the potential of leading to a design with increased stiffness, and consequently higher first

natural frequency, that will initiate damage during the contraction process. If the damage initiation

is controlled and has a limited propagation, the global stiffness increase may compensate for the

local stiffness decreased caused by the initiation of damage. In other words, a damage-tolerant

elastic hinge design may allow a better balancing of both requirements. Furthermore, the increased

stiffness may even reach more demanding stiffness requirements, such as a higher first natural

frequency or an improved pointing accuracy of the antenna.

In summary, it was possible to identify two possible solutions that may improve the quality

of the design process of composite elastic hinges: the use of the topology optimization method,

and the use of a damage-tolerant design. Each of these topics is further discussed in the following

sections. Nonetheless, it is relevant to mention the development and potential use of data-driven

methods to design this component. Although not explored in this research, the information gathered

during the optimization processes may be useful to find correlations between the design variables

and identify unexplored designs.

7.2 On the use of a damage-tolerant elastic hinge design

The possibility of adopting a damage-tolerant elastic hinge design was studied in chapter 5. Two

elastic hinges were designed through the same parametric optimization method, one constrained to

function in the elastic regime of the composite material (Max. IF≤ 1.0), while the other allowed the

initiation of damage (Max. IF≤ 1.1). Through an FEA that estimated the first natural frequency of

vibration of both designs considering the stiffness reduction caused by the damage initiation, it was

concluded that the damage-tolerant design had a better performance, improving the first natural

frequency by 15 %. The result confirmed, at least for one design, the hypothesis proposed at the

beginning of the research: the global stiffness increase compensated the local stiffness decrease

caused by the initiation of damage.

Given that the damage-tolerant design is less conservative than the elastic design, the possibility

of damage propagation was also considered. It was assumed a gradual damaging of material, affect-

ing all elements that had a Max. IF≥ 0.90. This analysis led to the conclusion that the performance

of both damage-tolerant and elastic design would only be equal if the damage propagated to all

material with a Max. IF≥ 0.91.
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Nonetheless, some questions need to be addressed before the actual implementation of a

damage-tolerant design. The first concern for the space industry is the release of debris during

deployment. A simple solution to this issue is to use a containment system, such as a sleeve that

covers the elastic hinge, thereby preventing debris from being released. The second concern is

the deployment behaviour, which was not addressed in this research. However, it is likely such a

damage-tolerant elastic hinge would store sufficient internal energy to deploy. This conclusion can

be drawn from the definition of the natural frequency (equation (7.1)):

N f =

√
K
m

(7.1)

The mass of the system (represented by the mass matrix m) is mostly defined by the mass of

the antenna, which is much larger than the mass of any composite possible elastic hinge design.

Therefore, it can be approximated that, in this particular application, the first natural frequency

depends only on the stiffness of the elastic hinge (represented by the stiffness matrix K). Let us also

assume that an elastic hinge behaves similarly to a spring system (equation (7.2)), whose potential

energy (Up) is equal to:

Up =
1
2

Ku2 (7.2)

And that the equivalent displacement (u) is approximately equal in both designs. Given that

the stiffness of the damage-tolerant design is larger than the elastic design, it can be expected

that the same will occur for the internal energy stored during the contraction of both designs. As

a consequence, if any deployment repeatability or reliability issue is to arise from the use of a

damage-tolerant design, it will most likely be from the excess of energy, which could potentially

cause overshooting. In turn, the overshooting can be mitigated by a controlled release system or

even by the influence of the relaxation phenomenon.

Finally, it is important to acknowledge that the damage-tolerant design will always be less

conservative than the elastic design. However, the new philosophy for cubesat constellations [286–

289] aims at a more frequent renewal of the satellites in orbit, serving as a means of updating

the technology being used. This leads to a relevant synergy with the damage-tolerant design,

as it naturally addresses the need for a long-term design and compensates for the use of a less

conservative approach.

In summary, despite still needing further research, these observations suggest that the use of a

damage-tolerant design may be a promising approach to design composite elastic hinges with very

demanding and ambitious requirements.
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7.3 On the use of topology optimization to design composite elastic
hinges

As described by Bendsøe and Kikuchi in 1988 [85], topology optimization is one of the three

sub-fields of structural optimization, amongst size and shape optimization, and aims at determining

the optimal distribution of material [19, 128]. The method defines a design region, divided into

several finite elements, to be occupied by the structural component. According to an objective

function, the optimization method adjusts the density of each element, defining which elements

should have material and which should not [129].

Recalling the problem statement described in chapter 6, a compliance minimization problems

subject to a material constraint can be mathematically described as follows:

min
ρ

: C(ρ) = FT u = uT K u (7.3)

subject to:

ρmin ≤ ρ ≤ 1.0 (7.4)

F = K u (7.5)

∫
Ω

ρ dx≤V ∗ (7.6)

and when considering stress constraints, also subject to:

σ
PN(ρ)≤ σ

∗ (7.7)

Since compliance is the inverse of the stiffness, the problem statement shown can be interpreted

as the maximization of stiffness. As discussed in section 7.2, the mass of the elastic hinge is

negligible when compared to the mass of the antenna, therefore, maximizing its first natural

frequency can be approximated as maximizing its structural stiffness. As a consequence, it becomes

evident that one of the most common problem statements used in topology optimization is suitable

to the engineering problem of designing an elastic hinge, in terms of the objective function.

Furthermore, choosing between an elastic or damage-design could theoretically be achieved by

defining a more, or less, conservative value for the stress constraint considered. If the stress

constraint is lower than the stress limit of the material used, the result of the topology optimization

process would be an elastic design, and vice-versa.

Nonetheless, there is a subtle limitation that arises during the derivation of the stress constraint,

which potentially hinders the applicability of the topology optimization method to the design of

elastic hinges. The issue arises when deriving the force F with respect to the design variables, in the

state equation (7.5). In the literature [333], it is possible to find the assumption that this derivative is

equal to 0 (shown in equation (6.51)). Doing so implies that the external forces applied are constant
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and independent of the material density. However, this assumption is not valid for displacement-

driven numerical models, since the force that results from the displacement imposed differs as a

function of the material density, which is the case of the numerical models used to simulate the

elastic hinges in chapters 3 through 5, where the displacement-driven boundary condition allowed

a better control of the movement simulated. Theoretically, it is possible to replace the imposed

displacement with a variable load, decreasing its magnitude as the elastic hinge contracts, but it

leads to an additional challenge. The load applied will result in a different displacement depending

on the stiffness of the elastic hinge, which will change during the topology optimization process.

Therefore, it is probably wiser to break down this case into several topology optimization problems,

each starting with the elastic hinge topology obtained previously and with a load that is constant

but lower than the one applied in the last problem. Doing so allows a finer control of the resulting

displacement at the cost of an increased computational cost. From an engineering point of view,

the necessity of fine-tuning the load after each intermediate optimization problem is a significant

disadvantage for being time-consuming, case-specific, and dependent on the criteria of the user.

For this reason, it is considered that the approximation made during the derivation of the stress

constraint hinders the applicability of the topology optimization method to the design of elastic

hinges.

From a mathematical point of view, using the topology optimization method to the design of an

elastic hinge poses a decision: determining the derivative of the forces applied with respect to the

design variables, or accepting an approximation. The analytical derivative of the forces applied with

respect to the design variables can be determined if there is a clear definition of the influence of the

design density on the load applied. A simple example of this case would be the consideration of the

gravitational force, which would be proportional to the mass of the element, and consequently to the

design density. If this relation is unknown, reformulating the state equation as a dynamic problem

allows the redefinition of the force applied on each element as the product between the element

mass and its acceleration. Doing so evidences the influence of the design density on the resulting

load applied through the mass term. The possibility of accepting an approximation, in specific

cases, may allow the applicability of the implementation proposed in this research as it is. However,

it is important to note that no evaluation has been made on the error of this approximation. A brief

comment is made regarding the approach proposed by S. Ferraro in [29], in which it is assumed that

the displacement observed in the numerical model does not depend on the design variables. This

approximation avoids the need for the use of an adjoint model, removes any terms that depend on

the element formulation from the derivative, and is not dependent on the type of boundary condition

applied, whether a load or a displacement. On the other hand, the results observed in section 6.8.2,

in Table 6.3, indicate that this approximation would lead to an error of at least 50 % in the value

of the stress derivative when applied to the L-bracket case study, considering a load-driven model.

Therefore, when applied to a displacement-driven model, it is expectable to see an increase in the

error and consequent reduction in its suitability, despite the benefits in the computational cost.
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Conclusions and Future Work

The research developed with this thesis focused on the design of composite deployable structures,

reaching the following main conclusions and objectives:

• The material characterization of the composite system AS4/8552.

• The validation of numerical models, capable of simulating the functioning of a composite

deployable structure, through the correlation of the strain data observed in the FEA and

experimental tests.

• The design methodologies adopted to the development of deployable structures were re-

viewed, leading to the proposal of a damage-tolerant design approach.

• The evaluation of the damage-tolerant design approach, benchmarking it against the state-of-

the-art methodologies.

• The topology optimization of a deployable structure through the use of a genetic algorithm.

• The implementation of a topology optimization code, written in Python, suitable for 2 and

3-dimensional problems.

Nonetheless, the topology optimization of deployable structures is a complex process that

requires further development and maturing. To do so, there two main research paths that should be

explored in future research:

• The validation of the damage-tolerant design approach proposed through extensive exper-

imental testing, analysing the influence of the damage initiation and propagation on the

performance of the deployable structure.

• The implementation of a topology optimization process compatible with the use of shell

elements and with the use of displacement-driven models.
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Appendix A

Genetic Algorithm

A.1 Overview of the classic implementation

In the classical implementation, each solution is represented by a vector whose coordinates indicate

the coded value of the design variables. In the scope of genetic algorithms, the literature refers to the

possible solutions as "individuals", the vector defining the solution (individual) is a "chromosome",

and the coordinates or segments of the vector (chromosome) that define a single design variable

are called "genes" [351–353]. The algorithm generates a group of individuals, referred to as

“population”, whose chromosomes are randomly selected and, therefore, include possible solutions

scattered through the design space.

The structure of a GA allows the individuals of a population to interact with each other and

be subject to an external factor, creating an analogy to a population of a given species in its

environment [351–353]. This external factor is a "fitness function" that determines the suitability of

the solution described by each individual to the given problem. Depending on its performance, the

individual will have a higher or lower probability of moving on to the next iteration. This sequence

of operations referred to as “Evaluation”.

Individuals with higher performances have a better chance of surviving the “Selection” process,

where the size of the population decreases due to the removal of possible solutions and moving on

to the “Reproduction” stage. This phase aims to generate new possible solutions, which could prove

more suitable to the given problem, based on the best results obtained. The sequence of operations

that replicate the reproduction of two individuals is referred to as “crossover”, where the offspring

is created by recombining the chromosomes of the progenitors. According to the classical GA,

the chance of an individual being selected to generate offspring is proportional to its performance

and equal to the ratio between the performance of the individual and the sum of performances of

each individual in the population [352]. The obtained offspring may also be subject to a "mutation"

process, causing part of the chromosome of the offspring to be different from the chromosomes of

the parents. This phenomenon observed in nature is introduced into the GA as a tool that increases

the diversity in a population by creating new solutions in the neighborhood of the current solution.
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The sequence of "Reproduction", "Selection" and "Evaluation" phases is then repeated until a

convergence criterion is met.

A.2 Modifications and implementation details

The GA implemented in this research considers some modifications compared to the classical ver-

sion, aiming to increase the diversity of possible solutions in each population and the computational

efficiency. These differences are detailed and discussed throughout this section.

The definition of the "genes" is what makes the GA a naturally discrete method. It is common

to use a binary code to represent discrete values for each design variable. Increasing the number of

discrete values considered leads to a more refined search but increases the computational cost and

time to convergence of the algorithm. Unlike the traditional codification, the GA implemented in

this research considered a decimal codification 1.

The second modification is the implementation of an “overpopulation factor”, which makes the

number of individuals in the initial population larger than in the following populations, increasing

the “gene” pool in the first iteration without a significant increase in the computational cost of the

algorithm.

The third modification is the implementation of a genetic operator that forbids the existence

of two equal solutions throughout the optimization process, from here onwards referred to as

“diversity check”. The diversity check operator creates a record of every chromosome generated

during the optimization process. Every time an individual is generated, the diversity check assesses

if the individual has a chromosome that was already recorded. If not, the chromosome is added

to the record, otherwise the individual will be subject to as many mutations as necessary until its

chromosome represents a solution that had never been evaluated by the GA and then adds it to the

record. To enhance this virtue, the fitness of each solution was recorded alongside the diversity

record. This decision allows the algorithm to avoid the re-evaluation of individuals that were

kept from one generation to the other, further reducing the computational time needed to run the

algorithm.

The selection of individuals that move to the next generation and that are selected to reproduce

is also different from the classic GA. Every generation, the top performing individuals in the

population are automatically selected to move to the next generation, while the remaining individuals

are given a small chance of survival. Then, pairs of individuals are randomly selected to reproduce

through uniform crossover [352, 353]. This creates an elitist process, ensuring the survival of the

best solution, and is balanced with a random choice that allows individuals to reproduce regardless

of their performances, enhancing the explorative nature of the algorithm.

Unless stated otherwise in a particular chapter, the GA implemented considered the following

internal parameters:

1In Chapter 3, the GA was used to perform a global search, which did not require an extensive discretization of the
design space and further reduced the time to convergence of the algorithm.



A.2 Modifications and implementation details 155

• The minimum population size is equal to 30 individuals. The initial population considers an

overpopulation factor of 5, leading to an initial total of 150 individuals.

• In each generation, the seven fittest solutions define the "elite group", which are always

allowed to pass during the Selection process. The remaining individuals in the population

have a survival rate equal to the one defined in the classical GA. However, individuals

removed have a 5 % chance of being reintroduced in the following generation regardless of

their performance to promote the diversity of the population. This may lead to a population

larger than 30 individuals.

• The reproduction is performed according to a uniform crossover operator, meaning that each

gene in the chromosome has an equal chance of being equal to one of the two progenitors [352,

353].

• After the crossover operation, each gene in the chromosome has a 7.5 % chance of suffering a

mutation. A mutation corresponds to the assignment of a value randomly chosen between the

minimum and maximum range of acceptable values for the corresponding design variable.

• It is assumed that the algorithm has converged after 30 generations with no improvement on

the performance of the elite group.





Appendix B

Particle Swarm Optimization

B.1 Overview of the implementation

The Particle Swarm Optimization method mimics the behavior of social organisms [354]. In this

algorithm, each particle denotes an intelligent individual of the swarm whose goal is to find a

location rich in resources. The position of each particle represents a possible solution for the

optimization problem. During this search, the particles are allowed to interact with each other,

sharing information about the quality of the position they have visited. As a result, if one particle

discovers a good solution, the rest of the swarm will be capable of converging towards it, evaluating

other possible solutions along the way [355, 352, 354].

The information gathered is shared within the swarm, allowing its members to redefine their

trajectories. The trajectory of each particle, defined by its velocity, depends on three parameters

whose goal is to represent the social interaction with the swarm. The first is an inertial parameter,

representing its current motion and its resistance when trying to stray from its path. The second

represents the memory or cognitive behavior of the particle, promoting the movement towards the

best position each individual particle has visited. The last one is a social term that indicates the

influence of the swarm, favoring the movement towards the best position visited by at least one

member of the swarm. As a result, the velocity of each particle is defined by the sum of three

vectors [356, 355, 354, 357, 358], as shown in Figure B.1 (figure cited from [296]).

In the form of an equation, the velocity of a particle and its following position can be calculated

as [357]:

vi+1 = vic0 + c1r1(P
g
B−Pi)+ c2r2(P

g
B−Pi) (B.1)

Pi+1 = Pi +dtvi+1 (B.2)

Where:

• vi+1 and vi are the velocity in the following and current increment, respectively;

• Pi+1 and Pi are the position of the particle in the following and current increment, respectively;
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Figure B.1: Update of the position of a particle as a function of the inertial, cognitive and swarm
influences (image cited from [296]).

• c0, c1 and c2 are coefficients that represent the inertial, cognitive and swarm influences on

the particle;

• Pi is the current position of the particle;

• Pi
B is the best position visited by the particle;

• Pg
B is the best position visited by at least one particle of the swarm;

• r1 and r2 are random values within the interval [0,1];

• dt is the time step increment between each iteration.

The coefficients c0 through c2 denote the relative importance of the inertial, cognitive and social

terms [356, 355, 357, 358]. r1 and r2 are random numbers that avoid the particles to move directly

towards a given location, exploiting new solutions around the global and individual best solution

found and diversifying the particles for a more effective search [357]. Notice that for each particle,

once vi+1 is determined, the problem can be converted into a single variable optimization problem

in function of dt. Given this condition, the implemented version of the PSO method includes

the optimization of the time step increment dt through the golden section search method [359].

Furthermore, as a result of Equation B.2, each particle can move through a continuous design

space 1.

Unless stated otherwise in a particular chapter, the following internal parameters were used in

accordance with [356, 355]:

• c0 = 0.7298

• c1 = c2 = 1.496181

• Number of particles equal to 10.

• Convergence is assumed after 30 iterations with no improvement of the best solution found.

1Due to this characteristic, in Chapter 3 the PSO method was chosen to perform a local search near the best solution
found during the global search. This allowed the GA to use a less refined discretization and reduce the computational
cost of the optimization process.
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Python code for stress-constrained
topology optimization in ABAQUS®

# -*- coding: utf-8 -*-
"""
@author: pnfernandes
"""

#%% Imported modules.
from __future__ import division
from abaqus import getInputs
from abaqusConstants import *
from odbAccess import openOdb
import mesh
import numpy as np
from numpy import random
import math
import customKernel
import os
import operator
from numpy import diag as diags
from numpy.linalg import solve, inv
from operator import attrgetter
import displayGroupMdbToolset as dgm
import scipy
from scipy.optimize import LinearConstraint

#%% ABAQUS model preparation.
class ModelPreparation:

""" Model Preparation class

This class prepares the ABAQUS model for the topology optimization process.
The operations can be divided in three major tasks:

- the generation of materials, sections and element/node sets.
- requesting specific outputs, extracting user-defined information

(such as pre-existing sets) and, for stress dependent optimization with
S4 elements, information on the nodes coordinates and normal vectors.

- updating the material properties assigned to each element based on
changes to the design variables.

Attributes:
-----------
- mdb (Mdb): ABAQUS model database.
- model_name (str): Name of the ABAQUS model.
- nonlinearities (boolean): Indicates if the problem considers geometrical

nonlinearities (True) or not (False).
- part_name (str): Name of the ABAQUS part to be optimized.
- material_name (str): Name of the ABAQUS material to be considered.
- section_name (str): Name of the ABAQUS material section to be considered.
- elmts (MeshElementArray): element_array from ABAQUS with the relevant
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elements in the part.
- all_elmts (MeshElementArray): element_array from ABAQUS with all the
elements in the part.

- model (Mdb): model from the ABAQUS model database.
- reference_material (Material): ABAQUS material.
- reference_section (Section): ABAQUS material section.
- part (Part): ABAQUS part.
- opt_method (int): variable defining the optimization method to be used.
- xe_min (float): minimum density allowed for the element. I.e. minimum
value allowed for the design variables.

- dp (int): number of decimals places to be considered. By definition,
equal to the number of decimal places in xe_min.

- p (float): SIMP penalty factor.

Methods:
---------
- get_model_information(): extracts pre-existing information from the
ABAQUS model.

- format_model(): decorator defining the
sequence of operations required to format the ABAQUS model.

- property_update(editable_xe): updates the properties assigned to each
element based on their current design variable.

Auxiliary methods:
------------------
- property_extraction(): extracts the material properties found in the
ABAQUS model.

- generate_materials(): creates different ABAQUS materials for each
possible value of the design variables.

- calculte_property(rho): determines the properties that each design
variable should have.

- prop_val(prop, rho): interpolates the value of a property for a given
design variable value.

- generate_output_request(opt_method): requests the ABAQUS variable
outputs necessary.

- generate_sets(opt_method): creates the node/element sets
required.

- return_sets(): returns a list of pre-defined sets created by the user.
- get_model_information(): extracts user-defined information from the
ABAQUS model (element type, sets, boundary conditions, and normal
vectors).

- get_element_type(): returns the type of element used in the model.
- get_active_loads(): identifies the pre-existing active loads.
- get_active_boundary_conditions(): identifies the active BCs.
- get_node_coordinates(): identifies the element node coordinates.
- get_node_normal_vectors(): identifies the vectors normal to each node.
- normal_vectors(v1,v2): determines the three normal vectors of a node.
- calculate_normal_vectors(v1,v2): determines the vector normal to 2
vectors (v1, v2).

- parallel_vector_check(vector): checks if a vector is normal to [0,1,0].
"""
def __init__(

self, mdb, model_name, nonlinearities, part_name, material_name,
section_name, elmts, all_elmts, xe_min, opt_method, dp, p

):

self.mdb = mdb
self.model_name = model_name
self.nonlinearities = nonlinearities
self.part_name = part_name
self.material_name = material_name
self.section_name = section_name
self.elmts = elmts
self.all_elmts = all_elmts
self.model = mdb.models[self.model_name]
self.reference_material = self.model.materials[self.material_name]
self.reference_section = self.model.sections[self.section_name]
self.part = self.model.parts[self.part_name]
self.opt_method = opt_method
self.xe_min = xe_min
self.dp = dp
self.p = p

def format_model(self):
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""" Format model method

Method that modifies the .CAE file from ABAQUS. It serves mainly as
a decorator that organizes the different tasks that need to be executed
in order to prepare the ABAQUS model for the topology optimization
process, which can be summarized as follows:

- Creates the ABAQUS materials for each possible design density.
- Request the ABAQUS outputs necessary (ex: to determine the compliance
sensitivity).

- Create the node and element sets necessary (to assign properties
efficiently and to create the adjoint problem, if used).

"""
self.property_extraction()
self.generate_materials()
self.generate_output_request()
self.generate_sets()

def property_extraction(self):
"""Property Extraction method

Function that reads the material properties defined in the CAE file by
the user. The function outputs 5 boolean variables that classify the
existence of each property. Furthermore, the function will create
global variables with the float value of the properties defined in the
CAE file, as well as the material thickness considered (if defined)
making them accessible in other steps of the topology optimization
process.

Outputs:
-------
Although not specified with a return statement, this method will assign
the following attributes to the ModelPreparation class:

- density_properties (boolean): checks the existence of density
properties defined by the user.

- elastic_properties (boolean): checks the existence of elastic
properties defined by the user.

- failstrain_properties (boolean): checks the existence of fail
strain parameters, defined by the user.

- failstress_properties (boolean): checks the existence of fail
stress parameters, defined by the user.

- hashindamageinitiation (boolean): checks the existence of the
parameters necessary to apply the Hashins’ failure criteria,
defined by the user.

- thickness (float): thickness assigned to the material section. Set to
1.0 if not specified.

Depending on the material properties used in the numerical model, this
method may create the following global variables:

If there is a definition of the material density:
- Density (float): material density.

If the material is elastic and isotropic:
- Youngs_modulus (float): Young’s modulus.
- Poisson (float): Poisson’s coefficient.

If the material is elastic and described through engineering constants:
- E11 (float): Young’s modulus, direction 11.
- E22 (float): Young’s modulus, direction 22.
- E33 (float): Young’s modulus, direction 33.
- Nu12 (float): Poisson’s coefficient, direction 12.
- Nu13 (float): Poisson’s coefficient, direction 13.
- Nu23 (float): Poisson’s coefficient, direction 23.
- G12 (float): Shear modulus, direction 12.
- G13 (float): Shear modulus, direction 13.
- G23 (float): Shear modulus, direction 23.

If the material considers fail strain parameters:
- Strain_xt (float): longitudinal tensile fail strain.
- Strain_xc (float): longitudinal compressive fail strain.
- Strain_yt (float): transverse tensile fail strain.
- Strain_yc (float): transverse compressive fail strain.
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- Strain_s (float): shear fail strain.

If the material considers fail stress parameters:
- Xt (float): Longitudinal tensile stress.
- Xc (float): Longitudinal compressive stress.
- Yt (float): Transverse tensile stress.
- Yc (float): Transverse compressive stress.
- S (float): Shear stress.
- Cross_prod (float): Material cross product.
- Material_stress_limit (float): Material stress limit.

If the material considers Hashin’s failure criteria parameters:
- H_xt (float): Hashin’s longitudinal tensile stress
- H_xc (float): Hashin’s longitudinal compressive stress
- H_yt (float): Hashin’s transverse tensile stress
- H_yc (float): Hashin’s transverse compressive stress
- H_st (float): Hashin’s shear tensile stress
- H_sc (float): Hashin’s shear compressive stress

Notes:
------
- The function will always output the material property ’Density’.
If not defined, its value will be None, which is used later to double
check the topology optimization conditions requested by the user.

- The global variables containing the material properties are not
named in accordance with PEP8 to prevent conflicts with ABAQUS
internal variables (according to PEP8, constants should be named in
all capital letters).

"""
# Redefines the material property, for improved readability, and
# creates boolean variables defining the existance of a given property.
material=self.reference_material
density_properties = False
elastic_properties = False
failstrain_properties = False
failstress_properties = False
hashindamageinitiation = False

# Creates the thickness variable.
global Thickness
Thickness = self.model.sections[self.section_name].thickness
if Thickness == None:

Thickness = 1.0

# Checks the existence of material density properties.
global Density
if hasattr(material, ’density’):

density_properties = True
Density = material.density.table[0][0]

else:
Density = None

# Checks the existence of elastic material properties, defined as
# either ISOTROPIC or through ENGINEERING_CONSTANTS.
if hasattr(material, ’elastic’):

elastic_properties = True
if material.elastic.type == ISOTROPIC:

global Youngs_modulus, Poisson

Youngs_modulus, Poisson = material.elastic.table[0]

elif material.elastic.type == ENGINEERING_CONSTANTS:
global E11, E22, E33, Nu12, Nu13, Nu23, G12, G13, G23

(
E11,
E22,
E33,
Nu12,
Nu13,
Nu23,
G12,
G13,
G23,
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) = material.elastic.table[0]

else:
print(

"No material properties found in the form of ’ISOTROPIC’"
"or ’ENGINEERING_CONSTANTS’ for material{}."

).format(self.material_name)

# Checks the existence of fail strain parameters.
if hasattr(material.elastic, ’failStrain’):

failstrain_properties = True
global Strain_xt, Strain_xc, Strain_yt, Strain_yc, Strain_s

(
Strain_xt,
Strain_xc,
Strain_yt,
Strain_yc,
Strain_s

) = material.elastic.failStrain.table[0]

# Checks the existence of fail stress parameters.
if hasattr(material.elastic, ’failStress’):

failstress_properties = True
global Xt, Xc, Yt, Yc, S, Cross_prod, Material_stress_limit

(
Xt,
Xc,
Yt,
Yc,
S,
Cross_prod,
Material_stress_limit,

) = material.elastic.failStress.table[0]

# Checks the existence of Hashin failure criteria parameters.
if hasattr(material,’hashinDamageInitiation’):

hashindamageinitiation = True
global H_xt, H_xc, H_yt, H_yc, H_st, H_sc

(
H_xt,
H_xc,
H_yt,
H_yc,
H_st,
H_sc,

) = material.hashinDamageInitiation.table[0]

# Returns the boolean variables, that describe the existence of each
# material property, back to the class as a self variable.
self.density_properties = density_properties
self.elastic_properties = elastic_properties
self.failstrain_properties = failstrain_properties
self.failstress_properties = failstress_properties
self.hashindamageinitiation = hashindamageinitiation

def generate_materials(self):
"""Generate materials method

For each possible material density, create an ABAQUS material, section,
and element set. The elements are sorted into sets as a function of
their density. Then, each set is assigned the material and section that
corresponds to its density.

Ex: the material with ’rho_1,0’ will be assigned to a set with all
elements that have a design density of 1.0. This procedure is more
computationally efficient than creating one material and one section
for each element, since the number of possible design densities tends
to be smaller than the number of elements in the model.
"""
# Increment defined as a function of the number of decimal places (dp)
# considered in the optimization process.
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inc = 10.0 ** (-self.dp)

# For densities between xe_min and 1.0 (rounded at dp).
rho_range = np.arange(self.xe_min, 1.0 + inc, inc)
for rho in np.round(rho_range, self.dp):

# Create a material
rho_name = ’Rho_’ + str(rho).replace(".",",")
self.model.Material(name = rho_name,

objectToCopy = self.reference_material)

# Determine the values of its properties.
self.calculate_property(rho)

# Create a section and assign it to the corresponding material.
self.model.Section(name = rho_name,

objectToCopy = self.reference_section)
self.model.sections[rho_name].setValues(material = rho_name)

# Create an empty element set and add elements with equal density.
self.part.Set(elements = self.part.elements[0:0],

name = rho_name)
self.part.SectionAssignment(self.part.sets[rho_name], rho_name)

def calculate_property(self,rho):
"""Calculate property method

Calculates the properties of the material as a function of the design
density. The function will check the existence of several material
properties. If the properties exist, calls the prop_val method
to determine the property value according to the SIMP model.

Inputs:
-------
- rho (float): design density of the element (between xe_min and 1.0).

Notes: The Poisson coefficients and cross_prod parameters used for the
fail stress analysis are not updated.
"""
rho_name = ’Rho_’ + str(rho).replace(".",",")
material = self.model.materials[rho_name]

# Material density (units of mass/volume)
if self.density_properties == True:

material.Density(table = ((self.prop_val(Density, rho), ), ))

# Elastic properties (defined as ISOTROPIC or by ENGINEERING_CONSTANTS)
if self.elastic_properties == True:

if self.reference_material.elastic.type == ISOTROPIC:
material.Elastic(table = ((self.prop_val(Youngs_modulus, rho),

Poisson), ))

elif self.reference_material.elastic.type == ENGINEERING_CONSTANTS:
material.Elastic(type = ENGINEERING_CONSTANTS,

table = ((self.prop_val(E11, rho),
self.prop_val(E22, rho),
self.prop_val(E33, rho),
Nu12,
Nu13,
Nu23,
self.prop_val(G12, rho),
self.prop_val(G13, rho),
self.prop_val(G23, rho)), )

)
else:

print(
"Error when checking if the material elastic properties \n"
"are defined as ISOTROPIC or ENGINEERING_CONSTANTS in \n"
"function ’calculate_property’."

)

#Fail strain parameters
if self.failstrain_properties == True:
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material.elastic.FailStrain(
table = ((self.prop_val(Strain_xt,rho),

self.prop_val(Strain_xc,rho),
self.prop_val(Strain_yt,rho),
self.prop_val(Strain_yc,rho),
self.prop_val(Strain_s,rho)),))

#Fail stress parameters
if self.failstress_properties == True:

material.elastic.FailStress(
table = ((self.prop_val(Xt,rho),

self.prop_val(Xc,rho),
self.prop_val(Yt,rho),
self.prop_val(Yc,rho),
self.prop_val(S,rho),
Cross_prod,
self.prop_val(
Material_stress_limit,rho)), ))

#Hashin failure criteria parameters
if self.hashindamageinitiation == True:

material.HashinDamageInitiation(
table = ((self.prop_val(H_xt,rho),

self.prop_val(H_xc,rho),
self.prop_val(H_yt,rho),
self.prop_val(H_yc,rho),
self.prop_val(H_st,rho),
self.prop_val(H_sc,rho)),))

def prop_val(self, prop, rho):
"""Property value method

Wrapper function (or decorator function) that outputs the estimated
value of a material property based on the SIMP (Solid Isotropic
Material Penalty) model.

Inputs:
-------
- prop (float): value of the property to be interpolated,
considering a full density element.

- rho (float): design density of the element (between xe_min
and 1.0).

Notes:
------
This function will try to round the material properties to the same
number of decimal places as defined in the xe_min variable.

However, if this leads to a property value of 0.0, the function will
round the value at 9 orders of magnitude below the original property
value. Note that this difference in orders of magnitude is the maximum
difference allowed by ABAQUS for properties such as the Young’s
modulus, as larger differences cause numerical errors.

The function will choose the largest of the two rounded values. This
serves two purposes:
- Allow the differenciation between distinct design variables and the
resulting material properties.

- Avoid using an excessive number of decimal places in the material
definition, which may lead to an unnecessary computational cost.

"""
# Property value predicted according to the design variable (rho), with
# lower limite of 9 orders of magniute below the property value.
max_dp = int( -(math.floor(math.log10(prop)) - 9))
prop_value = np.around(prop * rho ** (self.p), max_dp)

# Lower limit imposed by the minimum density defined (xe_min)
lower_limit = np.round(prop * self.xe_min ** (self.p), -self.dp)

# If the lower limite imposed by the minimum density is measurable,
# returns that value. Otherwise, an exception is made and the property
# will be assigned a value with more decimal places to avoid null
# properties.
output = (lower_limit if lower_limit > 0.0 else prop_value)

return output
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def generate_output_request(self):
"""Generate output request method

Define output requests for all steps except the initial (since the
output is not available at the initial step). For stress dependent
optimization, request the total strain components defined in ABAQUS by
the variable ’E’ or ’LE’ for geometrically linear or non-linear
problems, respectively.
"""
# Select the energy output variable.
if self.nonlinearities == False:

variables = (’ELEDEN’)
elif self.nonlinearities == True:

variables = (’ENER’)
else:

raise Exception(
"Unexpected value for attribute ’nonlinearities’ of the\n"
"class ’ModelPreparation’."

)

# Add strain variables for stress dependent problems and format the
# variable list.
if self.opt_method >= 4:

variables = (variables,) + (’E’, ’LE’,)
else:

variables = (variables,)

# Request outputs.
for stp in self.model.steps.keys()[1:]:

self.model.FieldOutputRequest(’TopOpt_FOR_’ + stp, stp,
variables=variables)

self.model.HistoryOutputRequest(’TopOpt_HOR_’ + stp, stp,
variables=(’ALLWK’, ))

def generate_sets(self):
""" Generate sets method

Creates the sets used in the topology optimization process.

In the particular case of the stress dependent topology optimization,
the function also generates the ABAQUS node sets required to apply the
adjoint method.
"""
# Create a set with all elements that are relevant for
# the topology optimization.
self.part.Set(elements = self.all_elmts, name = ’All_Elements’)
self.set_list = self.part.sets.keys()

# For stress dependent optimization.
if self.opt_method >= 4:

nodes = self.part.nodes
strain_elmts = self.part.elements
self.part.Set(elements = strain_elmts, name = ’STRAIN_ELEMENTS’)
self.set_list.append(’STRAIN_ELEMENTS’)

# Create node sets
for i in range(0,len(nodes)):

self.part.Set(nodes = nodes[i:i+1],
name = "adjoint_node-" + str(nodes[i].label)

)

# Create sets to display stress.
elmt_sec = self.elmts[0:0]
for stress_val in np.arange(0, 12):

set_name = ’stress_val_’ + str(stress_val).replace(".",",")
self.part.Set(elements = elmt_sec, name = set_name)

def property_update(self, editable_xe):
"""Property update function

Updates the material property assigned to each element. This process is
done by sorting the elements into sets as a function of their design
variable. These sets are then used to assign properties generated in
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Abaqus by function format_Model to the corresponding elements.

Inputs:
-------
- editable_xe (dict): dictionary with the densities (design variables)
of each editable element in the model.

"""
elmt_rho = {}
for key, value in editable_xe.items():

elmt_rho.setdefault(value, list()).append(key)

part_elmts = self.part.elements

#Prevents Abaqus from updating the color code every iteration.
session.viewports[’Viewport: 1’].disableColorCodeUpdates()

# Prepare ’for’ loop.
minimum = self.xe_min
maximum = 1.0 + 10.0 ** (-self.dp)
inc = 10.0 ** (-self.dp)
density_values = np.arange(minimum, maximum, inc)

# Reorganize the elements into sets based on their design density.
# Unused sets are kept, although they are empty, to prevent the need
# of re-asigning a color code in future iterations where the set may
# be needed.
for rho in np.round(density_values, self.dp):

if rho in elmt_rho.keys():

# Initiate empty set and add elements with corresponding design
# density.
elmt_set = part_elmts[0:0]
for label in elmt_rho[rho]:

elmt_set += part_elmts[label-1:label]
self.part.Set(elements = elmt_set,

name = ’Rho_’ + str(rho).replace(".", ",")
)

else:
# If no elements were added, keep the set as empty.
self.part.Set(elements = part_elmts[0:0],

name = ’Rho_’ + str(rho).replace(".", ",")
)

# Removes the restriction previously placed.
# Only executes 1 color code update loop.
session.viewports[’Viewport: 1’].enableColorCodeUpdates()
session.viewports[’Viewport: 1’].disableColorCodeUpdates()

def get_model_information(self):
""" Get model information method

Method that extracts user-defined information from the ABAQUS model.
Note that the material properties are handled separately by the
’property_extraction’ method.

The information extracted is described by the following outputs.

Outputs:
--------
- element_type (str): code defining the ABAQUS element type used.
- set_list (list): list of the sets created by the user.

For stress dependent topology optimization, the following information
is also extracted (else, returns None for each case):
- active_loads (list): list with the keys (names) of the loads that are
active during the simulation (i.e.: non-supressed loads).

- active_bc (dict): dictionary with the data of non-zero boundary
conditions imposed in the model (such as non-zero displacements).

- node_coords (dict): dictionary with the coordinates of each node.

When using shell elements in a stress dependent problem, also
extracts:
- node_normal_vectors (dict): dictionary with three vectors (normal to
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each node) used to define the local coordinate system of each element
and consider the influence of node rotation in the FEA.

"""
# Get eleemnt type and set list.
element_type = self.get_element_type()
set_list = self.return_sets()

# For stress dependent optimization, identify the boundary conditions
# and node coordinates.
if self.opt_method >= 4:

active_loads = self.get_active_loads()
active_bc = self.get_active_boundary_conditions()
node_coords = self.get_node_coordinates()

# For stress dependent optimization with S4 elements, get the node
# normal vectors.
if element_type == ’S4’:

node_normal_vectors = self.get_node_normal_vectors(node_coords)
else:

node_normal_vectors = None
else:

active_loads, active_bc, node_coords, node_normal_vectors = (
None, None, None, None)

return (element_type, set_list, active_loads, active_bc, node_coords,
node_normal_vectors)

def return_sets(self):
"""Return set method

Returns a list of the use-defined ABAQUS sets, which excludes the ones
generated by the code to store the nodes and elements.
"""
return self.set_list

def get_element_type(self):
""" Get element type method

Returns the type of the first element in the elmts variable.

Output:
-------
- element_type (str): ABAQUS code defining the element type.
"""
return str(self.elmts[0].type)

def get_active_loads(self):
""" Get active loads method

Returns a list with the keys of the active loads applied in the ABAQUS
model.

Output:
-------
- active_loads (list): list with the keys (names) of the loads that are
active during the simulation (i.e.: non-supressed loads).

"""
active_loads = []
loads = self.mdb.models[self.model_name].loads

for load in loads.keys():
if loads[load].suppressed == False:

active_loads.append(load)

return active_loads

def get_active_boundary_conditions(self):
""" Get active boundary conditions method

Returns a dictionary with the information of the non-zero boundary
conditions applied in the ABAQUS model.
The function selects all bouncary conditions and then excludes
null displacement or rotation conditions.
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Output:
-------
- active_bc (dict): dictionary with the data of non-zero boundary
conditions imposed in the model (such as non-zero displacements).

"""
active_bc = {}
b_condition = self.mdb.models[self.model_name].boundaryConditions

for key in b_condition.keys():
if b_condition[key].suppressed == False:

active_bc[key] = {}

# Look for non-zero displacements/rotations in the active boundary
# conditions.
steps = self.mdb.models[self.model_name].steps
for key in active_bc.keys():

for step in steps.keys():
bc = steps[step].boundaryConditionStates[key]

# If a bouncary condition has a displacement (cond_1) and it is
# non-zero (cond_2) or was non-zero in a previous step
# (cond_3), then save the information of the boundary
# condition.
cond_1 = hasattr(bc,"u1")

if cond_1 == True:

cond_2 = any(x not in [0] for x in (bc.u1,
bc.u2,
bc.u3,
bc.ur1,
bc.ur2,
bc.ur3)

)

cond_3 = SET in (bc.u1State,
bc.u2State,
bc.u3State,
bc.ur1State,
bc.ur2State,
bc.ur3State)

if cond_2 or cond_3:
active_bc[key][step] = {}
value = [bc.u1, bc.u2, bc.u3, bc.ur1, bc.ur2, bc.ur3]
state = [bc.u1State, bc.u2State, bc.u3State,

bc.ur1State, bc.ur2State, bc.ur3State]

active_bc[key][step][’value’] = value
active_bc[key][step][’state’] = state

# Exclude null displacements/rotations found in the active boundary
# conditions
if active_bc[key] == {}:

del active_bc[key]

return active_bc

def get_node_coordinates(self):
""" Get node coordinates method

Returns a dictionary storing an array with the coordinates of each
node.

Output:
-------
- node_coordinates (dict): dictionary with the coordinates of each
node.

