
 Eindhoven University of Technology

MASTER

Feature Selection for Fuzzy Models

Krijgsman, S.R.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/57155e11-8d5b-499c-97e2-aa1cc07a55e7

Department of Industrial Engineering & Innovation Sciences

In partial fulfillment of the requirements for the degree of

Master of Science in Operations Management and Logistics

Feature Selection for Fuzzy Models

Steffi Krijgsman

1369555

Supervisors:

dr. M.S. Nobile

dr. L. Genga

i.r. C.E.M. Fuchs

Version 1.0

Eindhoven, 23 July 2021

ii

Executive summary

Introduction and purpose

Nowadays, more and more decisions are taken using artificial intelligence (AI) systems. These
systems often use high dimensional datasets, and the application possibilities are endless. When
decisions are made based on AI-powered systems, it is important to understand the reasons for
the decision, especially when the decision affects for instance someone’s health or has a legal
impact. Therefore, there is a high need for being able to understand the rationale of the AI
method, in other words, there is a high need for interpretable AI. Some AI systems, for example
rule-based models, are already easier to interpret because of their design. However, the
complexity of these systems could still get in the way of the interpretability of the model. In
order to maximize human understanding of the rationale of these AI systems, the complexity
of these AI systems should be mitigated. Therefore, reducing the complexity and increasing
interpretability of machine learning models is an increasingly important research topic.

For this project, the specific AI model that must be increased in interpretability, is a fuzzy
model. Fuzzy models are rule-based models which use fuzzy logic, which is based on the
observation that people make decisions based on vague, imprecise, non-numerical information
(Zadeh, 1965). The rule based fuzzy models can also be called fuzzy inference systems. In
general, rule-based models are already considered easier to interpret than other AI systems,
because the rules indicate how certain variables influence the outcome of the model. However,
implementing a rule-based model is no guarantee for creating an interpretable model. Another
factor that influences the interpretability of a model is the number of input features. When the
input data has high dimensionality, as a result, the rules become very long and difficult to
interpret (Antonelli et al., 2016).

This is where feature selection comes in. Feature selection is a technique to reduce the
dimensionality of the input data. The idea is to select a subset of input features by eliminating
the irrelevant and redundant features from the dataset. The reduction of input data
dimensionality could increase the fuzzy model’s interpretability because the rules become
shorter as the number of features decrease. To summarize, the main research question is
formulated as following:

What is the most appropriate feature selection method to reduce complexity and improve
interpretability of a fuzzy model?"

Fuzzy modeling

The Python library pyFUME is used for the implementation of fuzzy models during this
project. pyFUME estimates fuzzy inference systems automatically from data and can be used
to find the best fitting fuzzy inference system to describe some phenomenon. pyFUME was
introduced in July 2020, and is a relatively new Python library (Fuchs et al., 2020). Currently,
one of the limitations of pyFUME is the lack of good feature selection options to perform on
the dataset. To evaluate the model created by pyFUME 10 fold-cross validation is used. The

iii

mean absolute error (MAE) is obtained as the average MAE from the 10 folds. The average
MAE is used as the model’s performance indicator throughout this study.

Feature selection

Seven feature selection methods were tested in this research, which are briefly discussed below.

Mutual information (MI)

As defined in the research of Chen et al. (2018), mutual information (MI) measures the amount
of information obtained about one random variable, through another random variable. MI can
be applied for feature selection purposes, by measuring the MI between input variables and the
output variable. The variables are ranked based on the MI, meaning this is a filter method. MI
does not assume linearity or normality and can measure any kind of relationship between
random variables.

F-score

A feature selection method based on F-test statistics is proposed by Elssied et al. (2014). The
F-test is utilized to test the linear relation between the features and the target variable. This is
done by calculating the Pearson’s correlation between each input variable and the target
variable. And then the converting the correlation values in to F-scores. High F-scores indicate
a strong relation between two variables.

Fisher score

Fisher interclass separability method (FISM) was originally proposed by Abonyi et al. (2001),
and is a filter feature selection method. The FISM is based on the concept of the Fisher score
(Fisher, 1936). The working of the FISM is to find the features for which the between-cluster
covariance is large, and for which the within-cluster covariance is small. If the between-cluster
covariance is large, this means the clusters are far apart. If the within-cluster covariance is
small, this means the cluster is compact. The features with the worst covariance values are
eliminated from the dataset.

Genetic algorithm (GA)

The genetic algorithm (GA) was originally proposed by Holland et al. (1992) and was used for
feature selection for the first time by Siedlecki & Sklansky (1989). The GA is an optimization
algorithm which does not optimize a single solution, but it modifies a population of individuals
simultaneously to find the optimal solution. The GA applies the principle of survival of the
fittest. Each solution is represented by a binary vector, where the features with a 1 are selected
and the features with a 0 are not selected. In each generation the best solutions of the population
are selected based on the fitness value, which in this case is the MAE. The selected solutions
are updated with crossover and mutation and continue to the next generation. This is a wrapper
feature selection method because it involves the performance of the fuzzy model.

NSGA-II, NSGA-III, and SPEA2

NSGA-II, NSGA-III, and SPEA2 are multi-objective evolutionary algorithms (MOEAs) and
are used to solve multi objective optimization problems. These algorithms are utilized for

iv

feature selection to optimize the objectives: minimize the number of features and to minimize
the MAE. NSGA-II, NSGA-III, and SPEA2 are wrapper methods since the performance of the
fuzzy model is involved in the feature selection algorithm. The MOEAs work with the same
principle of the GA. The difference is in the selection process at the end of every generation.
Also, the MOEAs do not return a single optimal solution, but they identify a Pareto front of
multiple optimal solutions. The difference between the NSGA-II, NSGA-III, and SPEA2 is in
the selection process at the end of every generation.

Experimental set-up and data

The seven feature selection methods are tested on two datasets: an artificial dataset and the
COVID-19 dataset. The purpose of the artificial dataset is to test whether the methods can
select the relevant features from a simple dataset with linear relations between the features and
the target variable. The COVID-19 dataset is retrieved from the “European registry of patients
with COVID-19, cardio-vascular risk and complications”, and is more complex than the
artificial dataset. After preprocessing, the COVID-19 dataset consists of 39 features and one
target variable: ‘worst PaO2/FiO2 ratio’, which is the worst measured value for PaO2/FiO2
during the hospitalization period of a patient.

Main conclusions

The seven feature selection methods are tested on the COVID-19 dataset and the least
performing feature selection methods are the Fisher score and the GA. The MI and F-score
feature selection methods already perform better than the GA and the Fisher score method.
Because, both methods managed to rank the features of the COVID-19 dataset such that the
most relevant features were selected. The best performing feature selection methods are the
three multi-objective wrapper methods: NSGA-II, NSGA-III, and SPEA2. Since the multi-
objective wrapper methods return multiple optimal solutions in a Pareto front, there is a great
chance of returning at least one solution that supports the goal of this research. Therefore,
making a comparison between the returned solutions of the filter methods and the wrapper
methods is not really fair.

The recommended feature selection method to use in combination with pyFUME for the
COVID-19 dataset is the NSGA-II, NSGA-III, or SPEA2. Since there was no significant
difference between the performances of these methods, there is no recommendation for
specifically one of them. The disadvantage of these methods is the long computational time,
therefore, the second best method that is recommended is the MI method. This method can be
used in situations where a long computational time is undesirable.

The feature selection methods aimed to select the most relevant features from the COVID-19
dataset. The three features that were selected by all multi-objective wrapper methods are
'Platelets_value', 'pO2', and 'pO2_FiO2_ratio'. It is recommended to keep at least these three
features in the dataset to build the fuzzy model. Building a fuzzy model with only these three
features causes a large reduction in model complexity, comparing to a fuzzy model with all 39
features. This reduction in model complexity contributes to better interpretability of the model.

v

Content

Executive summary ... ii

Content ... v

List of Figures .. viii

List of Tables ... ix

List of Abbreviations... x

1 Introduction ... 1

1.1 Problem formulation ... 1

1.2 Research design .. 2

1.3 Reading guide ... 4

2 Background and related literature .. 6

2.1 Fuzzy logic ... 6

2.1.1 The idea of fuzzy logic ... 6

2.1.2 Fuzzy sets .. 6

2.1.3 Membership functions .. 7

2.1.4 Fuzzy rules .. 7

2.1.5 Fuzzy inference systems... 8

2.1.6 Simpful and pyFUME .. 9

2.2 Model interpretability.. 10

2.3 Feature selection ... 11

2.3.1 Purpose of feature selection ... 11

2.3.2 Filter, wrapper, and embedded approach .. 11

2.3.3 Feature selection methods from literature ... 12

2.3.4 Feature selection in pyFUME ... 17

3 Methods .. 18

3.1 Build fuzzy model with pyFUME ... 18

3.1.1 Number of clusters ... 18

3.1.2 K-fold cross validation ... 18

3.2 Feature selection methods ... 19

3.2.1 MI .. 19

3.2.2 F-score ... 20

3.2.3 Fisher score .. 20

3.2.4 GA ... 21

vi

3.2.5 NSGA-II .. 23

3.2.6 NSGA-III ... 25

3.2.7 SPEA2 ... 26

3.2.8 PSO ... 26

3.3 Measuring model’s performance and interpretability ... 27

3.3.1 Performance measurement ... 27

3.3.2 Interpretability measurement .. 27

3.3.3 Pareto fronts... 28

3.4 High performance computing .. 30

3.4.1 Computational time .. 30

3.4.2 Multiprocessing ... 31

3.4.3 Supercomputer: Cartesius .. 32

3.5 Experimental setup .. 33

3.5.1 Test on artificial dataset ... 33

3.5.2 Test on ‘real world’ dataset (COVID-19 dataset).. 35

4 Results .. 38

4.1 Results of experiment on artificial dataset ... 38

4.2 Number of clusters for COVID data .. 38

4.3 Parameter tuning ... 42

4.3.1 Parameters for filter methods ... 42

4.3.2 Parameters for wrapper methods .. 43

4.4 Comparing feature selection methods .. 45

4.4.1 Filter methods .. 46

4.4.2 Wrapper methods ... 48

4.4.3 All feature selection methods ... 54

5 Discussion ... 57

5.1 Conclusion .. 57

5.2 Suggestions for future research ... 59

References .. 60

Appendices ... 66

A. Description of files .. 66

B. Search terms and selection criteria for systematic literature review........................ 68

C. Scatter plots artificial dataset ... 71

D. Features of COVID-19 dataset .. 72

E. Scatter plots COVID-19 dataset .. 73

vii

F. Results for NSGA-II, SPEA2, and Fisher score with 2 to 5 clusters 77

G. Convergence graphs of NSGA-III and SPEA2 .. 78

H. Convergence graphs per model ... 80

viii

List of Figures

Figure 1.1: The engineering cycle adapted from Wieringa (2014) .. 3

Figure 2.1: Visualization of a crisp set and a fuzzy set ... 7

Figure 2.2: Membership function shapes (left: Gaussian shape, right: trapezoidal shape) 7

Figure 2.3: Structure of a Fuzzy Inference System... 8

Figure 3.1: Pseudo code of evolution process .. 23

Figure 3.2: Hypervolume example .. 28

Figure 3.3: Knee point example ... 30

Figure 3.4: Example code for multiprocessing with Pool object in Python 31

Figure 3.5: Job script and description .. 33

Figure 4.1: Model performance without feature selection .. 39

Figure 4.2: MI results for 2 to 5 clusters .. 40

Figure 4.3: F-score results for 2 to 5 clusters ... 41

Figure 4.4: NSGA-III results for 2 to 5 clusters ... 41

Figure 4.5: Results of filter methods to find optimal value for k with 50 repetitions 42

Figure 4.6: Convergence graph of GA ... 44

Figure 4.7: Convergence graph of NSGA-II based on MAE .. 45

Figure 4.8: Convergence graph of NSGA-II based on number of features 45

Figure 4.9: MAE of Fisher score method with 50 repetitions ... 47

Figure 4.10: MAE of MI method with 50 repetitions ... 47

Figure 4.11: MAE of F-score method with 50 repetitions .. 47

Figure 4.12: MAE boxplot of filter methods .. 48

Figure 4.13: Results of GA method with 50 repetitions ... 49

Figure 4.14: Hypervolume boxplot of multi-objective feature selection methods, reference

point = (40, 150) ... 50

Figure 4.15: Hypervolume of NSGA-II method with 50 repetitions 50

Figure 4.16: Hypervolume of NSGA-III method with 50 repetitions.................................... 51

Figure 4.17: Hypervolume of SPEA2 method with 50 repetitions .. 51

Figure 4.18: Pareto fronts of multi-objective methods ... 52

Figure 4.19: Pareto fronts of multi-objective methods with knee points 53

Figure 4.20: Results of all feature selection methods ... 55

ix

List of Tables

Table 3.1: Normal distributions for artificial dataset .. 34

Table 3.2: ARDS severity categories (The ARDS Definition Task Force, 2012) 36

Table 4.1: Results of feature selection on artificial dataset ... 38

Table 4.2: Tested models for determination of number of clusters 39

Table 4.3: Hypervolumes with reference point (40, 150) ... 41

Table 4.4: GA results for 2 to 5 clusters .. 42

Table 4.5: Optimal number of features for filter methods .. 43

Table 4.6: Tested models for parameter tuning, remaining parameters are (pop, gen, mutation

rate) = (100, 100, 1/39).. 43

Table 4.7: Results of filter feature selection methods of 50 repetitions................................. 46

Table 4.8: Hypervolume of multi-objective methods of 50 repetitions 51

Table 4.9: Results F-tests and t-tests for hypervolume comparison 52

Table 4.10: Results of Pareto fronts with greatest hypervolume ... 53

Table 4.11: Results of wrapper methods .. 54

Table 4.12: Selected features by all seven feature selection methods 56

x

List of Abbreviations

ACO Ant colony optimization

AI Artificial intelligence

BPSO Binary particle swarm optimization

CLI Command line interface

CPU Central processing unit

ENORA Evolutionary non dominated sorting with radial slots based algorithm

FIS Fuzzy inference system

FISM Fisher interclass separability method

FST-PSO Fuzzy self-tuning particle swarm optimization

FS Feature selection

GA Genetic algorithm

Gen Number of generations

ICPSO Integer and Categorical Particle Swarm Optimization

LDA Linear Discriminant Analysis

MAE Mean absolute error

MSE Mean squared error

MOEA Multi objective evolutionary algorithm

MUTPB The probability that an offspring is produced by mutation

NSGA Non-dominated sorting genetic algorithm

Pop Population size

PSO Particle swarm optimization

RMSE Root mean square error

RST Rough set theory

SFS Sequential forward selection

SPEA Strength Pareto evolutionary algorithm

SSH Secure Shell

XCPB The probability that an offspring is produced by crossover

1

1 Introduction

1.1 Problem formulation

Nowadays, more and more decisions are taken using artificial intelligence (AI) systems. These
systems often use high dimensional datasets, and the application possibilities are endless. When
decisions are made based on AI-powered systems, it is important to understand the reasons for
the decision, especially when the decision affects for instance someone’s health or has a legal
impact. Therefore, there is a high need for being able to understand the rationale of the AI
method, in other words, there is a high need for interpretable AI. Currently, many machine
learning models are seen as black box models, because most humans do not understand what
this model bases its predictions on. Stakeholders in AI are demanding more transparency and
understanding of the rationale of the models, because these machine learning models are
increasingly used for critical decision making. An example of these stakeholders are medical
doctors. The regulations do not allow medical doctors to make automated decisions and they
are required by regulations to be able to explain the rationale for their decisions. Therefore,
when an AI system is utilized to support a certain decision (for example to make a prognosis),
the medical doctor must understand and agree with the rationale of the AI system to be allowed
to use the information provided by the AI system for the decision.

Some AI systems, for example rule-based models, are already easier to interpret because of
their design. However, the complexity of these systems could still get in the way of the
interpretability of the model. In order to maximize human understanding of the rationale of
these AI systems, the complexity of these AI systems should be mitigated. Therefore, reducing
the complexity and increasing interpretability of machine learning models without affecting
the models performance negatively is an increasingly important research topic.

For this project, the specific AI system that must be increased in interpretability, is a fuzzy
inference system. In this work, the terms ‘fuzzy model’ and ‘fuzzy inference system’ are used
interchangeably and both refer to fuzzy rule-base systems. Fuzzy models are rule-based models
which use fuzzy logic, which is based on the observation that people make decisions based on
vague, imprecise, non-numerical information. Fuzzy logic was introduced by Zadeh (1965). In
general, rule-based models are already considered easier to interpret than other AI systems,
because the rules indicate how certain variables influence the outcome of the model. Fuzzy
models are based on IF-THEN rules, which make the model very transparent about its rationale.
Also, these rules are written in natural language, which makes it more understandable for
humans. However, implementing a rule-based model is no guarantee for creating an
interpretable model. Another factor that influences the interpretability of a model is the number
of input features. When the input data has high dimensionality, as a result, the rules become
very long and difficult to interpret (Antonelli et al., 2016). The problem of high dimensional
data tends to grow since the data collected across fields is growing in dimensionality.

2

This is where feature selection comes in. Feature selection is a technique to reduce the
dimensionality of the input data. The idea is to select a subset of input features by eliminating
the irrelevant and redundant features from the dataset. The reduction of input data
dimensionality could increase the fuzzy model’s interpretability because the rules become
shorter as the number of features decrease. There is a wide variety of feature selection
algorithms suggested in the literature. There is no ‘best’ feature selection algorithm for all
cases. Therefore, it is interesting to compare several feature selection algorithms, and see which
algorithm perform well in combination with fuzzy models.

The Python libraries Simpful and pyFUME are used for the implementation of fuzzy models
during this project. Simpful, introduced in June 2020, was designed to facilitate the definition,
analysis and interpretation of fuzzy inference systems. Simpful allows to define fuzzy sets and
fuzzy rules, and to perform fuzzy inference (Spolaor et al., 2020). Simpful is employed within
pyFUME, meaning that pyFUME estimates Simpful models (i.e. fuzzy inference systems)
automatically from data and can be used to find the best fitting fuzzy inference system to
describe some phenomenon. pyFUME was introduced in July 2020, and is a relatively new
Python library (Fuchs et al., 2020). Currently, one of the limitations of pyFUME is the lack of
good feature selection options to perform on the dataset.

