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Abstract

In this dissertation, the second generation design and implementation of a new type of com­

puter arithmetic is explored. The approach used in this dissertation for binary computations 

is based on a novel number system called Continuous Valued Number System, where digits 

are continuous, and do not have a grid. Arithmetic operations in this number system are 

based on the modular reduction operations.

In this dissertation, actual implementation of adders and multipliers based on this new 

concept are developed. These systems are implemented by analog circuitry, and are based on 

the current-mode circuit design approach in CMOS technology. The current-mode approach 

provides efficient means for implementing low-power, and highly integrated designs based on 

this method of computation.

The almost carry-free nature of addition in the Continuous Valued Number System results 

in high performance analog adders, which becomes the main building block of more complex 

designs such as reconfigurable adders, tree and array multipliers. The implementations are 

compared with their binary counterparts, and results show that the Continuous Valued 

Number System  can open up a  new path  for advanced signal processing.

The Continuous Valued Number System is an analog number system, and due to data 

overlap between the digits, the general operations in this number system are more precise 

compared to regular analog systems. Therefore, new models for analog neurons are proposed

iv
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ABSTRACT

which are based on the function evaluation properties of this number system. The stochastic 

modeling of the proposed neuron shows that our system can tolerate more implementation 

errors caused by noise or by nonlinearity in analog environments.

The work presented in this dissertation, paves the way for a new type of high performance 

computer arithmetic and advance signal processing.
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Chapter 1

Introduction

The main focus of this thesis is on the design and implementation of a new type of computer 

arithmetic, which is based on a novel and unconventional number system. This recently 

introduced number system called Continuous Valued Number System  (CVNS) [67], has new 

attributes and differs from conventional number systems. We have investigated the feasibility 

of applying this number system for realization of efficient arithmetic units. Due to its rather 

recent introduction, there is no recent research dedicated to this topic. This work serves 

as a continuation in exploring the implementation obstacles, and also the discovery of new 

applications and structures for this number system.

1.1 Computer Arithmetic

The field of the computer arithmetic is mostly digital, and there are many research publi­

cations contribute to the developments of this field. Traditional digital IC implementations 

of computer arithmetic are based on Boolean logic and two valued signals. Most modern 

arithmetic processors are built with architectures that have been well-established in the lit­

1
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1. INTRODUCTION

erature, with many of the latest innovations devoted to special logic circuits and the use of 

advanced technologies.

For arithmetic implemented in System-on-Chip (SoC) technologies, there are growing 

demands on increasing the speed, limiting the area, and also system and cross-talk noise.

Reducing the dynamic power consumption is a major research area and has achieved 

many great results so far. The system noise, on the other hand, is dependent on the rate of 

change of voltage between the wires (cross talk) and the rate of change of current (system 

noise). To some extent, the continual reduction of power supply voltage aids to reduce the 

system noise. However, the current and voltage slewing rates do not change, which means 

that the instantaneous noise level is not reduced. This property is disruptive to synchronous 

systems where incorrect values may be latched based on this dynamic noise.

To implement arithmetic architectures, there are other approaches available with new 

logic families such as Multiple-Valued-Logic (MVL) [77, 46], which increases the signal levels 

from two values to multiple values. Over the last two decades, MVL system design has 

received increasing attention for its potential to reduce interconnections and the number of 

functional units in VLSI designs. In the limit, Multiple-Valued-Logic becomes the Contin­

uous Valued Number System (CVNS) where the implementation is analog with the goal of 

reducing noise, area and interconnection.

The CVNS and basic concepts of continuous digits were first introduced in [68], funda­

mental methods of addition and array multiplication were given in [69], and circuit design 

issues were discussed in [70] and [66]. The number system is analog in nature, and it has 

been shown that it can also be applied for implementing low-power low-noise arithmetic 

units [67]. Such number systems can open up an alternative path in developing new types of 

arithmetic and signal processing units. This method of computation has been used success­

fully in developing high performance arithmetic units [53, 50, 51]. Variations of this number 

system such as the Redundant Analog Number System, have also been proposed and recently 

used in developing arithmetic units [75].
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1. INTRODUCTION

1.2 Principal Idea

The inspiration for this unconventional number system is taken from the utility meter, in 

which the ensemble of digits are used to refine the reading and increase the precision. Fig­

ure 1.1 shows the radix-10 CVNS representation of a =  3874, where its CVNS digits are 

a3 =  3.874, 0 2  =  8.74, ai =  7.4, and ao =  4. Each dial is a continuous digit as opposed to 

two value digits in the binary world (zero and one), and is implemented in microsystems by 

continuous quantities such as current, voltage or charge. If the most left hand side leftmost 

dial value was not exact due to some implementation error, the reminder of the dials can be 

used to refine and adjust the representation.

&

xlO100

a5 = 3.874 aa = 8.74 a^ ?  A % —4

Figure 1.1: The radix-10 CVNS numerical example of a — 3874

The main difference between the CVNS and MVL representations is the definition of 

continuous digits or analog digits. The CVNS digits do not have a grid, and are realized by 

analog circuits. Some of the information presented by the leftmost dial is repeated in other 

dials. This redundancy ensures the accuracy of analog representation and operations in this 

number system.
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1. INTRODUCTION

1.3 Research Objective

In this thesis, the feasibility of using the CVNS for efficient, competitive, computer arithmetic 

implementations is investigated. The CVNS can open up a new paradigm in advanced signal 

processing and analog neural network implementations. Our aim is to develop a second 

generation of integrated computing units based on the CVNS. The proposed systems are 

proof of concept of the CVNS, and are compared with the conventional digital designs.

The motive behind this research has been our academic curiosity to search for novel and 

advanced signal processing alternatives. Previous work on this number system, explored 

the basic properties of this number system. The key properties of the CVNS indicate the 

advantages tha t this system may offer, however feasibility and actual implementation of 

arithmetic units based on this number system has not been investigated.

1.4 Thesis Organization

The key properties of the CVNS are presented in chapter 2. This chapter expresses some of 

the most important features of this number system, which are of further use for arithmetic 

development. The mathematical basis of the CVNS is first presented to provide background 

information, and numerical examples are used to clarify this theory.

Chapter 3 provides a systematic means for implementing CVNS adders. In this chapter, 

we deal with CVNS systems that have power-of-two radices in order to simplify the conversion 

technique between binary and the CVNS representation; yielding efficient and competitive 

arithmetic circuit designs. A new approach for addition of unsigned binary values using 

the CVNS is proposed, and two methods for generating the adder structures are introduced. 

Also, a new technique for converting the CVNS results back to binary representation is given.

Computational complexities for the CVNS adder are derived in this chapter, to provide 

a measure of the required area and delay. This complexity measure is used to compare the 

CVNS adder with the Threshold Logic implementations of binary adders.

This chapter also presents the implementation of a two operand 16-bit radix-4 CVNS

4
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1. INTRODUCTION

adder. This adder is a key unit for developing other complex structures such as reconfigurable 

adders, and array multipliers.

In chapter 4 an important new path for the CVNS is opened up, which can encourage 

further developments of the CVNS. Our CVNS adders require fewer interconnections, and 

therefore reconfigurable adders can be implemented using this approach.

Also in Chapter 4, the design and implementation of a mixed-signal 64-bit adder is 

developed, which is a cascade of four 16-bit adders. The 64-bit adder is implemented in a 

TSMC CMOS 0.18/im technology, and design and performance comparisons are given by at 

end of the chapter.

Chapter 5 presents a new type of CVNS multiplier by using CVNS compressors. These 

CVNS compressors reduce the partial product columns by evaluating the values down to one 

gate delay. At the final stage, two CVNS adders are used to generate the final result. The 

column compression and addition is based on the CVNS theory of digit wise addition, and 

the proposed multiplier is designed into the target 0.18/im CMOS technology and compared 

with standard binary multipliers in the same technology.

Chapter 6 focuses on the CVNS array multipliers. In this chapter again we take advantage 

of our novel and efficient high radix CVNS adders to implement CVNS array multiplier. The 

design and implementation of a 16 x 16 array multiplier is also developed, and two alternative 

methods of multiplications are given, which are very similar to the array multiplier, and can 

be easily implemented using the same style of circuit design.