"""
assembly = self.mdb.models[self.model_name].rootAssembly
nodes = assembly.instances[self.part_name + "-1"].nodes
node_coordinates = {}
for node in nodes:

coords = assembly.getCoordinates(node)
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node_coordinates[node.label] = np.array(coords)

return node_coordinates

def get_node_normal_vectors(self,node_coordinates):
""" Get node normal vectors method

Returns a dictionary with the three normal vectors of each node, in
each element.
These vectors are determined by the coordinates of the four nodes in
the element, defining a vector that goes from one node towards the
next. Therefore, each node will have 1 vector going towards it, and 1
vector going away from it. These two vectors are used to define the
normal direction through a cross product.

Input:
------
- node_coordinates (dict): dictionary with the coordinates of each
node.

Output:
-------
- node_normal_vectors (dict): dictionary with three vectors (normal to
each node) used to define the local coordinate system of each element
and consider the influence of node rotation in the FEA.

"""

node_normal_vect = {}

for elmt in self.all_elmts:

# Identify nodes and create unit_vectors.
node_normal_vect[elmt.label] = {}
unit_vector = np.array([1,1,1,1])
node_1, node_2, node_3, node_4 = elmt.connectivity + unit_vector

# Determine in-plane vectors at each node.
v12 = node_coordinates[node_2] - node_coordinates[node_1]
v23 = node_coordinates[node_3] - node_coordinates[node_2]
v34 = node_coordinates[node_4] - node_coordinates[node_3]
v41 = node_coordinates[node_1] - node_coordinates[node_4]

# Determine normal vectors.
node_normal_vect[elmt.label][node_1] = self.normal_vectors(v41,v12)
node_normal_vect[elmt.label][node_2] = self.normal_vectors(v12,v23)
node_normal_vect[elmt.label][node_3] = self.normal_vectors(v23,v34)
node_normal_vect[elmt.label][node_4] = self.normal_vectors(v34,v41)

return node_normal_vect

def normal_vectors(self,v1,v2):
""" Node normal vectors method

Determines the three normal vectors of a node through a cross product
between two vectors, one going towards the node, and one going away
from the node.

Additionally, this method checks if the two vectors used are parallel
to avoid numerical errors.

Inputs:
-------
- v1 (array): vector going towards the node.
- v2 (array): vector going away from the node.

Output:
-------
- node_normal_vectors (dict): dictionary with three vectors (normal to
each node) used to define the local coordinate system to be
considered in one node (and account for the influence of node
rotation in the FEA process).

"""
# Determines the normal vector.
vector = self.calculate_normal_vector(v1, v2)
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# Checks if it is parallel to [0,1,0].
parallel_check = self.parallel_vector_check(vector)
if parallel_check == False:

node_v1 = np.cross(np.array([0,1,0]), vector)
else:

node_v1 = np.array([0,0,1])

# Determines and normalizes in-plane node normal vectors.
node_v1 = node_v1/np.linalg.norm(node_v1)
node_v2 = np.around(np.cross(vector, node_v1), 5)

node_normal_vectors = {"v1":node_v1, "v2":node_v2, "vn":vector}

return node_normal_vectors

def calculate_normal_vector(self,v1,v2):
""" Calculate normal vector method

Determines a unit vector that is normal to two input vectors, using the
cross product of two arrays.

Inputs:
-------
- v1 (array): first vector.
- v2 (array): second vector.

Output:
-------
- normal_vector (array): unit vector normal to v1 and v2.
"""
cross_prod = np.cross(v1,v2)
vector_norm = np.linalg.norm(cross_prod)
ratio = cross_prod/vector_norm

return np.around(ratio,5)

def parallel_vector_check(self,vector):
""" Parallel vector check method

Returns a boolean variable stating if a vector is parallel with the
axis [0,1,0] (True) or not (False).

The axis [0,1,0] is used as reference for the local axys system used
in shell element. This procedure is in accordance with the method
described in the book Finite Element Procedures (2nd edition), written
by Klaus-Jurgen Bathe, in section 5.4, page 439.

Inputs:
-------
- vector (array): vector to be evaluated.

Output:
-------
- check (bool): indicates if the vector is parallel to [0,1,0] (True)
or not (False).

"""
unit_vector = np.array([0,1,0])
parallel_check = np.cross(unit_vector, vector)

order_of_magnitude = int(math.floor(np.linalg.norm(parallel_check)) -5)
order_of_magnitude = int(-order_of_magnitude)

parallel_check = np.around(parallel_check, order_of_magnitude)

return np.array_equal(np.array([0,0,0]), parallel_check)

#%% State and Adjoint model submission, and sensitvities.
class AbaqusFEA():

""" ABAQUS Finite Element Analysis class

This class is responsible for the execution of the finite element analysis
in ABAQUS, as well as the extraction of the necessary outputs for the
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topology optimization process.

Attributes:
-----------
- iteration (int): number of the current iteration in the topology
optimization process.

- mdb (Mdb): ABAQUS model database.
- model_name (str): Name of the ABAQUS model.
- part_name (str): Name of the ABAQUS part to be optimized.
- ae (dict): dictionary with the sensitivity of the objective function to
changes in each design variable.

- p (float): SIMP penalty factor.
- element_type (str): ABAQUS code defining the element type.
- last_frame (int): variable defining if only the results of the last
frame should be considered or not (only last frame = 1 / all frames = 0).

- nDomains (int): number of job domains to be considered in the FEA.
- nCPUs (int): number of CPUs to be used in the execution of the FEA.
- opt_method (int): variable defining the optimization method to be used.
- node_normal_vector (dict): dictionary with three vectors (normal to
each node) used to define the local coordinate system of each element

- nonlinearities (boolean): Indicates if the problem considers geometrical
nonlinearities (True) or not (False).

- instance_name (str): name of the ABAQUS part when referenced from the
assembly module.

- instance (OdbInstance): ABAQUS part when referenced from the assembly
module.

Methods:
--------
- run_simulation(iteration, xe): submits the FEA, waits for its completion,
and organizes the data extraction from the ABAQUS odb file.

Auxiliary methods:
------------------
- init_dictionaries(opdb): creates the dictionaries used to store the data
extracted from the ABAQUS odb file.

- execute_FEA(): submits the FEA, waits for its completion and opens the
odb file created.

- compliance_sensitivity(strain_energy, xe): determines the compliance
sensitivity based on the straine nergy and on the design variables of
each element.

- get_strain_energy(frame, strain_energy): determines the strain energy in
the current frame and updates the data record if necessary.

- get_compliance(step, compliance): extracts the maximum value of the
compliance observed in the model at the current step. Updates the data
record if necessary.

- get_local_coord_system(opdb): determines the local coordinate system set
by ABAQUS at each node of a shell element. Returns and empty dictionary
for other elements.

- get_strains(frame, strain, strain_mag): extracts the maximum strain, in
each integration point at the current frame, and updates the data record
if necessary.

- get_rotations(opdb, frame, rotation, rotation_mag): extracts the maximum
rotatation in each node of a shell element, in the current frame, and
updates the data record if necessary.

- get_displacements(opdb, frame, displacement, displacement_mag): extracts
the maximum node displacement in the current frame and updates the data
record if necessary.

- converted_node_rotation(node_rotation): converts the node rotations from
the global to the local coordinate system.

"""

def __init__(
self, iteration, mdb, model_name, part_name, ae, p, element_type,
last_frame, nDomains, nCPUs, opt_method, node_normal_vector,
nonlinearities

):

self.iteration = iteration
self.mdb = mdb
self.model_name = model_name
self.part_name = part_name
self.ae = ae
self.p = p
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self.element_type = element_type
self.last_frame = last_frame
self.nDomains = nDomains
self.nCPUs = nCPUs
self.opt_method = opt_method
self.node_normal_vector = node_normal_vector
self.nonlinearities = nonlinearities
self.instance_name = self.part_name.upper()+’-1’
self.instance = None

def run_simulation(self, iteration, xe):
""" Run simulation method

This method performs the following actions:
- Update the iteration number (class attribute);
- Submit a job, wait for its completion, and open the odb file.
- Initialize dictionaries to store the odb information in them.
- Iterate through every step and frame of the odb file, extracting
the necessary information.

- Close the odb and delete the ABAQUS generated files.

This method will always extract the compliance and compliance
sensitivity.

In stress dependent problems, also extracts the element strains at
the integration points, and the node displacements.
If the stress dependent problem was also solved with ’S4’ type
elements, the method will also extract the node rotations and the
local coordinate assigned to each node by ABAQUS.

Inputs:
-------
- iteration (int): number of the current iteration in the topology
optimization process.

- xe (dict): dictionary with the design variables of all elements in
the topology optimization process.

Outputs:
--------
- compliance (float): maximum value of the compliance observed during
the FEA.

- ae (dict): dictionary with the compliance sensitivity of each
element.

- strain (dict): dictionary of dictionaries, storing the maximum strain
of each integration point (second key) in each element (first key).

- displacement (dict): dictionary with the displacement of each
node.

- rotation (dict): dictionary with the rotation of each node.
- local_coord_sys (dict): dictionary with the local coordinate system
assigned to each element by ABAQUS.

"""

# Update iteration counter, submit simulation and initialize
# dictionaries.
self.iteration = iteration
opdb = self.execute_FEA()
self.instance = opdb.rootAssembly.instances[self.instance_name]

(
strain_energy,
strain,
strain_mag,
rotation,
rotation_mag,
displacement,
displacement_mag,

) = self.init_dictionaries(opdb)

compliance = 0

# Determine the local coordinate system, if using shell elements in a
# stress dependent problem. Else, returns an empty dictionary.
local_coord_sys = self.get_local_coord_system(opdb)
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# Loop through each step and frame, extracting the information needed.
for stp in opdb.steps.values():

compliance = self.get_compliance(stp, compliance)

frames = [stp.frames[-1]] if self.last_frame == 1 else stp.frames
for frame in frames:

strain_energy = self.get_strain_energy(frame, strain_energy)

# For stress dependent problems.
if self.opt_method >= 4:

strain, strain_mag = self.get_strains(
opdb, frame, strain, strain_mag

)

displacement, displacement_mag = self.get_displacements(
opdb, frame, displacement, displacement_mag

)

if self.element_type == ’S4’:
rotation, rotation_mag = self.get_rotations(

opdb, frame, rotation, rotation_mag
)

# Convert the node rotation to the element local coordinate system.
if self.opt_method >= 4 and self.element_type == ’S4’:

rotation = self.convert_node_rotation(rotation)

# Determine the compliance sensitivity to changes in the design
# variables.
ae = self.compliance_sensitivity(strain_energy, xe)
self.ae = ae

#Closes odb and removes files created by ABAQUS.
opdb.close()
remove_files(iteration, ’Design_Job’)
del self.mdb.jobs[’Design_Job’+str(iteration)]

return compliance, ae, strain, displacement, rotation, local_coord_sys

def init_dictionaries(self, opdb):
""" Initialize dictionaries method

Creates the dictionaries, and necessary entries, used to store the data
extracted from the ABAQUS odb file.

Input:
------
- opdb (Odb): ABAQUS output data base.

Output:
-------
- dictionaries (tuple): dictionaries created to store the strain
energy, strain, strain magnitude, rotation, rotation magnitude,
displacement, and displacement magnitude.

"""
strain_energy = {}
strain, strain_mag = {}, {}
rotation, rotation_mag = {}, {}
displacement, displacement_mag = {}, {}

# For stress dependent problems:
if self.opt_method >= 4:

elmts = self.instance.elements
nodes = self.instance.nodes

for elmt in elmts:
strain[elmt.label] = {}
strain_mag[elmt.label] = {}

for node in nodes:
rotation[node.label] = 0.0
rotation_mag[node.label] = 0.0
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displacement[node.label] = 0.0
displacement_mag[node.label] = 0.0

dictionaries = (strain_energy, strain, strain_mag, rotation,
rotation_mag, displacement, displacement_mag

)

return dictionaries

def execute_FEA(self):
""" Execute finite element analysis method

Submits the ABAQUS job, waits for its completion, and then opens and
returns its output database file (odb).

Output:
-------
- opdb (Odb): ABAQUS output data base.
"""
job_name = ’Design_Job’+str(self.iteration)
odb_name = job_name + ’.odb’

mdb.Job(name = job_name, model = self.model_name,
numDomains = self.nDomains, numCpus = self.nCPUs).submit()

mdb.jobs[job_name].waitForCompletion()

opdb = openOdb(odb_name)

return opdb

def compliance_sensitivity(self, strain_energy, xe):
""" Compliance sensitivity method

Determines the compliance sensitivity based on the strain energy and on
the design variable (design density) of each element.
Stores this information as a class attribute.

Inputs:
-------
- strain_energy (dict): dictionary with the strain energy value for
each element.

- xe (dict): dictionary with the design variables of all elements in
the topology optimization process.

Outputs:
--------
- ae (dict): dictionary with the sensitivity of the objective function
to changes in each design variable.

"""
ae = {}
for key in xe:

ae[key] = -self.p * strain_energy[key] / xe[key]

self.ae = ae

return self.ae

def get_strain_energy(self, frame, strain_energy):
""" Get strain energy method

Method used to determine the maximum strain energy of each element in
the current frame, considering the sum of both elastic and plastic
components.
The function compares the values observed in the current frame with
previous records and, if necessary, updates the record.

Inputs:
-------
- frame (OdbFrame): current frame of the ABAQUS odb.
- strain_energy (dict): dictionary with the strain energy value for
each element.

Output:
-------
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- strain_energy (dict): updated dictionary with the strain energy value
for each element.

"""
temp_dict = {}
attributes = ’data’, ’elementLabel’, ’instance’

if self.nonlinearities == False:
# Elastic strain energy component.
# Create a generator that selects the nodes that belong to the
# editable instance. Note that item[2] is the instance name.
sener = frame.fieldOutputs[’ESEDEN’]
sener_info = map(attrgetter(*attributes), sener.values)
relevant_sener_info = (

item for item in sener_info if item[2] == self.instance
)

for elmt in relevant_sener_info:
elmt_data = elmt[0]
elmt_label = elmt[1]
temp_dict[elmt_label] = elmt_data

elif self.nonlinearities == True:
# Elastic strain energy component.
# Create a generator that selects the nodes that belong to the
# editable instance. Note that item[2] is the instance name.
sener = frame.fieldOutputs[’SENER’]
sener_info = map(attrgetter(*attributes), sener.values)
relevant_sener_info = (

item for item in sener_info if item[2] == self.instance
)

for elmt in relevant_sener_info:
elmt_data = elmt[0]
elmt_label = elmt[1]
temp_dict[elmt_label] = elmt_data

# Adds plastic strain energy component.
# Create a generator that selects the nodes that belong to the
# editable instance. Note that item[2] is the instance name.
pener = frame.fieldOutputs[’PENER’]
pener_info = map(attrgetter(*attributes), pener.values)
relevant_pener_info = (

item for item in pener_info if item[2] == self.instance
)

for elmt in relevant_pener_info:
elmt_data = elmt[0]
elmt_label = elmt[1]
temp_dict[elmt_label] += elmt_data

else:
raise Exception(

"Unexpected value for attribute ’nonlinearities’ of class \n"
"AbaqusFEA.")

# If strain_energy is not empty, selects the maximum value.
# Otherwise, assigns the first value.
if strain_energy:

for key in strain_energy.keys():
strain_energy[key] = max(strain_energy[key], temp_dict[key])

else:
strain_energy = temp_dict

return strain_energy

def get_compliance(self, step, compliance):
""" Get compliance method

Method used to extract the value of the maximum value of the compliance
observed in the model, at the current step.
The function compares the value observed in the current step with
previous records and, if necessary, updates the record.

Inputs:
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-------
- step (OdbStep): current step of the ABAQUS odb.
- compliance (float): maximum value of the compliance observed during
the FEA.

Output:
-------
- compliance (float): maximum value of the compliance observed during
the FEA.

"""

model_data = (step.historyRegions[’Assembly ASSEMBLY’]
.historyOutputs[’ALLWK’].data)

current_compliance = max([item[1] for item in model_data])

compliance = max(compliance, current_compliance)

return compliance

def get_local_coord_system(self, opdb):
""" Get local coordinate system method
Method used to determine the local coordinate system set by ABAQUS at
each element.
If the element used is not of the type ’S4’, an empty dictionary is
returned.

Input:
------
- opdb (Odb): ABAQUS output data base.

Output:
-------
- coord_sys (dict): dictionary with the local coordinate systems set by
ABAQUS for each element.

"""
coord_sys = {}

if self.element_type == "S4":
first_step = opdb.steps.keys()[0]
attributes = ’elementLabel’, ’localCoordSystem’, ’instance’
# Create a generator that selects the elements that belong to the
# editable instance. Note that item[2] is the instance name.
temp_coord = opdb.steps[first_step].frames[-1].fieldOutputs[’S’]
stress_coord = map(attrgetter(*attributes), temp_coord.values)
relevant_rotations = (

item for item in stress_coord if item[2] == self.instance
)
# Rounds the coordinates of the vector to avoid float errors.
for item in relevant_rotations:

item_label = item[0]
item_coord = item[1]
coord_sys[item_label] = np.around(item_coord, 5)

return coord_sys

def get_strains(self, opdb, frame, strain, strain_mag):
""" Get strains method
Method used to extract the maximum strain in each integration point.
The function compares the value observed in the current frame with
previous records and, if necessary, updates the record.

The strains are stored in the ABAQUS variables ’E’ or ’LE’ depending
on the step being geometrically linear or non-linear, respectively.

Inputs:
-------
- opdb (Odb): ABAQUS output data base.
- frame (OdbFrame): current frame of the ABAQUS odb.
- strain (dict): dictionary of dictionaries, storing the maximum strain
of each integration point (second key) in each element (first key).

- strain_mag (dict): dictionary of dictionaries, storing the magnitude
of the maximum strain of each integration point (second key) in each
element (first key).
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Output:
-------
- strain (dict): dictionary of dictionaries, storing the maximum strain
of each integration point (second key) in each element (first key).

- strain_mag (dict): dictionary of dictionaries, storing the magnitude
of the maximum strain of each integration point (second key) in each
element (first key).

"""
# Indicate that the data should be extracted from the integration
# points.
instance_name = self.part_name.upper()+’-1’
instance = opdb.rootAssembly.instances[instance_name]
region = instance.elementSets[’STRAIN_ELEMENTS’]
position = INTEGRATION_POINT

# The strains are stored in the ABAQUS variables ’E’ or ’LE’ depending
# on the step being geometrically linear or non-linear, respectively.
if ’E’ in frame.fieldOutputs:

temp_strain = frame.fieldOutputs[’E’].getSubset(
region = region,
position = position

)
elif ’LE’ in frame.fieldOutputs:

temp_strain = frame.fieldOutputs[’LE’].getSubset(
region = region,
position = position

)
else:

raise Exception("None of the strain variables ’E’ or ’LE’ were "
"detected by the FEA function when performing a "
"stress dependent optimization.")

attributes = ’data’,’elementLabel’,’maxPrincipal’,’integrationPoint’
strains = map(attrgetter(*attributes), temp_strain.values)

for item in strains:
item_data = item[0]
item_label = item[1]
item_maxPrincipal = item[2]
item_intPoint = item[3]

# Cond_1 == True indicates that no previous value has been stored.
cond_1 = item_intPoint not in strain_mag[item_label].keys()

# Cond_2 == True indicates that the current value is larger than
# the previous record.
if cond_1 == False:

prev_val = abs(strain_mag[item_label][item_intPoint])
cond_2 = abs(item_maxPrincipal) >= prev_val

else:
cond_2 = False

# If its the first dictionary entry, or there is a larger value,
# update the dictionary entry.
if cond_1 or cond_2:

strain_mag[item_label][item_intPoint] = item_maxPrincipal
if self.element_type in [’C3D8’]:

strain_vector = item_data
elif self.element_type in [’CPS4’, ’CPE4’, ’S4’]:

strain_vector= np.array(
[item_data[0], item_data[1], item_data[3]]

)
else:

raise Exception("Unexpected strain vector at the "
"integration points.")

strain[item_label][item_intPoint] = strain_vector

return strain, strain_mag

def get_rotations(self, opdb, frame, rotation, rotation_mag):
""" Get rotations method
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Method used to extract the maximum rotation in each node.
The function compares the value observed in the current frame with
previous records and, if necessary, updates the record.

Inputs:
-------
- opdb (Odb): ABAQUS output data base.
- frame (OdbFrame): current frame of the ABAQUS odb.
- rotation (dict): dictionary storing the maximum rotation in each
node.

- rotation_mag (dict): dictionary of dictionaries, storing the
magnitude of the maximum rotation in each node.

Output:
-------
- rotation (dict): dictionary storing the maximum rotation in each
node.

- rotation_mag (dict): dictionary of dictionaries, storing the
magnitude of the maximum rotation in each node.

"""
# Create a generator that selects the nodes that belong to the
# editable instance. Note that item[3] is the instance name.
temp_rot = frame.fieldOutputs[’UR’]
attributes = ’data’, ’nodeLabel’, ’magnitude’, ’instance’
rotations = map(attrgetter(*attributes), temp_rot.values)
relevant_rotations = (

item for item in rotations if item[3] == self.instance
)

for item in relevant_rotations:
item_data = item[0]
item_nodeLabel = item[1]
item_magnitude = item[2]

# Cond_1 == True indicates that the current value is larger than
# the previous record.
cond_1 = (item_magnitude >= abs(rotation_mag[item_nodeLabel]))

# If its the first dictionary entry, or there is a larger value,
# update the dictionary entry.
if cond_1:

rotation_mag[item_nodeLabel] = item_magnitude
rotation[item_nodeLabel] = item_data

return rotation, rotation_mag

def get_displacements(self, opdb, frame, displacement, displacement_mag):
""" Get displacements method

Method used to extract the maximum displacement in each node.
The function compares the value observed in the current frame with
previous records and, if necessary, updates the record.

Inputs:
-------
- opdb (Odb): ABAQUS output data base.
- frame (OdbFrame): current frame of the ABAQUS odb.
- displacement (dict): dictionary storing the maximum dispalcement in
each node.

- displacement_mag (dict): dictionary of dictionaries, storing the
magnitude of the maximum displacement in each node.

Output:
-------
- displacement (dict): dictionary storing the maximum dispalcement in
each node.

- displacement_mag (dict): dictionary of dictionaries, storing the
magnitude of the maximum displacement in each node.

"""
# Create a generator that selects the nodes that belong to the
# editable instance. Note that item[3] is the instance name.
temp_disp = frame.fieldOutputs[’U’]
attributes = ’data’, ’nodeLabel’, ’magnitude’, ’instance’
displacements = map(attrgetter(*attributes), temp_disp.values)



180 Python code for stress-constrained topology optimization in ABAQUS®

relevant_displacements = (
item for item in displacements if item[3] == self.instance

)

for item in relevant_displacements:
item_data = item[0]
item_nodeLabel = item[1]
item_magnitude = item[2]

# Cond_1 == True indicates that the current value is larger than
# the previous record.
cond_1 = (item_magnitude >= abs(displacement_mag[item_nodeLabel]))

# If its the first dictionary entry, or there is a larger value,
# update the dictionary entry.
if cond_1:

displacement_mag[item_nodeLabel] = item_magnitude
displacement[item_nodeLabel] = item_data.copy()
displacement[item_nodeLabel].resize(3)

return displacement, displacement_mag

def convert_node_rotation(self, node_rotation):
""" Convert node rotation method

Converts the node rotations from the global to the local
coordinate system.

Input:
------
- node_rotation (dict): dictionary with the rotations of each
node, in each element.

Output:
-------
- converted_node_rotation (dict): dictionary with the converted
node rotations.

"""
converted_node_rotation = {}

for elmt in self.node_normal_vector.keys():
converted_node_rotation[elmt] = {}

for node in self.node_normal_vector[elmt].keys():

line_1 = self.node_normal_vector[elmt][node]["v1"]
line_2 = self.node_normal_vector[elmt][node]["v2"]
line_3 = self.node_normal_vector[elmt][node]["vn"]

transformation_matrix = np.array(
[line_1,
line_2,
line_3]

)

converted_node_rotation[elmt][node] = \
np.dot(transformation_matrix, node_rotation[node])

return converted_node_rotation

def init_AdjointModel(
mdb, model_name, part_name, material_name, section_name, nodes, elmts,
p, planar, element_type, elmt_volume, node_normal_vector, opt_method,
nDomains, nCPUs, last_frame

):
""" Initialize Adjoint model function

Creates and returns an AdjointModel, if it is necessary for the
optimization process requested. Otherwise, returns None.

Inputs:
-------
- mdb (Mdb): ABAQUS model database.
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- model_name (str): Name of the ABAQUS model.
- part_name (str): Name of the ABAQUS part to be optimized.
- material_name (str): Name of the ABAQUS material to be considered.
- section_name (str): Name of the ABAQUS material section to be considered.
- nodes (MeshNodeArray): mesh node array from ABAQUS with all nodes that

belong to elements considered in the topology optimization process.
- elmts (MeshElementArray): element_array from ABAQUS with the relevant

elements in the model.
- p (float): SIMP penalty factor.
- planar (int): variable identifying the type of part considered (2D or

3D).
- element_type (str): ABAQUS code defining the element type.
- elmt_volume (dict): dictionary with the element volume of each element.
- node_normal_vector (dict): dictionary with three vectors (normal to

each node) used to define the local coordinate system of each element.
- opt_method (int): variable defining the optimization method to be used.
- nDomains (int): number of job domains to be considered in the FEA.
- nCPUs (int): number of CPUs to be used in the execution of the FEA.
- last_frame (int): variable defining if only the results of the last

frame should be considered or not (only last frame = 1 / all frames = 0).

Output:
-------
- adj_model (class): adjoint model class.
"""

if opt_method >= 4:
adj_model = AdjointModel(

mdb, model_name, part_name, material_name, section_name, nodes,
elmts, p, planar, element_type, elmt_volume, node_normal_vector,
nDomains, nCPUs, last_frame

)
else:

adj_model= None

return adj_model

class AdjointModel():
""" Adjoint model class

Analogous to the AbaqusFEA class, the Adjoint model class is responsible
for the execution of the finite element analysis of the adjoint model in
ABAQUS, as well as the extraction of the necessary outputs for the
topology optimization process.

Attributes:
-----------
- mdb (Mdb): ABAQUS model database.
- model_name (str): Name of the ABAQUS model.
- part_name (str): Name of the ABAQUS part to be optimized.
- material_name (str): Name of the ABAQUS material to be considered.
- section_name (str): Name of the ABAQUS material section to be considered.
- nodes (MeshNodeArray): mesh node array from ABAQUS with all nodes that

belong to elements considered in the topology optimization process.
- elmts (MeshElementArray): element_array from ABAQUS with the relevant

elements in the model.
- p (float): SIMP penalty factor.
- planar (int): variable identifying the type of part considered (2D or

3D).
- element_type (str): ABAQUS code defining the element type.
- elmt_volume (dict): dictionary with the element volume of each element.
- node_normal_vector (dict): dictionary with three vectors (normal to

each node) used to define the local coordinate system of each element.
- nDomains (int): number of job domains to be considered in the FEA.
- nCPUs (int): number of CPUs to be used in the execution of the FEA.
- last_frame (int): variable defining if only the results of the last

frame should be considered or not (only last frame = 1 / all frames = 0).
- iteration (int): number of the current iteration in the topology

optimization process.
- part (Part): ABAQUS part to be optimized.
- all_elmts (MeshElementArray): element_array from ABAQUS with all the

elements in the part.
- material_type (Material_type): ABAQUS code defining the type of the
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material considered.
- shell_thickness (float): Total thickness of the shell element.
- inv_int_p (float): inverse of the number of integration points in the
model.

- elmt_points (range): range of evaluation points (nodes or integration
points) in the element.

- deformation_vector (dict): dictionary with the deformation vectors in
each element node.

- deformation_int (dict): dictionary with the deformation vectors in each
element integration point.

- global_node_force (dict): dictionary with the nodal forces to the applied
in the adjoint model.

- stress_vector (dict): dictionary with the stress vectors in each element
node.

- stress_vector_int (dict): dictionary with the stress vectors in the
integration points of each element.

- b_matrix (dict): dictionary with the B matrix determined in each node of
each element.

- b_matrix_int (dict): dictionary with the B matrix determined in each
integration point of each element.

- jacobian (dict): dictionary with the Jacobian matrix determined in each
node of each element.

- jacobian_int (dict): dictionary with the Jacobian matrix determined in
each integration point of each element.

- c_matrix (dict): dictionary with the D (stiffness) matrix determined for
each element.

- p_norm_spf (dict): dictionary with the component of the derivative of the
p-norm function that contains the stress penalization factor.

- p_norm_displacement (dict): dictionary with the component of the
derivative of the p-norm function that contains the node displacements.

Methods:
--------
- run_adjoint_simulation(node_displacement, xe, node_rotation,
node_coordinates, local_coord_system, q, active_bc, active_loads,
iteration): prepares, submits, and extracts data from the adjoint model.

- determine_stress_and_deformation(node_displacement, xe, node_rotation,
node_coordinates, local_coord_system): determines the stress and strain
vectors (as well as Jacobian and B matrixes) in the element nodes and
integration points.

- determine_adjoint_load(q): determines the nodal adjoint load.
- stress_sensitivity(xe, q, state_strain, adjoint_strain): determines the
p-norm maximum Von-Mises stress sensitivity to changes in the design
variables.

Auxiliary methods:
------------------
- init_dictionaries(opdb): initializes the dictionaries required to store
the outputs from the adjoint model.

- execute_adjoint_FEA(): submits the adjoint model.
- get_adjoint_strain(opdb, frame, strain, strain_mag): extracts the strain
values from the adjoint model.

- non_zero_force_check(node_label): check if the an adjoint nodal load is
not zero.

- apply_adjoint_loads(active_bc, active_loads): applies the adjoint loads.
- apply_nodal_load(node_label): applies the adjoint load to a given node.
- remove_adjoint_loads(active_bc, active_loads): removes the adjoint loads
from the ABAQUS model.

- supress_dispalcement_BC(bc_list): supresses non-zero displacement
boundary conditions from the state model.

- resume_displacement_BC(bc_list): resumes non-zero displacement boundary
conditions from the state model.

- coordinate_vectors(elmt, node_coords): sorts the element node coordinates
into three lists.

- rotation_vectors(elmt, node_rotation): sorts the node rotations in to
two lists.

- elmt_node_displacement_vect(elmt, node_displacement,
node_rotation = None): combines the node displacements and rotations into
a single, ordered, vector.

- node_normal_vectors(elmt): sorts the node normal vectors into three
lists.

- vect_transf_matrix(elmt, local_coord_system): creates a transformation
matrix for vectors, converting them from the global to the local
coordinate system.
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- matx_transf_matrix(elmt, local_coord_system): creates a transformation
matrix for matrixes, converting them from the global to the local
coordinate system.

- surface_selection(elmt, node_displacement_vector, s, t, v, x_coord,
y_coord, z_coord, v1_vector, v2_vector, vn_vector, a_rot, b_rot,
elmt_formulation): selects the shell surface with the largest
stress-strain state.

- xe_all(label, xe): returns the design density of an element, even if it
does not belong to the editable region.

- determine_stress_vector(elmt, vector_trans_m, matrix_trans_m,
deformation, xe): determines the stress vector in a given point, based on
the strain and element design density.

- multiply_VM_matrix(v1, v2): returns the product of two vectors by the
Von-Mises stress matrix.

- local_c_matrix(matrix_trans_m, elmt): converts the element C matrix to
the local coordinate system.

- determine_d_pnorm_displacement(xe, state_strain, adjoint_strain):
determines the component of the stress sensitivity that is dependent
on the node displacements.

- determine_d_pnorm_spf(xe, q): determines the component of the stress
sensitivity that is dependent on the stress penalization factor.

"""
def __init__(

self, mdb, model_name, part_name, material_name, section_name,
nodes, elmts, p, planar, element_type, elmt_volume,
node_normal_vector, nDomains, nCPUs, last_frame

):

self.mdb = mdb
self.model_name = model_name
self.part_name = part_name
self.material_name = material_name
self.section_name = section_name
self.nodes = nodes
self.elmts = elmts
self.p = p
self.planar = planar
self.element_type = element_type
self.elmt_volume = elmt_volume
self.node_normal_vector = node_normal_vector
self.nDomains = nDomains
self.nCPUs = nCPUs
self.last_frame = last_frame
self.iteration = None
self.part = mdb.models[model_name].parts[part_name]
self.all_elmts = self.part.elements
self.material_type = (mdb.models[model_name]

.materials[material_name].elastic.type)

shell_thickness = (mdb.models[model_name]
.sections[section_name].thickness)

if shell_thickness == None:
self.shell_thickness = 1.0

else:
self.shell_thickness = shell_thickness

if element_type in ["CPS4", "CPE4", "S4"]:
self.inv_int_p = 1.0 / (4.0 * len(elmts))

elif element_type in ["C3D8"]:
self.inv_int_p = 1.0 / (8.0 * len(elmts))

else:
raise Exception(

"Unexpected ’element_type’ attribute in ’AdjointModel’ class."
)

self.elmt_points = range(0, len(self.elmts[0].connectivity))
self.deformation_vector = {}
self.deformation_int = {}
self.global_node_force = {}
self.stress_vector = {}
self.stress_vector_int = {}
self.b_matrix = {}
self.b_matrix_int = {}
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self.jacobian = {}
self.jacobian_int = {}
for node in self.nodes:

self.deformation_vector[node.label] = {}
self.global_node_force[node.label] = 0
self.stress_vector[node.label] = {}
self.b_matrix[node.label] = {}
self.jacobian[node.label] = {}

self.c_matrix = {}
c_matrix_temp = c_matrix_function(self.element_type,

self.material_type, self.planar)

for elmt in self.all_elmts:
self.c_matrix[elmt.label] = c_matrix_temp
self.deformation_int[elmt.label] = {}
self.stress_vector_int[elmt.label] = {}
self.b_matrix_int[elmt.label] = {}
self.jacobian_int[elmt.label] = {}

def run_adjoint_simulation(
self, node_displacement, xe, node_rotation, node_coordinates,
local_coord_system, q, active_bc, active_loads, iteration

):
""" Run adjoint simulation method

This method performs the following actions:
- Determine the loads of the adjoint model, and apply them.
- Submit a job, wait for its completion, and open the odb file.
- Initialize dictionaries to store the odb strain information.
- Iterate through every step and frame of the odb file, extracting
the necessary information.

- Revert the changes made when applying the adjoint loads.
- Close the odb and delete the ABAQUS generated files.

Inputs:
-------
- node_displacement (dict): dictionary with the displacement of each
node.

- xe (dict): dictionary with the design variables of all elements in
the topology optimization process.

- node_rotation (dict): dictionary with the node rotations of nodes in
each element.

- node_coordinates (dict): dictionary with the coordinates of each
node.

- local_coord_system (dict): dictionary with the local coordinate
systems of each element.

- q (float): P-norm factor used in the stress approximation function.
Here referred as ’q’ to avoid confusion with the SIMP penalty factor.

- active_bc (dict): dictionary with the data of non-zero boundary
conditions imposed in the model (such as non-zero displacements).

- active_loads (list): list with the keys (names) of the loads that are
active during the simulation (i.e.: non-supressed loads).

- iteration (int): number of the current iteration in the topology
optimization process.

Outputs:
--------
- strain (dict): dictionary of dictionaries, storing the maximum strain
of each integration point (second key) in each element (first key).

"""
# Determine the adjoint loads, apply them, and submit the model.
self.iteration = iteration
self.determine_stress_and_deformation(node_displacement, xe,

node_rotation, node_coordinates, local_coord_system)
self.determine_adjoint_load(q)
self.apply_adjoint_loads(active_bc, active_loads)
opdb = self.execute_adjoint_FEA()

# Initiate dictionaries and extract data from odb file.
strain, strain_mag = self.init_dictionaries(opdb)
for stp in opdb.steps.values():

frames = [stp.frames[-1]] if self.last_frame == 1 else stp.frames
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for frame in frames:
strain, strain_mag = self.get_adjoint_strains(

opdb, frame, strain, strain_mag
)

# Remove adjoint loads, close odb file, and delete temporary files.
self.remove_adjoint_loads(active_bc, active_loads)
opdb.close()
remove_files(iteration, ’Adjoint_Job’)
del self.mdb.jobs[’Adjoint_Job’+str(iteration)]

return strain

def execute_adjoint_FEA(self):
""" Execute the adjoint finite element analysis method

Submits the adjoint ABAQUS job, waits for its completion, and then
opens and returns its output database file (odb).

Output:
-------
- opdb (Odb): ABAQUS output data base.
"""
job_name = ’Adjoint_Job’+str(self.iteration)
odb_name = job_name + ’.odb’

# Create an ABAQUS job, submit it, wait for completion, and open odb.
mdb.Job(name = job_name, model = self.model_name,

numDomains = self.nDomains, numCpus = self.nCPUs).submit()
mdb.jobs[job_name].waitForCompletion()
opdb = openOdb(odb_name)

return opdb

def init_dictionaries(self, opdb):
""" Initialize dictionaries method

Creates the dictionaries, and necessary entries, used to store the
strain and strain magnitude extracted from the ABAQUS odb file.

Input:
------
- opdb (Odb): ABAQUS output data base.

Output:
-------
- dictionaries (tuple): dictionaries created to store the strain and
strain magnitude.

"""
strain, strain_mag = {}, {}

instance_name = self.part_name.upper()+’-1’
elmts = opdb.rootAssembly.instances[instance_name].elements

for elmt in elmts:
strain[elmt.label] = {}
strain_mag[elmt.label] = {}

dictionaries = (strain, strain_mag)

return dictionaries

def get_adjoint_strains(self, opdb, frame, strain, strain_mag):
""" Get adjoint strains method
Method used to extract the maximum strain in each integration point.
The function compares the value observed in the current frame with
previous records and, if necessary, updates the record.

The strains are stored in the ABAQUS variables ’E’ or ’LE’ depending
on the step being geometrically linear or non-linear, respectively.

Inputs:
-------
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- opdb (Odb): ABAQUS output data base.
- frame (OdbFrame): current frame of the ABAQUS odb.
- strain (dict): dictionary of dictionaries, storing the maximum strain
of each integration point (second key) in each element (first key).

- strain_mag (dict): dictionary of dictionaries, storing the magnitude
of the maximum strain of each integration point (second key) in each
element (first key).

Output:
-------
- strain (dict): dictionary of dictionaries, storing the maximum strain
of each integration point (second key) in each element (first key).

- strain_mag (dict): dictionary of dictionaries, storing the magnitude
of the maximum strain of each integration point (second key) in each
element (first key).

"""

# Indicate that the data should be extracted from the integration
# points.
instance_name = self.part_name.upper()+’-1’
instance = opdb.rootAssembly.instances[instance_name]
region = instance.elementSets[’STRAIN_ELEMENTS’]
position = INTEGRATION_POINT

# The strains are stored in the ABAQUS variables ’E’ or ’LE’ depending
# on the step being geometrically linear or non-linear, respectively.
if ’E’ in frame.fieldOutputs:

temp_strain = frame.fieldOutputs[’E’].getSubset(region = region,
position = position)

elif ’LE’ in frame.fieldOutputs:
temp_strain = frame.fieldOutputs[’LE’].getSubset(region = region,

position = position)
else:

raise Exception(
"None of the strain variables ’E’ or ’LE’ were detected by \n"
"the FEA function when performing a stress dependent \n"
"optimization.\n"

)

# Extract the relevant strain data.
attributes = ’data’,’elementLabel’,’maxPrincipal’,’integrationPoint’
strains = map(attrgetter(*attributes), temp_strain.values)
for item in strains:

item_data = item[0]
item_label = item[1]
item_maxPrincipal = item[2]
item_intPoint = item[3]

# Cond_1 == True indicates that no previous value has been stored.
cond_1 = (item_intPoint

not in strain_mag[item_label].keys())

# Cond_2 == True indicates that the current value is larger than
# the previous record.
if cond_1 == False:

prev_val = abs(strain_mag[item_label][item_intPoint])
cond_2 = abs(item_maxPrincipal) >= prev_val

else:
cond_2 = False

# If its the first dictionary entry, or there is a larger value,
# update the dictionary entry.
if cond_1 or cond_2:

strain_mag[item_label][item_intPoint] = item_maxPrincipal
if self.element_type in [’C3D8’]:

strain_vector = item_data
elif self.element_type in [’CPS4’, ’CPE4’, ’S4’]:

strain_vector= np.array(
[item_data[0], item_data[1], item_data[3]]

)
else:

raise Exception(
"Unexpected strain vector at the integration points."

)
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strain[item_label][item_intPoint] = strain_vector

return strain, strain_mag

def determine_adjoint_load(self, q):
""" Determine adoint load method

Determines the value of the adjoint load that should be applied on
each node of the ABAQUS model.
The load values are then rounded up at 12 orders of magnitude below
the maximum adjoint load observed. This is done to prevent the
application of loads that result from float point
approximations/errors, and improve the efficiency of the code.

The output is stored in the class attribute ’global_node_force’.