Which has led to the formulation of the objective of the dissertation, which is as follows:
“Improve interpretability of fuzzy models (that use high dimensional data and automatically
generated rules) by implementing the most appropriate feature selection method with pyFUME
such that the complexity of the model is reduced and the performance of the model is
maintained in order to increase user’s understandability of the model’s rationale.” The
following research question has been formulated which corresponds to the objective:

What is the most appropriate feature selection method to reduce complexity and improve
interpretability of a fuzzy model?"

And the following sub research questions:

1. What are existing methods of feature selection that are appropriate for a fuzzy model?
2. What method is used to measure the model’s interpretability and complexity?
3. What method is used to measure the model’s performance?
4. How to implement the chosen feature selection method?
5. How to evaluate and compare the feature selection methods?

1.2 Research design

To provide structure to the research process, the engineering cycle methodology (Wieringa,
2014) is utilized as research method. The engineering cycle maps a problem-solving process
consisting of five phases, shown in Figure 1.1. This method was chosen because it provides a
clear structure which suits the purpose of this research very well. As described before, the
purpose of this research is to determine the most appropriate feature selection method for fuzzy
models to increase model interpretability. In the engineering cycle the feature selection method

3

will be the artifact which is designed, validated, implemented and evaluated. The engineering
cycle methodology is used as guidance and inspiration for the research process. It is not used
as a strict procedure which must be followed exactly. The five phases are described below.

Figure 1.1: The engineering cycle adapted from Wieringa (2014)

Phase 1: Problem investigation

This phase serves as the orientational phase of the research. The objective of this phase is to
define the problem, the research goals, the research context, and the define the phenomena that
must be improved.

Phase 2: Solution design

In this phase the goal is to design one or more solutions (in other words artifacts). In the design
science research field there are four types of artifacts defined: constructs (vocabulary and
symbols), models (abstractions and representations), methods (algorithms and practices), and
instantiations (implemented and prototype systems) (Hevner et al., 2004). In this research the
artifact is a feature selection method or algorithm, therefore, the artifact is referred to as a
method after this section.

The first step for designing the artifact is to explore the existing feature selection methods
through a literature review. The conducted literature review is focused on feature selection
methods for fuzzy models which have to potential of increasing model interpretability. The
next step is to evaluate the found feature selection methods and decide whether these methods
could be used as artifacts. The found artifacts could be used as they are, or could be modified
or combined with other artifacts. It is also possible to design totally new artifacts. However,
the designed or selected artifacts must have the potential to contribute to the research objective.

4

Phase 3: Solution validation

The goal of this phase is to test whether the selected artifacts will contribute to the overall
research objective. The performance of the artifact should be in line with the research objective,
otherwise it does not make sense to continue to the next phase with the artifact. If the artifact
is not valid, other artifacts should be considered before continuing the research process.
Validating the selected artifact (i.e. feature selection method) is done by testing the method on
an artificial dataset. This dataset was created to validate the feature selection methods before
implementation. More details about this artificial dataset are given in section 3.5.1. The feature
selection method is considered valid when it meets the requirements regarding model’s
interpretability and the model’s performance. The specifics about the requirements are defined
in section 3.5.1.

Phase 4: Artifact implementation

During this phase the valid artifacts are implemented. Therefore, validation should be
performed before implementation. However, performing phase 3 and 4 in this order is not
completely possible in this research. Validity can only be argued by testing the method on the
artificial dataset, which is only possible by (partially) implementing the method. Therefore,
phase 3 and phase 4 cannot be seen completely separate from each other.

The artifacts are implemented in Python with the support of several Python libraries. pyFUME
is utilized in the implementation to test the model’s performance and interpretability. However,
please note that the artifact is not implemented within the pyFUME library, but only with the
support of pyFUME. In the future, successful artifacts can be implemented within pyFUME,
but this is out of scope for this project. When an artifact is considered valid, it moves on to next
dataset: the COVID-19 dataset. This implementation is almost similar to the previous
implementation for the artificial dataset. The difference is that the second dataset is much
higher in dimensionality and demands much more computational time. Multi-processing is
implemented to cope with the demand for high computational capacity.

Phase 5: Implementation evaluation

When the implementation is finished, the solution is evaluated. In this phase it becomes clear
how successful each artifact has been. Artifacts are compared with each other and criticized.
This phase leads to the conclusion and the answer to the main research question. In addition,
during this phase new problems could come to light. Meaning this phase could possibly start a
new iteration through the engineering cycle, which will result in recommendations for future
research.

1.3 Reading guide

This report consists of five chapters that altogether represent the process of this project. The
first chapter, the Introduction, provides an introduction to the research topic, the research
question, and the research design.

5

In chapter 2, more background information about the research topic is given. This includes,
information on fuzzy logic, fuzzy models, model interpretability, and feature selection. A
literature study was conducted to find feature selection methods for fuzzy models. The results
of this literature study are also shown in this chapter.

In the next chapter, chapter 3, all methods that are utilized throughout the process are described.
These methods include: the feature selection methods that are tested, the methods and tools
that are used for implementation, the methods for measuring model interpretability and model
performance, and the experimental setup.

In chapter 4, the results are given. First the results of the feature selection methods on the
artificial dataset are given. Then the results on the COVID-19 dataset are given, and the feature
selection methods are compared.

In the final chapter, chapter 5, the discussion is given. The discussion consists of the answer to
the research question, conclusions, and suggestions for future research.

A description of the Python scripts for the implementations and the files which store the results
is given in Appendix A.

6

2 Background and related literature

2.1 Fuzzy logic

2.1.1 The idea of fuzzy logic

Classical logic is the science of formal principles of reasoning. Fuzzy logic a form of logic
which is focused on the formal principles of approximate reasoning. Unlike classical logic,
fuzzy logic aims to model the imprecise reasoning that is performed by humans to make
rational decisions based on vague, imprecise, non-numerical information (Zadeh, 1988).

Classical logic cannot account for proportionate values for the truth, since it can only handle
Boolean values for the truth. In fuzzy logic, the truth of the variables may be any real number
in the interval [0,1]. Fuzzy logic has the ability to handle terms from natural language such as
warm water, tall people, and fast cars. In these terms, the words warm, tall, and fast can
represent a degree of truth about a variable. For instance, there is more than one truth about the
warmth of water. Some people will consider water of 25 °C as warm, while other people will
consider this water as cold. Therefore, there is no Boolean truth about the warmth of the water,
since not all people have the same truth about this. In this case the temperature is called a
linguistic variable.

2.1.2 Fuzzy sets

The concept of fuzzy sets was introduced by Zadeh (1965). A fuzzy set is a set of points where
each point is associated with a real number in the interval of [0,1], which represents the
membership of a point. This means it is possible to have a partial membership to the set. This
is in contrast to crisp sets, where the membership of each point is defined by a 0 or a 1, meaning
the point is either a member of the set or it is not. A visualization of this concept is shown in
Figure 2.1. The concept of fuzzy sets can be applied to the example of warm water. The warmth
water is not defined the same by everyone. If the temperature of the water is 0 °C most people
will agree that the water is not warm (or cold). However, when the temperature of the water is
25 °C, some will say the water is warm and some will say it is cold. In a crisp set this will cause
problems, because crisp sets require a Boolean and precise value for the membership value.
However, in fuzzy logic the imprecise values can be handled, because the water of 25 °C can
have for example a 0.8 membership in the set ‘warm’ and a 0.2 membership in the set ‘cold’.

7

Figure 2.1: Visualization of a crisp set and a fuzzy set

2.1.3 Membership functions

The fuzzy sets associate each datapoint with a membership to a certain set. This membership
is represented by a number in the interval [0,1]. A membership function helps define the
membership value of a datapoint. Membership functions can have multiple shapes, two
examples of common shapes are trapezoidal and Gaussian. A visual example of the trapezoidal
and Gaussian membership functions are presented in Figure 2.2. However, in practice many
more shapes can form a membership function.

Figure 2.2: Membership function shapes (left: Gaussian shape, right: trapezoidal shape)

2.1.4 Fuzzy rules

When all datapoint are associated with a membership values to all defined sets, the next step is
to define fuzzy rules. Generally, fuzzy systems use “if-then” rules to model the reasoning
process of humans. When a human is reasoning, this often goas like this: ‘if I do this, than that
will happen’ or ‘if the water of the sea is below 20 °C, then it will not be crowded at the beach’.
Fuzzy systems aim to replicate this process with fuzzy rules which look like this: IF x is A
THEN y is B. Here x and y are linguistic variables, and A and B are linguistic values that are

8

determined by the fuzzy sets and membership functions. An example of a fuzzy rule is: ‘IF the
water is warm THEN the beach is crowded’. In this example, the terms ‘warm’ and ‘crowded’
are the linguistic values. These linguistic values are chosen based on the membership values.
For example, if the temperature of the water is 20 °C, this could be described with one of these
linguistic values: ‘cold’, ‘warm’, or ‘hot’. The linguistic value with the highest membership
value, which is ‘warm’ according to Figure 2.2, is chosen to represent a temperature of 20 °C.

The premise in the example is ‘the water is warm’. If the rules have more than one premise
before the THEN operator, the fuzzy rules can also include logic operators such as AND, OR,
and NOT. An example of a fuzzy rule with a logic operator is: ‘IF the water is warm AND the
weather is sunny THEN the beach is crowded’. If there is more than one premise, then these
premises are called ‘partial premises’.

2.1.5 Fuzzy inference systems

A fuzzy inference system (FIS) is a system that uses input data to derive output with the support
of fuzzy rules. In general, the process of fuzzy inference can be described by three steps (Hong
& Lee, 1996): 1) Fuzzify the input data, in other words, convert the input data to linguistic
values with the support of the membership functions, 2) define the output groups by matching
the linguistic values with the fuzzy rules, and 3) defuzzify the output groups to the final output.
The structure of a FIS is visualized in Figure 2.3.

The purpose of the fuzzifier is to be the interface between the real world and the fuzzy system.
In the fuzzification process, the input data is converted to linguistic values by matching the
linguistic variables with the membership function. The input data points receive a membership
value for each linguistic variable. The knowledge base consists of the fuzzy rules and the
database that was conducted by the fuzzifier. The knowledge base holds information about the
relation between the input and output. The inference engine is the reasoning mechanism of the
fuzzy system. It performs the reasoning with the support of the knowledge base, and it produces
the output. The defuzzifier converts the output of the inference engine to a crisp output, which
can represent for example a final decision. The defuzzifier functions as an interface between
the FIS and the real world.

Figure 2.3: Structure of a Fuzzy Inference System

9

There are two main inference methods to use in the FIS, which are Mamdani method and the
Takagi-Sugeno method. In this research, first order Takagi-Sugeno is applied, which is also the
default setting in pyFUME. The fuzzy rules in Takagi-Sugeno inference are in the following
format (Takagi & Sugeno, 1985):

𝐼𝐼𝐼𝐼 𝑥𝑥 𝑖𝑖𝑖𝑖 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 𝑖𝑖𝑖𝑖 𝐵𝐵 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑍𝑍 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)

where, A and B are the fuzzy sets and Z is a linear function of x and y. The obtained value of
Z is the output of the model, thus defuzzification is not needed for this method.

2.1.6 Simpful and pyFUME

A FIS can be brought into practice with the support of Python libraries Simpful and pyFUME.
Simpful was introduced in June 2020 and is therefore fairly new and up to date. The library
was introduced to address the need for having a lightweight, open-source, Python library to
support the creation of readable FISs. Simpful was designed to facilitate the definition, analysis
and interpretation of FISs. Simpful allows to define fuzzy sets and fuzzy rules, and to perform
fuzzy inference. Currently, Simpful supports the following processes: defining membership
functions, defining fuzzy rules, and performing inference with Mamdani and Takagi-Sugeno-
Kang methods (Spolaor et al., 2020).

In Simpful the user is required to define the fuzzy sets, linguistic variables, membership
functions and fuzzy rules manually. If one desires to generate these automatically, one can
utilized pyFUME. Simpful is employed within pyFUME, meaning that pyFUME estimates
Simpful models (i.e. FISs) automatically from data and can be used to find the best fitting FIS
to describe some phenomenon. pyFUME was introduced in July 2020, therefore this Python
library is relatively new. pyFUME aims to create a first order Takagi-Sugeno-Kang fuzzy
model from data. The user only has to provide the dataset and define the number of clusters (or
number of rules) that should be identified in the data, and pyFUME will automatically generate
a fuzzy model. If the user wishes to have more control, one can change the default settings
fairly easily. For instance, enable k-fold cross validation in the testing phase. In addition, it is
possible for users to model their own pipeline, however, this is more complicated than utilizing
the option described before. Also, pyFUME has a feature to measure the performance of the
generated fuzzy model with the following metrics: Root Mean Squared Error (RMSE), Mean
Squared Error (MSE), or Mean Absolute Error (MAE) (Fuchs et al., 2020).

The function of pyFUME is to automatically generate and execute a FIS with the support of
Simpful. Besides performing fuzzy inference, pyFUME also creates an output file with the
code of the Simpful model that was created. This provides insight in the fuzzy sets, linguistic
variables, membership functions and fuzzy rules that were generated by pyFUME.

10

2.2 Model interpretability

Model interpretability has many definitions that are used across fields. One of the definitions
of model interpretability is how easy it is for humans to understand the processes the model
uses to make its predictions. The demand for interpretable models is growing as more and more
decisions are taken based on AI systems. The interpretability of a predictive model becomes
important when there is a desire to understand the rationale of the model. Currently, many
machine learning tools are seen as black box models, because most humans fail to understand
the bases of the predictions of the model. Rules based models, such as fuzzy models, are already
easier to interpret because of their design.

There are a few aspects of model interpretability that are receiving a lot of attention in the
research field. One of the aspects is how to measure model interpretability. Measuring
interpretability is not an easy task, because it depends on a lot of factors. Interpretability is
subject to human understanding, which is subject to the persons background (for instance
knowledge, intelligence and experience). Therefore, it is unknown what the best interpretability
indices are. There have been a few developments of interpretability indices, however, there is
no index that is widely accepted (Alonso et al., 2009). A few of the fuzzy model interpretability
indices are the following.

The first and most simple measuring method of a fuzzy model’s interpretability is the
following. Three simple indices to measure the rule readability, which has an impact on model
interpretability (Ishibuchi & Nojima, 2007):

- Number of rules.
- Total rule length: the number of premises in all rules are summed together.
- Average rule length: The total rule length is divided by the number of rules.

The second measuring method is an interpretability index based on the product of three terms,
which is called the Nauck’s index (Nauck, 2003). A model is less interpretable when the value
of the index is closer to zero and more interpretable when the value of the index is closer to
one. The Nauck’s index is calculated as following:

- 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶
- 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the complexity of a model measured by the number of clusters identified in

the data divided by the total number of premises.
- 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the average normalized partition index for all variables. The partition index is

calculated as the inverse of the number of membership functions minus one for each
input variable.

- 𝐶𝐶𝐶𝐶𝐶𝐶 is the average normalized coverage degree of all variables. The degree of coverage
of a variable is determined by the membership functions. It is calculated with the
integrals of the membership functions over the domain of the variable divided by the
integral of the domain.

Another interpretability measuring technique, inspired by Nauck’s index, is to build a fuzzy
system for measuring the interpretability of linguistic knowledge bases (Alonso et al., 2008).

11

This system is a hierarchical fuzzy system that takes six input variables and provides the
interpretability index as output. The six input variables are:

- Total number of rules.
- Total number of premises.
- Number of rules which use one input.
- Number of rules which use two inputs.
- Number of rules which use three or more inputs.
- Total number of labels defined by input.

Most of these methods are very simple and do not cover every aspect of interpretability.
However, measuring interpretability is an unsolved problem in the research field. For this
research the length of the rules and the number of rules are considered when evaluation the
model interpretability.

2.3 Feature selection

2.3.1 Purpose of feature selection

Feature selection is the process of reducing the datasets dimensionality by eliminating
irrelevant, redundant, and noisy features. There are several reasons why feature selection could
be desirable for building a predictive model.

The first reason is to reduce the model complexity to increase the model interpretability. Model
interpretability is explained in more detail in section 2.2.

The second reason is that in general, feature selection could significantly improve the
predictive model’s performance. When the redundant and irrelevant features are removed from
the dataset, the model only focuses on the relevant data. This reduces the risk of overfitting the
model. Also, when feature selection is applied on the data, the predictive model cannot use the
redundant and irrelevant features for its predictions. Meaning there is less misleading data
involved in the prediction process, therefore, the model’s accuracy improves.

The third reason is to reduce the computational time of the model. The computational time is,
among other factors, depending on the dimensions of the input data. A high number of input
features makes the model more complex, which results in longer computational times.

2.3.2 Filter, wrapper, and embedded approach

All feature selection methods use different approaches to select the best features from the
dataset. The approaches can be categorized in the filter approach, the wrapper approach, and
the embedded approach.

12

The filter approach uses independent measurement methods to score or rank the features
without involving the learning algorithm. This approach has relatively fast computational time,
because the performance of the prediction model is not considered. However, the filter
approach does not consider relations between features, and can miss features that are relevant
when they are combined with other features (Kumar & Minz, 2014).

The wrapper approach uses the performance of the learning algorithm to find the best subset
of features. In most cases, this approach uses multiple iterations to evaluate the performance of
the learning algorithm and to adjust the subset of features, until the optimal subset is found.
Compared to the filter approach, the wrapper approach typically takes more computational
time. But the advantage of the wrapper approach is that the relations between features are taken
into account (Kumar & Minz, 2014).

The embedded approach does not separate the feature selection process from the learning
algorithm (Lal et al., 2006). With the embedded approach, the features selection algorithm is
integrated in the learning algorithm. The learning algorithm performs the feature selection
method and the prediction process simultaneously.

2.3.3 Feature selection methods from literature

A systematic literature review was conducted to search for feature selection methods that are
appropriate for fuzzy models. In total a number of 480 documents were retrieved from the
databases IEEE Xplore, SpringerLink, and ScienceDirect. The total number of documents were
filtered according to inclusion, exclusion, relevance and quality criteria, and are reduced to a
number of 16 documents. The search terms and the mentioned criteria are given in Appendix
B. The final selection of 16 documents are analyzed and interpreted, which resulted in a list of
11 feature selection methods for fuzzy models. These feature selection methods all have
different characteristics: filter methods, wrapper methods, nature inspired methods, single
objective, and multi objective methods. These feature selection methods are alle briefly
described here.