In Chapter 7, the CVNS is used to interface and process analog signals (not quantized 

data; binary). The developed Analog Neural Network (Analog NN) is based on the function 

evaluation properties of the CVNS, and an Adaline neuron with a nonlinear activation func­

tion is proposed. In this preliminary work, it has been shown that the Continuous Valued 

Number System can increase the robustness of Analog Neural Networks considerably.

Finally, chapter 8, gives the summary of our contributions, and provides some suggestions 

for future research on this subject.

Appendix A is on the error correction properties of the CVNS. Error correction is a
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1. INTRODUCTION

fundamental and key property of the CVNS, and it requires further analysis. It should be 

pointed out that although this appendix expresses some of the perviously featured properties 

of the Reverse Evolution technique (which is for removing error and fine-tuning the CVNS 

representation), here we correct some of the previous work and we also use a simpler approach 

to describe the overall concept. Development of the Reverse Evolution technique is a key 

factor in applying the Continuous Valued Number System for future storage and memory 

applications.
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Chapter 2

Continuous Valued Number System

The Continuous Valued Number System is a novel analog-digit representation and arith­

metic system. This recently introduced number system performs arithmetic operations by 

applying digit-level modular reduction operations on continuous real values. There are no 

carries, in the accepted sense, and addition is performed without digits intercommunication. 

Digits share information and there is a digit-level overlap between them, which results in 

an arbitrary precision representation. In this section, the main properties of the CVNS 

including digit generation, addition and multiplication are given.

2.1 CVNS Analog Digits

Any real value, x, within a boundary |a:| <  M  represented in a positional number system 

with radix B , can be mapped to CVNS digits, ((a;)),-, in radix-/?. The CVNS value, ((z)), is 

the ensemble of the CVNS digits, ((x))i, and can be written as a vector as follows:

((x)) =» {((aOU, ((x) ) ^ , ..., ((sM O r))-!, ((x )U )  (2.1)

7
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2. CONTINUOUS VALUED NUMBER SYSTEM

where (—k  < i < L) represents the indices of the CVNS digits, and the bar (|) represents 

the radix point.

One of the fundamental aspects of the CVNS is that the digits with higher indices have 

higher information density compared to the digits with lower indices. In fact, the digit that 

has the highest index in the CVNS system, contains the whole information regarding the 

original value or root value tha t is being represented in the CVNS system. In other words, 

just by looking at the highest index CVNS digit, the root value can be obtained within the 

precision and noise constraints of the implementation. Therefore, the term “Most Significant 

Digit” can not be applied in the same context as any other conventional number systems. 

Hence in this dissertation, we refer to the digits either by their indices, or by the level of the 

information tha t they contain; for example, the digit with the highest index in the system 

is called the “Most Informed Digit” or MID in short. The index value of the MID is chosen 

such that:

fiL+l < M  (2.2)

There are two main methods for the CVNS digit generation. A series method, named 

Cascade Digit Generation, and a  parallel method, which is called Modulus Digit Generation. 

These methods are discussed in the next sections.

2.2 Cascade Digit Generation

Any real value, x, within the boundary \M\ can be converted into its equivalent CVNS 

representation by applying this series method. This method generates the digits in series 

starting from the MID as shown below:

=  J j . f i  (2.3)

with an associated integer, int(^x))c) — L(0e))lJ- 

The next digit is as follows:
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2. CONTINUOUS VALUED NUMBER SYSTEM

M i - i  =  ( M t - L M > i j ) . / S  (2-4)

All of the CVNS digits axe obtained one by one; a series method. The other method, which 

is a parallel technique, is discussed later. The choice of which method to apply is determined 

by the mathematical convenience or by the hardware implementation requirements.

Example: We are going to find the radix-10 CVNS digits of an arbitrary value x = 

78.324 < 100, using the cascade method. To satisfy expression (3.1), L  =  1, and therefore 

the CVNS digits are obtained in series as follows:

((*))i =  ^ 5 j p l 0  =  7.8324 

The rest of the CVNS digits are obtained as follows:

((x))0 =  {{(xh  -  L((*))iJ)./3 =  (7.8324 -  7).10 =  8.324 

((*))_! =  (((:r))o -  L(0r))oJ)./3 =  (8.324 -  8). 10 =  3.24 

((x)U  = (((*))_! -  [((x)U\).f3 = (3.24 -  3). 10 -  2.4 

((z))_3 =  (((®))_2 -  l((x))_2J)./0 =  (2.4 -  2).10 =  4

2.3 Modulus Digit Generation

The CVNS digits are obtained by applying a basic modular reduction operation as follows:

((®))i =  modP (2-5)

where mod is the modulo operation on any real value such that (a)mod(3 =  a — I  x /?, 

0 < (a)modj3 < 0, and I  is an integer.
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2. CONTINUOUS VALUED NUMBER SYSTEM

Example: We are going to find the CVNS digits of the previous example, using the 

modulus reduction method as follows:

(78 324 \
- j j j j p l O j  modlO =  7.8324

(78 324 \
^ p l O O J  modlO =  8.324

((ar))_i =  (^ f 4-103) modlO = 3.24

.. .. /  78.324 ih ̂
((x))_a =  1 0 Q 10 J ^ o d io  =  2.4

(0*0)-3 =  m o d l°  =  4

2.4 CVNS Digit Ring

The CVNS digits are elements of a real ring, and are bounded by the radix of the CVNS 

representation. The CVNS ring is a bounded yet infinite set [0,0) with an additive operation

on it such that closure and inverse holds true. The name ring associates the CVNS with

some form of circularity, which is represented best by a bounded set. The term real ring is 

in analogy to the integer ring. The integer ring, together with polynomial rings occur in the 

signal porcessing fields of Number Theoric Transforms and Digital Signal Processing. The 

common attributes o f a  m athem atical ring applies to  the CVNS real ring as well.
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2. CONTINUOUS VALUED NUMBER SYSTEM

2.5 Canonic Digits

A set of the CVNS digits axe in Canonic Form if all of the digits in the set satisfy:

0 <  ((x))j =  (((x))i)raod/? < 0  Vi x  > 0 1

> (2-6) 

—0  < ((x))i =  (((x))i)mod^ < 0  Vi x < 0 J
Digit values that violate 3.20 indicate that an error has occurred in that set, and should 

be corrected.

2.6 Vicinity of Digits

Arithmetic distance between two CVNS values is defined as the distance between the two 

points on a real ring which is similar to geometric distances on a circle. There are always 

two paths between any two points on a ring, namely clockwise and counter clockwise. Using 

this definition, equality in the CVNS is congruent, and is defined as follows:

x + I .0  = x  (2.7)

which holds for any integer I.

Definition of distance in the CVNS is used to define the vicinity of a point on the real 

ring. This definition becomes important in integer retrieval during error correction. The 

distance between two points is the shortest path between them:

|| x, y  11/3=  m in{(x — y)mod0, (y — x)mod0} (2.8)

where (x)mod0 = x  — 1.0 and 0 <  (x)mod/3 < 0  and I  is an integer.

The distance between two points is considered a positive value whether x < y or vice 

versa, and || x ,y  ||/3<  f .
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2. CONTINUOUS VALUED NUMBER SYSTEM

Vicinity of points on the real ring is also congruent. All the points y on the ring which 

adhere to the || x ,y  ||/g< v are in the vicinity of x, which means that their distance to x 

along the ring is less than v.

P+x-v,
.x+v

p/2

0 x x+v V /  ? ? XTV

x-v

(a) (b) (c)

x-v

Figure 2.1: Vicinity on a line (a), on a ring (b) and on a ring that is peeled open at zero (c)

The definition is shown in Fig. 2.1 for a regular linear environment and for the CVNS 

ring. In (a), point x  is placed on the fine, and in (b) on the ring, and in both cases an 

arbitrary vicinity of the point is indicated by a thick line and thick arc segment respectively. 

If the ring is peeled open at zero as a line, shown by (c), it may not look like a geometric 

vicinity any more. This is an important issue when a ring is implemented by a line-style 

implementation medium.