Input:
- q (float): P-norm factor used in the stress approximation function.
Here referred as ’q’ to avoid confusion with the SIMP penalty factor.

"""
if self.element_type in [’CPS4’, ’CPE4’]:

inc = 2
elif self.element_type in [’C3D8’]:

inc = 3
elif self.element_type in [’S4’]:

raise Exception(
"The code provided does not allow the stress dependent \n"
"topology optimization with shell elements, yet.\n"
"To do so, at least the following tasks need to be done: \n"
" - Determine the adjoint load and convert it back to the \n"
" global coordinate system.\n"
" - Apply the adjoint loads depending on the dimension of \n"
" problem (2D or 3D)."

)
else:

raise Exception(
"Unexpected element type found in the \n"
"’determine_adjoint_load’ method."

)

# Array with the Von-Mises stress vector at each integration point of
# each element.
vm_int_p = np.array([self.multiply_VM_matrix(int_p, int_p) ** 0.5

for elmt in self.stress_vector_int.values()
for int_p in elmt.values()])

# Determine the first term of the P-norm derivative w.r.t. Von-Mises
# stress vector. Only depends on the sum of stress values.
d_pnorm_vm_1 = sum(self.inv_int_p * vm_int_p ** q) ** ((1 / q) - 1)

# Determine the second term of the P-norm derivative w.r.t. Von-Mises
# Stress vector, and the derivative of the Von-Mises stress w.r.t.
# the amplified stress vector.
for elmt in self.all_elmts:

force_elmt = 0
c_matrix = self.c_matrix[elmt.label]

for i in self.elmt_points:
force = 0
sv = self.stress_vector[elmt.connectivity[i]+1][elmt.label]
b_matrix = self.b_matrix[elmt.connectivity[i]+1][elmt.label]
jacobian = self.jacobian[elmt.connectivity[i]+1][elmt.label]

von_mises_squared = self.multiply_VM_matrix(sv, sv)
if float(von_mises_squared) != 0:

db_matrix = np.dot(c_matrix, b_matrix)

d_pnorm_vm_2 = (
(von_mises_squared ** ((q - 1) / 2)) * self.inv_int_p

)
d_pnorm_vm = d_pnorm_vm_1 * d_pnorm_vm_2

d_vm_sigmaA = (von_mises_squared ** -0.5) \
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* self.multiply_VM_matrix(sv, db_matrix) \
* self.shell_thickness*np.linalg.det(jacobian)

# Determines the nodal force and adds its contribution.
force = d_pnorm_vm * d_vm_sigmaA
force_elmt += force

# Sorts the nodal force contributions.
for i in self.elmt_points:

if hasattr(force_elmt,’shape’):
self.global_node_force[elmt.connectivity[i]+1] \

+= force_elmt[0][i * inc : i * inc + inc]

# Round the node forces at 12 orders of magnitude below the maximum
# force observed.
# Determines the number of decimal places.
max_load = max([abs(item)

for sublist in self.global_node_force.values()
if hasattr(sublist,’shape’)
for item in sublist])

dp = int( -(math.floor(math.log10(max_load)) - 12))
node_range = range(0,len(self.nodes))

# Rounds the vectors depending on the problem being 2D or 3D.
if self.planar == 1:

for i in node_range:
if hasattr(self.global_node_force[self.nodes[i].label],

’shape’):

self.global_node_force[self.nodes[i].label][0] = np.around(
self.global_node_force[self.nodes[i].label][0], dp)

self.global_node_force[self.nodes[i].label][1] = np.around(
self.global_node_force[self.nodes[i].label][1], dp)

elif self.planar == 0:
for i in node_range:

if hasattr(self.global_node_force[self.nodes[i].label],
’shape’):

self.global_node_force[self.nodes[i].label][0] = np.around(
self.global_node_force[self.nodes[i].label][0], dp)

self.global_node_force[self.nodes[i].label][1] = np.around(
self.global_node_force[self.nodes[i].label][1], dp)

self.global_node_force[self.nodes[i].label][2] = np.around(
self.global_node_force[self.nodes[i].label][2], dp)

else:
raise Exception(

"Unexpected value for ’planar’ variable in \n"
"’determine_adjoint_load’ method of class AdjointModel."

)

return self.global_node_force

def remove_adjoint_loads(self, active_bc, active_loads):
""" Remove adjoint loads method

Removes the adjoint loads applied during the simulation of the adjoint
model.

Inputs:
-------
- active_bc (dict): dictionary with the data of non-zero boundary
conditions imposed in the model (such as non-zero displacements).

- active_loads (list): list with the keys (names) of the loads that are
active during the simulation (i.e.: non-supressed loads).

"""
#Disable loads of the adjoint model
for i in self.active_nodes:

self.mdb.models[self.model_name].loads["adjoint_load-"+str(i)] \
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.suppress()

# Resume non-adjoint active loads.
for item in active_loads:

self.mdb.models[self.model_name].loads[item].resume()

# Resume imposed non-zero displacements.
for key in active_bc.keys():

for step in active_bc[key].keys():
(

u1,
u2,
u3,
ur1,
ur2,
ur3,

) = self.resume_displacement_BC(active_bc[key][step])

self.mdb.models[self.model_name].boundaryConditions[key] \
.setValuesInStep(step, u1 = u1, u2 = u2, u3 = u3,

ur1 = ur1, ur2 = ur2, ur3 = ur3)

def apply_adjoint_loads(self, active_bc, active_loads):
""" Apply adjoint loads method

This method edits the boundary conditions and loads applied in the
ABAQUS model, performing the following tasks:
- Applies the nodal loads determined by the ’determine_adjoint_load’
method, if they are non-zero.

- Supresses non-adjoint active loads.
- Supresses non-zero displacements.

The loads suppressed during are identified in list, which is stored
in the class attribute "active_nodes". This list is then used to
reverse the changes made by this method once the adjoint model
concludes its analysis.

Inputs:
-------
- active_bc (dict): dictionary with the data of non-zero boundary
conditions imposed in the model (such as non-zero displacements).

"""
self.active_nodes = []
node_range = range(0,len(self.nodes))

# Create a nodal force on the nodes and record their label in order to
# disable the adjoint loads at the end of the process.
for i in node_range:

non_zero_force = self.non_zero_force_check(self.nodes[i].label)
if non_zero_force == True:

self.active_nodes.append(self.nodes[i].label)
self.apply_nodal_load(self.nodes[i].label)

# Suppress non-adjoint active loads.
for item in active_loads:

self.mdb.models[self.model_name].loads[item].suppress()

# Supress imposed non-zero displacements.
for key in active_bc.keys():

for step in active_bc[key].keys():
(

u1,
u2,
u3,
ur1,
ur2,
ur3,

) = self.suppress_displacement_BC(active_bc[key][step])

self.mdb.models[self.model_name].boundaryConditions[key] \
.setValuesInStep(step, u1 = u1, u2 = u2, u3 = u3,

ur1 = ur1, ur2 = ur2, ur3 = ur3)

def non_zero_force_check(self, node_label):
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""" Non zero force check method

Determines if the adjoint load assigned to a node is null or not.

The method verifies if a load has been assigned to the node, and then
checks if at least one coordinate of the load vector is different than
zero.

Input:
------
- node_label (int): label of the node whose force is being evaluated.

Output:
-------
- check (bool): boolean variable determining if the force applied to
the node is not null (True) or not (False).

"""
check = None

# If the node was assigned a load:
if hasattr(self.global_node_force[node_label], ’shape’):

# Check if it has at least one non-zero component (2D vector).
if self.planar == 1:

cond_1 = (self.global_node_force[node_label][0] != 0.0)
cond_2 = (self.global_node_force[node_label][1] != 0.0)

check = (cond_1 or cond_2)

# Check if it has at least one non-zero component (3D vector)
elif self.planar == 0:

cond_1 = (self.global_node_force[node_label][0] != 0.0)
cond_2 = (self.global_node_force[node_label][1] != 0.0)
cond_3 = (self.global_node_force[node_label][2] != 0.0)

check = (cond_1 or cond_2 or cond_3)

else:
raise Exception(

"Unexpected value for ’planar’ variable in "
" ’non_zero_force_check’ method of class AdjointModel."

)
else:

check = False

return check

def apply_nodal_load(self, node_label):
""" Apply nodal load method

Applies a nodal load, determined by the ’determine_adjoint_load’
method, at a given load. The load is created at the first step of the
ABAQUS model.

Input:
------
- node_label (int): label of the node whose force is being evaluated.
"""
# Selects the node.
node_region = self.mdb.models[self.model_name].rootAssembly \

.instances[self.part_name+’-1’] \

.sets["adjoint_node-"+str(node_label)]

# Identifies the first step of the ABAQUS simulation.
first_step = self.mdb.models[self.model_name].steps.keys()[1]

# Applies the nodal load (2D vector).
if self.planar == 1:

self.mdb.models[self.model_name].ConcentratedForce(
name = "adjoint_load-"+str(node_label),
createStepName = first_step,
region = node_region,
cf1 = float(self.global_node_force[node_label][0]),
cf2 = float(self.global_node_force[node_label][1]),
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distributionType = UNIFORM,
field = ’’,
localCsys = None

)

# Applies the nodal load (3D vector).
elif self.planar == 0:

self.mdb.models[self.model_name].ConcentratedForce(
name = "adjoint_load-"+str(node_label),
createStepName = first_step,
region = node_region,
cf1 = float(self.global_node_force[node_label][0]),
cf2 = float(self.global_node_force[node_label][1]),
cf3 = float(self.global_node_force[node_label][2]),
distributionType = UNIFORM,
field = ’’,
localCsys = None

)

else:
raise Exception(

"Unexpected value for ’planar’ variable in ’apply_nodal_load’\n"
"method of class AdjointModel."

)

def suppress_displacement_BC(self, bc_list):
""" Suppress displacement boundary conditions method

This method checks if a boundary condition is active and if it applies
a non-zero displacement. If both conditions are confiremd, the method
will suppress the boundary condition.

This method outputs 6 variables, indicating if any possible degree of
freedom of the boundary condition (3 displacements and 3 rotations)
was suppressed.

Input:
------
- bc_list (dict): dictionary with the value and state variables of an
ABAQUS boundary condition.

Output:
-------
- u1, u2, u3, ur1, ur2, ur3 (symbolicConstants.SymbolicConstant):
ABAQUS variables defining if the degrees of freedom of the boundary
condition were suppressed (FREED) or not (UNCHANGED).

"""
value = bc_list[’value’]
state = bc_list[’state’]
output_var = []

# Changes non-zero "SET" boundary conditions to "FREED".
for i in range(0,6):

if value[i] != 0 and state[i] == SET:
output_var.append(FREED)

else:
output_var.append(UNCHANGED)

u1, u2, u3, ur1, ur2, ur3 = output_var

return u1, u2, u3, ur1, ur2, ur3

def resume_displacement_BC(self, bc_list):
""" Resume displacement boundary conditions method

This method reverts the changes made by the ’suppress_displacement_BC’
method, assigning the original ’state’ and ’value’ of the boundary
condition

Input:
------
- bc_list (dict): dictionary with the value and state variables of an
ABAQUS boundary condition.
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Output:
-------
- u1, u2, u3, ur1, ur2, ur3 (symbolicConstants.SymbolicConstant):
ABAQUS variables defining, either, the original displacement imposed
at each degree of freedom of the boundary condition, or that the
value should be equal to the one defined in the previous step
(UNCHANGED).

"""
value = bc_list[’value’]
state = bc_list[’state’]
output_var = []

# Changes non-zero "SET" boundary conditions to their original value.
for i in range(0,6):

if value[i] != 0 and state[i] == SET:
output_var.append(value[i])

else:
output_var.append(UNCHANGED)

u1, u2, u3, ur1, ur2, ur3 = output_var

return u1, u2, u3, ur1, ur2, ur3

def determine_stress_and_deformation(
self, node_displacement, xe, node_rotation, node_coordinates,
local_coord_system

):
""" Determine stress and deformation method

Determines the stress and deformation vectors at the nodes and
integration points of each element.

The output is stored in the class attributes: deformation_vector,
deformation_int, stress_vector, and stress_vector_int.

During the process, the strain-displacement matrix (B matrix) is also
determined at each node and integration point. This information is also
stored in the class attributes: b_matrix, and b_matrix_int.

Inputs:
-------
- node_displacement (dict): dictionary with the displacement of each
node.

- xe (dict): dictionary with the design variables of all elements in
the topology optimization process.

- node_rotation (dict): dictionary with the node rotations of nodes in
each element.

- node_coordinates (dict): dictionary with the coordinates of each
node.

- local_coord_system (dict): dictionary with the local coordinate
systems of each element.

"""

# Determins the local coordinates of the element nodes and integration
# points.
elmt_formulation = ElementFormulation(self.element_type)
s, t, v = elmt_formulation.local_node_coordinates()
s_int, t_int, v_int = elmt_formulation.local_int_point_coordinates()

# If the element type is not S4, sets unused variables to None.
if self.element_type != ’S4’:

a_rot, b_rot = None, None
v1_vector, v2_vector, vn_vector = None, None, None
vect_transf_m, mat_transf_m = None, None

# For each element:
for elmt in self.all_elmts:

# Determins the node global coordinates.
xyz_coord = self.coordinate_vectors(elmt, node_coordinates)
x_coord, y_coord, z_coord = xyz_coord

# Creates the node displacement vector.
node_disp_vector = self.elmt_node_displacement_vect(
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elmt, node_displacement, node_rotation
)

# For S4 elements:
# Determines the node rotations, normal vectors, transformation
# matrixes, selects the most stressed surface, and sets the
# C matrix to the local coordinate system.
if self.element_type == ’S4’:

a_rot, b_rot = self.rotation_vectors(elmt, node_rotation)

v1_vector, v2_vector, vn_vector = \
self.node_normal_vectors(elmt)

vect_transf_m = self.vect_transf_matrix(
elmt, local_coord_system

)

mat_transf_m = self.matx_transf_matrix(
v1_vector[0], v2_vector[0], vn_vector[0]

)

v = self.surface_selection(
elmt,
node_disp_vector,
s, t, v,
x_coord, y_coord, z_coord,
v1_vector, v2_vector, vn_vector,
a_rot, b_rot,
elmt_formulation

)

self.c_matrix[elmt.label] = self.local_c_matrix(
mat_transf_m, elmt

)

# For each node:
for i in self.elmt_points:

# Determines the B and Jacobian matrixes in the node and
# integration point.
b_matrix, jacobian = elmt_formulation.b_matrix_and_jac(

s[i], t[i], v[i],
x_coord, y_coord, z_coord,
v1_vector, v2_vector, vn_vector,
a_rot, b_rot,
self.shell_thickness

)
b_matrix_int, jacobian_int = elmt_formulation.b_matrix_and_jac(

s_int[i], t_int[i], v_int[i],
x_coord, y_coord, z_coord,
v1_vector, v2_vector, vn_vector,
a_rot, b_rot,
self.shell_thickness

)

# Determines the stress and strain vectors in the node and
# integration point.
deformation = np.dot(b_matrix, node_disp_vector)
deformation_int = np.dot(b_matrix_int, node_disp_vector)

stress_vect = self.determine_stress_vector(
elmt, vect_transf_m, mat_transf_m, deformation, xe

)
stress_vect_int = self.determine_stress_vector(

elmt, vect_transf_m, mat_transf_m, deformation_int, xe
)

# Sorts the data into the class attributes.
self.deformation_vector[elmt.connectivity[i]+1][elmt.label] = \

deformation
self.deformation_int[elmt.label][i+1] = deformation_int

self.stress_vector[elmt.connectivity[i]+1][elmt.label] = \
stress_vect
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self.stress_vector_int[elmt.label][i+1] = stress_vect_int

self.jacobian[elmt.connectivity[i]+1][elmt.label] = jacobian
self.jacobian_int[elmt.label][i+1] = jacobian_int

self.b_matrix[elmt.connectivity[i]+1][elmt.label] = b_matrix
self.b_matrix_int[elmt.label][i+1] = b_matrix_int

def determine_stress_vector(
self, elmt, vector_trans_m, matrix_trans_m, deformation, xe

):
""" Determine stress vector method

Determines the stress vector based on the deformation observed in a
given point (node or integration point) and on the stiffness of the
element.

If the point belongs to a shell element, the stress vector is converted
to the default coordinate system assigned by ABAQUS.

Inputs:
-------
- elmt (MeshElementArray): shell element where the stress will be
determined.

- vector_trans_m, matrix_trans_m (numpy.array): transformation
matrixes.

- deformation (array): vector with the deformations observed at the
node or integration_point of the element.

- xe (dict): dictionary with the design densities of all elements in
the topology optimization process.

Output:
-------
- stress_vector (array): stress vector in the default coordinate system
assigned by ABAQUS.

"""

# Fetches the C matrix and determins the amplified stress vector.
elmt_c_matrix = self.c_matrix[elmt.label]
sqrt_rho = math.sqrt(self.xe_all(elmt.label, xe))
sv = np.dot(elmt_c_matrix, deformation) * sqrt_rho

# For S4 elements, rotates the vector to the local coordinate system.
if self.element_type == ’S4’:

s_matrix = np.array([[sv[0][0],sv[3][0],sv[4][0]],
[sv[3][0],sv[1][0],sv[5][0]],
[sv[4][0],sv[5][0],sv[2][0]]])

s_matrix = np.dot(vector_trans_m.T,
np.dot(s_matrix, vector_trans_m))

stress_vector = np.array([[s_matrix[0][0]],
[s_matrix[1][1]],
[s_matrix[2][2]],
[s_matrix[0][1]],
[s_matrix[0][2]],
[s_matrix[1][2]]])

else:
stress_vector = sv

return stress_vector

def elmt_node_displacement_vect(
self, elmt, node_displacement, node_rotation = None

):
""" Elemental node displacement vector method

Creates a vertical array with the displacement of the nodes in a given
element. The nodes are organized according to ABAQUS labelling
sequence. If the element is a shell element (S4), the code will append
the node rotations, as they also constitute 2 possible degrees of
freedom for the shell nodes. In this case, the rotation along the third
axis is discarded, as it was set to zero during the transformation to
the local coordinate system.
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Inputs:
-------
- elmt (MeshElementArray): element of the nodes to be organized.
- node_displacement (dict): dictionary with the displacement of each
node.

- node_rotation (dict): dictionary with the node rotations of nodes in
each element.

Outputs:
--------
- node_disp_vector (array): vertical vector with the node
displacements, and node rotation if it is a shell element.

"""

node_disp_vector = None

# Selects the relevant node displacement coordinates (for 2D or 3D
# problems) and node rotations (for shell elements).
# Then, stacks them into a single vector.
for node in elmt.connectivity:

displacements = node_displacement[node+1]

if self.element_type in ["CPS4", "CPE4"]:
disp_vector = np.array([[item] for item in displacements[0:2]])

else:
disp_vector = np.array([[item] for item in displacements])

if hasattr(node_disp_vector, "shape"):
node_disp_vector = np.vstack((node_disp_vector, disp_vector))

else:
node_disp_vector = disp_vector

if self.element_type == ’S4’:
rotations = node_rotation[elmt.label][node+1]
rot_vector = np.array([[item] for item in rotations[0:2]])
node_disp_vector = np.vstack((node_disp_vector, rot_vector))

return node_disp_vector

def coordinate_vectors(self, elmt, node_coords):
""" Coordinate vectors method
Organizes the node coordinates in three lists, following the node
labelling sequence set by ABAQUS.

If a third dimension does not exist, the ’z_coord’ dictionary is
returned empty.

Inputs:
-------
- elmt (MeshElementArray): element of the nodes to be organized.
- node_coords (dict): dictionary with the node coordinates of each
element.

- number_nodes (int): number of nodes in the element.

Outputs:
--------
- x_coord, y_coord, z_coord (lists): lists with the node coordinates,
following the node labelling sequence set by ABAQUS.

"""
x_coord, y_coord, z_coord = [], [], []

elmt_points = self.elmt_points

x_coord = [node_coords[elmt.connectivity[i]+1][0] for i in elmt_points]
y_coord = [node_coords[elmt.connectivity[i]+1][1] for i in elmt_points]

if self.element_type in [’S4’, ’C3D8’]:
z_coord = [node_coords[elmt.connectivity[i]+1][2]

for i in elmt_points]

return x_coord, y_coord, z_coord

def rotation_vectors(self, elmt, node_rotation):
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""" Rotation vectors method
Organizes the node rotations in two lists, following the node
labelling sequence set by ABAQUS.

This method is similar to the ’elmt_node_displacement_vect’ method,
differing on the fact that it returns the node rotations separately.

Inputs:
-------
- elmt (MeshElementArray): element of the nodes to be organized.
- node_rotation (dict): dictionary with the node rotations of nodes in
each element.

- number_nodes (int): number of nodes in the element.

Outputs:
--------
- a_rot, b_rot (lists): lists with the node rotations of a given
element, following the node labelling sequence set by ABAQUS.

"""
elmt_points = self.elmt_points
rotations = node_rotation[elmt.label]

a_rot = [rotations[elmt.connectivity[i]+1][0] for i in elmt_points]
b_rot = [rotations[elmt.connectivity[i]+1][1] for i in elmt_points]

return a_rot, b_rot

def node_normal_vectors(self, elmt):
""" Node normal vectors method

Returns the node normal vectors as three different list variables.

Inputs:
-------
- elmt (MeshElementArray): element of the nodes to be organized.

Outputs:
--------
- v1_vector, v2_vector, vn_vector (lists): lists with the node normal
directions.

"""
v1_vector = []
v2_vector = []
vn_vector = []
normal_vector = self.node_normal_vector[elmt.label]

for node in elmt.connectivity:
v1_vector.append(normal_vector[node + 1]["v1"])
v2_vector.append(normal_vector[node + 1]["v2"])
vn_vector.append(normal_vector[node + 1]["vn"])

return v1_vector, v2_vector, vn_vector

def vect_transf_matrix(self, elmt, local_coord_system):
""" Vector transformation matrix method

Returns a transformation matrix suitable to convert a vector from the
global to the element local coordinate system.

Inputs:
-------
- elmt (MeshElementArray): element to be considered.
- local_coord_system (dict): dictionary with the local coordinate
systems of each element.

Output:
-------
- transformation_matrix (numpy.array): array with the transformation
matrix.

"""
local_coord_vectors = local_coord_system[elmt.label]

transformation_matrix = np.array([local_coord_vectors[0],
local_coord_vectors[1],
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local_coord_vectors[2]])

transformation_matrix = np.linalg.inv(transformation_matrix)

return transformation_matrix

def matx_transf_matrix(self, v1, v2, vn):
""" Matrix transformation matrix method

Returns a transformation matrix suitable to convert a matrix from the
global to the element local coordinate system.

Inputs:
-------
- v1, v2, vn (numpy.array): vectors defining the element local
coordinate system.

Output:
-------
- transformation_matrix (numpy.array): array with the transformation
matrix.

"""
ex = np.array([1.0, 0, 0])
ey = np.array([0, 1.0, 0])
ez = np.array([0, 0, 1.0])
l1 = np.dot(ex, v1) / (np.linalg.norm(ex) * np.linalg.norm(v1))
l2 = np.dot(ex, v2) / (np.linalg.norm(ex) * np.linalg.norm(v1))
l3 = np.dot(ex, vn) / (np.linalg.norm(ex) * np.linalg.norm(v1))
m1 = np.dot(ey, v1) / (np.linalg.norm(ey) * np.linalg.norm(v2))
m2 = np.dot(ey, v2) / (np.linalg.norm(ey) * np.linalg.norm(v2))
m3 = np.dot(ey, vn) / (np.linalg.norm(ey) * np.linalg.norm(v2))
n1 = np.dot(ez, v1) / (np.linalg.norm(ez) * np.linalg.norm(vn))
n2 = np.dot(ez, v2) / (np.linalg.norm(ez) * np.linalg.norm(vn))
n3 = np.dot(ez, vn) / (np.linalg.norm(ez) * np.linalg.norm(vn))

line_1 = [l1 ** 2, m1 ** 2, n1 ** 2, l1 * m1, n1 * l1, m1 * n1]
line_2 = [l2 ** 2, m2 ** 2, n2 ** 2, l2 * m2, n2 * l2, m2 * n2]
line_3 = [l3 ** 2, m3 ** 2, n3 ** 2, l3 * m3, n3 * l3, m3 * n3]
line_4 = [2 * l1 * l2, 2 * m1 * m2, 2 * n1 * n2, l1 * m2 + l2 * m1,

n1 * l2 + n2 * l1, m1 * n2 + m2 * n1]
line_5 = [2 * l3 * l1, 2 * m3 * m1, 2 * n3 * n1, l3 * m1 + l1 * m3,

n3 * l1 + n1 * l3, m3 * n1 + m1 * n3]
line_6 = [2 * l2 * l3, 2 * m2 * m3, 2 * n2 * n3, l2 * m3 + l3 * m2,

n2 * l3 + n3 * l2, m2 * n3 + m3 * n2]

transformation_matrix = np.array([line_1,
line_2,
line_3,
line_4,
line_5,
line_6])

return transformation_matrix

def surface_selection(
self, elmt, node_displacement_vector, s, t, v, x_coord, y_coord,
z_coord, v1_vector, v2_vector, vn_vector, a_rot, b_rot,
elmt_formulation

):

""" Surface selection method

Determines if the largest deformation, and consequently largest stress,
occurs in the upper or lower surface of a shell element.

The process requires the determination of the b_matrix, and finally the
deformation on both sides of the shell element. Based on the largest
deformation, the method outputs the local coordinate value of the upper
or lower surface (1.0 or -1.0, respectively).

Inputs:
-------
- elmt (MeshElementArray): shell element to be evaluated.
- node_displacement_vector (array): vertical vector with the node
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displacements, and node rotation if it is a shell element.
- s, t, v (dicts): dictionaries with the local coordinates of each
node.

- x_coord, y_coord, z_coord (lists): lists with the node coordinates,
following the node labelling sequence set by ABAQUS.

- v1_vector, v2_vector, vn_vector (): Vectors indicating the in-plane
directions of the node local coordinate system (as illustrated in the
book Finite Element Procedures, 2nd edition, written by Klaus-Jurgen
Bathe, in section 5.4, page 437, figure 5.33).

- a_rot, b_rot (lists): lists with the node rotations of a given
element, following the node labelling sequence set by ABAQUS.

- elmt_formulation (ElementFormulation class): class with information
regarding the formulation of the element being used in the ABAQUS
model.

Output:
-------
- v (float): local coordinate value of the upper or lower shell surface
(1.0 or -1.0, respectively).

"""
upper_def, lower_def = 0, 0

# Determines the deformation on the upper surface.
for key in v.keys():

v[key] = 1.0

for i in self.elmt_points:

b_matrix, _ = elmt_formulation.b_matrix_and_jac(
s[i], t[i], v[i], x_coord, y_coord, z_coord, v1_vector,
v2_vector, vn_vector, a_rot, b_rot, self.shell_thickness

)
deformation = np.dot(b_matrix, node_displacement_vector)
upper_def += np.linalg.norm(deformation)

# Determines the deformation on the lower surface.
for key in v.keys():

v[key] = -1.0

for i in self.elmt_points:

b_matrix, _ = elmt_formulation.b_matrix_and_jac(
s[i], t[i], v[i], x_coord, y_coord, z_coord, v1_vector,
v2_vector, vn_vector, a_rot, b_rot, self.shell_thickness

)
deformation = np.dot(b_matrix, node_displacement_vector)
lower_def += np.linalg.norm(deformation)

# Selects the surface with the largest deformation.
if upper_def >= lower_def:

for key in v.keys():
v[key] = 1.0

else:
for key in v.keys():

v[key] = -1.0

return v

def xe_all(self, label, xe):
""" Xe all method

Returns the design density of a given element. If the element is not
part of the editable_region, returns 1.0.

Inputs:
-------
- label (int): label of the element to be evaluated.
- xe (dict): dictionary with the design densities of all elements.

Output:
-------
- rho (float): design density of the element. Set to 1.0 if the element
does not belong to the editable region.

"""
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if label in xe.keys():
return xe[label]

else:
return 1.0

def multiply_VM_matrix(self, v1, v2):
""" Multiply by Von-Mises matrix method

This method multiplies two vectors by the Von-Mises matrix, used to
determine the Von-Mises stress vector.

Note: If v1 is equal to v2, the output of this function is equal to
the square of the Von-Mises stress.

Inputs:
-------
- v1, v2 (array): vectors to be multiplied by the Von-Mises matrix, on
the left-hand and right-hand side of the matrix, respectively.

Output:
-------
- vm_vector (array): product of the multiplication by the Von-Mises
matrix.

"""

dim = int(max(v1.shape))

# Selects the Von-Mises matrix based on the vector size.
if dim == 3:

matrix = np.array([[1,-0.5,0],
[-0.5, 1,0],
[0, 0,3]])

elif dim == 6:
matrix = np.array([[1,-0.5,-0.5,0,0,0],

[-0.5, 1,-0.5,0,0,0],
[-0.5, -0.5, 1,0,0,0],
[0, 0, 0,3,0,0],
[0, 0, 0,0,3,0],
[0, 0, 0,0,0,3]])

else:
raise Exception(

"Unexpected dimension for the stress vector in the \n"
"’multiply_von_mises_matrix’ method."

)

# Returns the product.
return np.dot(v1.T, np.dot(matrix, v2))

def local_c_matrix(self, matrix_trans_m, elmt):
""" Local C matrix method

Converts the element stiffness matrix to the element local coordinate
system.

Inputs:
-------
- matrix_trans_m (array): transformation matrix.
- elmt (MeshElementArray): element where the transformation should
be performed.

"""
label = elmt.label
local_c_matrix = np.dot(matrix_trans_m.T,

np.dot(self.c_matrix[label], matrix_trans_m)
)

return local_c_matrix

def stress_sensitivity(self, xe, q, state_strain, adjoint_strain):
""" Stress sensitivity method

Determines the sensitivity of the P-norm maximum stress approximation
to changes in the design density of each element, in accordance with
the research article [1]. A brief and a more detailed explanation
can be found below.
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This method determines and outputs the stress sensitivity. The two
main intermediate terms (’d_pnorm_spf’ and ’d_pnorm_displacement’)
are determined by the ’determine_d_pnorm_spf’ and
’determine_d_pnorm_displacement’ methods, and stored as an attribute
of this class for their mathematical relevance.

Two attributes are generated by this method to store the element stress
sensitivity, one for the discrete value and another for the continuous
value. The continuous value is independent of the mesh used in the FEA,
making it better as a reference for validations or comparisons with
numerical/analitical derivatives. However, the discrete value is
dependent on the mesh used, making it more suitable to be passed to the
optimizers since, in the general case, the optimizers should not have
information on the mesh or element size.

Inputs:
-------
- xe (dict): dictionary with the design variables of all elements in
the topology optimization process.

- q (float): value of the exponent used in the p-norm approximation.
- state_strain (dict): dictionary with the strains at the integration
points of the elements that belong to the state model (original
model).

- adjoint_strain (dict): dictionary with the strains at the integration
points of the elements that belong to the adjoint model.

Outputs:
--------
- elmt_stress_sensitivity_discrete (dict): dictionary with the
sensitivity of the P-norm maximum stress approximation to changes in
the design densities.

BRIEF MATHEMATICAL EXPLANATION:
-------------------------------
This is done through an analytical derivative, which can be reduced
to the sum of two terms:

d_pnorm_rho = d_pnorm_spf + d_pnorm_displacement

Where:

- ’d_pnorm_rho’ is the derivative of the P-norm maximum stress
approximation with respect to (w.r.t.) the design density.

- ’d_pnorm_spf’ is a term of the derivative that depends on the
derivation of the stress penalization factor w.r.t. the design
variables.

- ’d_pnorm_displacement’ is a term of the derivative that depends on
the derivation of the displacement w.r.t. the design variables.
Obtained from the adjoint model.

DETAILED MATHEMATICAL EXPLANATION:
----------------------------------
This is done through an analytical derivative, obtained by the chain
rule, which considers three major terms:

d_pnorm_rho = d_pnorm_vm * d_vm_sigmaA * d_sigmaA_rho

Where:

- ’d_pnorm_rho’ is the derivative of the P-norm maximum stress
approximation with respect to (w.r.t.) the design density.

- ’d_pnorm_vm’ is the derivative of the P-norm maximum stress
approximation w.r.t. the Von-Mises stress.

- ’d_vm_sigmaA’ is the derivative of the Von-Mises stress w.r.t. the
amplified stress state (stress multiplied by the stress penalization
factor).

- ’d_sigmaA_rho’ is the derivative of the amplified stress state w.r.t.
the design densities.

The reader is reminded that ’sigmaA’ is defined as:
sigmaA = stress_amp_factor * C_matrix * b_matrix * displacement

where the ’stress_amp_factor’ is equal to the square root of the design
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density, as proposed in [1]. Therefore, since both the
’stress_amp_factor’ and the ’displacement’ are functions of the design
density, ’d_sigmaA_rho’ has two terms, here defined as follows:

d_sigmaA_rho = d_sigmaA_spf + d_sigmaA_displacement

Where:

d_sigmaA_spf = d_stress_amp_factor_rho * C_matrix * b_matrix \
* displacement

d_sigmaA_displacement = stress_amp_factor * C_matrix * b_matrix \
* d_displacement_rho

(Note that the character ’\’ refers to the code line-break command,
not the division operator ’/’).

’d_sigmaA_spf’ is easely determined analiticaly (derivative of a
square root), while ’d_sigmaA_displacement’ is be determined
through an adjoint model.

Due to the need of using the adjoint model, and to improve the
computational efficiency, the Stress sensitivity method will determined
’d_pnorm_rho’ as the sum of two terms:

d_pnorm_rho = d_pnorm_spf + d_pnorm_displacement

Where:

d_pnorm_spf = d_pnorm_vm * d_vm_sigmaA * d_sigmaA_spf

d_pnorm_displacement = d_pnorm_vm * d_vm_sigmaA \
* d_sigmaA_displacement

Since the adjoint model already considered the term
’d_pnorm_vm * d_vm_sigmaA’ in ’d_pnorm_displacement’, it can be finally
rewritten as:

d_pnorm_displacement = stress_amp_factor * adj_deformation \
* d_stiffness_rho * deformation

Where the ’adj_deformation’ is deformation from the adjoint model,
whose loads already considered the influence of
’d_pnorm_vm * d_vm_sigmaA’ for the sake of computational efficiency.
Note that the product ’b_matrix * displacement’ is replaced by the
’deformation’ of the regular model.

REFERENCES:
-----------
[1] - Holmberg, Erik, Bo Torstenfelt, and Anders Klarbring.
"Stress constrained topology optimization." Structural and
Multidisciplinary Optimization 48.1 (2013): 33-47.
"""
self.elmt_stress_sensitivity_continuous = {}
self.elmt_stress_sensitivity_discrete = {}

# Determines the two components of the derivative.
self.determine_d_pnorm_spf(xe, q)
self.determine_d_pnorm_displacement(xe, state_strain, adjoint_strain)

# Determine the element stress sensitivity in continuous form.
for elmt in self.all_elmts:

self.elmt_stress_sensitivity_continuous[elmt.label] = 0.0

# Note that d_pnorm_displacement should be a negative term,
# resulting from the derivation process.
self.elmt_stress_sensitivity_continuous[elmt.label] += (

self.d_pnorm_spf[elmt.label] \
+ self.d_pnorm_displacement[elmt.label]

)

# Determine the element stress sensitivity in discrete form.
for elmt in self.all_elmts:

int_p = 1
label = elmt.label
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det_jac = np.linalg.det(self.jacobian_int[label][int_p])
self.elmt_stress_sensitivity_discrete[elmt.label] = \

self.elmt_stress_sensitivity_continuous[elmt.label] / det_jac

return self.elmt_stress_sensitivity_discrete

def determine_d_pnorm_displacement(self, xe, state_strain, adjoint_strain):
""" Determine d_pnorm_displacement method

Determines the component of P-norm stress derivative w.r.t. the design
densities which contains the element nodal displacement.

The output is stored as a class attribute, for its mathematical
relevance.

Inputs:
-------
- xe (dict): dictionary with the design variables of all elements in
the topology optimization process.

- q (float): value of the exponent used in the p-norm approximation.
- state_strain (dict): dictionary with the strains at the integration
points of the elements that belong to the state model (original
model).

- adjoint_strain (dict): dictionary with the strains at the integration
points of the elements that belong to the adjoint model.

"""
self.d_pnorm_displacement = {}
p = self.p
for elmt in self.all_elmts:

self.d_pnorm_displacement[elmt.label] = 0.0
elmt_vol = self.elmt_volume[elmt.label]
c_matrix = self.c_matrix[elmt.label]

for i in self.elmt_points:

jacobian_int = self.jacobian_int[elmt.label][i+1]
det_jac = np.linalg.det(jacobian_int)
rho = self.xe_all(elmt.label, xe)

d_cMatrix_rho = p * c_matrix * rho ** (p - 1)
state_strain_int_p = state_strain[elmt.label][i + 1]
adj_strain_int_p = adjoint_strain[elmt.label][i + 1]

# Note that the negative sign comes from the derivation
# process (not explicit in the code).
dMatrix_ss = np.dot(d_cMatrix_rho, state_strain_int_p)
strain_products = -np.dot(adj_strain_int_p, dMatrix_ss)

self.d_pnorm_displacement[elmt.label] += (
strain_products * det_jac * self.shell_thickness / elmt_vol

)

def determine_d_pnorm_spf(self, xe, q):
""" Determine d_pnorm_spf method

Determines the component of P-norm stress derivative w.r.t. the design
densities which contains the stress penalization factor.

The output is stored as a class attribute, for its mathematical
relevance.

Inputs:
-------
- xe (dict): dictionary with the design variables of all elements in
the topology optimization process.

- q (float): value of the exponent used in the p-norm approximation.
"""
self.d_pnorm_spf = {}

vm_int_p = np.array([self.multiply_VM_matrix(int_p, int_p) ** 0.5
for elmt in self.stress_vector_int.values()
for int_p in elmt.values()])
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d_pnorm_vm_1 = sum(self.inv_int_p * vm_int_p ** q) ** ((1 / q) - 1)

for elmt in self.all_elmts:
self.d_pnorm_spf[elmt.label] = 0.0
elmt_vol = self.elmt_volume[elmt.label]
c_matrix = self.c_matrix[elmt.label]
for i in self.elmt_points:

sv = self.stress_vector_int[elmt.label][i+1]
jacobian_int = self.jacobian_int[elmt.label][i+1]
deformation_int = self.deformation_int[elmt.label][i+1]

det_jac = np.linalg.det(jacobian_int)
von_mises_squared = self.multiply_VM_matrix(sv, sv)

if float(von_mises_squared) != 0:
# ’stress_vector_int’ and ’real_stress_int’ may differ due
# to the stress penalization factor, which is included in
# the former but not in the latter. (They are qual for
# rho=0 or 1).
real_stress_int = np.dot(c_matrix, deformation_int)

d_pnorm_vm_2 = (
(von_mises_squared ** ((q - 1) / 2)) * self.inv_int_p

)
d_pnorm_vm = d_pnorm_vm_1 * d_pnorm_vm_2

d_vm_sigmaA = (von_mises_squared ** -0.5) \
* self.multiply_VM_matrix(sv, real_stress_int)\
* self.shell_thickness * det_jac

d_sigmaA_spf = 0.5 * self.xe_all(elmt.label, xe) ** (-0.5)

# Contribution of each integration point divided over the
# element volume.
self.d_pnorm_spf[elmt.label] += (

d_pnorm_vm * d_vm_sigmaA * d_sigmaA_spf / elmt_vol
)

def material_constraint_sensitivity(
mdb, material_constraint, mesh_uniformity, opt_method, model_name,
part_name, density = None

):
""" Material Constraint Sensitivity function
Determines the sensitivity of the mass or volume constraints to changes
in the density of each element.
The output is a dictionary with the values determined for each element.

Unless the mesh is non-uniform (where the size of the elements can differ),
the sensitivity will be set to 1.0 for all elements. This can be understood
as all elements contributing equally to the mass or volume constraint
imposed. This simplification is used to reduce the computational cost of
the function.

If the mesh is non-uniform, this function will execute multiple queries to
the ABAQUS model, which can significantly increase the computational cost.

Note: the commands specifyThickness=True,thickness=1.0 cause ABAQUS to
consider a thickness of 1.0 only if the element does not have a thickness
assigned to it. Therefore, in 2D cases with unknown thicness, the volume
obtained is numerically equal to the area of the element.

Inputs:
-------
- mdb (Mdb): model database from ABAQUS.
- material_constraint (int): variable defining if the material constraint

has been applied to the volume or mass of the region to be optimized.
- mesh_uniformity (int): variable defining of the mesh is uniform (all

elements have the same size) or not.
- opt_method (int): variable defining the optimization method to be used.
- model_name (str): Name of the ABAQUS model.
- part_name (str): Name of the ABAQUS part to be optimized.
- density (float): value of the material density (units of mass/volume).
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Outputs:
--------
- mat_const_sensitivity (dict): dictionary with the material constraint
sensitivity of each element.