Correlation

The research of Ghazavi & Liao (2008) implemented three different mutual correlation based
feature selection methods. Each method calculates the mutual correlation for all possible pairs
of features. If there appear high correlations for pairs of features, one of these features is
removed to reduce redundancy in the dataset. This method is considered a filter method.

Soares et al. (2018) implemented a correlation based feature selection method with the
Spearman coefficient (Spearman, 1904). They calculated a S score for every feature in the
dataset with support of the Spearman coefficient. One feature at a time is removed based on
the S score until the performance of the model reduces significantly. This method is considered
a wrapper method because the feature subset is evaluated by the learning algorithm. Soares et
al. (2018) also mentioned the Pearson correlation coefficient (Pearson & Henrici, 1896),

13

however, the authors prefer the Spearman coefficient because it does not assume linearity or
normality (Bonett & Wright, 2000).

The research of Kerr-Wilson & Pedrycz (2020) implemented the Pearson correlation
coefficient (Pearson & Henrici, 1896).They measured the correlation between the input
features and the output feature. Only the input features with high correlation (according to a
certain threshold) with the output feature were included in the model. This feature selection
method is considered as a filter method.

This shows there are multiple ways to use correlation for feature selection. It can be applied to
measure correlation between input features to reduce redundancy, or to measure the correlation
with the output features to only include features that have impact on the output feature. One
can choose between applying the Pearson’s or Spearman’s correlation coefficient. In addition,
correlation based feature selection can be used as a filter method or as a wrapper method.

Sequential selection

Sequential feature selection is based on the idea of adding or removing features until a certain
criteria is met. Forward selection is to begin with an empty set and to iteratively add features
to the set until a termination criteria is met. Backward elimination is to begin with all the
features in the set and the remove one feature at a time until the termination criteria is met. In
the research by Lee et al. (2001), the backward elimination method was applied, and the
termination criteria was a certain threshold of the classification error, which makes it a wrapper
method.

Mutual information

As defined in the research of Chen et al. (2018), mutual information (MI) measures the amount
of information obtained about one random variable, through another random variable. MI can
be applied for feature selection purposes, by measuring the MI between input variables and the
output variable. The variables are ranked based on the MI, meaning this is a filter method. MI
does not assume linearity or normality and can measure any kind of relationship between
random variables, which is an advantage compared to the Pearson’s correlation coefficient.
Chen et al. (2018) also suggest to use MI to find the optimal number of features by evaluating
the performance of the model. This was done by following three steps: 1) rank the features
based on the MI with the output variable, 2) build models with the first k features and measure
the performance of the model (k is from 1 to the total number of features), and 3) find the
optimal number of features by selecting the model with the best performance. Finally, Chen et
al. (2018) concluded that this method of finding the optimal number of features should work
for other filter feature selection methods as well.

Relief algorithm

In research of Ghazavi & Liao (2008) the Relief algorithm was used for feature selection. This
algorithm was originally proposed by Kira & Rendell (1992) and works as following. The
algorithm estimates the quality of a feature by selecting an instance and finding the two (or
more when the dataset has more than two classes) nearest neighbors: one in the same class and
one in another class. Based on the values of the nearest neighbors the feature receives a weight.

14

If the instance has a large difference with the same class neighbor, this means the feature
separates two instances while they are in the same class, which is undesirable, and will result
in a low weight. On the other hand, if the instance has a large difference with the other class
neighbor, this is desirable, because the feature separates the instances from different classes,
and will therefor result in a high weight.

The Relief algorithm has many variations, two of those variations are ReliefF and RReliefF
(Robnik-Šikonja & Kononenko, 2003). The ReliefF algorithm, which was applied in the
research of Tsang et al. (2007), can deal with multiclass problems. The RReliefF algorithm can
be applied to continuous class or regression problems. The Relief algorithm, and all its
variations, are filter feature selection methods.

Fisher interclass separability method and linear discriminant analysis

In the researches of Pulkkinen & Koivisto (2007) and Roubos et al. (2003) the Fisher interclass
separability method (FISM) was used for feature selection. FISM was originally proposed by
Abonyi et al. (2001), and is a filter feature selection method. The FISM is based on the concept
of the Fisher score (Fisher, 1936). The working of the FISM is to find the features for which
the between-cluster covariance is large, and for which the within-cluster covariance is small.
If the between-cluster covariance is large, this means the clusters are far apart. If the within-
cluster covariance is small, this means the cluster is compact. The features with the worst
covariance values are removed from the dataset.

The Linear Discriminant Analysis (LDA) feature selection method, used in the research of
Gayathri & Sumathi (2015), is very similar to the FISM. Both methods are a statistical method
to find the best features to be able to separate the clusters. However, both LDA and FISM,
make the assumption of linearity and LDA makes additional assumptions about the data (such
as, normality and homoscedasticity), which makes them not appropriate to use for all datasets.
LDA is also considered a filter method.

Genetic algorithm

In the research of Tiruneh & Robinson Fayek (2019) the genetic algorithm (GA) is used for
feature selection. The GA was originally proposed by Holland et al. (1992) and was used for
feature selection for the first time by Siedlecki & Sklansky (1989). As defined by Tiruneh &
Robinson Fayek (2019), the GA is an optimization algorithm which does not optimize a single
solution, but it modifies a population of individuals simultaneously to find the optimal solution.
The GA applies the principle of survival of the fittest. Each solution is represented by a
sequence of 1’s and 0’s, meaning, the features with a 1 are included in the set and the features
with a 0 are excluded from the set. In each iteration (or generation) the best solutions of the
population are selected based on the fitness value, which in this case is the classification error
of the model. The selected solutions are updated with crossover and mutation and continue to
the next generation. The GA is a single objective optimization algorithm, which only optimizes
the performance of the model by finding the optimal set of features. However, if one wants to
minimize the number of features in the model, the GA does not consider this. Therefore, in the
research of Yu et al. (2002) was suggested to use a constraint for the model’s performance
while optimizing the number of features. The GA uses the performance of the model to find

15

the optimal set of features, therefore, this feature selection method is considered a wrapper
method.

Particle swarm optimization

Particle swarm optimization (PSO) is a population-based optimization algorithm introduced by
Kennedy & Eberhart (1995). The algorithm starts with a population of candidate solutions (or
particles). These particles move around in the search space to find the global optimal solution.
Each iteration the movement of the particles are updated based on their position and velocity.
The algorithm takes into account the local optimum for each particle, but also considers the
best known solution in the search space. The swarm of particles will gradually move to the
global optimum. PSO can be used for feature selection, as was done in the research of Nasir et
al. (2019). In this research each particle represents a set of n features, where n is the maximum
number of available features. A particle is encoded as a vector of n real numbers. To determine
which features are selected, a threshold is needed to compare the number in the vector with.
Each iteration the solutions are evaluated with the classification error as fitness function,
therefore, PSO is considered as a wrapper approach. The global optimal solution will be the
solution with the best model performance. In the research of Nasir et al. (2019), the PSO
algorithm was used for single-objective optimization. However, they suggested to build in a
constraint for maximum number of features, to reduce the data dimensionality even more.

In 1995, PSO was originally designed to solve continuous optimization problems. Two years
later, binary PSO (BPSO) was proposed to be able to solve discrete optimization problems
(Kennedy & Eberhart, 1997), which is a great option for feature selection. With BPSO each
particle represents a subset of the features, and the position of each particle is defined by a
string of zeros and ones.

Ant colony optimization

Ant colony optimization (ACO) was originally introduced by Dorigo et al. (1991) and has been
in development for many years. ACO is a nature inspired algorithm and is based on the
behavior of certain ant species. These ants leave pheromone on a favorable path to guide the
other members of the colony to follow the most optimal path to a target. ACO uses the same
principle to find the optimal solution to an optimization problem (Dorigo et al., 2006).

One of ACO’s applications is feature selection, this is called ant feature selection (AFS). AFS
was originally proposed by Vieira et al. (2007). Another research by the same authors a few
years later suggests an algorithm that uses two cooperative ant colonies to optimize two
different objectives (Vieira et al., 2010). The two objectives are: minimizing the number of
features and minimizing the classification error. The first ant colony finds the optimal number
of features based on a ranking method. The second ant colony selects the optimal features based
on the optimal number found by the first ant colony. The optimization process uses two
pheromone metrices and two different heuristics. The two cooperative ACO algorithm
aggregates the two objectives into one objective function, which will minimize the number of
features plus the classification error. One of the objectives involves the performance of the
model, therefore, AFS is considered as a wrapper method.

16

Multi objective evolutionary algorithms

Multi objective evolutionary algorithms (MOEAs) are used to solve multi objective
optimization problems. Therefore, these algorithms could be utilized for feature selection when
the objectives are to minimize the number of features and to minimize the classification error.
Compared to GA’s, MOEAs have the advantage of being able to optimize two objectives
simultaneously, instead of having to use a constraint to take into account a second objective.
However, MOEAs do not present a single optimal solution, but they identify a Pareto front of
nondominated solutions. Jiménez et al. (2019) suggested two options to select the optimal
solution from the Pareto front. When all the objective functions are linear, one can use a linear
programming algorithm (for example the simplex method) to find the optimal solution. When
the objective functions are non-linear, in principle any search algorithm to select the optimal
solution. However, there is no guarantee that the search algorithm will find the optimal
solution, but it will be an approximation.

In the research of Jiménez et al. (2019), two MOEAs were proposed for feature selection:
NSGA-II and ENORA. NSGA-II is a non-dominated sorting genetic algorithm, which was
introduced by Deb et al. (2002). ENORA is an evolutionary non dominated sorting with radial
slots based algorithm, which was introduced by Jiménez et al. (2002). NSGA-II and ENORA
both use binary tournament selection and rank the individuals in the population based on Pareto
fronts and crowding. The difference between NSGA-II and ENORA is the approach for ranking
the individuals in the population. The advantage of NSGA-II is its availability in many
implementations. The advantage of ENORA is the good performance, which is in most cases
higher than the performance of NSGA-II (Jiménez et al., 2019). MOEAs are categorized as
wrapper feature selection methods.

Rough set theory

Rough set theory (RST), introduced by Pawlak (1982), is a good tool the cope with vagueness
and uncertainty information to select the most relevant features (Reddy et al., 2020). RST for
feature selection can only be utilized for discrete data. When the dataset contains continuous
values, one can utilize fuzzy rough set theory for feature selection (Anaraki & Eftekhari, 2013).
The difference between RST and fuzzy RST is that the fuzzy RST requires a discretization
process, in which some kind of fuzzification technique is applied. The disadvantage of the
discretization process is the risk of losing important information (Shen & Jensen, 2004). A
popular method to apply RST is the QuickReduct algorithm, which is applied in the research
of Shen & Jensen (2004). The QuickReduct algorithm is a greedy search algorithm using
dependency. The algorithm starts with an empty set and each iteration adds the feature which
the best increase in dependency score. The algorithm terminates when adding another feature
does not improve the dependency score. The QuickReduct algorithm does not involve the
learning algorithm in the process, so it is a filter method.

Stability selection

This method, stability selection, was applied in an experiment in the research of Amaral et al.
(2020) and was inspired by the research of Meinshausen & Bühlmann (2010). This method
must be utilized in combination with another feature selection method, and cannot be used

17

independently. Therefore, depending on the chosen feature selection method to combine with,
the stability selection method could be a filter or a wrapper method. The idea is to apply another
feature selection method (for example the GA) on distinct subsets of the data with diverse
subsets of features. When this process is performed multiple times, one can evaluate the
necessity of each feature. If the feature was selected from each subset, this means the feature
is very relevant. When the feature was selected a couple of times, this means the feature is
somewhat relevant, but is not essential in every subset. When the feature is selected zero times,
this means the feature is irrelevant. The user of the stability selection method can determine a
threshold for how many times a feature must be selected to be included in the final subset.

2.3.4 Feature selection in pyFUME

Currently, pyFUME provides two options for feature selection: sequential forward selection
(SFS) and Integer and Categorical PSO (ICPSO). In the SFS method the features are selected
sequentially and evaluated each iteration. This means pyFUME starts with an empty set and
adds one feature at a time. For the first iteration, each feature is used to make a FIS separately
and is evaluated on classification error. The feature with the smallest classification error is
added to the set. In the next iteration, all features which are not in the selected set are used to
make a FIS together with the features that are already in the selected set. The feature that caused
the smallest classification error is added to the set. The iteration process is terminated when
there is no feature that can be added to the set that lowers the classification error. This method
is not very efficient, because pyFUME has to evaluate every feature in each iteration. If the
dataset is of an substantial size, then this process will take a lot of computational time. In
addition, this method is only focused on optimizing the performance of the model, and the total
number of the features is not considered as an optimization objective.

The second option for feature selection within pyFUME is ICPSO. This method was proposed
by Strasser et al. (2016) and is a form of PSO that can handle discrete optimization problems.
In general, PSO algorithms require some hyperparameters to be set by the user. In pyFUME
the user does not have to define the hyperparameters, because the standard PSO was replaced
with fuzzy self-tuning PSO (FST-PSO). This algorithm determines the best hyperparameters
automatically during the optimization process (Nobile et al., 2018). Within pyFUME a
combination of ICPSO and FST-PSO is applied for feature selection, but is extended to also
optimize the number of rules (or clusters). The dimension of the candidate solutions for the
optimization process is extended with an extra variable, which represents the number of rules
(or clusters). This feature selection method is a wrapper method, because the fitness evaluation
of the candidate solutions is based on the models performance.

Regardless of the two feature selection methods that are already implemented in pyFUME, the
developers believe there is room for improvement regarding feature selection. The main
purpose of extending the feature selection options within pyFUME is minimizing the number
of selected features to increase model interpretability, without neglecting the model’s
performance.

18

3 Methods

3.1 Build fuzzy model with pyFUME

The goal of this research is to find an appropriate feature selection method for fuzzy models.
A fuzzy model must be implemented to be able to test the appropriateness of the feature
selection methods. The fuzzy model is implemented with the support of pyFUME. To generate
a fuzzy model, pyFUME requires two input arguments: the path to the dataset and the number
of clusters. Besides these two arguments, pyFUME also takes other arguments, but these two
arguments are mandatory. An example of another argument that can be used is k-fold cross
validation. The number of clusters and k-fold cross validation are described in more detail in
section 3.1.1 and section 3.1.2 respectively.

3.1.1 Number of clusters

The number of clusters has an impact on the performance of the model and on the
interpretability of the model. For each cluster identified, pyFUME generates a fuzzy rule.
Meaning, if one identifies three clusters in the dataset, pyFUME will generate three fuzzy rules.
The number of rules affects model interpretability, since a high number of rules makes the
model more complex, and can make it difficult to understand the rationale of the model.

While the model interpretability is compromised when the number of rules become too high,
in some cases this could positively influence the performance of the model. The data can be
described more precisely when there are more rules, which results in a higher performance.
However, a high number of rules could also lead to overfitting on the training data, which could
have a negative effect on the model’s performance. The challenge is to find the optimal number
of clusters by balancing model interpretability and performance.

Having domain knowledge about the dataset could be helpful for making the decision on the
number of clusters. When it is known how many clusters exist in the dataset, this number could
be used for the ‘number of clusters’ argument in pyFUME. When the number of clusters is a
logical choice based on domain knowledge, the model becomes more interpretable, because
each rule will have more meaning.

For this research the number of clusters is determined by using domain knowledge, testing the
model’s performance, and considering the model interpretability.

3.1.2 K-fold cross validation

𝑘𝑘-fold cross validation is a procedure to test the model’s performance on unseen data. By
testing the model on a different test dataset for 𝑘𝑘 times, the estimate of the model’s performance

19

is less biased then only testing on one test dataset. The procedure of 𝑘𝑘-fold cross validation
consists of four steps:

1) Shuffle the data randomly
2) Split the data into 𝑘𝑘 groups
3) For each group:

a. Use this group as the test dataset
b. Use the remaining 𝑘𝑘 − 1 groups for the training dataset
c. Generate a model based on the training dataset and test the model on the test

dataset
4) Summarize the model’s performance by calculating the mean and standard deviation of

the model’s performance metrics

A 𝑘𝑘-fold cross validation function is available within pyFUME, with the default value 𝑘𝑘 = 10.
These default settings are used for this research.

3.2 Feature selection methods

There are multiple feature selection methods that are tested. Most of these feature selection
methods were retrieved from the systematic literature review. However, not all feature
selection methods that were found during the literature review are tested. Some feature
selection methods use the same selection criteria. To avoid redundancy of feature selection
methods, not all of them were selected to test. In addition, some feature selection methods were
too complicated to implement because a lack of effective Python libraries. A few additional
methods were found in literature later in the process. Each feature selection method that is
tested in this research is explained below.

3.2.1 MI

The MI feature selection method is implemented with the ‘scikit-learn’ Python library
(Pedregosa, F. et al., 2011). This library provides many machine learning applications for
Python. The feature selection module from scikit learn (sklearn.feature_selection) is used to
implement the MI feature selection method. The ‘mutual_info_regression’ function is used to
perform feature selection. This function requires two arguments: a dataset consisting of all the
input variables, and vector consisting of the target variable. The function calculates the MI
between each input variable and the target variable. The output of the function is a list of scores,
where the first score represents the MI between the first input variable and the target variable.
The higher the MI value, the higher the dependency between the variables. The output of the
function is used to select the best 𝑘𝑘 features, where 𝑘𝑘 could be any number between 1 and the
total number of features in the dataset.