2.7 Analog Digits Relationship

Any CVNS digit in general is composed of two parts; the integer part, L((X ))*J> ^  the 

redundant part which is shared by its less informed digits. The relation between a digit and 

its next less informed digit is:

((*)), =  l((*))(J +  (2.9)

12
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2. c o n t i n u o u s  v a l u e d  n u m b e r  s y s t e m

By applying this relationship successively between the CVNS digits, the MID can be 

obtained as follows:

(W)l =  P +  E  ^  (2.10)

The above equation presents a  flexible storage medium where a combination of low reso­

lution cells can be employed for storing the high resolution CVNS values. This equation can

be generalized for obtaining any digit from its corresponding less informed digits as follows:

<t*»i = S +  E  W  (2.1D
^  n=i+l

This equation is also used to  evaluate the root around a fixed point. The fixed point is 

determined from a set of more informed associated integers, [((x))i j , [((x))£_i J , . . . ,  L((x))j+i J . 

The vicinity of the fixed point is scanned by ((x))*, and the fixed point is defined as:

w ( 2 . i 2 )
” j=i+l

The CVNS representation is in fact a hierarchial approximation of a root value. The 

MID is at the highest level and it is only at this level that the associated integer of the digit 

is not required. Digit significance and its information of the root value decreases as we move 

down towards the LID.

2.8 Addition

The addition operation is performed independently on each of the CVNS digits. Considering 

two values x and y, where x ,y  < \M\, the CVNS digits of ((z)) =  ((x))((+))((y)), are obtained 

by digit wise addition of the CVNS digits as follows:

((*))< =  ((£*))* +  ((y))iJrnod^ (2.13)

13
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2. CONTINUOUS VALUED NUMBER SYSTEM

The addition of the CVNS values is by summation of the columns without intercommu­

nication. The modular reduction operation after the addition prevents the digits exceeding 

the radix value in case of addition overflow.

Example: Radix-10 CVNS addition of two arbitrary values x  =  58.34 and y = 72.89 is 

shown in Table 2.1. The number of required CVNS digits is L =  1, and k =  2. However, it 

can be noted that we have obtained a CVNS digit value for an indix higher than L = 1. The 

digits with indices higher than the MID are called Excessively Evolved Digits. These digits 

are used for overflow checking and and are only zero if the root value is zero. These digits are 

similar to the leading zeros in unsigned binary number system used for range extension, or 

to leading Is for sign extension in 2's complement representation of binary values. However, 

in the CVNS these digits are the scaled version of the MID value and are zero only if the 

original value is zero.

Table 2.1: CVNS addition between two arbitrary values

i 2 1 0 -1 - 2

i(x ))i 0.5834 5.834 8.34 3.4 4

M i 0.7289 7.289 2.89 8.9 9

((z % 1.3123 3.123 1.23 2.3 3

The CVNS digits of z are {1.3123,3.123,1.23 2.3,3}, this CVNS digit set represents 

z =  131.23, which is the correct result.

2.9 Multiplication

Unlike addition, multiplication in the CVNS can not be performed digit wise. The CVNS 

multiplication is performed by a summation of partial products. It has been shown that 

multiplying two values by applying CVNS theory is as follows:

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. CONTINUOUS VALUED NUMBER SYSTEM

i(z))j =  x  Vi)modP ( 2 -1 4 )
Vi

where 0 < j  < L.

If the radix of the conventional number system is chosen as 2 (binary form), then y is 

represented in binary and each of its digits serve as an off-on switch for summing the CVNS 

partial products.

Example: The radix-10 CVNS multiplication of two arbitrary values, x — 31.89 and 

y =  2.38 are shown in Table 2.2. The MID index is L — 1 and k  =  1 is chosen. Therefore, 

the CVNS digits of x  are ((*)) =  (0.03189,0.3189,3.189,1.89,8.9 | 9), while y is kept in its 

original decimal form.

Table 2.2: CVNS multiplication between two arbitrary values

i 3 2 1 0 - 1

((*))» 0.03189 0.3189 3.189 1.89 8.9

((x))i x yQ 0.06378 0.6378 6.378 3.78 7.8

((x))i X ?/_! 0.09567 0.9567 9.567 5.67 6.7

((x))i x t/_2 0.25512 2.5512 5.512 5.12 1 .2

The CVNS digits of the result, z, are obtained from these partial products as follows:

(00)-i “  ((x ))-i-yo + {{x))o-y-i +  ((x))i-y- 2  =  (18.982)mo<il0 =  8.982 

((2))o =  (0*0)o-2/o +  ((x))i.y-! + {{x))2-y-2 =  (15.8982)modl0 =  5.8982 

( ( ^ i  =  ((z))i-yo +  ((xh-y - 1  +  ({x))3.y- 2  =  7.58982

15
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2. CONTINUOUS VALUED NUMBER SYSTEM

Thus the CVNS digits of the product are ((z)) = {7.58982,5.8982 j 8.982}, which is equiv­

alent to z = 75.8982. This result is verified by the fact that the result of the multiplication 

is x  x y  =  31.89 x 2.38 =  75.8982.

2.10 CVNS Error Correction

When an error occurs in a CVNS digit which is close to the boundaries of the ring, that digit 

may wrap around the ring. Moreover, implementation of the CVNS using analog circuitry 

may cause such small errors in the CVNS digits, thus leading to this problem. These errors 

can be removed and corrected using a process called Reverse Evolution (RE) [67].

The RE process for correcting a  CVNS digit that is in error, ((5))i, is to find the rounded 

floored function of the CVNS digits as follows:

CVNS is a modular number system and hence digit values are within a bounded ring [0,/?).

mod+(3 x  > 0

(2.15)

where mod+ and mod are defined as follows:

(a)mod+{3 — a +1./3; 0 <  (a)mod+{3 < 0

(a)mod 0  =  a +  1.0; —0  < (a)mod+0 < 0 (2.16)

The corrected CVNS digits are obtained as follows:

(2.17)

16
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2. CONTINUOUS VALUED NUMBER SYSTEM

Example: The radix-10 CVNS digits of an arbitrary value x  =  9.9587 < 1 0  are given in 

the first row of the Table 2.3. A 5% error is applied to all the digits as shown in the second 

row. The third row shows the rounded floor function values, and corrected digits are in the 

last row. The only digit that remains unchanged is the LID. The error in the LID propagates 

upward and effects other CVNS digits.

Table 2.3: CVNS addition between two arbitrary values

i 2 1 0 -1 - 2

9.9087 9.087 0.87 8.7 7

10.404135 8.921 0.91 9.1 6.9

ip ) ) d * [9.495445j =  9 [9.102] =  9 [0.041] =  0 [8.41] =  8 -

P))< 9.90869 9.0869 0.869 8.69 6.9

Error correction is an important feature in the CVNS, which allows for digits to be 

corrected, and to be restored to their original value. The RE process relaxes the target 

accuracy in the arithmetic operations. Therefore, the CVNS has the advantage of correcting 

faults over arithmetic operations. The error correction features of the CVNS are given in 

more detail in Appendix A.

2.11 Root Recovery

Any CVNS value can be converted back into its corresponding weighted magnitude repre­

sentation, or root value, rather easily. Prom (6.8), it can be noted that the MID is the scaled 

version of the root value. The root of the CVNS values can be obtained from the MID as 

follows:

(2 -18)

17
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Since the MID requires high resolution, it may not be possible to implement it exactly 

using analog circuitry. If. however, the MID information is correct (without any error), the 

recovered value is not going to have any quantization or approximation error, and is clearly 

equal to the original value (x = x).

The root value can also be recovered from the less informed digits which have lower

resolution requirements. It can be obtained from any other particular digit as long as the

associated integers of its more informed digits are known.

Moreover, to recover values from their CVNS format, and to obtain the result in the 

positional number system form, the non-iterative process used for error correction, Reverse 

Evolution (RE), can be used. This process is originally used for refining the CVNS digit 

values and removing errors from the CVNS digits.

In this approach, the final result is generated by checking the value of the less informed 

digits one by one. Thus this method generates the final outcome using a serial method.

2.12 CVNS Function Evaluation

The CVNS can increase the precision of analog values due to information overlap and the 

hierarchial level of information in its digits. Our goal is to obtain the digits of a function, 

which for example, can be the nonlinear activation function of an artificial neuron from the 

digits of the operand. Given x ,y  < |M |, and a function b — f{a), we will find the CVNS 

function /)(.) for all of the CVNS digits of y such that:

(M i =  /;(((*)) i) (2.19)

The MID digit of ((y)) is:

M l  =  / l ( M l )  =  f ( j . « ) . ^  (2 -20 )

Prom the above equation we can compute other CVNS digits from the MID as follows:

18
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2. CONTINUOUS VALUED NUMBER SYSTEM

(2 .21)

At this point we can compute any function from the input MID digit, since it describes 

the value of the input variable x. An example is given below to illustrate the CVNS function 

evaluation properties.