- elmt_volume (dict): dictionary with the element volume of each element.
"""
mat_const_sensitivity = {}
elmt_volume = {}
part = mdb.models[model_name].parts[part_name]
all_elmts = part.elements

# Confirm that the density material property has been defined if using a
# mass-based material constraint in a model with non-uniform mesh.
# Notice that if the mesh is uniform, we can set the sensitivities equal to
# 1.0 (as they contribute equally to the total mass), and avoid the need
# for a defined material density property.
if material_constraint==0 and density==None and mesh_uniformity==0:

raise Exception(
"Missing material density property - it is necessary to define \n"
"the density of the material used in order to apply a mass-based\n"
"material constraint in a model with a non-uniform mesh. \n"

)

# Determine the sensitivities of the mass constraint to changes the in
# mass or volume of each element.
#
# For volume constraint, the sensitivity is equal to the element volume.
if material_constraint == 1:

# If the mesh is uniform and all elements have the same size, we
# can set the sensitivity equal to 1.0, reducing the number of
# queries submitted in Abaqus and greatly reducing the processing
# time.
if mesh_uniformity == 1:

for elmt in all_elmts:
mat_const_sensitivity[elmt.label] = 1.0

# If the mesh is not uniform (ex: using adaptive meshes), the code
# will query the volume of each individual element.
# Please note that this loop may be computationally expensive due
# to the potentially large number of queries submitted.
# However, if the mesh is uniform, it is acceptable to set this
# sensitivity equal and constant to all elements (usually, set to 1.0).
elif mesh_uniformity == 0:

for elmt in all_elmts:
region = mesh.MeshElementArray((elmt,))
vol = part.getMassProperties(regions = region,

specifyThickness = True,
thickness=1.0)[’volume’]

mat_const_sensitivity[elmt.label] = vol

else:
raise Exception(

"Unexpected value for the mesh_uniformity variable in the \n"
"in the material_constraint_sensitivity function"

)

# For mass constraint the sensitivity is equal to the mass of a fully solid
# element (design variable or design density equal to 1.0).
elif material_constraint == 0:

# If the mesh is uniform and all elements have the same size
# (and consequently, same mass), we can set the sensitivity equal
# to 1.0, reducing the number of queries submitted in Abaqus and
# greatly reducing the processing time.
if mesh_uniformity == 1:

for elmt in all_elmts:
mat_const_sensitivity[elmt.label] = 1.0

# If the mesh is not uniform (ex: using adaptive meshes) causing
# the elements to have different masses, the code will query the
# volume of each individual element.
# Please note that this loop may be computationally expensive due to
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# the potentially large number of queries submitted.
# However, if the mesh is uniform, it is acceptable to set this
# sensitivity equal and constant to all elements (usually, set to 1.0).
# Notice that the code multiplies the density for the volume instead
# of using the command getMassProperties()[’mass’].
# This is because user may set the initial element design density to
# be different than 1.0, which would lead to an incorrect
# sensitivity output.
elif mesh_uniformity == 0:

for elmt in all_elmts:
region = mesh.MeshElementArray((elmt,))
vol = part.getMassProperties(regions = region,

specifyThickness = True,
thickness = 1.0)[’volume’]

mat_const_sensitivity[elmt.label] = density*vol
else:

raise Exception(
"Unexpected value for the mesh_uniformity variable in the \n"
"material_constraint_sensitivity function."

)

else:
raise Exception(

"Unexpected value in the material_constraint variable in the \n"
"variable in the material_constraint_sensitivity function. \n"

)

# When solving stress dependent problems, it is necessary to determine
# the volume of each element.
# This information is used in the integration of the constraint values
# through each element.
if opt_method >= 4:

# In volume constrained problems with non-uniform mesh, this
# information has already been obtained in the previous loop.
# The code will only copy the variable.
if material_constraint == 1 and mesh_uniformity == 0:

elmt_volume = mat_const_sensitivity.copy()

# If the mesh is uniform, all elements have the same volume.
# The code will query the volume of the first element, and assign it to
# all other elements in the dictionary.
elif mesh_uniformity == 1:

sample_elmt = all_elmts[0]
region = mesh.MeshElementArray((sample_elmt,))
sample_volume = part.getMassProperties(regions = region,

specifyThickness = True,
thickness = 1.0)[’volume’]

for elmt in all_elmts:
elmt_volume[elmt.label] = sample_volume

# If the element volume has not been extracted previously and the mesh
# is non-uniform, the code will query each element individually.
elif material_constraint == 0 and mesh_uniformity == 0:

for elmt in all_elmts:
region = mesh.MeshElementArray((elmt,))
vol = part.getMassProperties(regions = region,

specifyThickness = True,
thickness = 1.0)[’volume’]

elmt_volume[elmt.label] = vol
else:

raise Exception(
"Unexpected combination of parameters found in the \n"
"material_constraint_sensitivity when preparing the element\n"
"volume for constrained topology optimization."

)

return mat_const_sensitivity, elmt_volume

#%% Material and stress constraint evaluation.
class MaterialConstraint():

""" Material constraint class
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This class is responsible for updating the value of the material
constraint at each iteration.

The value of the material constraint may be constant or variable
during the topology optimization process.

When variable, the material constraint will be decreased in each
iteration at a percentual ratio defined by the ’evol_ratio’ variable.
The result is a gradual decrease of the material constraint, until its
desired value is reached. To set the material constraint as variable,
the value of ’evol_ratio’ should be lower than the value of the
’target_material’.

Choosing an ’evol_ratio’ to 1.0 (or to any value larger than the
intended material constraint) will set the material constraint to a
constant value, equal to the target_material variable.

Attributes:
-----------
- target_material (float): maximum value of the material constraint.
- evol_ratio (float): ratio at which the material constraint should be
imposed/reduced.

- mat_const_sensitivities (dict): dictionary with the material constraint
sensitivity to changes in the design variables.

Method:
-------
- update_constraint(current_material, target_material_history,
editable_xe): updates the current value of the material constraint and
updates the data records.

"""
def __init__(self, target_material, evol_ratio, mat_const_sensitivities):

self.target_material = target_material
self.evol_ratio = evol_ratio
self.mat_const_sensitivities = mat_const_sensitivities

def update_constraint(
self, current_material, target_material_history, editable_xe

):
""" Update constraint method

Updates the value of the material constraint for the next iteration.

The material constraint is updated according to the following formula,
as long as it is larger than the target_material constraint value:

Constraint = max(Target_material,
Current_material * (1 - evol_ratio)

)

Then, updates the material constraint records.
Notice that the function uses the material constraint sensitivities,
which are equal to the volume or mass of each element. This allows
the code to account for the existance of non-uniform meshes.

Inputs:
-------
- current_material (list): list with the current value of the material
constraint.

- target_material_history (list): list with the values of the material
constraint that the code tried to acchieve.

- editable_xe (dict): dictionary with the values of the design
densities.

Outputs:
--------
- current_material (list): list with the current value of the material
constraint.

- target_material_history (list): list with the values of the material
constraint that the code tried to acchieve.

"""
# Determines the current material fraction.
max_mat = 0
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current_mat = 0
for elmt_label, density in editable_xe.items():

max_mat += self.mat_const_sensitivities[elmt_label]
current_mat += self.mat_const_sensitivities[elmt_label] * density

current_material.append(current_mat / max_mat)

# Determines the target material fraction according to the evol_ratio.
# Then selects the largest target material value and appends it to the
# record.
intermediate_mat_val = current_material[-1] * (1 - self.evol_ratio)
next_constraint_value = max(self.target_material, intermediate_mat_val)
target_material_history.append(next_constraint_value)

return current_material, target_material_history

def p_norm_approximation(stress_vector_int, inv_int_p, q, mult_VM_matrix):
""" P-norm maximum Von-Mises stress approximation function

Determines the value of the maximum stress approximation. This function
assumes that the maximum stress is determined by the P-norm approximation
function, as:

sigmaPN = (inv_int_p * sum(vm_stress ** q)) ** (1 / q)

Where ’inv_int_p’ is the inverse of the number of stress evaluation points,
in this case the inverse of the number integration points.

Inputs:
-------
- stress_vector_int (dict): dictionary with stress vector of each

integration point in each element.
- inv_int_p (float): inverse of the number of integration points.
- q (float): value of the exponent used in the p-norm approximation.
- mult_VM_matrix (function): function that multiplies two vectors by the

Von-Mises matrix.

Output:
-------
- stress_constraint (numpy array): value of the stress constraint, defined

as a fraction.
"""
vm_stress_q = []

# Determine and store the Von-Mises stress in each integration point,
# raised to the P-norm exponential factor.
for elmt in stress_vector_int.values():

for int_p in elmt.values():
vm_stress_q.append((mult_VM_matrix(int_p, int_p) ** 0.5) ** q)

# Calculate P-norm approximation and stress constraint.
sigmaPN = np.sum(inv_int_p * np.array(vm_stress_q)) ** (1.0 / q)

return sigmaPN

def stress_constraint_evaluation(sigmaPN, s_max):
""" Stress constraint evaluation function

Determines the value of the stress constraint, given the current maximum
stress and the maximum allowable stress.

Inputs:
-------
- sigmaPN (float): p-norm approximation of the maximum Von-Mises stress.
- s_max (float): maximum stress allowed in the topology optimized design.

Output:
-------
- stress_constraint (numpy array): value of the stress constraint, defined

as a fraction.
"""
stress_constraint = float((sigmaPN / s_max) - 1.0)
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return np.array(stress_constraint, ndmin=2)

#%% Data filtering.
def init_filter(rmax, elmts, all_elmts, nodes, mdb, model_name, part_name):

""" Initiate filter function

This wrapper function initializes and prepares a DataFilter object, which
tis used o apply a blurring filter to the results obtained during the
topology optimization process.

If the user did not request the use of a blurring filter (setting the
search radius ’rmax’ to 0), the function outputs a None variable.

Inputs:
-------
- rmax (float): search radius that defines the maximum distance between the
center of the target element and the edge of its neighbouring region.

- elmts (MeshElementArray): element_array from ABAQUS with the relevant
elements in the model.

- all_elmts (MeshElementArray): element array from ABAQUS with all elements
considered in the topology optimization process.

- nodes (MeshNodeArray): mesh node array from ABAQUS with all nodes that
belong to elements considered in the topology optimization process.

- mdb (Mdb): model database from ABAQUS.
- model_name (str): Name of the ABAQUS model.
- part_name (str): Name of the ABAQUS part to be optimized.

Output:
-------
- opt_filter (class): DataFilter instance with the filter preparation
already concluded.

"""
if rmax > 0:

opt_filter = DataFilter(rmax, elmts, all_elmts, nodes,
mdb, model_name, part_name)

opt_filter.filter_preparation()
else:

opt_filter = None

return opt_filter

class DataFilter:
""" Data Filter class

Class responsible for creating a filter map, defining the influence between
the different elements, and applying it.

Attributes:
-----------
- rmax (float): search radius that defines the maximum distance between the
center of the target element and the edge of its neighbouring region.

- elmts (MeshElementArray): element_array from ABAQUS with the relevant
elements in the model.

- all_elmts (MeshElementArray): element array from ABAQUS with all elements
considered in the topology optimization process.

- nodes (MeshNodeArray): mesh node array from ABAQUS with all nodes that
belong to elements considered in the topology optimization process.

- mdb (Mdb): model database from ABAQUS.
- model_name (str): Name of the ABAQUS model.

- part_name (str): Name of the ABAQUS part to be optimized.

Methods:
--------
- filter_preparation(): creates a filter map, defining how the elements
interact and influence each others.

- filter_function(var_dictionary, elmt_keys): applies the blurring filter
to the variable/property of a given list of elements selected.

- filter_densities(editable_xe, xe, xe_min, dp): applies the
’filter_function’ method, considering the differences between
’editable_xe’ and ’xe’, as well as the minimum density condition imposed
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by ’xe_min’.
"""
def __init__(

self, rmax, elmts, all_elmts, nodes, mdb, model_name, part_name
):

self.rmax = rmax
self.elmts = elmts
self.all_elmts = all_elmts
self.nodes = nodes
self.mdb = mdb
self.model_name = model_name
self.part_name = part_name

def filter_preparation(self):
"""Filter Preparation method

This function outputs a dictionary that stores two lists for each
element. The first list contains the labels of the elements that are
within a radius ’rmax’ of the center of the target element. The
elements that are fully contained by this radius define the
’neighborhood’ of the target element. The second list contains a
measurement of how close each element is to the target element,
defined by the value of rmax minus the actual distance between
elements.

As a result, the dictionary output consists of a map that defines how
each element is affected by the neighbouring elements, when using
sensitivity filters. This information is also stored as an attribute
of the DataFilter class.

Note: The neighborhood of a given element only considers elements that
are fully within the ’rmax’ radius. Elements only partially intersected
by the search sphere are not considered.

Outputs:
--------
- filter_map (dict): dictionary containing, for each element, the
labels of the elements in their neighbourhood and their pondered
contribution to the filtered result.

"""
center_coordinates, filter_map = {}, {}

# Calculate the coordinates of the center of each element
for elmt in self.all_elmts:

#labels of the nodes connected to each element.
node_labels = elmt.connectivity
center_coordinates[elmt.label] = np.zeros((3))

#calculates an average of the coordinates of the nodes connected to
#the element, leading to the coordinate of the center of the
#element.
for label in node_labels:

center_coordinates[elmt.label] += \
np.divide(self.nodes[label].coordinates,

len(node_labels))

for el in self.elmts:
filter_map[el.label] = [[],[]]
center = (center_coordinates[el.label][0],

center_coordinates[el.label][1],
center_coordinates[el.label][2])

radius = (self.rmax)

# Selects the elements that are FULLY WITHIN a sphere of radius
# rmax, centered in the middle of the element ’el’.
neighborhood = self.all_elmts.getByBoundingSphere(center = center,

radius = radius)

# If no element was totally within the search radius, include
# the central element as the only member of the neighborhood.
# Data recorded as a list to allow iteration of its contents.
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if len(neighborhood) == 0:
neighborhood = [self.all_elmts.getFromLabel(el.label)]

#The following three lines were intentionally left commented.
#They create a set for each neighbourhood, which is useful for
#debugging purposes and for understanding the functioning of the
#filter.
#
#self.mdb.models[self.model_name].parts[self.part_name].Set(
# elements=neighborhood,
# name = "Neighborhood element " + str(el.label))

# Determines the influence of each element in the neighborhood.
for em in neighborhood:

displacement_vector = np.subtract(center_coordinates[el.label],
center_coordinates[em.label])

distance = np.sqrt(np.sum(np.power(displacement_vector,2)))

# Records the labels of the elements within the neighborhood.
filter_map[el.label][0].append(em.label)

# Records ’how close’ (as in the opposite of the distance)
# the neighbours are to the central element.
filter_map[el.label][1].append(self.rmax - distance)

# Determines the influence of each neighbour to the central element.
sum_proximity = np.sum(filter_map[el.label][1])
elmt_influence = np.divide(filter_map[el.label][1], sum_proximity)
filter_map[el.label][1] = elmt_influence

self.filter_map = filter_map

def filter_function(self, var_dictionary, elmt_keys):
"""Filter function method

Applies a filter to each element. The filter applied considers a
pondered average of the variable being filtered as a function of how
close the neighboring elements are to the target element.

Outputs a dictionary with the filtered variable for each element.

Inputs:
-------
- var_dictionary (dict): dictionary with one entry for each element,
storing the value of the variable to be filtered.

- elmt_keys (list): list with the keys of the elements to be filtered.

Output:
-------
- var_dictionary (dict): dictionary with one entry for each element,
storing the value of the filtered variable.

"""
unfiltered_data = var_dictionary.copy()
for el in elmt_keys:

var_dictionary[el] = 0.0

# Calculates a pondered average of a variable (ex:sensitivity)
# considering the contribution of each element in the neighborhood.
# The contribution of each element is determined in the
# function filter_preparation.
for i in range(len(self.filter_map[el][0])):

original_value = unfiltered_data[self.filter_map[el][0][i]]
element_contribution = self.filter_map[el][1][i]
var_dictionary[el] += original_value * element_contribution

return var_dictionary

def filter_densities(self, editable_xe, xe, xe_min, dp):
""" Filter density method

Decorator method. Applies the sensitivity filter to both dictionaries
’xe’ and ’editable_xe’, considering their differences. The non-editable
elements included in ’xe’ are not altered.
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Inputs:
-------
- editable_xe: dictionary with the densities (design variables) of each
editable element in the model.

- xe: dictionary with the densities (design variables) of each
relevant element in the model.

- xe_min: minimum density allowed for the element. I.e. minimum value
allowed for the design variables.

- dp: number of decimals places to be considered in the interpolation.
By definition, equal to the number of decimal places in xe_min.

"""
xe = self.filter_function(xe, editable_xe.keys())

for key in editable_xe.keys():
temp_value = max(xe_min, round(xe[key], dp))
editable_xe[key] = temp_value
xe[key] = temp_value

return editable_xe, xe

#%% Optimization algorithms
def oc_discrete(

editable_xe, xe, ae, p, target_material, mat_constr_sensitivities,
xe_min

):
""" Optimality Criteria function - discrete version

Uses the optimality criteria to update the design variables. This
implementation of the OC only considers the minimization of the objective
function with a mass or volume constraint.
This implementation considers both the increase and reduction of the
elements density (bi-directional evolution).

Inputs:
-------
- editable_xe (dict): dictionary with the densities (design variables) of

each editable element in the model.
- xe (dict): dictionary with the densities (design variables) of each

relevant element in the model.
- move_limit (float): maximum change in the design variables during each

iteration.
- ae (dict): dictionary with the sensitivity of the objective function to

changes in each design variable.
- p (float): SIMP penalty factor.
- target_material (float): ratio between the target volume or mass and the

volume or mass of a full density design.
- mat_constr_sensitivities (dict): dictionary with the material constraint

sensitivities (mass or volume) of each element.
- xe_min (float): minimum density allowed for the element. I.e. minimum

value allowed for the design variables.

Outputs:
--------
- editable_xe (dict): dictionary with the densities (design variables) of

each editable element in the model.
- xe (dict): dictionary with the densities (design variables) of each

relevant element in the model.

Notes: setting the input variable ’p’ to a large value will cause the
topology optimization to behave in a discrete manner, considering only
elements with either maximum or minimum density.
"""
# Sets minimum and maximum values for the Lagrange Multiplier.
ae_values = -np.array(ae.values())
lo, hi = min(ae_values), max(ae_values)

# Sorts data into arrays for easier processing.
elmt_material = np.array([])
total_material = 0.0
for key in editable_xe.keys():

elmt_material = np.append(elmt_material, mat_constr_sensitivities[key])
total_material += mat_constr_sensitivities[key]
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# Applies bi-particion algorithm to determine the solid and void elements.
while abs((hi - lo) / hi) > 1.0e-5:

th = (lo + hi) / 2.0
for key in editable_xe.keys():

if -ae[key] > th:
editable_xe[key], xe[key] = 1.0, 1.0

else:
editable_xe[key], xe[key] = xe_min, xe_min

densities = np.array(editable_xe.values())

# Confirms if the material constraint is respected and adjusts
# accordingly.
if sum(densities * elmt_material) / total_material > target_material:

lo = th
else:

hi = th

return editable_xe, xe

def oc_continuous(
editable_xe, xe, move_limit, ae, p, target_material,
mat_constr_sensitivities, xe_min, dp

):
""" Optimality Criteria function - continuous version

Uses the optimality criteria to update the design variables. This
implementation of the OC only considers the minimization of the objective
function with a mass or volume constraint.
This implementation considers both the increase and reduction of the
elements density (bi-directional evolution).

Inputs:
-------
- editable_xe (dict): dictionary with the densities (design variables) of
each editable element in the model.

- xe (dict): dictionary with the densities (design variables) of each
relevant element in the model.

- move_limit (float): maximum change in the design variables during each
iteration.

- ae (dict): dictionary with the sensitivity of the objective function to
changes in each design variable.

- p (float): SIMP penalty factor.
- target_material (float): ratio between the target volume or mass and the
volume or mass of a full density design.

- mat_constr_sensitivities (dict): dictionary with the material constraint
sensitivities (mass or volume) of each element.

- xe_min (float): minimum density allowed for the element. I.e. minimum
value allowed for the design variables.

Outputs:
--------
- editable_xe (dict): dictionary with the densities (design variables) of
each editable element in the model.

- xe (dict): dictionary with the densities (design variables) of each
relevant element in the model.

Notes: setting the input variable ’p’ to a large value will cause the
topology optimization to behave in a discrete manner, considering only
elements with either maximum or minimum density.
"""
# Sets minimum and maximum values for the Lagrange Multiplier.
ae_values = -np.array(ae.values())
lo, hi = min(ae_values), max(ae_values)

densities = np.array([])
sensitivities = np.array([])
elmt_material = np.array([])
labels = []
total_material = 0.0

# Reorganizes data into numpy arrays for an easier processing and
# determines the total_material of the model.
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for key in editable_xe.keys():
densities = np.append(densities, float(editable_xe[key]))
sensitivities = np.append(sensitivities, float(ae[key]))
labels.append(key)
elmt_material = np.append(elmt_material, mat_constr_sensitivities[key])
total_material += mat_constr_sensitivities[key]

# Applies bi-particion algorithm to determine the solid and void elements.
while abs((hi - lo) / hi) > 1.0e-4:

th = (lo + hi) / 2.0
temp_densities = densities * (-sensitivities / th) ** 0.5
for i in range(0, len(temp_densities)):

if temp_densities[i] <= max(xe_min, densities[i] - move_limit):
temp_densities[i] = max(xe_min, densities[i] - move_limit)

elif temp_densities[i] >= min(1.0, densities[i] + move_limit):
temp_densities[i] = min(1.0, densities[i] + move_limit)

else:
pass

# Confirms if the material constraint is respected and adjusts
# accordingly.
current_material = sum((temp_densities)*elmt_material)
current_material_fraction = current_material / total_material
if current_material_fraction > target_material:

lo = th
else:

hi = th

# Rounds the output considering ’xe_min’.
for i in range(0, len(labels)):

editable_xe[labels[i]] = max(xe_min, round(temp_densities[i], dp))
xe[labels[i]] = max(xe_min, round(temp_densities[i], dp))

return editable_xe, xe

def mma(
editable_xe, xe, move_limit, obj_der, p, xe_min, target_material,
material_gradient, opt_method, dp, objh, iteration, x1, x2, low, upp,
p_norm_history = None, stress_const_gradient = None,
stress_constraint = None, s_max = None

):
""" Wrapper function for the Method of Moving Assymptotes

Wrapper function (or decorator) that reformats the variables used in the
topology optimization process, converting them into a format the is
compatible with the MMA function implemented by Kristen Svanberg.

The value of the objective function in the first iteration, as well as
the value of the constraints in the first iteration, are used as a
normalization factor in order to avoid numerical errors. In the
particular case of the material gradient, the maximum allowed material
used as a normalization factor.

Inputs:
-------
- editable_xe (dict): dictionary with the densities (design variables) of

each editable element in the model.
- xe (dict): dictionary with the densities (design variables) of each

relevant element in the model.
- move_limit (float): maximum change in the design variables during each

iteration.
- obj_der (dict): dictionary with the sensitivity of the objective function

to changes in each design variable.
- p (float): SIMP penalty factor.
- xe_min (float): minimum density allowed for the element. I.e. minimum

value allowed for the design variables.
- target_material (float): ratio between the target volume or mass and the

volume or mass of a full density design.
- material_gradient (dict): dictionary with the material constraint

sensitivities (mass or volume) of each element.
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- objh (list): record with values of the objective function.
- iteration (int): number of the current iteration.
- x1 (dict): equivalent of xe for the last iteration.
- x2 (dict): equivalent of xe for the second to last iteration.
- low (array): array with the minimum search value considered for each
element. Obtained as an output of the mmasub function.

- upp (array): array with the maximum search value considered for each
element. Obtained as an output of the mmasub function.

- p_norm_history (list): record with the values of the p-norm
approximation.

- stress_const_gradient (dict): sensitivity of the stress constraint to
changes in the design variables.

- stress_constraint (float): value of the stress constraint.
- s_max (float): maximum allowable stress.

Ouputs:
-------
- editable_xe (dict): dictionary with the densities (design variables) of
each editable element in the model.

- xe (dict): dictionary with the densities (design variables) of each
relevant element in the model.

- low (array): array with the minimum search value considered for each
element. Obtained as an output of the mmasub function.

- upp (array): array with the maximum search value considered for each
element. Obtained as an output of the mmasub function.

- lam (array): vector with the Lagrange multipliers.
- fval (array): vector with the constraint values.
- ymma, zmma (array): arrays with the values of the variables y_i and z in
the current MMA subproblem.

Notes:
------
- The functions ’mmasub’ and ’subsolv’ were developed by Arjen Deetman
and shared under the terms of a GNU General Public License. The summary
of the license description can be found in these comment section of
both functions. For more information, please follow the source link:
https://github.com/arjendeetman/GCMMA-MMA-Python

"""
num_elements = len(editable_xe)

# Initializes variables to store the inputs for the mmasub and mmasolve
# functions (either arrays or scalar variables).
labels = []
f0val = objh[-1] #/ objh[0]
xval = np.array([])
df0dx = np.array([])
xold1 = np.array([])
xold2 = np.array([])
elmt_material_list = np.array([])
material_sensitivity = np.array([])
xmin = np.ones((num_elements,1)) * xe_min
xmax = np.ones((num_elements,1))

# Converting from dictionaries to arrays. The labels are stored in a list
# since dictionaries may be unsorted depending on the Python version.
max_material = sum(material_gradient.values()) * target_material
for key in editable_xe.keys():

# Label, objective function value and its derivative.
labels.append(key)
xval = np.append(xval, editable_xe[key])
df0dx = np.append(df0dx, obj_der[key]) #/ objh[0])

# Material constraint gradient.
norm_mat_grad = material_gradient[key] / (max_material)
material_sensitivity = np.append(material_sensitivity, norm_mat_grad)
elmt_material = material_gradient[key] * editable_xe[key]
elmt_material_list = np.append(elmt_material_list, elmt_material)

# Previous design variables.
if iteration > 1:

for key in editable_xe.keys():
xold1 = np.append(xold1, x1[key])
xold2 = np.append(xold2, x2[key])
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# Reshaping arrays.
xval.shape = (num_elements, 1)
df0dx.shape = (num_elements, 1)
material_sensitivity.shape = (1, num_elements)

# Determine current constraint values and reformat sensitivities.
# For stress or compliance minimization:
if opt_method in [2, 6]:

num_constraints = 1

mat_const_value = (sum(elmt_material_list) / max_material) - 1.0
fval = np.array([[mat_const_value]])

dfdx = material_sensitivity

# For stress constrained compliance minimization:
elif opt_method in [4]:

num_constraints = 2

stress_sens = np.array([])

for key in editable_xe.keys():
# Stress sensitivity.
norm_stress_sens = stress_const_gradient[key] / s_max
stress_sens = np.append(stress_sens, norm_stress_sens)

# Stack the constraint values into a single array.
mat_const_value = (sum(elmt_material_list) / max_material) - 1.0
fval = np.concatenate(

(np.array([[mat_const_value]]), stress_constraint), axis = 1
).reshape(2, 1)

dfdx = np.vstack((material_sensitivity[0], stress_sens))

else:
raise Exception(

"Unexpected value for ’opt_method’ found in function ’MMA’."
)

# Determines the min and max values of the design variables, which can be
# narrowed down by the MMA algorithm.
if iteration > 1:

xold1.shape = (num_elements, 1)
xold2.shape = (num_elements, 1)
for i in range(0,len(xmin)):

low[i][0] = max(xmin[i][0], low[i][0])
upp[i][0] = min(xmax[i][0], upp[i][0])

# Defines the optimization problem for ’mmasub’.
a0 = 1.0
a = np.zeros((num_constraints,1))
c = np.ones((num_constraints,1))*10**6
d = np.zeros((num_constraints,1))
move = move_limit

xmma, ymma, zmma, lam, xsi, eta, mu, zet, s, low, upp = mmasub(
num_constraints, num_elements, iteration, xval, xmin, xmax, xold1,
xold2, f0val, df0dx, fval, dfdx, low, upp, a0, a, c, d, move

)

# Rounds the output considering ’xe_min’.
for i in range(0,len(labels)):

editable_xe[labels[i]] = max(xe_min, round(xmma[i][0], dp))
xe[labels[i]] = max(xe_min, round(xmma[i][0], dp))

return editable_xe, xe, low, upp, lam, fval, ymma, zmma

def mmasub(
m, n, iteration, xval, xmin, xmax, xold1, xold2, f0val, df0dx, fval,
dfdx, low, upp, a0, a, c, d, move

):
"""
COPYRIGHT AND LICENSE: This function was extracted from the
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GCMMA-MMA-Python code developed by Arjen Deetman.

Source: https://github.com/arjendeetman/GCMMA-MMA-Python
last visited on the 21st of October of 2020

################# Copyright (c) 2020 Arjen Deetman ########################
GCMMA-MMA-Python
Python code of the Method of Moving Asymptotes (Svanberg, 1987). Based on
the GCMMA-MMA-code written for MATLAB by Krister Svanberg. The original
work was taken from http://www.smoptit.se/ under the GNU General Public
License. If you download and use the code, Krister Svanberg would
appreciate if you could send him an e-mail and tell who you are and what
your plan is (e-mail adress can be found on his website). The user should
reference to the academic work of Krister Svanberg when work will be
published.

GCMMA-MMA-Python is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License (file
LICENSE) along with this file. If not, see http://www.gnu.org/licenses/.

############################## References #################################
Svanberg, K. (1987). The Method of Moving Asymptotes - A new method for
structural optimization. International Journal for Numerical Methods in
Engineering 24, 359-373. doi:10.1002/nme.1620240207

Svanberg, K. (n.d.). MMA and GCMMA - two methods for nonlinear optimization.
Retrieved August 3, 2017 from https://people.kth.se/~krille/mmagcmma.pdf

########################## Function description ###########################
This function mmasub performs one MMA-iteration, aimed at solving the nonlinear

programming problem:

Minimize f_0(x) + a_0*z + sum( c_i*y_i + 0.5*d_i*(y_i)^2 )
subject to f_i(x) - a_i*z - y_i <= 0, i = 1,...,m

xmin_j <= x_j <= xmax_j, j = 1,...,n
z >= 0, y_i >= 0, i = 1,...,m

INPUT:
m = The number of general constraints. = 1
n = The number of variables x_j. = len(ELMTS)
iteration = Current iteration number ( =1 the first time mmasub is called)

.
xval = Column vector with the current values of the variables x_j.
xmin = Column vector with the lower bounds for the variables x_j.
xmax = Column vector with the upper bounds for the variables x_j.
xold1 = xval, one iteration ago (provided that iteration>1).
xold2 = xval, two iterations ago (provided that iteration>2).
f0val = The value of the objective function f_0 at xval.
df0dx = Column vector with the derivatives of the objective function

f_0 with respect to the variables x_j, calculated at xval.
fval = Column vector with the values of the constraint functions f_i,

calculated at xval.
dfdx = (m x n)-matrix with the derivatives of the constraint functions

f_i with respect to the variables x_j, calculated at xval.
dfdx(i,j) = the derivative of f_i with respect to x_j.

low = Column vector with the lower asymptotes from the previous
iteration (provided that iteration>1).

upp = Column vector with the upper asymptotes from the previous
iteration (provided that iteration>1).

a0 = The constants a_0 in the term a_0*z. = 1.0, which leads z to tend
to 0.0

a = Column vector with the constants a_i in the terms a_i*z. # a0 = 1
and ai = 0 for all i > 0
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c = Column vector with the constants c_i in the terms c_i*y_i. = [large
number], makes y tend to 0 in an
optimal solution

d = Column vector with the constants d_i in the terms 0.5*d_i*(y_i)^2.
= [1.0]

move = Value of the allowable movement of each design variable.
OUTPUT:

xmma = Column vector with the optimal values of the variables x_j
in the current MMA subproblem.

ymma = Column vector with the optimal values of the variables y_i
in the current MMA subproblem.

zmma = Scalar with the optimal value of the variable z
in the current MMA subproblem.

lam = Lagrange multipliers for the m general MMA constraints.
xsi = Lagrange multipliers for the n constraints alfa_j - x_j <= 0.
eta = Lagrange multipliers for the n constraints x_j - beta_j <= 0.
mu = Lagrange multipliers for the m constraints -y_i <= 0.
zet = Lagrange multiplier for the single constraint -z <= 0.
s = Slack variables for the m general MMA constraints.
low = Column vector with the lower asymptotes, calculated and used

in the current MMA subproblem.
upp = Column vector with the upper asymptotes, calculated and used

in the current MMA subproblem.
"""

epsimin = 0.0000001
raa0 = 0.00001
albefa = 0.1
asyinit = 0.5
asyincr = 1.2
asydecr = 0.7
eeen = np.ones((n, 1))
eeem = np.ones((m, 1))
zeron = np.zeros((n, 1))
# Calculation of the asymptotes low and upp
if iteration <= 2:

low = xval-asyinit*(xmax-xmin)
upp = xval+asyinit*(xmax-xmin)

else:
zzz = (xval-xold1)*(xold1-xold2)
factor = eeen.copy()
factor[np.where(zzz>0)] = asyincr
factor[np.where(zzz<0)] = asydecr
low = xval-factor*(xold1-low)
upp = xval+factor*(upp-xold1)
lowmin = xval-10*(xmax-xmin)
lowmax = xval-0.01*(xmax-xmin)
uppmin = xval+0.01*(xmax-xmin)
uppmax = xval+10*(xmax-xmin)
low = np.maximum(low,lowmin)
low = np.minimum(low,lowmax)
upp = np.minimum(upp,uppmax)
upp = np.maximum(upp,uppmin)

# Calculation of the bounds alfa and beta
zzz1 = low+albefa*(xval-low)
zzz2 = xval-move*(xmax-xmin)
zzz = np.maximum(zzz1,zzz2)
alfa = np.maximum(zzz,xmin)
zzz1 = upp-albefa*(upp-xval)
zzz2 = xval+move*(xmax-xmin)
zzz = np.minimum(zzz1,zzz2)
beta = np.minimum(zzz,xmax)
# Calculations of p0, q0, P, Q and b
xmami = xmax-xmin
xmamieps = 0.00001*eeen
xmami = np.maximum(xmami,xmamieps)
xmamiinv = eeen/xmami
ux1 = upp-xval
ux2 = ux1*ux1
xl1 = xval-low
xl2 = xl1*xl1
uxinv = eeen/ux1
xlinv = eeen/xl1
p0 = zeron.copy()
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q0 = zeron.copy()
p0 = np.maximum(df0dx,0)
q0 = np.maximum(-df0dx,0)
pq0 = 0.001*(p0+q0)+raa0*xmamiinv
p0 = p0+pq0
q0 = q0+pq0
p0 = p0*ux2
q0 = q0*xl2
P = np.zeros((m,n)) ## @@ make sparse with scipy?
Q = np.zeros((m,n)) ## @@ make sparse with scipy?
P = np.maximum(dfdx,0)
Q = np.maximum(-dfdx,0)
PQ = 0.001*(P+Q)+raa0*np.dot(eeem,xmamiinv.T)
P = P+PQ
Q = Q+PQ
P = (diags(ux2.flatten(),0).dot(P.T)).T
Q = (diags(xl2.flatten(),0).dot(Q.T)).T
b = (np.dot(P,uxinv)+np.dot(Q,xlinv)-fval)
# Solving the subproblem by a primal-dual Newton method
xmma,ymma,zmma,lam,xsi,eta,mu,zet,s = subsolv(m,n,epsimin,low,upp,alfa,beta,p0,

q0,P,Q,a0,a,b,c,d)
# Return values
return xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp

def subsolv(m, n, epsimin, low, upp, alfa, beta, p0, q0, P, Q, a0, a, b, c, d):
"""
COPYRIGHT AND LICENSE: This function was extracted from the
GCMMA-MMA-Python code developed by Arjen Deetman.

Source: https://github.com/arjendeetman/GCMMA-MMA-Python
last visited on the 21st of October of 2020

################# Copyright (c) 2020 Arjen Deetman ########################
GCMMA-MMA-Python
Python code of the Method of Moving Asymptotes (Svanberg, 1987). Based on
the GCMMA-MMA-code written for MATLAB by Krister Svanberg. The original
work was taken from http://www.smoptit.se/ under the GNU General Public
License. If you download and use the code, Krister Svanberg would
appreciate if you could send him an e-mail and tell who you are and what
your plan is (e-mail adress can be found on his website). The user should
reference to the academic work of Krister Svanberg when work will be
published.

GCMMA-MMA-Python is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License (file
LICENSE) along with this file. If not, see http://www.gnu.org/licenses/.

############################## References #################################
Svanberg, K. (1987). The Method of Moving Asymptotes - A new method for
structural optimization. International Journal for Numerical Methods in
Engineering 24, 359-373. doi:10.1002/nme.1620240207

Svanberg, K. (n.d.). MMA and GCMMA - two methods for nonlinear optimization.
Retrieved August 3, 2017 from https://people.kth.se/~krille/mmagcmma.pdf

########################## Function description ###########################
This function subsolv solves the MMA subproblem:

minimize SUM[p0j/(uppj-xj) + q0j/(xj-lowj)] + a0*z + SUM[ci*yi + 0.5*di*(yi)^2
],

subject to SUM[pij/(uppj-xj) + qij/(xj-lowj)] - ai*z - yi <= bi,



Python code for stress-constrained topology optimization in ABAQUS® 219

alfaj <= xj <= betaj, yi >= 0, z >= 0.

