227 research outputs found

    Arithmetic Circuits Realized by Transferring Single Electrons

    Get PDF

    An Optimal Gate Design for the Synthesis of Ternary Logic Circuits

    Get PDF
    Department of Electrical EngineeringOver the last few decades, CMOS-based digital circuits have been steadily developed. However, because of the power density limits, device scaling may soon come to an end, and new approaches for circuit designs are required. Multi-valued logic (MVL) is one of the new approaches, which increases the radix for computation to lower the complexity of the circuit. For the MVL implementation, ternary logic circuit designs have been proposed previously, though they could not show advantages over binary logic, because of unoptimized synthesis techniques. In this thesis, we propose a methodology to design ternary gates by modeling pull-up and pull-down operations of the gates. Our proposed methodology makes it possible to synthesize ternary gates with a minimum number of transistors. From HSPICE simulation results, our ternary designs show significant power-delay product reductions; 49 % in the ternary full adder and 62 % in the ternary multiplier compared to the existing methodology. We have also compared the number of transistors in CMOS-based binary logic circuits and ternary device-based logic circuits We propose a methodology for using ternary values effectively in sequential logic. Proposed ternary D flip-flop is designed to normally operate in four-edges of a ternary clock signal. A quad-edge-triggered ternary D flip-flop (QETDFF) is designed with static gates using CNTFET. From HSPICE simulation results, we have confirmed that power-delay-product (PDP) of QETDFF is reduced by 82.31 % compared to state of the art ternary D flip-flop. We synthesize a ternary serial adder using QETDFF. PDP of the proposed ternary serial adder is reduced by 98.23 % compared to state of the art design.ope

    Low-power dual-rail multiple-valued current-mode logic circuit using multiple input-signal levels

    Get PDF
    科研費報告書収録論文(課題番号:12480064・基盤研究(B)(2) ・H12~H14/研究代表者:亀山, 充隆/配線ボトルネックフリー2線式多値ディジタルコンピューティングVLSIシステム

    Computer arithmetic based on the Continuous Valued Number System

    Get PDF

    Novel arithmetic implementations using cellular neural network arrays.

    Get PDF
    The primary goal of this research is to explore the use of arrays of analog self-synchronized cells---the cellular neural network (CNN) paradigm---in the implementation of novel digital arithmetic architectures. In exploring this paradigm we also discover that the implementation of these CNN arrays produces very low system noise; that is, noise generated by the rapid switching of current through power supply die connections---so called di/dt noise. With the migration to sub 100 nanometer process technology, signal integrity is becoming a critical issue when integrating analog and digital components onto the same chip, and so the CNN architectural paradigm offers a potential solution to this problem. A typical example is the replacement of conventional digital circuitry adjacent to sensitive bio-sensors in a SoC Bio-Platform. The focus of this research is therefore to discover novel approaches to building low-noise digital arithmetic circuits using analog cellular neural networks, essentially implementing asynchronous digital logic but with the same circuit components as used in analog circuit design. We address our exploration by first improving upon previous research into CNN binary arithmetic arrays. The second phase of our research introduces a logical extension of the binary arithmetic method to implement binary signed-digit (BSD) arithmetic. To this end, a new class of CNNs that has three stable states is introduced, and is used to implement arithmetic circuits that use binary inputs and outputs but internally uses the BSD number representation. Finally, we develop CNN arrays for a 2-dimensional number representation (the Double-base Number System - DBNS). A novel adder architecture is described in detail, that performs the addition as well as reducing the representation for further processing; the design incorporates an innovative self-programmable array. Extensive simulations have shown that our new architectures can reduce system noise by almost 70dB and crosstalk by more than 23dB over standard digital implementations.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .I27. Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6159. Thesis (Ph.D.)--University of Windsor (Canada), 2005

    Integration of asynchronous and self-checking multiple-valued current-mode circuits based on dual-rail differential logic

    Get PDF
    科研費報告書収録論文(課題番号:12480064・基盤研究(B)(2) ・H12~H14/研究代表者:亀山, 充隆/配線ボトルネックフリー2線式多値ディジタルコンピューティングVLSIシステム
    corecore