Example: Given the function f (x )  = 2x2, we wish to find digits of /(3.24) in decimal 

CVNS (0 = 10) with M  =  100.

With L — 1 and choosing k  =  1, the CVNS digit set of x  =  3.24 is found as ((x)) =  

{0.324,3.24(2.4}.

The MID is ((x))i =  0.324, hence, /i(((x))i) =  20((x))f. The output MID is ((y))i =  

20(0.324)2 =  2.09952, and from that we find other required digits ((y))0 =  0.9952 and 

((y)U  = 9.952.

From the output MID, we can obtain y  =  100 x 2.09952/10 =  20.9952. We can verify 

that 2.(3.24)2 =  20.9952.

As demonstrated by this example, the MID digit ((y)) can be obtained from the MID 

digit of the input using /( .) , and then the remaining CVNS digits are obtained from the 

MID. It is also possible to obtain the MID from the lower informed digits if the associated 

digits of the input are known.

2.12.1 O verlapped Sub-Function

There are other methods for computing the CVNS of output variable from the CVNS of the 

input variable. For example, the MID can be obtained around a fixed point, from a set of 

more informed associated integers, {((x))ij, |_((x))l„ iJ, . . . ,  |_((x))i+ij as follows:

(2 .22)

for i <  j  < m  — 1.

19
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By inserting Equation (2.21) in Equation (2.22), we can obtain:

M i  ■= ( / ( & - S  +  fe E  (2.23)
P t=0 ™

where & =  and £L =  M//3.

The above expression is the basis for finding the digit functions /*(.) from f i x )  for digits 

* <  L  — 1. We will identify all the fixed points of a digit at level i by the tuple % =  

[L((x))iJ,. . . ,  L((*̂ ))»+iJ] • The size of the tuple depends on the significance of the fixed point. 

For decreasing i, digit significance decreases toward the LID (Least Informed Digit), and the 

tuple increases in size. The MID does not require any tuple, since it is at the highest level 

of hierarchy.

We prepare a  function (p) for each tuple Tt, and the domain of each of those functions 

equals the range of ((a;));, namely [0, /3) for positive values and and (—/3,0] for negative values. 

Those functions are prepared for p =  ((e)) * as follows:

(2.24)

A set of functions GlT. from the grt as follows:

<4.M ) =  (2-25)

and conveniently we have:

M i  =  <4.(P) (2-26)

whereby y  =  f ( x )  and specific permutation of 2} is obtained for x.

The function G3T. is termed the Overlapped Sub-Function (OSF), and is generally calcu­

lated for i , j  =  L, L  — 1 , . . . ,  —k  to prepare the function evaluations. W ith these, we are 

now able to find any CVNS digit of y, given any single CVNS digit of x  and its associated 

permutation of the tuple T), using the corresponding function GJT.. The redundancy among

20
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the sub-functions is similar to redundancy among the digits. An example is given next to 

demonstrate these properties.

Example: Let us calculate y =  2a:2 for a radix-2 CVNS (/3 = 2), within the requirements 

|x|, \y\ < M  with M  =  5. With M  < 23, we have L = 3 and choose k =  1 as our dimensions 

of the CVNS representation for this example.

The MID function is / l (p) — /(^ f  )-f =  5p2. The OSF’s for the next level of hierarchy, 

i = 2, are chosen to compute the output ((2ar2))2. The tuple for this level consists of one 

binary element, and hence there are two OSF’s at this level; Gjj(/o) =  (Bp2/2)mod2 and 

G\(p) =  (5(p -1- 2)2/2)modl0.

At the lowest level, i = k = 1, the tuple consists of two binary elements, and there are 

four OSF’s, which are used to compute ((2a:2)) i. These subfunctions are:

G U P ) = (5p2/4)mod2,

G U p ) = (5(p +  2)2/4)mod2,

G\fi{p) =  (5 (p +  4)2/4)mod2,

=  (5(p +  6)2/4)mod2.

For an input x  =  1.3, the CVNS digits are ((a:)) =  {0.52,1.04|0.08}. The integers for se­

lecting an OSF is found by flooring the corresponding CVNS digits. The output CVNS 

digits are obtained from the MID and OSF’s: / 3(0.52) =  1.352, Gjj(1.04) =  0.704 and 

Gq x(0.08) — 1.408. To confirma our results we compute the CVNS digits of 2(1.3)2 =  3.38 di­

rectly using the basic CVNS digit generation; ((3.38)) =  {1.352,0.704)1.408}, which matches 

the results obtained by the OSF approach.
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2.13 Summary

In this chapter, key properties of the CVNS have been given. The CVNS digits share infor­

mation, and provide a chain style support for each other. The CVNS digits are continuous or 

analog, and do not have a grid. There are two general methods for digit generation, which are 

called Cascade digit generation and Modulus digit generation. The cascade method requires 

calculation of digits is sequence starting from the Most Informed Digit down to the Least 

Informed Digit (LID). The modulus method, allows the computation of any digit directly 

from the root value.

One of the main characteristics of the CVNS is the carry free addition between the 

CVNS digits. The chain of adders is particularly useful for developing other complex CVNS 

operations such as multiplication.

Protection of any CVNS digit is warranted by the redundancy among the digits. This 

redundancy allows for error correction in a CVNS digit set by a process called Reverse 

Evolution. Reverse Evolution reduces the error in the more informed digits.

In the following chapters, the design and implementation of the first generation of adders 

and multipliers based on the CVNS are given. The performance of these systems are com­

pared with their digital counterparts, in terms of area, power and speed. The general ap­

proach in these designs is based on the CMOS current-mode analog circuit design, and we 

will find that the current-mode approach can provide low-power, and highly compact analog 

arithmetic designs.
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Chapter 3

CVNS Addition

Traditional digital IC implementations are based on 2-level Boolean logic and perform the 

required arithmetic operation with two valued signals. As demand for handheld devices 

increases, low-power low-noise implementations of arithmetic and signal processing units 

becomes desireable. This is not only true for hand-held devices, but with any processor built 

with the latest very deep sub-micron technology. W ith very low power supply voltages and 

very fast switching, dynamic noise can be a major problem particularly in terms of substrate 

currents where SOI processing is now almost mandatory. Every day researchers look for 

alternative solutions in order to come up with more efficient implementations, and there are 

always new published results in the literature. However, most of these designs are based on 

Boolean algebra, and they essentially follow the same path and algorithms for performing 

the arithmetic operations.

Some of the highest-speed adder architectures, based on Boolean algebra include the 

carry lookahead adder [85] , carry skip adder [44] , carry select adder [7] , conditionai-sum 

adder [72] , carry-increment adder [79, 93] , and carry-look ahead variations such as Brent- 

Kung [10] , Kogge-Stone adder [41] , Ladner-Fisher [42] , Han-Carlson [29] and Knowles [40]
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3. CVNS ADDITION

. Each of these methods offers different advantages and tradeoffs in terms of delay of the 

operation, occupied area, power consumption, noise and wiring complexity.

3.1 Introduction

Addition is considered the most basic arithmetic operation, on which the other arithmetic 

functions are built, and any improvement in the adder performance will improve other op­

erations tha t use addition such as multiplication. In the case of digital adder architectures, 

the basic structures, developed over the past few decades, are still employed. In this section, 

the design of CVNS adders is studied.

One specific class of the CVNS has proven very effective for radix-2 addition. We in­

troduce this class, and discuss architectures and implementations in this dissertation. This 

class of the CVNS is able to interface with digital inputs directly, and the conversion process 

between binary and the CVNS is very simple and effective. Classical analog circuit blocks 

are used to  construct adders with arbitrary precision. In this chapter, this class of the CVNS 

theory is discussed. We discuss the two operand addition of this number system, and the 

required expression are given in the CVNS.

In this chapter, a  simplified conversion technique from binary to CVNS representation is 

introduced, and the general method for two operand binary addition is explained. Moreover, 

a new approach for addition using the CVNS representation is proposed which reduces the 

hardware cost of implementations for CVNS adders, and two methods for generating the 

adder configuration and structure are introduced.