Input: m, n, low, upp, alfa, beta, p0, q0, P, Q, a0, a, b, c, d.
Output: xmma,ymma,zmma, slack variables and Lagrange multiplers.
"""

een = np.ones((n,1))
eem = np.ones((m,1))
epsi = 1
epsvecn = epsi*een
epsvecm = epsi*eem
x = 0.5*(alfa+beta)
y = eem.copy()
z = np.array([[1.0]])
lam = eem.copy()
xsi = een/(x-alfa)
xsi = np.maximum(xsi,een)
eta = een/(beta-x)
eta = np.maximum(eta,een)
mu = np.maximum(eem,0.5*c)
zet = np.array([[1.0]])
s = eem.copy()
itera = 0
# Start while epsi>epsimin
while epsi > epsimin:

epsvecn = epsi*een
epsvecm = epsi*eem
ux1 = upp-x
xl1 = x-low
ux2 = ux1*ux1
xl2 = xl1*xl1
uxinv1 = een/ux1
xlinv1 = een/xl1
plam = p0+np.dot(P.T,lam)
qlam = q0+np.dot(Q.T,lam)
gvec = np.dot(P,uxinv1)+np.dot(Q,xlinv1)
dpsidx = plam/ux2-qlam/xl2
rex = dpsidx-xsi+eta
rey = c+d*y-mu-lam
rez = a0-zet-np.dot(a.T,lam)
relam = gvec-a*z-y+s-b
rexsi = xsi*(x-alfa)-epsvecn
reeta = eta*(beta-x)-epsvecn
remu = mu*y-epsvecm
rezet = zet*z-epsi
res = lam*s-epsvecm
residu1 = np.concatenate((rex, rey, rez), axis = 0)
residu2 = np.concatenate((relam, rexsi, reeta, remu, rezet, res), axis = 0)
residu = np.concatenate((residu1, residu2), axis = 0)
residunorm = np.sqrt((np.dot(residu.T,residu)).item())
residumax = np.max(np.abs(residu))
ittt = 0
# Start while (residumax>0.9*epsi) and (ittt<200)
while (residumax > 0.9*epsi) and (ittt < 200):

ittt = ittt+1
itera = itera+1
ux1 = upp-x
xl1 = x-low
ux2 = ux1*ux1
xl2 = xl1*xl1
ux3 = ux1*ux2
xl3 = xl1*xl2
uxinv1 = een/ux1
xlinv1 = een/xl1
uxinv2 = een/ux2
xlinv2 = een/xl2
plam = p0+np.dot(P.T,lam)
qlam = q0+np.dot(Q.T,lam)
gvec = np.dot(P,uxinv1)+np.dot(Q,xlinv1)
GG = (diags(uxinv2.flatten(),0).dot(P.T)).T-(diags(xlinv2.flatten(),0).

dot(Q.T)).T
dpsidx = plam/ux2-qlam/xl2
delx = dpsidx-epsvecn/(x-alfa)+epsvecn/(beta-x)
dely = c+d*y-lam-epsvecm/y
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delz = a0-np.dot(a.T,lam)-epsi/z
dellam = gvec-a*z-y-b+epsvecm/lam
diagx = plam/ux3+qlam/xl3
diagx = 2*diagx+xsi/(x-alfa)+eta/(beta-x)
diagxinv = een/diagx
diagy = d+mu/y
diagyinv = eem/diagy
diaglam = s/lam
diaglamyi = diaglam+diagyinv
# Start if m<n
if m < n:

blam = dellam+dely/diagy-np.dot(GG,(delx/diagx))
bb = np.concatenate((blam,delz),axis = 0)
Alam = np.asarray(diags(diaglamyi.flatten(),0) \

+(diags(diagxinv.flatten(),0).dot(GG.T).T).dot(GG.T))
AAr1 = np.concatenate((Alam,a),axis = 1)
AAr2 = np.concatenate((a,-zet/z),axis = 0).T
AA = np.concatenate((AAr1,AAr2),axis = 0)
solut = solve(AA,bb)
dlam = solut[0:m]
dz = solut[m:m+1]
dx = -delx/diagx-np.dot(GG.T,dlam)/diagx

else:
diaglamyiinv = eem/diaglamyi
dellamyi = dellam+dely/diagy
Axx = np.asarray(diags(diagx.flatten(),0) \

+(diags(diaglamyiinv.flatten(),0).dot(GG).T).dot(GG))
azz = zet/z+np.dot(a.T,(a/diaglamyi))
axz = np.dot(-GG.T,(a/diaglamyi))
bx = delx+np.dot(GG.T,(dellamyi/diaglamyi))
bz = delz-np.dot(a.T,(dellamyi/diaglamyi))
AAr1 = np.concatenate((Axx,axz),axis = 1)
AAr2 = np.concatenate((axz.T,azz),axis = 1)
AA = np.concatenate((AAr1,AAr2),axis = 0)
bb = np.concatenate((-bx,-bz),axis = 0)
solut = solve(AA,bb)
dx = solut[0:n]
dz = solut[n:n+1]
dlam = np.dot(GG,dx)/diaglamyi-dz*(a/diaglamyi)+dellamyi/diaglamyi
# End if m<n

dy = -dely/diagy+dlam/diagy
dxsi = -xsi+epsvecn/(x-alfa)-(xsi*dx)/(x-alfa)
deta = -eta+epsvecn/(beta-x)+(eta*dx)/(beta-x)
dmu = -mu+epsvecm/y-(mu*dy)/y
dzet = -zet+epsi/z-zet*dz/z
ds = -s+epsvecm/lam-(s*dlam)/lam
xx = np.concatenate((y,z,lam,xsi,eta,mu,zet,s),axis = 0)
dxx = np.concatenate((dy,dz,dlam,dxsi,deta,dmu,dzet,ds),axis = 0)
#
stepxx = -1.01*dxx/xx
stmxx = np.max(stepxx)
stepalfa = -1.01*dx/(x-alfa)
stmalfa = np.max(stepalfa)
stepbeta = 1.01*dx/(beta-x)
stmbeta = np.max(stepbeta)
stmalbe = max(stmalfa,stmbeta)
stmalbexx = max(stmalbe,stmxx)
stminv = max(stmalbexx,1.0)
steg = 1.0/stminv
#
xold = x.copy()
yold = y.copy()
zold = z.copy()
lamold = lam.copy()
xsiold = xsi.copy()
etaold = eta.copy()
muold = mu.copy()
zetold = zet.copy()
sold = s.copy()
#
itto = 0
resinew = 2*residunorm
# Start: while (resinew>residunorm) and (itto<50)
while (resinew > residunorm) and (itto < 50):
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itto = itto+1
x = xold+steg*dx
y = yold+steg*dy
z = zold+steg*dz
lam = lamold+steg*dlam
xsi = xsiold+steg*dxsi
eta = etaold+steg*deta
mu = muold+steg*dmu
zet = zetold+steg*dzet
s = sold+steg*ds
ux1 = upp-x
xl1 = x-low
ux2 = ux1*ux1
xl2 = xl1*xl1
uxinv1 = een/ux1
xlinv1 = een/xl1
plam = p0+np.dot(P.T,lam)
qlam = q0+np.dot(Q.T,lam)
gvec = np.dot(P,uxinv1)+np.dot(Q,xlinv1)
dpsidx = plam/ux2-qlam/xl2
rex = dpsidx-xsi+eta
rey = c+d*y-mu-lam
rez = a0-zet-np.dot(a.T,lam)
relam = gvec-np.dot(a,z)-y+s-b
rexsi = xsi*(x-alfa)-epsvecn
reeta = eta*(beta-x)-epsvecn
remu = mu*y-epsvecm
rezet = np.dot(zet,z)-epsi
res = lam*s-epsvecm
residu1 = np.concatenate((rex,rey,rez),axis = 0)
residu2 = np.concatenate((relam,rexsi,reeta,remu,rezet,res), axis =

0)
residu = np.concatenate((residu1,residu2),axis = 0)
resinew = np.sqrt(np.dot(residu.T,residu))
steg = steg/2
# End: while (resinew>residunorm) and (itto<50)

residunorm = resinew.copy()
residumax = max(abs(residu))
steg = 2*steg
# End: while (residumax>0.9*epsi) and (ittt<200)

epsi = 0.1*epsi
# End: while epsi>epsimin

xmma = x.copy()
ymma = y.copy()
zmma = z.copy()
lamma = lam
xsimma = xsi
etamma = eta
mumma = mu
zetmma = zet
smma = s
# Return values
return xmma,ymma,zmma,lamma,xsimma,etamma,mumma,zetmma,smma

def init_scipy_optimizer(
algorithm, opt_method, editable_xe, xe, xe_min, dp, rmax,
filter_densities, filter_sensitivities, mat_const_sensitivities,
target_material_history, model_preparation, data_filter, abaqus_fea,
adjoint_model, qi, s_max, active_bc, active_loads, iteration,
set_display, node_coordinates, objh, p_norm_stress_history

):
""" Initialize SciPy optimizer function

Creates a ’SciPyOptimizer’ class if required for the optimizatio selected.
Otherwise, returns None.

Inputs:
-------
- algorithm (str): name of the SciPy optimization algorithm to be used.
- opt_method (int): variable defining the optimization method to be used.
- editable_xe (dict): dictionary with the values of the design densities.
- xe (dict): dictionary with the densities (design variables) of each
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relevant element in the model.
- xe_min (float): minimum density allowed for the element. I.e. minimum
value allowed for the design variables.

- dp (int): number of decimals places to be considered. By definition,
equal to the number of decimal places in xe_min.
- rmax (float): search radius that defines the maximum distance between the
center of the target element and the edge of its neighbouring region.

- filter_densities (boolean): indicates if the blurring filter should be
applied to the design densities determined during the optimization
process.

- filter_sensitivities (boolean): indicates if the blurring filter should
be applied to the sensitivities determined during the optimization
process.

- mat_const_sensitivities (dict): dictionary with the material constraint
sensitivity to changes in the design variables.

- target_material_history (list): list with the values of the material
constraint that the code tried to acchieve.

- model_preparation (class): ModelPreparation class.
- data_filter (class): DataFilter class.
- abaqus_fea (class): AbaqusFea class.
- adjoint_model (class): AdjointModel class.
- qi (float): current value of the exponential of the P-norm stress
approximation function. Although usually named "P" in the literature,
the letter "Q" was adopted to avoid confusion with the SIMP penalty
factor, which is also usually named "P" in the literature.

- s_max (float): maximum value of the stress constraint imposed.
- active_bc (dict): dictionary with the data of non-zero boundary
conditions imposed in the model (such as non-zero displacements).

- active_loads (list): list with the keys (names) of the loads that are
active during the simulation (i.e.: non-supressed loads).

- iteration (int): number of the current iteration in the topology
optimization process.

- SetDisplay (class): SetDisplay class.
- node_coordinates (dict): dictionary with the coordinates of each node.
- objh (list): list used to record the values of the objective function.
- p_norm_stress_history (list): list used to record the values of the
P-norm maximum stress approximation.

"""
if opt_method in [3, 5, 7]:

optimizer = SciPyOptimizer(
algorithm, opt_method, editable_xe, xe, xe_min, dp, rmax,
filter_densities, filter_sensitivities, mat_const_sensitivities,
target_material_history, model_preparation, data_filter,
abaqus_fea, adjoint_model, qi, s_max, active_bc, active_loads,
iteration, set_display, node_coordinates, objh,
p_norm_stress_history

)
else:

optimizer = None

return optimizer

class SciPyOptimizer():
""" SciPy Optimizer class

Class responsible for managing the optimization process when using the
algorithms available in the SciPy module.

Implementation note:
--------------------
The SciPy module has two particular characteristics:
- the functions that define the optimization problem (objective,
constraint, and derivative functions) must only take 1 argument as input,
which should be the design variables.

- the algorithm selected decides when, and how many times, a given function
is called.

Due to these two characteristics, the methods included in this class are
an alternative version (less efficient) of the functions used by the OC
and MMA optimization algorithms.

Attributes:
-----------
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- algorithm (str): name of the SciPy optimization algorithm to be used.
- opt_method (int): variable defining the optimization method to be used.
- editable_xe (dict): dictionary with the values of the design densities.
- xe (dict): dictionary with the densities (design variables) of each

relevant element in the model.
- xe_min (float): minimum density allowed for the element. I.e. minimum

value allowed for the design variables.
- dp (int): number of decimals places to be considered. By definition,
equal to the number of decimal places in xe_min.
- rmax (float): search radius that defines the maximum distance between the

center of the target element and the edge of its neighbouring region.
- filter_densities (boolean): indicates if the blurring filter should be

applied to the design densities determined during the optimization
process.

- filter_sensitivities (boolean): indicates if the blurring filter should
be applied to the sensitivities determined during the optimization
process.

- mat_const_sensitivities (dict): dictionary with the material constraint
sensitivity to changes in the design variables.

- target_material_history (list): list with the values of the material
constraint that the code tried to acchieve.

- model_preparation (class): ModelPreparation class.
- data_filter (class): DataFilter class.
- abaqus_fea (class): AbaqusFea class.
- adjoint_model (class): AdjointModel class.
- qi (float): current value of the exponential of the P-norm stress

approximation function. Although usually named "P" in the literature,
the letter "Q" was adopted to avoid confusion with the SIMP penalty
factor, which is also usually named "P" in the literature.

- s_max (float): maximum value of the stress constraint imposed.
- active_bc (dict): dictionary with the data of non-zero boundary

conditions imposed in the model (such as non-zero displacements).
- active_loads (list): list with the keys (names) of the loads that are

active during the simulation (i.e.: non-supressed loads).
- iteration (int): number of the current iteration in the topology

optimization process.
- set_display (class): SetDisplay class.
- node_coordinates (dict): dictionary with the coordinates of each node.
- objh: list used to record the values of the objective function.
- p_norm_stress_history (list): list used to record the values of the

P-norm maximum stress approximation.
- current_material (list): list used to record the values of the

material ratio.

Methods:
--------
- call_solver(editable_xe, xe): prepares and manages the optimization

process.
- material_constraint(x): returns the value of the material constraint.
- material_constraint_der(x): returns the derivative of the material

constraint.
- stress_constraint(x): returns the value of the stress constraint.
- stress_constraint_der(x): returns the derivative of the stress

constraint.
- compliance(x): returns the value of the compliance.
- compliance_der(x): returns the derivative of the compliance.
- stress(x): returns the value of the maximum Von-Mises stress.
- stress_der(x): returns the value of the derivative of the maximum

Von-Mises stress.

Auxiliary methods:
------------------
- update_attributes(editable_xe, xe, target_material_history, qi,

iteration): updates the class attributes.
- return_record(): returns the variables recording the values of the

objective function, maximum stress, and current iteration.
"""
def __init__(

self, algorithm, opt_method, editable_xe, xe, xe_min, dp, rmax,
filter_densities, filter_sensitivities, mat_const_sensitivities,
target_material_history, model_preparation, data_filter,
abaqus_fea, adjoint_model, qi, s_max, active_bc, active_loads,
iteration, set_display, node_coordinates, objh,
p_norm_stress_history
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):

self.algorithm = algorithm
self.opt_method = opt_method
self.editable_xe = editable_xe
self.xe = xe
self.editable_keys = editable_xe.keys()
self.xe_min = xe_min
self.dp = dp
self.rmax = rmax
self.filter_densities = filter_densities
self.filter_sensitivities = filter_sensitivities
self.mat_const_sensitivities = mat_const_sensitivities
self.target_material_history = target_material_history
self.model_preparation = model_preparation
self.data_filter = data_filter
self.abaqus_fea = abaqus_fea
self.adjoint_model = adjoint_model
self.qi = qi
self.s_max = s_max
self.active_bc = active_bc
self.active_loads = active_loads
self.iteration = iteration
self.set_display = set_display
self.node_coordinates = node_coordinates
self.objh = objh
self.p_norm_stress_history = p_norm_stress_history
self.current_material = []

def update_attributes(
self, editable_xe, xe, target_material_history, current_material,
qi, iteration

):
""" Update attributes method

Updates the attributes of the ’SciPyOptimizer’ class. The scipy
optimization algorithms require that the functions used as inputs
only have one input variable, which should be the design variables.
However, due to the connection with ABAQUS and the need to run
FEA, it is necessary to provide more inputs other than the design
variables. This method serves as a means of allowing the the optimizer
to receive additional information without explicitly including it as
function inputs.

Inputs:
-------
- editable_xe (dict): dictionary with the densities (design variables)
of each editable element in the model.

- xe (dict): dictionary with the densities (design variables) of each
relevant element in the model.

- target_material_history (list): list with the values of the material
constraint that the code tried to acchieve.

- qi (float): current value of the exponential of the P-norm stress
approximation function. Although usually named "P" in the literature,
the letter "Q" was adopted to avoid confusion with the SIMP penalty
factor, which is also usually named "P" in the literature.

- iteration (int): number of the current iteration in the topology
optimization process.

"""
self.editable_xe = editable_xe
self.xe = xe
self.target_material_history = target_material_history
self.current_material = current_material
self.qi = qi
self.iteration = iteration

def call_solver(self, editable_xe, xe):
""" Call solver method

Calls the SciPy optimization algorithm ’SLSQP’ or ’trust-constr’.
This method prepares the objective function, its derivative,
constraints, and constraint derivatives necessary for the topology
optimization problem selected.
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Inputs:
-------
- editable_xe (dict): dictionary with the densities (design variables)
of each editable element in the model.

- xe (dict): dictionary with the densities (design variables) of each
relevant element in the model.

Outputs:
--------
- editable_xe (dict): dictionary with the densities (design variables)
of each editable element in the model.

- xe (dict): dictionary with the densities (design variables) of each
relevant element in the model.

"""

# Selects the constraints, objective function, and required
# derivatives.
#
# For SLSQP:
if self.algorithm == ’SLSQP’:

if self.opt_method == 3:

con1 = {’type’: ’ineq’,
’fun’: self.material_constraint,
’jac’: self.material_constraint_der

}
constraints = [con1]
obj_fun = self.compliance
jacobian = self.compliance_der

elif self.opt_method == 5:

con1 = {’type’: ’ineq’,
’fun’: self.material_constraint,
’jac’: self.material_constraint_der

}
con2 = {’type’: ’ineq’,

’fun’: self.stress_constraint,
’jac’: self.stress_constraint_der

}

constraints = [con1, con2]
obj_fun = self.compliance
jacobian = self.compliance_der

elif self.opt_method == 7:

con1 = {’type’: ’ineq’,
’fun’: self.material_constraint,
’jac’: self.material_constraint_der

}
constraints = [con1]
obj_fun = self.stress
jacobian = self.stress_der

else:
raise Exception(

"Unexpected value for attribute ’opt_method’ of class \n"
"’SciPyOptimizer’ when attribute algorithm == ’SLSQP’."
"For this algorithm, ’opt_method’ should be 3, 5, or 7."

)

# For Trust-constr:
elif self.algorithm == ’trust-constr’:

total_material = sum(
[value for key, value in self.mat_const_sensitivities.items()
if key in self.editable_keys]

)

vol_cnstr_vec = [
value / total_material
for key, value in self.mat_const_sensitivities.items()
if key in self.editable_keys
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]

if self.opt_method == 3:

linear_constraint = LinearConstraint(
vol_cnstr_vec,
-np.inf,
self.target_material_history[-1],
keep_feasible = True

)
constraints = [linear_constraint]
obj_fun = self.compliance
jacobian = self.compliance_der

elif self.opt_method == 5:

elmt_stress_constr_sens = self.stress_constraint_der(
editable_xe.values()

)

stress_cnstr_vec = [value for value in elmt_stress_constr_sens]

linear_constraint = LinearConstraint(
[vol_cnstr_vec, stress_cnstr_vec],
[-np.inf, -np.inf],
[self.target_material_history[-1], 1.0],
keep_feasible = True

)
constraints = [linear_constraint]
obj_fun = self.compliance
jacobian = self.compliance_der

elif self.opt_method == 7:

linear_constraint = LinearConstraint(
vol_cnstr_vec,
-np.inf,
self.target_material_history[-1],
keep_feasible = True

)
constraints = [linear_constraint]
obj_fun = self.stress
jacobian = self.stress_der

else:
raise Exception(

"Unexpected value for attribute ’opt_method’ of class \n"
"’SciPyOptimizer’ when attribute algorithm == ’SLSQP’."
"For this algorithm, ’opt_method’ should be 3, 5, or 7."

)

else:
raise Exception(

"Unexpected value for attribute ’method’ of class \n"
"’SciPyOptimizer’."

)

# Defines the allowable range for the design densities [0,1].
upper_bound = np.ones(len(editable_xe.values()))
lower_bound = upper_bound * self.xe_min
bound_class = scipy.optimize.Bounds(

lower_bound,
upper_bound,
keep_feasible = True

)

# Calls the SciPy solver.
solution = scipy.optimize.minimize(

obj_fun,
self.editable_xe.values(),
method = self.algorithm,
bounds = bound_class,
jac = jacobian,
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constraints = constraints
)

# Reassign the solution to ’editable_xe’ and ’xe’, considering the
# minimum density.
i = 0
for key in editable_xe.keys():

if solution.x[i] <= 0.0:
editable_xe[key] = self.xe_min
xe[key] = self.xe_min

elif solution.x[i] > 1.0:
editable_xe[key] = 1.0
xe[key] = 1.0

else:
editable_xe[key] = round(solution.x[i], self.dp)
xe[key] = round(solution.x[i], self.dp)

i += 1
xe[key] = editable_xe[key]

return editable_xe, xe

def material_constraint(self, x):
""" Material constraint method

Returns the current value of the material constraint in the form:

current constraint = target_material - material_ratio

Inputs:
-------
- x (list): list of the design variables.

Outputs:
--------
- material_constraint (float): value of the material constraint.
"""

# Determines the current material value.
gradient = [grad for key, grad in self.mat_const_sensitivities.items()

if key in self.editable_keys]
current_material = sum([rho * grad for rho, grad in zip(x, gradient)])

# Determines the maximum material value.
max_material = sum(

[self.mat_const_sensitivities[i] for i in self.editable_keys]
)

# Determines the material fraction and corresponding constraint value.
material_ratio = current_material / max_material
material_constraint = float(

self.target_material_history[-1] - material_ratio
)

self.current_material.append(material_ratio)

return material_constraint

def material_constraint_der(self, x):
""" Material constraint derivative

Returns an array with the constraint derivative for each element,
normalized material as a function of the maximum material value.

Inputs:
-------
- x (list): list of the design variables.

Outputs:
--------
- material_constr_der (array): array with the normalized material
constraint derivative.

"""

# Determines the material constraint derivative vector.
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# It is defined as negative due to the problem definition used by SciPy
# for this particular solver.
material_der = np.array(

[-self.mat_const_sensitivities[i] for i in self.editable_keys]
)

# Determines the maximum material value.
max_material = sum(

[self.mat_const_sensitivities[i] for i in self.editable_keys]
)

# Normalizes the constraint sensitivity.
material_constr_der = material_der / max_material

return material_constr_der

def stress_constraint(self, x):
""" Stress constraint method

Determines the value of the stress constraint for a given list of
design variables.

Because SciPy may call this method at any given moment, it is necessary
to repeat the whole process that leads up to the value of the stress
constraint, including:
- updating the material properties.
- running the FEA.
- determining the stress vectors on each integration point.
- determining the stress constraint.

Inputs:
-------
- x (list): list of the design variables.

Outputs:
--------
- stress_constraint (float): value of the stress constraint.
"""

# Rounds the input design variables into values acceptable by ABAQUS.
temp_ed_xe = {}
temp_xe = self.xe.copy()
i = 0
for key in self.editable_keys:

if x[i] > 1.0:
temp_ed_xe[key] = 1.0
temp_xe[key] = 1.0

elif x[i] <= self.xe_min:
temp_ed_xe[key] = self.xe_min
temp_xe[key] = self.xe_min

else:
temp_ed_xe[key] = max(self.xe_min, round(x[i], self.dp))
temp_xe[key] = max(self.xe_min, round(x[i], self.dp))

i+=1

# Filter input design densities, if requested.
if self.rmax > 0 and self.filter_densities == True:

temp_ed_xe, temp_xe = self.data_filter.filter_densities(
temp_ed_xe,
temp_xe,
self.xe_min,
self.dp

)

# Update the material properties.
self.model_preparation.property_update(temp_ed_xe)

# Execute the FEA and extract relevant variables.
(

_,
_,
state_strain,
node_displacement,
node_rotation,
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local_coord_sys
) = self.abaqus_fea.run_simulation(self.iteration, temp_xe)

# Determine the stresses at the integration points.
self.adjoint_model.determine_stress_and_deformation(

node_displacement,
temp_xe,
node_rotation,
self.node_coordinates,
local_coord_sys

)

# Determine the p-norm approximation of the maximum Von-Mises
# stress.
p_norm_stress = p_norm_approximation(

self.adjoint_model.stress_vector_int,
self.adjoint_model.inv_int_p,
self.qi,
self.adjoint_model.multiply_VM_matrix,

)

self.p_norm_stress_history.append(p_norm_stress)

# Determine the stress constraint.
stress_constraint = stress_constraint_evaluation(

p_norm_stress,
self.s_max

)
stress_constraint = float(stress_constraint[0][0])

return stress_constraint

def stress_constraint_der(self, x):
""" Stress constraint derivative method

Determines the value of the stress constraint derivativefor a given
list of design variables.

Because SciPy may call this method at any given moment, it is necessary
to repeat the whole process that leads up to the value of the stress
constraint, including:
- updating the material properties.
- running the FEA.
- run the adjoint model.
- determining the stress constraint derivative.

Inputs:
-------
- x (list): list of the design variables.

Outputs:
--------
- stress_constr_der_array (array): values of the stress constraint
derivative for each element.

"""
# Rounds the input design variables into values acceptable by ABAQUS.
temp_ed_xe = {}
temp_xe = self.xe.copy()
i = 0
for key in self.editable_keys:

if x[i] > 1.0:
temp_ed_xe[key] = 1.0
temp_xe[key] = 1.0

elif x[i] <= self.xe_min:
temp_ed_xe[key] = self.xe_min
temp_xe[key] = self.xe_min

else:
temp_ed_xe[key] = max(self.xe_min, round(x[i], self.dp))
temp_xe[key] = max(self.xe_min, round(x[i], self.dp))

i+=1

# Filter input design densities, if requested.
if self.rmax > 0 and self.filter_densities == True:

temp_ed_xe, temp_xe = self.data_filter.filter_densities(
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temp_ed_xe,
temp_xe,
self.xe_min,
self.dp

)

# Update the material properties.
self.model_preparation.property_update(temp_ed_xe)

# Execute the FEA and extract relevant variables.
(

_,
_,
state_strain,
node_displacement,
node_rotation,
local_coord_sys

) = self.abaqus_fea.run_simulation(self.iteration, temp_xe)

# Run adjoint model and extract the adjoint strains.
adjoint_strain = self.adjoint_model.run_adjoint_simulation(

node_displacement,
temp_xe,
node_rotation,
self.node_coordinates,
local_coord_sys,
self.qi,
self.active_bc,
self.active_loads,
self.iteration,

)

# Determine the stress sensitivity.
elmt_stress_sensitivity = self.adjoint_model.stress_sensitivity(

temp_xe,
self.qi,
state_strain,
adjoint_strain

)

# Filter sensitivity, if requested.
if self.rmax > 0 and self.filter_sensitivities == True:

elmt_stress_sensitivity = self.data_filter.filter_function(
elmt_stress_sensitivity,
self.editable_keys

)

# Reformat sensitivity into an array.
stress_constr_der_array = np.array(

[elmt_stress_sensitivity[key] for key in self.editable_keys]
).reshape(len(temp_ed_xe))

stress_constr_der_array = (
stress_constr_der_array / self.s_max#self.stress_normalization

)

return stress_constr_der_array

def compliance(self, x):
""" Compliance function

Determines the compliance of the model for a given set of design
variables.

Inputs:
-------
- x (list): list of the design variables.

Outputs:
--------
- obj_norm (float): normalized compliance.
"""
# Rounds the input design variables into values acceptable by ABAQUS.
temp_ed_xe = {}
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temp_xe = self.xe.copy()
i = 0
for key in self.editable_keys:

if x[i] > 1.0:
temp_ed_xe[key] = 1.0
temp_xe[key] = 1.0

elif x[i] <= self.xe_min:
temp_ed_xe[key] = self.xe_min
temp_xe[key] = self.xe_min

else:
temp_ed_xe[key] = max(self.xe_min, round(x[i], self.dp))
temp_xe[key] = max(self.xe_min, round(x[i], self.dp))

i+=1

# Filter input design densities, if requested.
if self.rmax > 0 and self.filter_densities == True:

temp_ed_xe, temp_xe = self.data_filter.filter_densities(
temp_ed_xe,
temp_xe,
self.xe_min,
self.dp

)

# Update the material properties and display.
self.model_preparation.property_update(temp_ed_xe)
self.set_display.update_display(

self.qi,
self.iteration,
self.adjoint_model,
self.xe

)

# When using the ’trust-constr’ algorithm, evaluate the material
# constraint in order to record its value. Note that this algorithm
# requires the constraint information to be input in a vector form,
# which does not allow a more elegant form of recording the data.
if self.algorithm == ’trust-constr’:

_ = self.material_constraint(temp_ed_xe.values())

# Execute the FEA and extract relevant variables.
obj, _, _, _, _, _ = self.abaqus_fea.run_simulation(self.iteration,

temp_xe)

self.objh.append(obj)
save_data(self.qi, self.iteration, temp_ed_xe, temp_xe)
self.iteration += 1

norm_obj = float(obj)# / self.objh[-1])

return norm_obj

def compliance_der(self, x):
""" Compliance function

Determines the compliance sensitivity for a given set of design
variables.

Inputs:
-------
- x (list): list of the design variables.

Outputs:
--------
- compliance_der_vector (array): array with the normalized compliance
for each element.

"""
# Rounds the input design variables into values acceptable by ABAQUS.
temp_ed_xe = {}
temp_xe = self.xe.copy()
i = 0
for key in self.editable_keys:

if x[i] > 1.0:
temp_ed_xe[key] = 1.0
temp_xe[key] = 1.0
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elif x[i] <= self.xe_min:
temp_ed_xe[key] = self.xe_min
temp_xe[key] = self.xe_min

else:
temp_ed_xe[key] = max(self.xe_min, round(x[i], self.dp))
temp_xe[key] = max(self.xe_min, round(x[i], self.dp))

i+=1

# Filter input design densities, if requested.
if self.rmax > 0 and self.filter_densities == True:

temp_ed_xe, temp_xe = self.data_filter.filter_densities(
temp_ed_xe,
temp_xe,
self.xe_min,
self.dp

)

# Update the material properties.
self.model_preparation.property_update(temp_ed_xe)

# Execute the FEA and extract relevant variables.
_, ae, _, _, _, _ = self.abaqus_fea.run_simulation(self.iteration,

temp_xe)

if self.rmax > 0 and self.filter_sensitivities == True:
ae = self.data_filter.filter_function(

ae,
self.editable_keys

)

compliance_der_vector = np.array(
[ae[key] for key in self.editable_keys]

) #/ self.objh[-1]

return compliance_der_vector

def stress(self, x):
""" Stress method

Determines the value of the p-norm approximation of the maximum
Von-Mises stress for a given list of design variables.

Because SciPy may call this method at any given moment, it is necessary
to repeat the whole process that leads up to the value of the stress
constraint, including:
- updating the material properties.
- running the FEA.
- determining the stress vectors on each integration point.
- determining the stress constraint.

Inputs:
-------
- x (list): list of the design variables.

Outputs:
--------
- max_stress (float): value of the maximum stress approximation.
"""
# Rounds the input design variables into values acceptable by ABAQUS.
temp_ed_xe = {}
temp_xe = self.xe.copy()
i = 0
for key in self.editable_keys:

if x[i] > 1.0:
temp_ed_xe[key] = 1.0
temp_xe[key] = 1.0

elif x[i] <= self.xe_min:
temp_ed_xe[key] = self.xe_min
temp_xe[key] = self.xe_min

else:
temp_ed_xe[key] = max(self.xe_min, round(x[i], self.dp))
temp_xe[key] = max(self.xe_min, round(x[i], self.dp))

i+=1
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# Filter input design densities, if requested.
if self.rmax > 0 and self.filter_densities == True:

temp_ed_xe, temp_xe = self.data_filter.filter_densities(
temp_ed_xe,
temp_xe,
self.xe_min,
self.dp

)

# Update the material properties and display
self.model_preparation.property_update(temp_ed_xe)
self.set_display.update_display(

self.qi,
self.iteration,
self.adjoint_model,
self.xe

)

# When using the ’trust-constr’ algorithm, evaluate the material
# constraint in order to record its value. Note that this algorithm
# requires the constraint information to be input in a vector form,
# which does not allow a more elegant form of recording the data.
if self.algorithm == ’trust-constr’:

_ = self.material_constraint(temp_ed_xe.values())

# Execute the FEA and extract relevant variables.
(

_,
_,
state_strain,
node_displacement,
node_rotation,
local_coord_sys

) = self.abaqus_fea.run_simulation(self.iteration, temp_xe)

# Determine the stresses at the integration points.
self.adjoint_model.determine_stress_and_deformation(

node_displacement,
temp_xe,
node_rotation,
self.node_coordinates,
local_coord_sys

)

# Determine the p-norm approximation of the maximum Von-Mises stress.
p_norm_stress = p_norm_approximation(

self.adjoint_model.stress_vector_int,
self.adjoint_model.inv_int_p,
self.qi,
self.adjoint_model.multiply_VM_matrix,

)

self.p_norm_stress_history.append(p_norm_stress)
self.objh = self.p_norm_stress_history
save_data(self.qi, self.iteration, temp_ed_xe, temp_xe)
self.iteration += 1

return p_norm_stress

def stress_der(self, x):
""" Stress derivative method

Determines the value of the stress derivative for a given list of
design variables.

Because SciPy may call this method at any given moment, it is necessary
to repeat the whole process that leads up to the value of the stress
constraint, including:
- updating the material properties.
- running the FEA.
- run the adjoint model.
- determining the stress constraint derivative.

Inputs:
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-------
- x (list): list of the design variables.

Outputs:
--------
- stress_der_array (array): values of the stress derivative for each
element.

"""
# Rounds the input design variables into values acceptable by ABAQUS.
temp_ed_xe = {}
temp_xe = self.xe.copy()
i = 0
for key in self.editable_keys:

if x[i] > 1.0:
temp_ed_xe[key] = 1.0
temp_xe[key] = 1.0

elif x[i] <= self.xe_min:
temp_ed_xe[key] = self.xe_min
temp_xe[key] = self.xe_min

else:
temp_ed_xe[key] = max(self.xe_min, round(x[i], self.dp))
temp_xe[key] = max(self.xe_min, round(x[i], self.dp))

i+=1

# Filter input design densities, if requested.
if self.rmax > 0 and self.filter_densities == True:

temp_ed_xe, temp_xe = self.data_filter.filter_densities(
temp_ed_xe,
temp_xe,
self.xe_min,
self.dp

)

# Update the material properties.
self.model_preparation.property_update(temp_ed_xe)

# Execute the FEA and extract relevant variables.
(

_,
_,
state_strain,
node_displacement,
node_rotation,
local_coord_sys

) = self.abaqus_fea.run_simulation(self.iteration, temp_xe)

# Run adjoint model and extract the adjoint strains.
adjoint_strain = self.adjoint_model.run_adjoint_simulation(

node_displacement,
temp_xe,
node_rotation,
self.node_coordinates,
local_coord_sys,
self.qi,
self.active_bc,
self.active_loads,
self.iteration,

)

# Determine the stress sensitivity.
elmt_stress_sensitivity = self.adjoint_model.stress_sensitivity(

temp_xe,
self.qi,
state_strain,
adjoint_strain

)

# Filter sensitivity, if requested.
if self.rmax > 0 and self.filter_sensitivities == True:

elmt_stress_sensitivity = self.data_filter.filter_function(
elmt_stress_sensitivity,
self.editable_keys

)
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# Reformat sensitivity into an array.
stress_constr_der_array = np.array(

[elmt_stress_sensitivity[key] for key in self.editable_keys]
).reshape(len(temp_ed_xe))

#stress_constr_der_array = (
# stress_constr_der_array / self.p_norm_stress_history[-1]
#)

return stress_constr_der_array

def return_record(self):
""" Return record method

Returns the records of the objetive function, P-norm stress
approximation, and iteration number.

Outputs:
--------
- objh (list): record with values of the objective function.
- p_norm_stress_history (list): list used to record the values of the
P-norm maximum stress approximation.

- iteration (int): number of the current iteration.
"""
data_record = (

self.objh,
self.p_norm_stress_history,
self.current_material,
self.iteration

)

return data_record

#%% Display definition
class SetDisplay():

""" Set display class

The present class is responsible for modifying the ABAQUS color codes such
that it is possible to represent the design variables considered in each
iteration of the topology optimization process, or the resulting stresses
installed in each iteration.

In 2D problems, this representation is acchieved through the use of a
grey-scale color code, where white represents a design density of 0 and
black a design density of 1.

In 3D problems, the same principle applies. However, to allow a less
obstructed view of some regions, it is possible to hide elements with
a design density below a given value.

Attributes:
-----------
- mdb (Mdb): ABAQUS model database.
- model_name (str): Name of the ABAQUS model.
- part_name (str): Name of the ABAQUS part to be optimized.
- set_list (list): List of the user-defined (pre-existing) sets.
- xe_min (float): minimum density allowed for the element. I.e. minimum

value allowed for the design variables.
- dp (int): number of decimals places to be considered in the

interpolation. By definition, equal to the number of decimal places
in xe_min.

- opt_method (int): variable defining the optimization method to be used.
- plot_density, plot_stress, plot_stress_p, plot_stress_a,

plot_stress_a_p (boolean): variables indicating which plot should be
displayed.

- preferred_plot (int): number of the preferred plot.
- max_stress_legend (float): defines the maximum stress value of the

scale used as a legend in the stress plots.

Methods:
--------
- prepare_density_display(): assigns grey-scale colors to the sets that

contain the elements as a function of the possible design variable values



236 Python code for stress-constrained topology optimization in ABAQUS®

(i.e. sets the color code for the element sets named
’Rho_’+(density_val)).

- prepare_stress_display(): assigns a blue-red color scale to 12 element
sets that sort the elements as a function of their stress state.
(i.e. sets the color code for the element sets named ’stress_val_0’ to
’stress_val_11’).

- update_display(qi, iteration, AdjointModel, xe): updates the display,
considering possible changes in the plot options.

- save_print(name, q, iteration): saves a printscreen of the current
plot.

- hide_elements(rho_threshold): hides all elements with a design density
lower than ’rho_threshold’. This function can help visualise 3D problems.

Auxiliary methods:
------------------
- rgb_to_hex(rho): determines an RGB code as a function of the design
variable of an element. The RGB code is then converted into an
hexadecimal code.

- plot_elmt_stress(elmt_stress): sorts the elements into sets as a function
of their stress state.

- average_element_stress(requested_plot, AdjointModel, xe, qi): determines
the average stress installed in an element based on the data determined
for the integration points of each element. Depending on the plot
requested. The result may be edited to consider, or remove, the influence
of the stress penalization factor (square root of the design density)
and/or the exponent of the P-norm stress approximation function.

"""
def __init__(

self, mdb, model_name, part_name, set_list, xe_min, dp,
opt_method, plot_density, plot_stress, plot_stress_p,
plot_stress_a, plot_stress_a_p, preferred_plot, max_stress_legend

):

self.mdb = mdb
self.model_name = model_name
self.part_name = part_name
self.set_list = set_list
self.xe_min = xe_min
self.dp = dp
self.opt_method = opt_method
self.part = mdb.models[model_name].parts[part_name]
self.plot_density = plot_density
self.plot_stress = plot_stress
self.plot_stress_p = plot_stress_p
self.plot_stress_a = plot_stress_a
self.plot_stress_a_p = plot_stress_a_p
self.preferred_plot = preferred_plot
self.max_stress_legend = max_stress_legend

def prepare_density_display(self):
""" Prepare density display method

Method that prepares the ABAQUS interface to display the densities
of each element.

The procedure consists on defining a color map scheme (cmap in ABAQUS)
in which:
- only the sets ’Rho_’+density_value are visible.
- each ’Rho_’+density_value set has a different color as a function of
the density value.

- neighbouring regions are colored in blue.
- non-editable regions are colored in red.

During the definition of the color scheme, the color code updates are
disabled. The reason is that ABAQUS, by default, will loop through all
items in the color scheme every time a single item is updated. To avoid
an exponential number of loops and to significantly reduce the
computational cost, the updates are disabled during this process and
only reactivated briefly at the end. The result is a single loop, after
which the color code updates are disabled again untill necessary.
"""

nodes = self.part.nodes
override = {}
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# Display ABAQUS sets, with the mesh visible, and frozen elements
# painted red.
session.viewports[’Viewport: 1’].setValues(

displayedObject = self.part)
session.viewports[’Viewport: 1’].partDisplay.setValues(mesh = ON)
session.viewports[’Viewport: 1’].enableMultipleColors()
session.viewports[’Viewport: 1’].setColor(initialColor = ’#BD0011’)
cmap = session.viewports[’Viewport: 1’].colorMappings[’Set’]

# Hide user-defined sets.
for part_set in self.set_list:

override[part_set] = (False,)

# Define the color of each possible design variable.
# 0 density in white, 1 density in black.
density_range = np.arange(self.xe_min, 1.0, 10.0 ** (-self.dp))
for rho in np.round(density_range, self.dp):

hex_color = self.rgb_to_hex(rho)
color_info = (True, hex_color, ’Default’, hex_color)
override[’Rho_’ + str(rho).replace(".",",")] = color_info

# If rho=1.0, assign the same color as rho=0.99 due to RGB
# conversion issues.
hex_color = self.rgb_to_hex(0.99)
color_info = (True, hex_color, ’Default’, hex_color)
override[’Rho_1,0’] = color_info

# For stress dependent problems, hide the sets created for the
# adjoint problem.
if self.opt_method >= 4:

for i in range(0, len(nodes)):
override["adjoint_node-"+str(nodes[i].label)] = (False,)

for i in range(0, 12):
override[’stress_val_’ + str(i)] = (False,)

# neighbouring region is colored in blue.
color_info = (True, ’#177BBD’, ’Default’, ’#177BBD’)
override[’neighbouring_region’] = color_info
cmap.updateOverrides(overrides = override)

# Update the color scheme once and disable updates untill necessary.
# Note: updating the color scheme only when necessary will severely
# increase the code efficiency.
session.viewports[’Viewport: 1’].setColor(colorMapping=cmap)
session.viewports[’Viewport: 1’].enableColorCodeUpdates()
session.viewports[’Viewport: 1’].disableMultipleColors()

def rgb_to_hex(self, rho):
""" RGB to Hexadecimal method

Converts the value of the design variable into an RGB code in
Hexadecimal, allowing the plot of the density of the element in a
grey-scale pattern.

Note that the value of the density is rounded to 2 decimal places, as
the color codes available in ABAQUS do not allow a more detailed
discretization.

Input:
------
- rho (float): float with value of the design variable.

Output:
-------
- hex_code (str): hexadecimal code representing the color to be
assigned to an element set.

"""
rho = round(rho, 2)
rgb = (255*(1-rho), 255*(1-rho), 255*(1-rho))
a = ’%02x%02x%02x’ % rgb

return "#"+a
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def hide_elements(self, rho_threshold):
""" Hide elements method

The standard display will create a grey-scale plot of the element
densities. However, in 3D problems, this may difficult the corrent
visualisation of the density distribution. The ’hide elements’ function
will hide all elements with a design density value lower than the
input value ’rho_threshold’.

Input:
------
- rho_threshold (float): minimimum value of the design density to be
displayed in the viewport.

"""
leaf = dgm.Leaf(leafType = DEFAULT_MODEL)

session.viewports[’Viewport: 1’].partDisplay.displayGroup \
.replace(leaf = leaf)

rho = self.xe_min
inc = 10.0 ** (-self.dp)
sets_to_hide = []

while rho < rho_threshold:
elmt_set = ’Rho_’ + str(rho).replace(".",",")
sets_to_hide.append(elmt_set)
rho += inc

leaf = dgm.LeafFromSets(sets = sets_to_hide)
session.viewports[’Viewport: 1’].partDisplay.displayGroup\

.remove(leaf = leaf)

def prepare_stress_display(self):
""" Prepare stress display method

Method that prepares the ABAQUS interface to display the stress state
of each element. The color-code applied is the same as the standard
option included in the ABAQUS ’Visualization’ module, with dark-blue
indicating the lowest stress region, and red the highest stress region.