The MI feature selection method is tested for 𝑘𝑘 from 1 to the total number of features in the
dataset. The 𝑘𝑘 selected features are tested with pyFUME, and the MAE is the performance
indicator. The optimal value for 𝑘𝑘 is the value which corresponds with the smallest MAE.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection

20

3.2.2 F-score

A feature selection method based on F-test statistics is proposed by Elssied et al. (2014). The
F-test is utilized to test the linear relation between the features and the target variable. This
feature selection method is implemented with the ‘scikit-learn’ Python library. The
implementation is almost similar to the implementation of the MI feature selection method.
The only difference is the function for feature selection. The feature selection method is defined
as ‘f_regression’. This function requires two arguments: the dataset with all the input variables,
and the target variable. This function calculates the Pearson’s correlation between each input
variable and the target variable. Then the function converts the correlation values in to F-scores,
which are then converted to p-values. The F-scores are calculated as following:

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(Pearson’s correlation coefficient)2

(1− (Pearson’s correlation coefficient)2) ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

High F-scores and low p-values indicate a strong relation between two variables. The F-scores
are used to select the best 𝑘𝑘 features, where 𝑘𝑘 could be any integer between 1 and the total
number of features in the dataset. The selection procedure of selecting the optimal value for 𝑘𝑘
is similar to the procedure that is used for the MI feature selection method (section 3.2.1). The
p-values are not utilized for this feature selection method since the p-values indicate the exact
same features to select as the F-scores.

3.2.3 Fisher score

The Fisher score is a feature selection method that is based on similarity of values within a
class and between classes. When the similarity within a class is high and the between classes
similarity is low, then this is considered a good feature.

The Fisher score feature selection method is implemented with the ‘fisher_score’ function from
the ‘skfeature’ Python library (Li et al., 2017). The function ‘fisher_score’ requires for two
arguments, which are the input data, and the target variable data. The output of the function is
a list containing a ranking of the features. The features are ranked based on their Fisher scores,
where the highest Fisher score receives the highest ranking. The optimal number of features is
not provided by this function. Therefore, to find the optimal number of features (𝑘𝑘), the same
approach is used as for the MI feature selection method (section 3.2.1).

The Rrelieff algorithm, which was discussed in section 2.3.3, is a feature selection method that
is also based on difference between clusters and within clusters. The Rrelieff algorithm
searches for the nearest hit (within the cluster) and nearest miss (outside the cluster), and ranks
the features based on the within cluster and between cluster distances. The principles of the
Rrelieff algorithm and Fisher score method are quite similar since they both analyze the within
and between class distances. Therefore, only one of these feature selection methods is
implemented. The Fisher score is implemented, because the availability of effective Python
libraries for the Rrelieff algorithm is missing.

21

3.2.4 GA

A GA is a population based algorithm that is inspired by natural selection, crossover, and
mutation in nature (Holland et al., 1992). The population consists of chromosomes, which are
binary strings in this research. A process of evolution takes places, where the chromosomes
(from now on called individuals) move in the direction of the optimal solution due to crossover,
mutation, fitness evaluation, and selection.

The GA that is implemented is a single objective optimization algorithm. The objective is to
minimize the MAE of the fuzzy model. The GA is implemented with the “Distributed
evolutionary algorithms in python” (DEAP) library (Fortin et al., 2012). DEAP is an
evolutionary computation framework that supports testing of evolutionary algorithms.

The first information that DEAP requires is the type of optimization problem. The type of
problem can be defined in the creator module. In the creator module is defined that the problem
is a single objective minimization problem. The creator module also allows for creating the
‘individual’ class.

After the type of problem is defined, DEAP requires to define the needed tools. The toolbox is
a container in which all the tools are stored. The tools that are used are and stored in the toolbox:

• “Attr_bool”. With this tool is defined that the individual consists of binary values.
• “Individual”. With this tool the shape of the individual is defined. The individual is a

vector of binary values with the length of the total number of features. In the binary
string 1 represents that the feature was selected, and 0 represents that the features was
not selected.

• “Evaluate”. With this tool the fitness evaluation function (which calculates the fitness
value of an individual) is defined. The fitness value is the MAE of the fuzzy model,
obtained with pyFUME. The MAE is calculated for the features that are defined in the
individual.

• “Mate”. This tool allows to perform crossover after every generation. There are
multiple crossover functions that can be applied with DEAP. The crossover function
that is utilized for this research is the “cxTwoPoint” function. Two point crossover
works as following. Two parents are selected from the population for the crossover
operation. Two points in the binary string are selected randomly. The bits between the
two points are swapped between the two parents. This creates two new individuals,
called the offspring.

• “Mutate”. This tool provides multiple functions to perform mutation. The function that
is utilized for this research is the “mutFlipBit” function. With flip bit mutation, a
predefined number of bits in the binary string are selected and are flipped. Meaning if
the selected bit is a zero it becomes a one, and if the selected bit is a one it becomes a
zero. This function requires the user to define the probability for every bit to be flipped.
For this research was chosen to flip one bit on average, therefore the probability is set
to 1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
. The length of the individual is equal to the total number of

22

features in the dataset. Therefore, in each mutation operation, one feature is added or
one feature is removed from the individual (on average due to randomness).

• “Select”. This tool allows the user to define the selection method. The selection
procedure is a tournament with size three. This means, three individuals are randomly
selected from the population. The best individual out this group of three is selected and
continues to the next generation. This process is repeated until the desired size of
population is reached.

• “Logbook”. This tool was used to register the outcomes of the algorithm in each
generation. This information is utilized to evaluate the convergence of the algorithm.

• “selBest”. This tool was used to select the best individual in the population when the
evolution process is finished.

There is a possibility that the GA creates an individual that is a string of zeros. This means the
individual presents a solution with zero features. This is not a useful solution, and besides that,
this individual cannot be evaluated since it is impossible to make a fuzzy model with zero
features. An individual with only zeros can occur at three moments during the GA optimization.

The first moment is at the creation of the initial population. If there occurs an individual with
zeros only, this individual is replaced with an individual that has a one at a random location in
the binary string. This means the individual now represents one feature instead of zero.

The second and third moments are during crossover and mutation. At these moments, new
individuals are created, which are exposed to the risk of becoming a string of zeros. To avoid
this from happening, the decorator function from DEAP was utilized. The decorator function
‘decorates’ the crossover and mutation tools. After crossover and mutation, the decorator
evaluates whether there exist individuals with only zeros in the offspring. If these individuals
occur, they are replaced with an individual which has a one at a random location in the binary
string.

Now the type of problem and the Toolbox is defined, the next step is to define the parameters.
There are a few parameters required for the algorithm:

• Population size, which is the number of individuals that exist in the population
(shortened as ‘pop’)

• The number of generations, which is the number of times the evolutionary process is
performed (shortened as ‘gen’)

• The probability that an offspring is produced by crossover (shortened as ‘XCPB’)
• The probability that an offspring is produced by mutation (shortened as ‘MUTPB’)
• Mutation rate, which is the probability for every bit to be flipped

Ideally, one should perform a sensitivity analysis to find the optimal parameters for optimal
solutions and convergence. However, finding the optimal parameters of evolutionary
algorithms a research topic on its own. Therefore, in this research there is no sensitivity analysis
performed to find the optimal parameters. However, there is experimented with a few different
combinations of parameters to create the best model possible without performing a sensitivity
analysis. The parameters of the initial GA are set to:

23

(𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (100, 100, 0.8, 0.1,
1

39)

as these were commonly observed in the literature (for example in the research of Tiruneh &
Robinson Fayek (2019)). A further description of the parameter tuning process is presented in
section 4.3.2.

Once the parameters are defined, the next step is to program the evolutionary process. A
simplified version of the pseudo code of the program is presented in Figure 3.1.

Figure 3.1: Pseudo code of evolution process

3.2.5 NSGA-II

The NSGA-II is a variant of the GA that can optimize multiple objectives simultaneously. The
selection procedure of the NSGA-II is very different from the selection procedure of the GA.
The NSGA-II uses the following steps to perform the selection procedure:

def main():

 pop = initial population

 for p in pop

 if sum(p) ==0

 replace p with an individual which has at least one 1

 end if

 end for loop

 evaluate all individuals in pop

 while gen < generation_size

 gen = gen + 1

 offspring = selection of pop with 'select' tool

 perform crossover with 'mate' tool

 perform mutation with 'mutate' tool

 evaluate new individuals in offspring

 pop = offspring

 end while loop

 return pop

24

1. The parent and offspring populations are combined to one population. If the size of both
populations is 𝑛𝑛, then the total population has size 2𝑛𝑛.

2. The fast non-dominated sorting is applied. This technique finds the Pareto front of the
population and calls this front 1. Then the second pareto front is identified by ignoring
the solutions in front 1 and finding the Pareto front, called front 2. This process
continuous until every solutions is part of a front.

3. The crowding distance is calculated for every solution. This is the distance between a
solution and its neighbors in the same front. A large crowding distance indicates more
diversity of solutions in the front.

4. Selecting the final population of size 𝑛𝑛 involves both step 2 and step 3. First, front 1 is
added to the final population. Adding fronts to the population continues until the
population size exceeds 𝑛𝑛. Then, the front that caused to exceed the desired population
size is evaluated on the crowding distance. The solutions in the front are ranked from
greatest to smallest crowding distance. The solutions that have the highest ranking are
added to the population until the population consists of 𝑛𝑛 solutions.

The NSGA-II is implemented with the DEAP library. The same approach was used as for the
GA. However, a few changes were made to the GA algorithm to make it a NSGA-II. The first
change is in defining the type of optimization problem. The NSGA-II is used to optimize
multiple objectives simultaneously, therefore, the type of problem is defined as a two-objective
minimization problem. The type of individual class stays the same as in the GA
implementation.

The tools that are changed for the NSGA-II are the following:

• “select”. The selection method that is used for this algorithm is “selNSGA2”, which
performs the NSGA-II selection procedure.

• “Evaluate”. The evaluation function evaluated the fitness value for two objectives. The
first fitness function is the MAE of the fuzzy model that was created with the features
that are presented in the individual. The second fitness function is the sum of the
individual, which is the number of features the individual presents.

• “selBest”. This tool is not used for the NSGA-II implementation.

And additional tool that is used for the NSGA-II is the following:

• “ParetoFront”. Since the NSGA-II is optimizing two objectives, there is not one single
optimal solution, but there is a Pareto front of solutions. The Pareto front tool registers
the dominating solutions in every generation. The Pareto front is updated every
generation, and adds new dominating solutions and removes solutions that are
dominated. The tool returns the final Pareto front when the evolution process is
finished.

The parameters for the initial NSGA-II are similar to the parameters of the GA:

(𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (100, 100, 0.8, 0.1, 1
39

).

A further description of the parameter tuning process is presented in section 4.3.2.

25

3.2.6 NSGA-III

Just as the NSGA-II, the NSGA-III is a variant of the GA. The NSGA-III, which was
introduced by Deb & Jain (2014), can optimize multiple objectives simultaneously. The
selection procedure of the NSGA-III uses a combination of the fast non-dominated sorting
technique and reference points to determine the diversity. Therefore, the first two steps of the
selection procedure of the NSGA-II are also used within the NSGA-III. All the steps of the
selection procedure of NSGA-III are defined below.

1. The parent and offspring populations are combined to one population. If the size of both
populations is 𝑛𝑛, then the total population has size 2𝑛𝑛.

2. The fast non-dominated sorting is applied. This technique finds the Pareto front of the
population and calls this front 1. Then the second pareto front is identified by ignoring
the solutions in front 1 and finding the Pareto front, called front 2. This process
continuous until every solutions is part of a front.

3. Define the location and number of reference points, which will form a hyperplane in
the solution space. Defining the reference points is done manually.

4. Each reference point is converted to a reference line by joining the reference point with
the origin.

5. The solution space is normalized.
6. Calculate the perpendicular distance between each reference line and each solution. The

reference line with the shortest distance to the solution is from now on associated with
that solution.

7. Selecting the final population of size 𝑛𝑛 involves both step 2 and step 6. First, front 1 is
added to the final population. Adding fronts to the population continues until the
population size exceeds 𝑛𝑛. Then, the front that caused to exceed the desired population
size is evaluated on the following.

a. Count the number of solutions that are already selected that are associated with
each reference point.

b. Identify the reference point with the least number of associated solutions that
are already selected.

c. If there is already one or more solutions associated with this reference point in
the final population: select one of the solutions in the front that is associated
with this reference point at random. If this is true, continue to step 7f. If this is
not true continue to step 7d.

d. If there is no solution is the front that is associated with this reference point, the
reference point is no longer considered in the selection process of the particular
generation. If this is true, continue to step 7f. If this is not true continue to step
7e.

e. If there is no solution already selected for the final population that is associated
with this reference point, then select the associated solution in the front with the
smallest distance to the reference point, and add this solution to the final
population.

f. Repeat step 7b until 7e until the final population consists of 𝑛𝑛 solutions.

26

The implementation of the NSGA-III is almost similar to the implementation of the NSGA-II.
The only difference is in the “select” tool. The selection method that is used for this
implementation is “selNSGA3”. This selection function requires an extra argument, which is
the reference points. The reference points were defined with the “uniform_reference_points”
tool. This tool requires two input arguments: the number of objectives, and the number of
points. The number of objectives is two, and the number of points is set to 12. The number of
points is determined with trial and error.

The parameters for the initial NSGA-III are similar to the parameters of the GA:

(𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (100, 100, 0.8, 0.1, 1
39

).

A further description of the parameter tuning process is presented in section 4.3.2.

3.2.7 SPEA2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is a multi-objective optimization
algorithm (Zitzler et al., 2001). The SPEA2 is a variant of the GA, and is almost similar to the
NSGA-II. The only difference between these algorithms occurs in the method for selecting the
population for the next generation. The population selection procedure of SPEA2 consists of
four steps:

1. The initial population and an empty archive of size 𝑛𝑛 are created.
2. Two fitness values are calculated for each solution. The first fitness value is the number

of solutions the solution dominates (𝑆𝑆). The second fitness value is a summation of the
𝑆𝑆 value of all the solutions that dominate the solution (𝑅𝑅). If the value for 𝑅𝑅 is zero,
then the solution is non-dominated.

3. Copy all nondominated solutions to the archive. If the archive exceeds 𝑛𝑛 solutions, then
the solutions with the smallest distance to other solutions are removed. If the archive
contains less than 𝑛𝑛 solutions, then the best solutions from the previous population and
previous archive are added to the archive.

4. The archive becomes the new population in the next generation.

The SPEA2 is implemented with the support of the DEAP library. The implementation of the
SPEA2 is almost similar to the implementation of the NSGA-II. The only difference is in the
“select” tool. The selection method that is used for this implementation is “selSPEA2”.

The parameters for the initial SPEA2 are similar to the parameters of the GA:

(𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑥𝑥𝑥𝑥𝑥𝑥,𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (100, 100, 0.8, 0.1, 1
39

).

A further description of the parameter tuning process is presented in section 4.3.2.

3.2.8 PSO

The PSO algorithm, or a variant of this algorithm, could be utilized for feature selection. A

27

form of this algorithm has already been implemented within pyFUME, namely, the ICPSO
algorithm. Instead of implementing another variant of the PSO algorithm, the ICPSO algorithm
is tested and compared to the other feature selection methods in this research. A description of
this algorithm is given in section 2.3.4.

3.3 Measuring model’s performance and interpretability

3.3.1 Performance measurement

Within pyFUME there are multiple options available for measuring the performance of the
fuzzy model: MAE, RMSE, and MSE. For this project, the MAE was chosen for measuring
the model’s performance, because this metric has the most raw representation of the prediction
error. The MAE is obtained by testing the model on unseen data (the test data) and calculating
the mean of all absolute prediction errors.

Measuring the model’s MAE is combined with 10-fold cross validation. Therefore, the mean
of the MAE’s of all folds are obtained. The purpose of the 10-fold cross validation is to reduce
the bias of the estimate of the performance of the model. Meaning the value of the MAE will
be more reliable than without cross validation.

To compare the performance of the feature selection methods, the independent two-sample t-
test is used to determine whether two populations have equal means. The populations consist
of 50 values for MAE, since the feature selection methods are tested with 50 repetitions. The
feature selection methods are performed 50 times because there is randomness in the train/test
split and in the wrapper methods. There are multiple conditions to conduct a two-sample t-test.
Two of these conditions, that must be met before conducting the two-sample t-test, are normal
distributed data and homogeneity of variance (Kim & Park, 2019). Testing the normality of the
data is done by plotting the data in a histogram and observe whether there appears a ‘bell curve’,
which is an indication for normal distributed data. Testing the homogeneity of variance is done
with the F-test. The F-test is used to compare the two sample variances (Snedecor & Cochran,
1989). If these two conditions are not complied, then the t-test is not used. For the t-test and
the F-test the null hypothesis of equal means and equal variances is rejected when the p-value
is smaller than 0.05.

3.3.2 Interpretability measurement

During the process of choosing the number of clusters, the interpretability of the model was
already considered. Because the number of clusters is the number of rules, which affects the
interpretability. However, determining the best number of clusters is not the focus of this
research. The focus of this research is to use feature selection to increase model interpretability.
Therefore, measuring the interpretability is done by measuring the number of features in the
model. The more features are selected, the longer the fuzzy rules are, which will reduce model
interpretability. Therefore, the goal is to keep the number of features as low as possible.

28

Measuring the number of features is fairly easy. In this research, all feature selection methods
are implemented such that the output represents the selected subset of features with a vector,
consisting of binary values. In this vector, a one means the feature is selected and a zero means
the feature is not selected. Therefore, taking the sum of this vector represents the number of
features that were selected.

3.3.3 Pareto fronts

The multi-objective feature selection methods return a Pareto front of solutions instead of one
single optimal solution. The Pareto front presents a set of solutions, where some solutions score
very well on number of features, some solutions score very well on MAE, and some solutions
are in between.

Hypervolume

To be able to compare the results of the multi-objective feature selection methods with each
other, the hypervolume is calculated. The hypervolume represents the size of the space
enclosed by the solutions in the Pareto front and the defined reference point (Zitzler & Thiele,
1998). When two Pareto fronts are compared, and one Pareto front dominates the other, the
hypervolume of the dominating Pareto front is greater than the hypervolume of the other Pareto
front. An example of the hypervolume concept is visually presented in in Figure 3.2. In the
example, the second feature selection method (color red) performs better than the first feature
selection method (color blue), because the surface area is bigger for the red Pareto front than
for the blue Pareto front.

Figure 3.2: Hypervolume example

The user has to choose the reference point manually to be able to calculate the hypervolume.
For a two-objective minimization problem, the x and y coordinates of the reference point must
be equal or greater than the maximum values of x and y in the Pareto front. Otherwise, the

29

hypervolume calculation cannot take all solutions in the Pareto front into account. Usually, the
reference point is either chosen as the worst values of each objective or as slightly worse values
than the worst values of each objective (Zitzler et al., 2007).