Also, a new technique for converting the CVNS results back to binary representation is 

presented. Computational complexity for the CVNS adder is explained, to provide a measure 

in terms of the required area and delay. This complexity measure is used to compare the 

hardware cost of implementing the CVNS adder with Threshold Logic implementations of 

binary adders, which is the closest technology to the CVNS currently in use.
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3. CVNS ADDITION

3.2 Addition of Two Radix-2 Operands in CVNS

The CVNS number representation is analog, therefore digits do not have a grid, and each 

digit takes on a continuous value. Although the CVNS is continuous, and does not introduce 

digitization errors, the original binary values are not continuous. As we will show, applying 

either of the CVNS digit generation methods results in a convenient method for converting 

discrete binary values into the CVNS representations by directly using the binary digits. 

The conversion between the two number systems is simple and effective and does not involve 

a computationally complicated process.

3.2.1 B inary to  C V N S Conversion

Binary numbers can be converted into their CVNS representation rather easily under some 

assumed conditions. These assumptions do not affect the CVNS theory; however, they create 

a simple interface between the two number systems. The CVNS digit counterparts are, in 

fact, generated by applying either one of the given methods for the CVNS digit generation. 

In order to simplify the conversion, we can always assume that the maximum representable 

ranges in both number systems are equal, which leads to:

B m+l =  pL+1 = M  (3 1 )

where m  and L  are the maximum index values of the binary and the CVNS number systems 

respectively, and B  — 2 is the binary number system radix.

Although the CVNS radix can be equal to any integer, for a simple interface between the 

CVNS and binary representation, we focus on the CVNS radices:

B v =  (3 (3.2)

with integer v >  1.

The last two conditions do not change the fundamentals of the CVNS and can be applied 

without loss of generality of the CVNS theory. These requirements only make the interface
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3. CVNS ADDITION

between the two number systems more efficient and less complicated.

Any binary value represented can be shown as below:

TO
x  = ± J 2 x i - Bi (3.3)

i=0

where x t represents the m  +  1 binary digits and in this case B  — 2, is the binary number 

system radix.

By applying the given expressions for the CVNS digit generating, the MID of the corre­

sponding CVNS number is equal to:

TO
(W )i =  (3.4)

i=0
It can be seen from the above equation that, in this case, the CVNS digit is obtained 

directly from the binary digits. The associated integer part of the MID is the partial sum of 

the digits with > 1, which is satisfied for the index range m + 1  — v < i < L, and

can be obtained as follows:

L(M)iJ =  E  (3.5)
i=l—v

The next CVNS digit and its associated integer are equal to:

m—i/
tx ))L- 1 = Y ,X i- B i+2u- m- 1 (3.6)

i-0

0
L M l- i J  =  £  Xm+i-v.B*1' - 1 (3.7)

This process is used for obtaining all of the remaining CVNS digits. In general, any

CVNS digit can be obtained from the expression given below:

m-jv
(0r ))£_,- =  Zi-5i+(1+J>~m_1 (3.8)

«=o
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3. CVNS ADDITION

The conversion process to the CVNS representation directly applies to each digit value 

(in case of binary inputs, 0 or 1), which means less hardware and a faster conversion process. 

The required number of the CVNS digits under the condition in Equation (3.1) is:

|"(m +  1)
logB'
log/3

- 1
m  +  1'Cm

1 v
(3.9)

Equation (3.9) shows the upper bound of the required CVNS digits. If the implementation 

environment is able to distinguish between different levels, the LID (Least Informed Digit) 

can be extracted using a quantizer generating ip lower significant binary digits. In this case 

the minimum required number of CVNS digits is reduced to:

~m +  1 — ip'

3.2.2 C V N S to  Binary Conversion

(3.10)

The result of the CVNS addition should be converted back into the target binary format. 

The modular reduction operation has to be applied to the CVNS results after each two 

operand addition, and the binary output results from the integer modulo operation. If the 

CVNS radix is chosen higher than two (v>  1), each CVNS digit is translated into v binary 

digits. For example, if the CVNS radix is chosen to be 4, then each CVNS digit is equivalent 

to 2 binary digits. Conversion of a CVNS digit, ((z))i-j, back into positional number system 

representation can be expressed as follows:

%L—ju+i — '

where 0 < j  < L  and 0 <  i < v.

1 mod/3 > /3/2

0 ( ^ W h )  modP ^  /V2

(3.11)
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3.2.3 A ddition

The addition of two converted numbers can be easily performed in the CVNS representation 

by using (2.13). The digit wise addition of the two CVNS numbers given by the independent 

addition of each of the corresponding CVNS digits in the two numbers is:

W h  =  (((®))l-j +  ((v))L-j)m odp

m—vj

=  (  (x< +  & )£i+(1+")j-m- 1)mod/? (3-12)
»=o

The MID has theoretically all the information about the root value, and needs to com­

municant with all of the input binary digits as indicated by Equation (3.12). However, the 

CVNS is implemented using analog circuitry, and due to the limited precision of this imple­

mentation medium it may not be implemented precisely. To eliminate this problem CVNS 

correction can be used. This multiple digit CVNS precision enhancement procedure has 

previously been implemented using a mechanism referred to as Reverse Evolution. Reverse 

Evolution examines the digit values starting from the LID and is able to detect and remove 

multiple errors. However, it introduces unnecessary delays into the addition process and has 

a high hardware cost.

We now propose a new approach called Truncated Addition to overcome the limited 

precision of the analog circuits by adding CVNS values that are in fixed word lengths. This 

not only relaxes the target requirements on fan-in, but also reduces the system complexity. 

The original inputs to the CVNS system are digitized, enabling us to perform the addition 

with some imprecision in the analog circuits and still obtain the correct results without the 

need to apply the costly RE process.

28
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3.3 Truncated Addition

In the CVNS digit ensemble, the MID circuitry interfaces with the circuitry of all of the input 

digits, in order to acquire the full information. In fact, the values of the original positional 

number system can be extracted from the MID, provided that the implementation medium 

has the appropriate precision to accurately represent the original binary representation.

However, the circuit complexity and the required precision for implementing the more 

informed digits increases with the binary input word length. To facilitate the implementation 

of such a system while reducing the analog circuitry, the more informed digits are truncated 

in the addition process. The CVNS digits can be truncated as long as the approximation 

does not affect the outcome of the final (integer) computation; hence, the usual need for an 

error correction process after each two additions is eliminated.

The conversion is performed over a  fixed-size group of digits, and not on all of the digits 

at once. The input binary digits are divided into smaller groups, independent of the input 

word length. The group size is determined by the implementation requirements and the 

technology of implementation and is denoted by ip with ip > 1, a technology dependent 

parameter limited by the maximum reliable resolution of the implementation environment.

The summation term in (3.12) is split to create two summation terms; the first summation 

contains ip terms, while the second term is truncated to provide a suitable approximation 

level for the addition. If the truncation method is applied, (3.12) is modified to:

m -vj
((z))L- j  =  (  (*< +  Vi)Bi+<1+’'» -m- 1 +  CL^)m od(5  (3.13)

i—L\

where Cx_j is the truncation signal. The value of the lower limit of the summation depends 

on the applied method.

If ip < L i ,  the remaining digits should also be grouped into smaller sizes. Methods for 

processing these binary digits within the limited resolution of the analog environment are 

explained in the following sections.

Example: Consider the addition of two 8-bit binary values — 10100111 and y =
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00111011, using the CVNS approach. We will also evaluate the addition based on the 

proposed method of truncated addition. The results are shown in Table 3.1. The CVNS 

radix is chosen to be 4; therefore four CVNS digits are required.

Table 3.1: CVNS addition between two binary values

i 3 2 1 0

((*))< 2.609375 2.4375 1.75 3

m 0.921875 3.6875 2.75 3

3.53125 2.125 0.5 2

((^))i (Truncated addition) 3.25 2 0.5 2

Each of the CVNS digits of ((z)) generates two adjacent binary digits. It can be noted 

from the third and forth row of the Table that the binary outcome for both approaches are 

the same; however, the required resolution for the last row is reduced.

3.3.1 D eterm ining the Group Size

A large ip will produce a hardware cost comparable to the original scheme, which defeats 

the purpose of applying this technique. A very small ip removes the data overlap between 

the CVNS digits, where the more informed digits only receive enough information to adjust 

their value correctly and without receiving full information. The lower index digits may stay 

the same without receiving any information from higher informed digits.