The procedure consists on defining a color map scheme (cmap in ABAQUS)
in which:
- only the sets ’stress_val_’+[0, 11] are visible.
- each set has a different color as a function of the stress value.
- non-editable regions are colored in white.

During the definition of the color scheme, the color code updates are
disabled. The reason is that ABAQUS, by default, will loop through all
items in the color scheme every time a single item is updated. To avoid
an exponential number of loops and to significantly reduce the
computational cost, the updates are disabled during this process and
only reactivated briefly at the end. The result is a single loop, after
which the color code updates are disabled again untill necessary.
"""

override = {}
session.viewports[’Viewport: 1’].setValues(displayedObject = self.part)
session.viewports[’Viewport: 1’].partDisplay.setValues(mesh = ON)
session.viewports[’Viewport: 1’].enableMultipleColors()
# Set initial color to white.
session.viewports[’Viewport: 1’].setColor(initialColor=’#FFFFFF’)
cmap=session.viewports[’Viewport: 1’].colorMappings[’Set’]

# Disable density display.
inc = 10.0 ** (-self.dp)
rho_range = np.arange(self.xe_min, 1.0 + inc, inc)
for rho in np.round(rho_range, self.dp):

override[’Rho_’ + str(rho).replace(".",",")] = (False,)

# ABAQUS standard color-code used in the Visualization module.
cmap.updateOverrides(overrides={

’stress_val_11’: (True, ’#FF0000’, ’Default’, ’#FF0000’),
’stress_val_10’: (True, ’#FF7B04’, ’Default’, ’#FF7B04’),
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’stress_val_9’: (True, ’#FFB800’, ’Default’, ’#FFB800’),
’stress_val_8’: (True, ’#F9FF0F’, ’Default’, ’#F9FF0F’),
’stress_val_7’: (True, ’#B2FF00’, ’Default’, ’#B2FF00’),
’stress_val_6’: (True, ’#1CE900’, ’Default’, ’#1CE900’),
’stress_val_5’: (True, ’#00F94A’, ’Default’, ’#00F94A’),
’stress_val_4’: (True, ’#00FF72’, ’Default’, ’#00FF72’),
’stress_val_3’: (True, ’#00FFF2’, ’Default’, ’#00FFF2’),
’stress_val_2’: (True, ’#00C2D0’, ’Default’, ’#00C2D0’),
’stress_val_1’: (True, ’#0A81FF’, ’Default’, ’#0A81FF’),
’stress_val_0’: (True, ’#0010FF’, ’Default’, ’#0010FF’)})

# Apply color-code once.
cmap.updateOverrides(overrides=override)
session.viewports[’Viewport: 1’].setColor(colorMapping = cmap)
session.viewports[’Viewport: 1’].enableColorCodeUpdates()
session.viewports[’Viewport: 1’].disableMultipleColors()

def plot_elmt_stress(self, elmt_stress):
""" Plot element stress method

Sorts the elements into 12 sets (’stress_val_0’ to ’stress_val_11’)
as a function of the average element stress installed.
If a maximum value for the stress scale was not provided, the code
will consider the maximum equal to the largest stress observed.
Otherwise, all elements with average stress above the maximum specified
will be placed in the same set (’stress_val_11’).

Inputs:
-------
- elmt_stress (dict): dictionary with the average stress observed in
each element.

"""

session.viewports[’Viewport: 1’].disableColorCodeUpdates()
all_elmts = self.part.elements

if self.max_stress_legend == None:
max_scale = np.max(elmt_stress.values())

else:
max_scale = self.max_stress_legend

# Loops through all elements, selecting them based on the current
# upper and lower bound stress values.
for stress_val in np.arange(0, 12):

elmt_sec = self.part.elements[0:0]

lower_bound = max_scale * (stress_val / 11.0)
upper_bound = max_scale * ((stress_val + 1) / 11.0)

if stress_val == 0:
keys = [key for key,value in elmt_stress.items()

if value < upper_bound]

elif stress_val == 11:
keys = [key for key,value in elmt_stress.items()

if lower_bound <= value]

else:
keys = [key for key,value in elmt_stress.items()

if lower_bound <= value < upper_bound]

for key in keys:
elmt_sec += all_elmts[key-1:key]

set_name = ’stress_val_’ + str(stress_val).replace(".", ",")
self.part.Set(elements = elmt_sec, name = set_name)

# Update color-code once.
session.viewports[’Viewport: 1’].enableColorCodeUpdates()
session.viewports[’Viewport: 1’].disableMultipleColors()

def average_element_stress(self, requested_plot, adjoint_model, xe, qi):
""" Average element stress method
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Determines the average stress in an element. Depending on the plot
requested, this may require the inclusion/removal of the stress
penalization factor (square-root of the design density) and of the
P-norm stress approximation factor.
The average data is based on the Von-Mises stresses observed on the
integration points of each element.

Inputs:
-------
- requested_plot (int): code identifying the plot requested.
- adjoint_model (class): AdjointModel class, containing the stresses
and jacobian matrixes observed on each integration point, the volume
of each element, element thickness, and the ’multiply_VM_matrix’ and
’xe_all’ methods.

- xe (dict): dictionary with the densities (design variables) of each
relevant element in the model.

- qi (float): current value of the exponential of the P-norm stress
approximation function. Although usually named "P" in the literature,
the letter "Q" was adopted to avoid confusion with the SIMP penalty
factor, which is also usually named "P" in the literature.

Output:
-------
- elmt_stress (dict): dictionary with the average stress observed in
each element.

"""
elmt_stress = {}
elmt_data = adjoint_model.stress_vector_int
xe_all = adjoint_model.xe_all
jacobian_int = adjoint_model.jacobian_int
thickness = adjoint_model.shell_thickness
elmt_volume = adjoint_model.elmt_volume
vm_f = adjoint_model.multiply_VM_matrix

# For stress dependent plots, the code will determine the average
# of the stress observed in the integration points of each element.
# Otherwise, returns None.

if requested_plot == 1: # Plot density.
elmt_stress = None

elif requested_plot == 2: # Plot stress.
for elmt_label, stress_vectors in elmt_data.items():

elmt_stress[elmt_label] = 0.0
vol = elmt_volume[elmt_label]
stress_amp = math.sqrt(xe_all(elmt_label, xe))

for int_point, vector in stress_vectors.items():
det_j = np.linalg.det(jacobian_int[elmt_label][int_point])
relative_weight = det_j * thickness / vol
stress_int_p = vector / stress_amp
stress_int_p = vm_f(stress_int_p, stress_int_p) ** 0.5
elmt_stress[elmt_label] += stress_int_p * relative_weight

elif requested_plot == 3: # Plot stress ** qi.
for elmt_label, stress_vectors in elmt_data.items():

elmt_stress[elmt_label] = 0.0
vol = elmt_volume[elmt_label]
stress_amp = math.sqrt(xe_all(elmt_label, xe))

for int_point, vector in stress_vectors.items():
det_j = np.linalg.det(jacobian_int[elmt_label][int_point])
relative_weight = det_j * thickness / vol
stress_int_p = (vector / stress_amp)
stress_int_p = vm_f(stress_int_p, stress_int_p) ** 0.5
stress_int_p = stress_int_p ** qi
elmt_stress[elmt_label] += stress_int_p * relative_weight

elif requested_plot == 4: # Plot amplified stress.
for elmt_label, stress_vectors in elmt_data.items():

elmt_stress[elmt_label] = 0.0
vol = elmt_volume[elmt_label]
stress_amp = math.sqrt(xe_all(elmt_label, xe))
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for int_point, vector in stress_vectors.items():
det_j = np.linalg.det(jacobian_int[elmt_label][int_point])
relative_weight = det_j * thickness / vol
vector = vm_f(vector, vector) ** 0.5
stress_int_p = vector
elmt_stress[elmt_label] += stress_int_p * relative_weight

elif requested_plot == 5: # Plot amplified stress ** qi.
for elmt_label, stress_vectors in elmt_data.items():

elmt_stress[elmt_label] = 0.0
vol = elmt_volume[elmt_label]
stress_amp = math.sqrt(xe_all(elmt_label, xe))

for int_point, vector in stress_vectors.items():
det_j = np.linalg.det(jacobian_int[elmt_label][int_point])
relative_weight = det_j * thickness / vol
vector = vm_f(vector, vector) ** 0.5
stress_int_p = vector ** qi
elmt_stress[elmt_label] += stress_int_p * relative_weight

else:
raise Exception(

"Unexpected plot request found in ’average_element_stress’ \n"
"method of class ’SetDisplay’.")

return elmt_stress

def update_display(self, qi, iteration, adjoint_model, xe):
""" Update display method

Loops through the display requests, updates the display, and saves
a print screen of each plot. The preferred display is printed last,
since it leads to a larger display period between iterations.

Inputs:
-------
- q (float): value of the exponent used in the p-norm approximation.
- iteration (int): number of the current iteration.
- adjoint_model (class): AdjointModel class with the information of
the stresses determined at the integration points of each element.
Only used when requesting stress plots. Otherwise, set to None.

- xe (dict): dictionary with the densities (design variables) of each
relevant element in the model.

"""

requested_plots = []
plot_name = {

1: ’density’,
2: ’stress’,
3: ’stress_p’,
4: ’stress_a’,
5: ’stress_a_p’

}

if self.plot_density == True:
requested_plots.append(1)

if self.plot_stress == True:
requested_plots.append(2)

if self.plot_stress_p == True:
requested_plots.append(3)

if self.plot_stress_a == True:
requested_plots.append(4)

if self.plot_stress_a_p == True:
requested_plots.append(5)

non_preferred_plots = set(requested_plots) - set([self.preferred_plot])
requested_plots = list(non_preferred_plots)
requested_plots.append(self.preferred_plot)

for request in requested_plots:
if request == 1:

self.prepare_density_display()
self.save_print(plot_name[request], qi, iteration)
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elif request in [2,3,4,5]:
self.prepare_stress_display()
elmt_stress = self.average_element_stress(request,

adjoint_model,
xe, qi)

self.plot_elmt_stress(elmt_stress)
self.save_print(plot_name[request], qi, iteration)

else:
raise Exception(

"Unexpected plot request found in method \n"
"’update_display’ of class ’SetDisplay’."

)

def save_print(self, name, q, iteration):
""" Save Print method

Saves a .png file with a printscreen of the current plot.
The name of the file is set equal to ’NAME_Q(Q_value)_I(I_value).png’.

Inputs:
-------
- name (str): name of the file.
- q (float): value of the exponent used in the p-norm approximation.
- iteration (int): number of the current iteration.
"""
path = os.getcwd()
file_name = path + ’\\’ + str(name) + ’_Q’ + str(q) + ’_I’ + \

str(iteration) + ’.png’
canvas = session.viewports[’Viewport: 1’]
session.printToFile(fileName = file_name, format=PNG,

canvasObjects=(canvas, ))

def plot_result(mdb, set_display):
""" Plot result function

Creates 3 ABAQUS viewports, each displaying: the final solution, the
graphic of the objective function, and the graphic of the material
constraint.

The elements of the final solution that have a design density lower than
0.5 are hidden from the display.

Inputs:
-------
- mdb (Mdb): model database from ABAQUS.
- set_display (class): SetDisplay class.
"""
n_coords = len(mdb.customData.History[’obj’])

# Display final design.
vp1 = session.viewports[’Viewport: 1’]
p = mdb.models[’Model-1’].parts[’Part-1’]
vp1.setValues(displayedObject = p)
set_display.hide_elements(0.5)

# Plot objective function history.
vp2 = session.Viewport(’Objective history’,

origin = (89.0, 14.0),
width = 89.0,
height = 106.0

)
obj_plot = session.XYPlot(’Objective function’)
graph2 = obj_plot.charts.values()[0]
obj_data = [(k, mdb.customData.History[’obj’][k]) for k in range(n_coords)]
xy_obj = session.XYData(’Objective function’, obj_data)
graph2.setValues(curvesToPlot = [session.Curve(xy_obj)])
graph2.axes1[0].axisData.setValues(title = ’Iteration’)
graph2.axes2[0].axisData.setValues(title = ’Objective function’)
vp2.setValues(displayedObject = obj_plot)

# Plot material fraction history.
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#
# The number of coordinates is updated, as the optimizers may run a
# different number of objective and constraint function evaluations.
n_coords = len(mdb.customData.History[’mat’])
vp3 = session.Viewport(’Material history’,

origin = (0.0, 14.0),
width = 89.0,
height = 106.0

)
mat_plot = session.XYPlot(’Material fraction’)
graph1 = mat_plot.charts.values()[0]
mat_data = [(k, mdb.customData.History[’mat’][k]) for k in range(n_coords)]
xy_mat = session.XYData(’Material fraction’, mat_data)
graph1.setValues(curvesToPlot = [session.Curve(xy_mat)])
graph1.axes1[0].axisData.setValues(title = ’Iteration’)
graph1.axes2[0].axisData.setValues(title = ’Material fraction’)
vp3.setValues(displayedObject = mat_plot)

# Reposition the first viewport. This is only possible after the other
# viewports have been created.
vp1.setValues(

origin = (178.0, 14.0),
width = 89.0,
height = 106.0

)

#%% Data recording.
def save_data(q, iteration, temp_ed_xe = None, temp_xe = None):

""" Save Data function

Creates a .txt file with the values of all relevant variables of the
current topology optimization iteration.
The name of the file is set to ’save_file_Q(Q_value)_I(I_value).txt’.

Inputs:
-------
- q (float): value of the exponent used in the p-norm approximation.
- iteration (int): number of the current iteration.
- temp_ed_xe (dict): design densities of the editable elements. Only

introduced by the SciPy optimizers, as they do not output the results
at the end of every iteration.

- temp_xe (dict) design densities of all elements. Only introduced by the
SciPy optimizers, as they do not output the results at the end of every
iteration.

"""

# When using the SciPy algorithms, the design densities need to be
# input directly, as these functions only output the result in the final
# iteration.
# The other methods work differently and update the global variables in
# every iteration. Hence the global assignment.
if temp_ed_xe != None and temp_xe != None:

editable_xe = temp_ed_xe
xe = temp_xe

else:
editable_xe = Editable_xe
xe = Xe

# Prevent the Low and Upp arrays from being written in a compact form,
# (ex: low = np.array([1.0,...,1.0])), thus allowing a direct input into
# the command line.
if hasattr(Low,’all’) == True:

low = [item[0] for item in Low]
upp = [item[0] for item in Upp]
low_text = ’Low = np.array(’+str(low)+’).reshape(’+str(len(Low))+’,1)’
upp_text = ’Upp = np.array(’+str(upp)+’).reshape(’+str(len(Upp))+’,1)’

else:
low_text = ’Low = ’+str(Low)
upp_text = ’Upp = ’+str(Upp)

# Rewritte the following variables to allow a direct input into the
# console.
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Lam_history_str = ""
for item in Lam_history:

Lam_history_str +=’np.array(’+str(item)+’), ’

Fval_history_str = ""
for item in Fval_history:

Fval_history_str +=’np.array(’+str(item)+’), ’

algorithm = "’"+str(ALGORITHM)+"’" if ALGORITHM != None else ALGORITHM

# Create file and its content. Then write the content, save and close the
# file.
tempo = open(’save_file_Q’+str(q)+’_I’+str(iteration)+’.txt’, ’w+’)
head= "#---Iteration Variables---#"\
+’\n’+’Xe = ’+str(xe)\
+’\n’+’Editable_xe = ’+str(editable_xe)\
+’\n’+’Xold1 = ’+str(Xold1)\
+’\n’+’Xold2 = ’+str(Xold2)\
+’\n’+’Ae = ’+str(Ae)\
+’\n’+’OAe = ’+str(OAe)\
+’\n’+’OAe2 = ’+str(OAe2)\
+’\n’+’Target_material_history = ’+str(Target_material_history)\
+’\n’+’Current_Material = ’+str(Current_Material)\
+’\n’+’Objh = ’+str(Objh)\
+’\n’+’Fval_history = [’+Fval_history_str+’]’\
+’\n’+’P_norm_history = ’+str(P_norm_history)\
+’\n’+’Lam_history = [’+Lam_history_str+’]’\
+’\n’+low_text\
+’\n’+upp_text\
+’\n’+’Change = ’+str(Change)\
+’\n’+’Iter = ’+str(Iter)\
+’\n\n’ + "#---User Inputs---#" \
+’\n’+’CAE_NAME = "’+str(CAE_NAME)+’"’\
+’\n’+’MODEL_NAME = "’+str(MODEL_NAME)+’"’\
+’\n’+’PART_NAME = "’+str(PART_NAME)+’"’\
+’\n’+’MATERIAL_NAME = "’+str(MATERIAL_NAME)+’"’\
+’\n’+’SECTION_NAME = "’+str(SECTION_NAME)+’"’\
+’\n’+’MESH_UNIFORMITY = ’+str(MESH_UNIFORMITY)\
+’\n’+’N_DOMAINS = ’+str(N_DOMAINS)\
+’\n’+’N_CPUS = ’+str(N_CPUS)\
+’\n’+’LAST_FRAME = ’+str(LAST_FRAME)\
+’\n’+’MATERIAL_CONSTRAINT = ’+str(MATERIAL_CONSTRAINT)\
+’\n’+’OPT_METHOD = ’+str(OPT_METHOD)\
+’\n’+’NONLINEARITIES = ’+str(NONLINEARITIES)\
+’\n’+’TARGET_MATERIAL = ’+str(TARGET_MATERIAL)\
+’\n’+’EVOL_RATIO = ’+str(EVOL_RATIO)\
+’\n’+’XE_MIN = ’+str(XE_MIN)\
+’\n’+’DP = ’+str(DP)\
+’\n’+’RMAX = ’+str(RMAX)\
+’\n’+’FILTER_SENSITIVITIES = ’+str(FILTER_SENSITIVITIES)\
+’\n’+’FILTER_DENSITIES = ’+str(FILTER_DENSITIES)\
+’\n’+’P = ’+str(P)\
+’\n’+’INITIAL_DENSITY = ’+str(INITIAL_DENSITY)\
+’\n’+’MOVE_LIMIT = ’+str(MOVE_LIMIT)\
+’\n’+’CONSIDER_FROZEN_REGION = ’+str(CONSIDER_FROZEN_REGION)\
+’\n’+’CONSIDER_NEIGHBOURING_REGION = ’ +str(CONSIDER_NEIGHBOURING_REGION)\
+’\n’+’S_MAX = ’+str(S_MAX)\
+’\n’+’Qi = ’+str(Qi)\
+’\n’+’QF = ’+str(QF)\
+’\n’+’P_norm_stress = ’+str(P_norm_stress)\
+’\n’+’Stress_sensitivity = ’+str(Stress_sensitivity)\
+’\n’+’PLOT_DENSITY = ’+str(PLOT_DENSITY)\
+’\n’+’PLOT_STRESS = ’+str(PLOT_STRESS)\
+’\n’+’PLOT_STRESS_P = ’+str(PLOT_STRESS_P)\
+’\n’+’PLOT_STRESS_A = ’+str(PLOT_STRESS_A)\
+’\n’+’PLOT_STRESS_A_P = ’+str(PLOT_STRESS_A_P)\
+’\n’+’PREFERRED_PLOT = ’+str(PREFERRED_PLOT)\
+’\n’+’MAX_STRESS_LEGEND = ’+str(MAX_STRESS_LEGEND)\
+’\n’+’ALGORITHM = ’+str(algorithm)\
+’\n\n’+"#---RESTART Inputs---#"\
+’\n’+"RESTART = True"\
+’\n’+"Mdb = openMdb(CAE_NAME)"
tempo.write(head)
tempo.close()
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def save_mdb(mdb, current_material, objh, cae_name):
""" Save Mdb function

Saves the ABAQUS Mdb in a new CAE file, containing two additional custom
data inputs: one for the material history, and another for the objective
function history.

Inputs:
-------
- mdb (Mdb): model database from ABAQUS.
- current_material (list): list with the current value of the material

constraint.
- objh (list): record with values of the objective function.
- cae_name (str): string with the name of the ABAQUS CAE file.
"""
mdb.customData.History = {’mat’:current_material, ’obj’:objh}
mdb.saveAs("TopOpt-"+cae_name)

#%% Element formulation and C matrix (stiffness matrix)
class ElementFormulation():

""" Element formulation class

This class contains finite element information that is dependent on the
element type used during the simulation, such as the B matrixes
(strain-displacement matrix), the Jacobian matrix, and the shape function
or their derivatives.
The information contained in this class is used in stress dependent
topology optimization problems, in order to determine the derivative of
the maximum stress as a function of changes in the design variables.

Attribute:
----------
- element_type (str): ABAQUS code defining the element type.

Methods:
--------
- b_matrix_and_jac(s, t, v, x_coord, y_coord, z_coord, v1_vector,

v2_vector, vn, a_rot, b_rot, shell_thickness): determines the B and
Jacobian matrixes.

- b_matrix(s, t, v, jacobian, v1_vector = None, v2_vector = None,
shell_thickness = None): determines the B matrix of an element.

- jacobian_matrix(s, t, v, x_coord, y_coord, z_coord, vn = None,
a_rot = None, b_rot = None, shell_thickness = None): determines the
Jacobian matrix of an element.

Auxiliary methods:
------------------
- b_matrix_2DQ4(s, t, jacobian): determines the B matrix of a 2DQ4 element.
- b_matrix_S4(s, t, v, jacobian, v1_vector, v2_vector, shell_thickness):

determines the B matrix of an S4 element.
- b_matrix_C3D8(s, t, v, jacobian): determines the B matrix of a C3D8

element.
- jacobian_2DQ4(s, t, x_coord, y_coord): determines the Jacobian matrix of

a 2DQ4 element.
- jacobian_S4(s, t, v, x_coord, y_coord, z_coord, vn, a_rot, b_rot,

shell_thickness): determines the Jacobian matrix of an S4 element.
- jacobian_C3D8(s, t, v, x_coord, y_coord, z_coord): determines the

Jacobian matrix of a C3D8 element.
- shape_eq_2DQ4(i, s, t): shape equation of a 2DQ4 element.
- dN_ds_2DQ4(i, s, t), dN_dt_2DQ4(i, s, t): derivative of the shape

quations of a 2DQ4 element.
- dN_ds_C3D8(i, s, t, v), dN_dt_C3D8(i, s, t, v), dN_dv_C3D8(i, s, t, v):

dertivatives of the shape equation of a C3D8 element.
- local_node_coordinates(): creates three dictionaries with the local

coordinates of the element nodes.
- local_int_point_coordinates(): creates three dictionaries with the local

coordinates of the integration points of an element.
"""
def __init__(self, element_type):

self.element_type = element_type
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def b_matrix_and_jac(
self, s, t, v, x_coord, y_coord, z_coord, v1_vector, v2_vector,
vn, a_rot, b_rot, shell_thickness

):
""" B Matrix and Jacobian method
Returns the B and Jacobian matrixes of an element, in a given local
poimt.

Inputs:
-------
- s, t, v (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- x_coord, y_coord, z_coord (lists): lists with the node coordinates,
following the node labelling sequence set by ABAQUS.

- v1_vector, v2_vector, vn (arrays): Only used for S4 elements.
Vectors indicating the in-plane directions of the node local
coordinate system (as illustrated in the book Finite Element
Procedures, 2nd edition, written by Klaus-Jurgen Bathe, in section
5.4, page 437, figure 5.33).

- a_rot, b_rot (lists): lists with the node rotations of a given
element, following the node labelling sequence set by ABAQUS.

- shell_thickness (float): Only used for S4 elements. Total thickness
of the shell element.

Outputs:
--------
- b_matrix (array): strain-displacement matrix.
- jacobian (array): jacobian matrix.
"""
jacobian = self.jacobian_matrix(s, t, v, x_coord, y_coord, z_coord,

vn, a_rot, b_rot, shell_thickness)

b_matrix = self.b_matrix(s, t, v, jacobian, v1_vector, v2_vector,
shell_thickness)

return b_matrix, jacobian

def b_matrix(
self, s, t, v, jacobian, v1_vector = None, v2_vector = None,
shell_thickness = None

):
""" B Matrix method
Outputs the B Matrix, establishing the relation between the
displacement and deformation of an element. This method checks the
type of element being used and returns a matrix with the suitable
form.

Inputs:
-------
- s, t, v (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- jacobian (array): jacobian matrix of the element.
- v1_vector, v2_vector (arrays): Only used for S4 elements.
Vectors indicating the in-plane directions of the node local
coordinate system (as illustrated in the book Finite Element
Procedures, 2nd edition, written by Klaus-Jurgen Bathe, in section
5.4, page 437, figure 5.33).

- shell_thickness (float): Only used for S4 elements. Total thickness
of the shell element.

Output:
-------
- b_matrix (array): displacement-strain matrix of an element.
"""
if self.element_type in ["CPS4", "CPE4"]:

b_matrix = self.b_matrix_2DQ4(s, t, jacobian)

elif self.element_type == "S4":
b_matrix = self.b_matrix_S4(s, t, v, jacobian, v1_vector,

v2_vector, shell_thickness)

elif self.element_type == "C3D8":
b_matrix = self.b_matrix_C3D8(s, t, v, jacobian)
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else:
raise Exception(

’Unsuported element type encountered in the "b_matrix" \n’
’method.’

)

return b_matrix

def b_matrix_2DQ4(self, s, t, jacobian):
""" B Matrix 2DQ4 method
Creates the B matrix, establishing the relation between the element
displacement and deformation, for an ABAQUS 2D element with 4 nodes
(2DQ4).

Inputs:
-------
- s, t (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- jacobian (array): jacobian matrix of the element.

Output:
-------
- b_matrix (array): displacement-strain matrix of a 2DQ4 element.
"""
b_matrix = 0
inv_jacobian = inv(jacobian)

# Determines the matrix that represents the contribution of each node
# displacement to the strain. Then stacks this matrix to form the
# element B matrix.
for i in range(0,4):

der_shape_functions = np.array([[self.dN_ds_2DQ4(i, s, t)],
[self.dN_dt_2DQ4(i, s, t)]])

dN_vector = np.dot(inv_jacobian, der_shape_functions)

b_i = np.array([[dN_vector[0][0], 0],
[0, dN_vector[1][0]],
[dN_vector[1][0], dN_vector[0][0]]])

if hasattr(b_matrix,"shape"):
b_matrix = np.hstack((b_matrix, b_i))

else:
b_matrix = b_i

return b_matrix

def b_matrix_S4(
self, s, t, v, jacobian, v1_vector, v2_vector, shell_thickness

):
""" B Matrix S4 method
Creates the B matrix, establishing the relation between the element
displacement and deformation, for an ABAQUS shell element with 4 nodes
(S4).

Inputs:
-------
- s, t, v (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- jacobian (array): jacobian matrix of the element.
- v1_vector, v2_vector (arrays): vectors indicating the in-plane
directions of the node local coordinate system (as illustrated in
the book Finite Element Procedures, 2nd edition, written
by Klaus-Jurgen Bathe, in section 5.4, page 437, figure 5.33).

- shell_thickness (float): total thickness of the shell element.

Output:
-------
- b_matrix (array): displacement-strain matrix of an S4 element.
"""
b_matrix = 0
inv_jacobian = inv(jacobian)
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# Determines the matrix that represents the contribution of each node
# displacement to the strain. Then stacks this matrix to form the
# element B matrix.
for i in range(0,4):

g1k = -0.5 * shell_thickness * v2_vector[i]
g2k = 0.5 * shell_thickness * v1_vector[i]

du_11 = self.dN_ds_2DQ4(i, s, t)
du_12 = self.dN_ds_2DQ4(i, s, t) * g1k[0] * v
du_13 = self.dN_ds_2DQ4(i, s, t) * g2k[0] * v
du_21 = self.dN_dt_2DQ4(i, s, t)
du_22 = self.dN_dt_2DQ4(i, s, t) * g1k[0] * v
du_23 = self.dN_dt_2DQ4(i, s, t) * g2k[0] * v
du_31 = 0.0
du_32 = self.shape_eq_2DQ4(i, s, t) * g1k[0]
du_33 = self.shape_eq_2DQ4(i, s, t) * g2k[0]

du_dstv = np.array([np.array([du_11, du_12, du_13]),
np.array([du_21, du_22, du_23]),
np.array([du_31, du_32, du_33])])

dv_11 = self.dN_ds_2DQ4(i, s, t)
dv_12 = self.dN_ds_2DQ4(i, s, t) * g1k[1] * v
dv_13 = self.dN_ds_2DQ4(i, s, t) * g2k[1] * v
dv_21 = self.dN_dt_2DQ4(i, s, t)
dv_22 = self.dN_dt_2DQ4(i, s, t) * g1k[1] * v
dv_23 = self.dN_dt_2DQ4(i, s, t) * g2k[1] * v
dv_31 = 0.0
dv_32 = self.shape_eq_2DQ4(i, s, t) * g1k[1]
dv_33 = self.shape_eq_2DQ4(i, s, t) * g2k[1]

dv_dstv = np.array([np.array([dv_11, dv_12, dv_13]),
np.array([dv_21, dv_22, dv_23]),
np.array([dv_31, dv_32, dv_33])])

dw_11 = self.dN_ds_2DQ4(i, s, t)
dw_12 = self.dN_ds_2DQ4(i, s, t) * g1k[2] * v
dw_13 = self.dN_ds_2DQ4(i, s, t) * g2k[2] * v
dw_21 = self.dN_dt_2DQ4(i, s, t)
dw_22 = self.dN_dt_2DQ4(i, s, t) * g1k[2] * v
dw_23 = self.dN_dt_2DQ4(i, s, t) * g2k[2] * v
dw_31 = 0.0
dw_32 = self.shape_eq_2DQ4(i, s, t) * g1k[2]
dw_33 = self.shape_eq_2DQ4(i, s, t) * g2k[2]

dw_dstv = np.array([np.array([dw_11, dw_12, dw_13]),
np.array([dw_21, dw_22, dw_23]),
np.array([dw_31, dw_32, dw_33])])

du_dxyz = np.dot(inv_jacobian, du_dstv)
dv_dxyz = np.dot(inv_jacobian, dv_dstv)
dw_dxyz = np.dot(inv_jacobian, dw_dstv)

b_line_1 = [du_dxyz[0][0], 0, 0, du_dxyz[0][1], du_dxyz[0][2]]
b_line_2 = [0, dv_dxyz[1][0], 0, dv_dxyz[1][1], dv_dxyz[1][2]]
b_line_3 = [0, 0, dw_dxyz[2][0], dw_dxyz[2][1], dw_dxyz[2][2]]
b_line_4 = [du_dxyz[1][0], dv_dxyz[0][0], 0,

du_dxyz[1][1] + dv_dxyz[0][1], du_dxyz[1][2] + dv_dxyz[0][2]]
b_line_5 = [du_dxyz[2][0], 0, dw_dxyz[0][0],

du_dxyz[2][1] + dw_dxyz[0][1], du_dxyz[2][2] + dw_dxyz[0][2]]
b_line_6 = [0, dv_dxyz[2][0], dw_dxyz[1][0],

dv_dxyz[2][1] + dw_dxyz[1][1], dv_dxyz[2][2] + dw_dxyz[1][2]]

b_i = np.array([b_line_1,
b_line_2,
b_line_3,
b_line_4,
b_line_5,
b_line_6])

if hasattr(b_matrix,"shape"):
b_matrix = np.hstack((b_matrix, b_i))
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else:
b_matrix = b_i

return b_matrix

def b_matrix_C3D8(self, s, t, v, jacobian):
""" B Matrix C3D8 method
Creates the B matrix, establishing the relation between the element
displacement and deformation, for an ABAQUS 3D element with 8 nodes
(C3D8).

Inputs:
-------
- s, t, v (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- jacobian (array): jacobian matrix of the element.

Output:
-------
- b_matrix (array): displacement-strain matrix of a C3D8 element.
"""
b_matrix = 0
inv_jacobian = inv(jacobian)

# Determines the matrix that represents the contribution of each node
# displacement to the strain. Then stacks this matrix to form the
# element B matrix.
for i in range(0,8):

der_shape_functions = np.array([[self.dN_ds_C3D8(i, s, t, v)],
[self.dN_dt_C3D8(i, s, t, v)],
[self.dN_dv_C3D8(i, s, t, v)]])

dN_vector = np.dot(inv_jacobian, der_shape_functions)

b_i = np.array([[dN_vector[0][0], 0, 0],
[0, dN_vector[1][0], 0],
[0, 0, dN_vector[2][0]],
[dN_vector[1][0], dN_vector[0][0], 0],
[dN_vector[2][0], 0, dN_vector[0][0]],
[0, dN_vector[2][0], dN_vector[1][0]]])

if hasattr(b_matrix,"shape"):
b_matrix = np.hstack((b_matrix,b_i))

else:
b_matrix = b_i

return b_matrix

def jacobian_matrix(
self, s, t, v, x_coord, y_coord, z_coord, vn = None, a_rot = None,
b_rot = None, shell_thickness = None

):
""" Jacobian matrix method

Determines the Jacobian matrix of an element, in a given local point,
as a function of the element type.

Inputs:
-------
- s, t, v (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- x_coord, y_coord, z_coord (lists): lists with the node coordinates,
following the node labelling sequence set by ABAQUS.

- vn (array): Only used for S4 elements. Vector indicating the normal
direction of the shell surface (as illustrated in the book Finite
Element Procedures, 2nd edition, written by Klaus-Jurgen Bathe,
in section 5.4, page 437, figure 5.33).

- a_rot, b_rot (lists): lists with the node rotations of a given
element, following the node labelling sequence set by ABAQUS.

- shell_thickness (float): Only used for S4 elements. Total thickness
of the shell element.

Output:
-------
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- jacobian (array): Jacobian matrix.
"""

if self.element_type in ["CPS4", "CPE4"]:
jacobian = self.jacobian_2DQ4(s, t, x_coord, y_coord)

elif self.element_type == "S4":
jacobian = self.jacobian_S4(s, t, v, x_coord, y_coord, z_coord, vn,

a_rot, b_rot, shell_thickness)

elif self.element_type == "C3D8":
jacobian = self.jacobian_C3D8(s, t, v, x_coord, y_coord, z_coord)

else:
raise Exception(’Unsuported element type encountered in the ’

’"jacobian_matrix" method.’)

return jacobian

def jacobian_2DQ4(self, s, t, x_coord, y_coord):
""" Jacobian 2DQ4 method

Determines the Jacobian matrix of a 2DQ4 element, in a given local
point, as a function of the element type.

Inputs:
-------
- s, t (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- x_coord, y_coord (lists): lists with the node coordinates,
following the node labelling sequence set by ABAQUS.

Output:
-------
- jacobian (array): Jacobian matrix.
"""
j11 = sum([self.dN_ds_2DQ4(i, s, t) * x_coord[i] for i in range(0,4)])
j12 = sum([self.dN_ds_2DQ4(i, s, t) * y_coord[i] for i in range(0,4)])
j21 = sum([self.dN_dt_2DQ4(i, s, t) * x_coord[i] for i in range(0,4)])
j22 = sum([self.dN_dt_2DQ4(i, s, t) * y_coord[i] for i in range(0,4)])

jacobian = np.array([[j11, j12],
[j21, j22]])

return jacobian

def jacobian_S4(
self, s, t, v, x_coord, y_coord, z_coord, vn, a_rot, b_rot,
shell_thickness

):
""" Jacobian S4 method

Determines the Jacobian matrix of an S4 element, in a given local
point, as a function of the element type.

Inputs:
-------
- s, t, v (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- x_coord, y_coord, z_coord (lists): lists with the node coordinates,
following the node labelling sequence set by ABAQUS.

- vn (array): Only used for S4 elements. Vector indicating the normal
direction of the shell surface (as illustrated in the book Finite
Element Procedures, 2nd edition, written by Klaus-Jurgen Bathe,
in section 5.4, page 437, figure 5.33).

- a_rot, b_rot (lists): lists with the node rotations of a given
element, following the node labelling sequence set by ABAQUS.

- shell_thickness (float): Only used for S4 elements. Total thickness
of the shell element.

Output:
-------
- jacobian (array): Jacobian matrix.
"""
j11 = sum(
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[self.dN_ds_2DQ4(i, s, t) * x_coord[i] + self.dN_ds_2DQ4(i, s, t)
* v * 0.5 * shell_thickness * (vn[i][0])
for i in range(0,4)])

j12 = sum(
[self.dN_ds_2DQ4(i, s, t) * y_coord[i] + self.dN_ds_2DQ4(i, s, t)
* v * 0.5 * shell_thickness * (vn[i][1])
for i in range(0,4)])

j13 = sum(
[self.dN_ds_2DQ4(i, s, t) * z_coord[i] + self.dN_ds_2DQ4(i, s, t)
* v * 0.5 * shell_thickness * (vn[i][2])
for i in range(0,4)])

j21 = sum(
[self.dN_dt_2DQ4(i, s, t) * x_coord[i] + self.dN_dt_2DQ4(i, s, t)
* v * 0.5 * shell_thickness * (vn[i][0])
for i in range(0,4)])

j22 = sum(
[self.dN_dt_2DQ4(i, s, t) * y_coord[i] + self.dN_dt_2DQ4(i, s, t)
* v * 0.5 * shell_thickness * (vn[i][1])
for i in range(0,4)])

j23 = sum(
[self.dN_dt_2DQ4(i, s, t) * z_coord[i] + self.dN_dt_2DQ4(i, s, t)
* v * 0.5 * shell_thickness * (vn[i][2])
for i in range(0,4)])

j31 = sum(
[0.5 * shell_thickness * self.shape_eq_2DQ4(i, s, t) * (vn[i][0])
for i in range(0,4)])

j32 = sum(
[0.5 * shell_thickness * self.shape_eq_2DQ4(i, s, t) * (vn[i][1])
for i in range(0,4)])

j33 = sum(
[0.5 * shell_thickness * self.shape_eq_2DQ4(i, s, t) * (vn[i][2])
for i in range(0,4)])

jacobian = np.array([[j11, j12, j13],
[j21, j22, j23],
[j31, j32, j33]])

return jacobian

def jacobian_C3D8(self, s, t, v, x_coord, y_coord, z_coord):
""" Jacobian C3D8 method

Determines the Jacobian matrix of a C3D8 element, in a given local
point, as a function of the element type.

Inputs:
-------
- s, t, v (floats): coordinates indicating where the B matrix should be
determined, in the element local coordinate system.

- x_coord, y_coord, z_coord (lists): lists with the node coordinates,
following the node labelling sequence set by ABAQUS.

Output:
-------
- jacobian (array): Jacobian matrix.
"""
n_nodes = range(0,8)
j11 = sum([self.dN_ds_C3D8(i, s, t, v) * x_coord[i] for i in n_nodes])
j12 = sum([self.dN_ds_C3D8(i, s, t, v) * y_coord[i] for i in n_nodes])
j13 = sum([self.dN_ds_C3D8(i, s, t, v) * z_coord[i] for i in n_nodes])
j21 = sum([self.dN_dt_C3D8(i, s, t, v) * x_coord[i] for i in n_nodes])
j22 = sum([self.dN_dt_C3D8(i, s, t, v) * y_coord[i] for i in n_nodes])
j23 = sum([self.dN_dt_C3D8(i, s, t, v) * z_coord[i] for i in n_nodes])
j31 = sum([self.dN_dv_C3D8(i, s, t, v) * x_coord[i] for i in n_nodes])
j32 = sum([self.dN_dv_C3D8(i, s, t, v) * y_coord[i] for i in n_nodes])
j33 = sum([self.dN_dv_C3D8(i, s, t, v) * z_coord[i] for i in n_nodes])
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jacobian = np.array([[j11, j12, j13],
[j21, j22, j23],
[j31, j32, j33]])

return jacobian

def shape_eq_2DQ4(self, i, s, t):
""" 2DQ4 Shape equation method

Determines the value of the shape function of a 2DQ4 in a given local
point.

Inputs:
-------
- i (int): node number.
- s, t (dicts): dictionaries with the local coordinates of each
node.

Output:
-------
- shape_value (float): value of the shape function.
"""
if i == 0:

shape_value = 0.25 * (1 - s) * (1 - t)
elif i == 1:

shape_value = 0.25 * (1 + s) * (1 - t)
elif i == 2:

shape_value = 0.25 * (1 + s) * (1 + t)
elif i == 3:

shape_value = 0.25 * (1 - s) * (1 + t)
else:

raise Exception(
"Unexpected value ’i’ in method ’shape_eq_2DQ4’. \n"
"Variable i should be equal to 0, 1, 2 or 3."

)

return shape_value

def dN_ds_2DQ4(self, i, s, t):
""" 2DQ4 Shape function derivative method (w.r.t. s)

Outputs the derivative of the shape function (for 2D or shell elements)
with respect to the local axis (variable) s.

- Inputs:
---------
- i (int): number of the node whose shape function derivative is being
determined.

- s, t (floats): local coordinates of where the derivative should be
determined.

- Output:
---------
- dN_ds (float): derivative of the shape function w.r.t. the s local
axis (variable).