For this research, the x-coordinate of the reference point is set to the total number of features
in the dataset plus one. And the y-coordinate of the reference point will be set to a value which
is greater than the highest value of MAE.

In this research, all multi-objective feature selection methods are implemented with Python
library DEAP. DEAP also provides a function for calculating the hypervolume of a Pareto
front. The function is called ‘hypervolume’. This function requires two arguments: the
datapoints in the Pareto front, and the reference point. Therefore, the hypervolume function of
DEAP was utilized to calculate the hypervolume.

The hypervolumes of the feature selection methods could be compared with the support of the
independent two-sample t-test. This statistical test is described in section 3.3.1.

Knee point

The multi-objective feature selection methods present a Pareto front of optimal solutions, while
the single objective feature selection methods present a single optimal solution. To be able to
compare the multi-objective feature selection methods with the single objective feature
selection methods, the Pareto front has to be converted to a single solution. In this way, each
feature selection method is represented by one solution.

The conversion of the Pareto front is performed by selecting a single solution from the Pareto
front. Choosing a solution from the Pareto front is not an easy task, as all solutions are optimal
and it is impossible to make a distinction about the optimality of the solutions. Although all
solutions in the Pareto front are optimal, making a distinction about the trade-off between
objectives is possible. The solution with the optimal trade-off between the two objectives is
selected as the single solution that represents the Pareto front.

The method that is used to determine the solution with the optimal trade-off between the two
objectives is to draw a line which passes through the two boundary points of the Pareto front
and then to select the point with the greatest perpendicular distance to the line. This method is
a distance-based knee detection method (Das, 1999). A visual example of this method is
presented in Figure 3.3. In the visual example, the knee point (which has the greatest distance
to the dashed line) is marked with a cross.

This method is implemented by drawing a line is through the boundary points of the Pareto
front. The point with the greatest perpendicular distance to the line is selected as the knee point.

Please note that the knee point is an approximation of the optimal trade-off solution of the
Pareto front. The solution is selected based on the maximum distance to the line, however, this
does not mean this is the optimal trade-off in every situation. In this research the knee point is
considered as the solution with the best trade-off between the two objectives in the Pareto front.
However, this does not mean that the other solutions in the Pareto front should be ignored.

30

Figure 3.3: Knee point example

3.4 High performance computing

3.4.1 Computational time

The computational time of performing feature selection can vary from short to very long. The
computational time is highly depending on the chosen feature selection method, the size of the
input dataset, and the complexity of predictive model.

The dimensions of the input data have an impact on the computational time in the sense that
the feature selection method has to evaluate all features, and consider a lot of feature
combinations. Generally, a filter feature selection approach has a shorter computational time
than a wrapper feature selection approach. A wrapper approach evaluates the model’s
performance in each iteration. To obtain the total computational time of a wrapper feature
selection process, the computational time of evaluating a model’s performance is multiplied by
the number of evaluations (or iterations), which can result in long computational times.

Long computational times are especially common in evolutionary algorithms. Evolutionary
algorithms start with an initial population of solutions. This population is updated in each
generation based on the fitness evaluations to get closer to the optimal solution. The size of the
population definitely has an impact on the computational time. If the size of the population is
100, which is a very common setting, then there are 100 fitness evaluations per generation. If
the number of generations is also 100, which is also a very common setting, there are
100*100=10,000 fitness evaluations performed. When the computational time is 1 second, this
means the total computational time is 10,000 seconds. However, in pyFUME the computational
time of a fitness evaluation for a large dataset will take much longer than 1 second. A fitness

31

evaluation with pyFUME with all features of the COVID-19 dataset takes approximately 40
seconds.

The sort of predictive model can also influence the computational time. For this study, the only
predictive model that is considered is a fuzzy model implemented with pyFUME. However,
there is a distinction between predictive models, where some have naturally longer
computational times than others.

Another factor that has an impact on the computational time is k-fold cross validation. For
instance, if 10-fold cross validation is applied, the computational time will be 10 times longer
for a performance evaluation than without cross validation.

3.4.2 Multiprocessing

Multiprocessing means to use more than one central processing unit (CPU) simultaneously to
perform a computing task. When there are two or more CPUs available within a computer
system, the computational work can be split across the processors (Rajagopal, 1999).
Multiprocessing can help to save on computational time, because tasks can be performed in
parallel.

Python provides a multiprocessing package that allows the programmer to leverage multiple
CPUs on a machine, this package is called multiprocessing. One of the features that the
multiprocessing package offers is the Pool object. The Pool object allows the
programmer to execute certain computing tasks in parallel (Hunt, 2019).

Figure 3.4: Example code for multiprocessing with Pool object in Python

The Pool object in the multiprocessing package is a perfect tool to perform fitness
evaluations in parallel. For instance, when an evolutionary algorithm with population size 100
is used to solve an optimization problem, and there are 10 CPUs available. The Pool object can

from multiprocessing import Pool

def fitness_eval(individual):

 model = pyFUME_make_model(individual)

 MAE = model.calculate_error(method="MAE")

 return MAE

if __name__ == '__main__':

 with Pool(5) as p:

 print(p.map(fitness_eval, [ind_1, ind_2, ind_3]))

32

distribute the fitness evaluations over these 10 CPUs, which allows to process the fitness
evaluations in parallel. This will shorten the computational time with factor 10.

A basic demonstration is given on how the Pool object can be utilized for parallelizing
execution of certain computations in Figure 3.4.

3.4.3 Supercomputer: Cartesius

Cartesius is a Dutch supercomputer for high performance computing, offered by the company
SURF. SURF is a Dutch company which offers ICT facilities and services to education and
research institutions. A few examples of the services they offer are network connectivity,
security, data services, and high performance computing services. One of the high performance
computing services they offer is the Cartesius system (Services Offered by SURF | SURF.Nl,
n.d.).

The Cartesius system has a large number of processors and a fast internal network which results
a high speed computer system. The system is mainly used for large scale experiments, for
instance simulations and AI modelling. The system offers a high supply of memory, and it
provides options for communication between various processors (Cartesius |
Userinfo.Surfsara.Nl, n.d.). The Cartesius system was used to perform all feature selection
methods for this research.

Performing computations on the Cartesius system is not as simple as performing computations
on for example a laptop. There has to be some level of understanding about accessing the
system and communicating with the system. Access to the Cartesius system is provided through
a command line interface (CLI) with a Secure Shell (SSH). Connecting to the system goes
through a terminal. The terminal that was used, and works well for Windows computers, is
PuTTY. The communication with the system happens through a CLI, which responds to Linux
command lines. In most cases, running a computation on Cartesius requires transferring files.
To make this possible, the WinSCP software (which only works for Windows systems) was
used to transfer files from the computer to the Cartesius system (Getting Started with Cartesius
| Userinfo.Surfsara.Nl, n.d.).

To be able to use the computational capacity of Cartesius, one has to submit a job to the
scheduler. The scheduler used for the Cartesius system is called Slurm. Slurm is an open source
job scheduling system for large and small Linux clusters. This system manages all the
submitted jobs and fairly distributes the computational capacity over the submitted jobs (Slurm
Workload Manager - Overview, n.d.). It is important to be precise with requesting resources,
because large resource requests will be queued longer than small resource requests. For
example, when a job requires 10 computing nodes and a computational time of 24 hours, this
job will most likely be queued for a longer time than a job which only requests one computing
node for a duration of 10 minutes. Therefore, to be the most efficient, being precise in resource
requests will save on queueing time.

33

To submit a job to Slurm, one has to define a job script. The job script usually contains
information about the computing tasks and the required resources. Examples of the resources
that can be defined are the required running time, number of computing nodes, and type of
nodes. The job script should also specify the Python files that need to be executed, and the
location of these files. Basic information about the job, such as job name, and name of the
output file can also be included in the job script. Figure 3.5 shows an example of a job script
that was used to execute a GA.

Figure 3.5: Job script and description

After the job script is submitted to Slurm, the job will be scheduled. The status of the job is
‘pending’ when the job is queued. When the Cartesius starts executing the job, the status
becomes ‘running’. When Cartesius is finished with the job, the user can collect the output
files. It is also possible to submit multiple jobs to Slurm simultaneously. The Cartesius system
will execute the jobs in parallel.

3.5 Experimental setup

3.5.1 Test on artificial dataset

The first experiment is applied on the artificial dataset.

Artificial dataset description

The artificial dataset was created by C.E.M. Fuchs with the purpose of testing feature selection
methods before moving on to a more complex dataset. The advantage of testing on an artificial

#!/bin/bash

#SBATCH --job-name=GA_1

#SBATCH -n 1

#SBATCH -t 3:00:00

#SBATCH --output=%x_%j.out

module load 2020

module load Python

cd $HOME/GA_1

python GA.py

Specifies which shell should execute the job

Specifies job name

Request for one computing node

Request for 3 hours of computational time

Specifies output file name (Job name and ID)

Load modules that are needed for computing
task

Define location/directory of files

Specify Python file that is requested to be
executed

34

dataset is that the relevant features are known in advance. Which makes it easy to evaluate
whether the feature selection method selected the most relevant features.

The dataset consists of eleven variables; ten input variables (𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, … ,𝑥𝑥10) and one target
variable 𝑦𝑦. Each variable has 1000 datapoints. The relevant input variables are 𝑥𝑥1 and 𝑥𝑥2, which
are related with the target variable 𝑦𝑦. The other input variables were not programmed to be
related to the target variable and are therefore irrelevant.

The sets of datapoints of 𝑥𝑥1 , 𝑥𝑥2, and 𝑦𝑦 are divided into six subsets: 𝑥𝑥1,1, 𝑥𝑥1,2, 𝑥𝑥2,1, 𝑥𝑥2,2, 𝑦𝑦1, and
𝑦𝑦2, each containing 500 datapoints. The datapoints for all input variables are created with a
normal distribution, all distributions are shown in Table 3.1. To create a relation between 𝑥𝑥1
and 𝑦𝑦 and between 𝑥𝑥2 and 𝑦𝑦, the following equations were used to create the datapoints of the
target variable:

 𝑦𝑦1 = 5 ∗ 𝑥𝑥1,1 + 2 ∗ 𝑥𝑥2,1 (1)

 𝑦𝑦2 = 2 ∗ 𝑥𝑥1,2 + 5 ∗ 𝑥𝑥2,2 (2)

The final step was to merge the subsets of datapoints by adding the first and second subset
together:

 𝑥𝑥1 = [𝑥𝑥1,1, 𝑥𝑥1,2] (3)

 𝑥𝑥2 = [𝑥𝑥2,1,𝑥𝑥2,2] (4)

 𝑦𝑦 = [𝑦𝑦1, 𝑦𝑦2] (5)

Table 3.1: Normal distributions for artificial dataset

Variable Mean (µ) Standard deviation (σ)
𝑥𝑥1,1 5 2
𝑥𝑥1,2 15 2
𝑥𝑥2,1 5 2
𝑥𝑥2,2 15 2
𝑥𝑥3 7 3
𝑥𝑥4 8 2
𝑥𝑥5 9 1
𝑥𝑥6 6 2
𝑥𝑥7 10 4
𝑥𝑥8 11 1
𝑥𝑥9 5 4
𝑥𝑥10 3 4

35

Process

First the seven feature selection methods are tested on the artificial dataset. The number of
clusters has to be determined to evaluate the performance of the fuzzy model. Two clusters can
be identified in the artificial dataset, since these are defined by equations 1 and 2. The number
of cluster can also be determined by evaluating the scatter plots in Appendix C. These scatter
plots show a clear distinction between the two clusters.

Then the feature selection methods are performed. The FS methods are evaluated based on the
number of features that were selected and on the MAE of the fuzzy model. The FS methods
are also evaluated on which features are selected. In the artificial dataset it is known that 𝑥𝑥1
and 𝑥𝑥2 are the only relevant features. The feature selection methods that succeeded in selecting
the relevant features are considered in the experiment on the next dataset.

3.5.2 Test on ‘real world’ dataset (COVID-19 dataset)

This experiment is performed on a ‘real world’ dataset, namely the COVID-19 dataset. This
dataset is more complex than the artificial dataset. A complex dataset makes it more difficult
to find the relevant features. Therefore, this dataset will provide a better test environment to
observe the difference of performance between the feature selection methods.

COVID-19 dataset description

The ‘real world’ dataset that is used for this research is the COVID-19 dataset. This dataset is
more complex than the artificial dataset, which is better for evaluating the feature selection
methods. The COVID-19 dataset consists of data that was retrieved from the “European
registry of patients with COVID-19, cardio-vascular risk and complications”. This registry was
created by the Italian Cardiology Network as a response to the pandemic due to the new
coronavirus. The new coronavirus will from now on be referred to as COVID-19. The registry
was created to investigate which variables influence the severity of a COVID-19 infection.
When the COVID-19 patients arrives at the hospital, a lot of information is collected and
registered about this patient. Also, during the hospitalization period, information is registered
about the state of the patient every couple of days. COVID-19 can cause Acute Respiratory
Distress Syndrome (ARDS). ARDS is a life-threatening syndrome that allows fluid to leak into
the lungs. This makes breathing very difficult and there will arise a lack of oxygen in the
patient’s body (Acute Respiratory Distress Syndrome (ARDS), n.d.). The severity of the ARDS
is defined by the ratio of the partial pressure of oxygen in the patient’s arterial blood (PaO2) to
the fraction of oxygen in the inspired air (FiO2) on 5 cm of continuous positive airway pressure.
The severity of the ARDS is defined by three categories (The ARDS Definition Task Force,
2012), these categories are presented in Table 3.2. The PaO2/FiO2 ratio is measured throughout
the patient’s hospitalization. In the end of the hospitalization, the worst PaO2/FiO2 ratio is
registered. The “worst PaO2/FiO2 ratio” is the target variable in the dataset. To goal is to
predict the worst PaO2/FiO2 ratio at the time of the patient’s arrival at the hospital. This
prediction is beneficial, in the sense that the medical staff could make decisions about the
treatment and resources while having knowledge about the future state of the patient.

36

Table 3.2: ARDS severity categories (The ARDS Definition Task Force, 2012)

ARDS severity PaO2/FiO2 value
Mild 200-300

Moderate 100-199
Severe ≤ 100

The original dataset contains the information of 291 records of hospitalized patients, and each
record consists of 1212 variables. The records that miss a value for the target variable were
removed from the dataset, which reduced that dataset to 228 patients. The following six
preprocessing steps were performed on the dataset to obtain the final dataset. These steps were
performed by Fuchs et al. (2021, under review).

1. All the technical columns related to information about whether a certain variable was
collected or not were removed from the dataset. After this step, the dataset consists of
964 variables.

2. A new variable “age” was created from birth and admission dates, and a new variable
“BMI” was calculated according to the patient’s weight and height. This increases the
number of variables to 966.

3. The model is trained according to the values measured at admission, therefore all
columns from the dataset containing the minimum or maximum values measured
during the hospitalization were removed from the dataset, with the exception of the
PaO2/ FiO2 ratio. This step reduced the number of variables to 930.

4. pyFUME currently does not support categorical or qualitative variables. Hence, all non-
numeric variables from the dataset were filtered out. This step reduced the number of
variables to 665.

5. All variables measured after the admission were filtered out, because they cannot be
considered for the model. The number of variables was reduced to 657.

6. Many fields are empty or filled with ‘Not a Number’ values. It was decided to keep
only the variables whose values are ≥ 75% non-empty, which corresponds to 39
independent variables + 1 target variable. The empty fields in the remaining data were
filled with an imputation technique. The final list of 39 features is presented in
Appendix D.

Process

The experiment on the COVID-19 dataset consists of three stages. In the first stage the number
of clusters is determined. The process of determining the number of clusters for the COVID-
19 dataset is not as easy as for the artificial dataset. Scatter plots of all the input features and
the target variable are presented in Appendix E. These scatter plots do not show a distinction
between the clusters. Meaning that these scatter plots cannot support the decision on how many
clusters should be identified in the data. Therefore, to determine the number of clusters, the
performance of the feature selection methods with different number of clusters are evaluated.

37

The decision on the number of clusters is supported by the consideration of model performance
and model interpretability.

The second stage of the experiment is parameter tuning. All feature selection methods require
the user to define one or more parameters. In this stage the parameters with the best
performance are selected. Depending on the sort of feature selection method, the performance
of the model is evaluated based on the MAE or on the convergence.

The third and final stage of the experiment consists of the final evaluation of the feature
selection methods. The feature selection methods are compared with each other based on model
performance and model interpretability. The results of the feature selection methods are not
constant due to randomness. Therefore, each feature selection method is performed 50 times,
to be able to make a fair comparison between them.

38

4 Results

4.1 Results of experiment on artificial dataset

Seven feature selection methods were tested on the artificial dataset. For the filter methods (MI,
F-score, and Fisher) the number of features to be selected is set to 2, since it is known that there
are only two relevant features in the dataset. The results of the feature selection methods are
presented in Table 4.1. The GA and all the filter methods succeeded in selecting the two
relevant features from the dataset. All multi-objective feature selection methods (NSGA-II,
NSGA-III, and SPEA2) achieve the same Pareto front of solutions. These Pareto fronts all
include the solution that was expected, namely 𝑥𝑥1 and 𝑥𝑥2. It is concluded that all the seven
feature selection methods performed sufficiently to be considered for the COVID-19 dataset.

Table 4.1: Results of feature selection on artificial dataset

Feature selection method Selected features
MI 𝑥𝑥1,𝑥𝑥2

F-score 𝑥𝑥1,𝑥𝑥2
Fisher score 𝑥𝑥1,𝑥𝑥2

GA 𝑥𝑥1,𝑥𝑥2 with MAE 1.96
NSGA-II 𝑥𝑥1,𝑥𝑥2 with MAE 1.96

𝑥𝑥1 with MAE 7.66
NSGA-III 𝑥𝑥1,𝑥𝑥2 with MAE 1.96

𝑥𝑥1 with MAE 7.66
SPEA2 𝑥𝑥1,𝑥𝑥2 with MAE 1.96

𝑥𝑥1 with MAE 7.66

4.2 Number of clusters for COVID data

In this case, finding the best number of clusters is a subjective task. This is done by balancing
model interpretability and performance. The number of clusters is determined by evaluating
the results of fuzzy models and feature selection methods on multiple numbers of clusters. The
number of clusters that are tested are 2, 3, 4, and 5. The tested models are presented in Table
4.2.