If the error threshold of the implementation medium is e, the value of ip is:

If a quantizer is chosen for the LID digit conversion, this value changes to:
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3. CVNS ADDITION

To guarantee a  correct binary result after the CVNS addition is performed, ip should be 

chosen such that:

For ip = v, there is no information overlap between the truncated CVNS digits, and for 

ip < v  — 1 the information is incomplete.

3.4 Truncation Scheme

The CVNS adder structure in general can be divided into three layers. In the first layer the 

binary digits are converted into the CVNS values in a fixed word length and the presence of 

the truncation signals for each digit is detected. These truncation signals are similar to the 

group carry signals in the binary adders such as carry look-ahead adders. The second layer 

of the CVNS adder determines the value of the truncation signal C. The last layer of the 

adder computes the truncated addition as shown by (3.13), and converts the results back to 

the binary number system.

Equation (3.12) shows the relation between the binary and the CVNS digits in the most 

redundant form. It should be noted that the CVNS digits that interface with more than ip 

binary digits are split into several groups. Therefore, the less informed CVNS digits may 

not contain more than one group of data, hence are not altered by truncation and stay the 

same for different adder configurations.

The CVNS digits with indices from 0 up to f^"| are left unchanged, and truncation starts 

for digits with higher indices. Each CVNS digit, is divided into groups. The

outcome of each of the groups is used only to determine the truncation signal, C, within that 

digit. The tota l number of all of the groups, redundant and non-redundant, in the adder is:

ip > v  +  1 (3.16)

(3.17)
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The above expression reflects the upper boundary of the required gates for full redun­

dancy. However, to save area, some of the gates are used for generating the data for multiple 

CVNS digits. There are two main grouping methods, whose outcome changes the structural 

format of the CVNS adder based on the different connectivity requirements. These methods 

are called Sliding Groups and Uniform Groups, and differ from each other by the method 

with which the binary inputs are grouped within each digit, as explained below.

3.4.1 Sliding Groups

This partitioning technique is close to the partitioning scheme used for the only previously 

reported CVNS adder design [4]. The difference between the two technique is that the data 

from the lower significant binary digits are not ignored in this design. The starting point 

for generating groups is always from the most significant binary digit. The details of this 

scheme are shown in Figure 3.1.

The first layer of the CVNS adder interfaces only with the binary digits which are dis­

tributed in the lower groups of the CVNS digits. For example, to generate the MID at the 

first layer, binary digits with indices from 0 to L — ip are processed in fixed length groups. 

The outcome of each group are two signals that are analogous to the carry-propagate and 

carry-generate signals of fast binary adders. By partitioning the binary input into groups of 

length ip, the input data is processed in fixed lengths, and the maximum resolution of each 

group is B^.

Hardware redundancy can be reduced by choosing ip carefully, thus information generated 

in the groups of the lower informed digits is also reused for the more informed digits. These 

requirements can be met when:

ip — iv  (3.18)

where i is an integer value larger than 2.

To reduce the area and to optimally reuse the generated data, (3.18) provides the best 

results. As can be seen from Figure 3.1, the first repetition starts when m  — 2ip + 1 =
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CVNS Indices

L (MID) x«-a

y» Ui ym-2 yan> j ypup-i [yajH-aj yp-2y»i yi-i

L-l

L-2

rr
f̂iwp-v+I

rr
x»̂ -vh Xô-v-2 Xk-V X r-v Xo

yo-v y«-v-2 yp-f-w-i I ya-̂ -v fy. y»if-v-2 y ^ i  I y«-v

X(B.lv Xb-3v~2 Vp-2v-f Xjiv̂-2v-2 < UH X «-2v Xo

y&N y^jv-i y®-2v~- yn^-Mi  ̂ yn^iv-t ju^-2v-J *** y^^a*!  ̂  ̂ y «->. t y i-b T *  h

L-j
XflHp v̂ ~ Xib-:̂ -; 1 -1 *< *.-l ... *1 *0

yawp ynnp-; }W"2 • •• yartty-. 1 ... 1 y< yn ... y . j y«

O P))
''a-sv [ Viv-; X«

Figure 3.1: Binary input bits partitioning in the CVNS digits based on “sliding groups”, 

showing the redundant and non-redundant groups, where k = m — —4~yj ip and 0 <  j  < L
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m  — ju  — ip +  1, which can be simplified into xp = jv .  If ip = iv, then we ensure that data 

from some of the groups can be reused. This condition is highly effective in reducing the 

total number of required gates. The results and expressions in this section are for the general 

case, and can be simplified if the above condition is satisfied.

The formation of the CVNS digits with indices from the (L — +  l) th  digit up to

the (L +  l) th  digit, generates the full information, which means that all of the other digits 

can reuse the data which is generated within those digits. The group method reduces the 

digit-level redundancy among the digits which also results in reduced gate-level redundancy 

at the implementation level. However, full information of the input binary bits required 

for proper addition is kept the same as the original CVNS addition. The total number of 

redundant groups which can be reduced from the total gates given in (3.17), is:

xp
(3.19)

Figure (3.1) can be used as a map to properly distribute the input binary information 

within the CVNS digits, and to decide on which groups to generate. The outcomes of each 

group are:

9t(p)(q) ~  "

i  E  ftsd) > b

0 otherwise

(3.20)

rt(p)(q) ~  <

ut s( j )

1 E  fU i)  > B -  B - f
*=UtaO')-¥’+l

(3.21)

0 otherwise
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where

f t s ( i)  =  (xi +  +(L+ i - j > + ^ - i  (3 22)

uts(j) = m  -  {L -  j )v  -  qt}> (3.23)

and p, q and j  are integers in the range of 1 <  p < (m — [^"j +  1) < j  < L,  and

1 <  q < | '2 * r lk ^ r± ti ']  correspondingly; p is dependent on j  as follows:

L - j = t \ V \ + °

P = \ ~ \ ~ °  (3‘24)

where integers t and o are the modules and remainders values respectively.

The signals gt and rt, which are the outputs of the first layer of the adder, appear in the

CVNS digits periodically, with period [ .  The second layer of the CVNS adder combines 

the above information to generate the truncation signal, CL-j, for the third layer. Therefore, 

the truncation signal Cl- j from (3.13) is obtained recursively from the groups and is equal 

to:

C x - j  — (3 ^ ^  ■ ( g t ( p ) ( q )  +  r ^ (p )(g )-5 ^ (p )(q -l) +  r t {p) (q) - r t { p ) ( q - l ) - g t ( p ) ( q - 2 )  +

+  r (̂p)(g)-r ^(p)(g-i)---r ^(p)(i)-^in) (3.25)

where 0 < j  < L, 1 < k < and Cin is the carry to the adder and p is found

from (3.24).

It can be noted from (3.25), that there are at most [ — 1 addition terms, while the last 

term requires multiplications. The maximum fan-in of the implementation medium may 

require that C ^ j  be computed in two stages, which is the only information that is passed 

to the last layer. CVNS addition does not require the computation of carry-propagate or 

carry-ready for individual bits.

At the last layer, final required groups within each CVNS digit are computed and the 

addition is performed based on (3.13). The value of the lower limit, Li, in Equation 3.13 for 

this method is equal to i = m  — v j  —  (ip  — 1 ) .
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An alternative method for partitioning the binary input digits is given next, which is 

more efficient in terms of hardware costs.

3.4.2 Uniform  Groups

In this method, as shown in Figure (3.2), the binary digit partitioning starts from the least 

significant binary digit, ensuring that all of the generated information is used efficiently. The 

number of redundant groups is higher in this format, which means that the required number 

of groups is lower as follows:

G
m + l

1

m  — (L — i)v — ip-
(3.26)

The values of the gt and rt signals are:

9kv) =

U tu  (j>)

1 E  ftu ( i) > B
i = u t u { p ) —i > + 1

0 otherwise

(3.27)

rt ip)

Utuip)
1 E  *

i—Utuip)—ip+1

0 otherwise

(3.28)

(3.29)

(3.30)

where

UtuiP) = P k ~  1

and p is an integer in the range of 1 <  p < f .