"""
if i == 0:

dN_ds_2DQ4 = (t - 1)
elif i == 1:

dN_ds_2DQ4 = (1 - t)
elif i == 2:

dN_ds_2DQ4 = (1 + t)
elif i == 3:

dN_ds_2DQ4 = (-1 - t)
else:

raise Exception("Unexpected shape function index ’i’ in method "
"dN_ds_2DQ4.")

return 0.25 * dN_ds_2DQ4

def dN_dt_2DQ4(self, i, s, t):
""" 2DQ4 Shape function derivative method (w.r.t. t)
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Outputs the derivative of the shape function (for 2D or shell elements)
with respect to the local axis (variable) t.

- Inputs:
---------
- i (int): number of the node whose shape function derivative is being
determined.

- s, t (floats): local coordinates of where the derivative should be
determined.

- Output:
---------
- dN_dt (float): derivative of the shape function w.r.t. the t local
axis (variable).

"""
if i == 0:

dN_dt_2DQ4 = (s - 1)
elif i == 1:

dN_dt_2DQ4 = (-s - 1)
elif i == 2:

dN_dt_2DQ4 = (1 + s)
elif i == 3:

dN_dt_2DQ4 = (1 - s)
else:

raise Exception("Unexpected shape function index ’i’ in method "
"dN_dt_2DQ4.")

return 0.25*dN_dt_2DQ4

def dN_ds_C3D8(self, i, s, t, v):
""" C3D8 Shape function derivative method (w.r.t. s)

Outputs the derivative of the shape function (for 3D elements) with
respect to the local axis (variable) s.

- Inputs:
---------
- i (int): number of the node whose shape function derivative is being
determined.

- s, t, v (floats): local coordinates of where the derivative should be
determined.

- Output:
---------
- dN_ds (float): derivative of the shape function w.r.t. the s local
axis (variable).

"""
if i == 0:

dN_ds_C3D8 = -0.125 * (-t + 1) * (-v + 1)
elif i == 1:

dN_ds_C3D8 = 0.125 * (-t + 1) * (-v + 1)
elif i == 2:

dN_ds_C3D8 = 0.125 * (t + 1) * (-v + 1)
elif i == 3:

dN_ds_C3D8 = -0.125 * (t + 1) * (-v + 1)
elif i == 4:

dN_ds_C3D8 = -0.125 * (-t + 1) * (v + 1)
elif i == 5:

dN_ds_C3D8 = 0.125 * (-t + 1) * (v + 1)
elif i == 6:

dN_ds_C3D8 = 0.125 * (t + 1) * (v + 1)
elif i == 7:

dN_ds_C3D8 = -0.125 * (t + 1) * (v + 1)
else:

raise Exception("Unexpected shape function index ’i’ in method "
"dN_ds_C3D8.")

return dN_ds_C3D8

def dN_dt_C3D8(self, i, s, t, v):
""" C3D8 Shape function derivative method (w.r.t. t)

Outputs the derivative of the shape function (for 3D elements) with
respect to the local axis (variable) t.
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- Inputs:
---------
- i (int): number of the node whose shape function derivative is being
determined.

- s, t, v (floats): local coordinates of where the derivative should be
determined.

- Output:
---------
- dN_dt (float): derivative of the shape function w.r.t. the t local
axis (variable).

"""
if i == 0:

dN_dt_C3D8 = -(-0.125 * s + 0.125)*(-v + 1)
elif i == 1:

dN_dt_C3D8 = -(0.125 * s + 0.125)*(-v + 1)
elif i == 2:

dN_dt_C3D8 = (0.125 * s + 0.125) * (-v + 1)
elif i == 3:

dN_dt_C3D8 = (-0.125 * s + 0.125) * (-v + 1)
elif i == 4:

dN_dt_C3D8 = -(-0.125 * s + 0.125) * (v + 1)
elif i == 5:

dN_dt_C3D8 = -(0.125 * s + 0.125) * (v + 1)
elif i == 6:

dN_dt_C3D8 = (0.125 * s + 0.125) * (v + 1)
elif i == 7:

dN_dt_C3D8 = (-0.125 * s + 0.125) * (v + 1)
else:

raise Exception("Unexpected shape function index ’i’ in method "
"dN_dt_C3D8.")

return dN_dt_C3D8

def dN_dv_C3D8(self, i, s, t, v):
""" C3D8 Shape function derivative method (w.r.t. v)

Outputs the derivative of the shape function (for 3D elements) with
respect to the local axis (variable) v.

- Inputs:
---------
- i (int): number of the node whose shape function derivative is being
determined.

- s, t, v (floats): local coordinates of where the derivative should be
determined.

- Output:
---------
- dN_ds (float): derivative of the shape function w.r.t. the v local
axis (variable).

"""
if i == 0:

dN_dv_C3D8 = -(-0.125 * s + 0.125) * (-t + 1)
elif i == 1:

dN_dv_C3D8 = -(0.125 * s + 0.125) * (-t + 1)
elif i == 2:

dN_dv_C3D8 = -(0.125 * s + 0.125) * (t + 1)
elif i == 3:

dN_dv_C3D8 = -(-0.125 * s + 0.125) * (t + 1)
elif i == 4:

dN_dv_C3D8 = (-0.125 * s + 0.125) * (-t + 1)
elif i == 5:

dN_dv_C3D8 = (0.125 * s + 0.125) * (-t + 1)
elif i == 6:

dN_dv_C3D8 = (0.125 * s + 0.125) * (t + 1)
elif i == 7:

dN_dv_C3D8 = (-0.125 * s + 0.125) * (t + 1)
else:

raise Exception("Unexpected shape function index ’i’ in method "
"dN_dv_C3D8.")

return dN_dv_C3D8
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def local_node_coordinates(self):
""" Local node coordinates method

Outputs three dictionaries with the coordinates of the element nodes
as seen in the local element coordinate system.

If a third dimension does not exist, the ’v’ dictionary is returned
empty.

Output:
-------
- s, t, v (dicts): dictionaries with the local coordinates of each
node.

"""
s, t, v = {}, {}, {}

# coordinates of the nodes for each element type.
if self.element_type in ["CPS4", "CPE4"]:

s[0], t[0], v[0] = -1, -1, None
s[1], t[1], v[1] = 1, -1, None
s[2], t[2], v[2] = 1, 1, None
s[3], t[3], v[3] = -1, 1, None

elif self.element_type == "S4":
s[0], t[0], v[0] = -1, -1, 0
s[1], t[1], v[1] = 1, -1, 0
s[2], t[2], v[2] = 1, 1, 0
s[3], t[3], v[3] = -1, 1, 0

elif self.element_type == "C3D8":
s[0], t[0], v[0] = -1, -1, -1
s[1], t[1], v[1] = 1, -1, -1
s[2], t[2], v[2] = 1, 1, -1
s[3], t[3], v[3] = -1, 1, -1
s[4], t[4], v[4] = -1, -1, 1
s[5], t[5], v[5] = 1, -1, 1
s[6], t[6], v[6] = 1, 1, 1
s[7], t[7], v[7] = -1, 1, 1

else:
raise Exception(’Unsuported element type encountered in the ’

’"local_node_coordinates" method.’)

return s, t, v

def local_int_point_coordinates(self):
""" Local integration point coordinates method

Outputs three dictionaries with the coordinates of the integration
points of an element as seen in the local element coordinate system.

If a third dimension does not exist, the ’v_int’ dictionary is returned
empty.

Output:
-------
- s_int, t_int, v_int (dicts): dictionaries with the local coordinates
of each integration point.

"""
a = 3.0**(-0.5)
s_int, t_int, v_int = {}, {}, {}

# Coordinates of the integration points for each element type.
if self.element_type in ["CPS4", "CPE4"]:

s_int[0], t_int[0], v_int[0] = -a, -a, None
s_int[1], t_int[1], v_int[1] = a, -a, None
s_int[2], t_int[2], v_int[2] = -a, a, None
s_int[3], t_int[3], v_int[3] = a, a, None

elif self.element_type == "S4":
s_int[0], t_int[0], v_int[0] = -a, -a, 0
s_int[1], t_int[1], v_int[1] = a, -a, 0
s_int[2], t_int[2], v_int[2] = -a, a, 0
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s_int[3], t_int[3], v_int[3] = a, a, 0

elif self.element_type == "C3D8":
s_int[0], t_int[0], v_int[0] = -a, -a, -a
s_int[1], t_int[1], v_int[1] = a, -a, -a
s_int[2], t_int[2], v_int[2] = -a, a, -a
s_int[3], t_int[3], v_int[3] = a, a, -a
s_int[4], t_int[4], v_int[4] = -a, -a, a
s_int[5], t_int[5], v_int[5] = a, -a, a
s_int[6], t_int[6], v_int[6] = -a, a, a
s_int[7], t_int[7], v_int[7] = a, a, a

else:
raise Exception(

’Unsuported element type encountered in the ’
’"local_int_point_coordinates" method.’

)

return s_int, t_int, v_int

def c_matrix_function(element_type, material_type, planar):
""" Stiffness Matrix (D) function

Determines the stiffness matrix of an element as a function of the
element type and material type. The function does not consider the
influence of the SIMP interpolation.

Inputs:
-------
- element_type (str): ABAQUS code defining the element type.
- material_type (Material_type): ABAQUS code defining the type of the
material considered.

- planar (int): variable identifying the type of part considered (2D or
3D).

Output:
-------
- c_matrix (array): stiffness matrix of the element.
"""
# If the material properties are given for an Isotropic material:
if material_type == ISOTROPIC:

# Plane stress case.
if element_type == "CPS4":

e1 = Youngs_modulus
c11 = e1 / (1 - Poisson ** 2)
c12 = c11 * Poisson
c13 = c23 = c12
c33 = c22 = c11
num = e1 * (1 - 2 * Poisson) * 0.5
denom = ((1 - Poisson * 2) * (1 + Poisson))
c44 = c55 = c66 = num / denom

elif element_type == "CPE4":
e1 = Youngs_modulus
delta = e1 / ((1 + Poisson) * (1 - 2 * Poisson))
c11 = c22 = c33 = delta * (1 - Poisson)
c12 = c13 = c23 = delta * Poisson
c44 = c55 = c66 = delta * (1 - 2 * Poisson) * 0.5

# Shell element case.
elif element_type == "S4":

e1 = Youngs_modulus
c11 = e1 / (1 - Poisson ** 2)
c12 = c11 * Poisson
c13 = c23 = 0.0
c22 = c11
c33 = 0.0
num = e1 * (1 - 2 * Poisson) * 0.5
denom = ((1 - Poisson * 2) * (1 + Poisson))
c44 = c55 = c66 = num / denom

# 3D element case.
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elif element_type == "C3D8":
e1 = Youngs_modulus
c11 = e1 * (1 - Poisson) / ((1 - Poisson* 2 ) * (1 + Poisson))
c12 = e1 * (Poisson) / ((1 - Poisson * 2) * (1 + Poisson))
c13 = c23 = c12
c33 = c22 = c11
c44 = c55 = c66 = (((1 - Poisson) / 2 * e1) / (1 - Poisson ** 2))

# For other cases, assume the 3D Hook’s Law.
else:

delta = Youngs_modulus / ((1 + Poisson) * (1 - 2 * Poisson))
c11 = c22 = c33 = delta * (1 - Poisson)
c12 = c13 = c23 = delta * Poisson
c44 = c55 = c66 = delta * ((1 - 2 * Poisson) / 2)

# If the material properties are defined by engineering constants:
elif material_type == ENGINEERING_CONSTANTS:

e1 = E11
e2 = E22
e3 = E33
Nu21 = e2 * Nu12 / e1
Nu32 = e3 * Nu23 / e2
Nu31 = e3 * Nu13 / e1
num = (1 - Nu12 * Nu21 - Nu23 * Nu32 - Nu31 * Nu13

- 2 * Nu21 * Nu32 * Nu13)
denom = (e1 * e2 * e3)
delta = num / denom
c11 = (1 - Nu23 * Nu32) / (e2 * e3 * delta)
c12 = (Nu12 + Nu32 * Nu13) / (e1 * e3 * delta)
c13 = (Nu13 + Nu12 * Nu23) / (e1 * e2 * delta)
c22 = (1 - Nu13 * Nu31)/(e1 * e3 * delta)
c23 = (Nu23 + Nu21 * Nu13) / (e1 * e3 * delta)
c33 = (1 - Nu12 * Nu21) / (e1 * e2 * delta)
c44 = G12 * 0.5
c55 = G23 * 0.5
c66 = G13 * 0.5

else:
raise Exception(

"The ’stiffness_matrix’ function found no material properties \n"
"in the form of ’ISOTROPIC’ or ’ENGINEERING_CONSTANTS’ for \n"
"material {}.".format(MATERIAL_NAME)

)

# Build the C matrix for 2D or 3D problems.
if planar == 1:

c_matrix = np.array([[c11, c12, 0],
[c12, c22, 0],
[ 0, 0, c44]])

elif planar == 0:
c_matrix = np.array([[c11, c12, c13, 0, 0, 0],

[c12, c22, c23, 0, 0, 0],
[c13, c23, c33, 0, 0, 0],
[ 0, 0, 0, c44, 0, 0],
[ 0, 0, 0, 0, c55, 0],
[ 0, 0, 0, 0, 0, c66]])

else:
raise Exception(

"Unexpected combination of ’element_type’ and ’planar’ variables\n"
"in the ’c_matrix_function’."

)

return c_matrix

#%% Parameter input request, domain definition, and variable generation.
class ParameterInput():

""" Parameter input class

This class creates a simple graphic interface asking the user to input
information about the numerical model, the topology optimization problem
and the parameters to be used.
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While collecting the information, this class will also check if the user
has input correct information (i.e. if the model exists or if the values
are within their expectable domain).

Due to the large number of inputs, the variables are generated through
the Global command instead of the Python return function, as a means to
maintain the code organized and the main section cleaner.

Methods:
--------
- model_information(): creates a pop-up requesting general information the
ABAQUS file and the numerical model to be used in the topology
optimization process.

- problem_statement(): creates a pop-up requesting the user to identify
the type of topology optimization process to be considered and the
internal parameters to be used.

- return_inputs(model_inputs, user_inputs): based on the information input,
a large number of global variables are created and ’returned’ through the
global command.

"""
def __init__(self):

pass

def model_information(self):
""" Model information method

Creates a pop-up requesting the user to input the name of the ABAQUS
CAE file, the model name, material name, indicate if the mesh is
uniform, the number of job domains and CPUs to consider, and if the
code should only consider the output obtained for the last frame of
each step.

Output:
-------
- model_inputs (list): list containing the variables with the
information introduced by the user.

"""
#Input the name of the CAE file, model, part, and material considered,
#as well as the mesh uniformity and the number of job domains and CPUs.
pars = ((’CAE file:’,’L-bracket.cae’),

(’Model name:’,’Model-1’),
(’Part name:’,’Part-1’),
(’Material name:’,’Material-1’),
(’Section name:’,’Section-1’),
(’Is the mesh uniform? (Y=1/N=0)’,’1’),
(’Number of domains of the Job:’, ’4’),
(’Number of CPUs used in the FEA:’,’4’),
(’Check only the outputs from the last frame? (Y=1/N=0)’,’1’))

exception_message = (
"Invalid input(s) in the ’Model and Job’ tab. \n"
"Please consider the following requirements: \n"
"- Select an ABAQUS CAE file that exists in the current \n"
" working directory."
"- The number of domains must be equal to or a multiple of \n "
" the number of processors (CPUs). \n"
"- Both the number of domains and the number of CPUs must \n "
" be larger than 0. \n"
"- The input for the mesh uniformity should be either 0 or 1."
"\n"
"- Please use either 1 or 0 (Y=1/N=0) to indicate if the \n "
" program should only check results from the last frame of \n"
" the odb file or from all available frames of the odb."

)

temp_output = getInputs(pars,
dialogTitle = ’Model and Job information’)

try:
cae_name, model_name, part_name, material_name, section_name = [

str(k) if k not in [None, ’’] else pars[k][1]
for k in temp_output[0:5]]
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mesh_uniformity, n_domains, n_cpus, last_frame = [
int(float(k)) if k not in [None, ’’] else 0
for k in temp_output[5:]]

except:
raise Exception(exception_message)

#Confirm the usage, or not, of the file extension ’.cae’ in the CAE
#name input and act accordingly.
if cae_name[-4:] == ".cae" or cae_name[-4:] == ".CAE":

cae_name = cae_name[:-4] + ".cae"
elif cae_name[-4:] != ".cae" or cae_name[-4:] != ".CAE":

cae_name = cae_name + ".cae"
else:

raise Exception(
"Unexpected error in the cae_name verification loop. \n")

#Open the CAE file.
mdb = openMdb(cae_name)

#Confirm the existence of the Model.
if model_name == ’’: model_name = ’Model-1’
if model_name not in mdb.models.keys():

raise Exception("Model named {} not found in the {} file. \n"\
.format(model_name,cae_name))

#Confirm the existence of the Part.
if part_name == ’’: part_name = ’Part-1’
if part_name not in mdb.models[model_name].parts.keys():

raise Exception("Part named {} not found in Model {}. \n"\
.format(part_name,model_name))

#Confirm the existence of the Material.
if material_name == ’’: material_name = ’Material-1’
if material_name not in mdb.models[model_name].materials.keys():

raise Exception("Material named {} not found in the materials "
"of model {}. \n".format(material_name,model_name))

#Confirm the existence of the Section.
if section_name == ’’: section_name = ’Section-1’
if section_name not in mdb.models[model_name].sections.keys():

raise Exception("Section named {} not found in model {}. \n"\
.format(section_name,model_name))

#Confirm that the inputs have acceptable values.
if (n_domains <= 0

or n_cpus <= 0
or n_domains % n_cpus != 0
or mesh_uniformity not in [0,1]
or last_frame not in [0,1]

):
raise Exception(exception_message)

model_inputs = [mdb, cae_name, model_name, part_name, material_name,
section_name, mesh_uniformity, n_domains, n_cpus,
last_frame]

return model_inputs

def problem_statement(self):
""" Problem statement method

Creates a pop-up requesting the user to input information regarding the
topology optimization problem to be solved. This information includes
the selection of an optimization solver, the constraints to be
considered, and the necessary internal parameters.

Output:
-------
- user_inputs (list): list containing the variables with the
information introduced by the user.

"""

pars = (
(’Problem statement and solver selected:’,’1’),
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(’Consider constrained Mass or Volume? \n ’
’(Mass = 0 / Volume = 1):’, ’1’),
(’Consider geometric non-linearities? (Yes=1 / No=0):’, ’0’)

)

Label = (
’Please introduce the number corresponding to the problem \n’
’type and optimization solver that you would like to use. \n \n’
’Compliance minimization solved with: \n’
’ 0 - OC for discrete design variables. \n’
’ 1 - OC for continuous design variables. \n’
’ 2 - MMA for continuous design variables. \n’
’ 3 - SciPy solver for continuous design variables. \n \n’
’Stress constrained compliance minimization solved with: \n’
’ 4 - MMA for continuous design variables. \n’
’ 5 - SciPy solver for continuous design variables. \n \n’
’Maximum stress minimization solved with: \n’
’ 6 - MMA for continuous design variables. \n’
’ 7 - SciPy solver for continuous design variables. \n \n’
’(*) Notes: \n’
’ a) OC - Optimality Criteria. \n’
’ b) MMA - Method of Moving Asymptotes. \n’
’ c) Continuous design variables assume a Solid Isotropic \n’
’ Material with Penalization (SIMP). \n’
’ d) The SciPy solver may require the user to edit the code \n’
’ to access all internal parameters and options.’
’\n’

)

exception_message = (
"Invalid input in the ’Parameters tab’. \n"
"Please indicate the optimization method with an integer number \n"
"from 0 up to 8, and all answer the remaining questions in this \n"
"tab with either 0 or 1. \n"

)

try:
(

opt_method,
material_constraint,
nonlinearities,

) = [int(float(k)) if k not in [None, ’’] else 0
for k in getInputs(pars,

dialogTitle = ’Problem statement’,
label = Label)]

except:
raise Exception(exception_message)

# Confirm problem statement and optimization method requirements.
if (

material_constraint not in [0,1]
or nonlinearities not in [0,1]
or opt_method not in range(0,8)

):
raise Exception(exception_message)

nonlinearities = True if nonlinearities == 1 else False

# Request additional information for the problem statement defined, if
# valid.

# For discrete compliance minimization problems.
if opt_method in [0]:

pars = ((’Material constraint ratio (Target Volume or Mass over ’
’a fully solid design, between 0 and 1)’,’0.5’),
(’Material constraint evolution ratio:’, ’0.05’),
(’Min. Element density:’, ’0.01’),
(’Filter radius:’,’7.5’),
(’Filter sensitivities? (Y=1/N=0)’, ’1’),
(’Filter design densities? (Y=1/N=0)’, ’0’),
(’SIMP penalty factor:’,’3.0’),
(’Initial density of the elements (set 0 for a ’
’random distribution)’,’1.0’),
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(’Consider frozen region? (Y=1/N=0)’, ’0’),
(’Consider neighbouring region? (Y=1/N=0)’, ’0’))

exception_message = (
"Invalid input in the ’Topology Optimization parameters’. \n"
"Please consider the following requirements: \n"
"-The material constraint ratio, minimum element density, \n"
" material constraint evolution ratio, and initial density, \n"
" inputs should be a value between 0 and 1. \n"
"-The initial density should only be equal to 0 when \n"
" requesting a random density distribution for the first \n"
" iteration. \n"
"-The SIMP penalty factor should be larger than 0 . \n"
"-The filter radius should be larger or equal to 0.0. \n"
"-Indicate if you want to filter the sensitivities and/or \n"
" design densities by answering with either 1 or 0 to each \n"
" question (Yes=1 / No=0).\n"
"-The ’consider_frozen_region’ and \n"
" ’consider_neighbouring_region’ variables, defining the \n"
" consideration of frozen and neighbouring regions, should \n"
" be equal to 0 or 1. \n"

)

try:
(

target_material,
evol_ratio,
xe_min,
rmax,
filter_sensitivities,
filter_densities,
p,
initial_density,
consider_frozen_region,
consider_neighbouring_region,

) = [float(k) if k not in [None, ’’] else 0
for k in getInputs(pars,

dialogTitle = "Problem statement")]
except:

raise Exception(exception_message)

consider_frozen_region = int(round(consider_frozen_region,0))
consider_neighbouring_region = int(round(

consider_neighbouring_region,0))
filter_sensitivities = int(round(filter_sensitivities,0))
filter_densities = int(round(filter_densities,0))

# Set the unused variables.
move_limit = None
s_max, p_norm_stress = None, None
qi, qf = 1.0, 1.0
stress_sensitivity = {}
algorithm = None

# Confirm that the topology optimization parameters input have
# acceptable values.
if (

target_material <= 0.0
or target_material > 1.0
or evol_ratio > 1.0
or evol_ratio <= 0.0
or xe_min <= 0.0
or xe_min > 1.0
or rmax < 0
or p < 0.0
or initial_density < 0.0
or initial_density > 1.0
or consider_frozen_region not in [0,1]
or consider_neighbouring_region not in [0,1]
or filter_sensitivities not in [0,1]
or filter_densities not in [0,1]

):
raise Exception(exception_message)
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print ("Casual reminder: \n"
"-The problem defined by these inputs may be solved \n"
" as a continuous problem with the Optimality Criteria, \n"
" Method of Moving Asymptotes, or through the SciPy \n"
" optimizers implemented, and referenced, in the code \n"
" provided. \n")

# For continuous compliance minimization problems.
elif opt_method in [1, 2]:

pars = ((’Material constraint ratio (Target Volume or Mass over ’
’a fully solid design, between 0 and 1)’,’0.5’),
(’Material constraint evolution ratio:’, ’0.05’),
(’Min. Element density:’, ’0.01’),
(’Filter radius:’,’7.5’),
(’Filter sensitivities? (Y=1/N=0)’, ’1’),
(’Filter design densities? (Y=1/N=0)’, ’1’),
(’SIMP penalty factor:’,’3.0’),
(’Initial density of the elements (set 0 for a ’
’random distribution)’,’1.0’),
(’Move limit of the design variables:’, ’0.2’),
(’Consider frozen region? (Y=1/N=0)’, ’0’),
(’Consider neighbouring region? (Y=1/N=0)’, ’0’))

exception_message = (
"Invalid input in the ’Topology Optimization parameters’. \n"
"Please consider the following requirements: \n"
"-The material constraint ratio, minimum element density, \n"
" material constraint evolution ratio, initial density, \n"
" and move limit inputs should be a value between 0 and 1. "
"\n"
"-The initial density should only be equal to 0 when \n"
" requesting a random density distribution for the first \n"
" iteration. \n"
"-The SIMP penalty factor should be larger than 0 . \n"
"-The filter radius should be larger or equal to 0.0. \n"
"-Indicate if you want to filter the sensitivities and/or \n"
" design densities by answering with either 1 or 0 to each \n"
" question (Yes=1 / No=0).\n"
"-The ’consider_frozen_region’ and \n"
" ’consider_neighbouring_region’ variables, defining the \n"
" consideration of frozen and neighbouring regions, should \n"
" be equal to 0 or 1. \n"

)

try:
(

target_material,
evol_ratio,
xe_min,
rmax,
filter_sensitivities,
filter_densities,
p,
initial_density,
move_limit,
consider_frozen_region,
consider_neighbouring_region,

) = [float(k) if k not in [None, ’’] else 0
for k in getInputs(pars,

dialogTitle = "Problem statement")]
except:

raise Exception(exception_message)

consider_frozen_region = int(round(consider_frozen_region,0))
consider_neighbouring_region = int(round(

consider_neighbouring_region,0))
filter_sensitivities = int(round(filter_sensitivities,0))
filter_densities = int(round(filter_densities,0))

# Set the unused variables.
s_max, p_norm_stress = None, None
qi, qf = 1.0, 1.0
stress_sensitivity = {}
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algorithm = None

# Confirm that the topology optimization parameters input have
# acceptable values.
if (

target_material <= 0.0
or target_material > 1.0
or evol_ratio > 1.0
or evol_ratio <= 0.0
or xe_min <= 0.0
or xe_min > 1.0
or rmax < 0
or p < 0.0
or initial_density < 0.0
or initial_density > 1.0
or move_limit <= 0.0
or move_limit > 1.0
or consider_frozen_region not in [0,1]
or consider_neighbouring_region not in [0,1]
or filter_sensitivities not in [0,1]
or filter_densities not in [0,1]

):
raise Exception(exception_message)

print ("Casual reminder: \n"
"-The problem defined by these inputs may be solved \n"
" with the Optimality Criteria, Method of Moving \n"
" Asymptotes, or through the SciPy optimizers implemented,"
"\n and referenced, in the code provided. \n")

elif opt_method in [3]:

pars = ((’Material constraint ratio (Target Volume or Mass over ’
’a fully solid design, between 0 and 1)’,’0.5’),

(’Material constraint evolution ratio:’, ’0.05’),
(’Min. Element density:’, ’0.01’),
(’Filter radius:’,’7.5’),
(’Filter sensitivities? (Y=1/N=0)’, ’1’),
(’Filter design densities? (Y=1/N=0)’, ’1’),
(’SIMP penalty factor:’,’3.0’),
(’Initial density of the elements (set 0 for a ’
’random distribution)’,’1.0’),

(’Consider frozen region? (Y=1/N=0)’, ’0’),
(’Consider neighbouring region? (Y=1/N=0)’, ’0’),
(’Solve with "SLSQP" or "trust-constr"? ’
’(SLSQP=1/trust-constr=0)’, ’1’))

exception_message = (
"Invalid input in the ’Topology Optimization parameters’."
"\n Please consider the following requirements: \n"
"-The material constraint ratio, minimum element density, \n"
" material constraint evolution ratio, and initial density \n"
" inputs should be a value between 0 and 1. \n"
"-The initial density should only be equal to 0 when \n"
" requesting a random density distribution for the first \n"
" iteration. \n"
"-The SIMP penalty factor should be larger than 0 . \n"
"-The filter radius should be larger or equal to 0.0. \n"
"-Indicate if you want to filter the sensitivities and/or \n"
" design densities by answering with either 1 or 0 to each \n"
" question (Yes=1 / No=0).\n"
"-The ’consider_frozen_region’ and \n"
" ’consider_neighbouring_region’ variables, defining the \n"
" consideration of frozen and neighbouring regions, should \n"
" be equal to 0 or 1. \n"
"-Select the optimization solver with either 1 or 0 \n"
" (SLSQP=1/trust-constr=0)."

)

try:
(

target_material,
evol_ratio,
xe_min,
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rmax,
filter_sensitivities,
filter_densities,
p,
initial_density,
consider_frozen_region,
consider_neighbouring_region,
algorithm

) = [float(k) if k not in [None, ’’] else 0
for k in getInputs(pars,

dialogTitle = "Problem statement")]
except:

raise Exception(exception_message)

consider_frozen_region = int(round(consider_frozen_region,0))
consider_neighbouring_region = int(round(

consider_neighbouring_region,0))
filter_sensitivities = int(round(filter_sensitivities,0))
filter_densities = int(round(filter_densities,0))
algorithm = int(round(algorithm, 0))

# Set the unused variables.
move_limit = None
s_max, p_norm_stress = None, None
qi, qf = 1.0, 1.0
stress_sensitivity = {}

#Confirm that the topology optimization parameters input have
#acceptable values.
if (

target_material <= 0.0
or target_material > 1.0
or evol_ratio > 1.0
or evol_ratio <= 0.0
or xe_min <= 0.0
or xe_min > 1.0
or rmax < 0
or p < 0.0
or initial_density < 0.0
or initial_density > 1.0
or consider_frozen_region not in [0,1]
or consider_neighbouring_region not in [0,1]
or filter_sensitivities not in [0,1]
or filter_densities not in [0,1]

):
raise Exception(exception_message)

algorithm = ’SLSQP’ if algorithm == 1 else ’trust-constr’

print ("Casual reminder: \n"
"-The problem defined by these inputs may be solved \n"
" with the Optimality Criteria, Method of Moving \n"
" Asymptotes, or through the SciPy optimizers implemented,"
"\n and referenced, in the code provided. \n")

# For stress constrained compliance minimization problems:
elif opt_method in [4]:

pars = ((’Material constraint ratio (Target Volume or Mass over a’
’fully solid design, between 0 and 1)’,’0.5’),
(’Material constraint evolution ratio:’, ’1.0’),
(’Max. Stress value’, ’350.0’),
(’Min. Element density:’, ’0.01’),
(’Filter radius:’,’5.0’),
(’Filter sensitivities? (Y=1/N=0)’, ’1’),
(’Filter design densities? (Y=1/N=0)’, ’1’),
(’SIMP penalty factor:’,’3.0’),
(’Initial density of the elements (set 0 for a random ’
’distribution)’,’1.0’),
(’Move limit of the design variables:’, ’0.2’),
(’Initial P_norm factor:’,’8.0’),
(’Maximum P_norm factor:’,’8.0’),
(’Consider frozen region? (Y=1/N=0)’, ’0’),
(’Consider neighbouring region? (Y=1/N=0)’, ’0’))
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exception_message = (
"Invalid input in the ’Topology Optimization parameters’."
"\n Please consider the following requirements: \n"
"-The material constraint ratio, minimum element density, \n"
" material constraint evolution ratio, initial density, \n"
" and move limit inputs should be a value between 0 and 1. "
"\n"
"-The initial density should only be equal to 0 when \n"
" requesting a random density distribution for the first \n"
" iteration. \n"
"-The stress constraint value and the SIMP penalty factor \n"
" should be larger than 0 . \n"
"-The filter radius should be larger or equal to 0.0. \n"
"-Indicate if you want to filter the sensitivities and/or \n"
" design densities by answering with either 1 or 0 to each \n"
" question (Yes=1 / No=0).\n"
"-The initial and maximum P_norm factors should both be \n"
" larger than 0, with the final actor being larger than \n"
" the initial. \n"
"-The ’consider_frozen_region’ and \n"
" ’consider_neighbouring_region’ variables, defining the \n"
" consideration of frozen and neighbouring regions, should \n"
" be equal to 0 or 1. \n \n"
"Additionally, the user is reminded that: \n"
"-The stress constraint variable should be ’S’ unless the \n"
" user has modified the code provided. This input is not \n"
" verified by the code provided. \n"
"-Likewise, the additional constraint variable(s) \n"
" requested and corresponding maximum value are not \n"
" verified by the code provided. Therefore, the user \n"
" should verify the input introduced. \n"

)

#In this case, the information is processed differently to avoid
#additional pop-ups.
temp_outputs = getInputs(

pars, dialogTitle = ’Topology Optimization parameters’)

try:
(

target_material,
evol_ratio,
s_max,
xe_min,
rmax,
filter_sensitivities,
filter_densities,
p,
initial_density,
move_limit,
qi,
qf,
consider_frozen_region,
consider_neighbouring_region

) = [float(k) if k not in [None, ’’] else 0
for k in temp_outputs]

except:
raise Exception(exception_message)

consider_frozen_region = int(round(consider_frozen_region,0))
consider_neighbouring_region = int(round(

consider_neighbouring_region,0))
filter_sensitivities = int(round(filter_sensitivities,0))
filter_densities = int(round(filter_densities,0))

qi, qf = float(round(qi,0)), float(round(qf,0))
p_norm_stress, stress_sensitivity = None, None
algorithm = None

#Confirm that the topology optimization parameters input have
#acceptable values.
if (

target_material <= 0.0
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or target_material > 1.0
or evol_ratio > 1.0
or evol_ratio <= 0.0
or s_max <= 0
or xe_min <= 0.0
or xe_min > 1.0
or rmax < 0
or p < 0.0
or initial_density < 0.0
or initial_density > 1.0
or move_limit <= 0.0
or move_limit > 1.0
or qi <= 0.0
or qf <= 0.0
or qf < qi
or consider_frozen_region not in [0,1]
or consider_neighbouring_region not in [0,1]
or filter_sensitivities not in [0,1]
or filter_densities not in [0,1]

):
raise Exception(exception_message)

print("Casual reminder: \n"
"-The problem defined by these inputs may be solved \n"
" with the Method of Moving Asymptotes, or through the \n"
" SciPy optimizers implemented, and referenced, in the \n"
" code provided. \n")

elif opt_method in [5]:
pars = ((’Material constraint ratio (Target Volume or Mass over a’

’fully solid design, between 0 and 1)’,’0.5’),
(’Material constraint evolution ratio:’, ’1.0’),
(’Max. Stress value’, ’350.0’),
(’Min. Element density:’, ’0.01’),
(’Filter radius:’,’5.0’),
(’Filter sensitivities? (Y=1/N=0)’, ’1’),
(’Filter design densities? (Y=1/N=0)’, ’1’),
(’SIMP penalty factor:’,’3.0’),
(’Initial density of the elements (set 0 for a random ’
’distribution)’,’1.0’),
(’Initial P_norm factor:’,’8.0’),
(’Maximum P_norm factor:’,’8.0’),
(’Consider frozen region? (Y=1/N=0)’, ’0’),
(’Consider neighbouring region? (Y=1/N=0)’, ’0’),
(’Solve with "SLSQP" or "trust-constr"? ’
’(SLSQP=1/trust-constr=0)’, ’1’))

exception_message = (
"Invalid input in the ’Topology Optimization parameters’."
"\n Please consider the following requirements: \n"
"-The material constraint ratio, minimum element density, "
" material constraint evolution ratio, and initial density "
" inputs should be a value between 0 and 1. \n"
"-The initial density should only be equal to 0 when "
" requesting a random density distribution for the first "
" iteration. \n"
"-The stress constraint value and the SIMP penalty factor "
" should be larger than 0 . \n"
"-The filter radius should be larger or equal to 0.0. \n"
"-Indicate if you want to filter the sensitivities and/or \n"
" design densities by answering with either 1 or 0 to each \n"
" question (Yes=1 / No=0).\n"
"-The initial and maximum P_norm factors should both be "
" larger than 0, with the final actor being larger than "
" the initial. \n"
"-The ’consider_frozen_region’ and "
" ’consider_neighbouring_region’ variables, defining the "
" consideration of frozen and neighbouring regions, should "
" be equal to 0 or 1. "
"-Select the optimization solver with either 1 or 0 \n"
" (SLSQP=1/trust-constr=0).\n \n"

)

#In this case, the information is processed differently to avoid
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#additional pop-ups.
temp_outputs = getInputs(

pars, dialogTitle = ’Topology Optimization parameters’)

try:
(

target_material,
evol_ratio,
s_max,
xe_min,
rmax,
filter_sensitivities,
filter_densities,
p,
initial_density,
qi,
qf,
consider_frozen_region,
consider_neighbouring_region,
algorithm

) = [float(k) if k not in [None, ’’] else 0
for k in temp_outputs]

except:
raise Exception(exception_message)

consider_frozen_region = int(round(consider_frozen_region,0))
consider_neighbouring_region = int(round(

consider_neighbouring_region,0))
filter_sensitivities = int(round(filter_sensitivities,0))
filter_densities = int(round(filter_densities,0))
algorithm = int(round(algorithm, 0))

qi, qf = float(round(qi,0)), float(round(qf,0))
move_limit = None
p_norm_stress, stress_sensitivity = None, None

#Confirm that the topology optimization parameters input have
#acceptable values.
if (

target_material <= 0.0
or target_material > 1.0
or evol_ratio > 1.0
or evol_ratio <= 0.0
or s_max <= 0
or xe_min <= 0.0
or xe_min > 1.0
or rmax < 0
or p < 0.0
or initial_density < 0.0
or initial_density > 1.0
or qi <= 0.0
or qf <= 0.0
or qf < qi
or consider_frozen_region not in [0,1]
or consider_neighbouring_region not in [0,1]
or filter_sensitivities not in [0,1]
or filter_densities not in [0,1]
or algorithm not in [0,1]

):
raise Exception(exception_message)

algorithm = ’SLSQP’ if algorithm == 1 else ’trust-constr’

print("Casual reminder: \n"
"-The problem defined by these inputs may be solved \n"
" with the Method of Moving Asymptotes, or through the \n"
" SciPy optimizers implemented, and referenced, in the \n"
" code provided. \n")

# For stress minimization problems:
elif opt_method in [6]:

pars = ((’Material constraint ratio (Target Volume or Mass over a’
’fully solid design, between 0 and 1)’,’0.5’),

(’Material constraint evolution ratio:’, ’1.0’),
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(’Min. Element density:’, ’0.01’),
(’Filter radius:’,’5.0’),
(’Filter sensitivities? (Y=1/N=0)’, ’1’),
(’Filter design densities? (Y=1/N=0)’, ’1’),
(’SIMP penalty factor:’,’3.0’),
(’Initial density of the elements (set 0 for a random ’
’distribution)’,’1.0’),
(’Move limit of the design variables:’, ’0.2’),
(’Initial P_norm factor:’,’8.0’),
(’Maximum P_norm factor:’,’8.0’),
(’Consider frozen region? (Y=1/N=0)’, ’0’),
(’Consider neighbouring region? (Y=1/N=0)’, ’0’))

exception_message = (
"Invalid input in the ’Topology Optimization parameters’."
"\n Please consider the following requirements: \n"
"-The material constraint ratio, minimum element density, "
" material constraint evolution ratio, initial density, "
" and move limit inputs should be a value between 0 and 1. "
"\n"
"-The initial density should only be equal to 0 when "
" requesting a random density distribution for the first "
" iteration. \n"
"-The SIMP penalty factor should be larger than 0. \n"
"-The filter radius should be larger or equal to 0.0. \n"
"-Indicate if you want to filter the sensitivities and/or \n"
" design densities by answering with either 1 or 0 to each \n"
" question (Yes=1 / No=0).\n"
"-The initial and maximum P_norm factors should both be "
" larger than 0, with the final actor being larger than "
" the initial. \n"
"-The ’consider_frozen_region’ and "
" ’consider_neighbouring_region’ variables, defining the "
" consideration of frozen and neighbouring regions, should "
" be equal to 0 or 1. \n \n"
"Additionally, the user is reminded that: \n"
"-The stress constraint variable should be ’S’ unless the "
" user has modified the code provided. This input is not "
" verified by the code provided. \n"
"-Likewise, the additional constraint variable(s) "
" requested and corresponding maximum value are not "
" verified by the code provided. Therefore, the user "
" should verify the input introduced. \n"

)

#In this case, the information is processed differently to avoid
#additional pop-ups.
temp_outputs = getInputs(

pars, dialogTitle = ’Topology Optimization parameters’)

try:
(

target_material,
evol_ratio,
xe_min,
rmax,
filter_sensitivities,
filter_densities,
p,
initial_density,
move_limit,
qi,
qf,
consider_frozen_region,
consider_neighbouring_region

) = [float(k) if k not in [None, ’’] else 0
for k in temp_outputs]

except:
raise Exception(exception_message)

consider_frozen_region = int(round(consider_frozen_region,0))
consider_neighbouring_region = int(round(

consider_neighbouring_region,0))
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filter_sensitivities = int(round(filter_sensitivities,0))
filter_densities = int(round(filter_densities,0))
qi, qf = float(round(qi,0)), float(round(qf,0))
p_norm_stress, stress_sensitivity = None, None
algorithm = None
s_max = 1.0
#Confirm that the topology optimization parameters input have
#acceptable values.
if (

target_material <= 0.0
or target_material > 1.0
or evol_ratio > 1.0
or evol_ratio <= 0.0
or xe_min <= 0.0
or xe_min > 1.0
or rmax < 0
or p < 0.0
or initial_density < 0.0
or initial_density > 1.0
or move_limit <= 0.0
or move_limit > 1.0
or qi <= 0.0
or qf <= 0.0
or qf < qi
or consider_frozen_region not in [0,1]
or consider_neighbouring_region not in [0,1]
or filter_sensitivities not in [0,1]
or filter_densities not in [0,1]