When there is no feature selection applied, the higher number of clusters, the worse the model
performs. This is visible in Figure 4.1. The explanation for this could be that the model already
struggles with the high dimensional data, and adding extra clusters only complicates the model.
Also, identifying too many clusters in the data could lead to overfitting. In this case, adding
complexity to the model (i.e. increasing the number of cluster) has a negative impact on the
model’s performance.

39

Table 4.2: Tested models for determination of number of clusters

FS method Parameters Number
of

repetitions

Presented in

No feature
selection

-
50

Figure 4.1

NSGA-II (𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =
(100, 100, 0.8, 0.1, 1

39
) 1

Appendix F
Table 4.3

NSGA-III (𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =
(100, 100, 0.8, 0.1, 1

39
) 1

Figure 4.4
Table 4.3

SPEA2 (𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =
(100, 100, 0.8, 0.1, 1

39
) 1

Appendix F
Table 4.3

GA (𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =
(100, 100, 0.8, 0.1, 1

39
) 1

Table 4.4

MI 𝑘𝑘 = [1,2,3, … ,39] 30 Figure 4.2
F-score 𝑘𝑘 = [1,2,3, … ,39] 30 Figure 4.3
Fisher
score

𝑘𝑘 = [1,2,3, … ,39]
30

Appendix F

Figure 4.1: Model performance without feature selection

40

When the feature selection methods MI or F-score are applied, a higher number of clusters
leads to better model performance when the number of features is below approximately 15.
This is visible in Figure 4.2 and Figure 4.3. This means, when the data dimensionality is
reduced to 15 features or less, the model responds well to a higher number of clusters in terms
of performance. A similar observation is made for the other feature selection methods (NSGA-
II, NSGA-III, SPEA2, and GA). For these feature selection methods is observed that the higher
number of clusters leads to better performance. The results of the NSGA-III clearly show an
performance gain for every cluster added to the model (Figure 4.4). The four Pareto fronts of
the NSGA-III (and NSGA-II and SPEA2) are compared by evaluating the hypervolume. The
greater the hypervolume the more ideal the pareto front. The hypervolumes of the Pareto fronts
of all three multi-objective feature selection methods are presented in Table 4.3. The results of
the GA lead to the same conclusion: a higher number of clusters results in a higher
performance. The results of the GA are presented in Table 4.4. The takeaway from this is the
optimal number of cluster is 5 for all seven feature selection methods, when the objective is to
find the highest performance model. The graphic results of the feature selection methods that
are not presented in this section (Fisher score, NSGA-II and SPEA2) are given in Appendix F.

However, the interpretability of the model should not be neglected by choosing for the best
performing model. The number of clusters is equal to the number of rules in the fuzzy model.
And the number of rules has an impact on model interpretability, where less rules lead to higher
interpretability.

Adding one cluster to the model results in a performance gain of roughly 1% or 2%. Meaning,
there is only a small performance gain for every cluster added to the model. Keeping in mind
that minimizing the number of clusters will help with model interpretability, the number of
clusters is for this research and this dataset is set to 3.

Figure 4.2: MI results for 2 to 5 clusters

41

Figure 4.3: F-score results for 2 to 5 clusters

Figure 4.4: NSGA-III results for 2 to 5 clusters

Table 4.3: Hypervolumes with reference point (40, 150)

Number of clusters NSGA-II NSGA-III SPEA2
2 3455.05 3458.66 3478.53
3 3527.43 3496.33 3495.44
4 3539.93 3545.53 3525.24
5 3614.81 3610.98 3577.80

42

Table 4.4: GA results for 2 to 5 clusters

Number of clusters Nr of features MAE
2 12 60.50
3 7 59.67
4 7 58.80
5 8 56.96

4.3 Parameter tuning

The parameters of the feature selection methods are important to find the optimal solution or
optimal Pareto front of solutions. For this section the feature selection methods are divided into
two categories, the filter methods and the wrapper methods.

4.3.1 Parameters for filter methods

The filter feature selection methods are MI, F-score, and Fisher score. The parameter for these
methods is the number of features to select (𝑘𝑘). To find the optimal value for 𝑘𝑘, each filter
method is tested on 𝑘𝑘 = [1,2,3, … ,39]. For each value of 𝑘𝑘, the feature selection method is
performed 50 times. The performance of the model for each value of 𝑘𝑘 is the average MAE of
the 50 repetitions. The value of 𝑘𝑘 with the smallest average MAE is considered the optimal
number of features. The optimal number of features is used for the value for 𝑘𝑘. The results of
this experiment are presented in Figure 4.5, and the corresponding optimal values for 𝑘𝑘 are
presented in Table 4.5.

Figure 4.5: Results of filter methods to find optimal value for k with 50 repetitions

43

Table 4.5: Optimal number of features for filter methods

FS method Optimal number of features (k)
Fisher 8

MI 4
F-score 3

4.3.2 Parameters for wrapper methods

The wrapper feature selection methods are GA, NSGA-II, NSGA-III, and SPEA2. The
parameters for these algorithms are ‘pop’, ‘gen’, ‘XCPB’, ‘MUTPB’, and ‘mutation rate’.
These parameters are explained in more detail in section 3.2.4. The initial parameters for all
four feature selection methods are set to (𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑛𝑛, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =
(100, 100, 0.8, 0.1, 1

39
). The population size and number of generations are both kept constant

at 100. Also the mutation rate is kept constant at 1
39

. The only parameters that are experimented
with in this research are the CXPB and MUTPB. For both values is tested is how the parameters
influence the convergence of the algorithms. The parameter combinations for each wrapper
feature selection method is presented in Table 4.6.

Table 4.6: Tested models for parameter tuning, remaining parameters are (pop, gen,
mutation rate) = (100, 100, 1/39)

Model
number

FS
method

CXPB MUTPB Model
number

FS
method

CXPB MUTPB

1 GA 0.9 0.1 9 NSGA-III 0.9 0.1
2 GA 0.9 0.2 10 NSGA-III 0.9 0.2
3 GA 0.8 0.2 11 NSGA-III 0.8 0.2
4 GA 0.8 0.1 12 NSGA-III 0.8 0.1
5 NSGA-II 0.9 0.1 13 SPEA2 0.9 0.1
6 NSGA-II 0.9 0.2 14 SPEA2 0.9 0.2
7 NSGA-II 0.8 0.2 15 SPEA2 0.8 0.2
8 NSGA-II 0.8 0.1 16 SPEA2 0.8 0.1

The first feature selection algorithm that is evaluated is the GA. The GA only optimizes a single
objective: the MAE. The convergence graph of the four models with different parameter
settings are presented in Figure 4.6. The MAE that is displayed in the graph is the minimum of
all values for MAE in the population per generation. All four models succeed to converge very
fast, therefore, all four models would be sufficient. Each model is only performed once,
therefore, due to randomness it is difficult to draw strong conclusions about the ‘best’
parameters. However, the models with colors dark blue and red seem to have a slightly better
convergence than the other models. The red model seems to converge even better than the dark

44

blue model, this appears especially after forty generations. Therefore, the settings of the red
model are chosen for the GA, which are 0.9 for CXPB and 0.1 for MUTPB.

Figure 4.6: Convergence graph of GA

The next feature selection algorithms that are evaluated are the multi-objective algorithms
(NSGA-II, NSGA-III, and SPEA2). The NSGA-II converges very fast with all four models on
both objectives, this is visible in Figure 4.7 and Figure 4.8. The NSGA-III and SPEA2 have
similar results, these results are presented in Appendix G. The convergence graphs of each
model separately are presented in Appendix H. Each model is only tested once, therefore, due
to randomness the results could be slightly different if the models are tested again. However,
the model with parameters 0.9 for CXPB and 0.1 for MUTPB seems to have the best
performance in terms of convergence. Therefore, these parameters are chosen for all multi-
objective algorithms.

In addition, all wrapper methods converge within approximately 70 generations or less.
Therefore, to save on computational time, the number of generations is reduced from 100 to
80. Meaning that all wrapper methods have the following parameters:

(𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (100, 80, 0.9, 0.1,
1

39)

45

Figure 4.7: Convergence graph of NSGA-II based on MAE

Figure 4.8: Convergence graph of NSGA-II based on number of features

4.4 Comparing feature selection methods

The seven feature selection methods are tested on the COVID-19 dataset with 3 clusters and
the parameters described in section 4.3.1 and section 4.3.2.

46

4.4.1 Filter methods

First, the filter feature selection methods are tested (Fisher score, MI, and F-score). These
feature selection methods were performed 50 times. The obtained results from the 50
repetitions consist of the average MAE, the standard deviation, and the minimum MAE.
Furthermore, the selected features are constant throughout the repetitions. The results of the
filter methods are presented in Table 4.7.

Table 4.7: Results of filter feature selection methods of 50 repetitions

FS method Average
MAE (st.dev.)

Min
MAE

Number
of

features

Selected features

Fisher score 64.75 (0.53) 63.57 8 'pO2_FiO2_ratio', 'pCO2',
'Potassium_value',

'ALT_GPT__value',
'Fibrinogen_value',

'Lymphocytes_count_value',
'Platelets_value',

'Neutrophil_count_value'
MI 62.99 (0.38) 62.27 4 'pO2', 'pCO2', 'pO2_FiO2_ratio',

'Lactate_standardized_value'
F-score 63.08 (0.37) 62.03 3 'Albumin_value',

'AST_GOT_value',
'pO2_FiO2_ratio'

The distributions of the MAE of the 50 repetitions of the Fisher score method, MI method, and
F-score method are presented in Figure 4.9, Figure 4.10, and Figure 4.11 respectively. In all
three histograms there appears a ‘bell curve’. Therefore, the assumption can be made that the
data follows a normal distribution, which is one of the conditions for performing a t-test. In
Figure 4.12 the boxplot of the MAE of the 50 repetitions of all three filter methods presented.
In this boxplot is observed that the performance of the Fisher method is different from the
performance of the MI and F-score methods. In addition, it is observed that the performance of
the MI method and F-score method is almost similar. Therefore, a t-test is beneficial to
determine whether there is a significant difference between the MI and F-score methods
regarding their performance. First, an F-test is performed to determine whether the variances
of the samples are equal, which is an assumption of the t-test. The outcomes of the F-test (F =
0.96, p = 0.56) mean that there is no significant difference between the variances of the MAE’s
of the MI method and the F-score method. The outcomes of the t-test (t = 1.22, p =0 .23) mean
that there is no significant difference between the means of the MAE’s of the MI method and
the F-score method.

47

Figure 4.9: MAE of Fisher score method with 50 repetitions

Figure 4.10: MAE of MI method with 50 repetitions

Figure 4.11: MAE of F-score method with 50 repetitions

48

Figure 4.12: MAE boxplot of filter methods

4.4.2 Wrapper methods

GA

The first wrapper method that is tested is the GA. The GA is performed 50 times. Since the GA
only minimizes the MAE, the solution with the smallest MAE is selected for evaluation. The
results of the GA are presented in Figure 4.13. Form this figure is observed that the GA has
high variation in the results when it comes to the number of features selected. Single objective
optimization is the cause of the high variation in the number of features, because this value is
not optimized. To support this observation, the coefficient of variation has been calculated,
which is the ratio of the standard deviation and the mean. The coefficient of variation of the
number of features and the MAE are 0.219 and 0.005 respectively.

49

Figure 4.13: Results of GA method with 50 repetitions

ICPSO

The results of the ICPSO were obtained by Fuchs et al. (2021, under review). This feature
selection method selected six features and achieved a MAE of 63.15. This feature selection
method was not performed 50 times, therefore, it is not a fair comparison with the other
feature selection methods tested in this research.

NSGA-II, NSGA-III, and SPEA2

Then the multi-objective feature selection methods are tested (NSGA-II, NSGA-III, and
SPEA2). These methods are all performed 50 times. To compare the multi-objective feature
selection methods, the hypervolume is evaluated. The average hypervolume, standard
deviation, and maximal hypervolume are presented in Table 4.8. Boxplots of the hypervolumes
of all three algorithms with 50 repetitions are presented in Figure 4.14. There is only a small
difference between the hypervolumes of the algorithms. Therefore, based on the difference
between the hypervolumes, it cannot be concluded which method performs better. Hence, the
t-test is used to determine whether there is a significant difference between the performance of
the multi-objective feature selection methods.

The distributions of the hypervolumes of the 50 repetitions of the NSGA-II, NSGA-III, and
SPEA2 are presented in Figure 4.15, Figure 4.16, and Figure 4.17 respectively. In all three
histograms there appears a ‘bell curve’. Therefore, the assumption can be made that the data
follows a normal distribution. To test whether the variances of the samples are equal, the F-test
is used. After the F-test, the t-test is performed. The results of the F-tests and t-tests are
presented in Table 4.9. The outcomes of the F-test for NSGA-II and NSGA-III have a p-
value<0.05, this means there is a significant difference between the variances of the samples.
Therefore, the outcomes of this t-test are not valid, considering that equal variances is a
condition for performing a t-test. The outcomes of the F-test for SPEA2 and NSGA-II show

50

there is no significant difference between the variances. Also, the outcomes of the F-test for
SPEA2 and NSGA-III show there is no significant difference between the variances. Therefore
the t-test can be performed. The outcomes of the t-test for SPEA2 and NSGA-II show that there
is no significant difference between the means of the hypervolumes. Also, the outcomes of the
t-test for SPEA2 and NSGA-III show that there is no significant difference between the means
of the hypervolumes. This means there is not significant difference between the performance
of the SPEA2 and NSGA-II, and the performance of the SPEA2 and NSGA-III.

Figure 4.14: Hypervolume boxplot of multi-objective feature selection methods, reference
point = (40, 150)

Figure 4.15: Hypervolume of NSGA-II method with 50 repetitions

51

Figure 4.16: Hypervolume of NSGA-III method with 50 repetitions

Figure 4.17: Hypervolume of SPEA2 method with 50 repetitions

Table 4.8: Hypervolume of multi-objective methods of 50 repetitions

FS method Average hypervolume (st.dev.) Max hypervolume
NSGA-II 3510.37 (11.49) 3534.82
NSGA-III 3508.18 (15.86) 3534.91

SPEA2 3508.25 (15.6) 3533.58

52

Table 4.9: Results F-tests and t-tests for hypervolume comparison

FS methods F-test t-test
F p-value t p-value

NSGA-II and NSGA-III 1.90 0.01 -0.79* 0.43*
NSGA-II and SPEA2 0.54 0.98 0.77 0.44
SPEA2 and NSGA-III 1.03 0.45 -0.02 0.98

 *) invalid

For each multi-objective method, the Pareto front with the greatest hypervolume is selected
from the 50 repetitions. The resulting Pareto fronts from the selected algorithms are shown in
Figure 4.18. Many datapoints overlap in the graph, therefore, the same results are shown in
Table 4.10. The Pareto fronts of the NSGA-II and NSGA-III consist of eight solutions, and the
Pareto front of the SPEA2 consists of ten solutions.

To be able to compare the Pareto fronts with the single objective solutions, one solution is
selected from the Pareto front. This solution is the knee-point in the Pareto front, the knee-
points are presented in Figure 4.19. The results of the knee-point solutions of the multi-
objective methods and the results of the GA and ICPSO are presented in Table 4.11.

Figure 4.18: Pareto fronts of multi-objective methods

53

Table 4.10: Results of Pareto fronts with greatest hypervolume

FS method Nr of features MAE
NSGA-II (10, 7, 6, 5, 4, 3, 2, 1) (58.99, 59.51, 59.91, 60.33, 60.46,

60.99, 62.24, 62.96)
NSGA-III (10, 8, 7, 6, 4, 3, 2, 1) (58.92, 59.62, 60.13, 60.48, 60.91,

60.97, 62.19, 62.77)
SPEA2 (13, 12, 11, 9, 6, 5, 4, 3, 2, 1) (58.94, 59.20, 59.43, 59.57, 59.98,

60.43, 60.70, 61.14, 62.11, 62.92)

Figure 4.19: Pareto fronts of multi-objective methods with knee points

54

Table 4.11: Results of wrapper methods

FS method MAE Number
of

features

Selected features

GA 59.06 11 'Height',
'Diastolic_blood_pressure_on_admission',

'Urea_value', 'Serum_creatinine_value',
'Sodium_value', 'Red_blood_cell_count_value',
'Haemoglobin_value', 'Platelets_value', 'pO2',

'pO2_FiO2_ratio', 'BMI'
NSGA-II 60.46 4 'Platelets_value', 'pO2', 'pO2_FiO2_ratio', 'BMI'
NSGA-III 60.97 3 'Platelets_value', 'pO2', 'pO2_FiO2_ratio'

SPEA2 59.98 6 'Height', 'AST_GOT_value',
'Red_blood_cell_count_value', 'Platelets_value',

'pO2', 'pO2_FiO2_ratio'

4.4.3 All feature selection methods

The results of all tested feature selection methods are presented in Figure 4.20 and Table 4.12.
In terms of best performing feature selection methods on two objectives (minimizing MAE and
minimizing the number of features), there are four feature selection methods that dominate the
other feature selection methods. The dominating feature selection methods are the NSGA-II,
NSGA-III, SPEA2, and GA. These methods are considered dominant because they perform
better than the other methods on both objectives, as shown in Figure 4.20.

In terms of feature selection to increase model interpretability, the smaller number of features
selected the better. The NSGA-III and the F-score methods selected the smallest number of
features, namely three features. The NSGA-II and MI methods selected four features. And the
remaining feature selection methods selected six or more features. However, technically the
three multi-objective methods (NSGA-II, NSGA-III, and SPEA2) selected the smallest number
of features, since the Pareto fronts contain solutions with only one or two selected features as
shown in Figure 4.18 in section 4.4.2.

55

Figure 4.20: Results of all feature selection methods

The feature 'pO2_FiO2_ratio' is selected by every feature selection method. This is the
PaO2/FiO2 value that is registered of the patient at the moment of hospitalization. The target
variable of the dataset is the worst PaO2/FiO2 value during the hospitalization. Considering
this, the PaO2/FiO2 value at admission has an influence on the worst PaO2/FiO2 value.