The binary outputs of these units are used in the second layer of the CVNS adder for 

generating the truncation signal. The fact tha t the truncation signals are binary provides
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CVNS Indices

L (MID)
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-Binary digits partitioning for generating the CVNS digits- 
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i i3
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r

Xj, I X^I X2».2 ••• L t J l
------ll

x, [v i ]  ■• [ L  *>

k  i iW i yvs •"  y^i y* y»-i ' '  L A

X^.. *3ri jx^.2 . . . h i
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II h xr . . . .  j x, Xt

y^ k > |y * «
. ..

y^i II 
11 h k Ul y»

Li. Xfl
[7

• • •  s j i  y» i

H 0 1

□ h !

Figure 3.2: Binary input bits partitioning in the CVNS digits based on the “uniform groups”, 

showing the redundant and non-redundant groups.
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some extra flexibility in the choice of circuitry (analog or digital). The last group in each of 

the CVNS digits contains (rn — jv )  down to the — !)?/>)th  binary input digits. The

truncated addition result is equal to:

m—uj
((s))l-j =  (  +  yl)B i+^ - m- 1 + Cn-jJmod[3 (3.31)

i = ( F ^  1-1)1*
where

C L-3 =  B k+3V~m~ l +  r t (i).r t (^ i y g t {i_ 2) +  ...

+  rt(i).rt(i_i)...rt(2).rt(i).C'in) (3.32)

and k =  ([“ ^ 1  -  l)</>, and 1 < i <

Both partitioning methods result in a multi-layer CVNS adder which consists mainly of 

modular reduction gates. For high numbers of input bits, the CVNS adder may require one 

or more layers for computing the truncation signal, due to fan-in limitations based on the 

implementation techniques used to compute Equation (3.32). In fact, when m  < 2ip2 — 1, the 

CVNS adder is implemented in only three layers. The second layer of the CVNS adder can 

be implemented with analog modulus blocks, as well as regular digital blocks. The choice 

depends on the designer criteria and appropriate technology parameters. For example, low 

noise applications may take advantage of analog blocks for their inherent low-noise properties.

If the number of gt and rt signals to the second layer are higher than the maximum fan-in 

of the gates, the term (?£__,• has to be split into smaller units, each with 2'ip terms. The first 

and last layers of the CVNS adder may stay the same. Adding more layers increases the 

delay, which is the same for all forms of two operand adders. The results of Equation (3.13) 

are now ready to be converted back into binary form.

With these equations a practical CVNS addition process in the CVNS, and a method 

for interfacing between the conventional positional number system and the CVNS system 

is developed. In the next section the processing element count and system complexity of 

the CVNS adder are computed and compared with the previously published CVNS adders 

[67, 4] and also Threshold Logic (TL) adders.

3 8
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3.5 Processing Element Count

The CVNS adder can reduce the number of interconnections and achieve area and power 

savings. In this section, the basic CVNS adder (ADD*,) [67], the Group adder (ADDg)[4], 

and our two proposed methods, namely truncation based on the sliding method (ADDte) 

and truncation based on the uniform method (ADDtu), are compared. Comparisons are 

also made between the system complexities in terms of number of required gates, fan-in and 

fan-out of the system, system resolution and finally gate and system sizes.

The original CVNS method of addition, ADD;,, does not introduce any approximations 

into the system. This means that the MID requires a fan-in of 2m and resolution of r* =  B~m. 

For high numbers of input bits, such a high fan-in and resolution in an analog implementation 

medium is not feasible. Consequently, the group method, ADDfl, offered a trade-off in terms 

of reducing the fan-in of the gates and maximum required resolution at the cost of greater 

operation delay. The ADDS reduced the maximum fan-in to and the required resolution 

to rg =  B~^. In both truncation methods, ADDts and ADDtu, a  maximum fan-in of 2ip +  1 

is required, and the required resolution is equal to rta,tu =  B~*. Therefore, the group adder 

and the truncated adder have similar implementation requirements.

The ADDt adds two radix-2 values in four stages of binary to CVNS conversion, modulus 

addition, CVNS to digital conversion, and reverse evolution to remove the uncertainty im­

posed by the implementation medium. The size of the gates directly increases with the gate 

fan-in and maximum weight in the adder. The conversion unit in the CVNS adder is the most 

area-consuming unit. The number of required conversion units is equal to G(contJ_6) =  p2̂ ]  ■ 

In case of ADDff, conversion process requires the same number of gates:

conv—g)

The ADDts and ADDtu require:
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n _  rm + - h  rm+1'-r(conv—ts) — X - (3.34)

(conv—tu)
~m+ l l  rm  +  1' (3.35)

Complexity theory states that the number of gates indicates the real size that a system

uniform, and gate size is assumed to dominate interconnect wiring in a close neighborhood.

Inverters with low fan-in. The theory fails when applied to the CVNS, since gate sizing is 

directly affected by the number of inputs and weight values for binary to CVNS conversion. 

Therefore, the total number of gates in the CVNS adder may not be a proper measure for 

the area estimation.

Beame et al. [6] proposed a new method for comparing Threshold Logic gates. In this 

method the size of a Threshold Logic gate is evaluated as a function of the total number 

of connections of the gate which is the sum of the number of inputs of all gates in the 

circuit. However, this method also fails to consider the non-uniform sizing of the transistors. 

Subsequently, Fernandez et al. [64] proposed a new function for the area estimation, which 

takes into account the transistor sizing. To estimate the area in the CVNS systems, a new 

parameter is defined here which is close to the suggestion in [64], but much simpler, since 

the CVNS theory requires positive weight values. The value of this parameter, s, is:

In the CVNS adder, conversion units are the most area-consuming ones, the value of the 

parameter, s, of each conversion gate for each of the CVNS digits is:

m—jv
s {amv- bj) =  2 £  B m-i-o+J)u+i (3.37)

«=0

may occupy [84]. However, for this assumption to be valid, transistor sizing should be rather

The theory is valid when the circuit is made up of uniform basic gates such as AND, OR and

(3.36)
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3. CVNS ADDITION

The total for all of the (L +  1) CVNS digits is:

L m —j v

s {amv- 6) =  2 ] T  X  (3.38)
i= 0  i= 0

For the group adder, ADDS this parameter is:

1* 1 -1  m - ( L - j ) v  V>-1

»(«— .)= 2  e  e  b‘+2<i -  ̂ e  b‘ <3-39)
j —0 i = 0 j= 0

The estimated area of the conversion units for the truncated-sliding group adder may be 

higher than that of the group adder, since in this method the full information redundancy 

is obtained. The size parameters of conversion gate area of the ADDts, and ADDtu are:

J=W*1+1 i=0
f - f l - l  m - ( L - j ) V  ij!—l

+4( E E s‘)+2(i-r^i+i) E^ <3'4°)
j —0  *=o i= 0

r*l- l  tn—(L—j)v  V-l
w ..=2E e  B‘+2(r=Ti i - i) E si

j —0 i= 0  i= 0

L m - ( L - j ) v

+ 2 5 3  5 3  t f - Q - W  (3.41)
i=r*i

where 1 is defined as .

At first glance, the sliding group adder area is higher in comparison to the group adder, 

ADDg. However, ADDS also needs to adjust the final results after each two operand addition, 

which requires additional units thus increasing the area and the delay proportional to the 

number of the CVNS digits. Based on the given expression in [67] each correction unit 

requires to compare two neighboring digits and perform the correction by scaling the more
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3. CVNS ADDITION

informed digit and comparing it with the less informed digit. Therefore, in total there are £ 

correction units and the size parameter, sre , which is used to evaluate the size of the reverse 

evolution process is:

G {R E -b,g) =  L  (3.42)

sre = L (B  +  1) (3.43)

This increases the total area required for the ADD& and ADDfl implementations propor­

tional to the number of CVNS digits. All three types of the CVNS adders require A/D 

conversion units, hence it is assumed that in comparing the area these parts cancel each 

other out. Therefore, for area comparisons these parts are not included considering that 

similar techniques are used for all of them. The main difference between the A D D ^ and 

ADDt^tu structures is the reverse evolution process.

Delay is another important issue for two operand addition. ADD;, is not feasible for 

analog implementation due to its high fan-in and resolution requirements. However, if it was 

implemented, it sums up two binary values in parallel. The original CVNS adder, ADD*,, 

and the group adder, AADS, perform addition in four stages; digital to analog conversion, 

modulus operations, analog to digital conversion and reverse evolution, where each stage 

adds its own delay into the signal path. Nevertheless, the final results are required to be 

adjusted. The main source of error for the AAD& is the implementation medium, whereas 

the error in AADff is generated by removing the data overlap between the CVNS digits.