):
raise Exception(exception_message)

print("Casual reminder: \n"
"-The problem defined by these inputs may be solved \n"
" with the Method of Moving Asymptotes, or through the \n"
" SciPy optimizers implemented, and referenced, in the \n"
" code provided. \n")

elif opt_method in [7]:
pars = ((’Material constraint ratio (Target Volume or Mass over a’

’fully solid design, between 0 and 1)’,’0.5’),
(’Material constraint evolution ratio:’, ’1.0’),
(’Min. Element density:’, ’0.01’),
(’Filter radius:’,’5.0’),
(’Filter sensitivities? (Y=1/N=0)’, ’1’),
(’Filter design densities? (Y=1/N=0)’, ’1’),
(’SIMP penalty factor:’,’3.0’),
(’Initial density of the elements (set 0 for a random ’
’distribution)’,’1.0’),

(’Initial P_norm factor:’,’8.0’),
(’Maximum P_norm factor:’,’8.0’),
(’Consider frozen region? (Y=1/N=0)’, ’0’),
(’Consider neighbouring region? (Y=1/N=0)’, ’0’),
(’Solve with "SLSQP" or "trust-constr"? ’
’(SLSQP=1/trust-constr=0)’, ’1’))

exception_message = (
"Invalid input in the ’Topology Optimization parameters’."
"\n Please consider the following requirements: \n"
"-The material constraint ratio, minimum element density, "
" material constraint evolution ratio, and initial density "
" inputs should be a value between 0 and 1. \n"
"-The initial density should only be equal to 0 when "
" requesting a random density distribution for the first "
" iteration. \n"
"-The SIMP penalty factor should be larger than 0. \n"
"-The filter radius should be larger or equal to 0.0. \n"
"-Indicate if you want to filter the sensitivities and/or \n"
" design densities by answering with either 1 or 0 to each \n"
" question (Yes=1 / No=0).\n"
"-The initial and maximum P_norm factors should both be "
" larger than 0, with the final actor being larger than "
" the initial. \n"
"-The ’consider_frozen_region’ and "
" ’consider_neighbouring_region’ variables, defining the "
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" consideration of frozen and neighbouring regions, should "
" be equal to 0 or 1. "
"-Select the optimization solver with either 1 or 0 \n"
" (SLSQP=1/trust-constr=0). \n \n"

)

#In this case, the information is processed differently to avoid
#additional pop-ups.
temp_outputs = getInputs(

pars, dialogTitle = ’Topology Optimization parameters’)

try:
(

target_material,
evol_ratio,
xe_min,
rmax,
filter_sensitivities,
filter_densities,
p,
initial_density,
qi,
qf,
consider_frozen_region,
consider_neighbouring_region,
algorithm

) = [float(k) if k not in [None, ’’] else 0
for k in temp_outputs]

except:
raise Exception(exception_message)

consider_frozen_region = int(round(consider_frozen_region,0))
consider_neighbouring_region = int(round(

consider_neighbouring_region,0))
filter_sensitivities = int(round(filter_sensitivities,0))
filter_densities = int(round(filter_densities,0))
algorithm = int(round(algorithm, 0))

qi, qf = float(round(qi,0)), float(round(qf,0))
move_limit = None
p_norm_stress, stress_sensitivity = None, None
s_max = 1.0
#Confirm that the topology optimization parameters input have
#acceptable values.
if (

target_material <= 0.0
or target_material > 1.0
or evol_ratio > 1.0
or evol_ratio <= 0.0
or xe_min <= 0.0
or xe_min > 1.0
or rmax < 0
or p < 0.0
or initial_density < 0.0
or initial_density > 1.0
or qi <= 0.0
or qf <= 0.0
or qf < qi
or consider_frozen_region not in [0,1]
or consider_neighbouring_region not in [0,1]
or filter_sensitivities not in [0,1]
or filter_densities not in [0,1]
or algorithm not in [0,1]

):
raise Exception(exception_message)

algorithm = ’SLSQP’ if algorithm == 1 else ’trust-constr’

print("Casual reminder: \n"
"-The problem defined by these inputs may be solved \n"
" with the Method of Moving Asymptotes, or through the \n"
" SciPy optimizers implemented, and referenced, in the \n"
" code provided. \n")
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else:
raise Exception("Unexpected error in the selection of the "

"Optimization Method in the ’Problem statement’ "
"tab. \n")

filter_sensitivities = True if filter_sensitivities == 1 else False
filter_densities = True if filter_densities == 1 else False

if opt_method >= 4:
pars = (

(’1 - Plot element design density?’,’1’),
(’2 - Plot element stress?’, ’0’),
(’3 - Plot element stress raised to the P-norm exponent?’,
’0’),
(’4 - Plot element amplified stress?’, ’0’),
(’5 - Plot element amplified stress raised to the P-norm ’
’exponent?’, ’0’),
(’Number of the preferred plot?’, ’1’),
(’Maximum value of the scale in the stress plot (optional):’,
’’)

)

Label = (
’You have defined a stress dependent topology optimization \n’
’problem. Please select which information you would like to \n’
’plot, by answering "1" or "0" in each box (Yes=1/No=0). \n \n’
’If requesting a stress plot, please indicate if you would \n’
’like to set a maximum value for the stress legend. \n’
’(*) Notes: \n’
’ a) You can select multiple options. \n’
’ b) Screenshot(s) of the selected option(s) will be ’
’saved. \n’
’ c) The preferred option will be displayed in between \n’
’each iteration. \n’
’ d) Secondary options will only be displayed for the \n’
’time required to plot and save the screenshot.\n’
’ e) All elements with a stress larger than the \n’
’maximum legend scale value will be painted in the same \n’
’color. An empty box will set the maximum stress observed \n’
’as the upper limit of the legend.\n\n’

)

exception_message = (
’Invalid input in "Plot options". \n’
’Please consider the following requirements: \n’
’- The answer to questions 1 through 5 should be either \n’
’ 0 or 1. \n’
’- The preferred plot should be identified by its \n’
’ question number (1 through 5).\n’
’- The preferred plot must be one of the requested plots.’
’\n\n’

)

temp_outputs = getInputs(pars, dialogTitle = ’Plot options’,
label = Label)

try:
(

plot_density,
plot_stress,
plot_stress_p,
plot_stress_a,
plot_stress_a_p,
preferred_plot

) = [int(float(k)) if k not in [None, ’’] else 0
for k in temp_outputs[:-1]]

temp_value = temp_outputs[-1]
max_stress_legend = (float(temp_value)

if temp_value not in [None, ’’] else None)
except:

raise Exception(exception_message)

if (
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plot_density not in [0,1]
or plot_stress not in [0,1]
or plot_stress_p not in [0,1]
or plot_stress_a not in [0,1]
or plot_stress_a_p not in [0,1]
or preferred_plot not in range(1,6)
or ( preferred_plot == 1 and plot_density not in [1]

or preferred_plot == 2 and plot_stress not in [1]
or preferred_plot == 3 and plot_stress_p not in [1]
or preferred_plot == 4 and plot_stress_a not in [1]
or preferred_plot == 5 and plot_stress_a_p not in [1]

)
):

raise Exception(exception_message)

plot_density = True if plot_density == 1 else False
plot_stress = True if plot_stress == 1 else False
plot_stress_p = True if plot_stress_p == 1 else False
plot_stress_a = True if plot_stress_a == 1 else False
plot_stress_a_p = True if plot_stress_a_p == 1 else False

else:
plot_density = True
plot_stress = None
plot_stress_p = None
plot_stress_a = None
plot_stress_a_p = None
preferred_plot = 1
max_stress_legend = None

user_inputs = [material_constraint, opt_method, nonlinearities,
target_material, evol_ratio, xe_min, rmax,
filter_sensitivities, filter_densities, p,
initial_density, move_limit, consider_frozen_region,
consider_neighbouring_region, s_max, qi, qf,
p_norm_stress, stress_sensitivity, plot_density,
plot_stress, plot_stress_p, plot_stress_a,
plot_stress_a_p, preferred_plot, max_stress_legend,
algorithm]

return user_inputs

def return_inputs(self, model_inputs, user_inputs):
""" Return input method
Returns several variables defining the information input by the user
in the pop-up boxes.

Due to the large number of inputs, the variables are generated through
the Global command instead of the Python return function, as a means to
maintain the code organized and the main section cleaner.

Inputs:
-------
- model_inputs (list): list of model inputs obtained from the
’model_information’ method of the class ’ParameterInput’.

- user_inputs (list): list of the user inputs obtained from the
’problem_statement’ method of the class ’ParameterInput’.

(Global) Outputs:
-----------------
- Mdb (Mdb): model database from ABAQUS.
- CAE_NAME (str): string with the name of the ABAQUS CAE file.
- MODEL_NAME (str): string with the name of the ABAQUS model.
- PART_NAME (str): string with the name of the ABAQUS part to be
optimized.

- MATERIAL_NAME (str): string with the name of the ABAQUS material to
be considered.

- SECTION_NAME (str): string with the name of the ABAQUS material
section to be considered.

- MESH_UNIFORMITY (int): variable defining if the mesh is uniform or
not (Yes=1/No=0).

- N_DOMAINS (int): number of job domains to be considered in the FEA.
- N_CPUS (int): number of CPUs to be used in the execution of the FEA.
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- LAST_FRAME (int): variable defining if only the results of the last
frame should be considered or not (only last frame = 1 /
all frames = 0).

- MATERIAL_CONSTRAINT (int): variable defining if the material
constraint is imposed on the volume or mass of the model
(Mass=0/Vol=1).

- OPT_METHOD (int): variable defining the optimization method to be
used (Optimality criteria = 0 / Method of Moving Asymptotes = 1).

- NONLINEARITIES (boolean): Indicates if the problem considers
geometrical nonlinearities (True) or not (False).

- TARGET_MATERIAL (float): ratio between the target volume or mass and
the volume or mass of a full density design.

- EVOL_RATIO (float): ratio at which the material constraint is imposed
during each iteration. Ex: if set to 0.05, the material constraint
starts at 1.0 (no constraint imposed) and is decreased by 0.05 each
iteration until the TARGET_MATERIAL is reached. If set to 1.0, the
constraint is always constant and equal to the TARGET_MATERIAL
value.

- XE_MIN (float): minimum density allowed for the element. I.e.
minimum value allowed for the design variables.

- RMAX (float): maximum radius of the filter, starting at the center of
each element. Note that the filter only includes elements FULLY
WITHIN the radius RMAX around the center of the element.

- FILTER_SENSITIVITIES (boolean): indicates if the blurring filter
should be applied to the sensitivities determined during the
optimization process.

- FILTER_DENSITIES (boolean): indicates if the blurring filter
should be applied to the design densities determined during the
optimization process.

- P (float): SIMP penalty factor.
- DP (int): number of decimal places to be considered in the material
interpolation. By definition, equal to the number of decimal places
in XE_MIN.

- INITIAL_DENSITY (float): value of the initial design density to be
assigned to each element in the topology optimization problem.
If set to 0, the program will assign a random density value
(between 0 and 1) to each element. If set to 0.0, will generate an
initial case with a random density for each element. Otherwise,
all elements will start with the design density value specified.

- MOVE_LIMIT (float): maximum allowable change for the design
variables. Not applicable to the SciPy optimizers.

- CONSIDER_FROZEN_REGION (int): variable defining if the filter should
consider the influence of the elements in the frozen region
(Yes=1/No=0).

- CONSIDER_NEIGHBOURING_REGION (int): variable defining if the filter
should consider the influence of the elements in the neighbouring
region (Yes=1/No=0).

- S_MAX (float): maximum value of the stress constraint imposed. Set to
None for stress unconstrained problems.

- Qi (float): initial (or minimum) value of the exponential of the
P-norm stress approximation function. Although usually named "P" in
the literature, the letter "Q" was adopted to avoid confusion with
the SIMP penalty factor, which is also usually named "P" in the
literature.

- QF (float): final (or maximum) value of the exponential of the P-norm
stress approximation function. Although usually named "P" in the
literature, the letter "Q" was adopted to avoid confusion with the
SIMP penalty factor, which is also usually named "P" in the
literature.

- PLOT_DENSITY, PLOT_STRESS, PLOT_STRESS_P, PLOT_STRESS_A,
PLOT_STRESS_A_P (boolean): variables defining the the user requested
the plot of the density, stress, or amplified stress distribution
(raised to the P-norm exponent or not) in the model during the
optimization process.

- PREFERRED_PLOT (int): defines which plot should be printed for the
largest period of time. Only applicable when requesting multiple
plots.

- MAX_STRESS_LEGEND (float): defines the maximum stress value of the
scale used as a legend in the stress plots.
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- ALGORITHM (str): name of the SciPy optimization algorithm to be used.
Only used when using the SciPy optimization module.

- RESTART (boolean): indicates if the user is trying to restart an
optimization process (True) or not (False).

"""
global Mdb, CAE_NAME, MODEL_NAME, PART_NAME, MATERIAL_NAME, \

SECTION_NAME
Mdb = model_inputs[0]
CAE_NAME = model_inputs[1]
MODEL_NAME = model_inputs[2]
PART_NAME = model_inputs[3]
MATERIAL_NAME = model_inputs[4]
SECTION_NAME = model_inputs[5]

global MESH_UNIFORMITY, N_DOMAINS, N_CPUS, LAST_FRAME
MESH_UNIFORMITY = model_inputs[6]
N_DOMAINS = model_inputs[7]
N_CPUS = model_inputs[8]
LAST_FRAME = model_inputs[9]

global MATERIAL_CONSTRAINT, OPT_METHOD, NONLINEARITIES
MATERIAL_CONSTRAINT = user_inputs[0]
OPT_METHOD = user_inputs[1]
NONLINEARITIES = user_inputs[2]

global TARGET_MATERIAL, EVOL_RATIO, XE_MIN, RMAX, \
FILTER_SENSITIVITIES, FILTER_DENSITIES, P, DP

TARGET_MATERIAL = user_inputs[3]
EVOL_RATIO = user_inputs[4]
XE_MIN = user_inputs[5]
RMAX = user_inputs[6]
FILTER_SENSITIVITIES = user_inputs[7]
FILTER_DENSITIES = user_inputs[8]
P = user_inputs[9]
DP = str(XE_MIN)[::-1].find(’.’)

global INITIAL_DENSITY, MOVE_LIMIT, CONSIDER_FROZEN_REGION,\
CONSIDER_NEIGHBOURING_REGION

INITIAL_DENSITY = user_inputs[10]
MOVE_LIMIT = user_inputs[11]
CONSIDER_FROZEN_REGION = user_inputs[12]
CONSIDER_NEIGHBOURING_REGION = user_inputs[13]

global S_MAX, Qi, QF
S_MAX = user_inputs[14]
Qi = user_inputs[15]
QF = user_inputs[16]

global P_norm_stress, Stress_sensitivity
P_norm_stress = user_inputs[17]
Stress_sensitivity = user_inputs[18]

global PLOT_DENSITY, PLOT_STRESS, PLOT_STRESS_P, PLOT_STRESS_A,\
PLOT_STRESS_A_P, PREFERRED_PLOT, MAX_STRESS_LEGEND

PLOT_DENSITY = user_inputs[19]
PLOT_STRESS = user_inputs[20]
PLOT_STRESS_P = user_inputs[21]
PLOT_STRESS_A = user_inputs[22]
PLOT_STRESS_A_P = user_inputs[23]
PREFERRED_PLOT = user_inputs[24]
MAX_STRESS_LEGEND = user_inputs[25]

global ALGORITHM
ALGORITHM = user_inputs[26]

global RESTART
RESTART = False

class EditableDomain:
""" Editable domain class
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The present class is responsible for identifying the domain of the model
to be optimized (elements and nodes).

Attributes:
-----------
- mdb (Mdb): ABAQUS model database.
- model_name (str): Name of the ABAQUS model.
- part_name (str): Name of the ABAQUS part to be optimized.
- part (Part): ABAQUS part to be optimized.
- consider_frozen_region (int): variable defining if the filter should

consider the influence of the elements in the frozen region (Yes=1/No=0).
- consider_neighbouring_region (int): variable defining if the filter

should consider the influence of the elements in the neighbouring
region (Yes=1/No=0).

Method:
-------
- identify_domain(): identifies the nodes and elements that belong to the

editable domain of the problem, considering the interaction with frozen
and neighbouring regions.

"""
def __init__(

self, mdb, model_name, part_name, consider_frozen_region,
consider_neighbouring_region

):
self.mdb = mdb
self.model_name = model_name
self.part_name = part_name
self.part = self.mdb.models[self.model_name].parts[self.part_name]
self.consider_frozen_region = consider_frozen_region
self.consider_neighbouring_region = consider_neighbouring_region

def identify_domain(self):
""" Identify domain method

Checks the type of part considered in the numerical model (2D or 3D).

Identifies the nodes and elements to be considered, accounting for the
possible existance of frozen of neighbouring regions.

Outputs:
--------
- elmts (MeshElementArray): array with the elements included in the
editable region of the topology optimization problem.

- nodes (MeshNodeArray): array with the nodes of the ABAQUS part
considered in the topology optimization problem.

- all_elmts (MeshElementArray): array with all elements that belong
to the part considered in the topology optimization problem.

- planar (int): variable identifying the type of part considered (2D or
3D).

"""
if self.part.space == THREE_D:

planar = 0
elif self.part.space == TWO_D_PLANAR:

planar = 1
elif self.part.space == AXISYMMETRIC:

raise Exception("The code implementation the provided does not "
"support Axisymmetric problems.")

else:
raise Exception("Unexpected value for self.part.space")

# Exclude frozen areas of the model if they exist.
# otherwise, do nothing and consider all elements of the self.part.
if ’editable_region’ in self.part.sets.keys():

elmts = self.part.sets[’editable_region’].elements
all_elmts = self.part.elements
nodes = self.part.nodes
print "Frozen areas excluded. \n"
if len(elmts) == 0:

raise Exception(
"All elements are frozen. There are no elements \n"
"available for the topology optimization. \n"

)
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else:
print (

"No frozen areas detected. \n"
"Casual reminder: \n"
"-The name of the set ’editable_region’ is case sensitive.\n "
"-The algorithm will not detect this set if its name is \n"
" not spelled exactly as indicated above. \n"

)
elmts, nodes = self.part.elements, self.part.nodes
all_elmts = self.part.elements

# If the frozen regions are not considered the algorithm checks if
# it should consider the neighbouring region of the editable elements.
# If the consideration of a neighbouring region was requested but the
# region was not found, the algorithm prints an error message.
if self.consider_frozen_region == 0:

if self.consider_neighbouring_region == 0:
all_elmts = elmts

else:
if ’neighbouring_region’ not in self.part.sets:

raise Exception(
"The information input in the ’Topology optimization’ "
"tab suggest the intention of considering a "
"’neighbouring_region’, which was not found in Part "
"{} of Model {}. \n"
"Please, either create the set selecting the "
"’neighouring_region’ or change the information input "
"in the ’Topology Optimization’ tab when asked "
"’Consider neighbouring region?’. \n"
"Furthermore, the user is reminded that the name of "
"the set ’neighbouring_region’ is case sensitive. \n"
"The algorithm will not detect this set if its name "
"is not spelled exactly as indicated above. \n"

).format(part_name, model_name)

if ’neighbouring_region’ in self.part.sets:
all_elmts = (

elmts + self.part.sets[’neighbouring_region’].elements
)

return elmts, nodes, all_elmts, planar

class VariableGenerator:
""" Variable generator class

Due to the large number of inputs, the variables are generated through
the Global command instead of the Python return function, as a means to
maintain the code organized and the main section cleaner.

Attributes:
-----------
- initial_density (float): initial design density to be assigned to the
elements. If set to 0, creates a random density distribution.

- all_elmts (MeshElementArray): element_array from ABAQUS with all the
elements in the part.

- elmts (MeshElementArray): element_array from ABAQUS with the relevant
elements in the part.

- xe_min (float): minimum density allowed for the element. I.e. minimum
value allowed for the design variables.

- dp (int): number of decimals places to be considered in the
interpolation. By definition, equal to the number of decimal places
in xe_min.

- opt_method (int): variable defining the optimization method to be used.
- restart (boolean): indicates if the user is trying to restart an
optimization process (True) or not (False).

Methods:
--------
- create_variables(): wrapper function organizing the creation of
variables.

- create_lists(): creates the lists used to store the topology optimization
data.

- create_dictionaries(): creates dictionaries used to store the element



Python code for stress-constrained topology optimization in ABAQUS® 277

and node-level data used in the topology optimization process.
- create_floats(): creates the floats and none variables used in the

topology optimization process.
"""
def __init__(

self, initial_density, all_elmts, elmts, xe_min, dp, opt_method,
restart

):
self.initial_density = initial_density
self.all_elmts = all_elmts
self.elmts = elmts
self.xe_min = xe_min
self.dp = dp
self.opt_method = opt_method
self.restart = restart

def create_variables(self):
""" Create variables method

Wrapper function organizing the creation of variables.

If the user is restarting the optimization process, this process is
skipped to avoid overwritting the information from the previous run.
"""
if self.restart == False:

self.create_lists()
self.create_dictionaries()
self.create_floats()

elif self.restart == True:
pass

else:
raise Exception(

"Unexpected value for attribute ’restart’ of class \n"
"’VariableGenerator’."

)

def create_lists(self):
""" Create lists method
Returns several lists used to create a record of the relevant variables
used during the topology optimization process.

(Global) List Outputs:
----------------------
- Objh: list used to record the values of the objective function.
- Target_material_history: list used to record the value of the
material constraint that the algorithm tried to reach in each
iteration. Note that due to the existance of the EVOL_RATIO
parameter, it is expectable that the values recorded in this list
are not always equal to the TARGET_MATERIAL.

- Current_Material: list with the values of the material constraint
in either mass or volume ratios.

For stress dependent problems, the following lists are also
created:
- P_norm_history: list used to record the values of the P-norm
maximum stress approximation.

- Lam_history: list used to record the Lagrangee multipliers.
- Fval_history: list used to record the values of the constraints,
as determined by the MMA function.

"""

global Objh, Target_material_history, Current_Material
Objh = []
Target_material_history = []
Current_Material = []

# When solving a stress dependent problems, the following lists are
# required:
global P_norm_history, Lam_history, Fval_history
P_norm_history = []
Lam_history = []
Fval_history = []
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def create_dictionaries(self):
""" Create dictionaries method

Returns several dictionaries used to store the values of the design
variables and compliance sensitivities in the current and up to 2
previous iterations.

The dictionaries with the design variables are initiated with the
initial density (INITIAL_DENSITY) requested by the user. If the
variable Initial_density is set to 0, it will generate an initial case
with a random density for each element. Otherwise, all elements will
start with the design density value specified.

(Global) Dictionary Outputs:
----------------------------
- Xe: dictionary with the densities (design variables) of each
relevant element in the model.

- Editable_xe: dictionary with the densities (design variables) of
each editable element in the model.

- Xold1: dictionary with the data of Xe for the previous iteration.
- Xold2: dictionary with the data of Xe for the second to last
iteration.

- Ae: dictionary with the sensitivity of the objective function to
changes in each design variable.

- OAe: dictionary with the data of Ae for the last iteration.
- OAe2: dictionary with the data of Ae for the second to last
iteration.

- Xold_temp: auxiliary dictionary used when updating the
dictionaries with the design variables.

- Ae_temp: auxiliary dictionary used when updating the
dictionaries with the sensitivities.

"""
global Xe, Editable_xe, Xold1, Xold2, Ae, OAe, OAe2, Xold_temp, Ae_temp
Xe, Editable_xe = {}, {}
Xold1, Xold2, = {}, {}
Ae, OAe, OAe2, = {}, {}, {}

for el in self.all_elmts:
Ae[el.label] = 0.0
OAe[el.label] = 0.0
OAe2[el.label] = 0.0
Xe[el.label] = 1.0

if self.initial_density == 0:
for el in self.elmts:

x = round(random.uniform(self.xe_min, 1.0), self.dp)
Editable_xe[el.label], Xe[el.label] = x, x

else:
for el in self.elmts:

Xe[el.label] = self.initial_density
Editable_xe[el.label] = self.initial_density

Xold_temp = Editable_xe.copy()
Ae_temp = Ae.copy()

def create_floats(self):
""" Create floats method

Creates several float variables, as well as None variables which are
only used in stress dependent problems.

(Global) Outputs:
- Iter (int): number of the current iteration.
- Change (float): variable with the relative difference between the
objective function of the last 10 iterations. Used to evaluate
convergence.

- low (array): array with the minimum design value considered for each
element, according to the convergence of the MMA.
Although obtained as an output of the mmasub functionm it is
initialized as None.

- Upp (array): array with the maximum design value considered for each
element, according to the convergence of the MMA.
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Although obtained as an output of the mmasub functionm it is
initialized as None.

"""

global Iter, Change, Low, Upp
Iter = -1
Change = 1
Low, Upp = None, None

#%% Miscelaneous or auxiliary functions.
def average_ae(iteration, ae, oae, oae2):

""" Average objective derivative function

Averages the sensitivities of the objective function with the results from
up to 2 previous iterations to improve convergence and reduce the
influence of large changes in the design variables.

Inputs:
-------
- iteration (int): number of the current iteration in the topology

optimization process.
- ae (dict): dictionary with the sensitivity of the objective function to

changes in each design variable.
- oae (dict): dictionary with the values of ’ae’ in the previous iteration.
- oae2 (dict): dictionary with the values of ’ae’ two iterations ago.

Output:
-------
- ae (dict): dictionary with the sensitivity of the objective function to

changes in each design variable, after the averaging process.
"""

if iteration == 1:
ae = dict([(k,(ae[k] + oae[k]) /2.0) for k in ae.keys()])

if iteration > 1:
ae = dict([(k ,(ae[k] + oae[k] + oae2[k]) / 3.0) for k in ae.keys()])

return ae

def update_past_info(ae, editable_xe, oae, xold1, oae2, xold2, iteration):
""" Update past information function

Updates the variables that store previous values of the design variables,
the sensitivity of the objective function, and the iteration counter.

Inputs:
-------
- ae (dict): dictionary with the sensitivity of the objective function to

changes in each design variable.
- editable_xe (dict): dictionary with the densities (design variables) of

each editable element in the model.
- oae, oae2 (dict): equivalent to ’ae’ for the last and second to last

iterations.
- xold1, xold2 (dict): equivalent to ’editable_xe’ for the last and second

to last iterations.
- iteration (int): number of the current iteration.

Outputs:
--------
- oae, oae2 (dict): equivalent to ’ae’ for the last and second to last

iterations.
- xold1, xold2 (dict): equivalent to ’editable_xe’ for the last and second

to last iterations.
- iteration (int): number of the current iteration.
"""
ae_temp = ae.copy()
xold_temp = editable_xe.copy()
if iteration >= 1:

oae2 = oae.copy()
xold2 = xold1.copy()
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oae = ae_temp.copy()
xold1 = xold_temp.copy()

return oae, xold1, oae2, xold2

def evaluate_change(objh, p_norm_history, iteration, opt_method):
""" Evaluate change function

Evalutes the change in the objective function for the last 10 iterations.
If the number of iterations is lower than 10, returns the initial value
(set to 1.0 by default).

If the optimization selected is based on the SciPy module, the function
assumes convergence automatically, since the functions in this module
have their own convergence criteria implemented.

Inputs:
-------
- objh (list): record with values of the objective function.

- p_norm_history (list): record with the values of the p-norm
stress approximation.
- iteration (int): number of the current iteration.
- opt_method (int): variable defining the optimization method to be used.

Output:
-------
- change (float): ratio of the change in the objective function.
"""
if opt_method in [3,5,7]:

change = 0

elif opt_method in [0,1,2,4]:
if iteration > 10:

num = (sum(objh[iteration-4: iteration+1])
-sum(objh[iteration-9: iteration-4])

)
denom = sum(objh[iteration-9: iteration-4])
change=math.fabs(num / denom)

else:
change = 1.0

elif opt_method in [6]:
if iteration > 10:

num = (sum(p_norm_history[iteration-4: iteration+1])
-sum(p_norm_history[iteration-9: iteration-4])

)
denom = sum(p_norm_history[iteration-9: iteration-4])
change=math.fabs(num / denom)

else:
change = 1.0

else:
raise Exception(

"Unexpected value for ’opt_method’ in function ’evaluate_change’."
)

return change

def remove_files(i, name, del_odb = True):
"""Remove Files function

Removes all ABAQUS generated files related to a given iteration (i) of
the optimization algorithm, except the Output Database file (.odb).

Inputs:
-------
- i (int): number of the current iteration.
- name (str): name of the ABAQUS job.
- del_odb (bool): indicates if the odb file should be removed after each
iteration.

"""
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file_list = [’.com’,’.inp’,’.dat’,’.msg’,’.sim’,’.prt’,’.sta’,’.log’,
’.mdl’,’.pac’,’.res’,’.sel’,’.stt’,’.abq’,’.ipm’,’.lck’]

if del_odb == True:
file_list.append(’.odb’)

abaqus_rpy = [’abaqus.rpy’,’abaqus.rpy.1’,’abaqus.rpy.2’]

#Tries to remove the files listed, if the files exist.
for abaqus_file in file_list:

try:
os.remove(name+str(i)+abaqus_file)

except:
pass

for rpy_file in abaqus_rpy:
try:

os.remove(rpy_file)
except:

pass

#%% Main program.
if __name__ == ’__main__’:

# Create a ParameterInput object to recieve the user inputs, model
# information, problem statement, and return the necessary global
# variables accordingly.
# Due to the large number of variables created, the output is fully
# described in the class description (code lines XXXXXXX).
# If the user is restarting an optimization process, this step is skipped,
# as the necessary information was recorded in the data save file.
if ’RESTART’ in globals() and RESTART == True:

pass
else:

Get_Inputs = ParameterInput()
MODEL_INPUTS = Get_Inputs.model_information()
USER_INPUTS = Get_Inputs.problem_statement()
Get_Inputs.return_inputs(MODEL_INPUTS, USER_INPUTS)

# Identify the region to be optimized, relevant elements, nodes, and type
# of geometry.
Editable_domain = EditableDomain(

Mdb, MODEL_NAME, PART_NAME, CONSIDER_FROZEN_REGION,
CONSIDER_NEIGHBOURING_REGION

)
ELMTS, NODES, ALL_ELMTS, PLANAR = Editable_domain.identify_domain()

# Create the necessary global variables to store optimization data.
# Due to the large number of variables created, the output is fully
# described in the class description (code lines XXXXXXX).
Var_generator = VariableGenerator(

INITIAL_DENSITY, ALL_ELMTS, ELMTS, XE_MIN, DP, OPT_METHOD, RESTART
)
Var_generator.create_variables()

# Formats the ABAQUS model:
# - Creates the materials and sections for the possible design variables;
# - Extracts the user-defined information (existing sets);
# - Assigns the materials created to the ABAQUS model elements.
Model_preparation = ModelPreparation(

Mdb, MODEL_NAME, NONLINEARITIES, PART_NAME, MATERIAL_NAME,
SECTION_NAME, ELMTS, ALL_ELMTS, XE_MIN, OPT_METHOD, DP, P

)
Model_preparation.format_model()
(

ELEMENT_TYPE,
SET_LIST,
ACTIVE_LOADS,
ACTIVE_BC,
NODE_COORDINATES,
NODE_NORMAL_VECTOR,

) = Model_preparation.get_model_information()
Model_preparation.property_update(Editable_xe)

# Create a blurring filter. If not requested, returns None.
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Filter = init_filter(
RMAX, ELMTS, ALL_ELMTS, NODES, Mdb, MODEL_NAME, PART_NAME

)

# Determine the material (mass or volume) constraint sensitivity and its
# value.
MAT_CONST_SENSITIVITIES, ELMT_VOLUME = material_constraint_sensitivity(

Mdb,MATERIAL_CONSTRAINT,MESH_UNIFORMITY,OPT_METHOD, MODEL_NAME,
PART_NAME, Density

)
Material_const = MaterialConstraint(

TARGET_MATERIAL, EVOL_RATIO, MAT_CONST_SENSITIVITIES
)

# Format color mapping set by Abaqus in order to display the element
# densities and their changes.
Set_display = SetDisplay(

Mdb, MODEL_NAME, PART_NAME, SET_LIST, XE_MIN, DP, OPT_METHOD,
PLOT_DENSITY, PLOT_STRESS, PLOT_STRESS_P, PLOT_STRESS_A,
PLOT_STRESS_A_P, PREFERRED_PLOT, MAX_STRESS_LEGEND

)
Set_display.prepare_density_display()

# Creates the classes that submit the State and Adjoint models in ABAQUS.
Abaqus_FEA = AbaqusFEA(

Iter, Mdb, MODEL_NAME, PART_NAME, Ae, P, ELEMENT_TYPE, LAST_FRAME,
N_DOMAINS, N_CPUS, OPT_METHOD, NODE_NORMAL_VECTOR, NONLINEARITIES

)
Adjoint_Model = init_AdjointModel(

Mdb, MODEL_NAME, PART_NAME, MATERIAL_NAME, SECTION_NAME, NODES, ELMTS,
P, PLANAR, ELEMENT_TYPE, ELMT_VOLUME, NODE_NORMAL_VECTOR, OPT_METHOD,
N_DOMAINS, N_CPUS, LAST_FRAME

)

# Creates a class that manages the use of the optimization functions
# available in the SciPy module. If not requested, returns None.
Scipy_optimizer = init_scipy_optimizer(

ALGORITHM, OPT_METHOD, Editable_xe, Xe, XE_MIN, DP, RMAX,
FILTER_DENSITIES, FILTER_SENSITIVITIES, MAT_CONST_SENSITIVITIES,
Target_material_history, Model_preparation, Filter, Abaqus_FEA,
Adjoint_Model, Qi, S_MAX, ACTIVE_BC, ACTIVE_LOADS, Iter, Set_display,
NODE_COORDINATES, Objh, P_norm_history

)

while Qi <= QF:

Min_iter = 0
while Change > 0.001 or Min_iter < 10:

Min_iter += 1
Iter += 1

# Update the value of the material constraint and record the
# value.
Current_Material, Target_material_history = (

Material_const.update_constraint(Current_Material,
Target_material_history,
Editable_xe)

)

# Execute the FEA and extract relevant variables.
# When using SciPy, this step is skipped, as the solver will call
# this function on its own.
if OPT_METHOD not in [3, 5, 7]:

(
Obj,
Ae,
State_strain,
Node_displacement,
Node_rotation,
Local_coord_sys,

) = Abaqus_FEA.run_simulation(Iter, Xe)

# Store the value of the objective function.
Objh.append(Obj)
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# Filter the sensitivities of the objective function.
if RMAX > 0 and FILTER_SENSITIVITIES == True:

Ae = Filter.filter_function(Ae, Editable_xe.keys())

# Selection of the optimization solver:
# 0 - Compliance minimization with discrete Optimality Criteria.
if OPT_METHOD == 0:

# Average the sensitivities of the objective function with the
# results from up to 2 previous iterations to improve
# convergence and reduce the influence of large changes in
# the design variables.
Ae = average_ae(Iter, Ae, OAe, OAe2)

# Use the selected algorithm to update the design variables.
Editable_xe, Xe = oc_discrete(

Editable_xe, Xe, Ae, P, Target_material_history[-1],
MAT_CONST_SENSITIVITIES, XE_MIN

)

# 1 - Compliance minimization with continuous Optimality Criteria.
elif OPT_METHOD == 1:

#Average the sensitivities of the objective function with the
#results from up to 2 previous iterations to improve
#convergence and reduce the influence of large changes in
#the design variables.
Ae = average_ae(Iter, Ae, OAe, OAe2)

#Use the selected algorithm to update the design variables.
Editable_xe, Xe = oc_continuous(

Editable_xe, Xe, MOVE_LIMIT, Ae, P,
Target_material_history[-1], MAT_CONST_SENSITIVITIES,
XE_MIN, DP

)

# 2 - Compliance minimization with MMA.
elif OPT_METHOD == 2:

#Use the selected algorithm to update the design variables.
Editable_xe, Xe, Low, Upp, Lam, Fval, Ymma, Zmma = mma(

Editable_xe, Xe, MOVE_LIMIT, Ae, P, XE_MIN,
Target_material_history[-1], MAT_CONST_SENSITIVITIES,
OPT_METHOD, DP, Objh, Iter, Xold1, Xold2, Low, Upp

)

# 3, 5, 7 - Compliance minimization, stress constrained compliance
# minimization, or stress minimization with SciPy.
elif OPT_METHOD in [3, 5, 7]:

Scipy_optimizer.update_attributes(
Editable_xe, Xe, Target_material_history, Current_Material,
Qi, Iter

)

Editable_xe, Xe = Scipy_optimizer.call_solver(
Editable_xe, Xe

)

Objh, P_norm_history, Current_Material, Iter = (
Scipy_optimizer.return_record()

)

# Imposes the convergence criteria of the SciPy optimizer.
Change = 0.0001
Min_iter = 10

# 4, 6 - Stress dependent optimization with MMA.
elif OPT_METHOD in [4, 6]:

# Run adjoint model and extract the adjoint strains.
Adjoint_strain = Adjoint_Model.run_adjoint_simulation(

Node_displacement, Xe, Node_rotation, NODE_COORDINATES,
Local_coord_sys, Qi, ACTIVE_BC, ACTIVE_LOADS, Iter

)

# Determine the stress sensitivity.
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Elmt_stress_sensitivity = Adjoint_Model.stress_sensitivity(
Xe, Qi, State_strain, Adjoint_strain

)

if RMAX > 0 and FILTER_SENSITIVITIES == True:
Elmt_stress_sensitivity = Filter.filter_function(

Elmt_stress_sensitivity, Editable_xe.keys()
)

# Determine the p-norm approximation of the maximum Von-Mises
# stress.
P_norm_stress = p_norm_approximation(

Adjoint_Model.stress_vector_int,
Adjoint_Model.inv_int_p,
Qi,
Adjoint_Model.multiply_VM_matrix,

)

# Store the value of the p-norm stress approximation.
P_norm_history.append(float(P_norm_stress))

# Stress constrained compliance minimization with MMA.
if OPT_METHOD == 4:

# Determine the value of the stress constraint.
Stress_constraint = stress_constraint_evaluation(

P_norm_stress,
S_MAX

)

# Use the selected algorithm to update the design variables.
Editable_xe, Xe, Low, Upp, Lam, Fval, Ymma, Zmma = mma(

Editable_xe, Xe, MOVE_LIMIT, Ae, P, XE_MIN,
Target_material_history[-1], MAT_CONST_SENSITIVITIES,
OPT_METHOD, DP, Objh, Iter, Xold1, Xold2, Low, Upp,
P_norm_history, Elmt_stress_sensitivity,
Stress_constraint, S_MAX

)

# Stress minimization with MMA.
elif OPT_METHOD == 6:

# Use the selected algorithm to update the design variables.
Editable_xe, Xe, Low, Upp, Lam, Fval, Ymma, Zmma = mma(

Editable_xe, Xe, MOVE_LIMIT, Elmt_stress_sensitivity,
P, XE_MIN, Target_material_history[-1],
MAT_CONST_SENSITIVITIES, OPT_METHOD, DP,
P_norm_history, Iter, Xold1, Xold2, Low, Upp

)

else:
raise Exception(

"Unexpected value for ’OPT_METHOD’ in the main \n"
"optimization loop. Value should be either 4 or 6.")

# Store data obtained from the optimization algorithm.
Lam_history.append([[float(item)] for item in Lam])
Fval_history.append([[float(item)] for item in Fval])

else:
raise Exception(

"Unexpected value for the OPT_METHOD variable in the \n"
"main optimization loop."

)

# Filter the design densities, if requested.
if RMAX > 0 and FILTER_DENSITIES == True:

Editable_xe, Xe = Filter.filter_densities(
Editable_xe, Xe, XE_MIN, DP)

#Make a record of the values obtained in the iteration.
OAe, Xold1, OAe2, Xold2 = update_past_info(

Ae, Editable_xe, OAe, Xold1, OAe2, Xold2, Iter
)

# Update the material properties according to the new design
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# variables.
Model_preparation.property_update(Editable_xe)

# Plot the new element densities and save a print screen.
Set_display.update_display(Qi, Iter, Adjoint_Model, Xe)

# Check convergence after the first 10 iterations.
Change = evaluate_change(Objh, P_norm_history, Iter, OPT_METHOD)

# Save a file with the data used in the current iteration.
save_data(Qi, Iter)

Qi+=1.0
Change = 1.0

# Save and plot results
save_mdb(Mdb, Current_Material, Objh, CAE_NAME)
plot_result(Mdb, Set_display)
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