Other features that were selected frequently are 'Platelets_value' (selected five times), 'pO2'
(selected five times), 'Red_blood_cell_count_value' (selected three times), and 'BMI' (selected
three times). The other selected features were only selected by one or two feature selection
methods.

56

Table 4.12: Selected features by all seven feature selection methods

FS method MAE Number
of

features

Selected features

Fisher score 63.57 8 'pO2_FiO2_ratio', 'pCO2', 'Potassium_value',
'ALT_GPT__value', 'Fibrinogen_value',

'Lymphocytes_count_value', 'Platelets_value',
'Neutrophil_count_value'

MI 62.27 4 'pO2', 'pCO2', 'pO2_FiO2_ratio',
'Lactate_standardized_value'

F-score 62.03 3 'Albumin_value', 'AST_GOT_value',
'pO2_FiO2_ratio'

GA 59.06 11 'Height',
'Diastolic_blood_pressure_on_admission',

'Urea_value', 'Serum_creatinine_value',
'Sodium_value', 'Red_blood_cell_count_value',
'Haemoglobin_value', 'Platelets_value', 'pO2',

'pO2_FiO2_ratio', 'BMI'
NSGA-II 60.46 4 'Platelets_value', 'pO2', 'pO2_FiO2_ratio', 'BMI'
NSGA-III 60.97 3 'Platelets_value', 'pO2', 'pO2_FiO2_ratio'

SPEA2 59.98 6 'Height', 'AST_GOT_value',
'Red_blood_cell_count_value', 'Platelets_value',

'pO2', 'pO2_FiO2_ratio'
ICPSO 63.15 6 ‘Weight’,

‘Systolic_blood_pressure_on_admission’,
‘Red_blood_cell_count_value’,

‘White_blood_cell_count_value’,
'pO2_FiO2_ratio', 'BMI'

57

5 Discussion

5.1 Conclusion

The objective of this research was to improve interpretability of fuzzy models that use high
dimensional data and automatically generated rules. This was done by implementing the most
appropriate feature selection method with pyFUME such that the complexity of the model is
reduced and the performance of the model is maintained in order to increase user’s
understandability of the model’s rationale. The approach for achieving this objective was to
find the most appropriate feature selection method to reduce complexity and improve
interpretability of a fuzzy model. Seven feature selection methods were tested on an artificial
dataset and a more complex dataset, namely the COVID-19 dataset, to find the most
appropriate method. These seven methods are: MI, F-score, Fisher score, GA, NSGA-II,
NSGA-III, and SPEA2. The methods are evaluated on the amount of features selected, and on
how the model performs with the selected features.

For a more simple dataset (which in this research was an artificial dataset) all tested feature
selection methods succeeded in selecting the relevant features in the dataset. Therefore, all
feature selection methods are considered appropriate for a simple dataset. However, for a more
complex dataset (which in this research was the COVID-19 dataset) the performance varied
for the tested feature selection methods.

The least performing feature selection methods are the Fisher score and the GA. First, the
Fisher score method ranked the features such that the minimal number of features to select
from the COVID-19 dataset is eight. This means the Fisher score ranked seven other features
to be more relevant than the true most relevant feature. Secondly, the GA was programmed to
minimize a single objective: the MAE of the model. The result of this is that the GA achieved
the lowest MAE of all seven feature selection methods. However, the number of selected
features was eleven. Considering the high number of selected features, the GA obtained results
that do not support the goal of this research.

The next feature selection methods that are discussed performed better than the GA and the
Fisher score method. The MI and F-score feature selection methods are both filter methods
which rank the features on relevance. Both methods managed to rank the features of the
COVID-19 dataset such that the most relevant features were selected. The ranking process of
the features is very consistent. Meaning that the feature selection methods will obtain the same
ranking if the ranking process is repeated. There are two advantages of using the MI and F-
score feature selection methods. The first advantage is that the computational time to return the
ranking of the features is relatively short. The second advantage is that the implementation is
relatively simple, since is only consists of calculating the scores and then ranking the scores
and the corresponding features. The disadvantages of the MI and F-score feature selection
methods are the following. The methods only return a ranking of the features and do not provide
an optimal number of features to select. Also, these methods only consider the relation between
the features and the target variable for each feature individually. This means that possible
relations between features are not considered.

58

The performance of the MI method and F-score method on the COVID-19 dataset is almost
similar. There was no significant difference between the achieved MAE of the methods in terms
of model performance with the selected features. And in terms of number of features selected,
the F-score method selected one less feature than the MI method. However, this does not mean
that the F-score method is better than the MI method. Since the MI method has smaller values
for MAE in most cases if there are less than 15 features selected, which is visible in Figure 4.5
in section 4.3.1. Therefore, the MI method is considered more successful in ranking the features
based on relevance than the F-score method for the COVID-19 dataset.

The best performing feature selection methods in this research are the three multi-objective
wrapper methods: NSGA-II, NSGA-III, and SPEA2. In contrast to the filter methods, these
methods do not rely on a calculation the capture the relation between the features and the target
variable. Instead, the multi-objective wrapper methods test many different combinations of
features and evolve to a set of optimal solutions. These methods return a Pareto front of optimal
solutions. Each solution in the Pareto front represents a set of selected features. To decide
which solution should be implemented, one can use the knee method, or decide manually which
solution will fit the situation best by for example assigning weights to the objectives. Since the
multi-objective wrapper methods return multiple solutions, there is a great chance of returning
at least one solution that supports the goal of this research. Therefore, making a comparison
between the returned solutions of the filter methods and the wrapper methods is not really fair.

The advantages and disadvantages of the multi-objective wrapper methods are the following.
The first advantage is that the methods return a Pareto front of solutions, which gives the user
more freedom of choosing a solution that is suitable for the situation. At the same time, this
could also be considered a disadvantage, because choosing one solution form a Pareto front is
difficult. The second advantage is that the methods are minimizing the number of selected
features, whereas the filter methods are only ranking the features and do not provide an optimal
number of selected features. The third advantage is that the methods do not rely on certain
relations between the features and the target variable, since the wrapper methods in this
research all evaluate many different combinations of features to find the optimal set of features.
Therefore, the multi-objective wrapper methods perform well on the complex dataset. Finally,
another disadvantage of these methods is that they tend to use long computational times to
obtain the optimal solutions.

According to the statistical tests that were performed, there is no significant difference between
the hypervolumes of the Pareto fronts. Therefore, the performance of the NSGA-II, NSGA-III,
and SPEA2 on the COVID-19 dataset is almost similar.

The recommended feature selection method to use in combination with pyFUME for the
COVID-19 dataset is the NSGA-II, NSGA-III, or SPEA2. Since there was no significant
difference between the performances of these methods, there is no recommendation for
specifically one of them. It is recommended to use the knee-method to choose a single solution
from the Pareto front. However, it is also possible to select a solution manually. For example,
if the user for some reason has the goal to only select one feature from the dataset, then the
solution which represents one feature can be chosen. The disadvantage of these methods is the
long computational time, therefore, the second best method that is recommended is the MI
method. This method can be used in situations where a long computational time is undesirable.

59

The feature selection methods aimed to select the most relevant features from the COVID-19
dataset. The three features that were selected by all multi-objective wrapper methods are
'Platelets_value', 'pO2', and 'pO2_FiO2_ratio'. Considering that multi-objective wrapper
methods performed best, it is recommended to keep at least these three features in the dataset
to build the fuzzy model. Building a fuzzy model with only these three features causes a large
reduction in model complexity, comparing to a fuzzy model with all 39 features. This reduction
in model complexity contributes to better interpretability of the model.

5.2 Suggestions for future research

In this research, the main goal was to use feature selection to reduce the complexity of the
fuzzy model to increase the model interpretability. The model interpretability was measured
by the number of features selected, which impacts the length of the fuzzy rules. The assumption
was made that the shorter the rules, the more interpretable the model. Another assumption that
was made is, the fewer rules, the more interpretable the model. The number of rules is equal to
the number of clusters, therefore, this was taken into consideration for choosing the number of
clusters for pyFUME. Future research could contribute to discovering new indices for
measuring model interpretability.

Minimizing the number of features was used to improve model interpretability in this research.
An additional objective could be to minimize the number of clusters simultaneously. This could
be implemented with the multi-objective methods. These methods would then optimize three
objectives: minimize number of features, minimize number of clusters, and minimize MAE.
This could also be reduced to two objectives if the number of features and number of clusters
are combined into one objective. The new objective could be to minimize the total rule length,
which is the total number of premises in all rules. This is calculated by the number of features
multiplied by the number of clusters.

Although there appeared some differences in the performance of the tested feature selection
methods in this research, there was not one feature selection method that outperformed all the
other methods. Testing the feature selection methods on more datasets could possibly reveal a
larger gap between the performance of the methods. Which would make it easier to make
recommendations for the most appropriate feature selection method.

In this research, all feature selection methods were implemented with the support of pyFUME.
The next step would be to implement them within pyFUME. The recommendation is to
implement one filter method and one wrapper method within pyFUME. In this way, the user
can choose which feature selection method would suit the situation best. For example, if the
user does not have time for long computations, then the filter method would be the best choice.
Even though the filter methods in this research were not the best performing feature selection
methods, it is important to offer this option to the user. Because in terms of model
interpretability and performance, applying a filter feature selection method is still better than
using no feature selection at all. On the other hand, if the user has plenty of time for
computations and expects the best features to be selected, then the multi-objective wrapper
methods would be the best choice.

60

References

Abonyi, J., Roubos, J. A., Oosterom, M., & Szeifert, F. (2001). Compact TS-fuzzy models
through clustering and OLS plus FIS model reduction. 10th IEEE International Conference on
Fuzzy Systems. (Cat. No.01CH37297), 3, 1420–1423 vol.2.
https://doi.org/10.1109/FUZZ.2001.1008925

Acute Respiratory Distress Syndrome (ARDS). (n.d.). Retrieved July 1, 2021, from
https://www.lung.org/lung-health-diseases/lung-disease-lookup/ards

Alonso, J. M., Magdalena, L., & González-Rodríguez, G. (2009). Looking for a good fuzzy
system interpretability index: An experimental approach. International Journal of Approximate
Reasoning, 51(1), 115–134. https://doi.org/10.1016/j.ijar.2009.09.004

Alonso, J. M., Magdalena, L., & Guillaume, S. (2008). HILK: A new methodology for
designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism.
International Journal of Intelligent Systems, 23(7), 761–794. https://doi.org/10.1002/int.20288

Amaral, J. L. M., Sancho, A. G., Faria, A. C. D., Lopes, A. J., & Melo, P. L. (2020). Differential
diagnosis of asthma and restrictive respiratory diseases by combining forced oscillation
measurements, machine learning and neuro-fuzzy classifiers. Medical & Biological
Engineering & Computing, 58(10), 2455–2473. https://doi.org/10.1007/s11517-020-02240-7

Anaraki, J. R., & Eftekhari, M. (2013). Rough set based feature selection: A Review. The 5th
Conference on Information and Knowledge Technology, 301–306.
https://doi.org/10.1109/IKT.2013.6620083

Antonelli, M., Ducange, P., Marcelloni, F., & Segatori, A. (2016). On the influence of feature
selection in fuzzy rule-based regression model generation. Information Sciences, 329, 649–
669. https://doi.org/10.1016/j.ins.2015.09.045

Bonett, D. G., & Wright, T. A. (2000). Sample size requirements for estimating pearson,
kendall and spearman correlations. Psychometrika, 65(1), 23–28.
https://doi.org/10.1007/BF02294183

Cartesius | userinfo.surfsara.nl. (n.d.). Retrieved June 29, 2021, from
https://userinfo.surfsara.nl/systems/cartesius

Chen, P., Wilbik, A., Loon, S. van, Boer, A.-K., & Kaymak, U. (2018). Finding the optimal
number of features based on mutual information. Advances in Fuzzy Logic and Technology
2017 - Proceedings of: EUSFLAT-2017 – The 10th Conference of the European Society for
Fuzzy Logic and Technology, IWIFSGN’2017 – The 16th International Workshop on
Intuitionistic Fuzzy Sets and Generalized Nets, 477–486. https://doi.org/10.1007/978-3-319-
66830-7_43

Das, I. (1999). On characterizing the “knee” of the Pareto curve based on normal-boundary
intersection. Structural Optimization, 18(2–3), 107–115.

Deb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box

61

Constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601.
https://doi.org/10.1109/TEVC.2013.2281535

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
https://doi.org/10.1109/4235.996017

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational
Intelligence Magazine, 1(4), 28–39. https://doi.org/10.1109/MCI.2006.329691

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Ant System: An Autocatalytic Optimizing
Process. 22.

Elssied, N. O. F., Ibrahim, O., & Osman, A. H. (2014). A novel feature selection based on one-
way anova f-test for e-mail spam classification. Research Journal of Applied Sciences,
Engineering and Technology, 7(3), 625–638.

Fisher, R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A. G., Parizeau, M., & Gagné, C. (2012).
DEAP: Evolutionary algorithms made easy. The Journal of Machine Learning Research, 13(1),
2171–2175.

Fuchs, C., Nobile, M. S., Torlasco, C., Papetti, D. M., Cascella, A., Menè, R., Besozzi, D.,
Parati, G., & Kaymak, U. (2021). Learning Interpretable AI Systems for Clinical Decision
Support. IEEE Computational Intelligence Magazine.

Fuchs, C., Spolaor, S., Nobile, M. S., & Kaymak, U. (2020). pyFUME: A Python Package for
Fuzzy Model Estimation. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), 1–8. https://doi.org/10.1109/FUZZ48607.2020.9177565

Gayathri, B. M., & Sumathi, C. P. (2015). Mamdani fuzzy inference system for breast cancer
risk detection. 2015 IEEE International Conference on Computational Intelligence and
Computing Research (ICCIC), 1–6. https://doi.org/10.1109/ICCIC.2015.7435670

Getting started with Cartesius | userinfo.surfsara.nl. (n.d.). Retrieved June 29, 2021, from
https://userinfo.surfsara.nl/systems/cartesius/getting-started

Ghazavi, S. N., & Liao, T. W. (2008). Medical data mining by fuzzy modeling with selected
features. Artificial Intelligence in Medicine, 43(3), 195–206.
https://doi.org/10.1016/j.artmed.2008.04.004

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems
Research. MIS Quarterly, 28(1), 75–105. https://doi.org/10.2307/25148625

Holland, J. H., Holland, P. of P. and of E. E. and C. S. J. H., & Holland, S. L. in H. R. M.
(1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. MIT Press.

Hong, T.-P., & Lee, C.-Y. (1996). Induction of fuzzy rules and membership functions from
training examples. Fuzzy Sets and Systems, 84(1), 33–47. https://doi.org/10.1016/0165-
0114(95)00305-3

62

Hunt, J. (2019). Multiprocessing. In J. Hunt (Ed.), Advanced Guide to Python 3 Programming
(pp. 363–376). Springer International Publishing. https://doi.org/10.1007/978-3-030-25943-
3_31

Ishibuchi, H., & Nojima, Y. (2007). Analysis of interpretability-accuracy tradeoff of fuzzy
systems by multiobjective fuzzy genetics-based machine learning. International Journal of
Approximate Reasoning, 44(1), 4–31. https://doi.org/10.1016/j.ijar.2006.01.004

Jiménez, F., Gomez-Skarmeta, A. F., Sanchez, G., & Deb, K. (2002). An evolutionary
algorithm for constrained multi-objective optimization. Proceedings of the 2002 Congress on
Evolutionary Computation. CEC’02 (Cat. No.02TH8600), 2, 1133–1138 vol.2.
https://doi.org/10.1109/CEC.2002.1004402

Jiménez, F., Martínez, C., Marzano, E., Palma, J. T., Sánchez, G., & Sciavicco, G. (2019).
Multiobjective Evolutionary Feature Selection for Fuzzy Classification. IEEE Transactions on
Fuzzy Systems, 27(5), 1085–1099. https://doi.org/10.1109/TFUZZ.2019.2892363

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 -
International Conference on Neural Networks, 4, 1942–1948 vol.4.
https://doi.org/10.1109/ICNN.1995.488968

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm
algorithm. Computational Cybernetics and Simulation 1997 IEEE International Conference on
Systems, Man, and Cybernetics, 5, 4104–4108 vol.5.
https://doi.org/10.1109/ICSMC.1997.637339

Kerr-Wilson, J., & Pedrycz, W. (2020). Generating a hierarchical fuzzy rule-based model.
Fuzzy Sets and Systems, 381, 124–139. https://doi.org/10.1016/j.fss.2019.07.013

Kim, T. K., & Park, J. H. (2019). More about the basic assumptions of t-test: Normality and
sample size. Korean Journal of Anesthesiology, 72(4), 331–335.
https://doi.org/10.4097/kja.d.18.00292

Kira, K., & Rendell, L. A. (1992). A Practical Approach to Feature Selection. In D. Sleeman
& P. Edwards (Eds.), Machine Learning Proceedings 1992 (pp. 249–256). Morgan Kaufmann.
https://doi.org/10.1016/B978-1-55860-247-2.50037-1

Kumar, V., & Minz, S. (2014). Feature Selection: A literature Review. The Smart Computing
Review, 4(3). https://doi.org/10.6029/smartcr.2014.03.007

Lal, T. N., Chapelle, O., Weston, J., & Elisseeff, A. (2006). Embedded Methods. In I. Guyon,
M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature Extraction (Vol. 207, pp. 137–165).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-35488-8_6

Lee, H.-M., Chen, C.-M., Chen, J.-M., & Jou, Y.-L. (2001). An efficient fuzzy classifier with
feature selection based on fuzzy entropy. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 31(3), 426–432. https://doi.org/10.1109/3477.931536

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature
Selection: A Data Perspective. ACM Computing Surveys, 50(6), 94:1-94:45.
https://doi.org/10.1145/3136625

63

Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(4), 417–473. https://doi.org/10.1111/j.1467-
9868.2010.00740.x

Nasir, V., Cool, J., & Sassani, F. (2019). Acoustic emission monitoring of sawing process:
Artificial intelligence approach for optimal sensory feature selection. The International
Journal of Advanced Manufacturing Technology, 102(9), 4179–4197.
https://doi.org/10.1007/s00170-019-03526-3

Nauck, D. D. (2003). Measuring interpretability in rule-based classification systems. The 12th
IEEE International Conference on Fuzzy Systems, 2003. FUZZ ’03., 1, 196–201 vol.1.
https://doi.org/10.1109/FUZZ.2003.1209361

Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., & Pasi, G. (2018). Fuzzy
Self-Tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary
Computation, 39, 70–85. https://doi.org/10.1016/j.swevo.2017.09.001

Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences,
11(5), 341–356. https://doi.org/10.1007/BF01001956

Pearson, K., & Henrici, O. M. F. E. (1896). VII. Mathematical contributions to the theory of
evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 187,
253–318. https://doi.org/10.1098/rsta.1896.0007

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.

Pulkkinen, P., & Koivisto, H. (2007). Identification of interpretable and accurate fuzzy
classifiers and function estimators with hybrid methods. Applied Soft Computing, 7(2), 520–
533. https://doi.org/10.1016/j.asoc.2006.11.001

Rajagopal, R. (1999). Introduction to Microsoft Windows NT Cluster Server: Programming
and Administration. CRC Press.

Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Rajput, D. S., Kaluri, R., & Srivastava, G.
(2020). Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis.
Evolutionary Intelligence, 13(2), 185–196. https://doi.org/10.1007/s12065-019-00327-1

Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and Empirical Analysis of ReliefF
and RReliefF. Machine Learning, 53(1), 23–69. https://doi.org/10.1023/A:1025667309714

Roubos, J. A., Setnes, M., & Abonyi, J. (2003). Learning fuzzy classification rules from labeled
data. Information Sciences, 150(1), 77–93. https://doi.org/10.1016/S0020-0255(02)00369-9

Services offered by SURF | SURF.nl. (n.d.). Retrieved June 29, 2021, from
https://www.surf.nl/en/about-surf/services-offered-by-surf

64

Shen, Q., & Jensen, R. (2004). Selecting informative features with fuzzy-rough sets and its
application for complex systems monitoring. Pattern Recognition, 37(7), 1351–1363.
https://doi.org/10.1016/j.patcog.2003.10.016

Siedlecki, W., & Sklansky, J. (1989). Constrained genetic optimization via dynamic reward-
penalty balancing and its use in pattern recognition. 141–150.
https://doi.org/10.1142/9789814343138_0006

Slurm Workload Manager—Overview. (n.d.). Retrieved June 29, 2021, from
https://slurm.schedmd.com/overview.html

Snedecor, G. W., & Cochran, W. G. (1989). Statistical Methods. Iowa State University Press,
Ames, Iowa, 1191.

Soares, E., Costa, P., Costa, B., & Leite, D. (2018). Ensemble of evolving data clouds and
fuzzy models for weather time series prediction. Applied Soft Computing, 64, 445–453.
https://doi.org/10.1016/j.asoc.2017.12.032

Spearman, F. H. (1904). The strategy of great railroads. https://trid.trb.org/view/590746

Spolaor, S., Fuchs, C., Cazzaniga, P., Kaymak, U., Besozzi, D., & Nobile, M. S. (2020).
Simpful: A User-Friendly Python Library for Fuzzy Logic. International Journal of
Computational Intelligence Systems, 13(1), 1687–1698.
https://doi.org/10.2991/ijcis.d.201012.002

Strasser, S., Goodman, R., Sheppard, J., & Butcher, S. (2016). A New Discrete Particle Swarm
Optimization Algorithm. Proceedings of the Genetic and Evolutionary Computation
Conference 2016, 53–60. https://doi.org/10.1145/2908812.2908935

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to
modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116–
132. https://doi.org/10.1109/TSMC.1985.6313399

The ARDS Definition Task Force. (2012). Acute Respiratory Distress Syndrome: The Berlin
Definition. JAMA, 307(23), 2526–2533. https://doi.org/10.1001/jama.2012.5669

Tiruneh, G. G., & Robinson Fayek, A. (2019). Feature Selection for Construction
Organizational Competencies Impacting Performance. 2019 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 1–5. https://doi.org/10.1109/FUZZ-IEEE.2019.8858820

Tsang, C.-H., Kwong, S., & Wang, H. (2007). Genetic-fuzzy rule mining approach and
evaluation of feature selection techniques for anomaly intrusion detection. Pattern
Recognition, 40(9), 2373–2391. https://doi.org/10.1016/j.patcog.2006.12.009

Vieira, S. M., Sousa, J. M. C., & Runkler, T. A. (2010). Two cooperative ant colonies for
feature selection using fuzzy models. Expert Systems with Applications, 37(4), 2714–2723.
https://doi.org/10.1016/j.eswa.2009.08.026

Vieira, S. M., Sousa, J. M. C., & Runkler, T. A. (2007). Ant Colony Optimization Applied to
Feature Selection in Fuzzy Classifiers. In P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, &
W. Pedrycz (Eds.), Foundations of Fuzzy Logic and Soft Computing (pp. 778–788). Springer.
https://doi.org/10.1007/978-3-540-72950-1_76

65

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Software
Engineering. Springer.

Yu, S., De Backer, S., & Scheunders, P. (2002). Genetic feature selection combined with
composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery. Pattern
Recognition Letters, 23(1), 183–190. https://doi.org/10.1016/S0167-8655(01)00118-0

Zadeh, L. A. (1965). Electrical Engineering at the Crossroads. IEEE Transactions on
Education, 8(2), 30–33. https://doi.org/10.1109/TE.1965.4321890

Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83–93. https://doi.org/10.1109/2.53

Zitzler, E., Brockhoff, D., & Thiele, L. (2007). The Hypervolume Indicator Revisited: On the
Design of Pareto-compliant Indicators Via Weighted Integration. In S. Obayashi, K. Deb, C.
Poloni, T. Hiroyasu, & T. Murata (Eds.), Evolutionary Multi-Criterion Optimization (pp. 862–
876). Springer. https://doi.org/10.1007/978-3-540-70928-2_64

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto
evolutionary algorithm for multi-objective optimization. Evolutionary Methods for Design
Optimization and Control With Applications to Industrial Problems, 95–100.

Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms—
A comparative case study. In A. E. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.),
Parallel Problem Solving from Nature—PPSN V (pp. 292–301). Springer.
https://doi.org/10.1007/BFb0056872

66

Appendices

A. Description of files
Datasets

File title Description
COVID_data This is the COVID-19 dataset with 39 features and one

target variable.
FSdata This is the artificial dataset with 10 features and one

target variable.

Results data

File title Description
Cluster_results_1 Results of feature selection methods with 2, 3, 4, and 5

clusters on COVID-19 data. Also the results of the filter
methods with 50 repetitions and 3 clusters on COVID-
19 data.

Final_results_1 Consists of the final results of the wrapper methods
(GA, NSGA-II, NSGA-III, and SPEA2) with 50
repetitions on COVID-19 data.

Nr clusters without fs This are the results of pyFUME without feature
selection for 2, 3, 4, and 5 clusters on COVID-19 data.

Parameter_results_1 This are the results of the wrapper methods with four
different parameter settings on the COVID-19 data.

Feature selection Python scripts

File title Description
Fisher score Implementation of the Fisher score.
GA Implementation of the genetic algorithm.
MI and F-score Implementation of the MI method and the F-score

method.
NSGA2 Implementation of the NSGA-II.
NSGA3 Implementation of the NSGA-III.
SPEA2 Implementation of the SPEA2.

Plots Python scripts

File title Description
Plots - clusters This script makes plots of the results for different

number of clusters. It also returns a table.

67

Plots - data This script returns scatter plots of the artificial dataset
and the COVID-19 dataset.

Plots - hypervolume and knee
example

This script returns the hypervolume example plot and
the knee-method example plot.

Plots - membership functions
example

This script returns the example plots for the
membership function shapes: Gaussian and trapezoidal.

Plots - parameters and
convergence of wrapper
methods

This script returns plots of the convergence of the
wrapper methods with different four different parameter
settings.

Plots - parameters for filter
methods

This script returns one plot with the performance of the
filter methods with different parameters. It also returns
the optimal number of features for every filter method.

Plots - results of filter methods This script returns the histograms of the filter methods
and a boxplot to compare the methods. It also returns
the outcomes of the statistical tests.

Plots - results of wrapper
methods and final scatter plot

This script returns multiple plots:
• A scatter plot with the results of the GA.
• A boxplot to compare NSGA-II, NSGA-III, and

SPEA2.
• Histograms of the results of NSGA-II, NSGA-

III, and SPEA2.
• The Pareto fronts of NSGA-II, NSGA-III, and

SPEA2.
• The Pareto fronts of NSGA-II, NSGA-III, and

SPEA2 with knee-point.
• The final scatter plots with the results of all

feature selection methods.
It also returns the results of the statistical tests and some
additional results that were used to present in tables.

68

B. Search terms and selection criteria for systematic literature
review

Search terms and sources

Source SpringerLink ScienceDirect IEEE Xplore
Search
query

("Feature selection"
OR "variable
selection" OR
"feature reduction"
OR "variable
reduction") NEAR
("Fuzzy regres*" OR
"Fuzzy classif*" OR
"fuzzy learn*" OR
"Fuzzy model" OR
"Fuzzy inference")

(“Feature selection”
OR “variable
selection” OR
“feature reduction”
OR “variable
reduction”) AND
(“Fuzzy regression”
OR “Fuzzy
classifier” OR
“Fuzzy learning” OR
“Fuzzy model” OR
“Fuzzy inference”)

("Abstract":"feature
selection" OR
"Abstract":"variable
selection" OR
"Abstract":"variable
reduction" OR
"Abstract":"feature
reduction") AND
("Abstract":"fuzzy
clas*" OR
"Abstract":"fuzzy
regres*" OR
"Abstract":"fuzzy
model*" OR
"Abstract":"fuzzy
learn*" OR
"Abstract":"fuzzy
inference")

Procedure Go to the
SpringerLink
website:
https://link.springer.
com/ .
Add the search query
to the search box an
press ‘search’.
Add the ‘date
published’ filter to
show documents
between 2000 and
2021.
Add the Language
filter for ‘English’.

Go to the
ScienceDirect
website:
https://www.science
direct.com/ .
Click on ‘advanced
search’ and click on
‘show all fields’.
Add the search query
in the search box for
‘Title, abstract or
author-specified
keywords’.
Fill in the ‘Year(s)’
box with 2000-2021.
Now press the
‘search’ button.

Go to the IEEE Xplore
website:
https://ieeexplore.ieee.
org/Xplore/home.jsp .
Add the search query
to the search box an
press ‘search’.
Add the filter for the
year on 2000-2021.

Results 202 142 136

https://link.springer.com/
https://link.springer.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp

69

Inclusion and exclusion criteria

• The article discusses a feature selection method.
o The focus of this review is to find existing feature selection methods.

Therefore, when the article is not discussing any type of feature selection, it is
considered irrelevant for this review.

• There must be an indication that the feature selection method is appropriate for a
fuzzy model.

o This indication could be that the feature selection method is executed on the
input data prior to the use of a fuzzy logic prediction model. Or the feature
selection method is integrated in the fuzzy model. There must be some kind of
indication that the feature selection method would be appropriate for a fuzzy
model, otherwise the article is considered irrelevant to this literature review.

• The mechanism of the feature selection method is explained.
o An explanation of the feature selection method is needed to understand how

the method works. If there is no explanation of the mechanism of the method,
the article is considered insufficient for this review.

• There is a discussion in the article about the performance, pros and/or cons of the
feature selection method.

o Information on the performance of the feature selection method is desired to
be able to compare the methods. However, comparing the feature selection
methods solely on the performance described in the articles is not an easy job,
due to the difference in datasets, prediction models, parameters, and
performance metrices. Also, the performance of the method says something
about the quality of the method. If the performance is not mentioned, or there
is bad performance, the feature selection method is not worthy of being
included in this literature review.

• The proposed feature selection method may not make the model more complex.
o The objective of the dissertation is to use feature selection to make the model

more interpretable. When the feature selection method reduces the
interpretability of the model, this method is not included in this review. An
example of this would be a feature extraction method which is creating new
features to use in the fuzzy model. When these new features do not have
meaning to the user of the model, this will reduce the model’s interpretability.

• The proposed feature selection method may not be similar to the proposed method in
another document.

o In case of similarity of prosed methods only the best document is included in
the literature review to avoid redundancy. However, if the documents
complement each other, they may both be included in the literature review.

• The article was written in English.
o English is the universal language of science. Therefore, this criteria is a must

to make this review understandable for as many people as possible.
• The article was published after 2000.

o A time window makes the search for the relevant articles more efficient.
Articles that were published more than twenty years ago have probably lost its

70

relevance, because the research field of data science and data preprocessing is
developing very quickly.

Relevance criteria

This process of evaluating the relevance is performed in two rounds. In the first round the
documents are evaluated by its title. The document will pass this round of evaluation if it
meets one of the following two criteria: 1) the title contains one or more search terms or
highly related terms, or 2) the title indicates a link to the research topic. All documents that
meet this criteria are taken to the second evaluation round. In the second round, the
documents are evaluated by its abstract. The criteria for the abstract are more subjective than
the criteria for the title. The abstract has to indicate relevance to the research topic. If it does
not seem relevant, the document is removed from the selection. If there is doubt about the
relevance of the document, in the first or second evaluation round, the document is kept in the
selection. This will reduce the risk of accidently neglecting relevant documents.

Quality criteria

Three criteria to ensure quality:

• The first criteria is the relevance of the journal or book the document was published in.
For example, when the journal is titled ‘Agriculture’ it is likely that the document does
not contain the highest quality feature selection method. However, when the journal is
titled ‘Computational Intelligence’, it is more likely the feature selection method is of
quality. The documents that were not published in a relevant journal or book are
removed from the selection for this literature review.

• The second criteria is the number of citations of a document. The number of citations
gives an indication of the quality of a document. However, a lack of citations does not
necessarily mean the document is of poor quality. It could be the result of a document
being very specific or recently published. Therefore, there is no threshold for the
minimum number of citation to be included in the selection for the literature review.
However, the number of citations is taken into account when selecting the documents
for this literature review.

• The third criteria is the scientific quality of the document. If the document is lacking
validity or reliability, then the document is removed from the selection.

71

C. Scatter plots artificial dataset

72

D. Features of COVID-19 dataset

Feature Feature name
1 Weight
2 Height
3 Respiratory_rate_on_admission_
4 Heart_rate_on_admission
5 Systolic_blood_pressure_on_admission
6 Diastolic_blood_pressure_on_admission
7 Temperature_on_admission
8 TnT_value
9 Albumin_value
10 Urea_value
11 Serum_creatinine_value
12 AST_GOT_value
13 ALT_GPT__value
14 LDH_value
15 Sodium_value
16 Potassium_value
17 Glucose_value
18 PCR_value
19 PCT_value
20 INR_value
21 Fibrinogen_value
22 D_Dimer_value
23 Red_blood_cell_count_value
24 Haemoglobin_value
25 Haematocrit_value
26 Platelets_value
27 White_blood_cell_count_value
28 Neutrophil_count_value
29 Lymphocytes_count_value
30 Ferritin_value
31 Ph
32 pO2
33 pCO2
34 pO2_FiO2_ratio
35 HCO3_
36 Lactate_standardized_value
37 PCT_1st_day
38 Age
39 BMI
Target variable worst_PF_ratio

73

E. Scatter plots COVID-19 dataset

74

75

76

77

F. Results for NSGA-II, SPEA2, and Fisher score with 2 to 5
clusters

78

G. Convergence graphs of NSGA-III and SPEA2

79

80

H. Convergence graphs per model

The convergence graphs of the feature selection algorithms NSGA-II, NSGA-III, and SPEA2
are presented below. The title of the graphs contain information about the parameters: CXPB
and MUTPB.

81

82

83

84

85

	Executive summary
	Content
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem formulation
	1.2 Research design
	1.3 Reading guide

	2 Background and related literature
	2.1 Fuzzy logic
	2.1.1 The idea of fuzzy logic
	2.1.2 Fuzzy sets
	2.1.3 Membership functions
	2.1.4 Fuzzy rules
	2.1.5 Fuzzy inference systems
	2.1.6 Simpful and pyFUME

	2.2 Model interpretability
	2.3 Feature selection
	2.3.1 Purpose of feature selection
	2.3.2 Filter, wrapper, and embedded approach
	2.3.3 Feature selection methods from literature
	2.3.4 Feature selection in pyFUME

	3 Methods
	3.1 Build fuzzy model with pyFUME
	3.1.1 Number of clusters
	3.1.2 K-fold cross validation

	3.2 Feature selection methods
	3.2.1 MI
	3.2.2 F-score
	3.2.3 Fisher score
	3.2.4 GA
	3.2.5 NSGA-II
	3.2.6 NSGA-III
	3.2.7 SPEA2
	3.2.8 PSO

	3.3 Measuring model’s performance and interpretability
	3.3.1 Performance measurement
	3.3.2 Interpretability measurement
	3.3.3 Pareto fronts

	3.4 High performance computing
	3.4.1 Computational time
	3.4.2 Multiprocessing
	3.4.3 Supercomputer: Cartesius

	3.5 Experimental setup
	3.5.1 Test on artificial dataset
	3.5.2 Test on ‘real world’ dataset (COVID-19 dataset)

	4 Results
	4.1 Results of experiment on artificial dataset
	4.2 Number of clusters for COVID data
	4.3 Parameter tuning
	4.3.1 Parameters for filter methods
	4.3.2 Parameters for wrapper methods

	4.4 Comparing feature selection methods
	4.4.1 Filter methods
	4.4.2 Wrapper methods
	4.4.3 All feature selection methods

	5 Discussion
	5.1 Conclusion
	5.2 Suggestions for future research

	References
	Appendices
	A. Description of files
	B. Search terms and selection criteria for systematic literature review
	C. Scatter plots artificial dataset
	D. Features of COVID-19 dataset
	E. Scatter plots COVID-19 dataset
	F. Results for NSGA-II, SPEA2, and Fisher score with 2 to 5 clusters
	G. Convergence graphs of NSGA-III and SPEA2
	H. Convergence graphs per model