Tb,g =  Td/a +  Tmod +  Ta /d + (L — 1 ).Tre (3.44)

where Td/a is the delay caused by the binary to the CVNS conversion, Tmod is the modulus 

gate delay, Ta/d is the CVNS to binary conversion delay, and Tre is the delay from the error 

correction process (reverse evolution delay).

On the other hand, ADDts and ADDtu forms do not need to correct the results after each 

two additions, which drastically reduces the delay of the adder. The delay, D, is independent 

of the number of input bits into the system, and is equal to:
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Tu ,tu — Td/a +  Tmoci +  Ta/d (3.45)

A case study for a 32-bit, two-operand addition is presented in Table 3.2, using the 

expressions in this section as an example for all four type of the CVNS adders.

Table 3.2: Comparison between the four different types of the CVNS adder for a 32-bit 

radix-2 (0 — 2 and v  =  1) addition, ip is considered 4 and formulas developed in this section 

are used.

Adder Type ADD* [67] ADD9[4] a d d (s ADDtu

fa n  — in 64 8 9 9

r 232 24 24 24

Gconv 32 32 60 39

Sconti 4(233 -  1) 892 1664 444

Gre 32 32 N /A N /A

SRE 96 96 N /A N /A

ST= Samv+SR.E 34,359,738,460 988 1,664 444

T a  34 oc 34 oc 3 oc 3

The size parameter, s, indicates that the size of the basic and group CVNS adders axe 

higher, and both have more delay which is proportional to the number of input digits. For 

laxge word length, these approaches may not be feasible. In fact these approaches do not 

offer any potential advantages over the truncated adders.

Truncation addition is based on the comparators for detecting carry information within 

each CVNS digit. Interestingly, Threshold Logic (TL) principles are also based on compara­

tors for detecting individual bit-level and group-level caxry-ready and carry-generate signals. 

Therefore, while CVNS works with continuous values, it is closely related to Threshold Logic. 

Therefore, in the next section, TL adders are compared with our new CVNS adder designs.
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3.5.1 Comparisons Betw een the TL and C VNS Techniques

Threshold Logic has been proven to be a powerful method for implementing complex func­

tions with far less complexity than conventional digital systems. The fundamental theories 

of the CVNS are somewhat different to those of Threshold Logic family. However, our earlier 

assumption, (3.1), for developing a simple interface between the binary and the CVNS sys­

tems makes this special class of CVNS numbers similar to Threshold Logic. However, there 

is one fundamental difference between the two methods; CVNS represents and computes con­

tinuous values while Threshold logic uses binary numbers. For adding two binary numbers 

based on Threshold Logic all of the bit-level and group-level carry-ready and carry-generate 

signals are computed; in contrast the CVNS adder requires only a few gt and rt signals.

The CVNS adders are compared with the TL adders [65, 83] for 32-bit, two operand 

adders. In [83] a depth-three adder with polynomially bounded weights (EW) and in [65] 

optimized two- and three-layer Threshold Logic adders (DCTA2r ^  and DCTA3th ) designs 

are given. The maximum fan-in and resolution reflect the limitations imposed by the imple­

mentation medium. Table 3.3 shows that within the same environment, CVNS requires less 

area with lower complexity and interconnection costs.

Table 3.3: Comparison between CVNS and Threshold logic adders for a 32-bit radix-2 (/? =  2 

and v  =  1) CVNS adder, with ip — 4.

Adder Type DCTA2TH [65] DCTA3ri?[65] EW [83] ADDts ADDtu

fa n  — in 65 8 15 9 9

r 2 32 24 2® 24 24

s t 1,71710 8,642 7556 1664 444

I  (interconnections) 1,216 896 1504 88 46

These results are extended in Table 3.4, to compare the area of our CVNS adders with 

the Threshold Logic adders for various input word lengths. In this table the area required
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for A/D conversion is added onto the total area of the CVNS adders.

Table 3.4: Comparison between the Threshold logic and the CVNS adders in terms of gate 

sizing for various word lengths.

size (•)
m DCTA2tw[65] DCTA3r a [65] EW [83] ADDt, (* = i) ADDt„(» = i) ADDts (* = 2)

8 1068 254 416 352 142 114

16 262236 722 1,196 630 314 258

32 1.7£10 4538 7556 1696 604 546

64 7.3 E  + 19 24482 40796 3648 1294 1122

128 1.3 E  +  39 376694 737048 7672 2670 2274

The number of interconnections in the CVNS adder is double the sum of the number of 

required gates at the first and second layers. For the sliding partitioning method, this value 

is:

* . - » (  ̂ 1 * ^ 1 ) + < * + ! )  (3-46)

and for uniform partitioning this is equal to:

/ »  =  2 ( ^ 1 +  r ^ l ) + ( £ + : )  ( 3 . 4 7 )

Table 3.5 shows the theoretical measures of the required interconnections of the main 

types of Threshold Logic adders, as well as the two CVNS adders. It shows that the uniform 

group CVNS adder requires fewer interconnections. By increasing the radix of the CVNS, 

fewer continuous digits are required, hence interconnection cost is reduced. In the next 

section, the design of a 16-bit radix-4 CVNS adder based on the Uniform Group truncated 

addition method is demonstrated.
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Table 3.5: Number of Interconnections required for the Threshold logic adder and the CVNS 

adder (ip = 4) for different word lengths.

Interconnection (I)

m DCTA2ra  [65] DCTA3th[65] EW[83] ADDjg^ = i) ADDtu(i. = i) ADDts (*' = 2)

8 112 136 256 40 28 16

16 352 320 592 144 56 32

32 1,216 832 1,504 544 112 64

64 4,480 2,048 3,648 2,112 224 128

128 17,152 5,376 9,600 8,320 448 256

256 67,072 14,336 24,832 33,024 896 512

3.6 CVNS 16-bit Radix-4 Adder

In this section, the actual design of a current-mode radix-4 CVNS adder for 16-bit binary 

addition is developed. The CVNS adder consists of three main layers:

•  Binary to CVNS conversion

•  Truncation signal generation

•  Addition of the CVNS digits and conversion form the CVNS back to binary

The Uniform Group method is used to reduce the hardware redundancy, while full in­

formation redundancy based on the CVNS theory is still obtained. The radix of the CVNS 

is chosen to be 4, in order to decrease the number of the CVNS digits. The optimum value 

of ip is chosen based on the implementation technology, proper partitioning scheme, and the 

CVNS radix value. The implementation technology chosen is a 0.18fxm TSMC CMOS pro­

cess with 1.8V power supply; and ip =  4 is an appropriate choice for this target technology. 

Since CVNS radix is 4 (u =  2), there are only 8 CVNS digits (L + 1 =  8).
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3. CVNS ADDITION

The truncation signals within the groups are generated first. The CVNS adder operates 

in current mode, hence the two CVNS digits are simply added through a summing node. 

The general configuration of a radix-4 CVNS adder is shown in Figure 3.3, where the gray 

rectangles represent the blocks that are used for computing the truncation signals, C = Tr(.). 

The modular reduction circuit is the main block in the design of the CVNS adder, and is 

explained in the next section.

0 0 0 0 i i > k .
0 0 0 0 f a

1 0 0 0 0
Jk.
rtg

I 0 0 0 0 L  gti
i 0 0 0 0 i " l f r

0000
0000

00
00

10000
!0000

PLtLB
00

10000
10000

0 0  

pj|pa| 0 0
0000

00

y„ .y,„

y*.y;

Figure 3.3: General configuration of the 16-bit Radix-4 CVNS adder.

3.7 Modular Reduction Circuit

The central circuit of a CVNS adder is the modular reduction circuit, which is essentially 

a current comparator. In this design, a differential current comparator is applied which 

increases the noise immunity of the adder. Generally, the input to one of the transistors of
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the input pair is the input current, while the other input transistor is always ON and set 

to represent the threshold value. This method requires large transistors to always conduct 

current, which increases the static power consumption.

In our approach, the input current % is compared with its complement value i' =  (1 — 

2~^)P -  i, where -0 =  4. This not only reduces the power requirements, but also decreases 

the area by eliminating the large transistors required at the input pair. This also leads to 

a better noise margin and a higher gate speed due to the fact that inputs have opposite 

transitions [8]. Figure 3.4 shows the CVNS current mode modular reduction operation, 

which generates two binary outputs for each CVNS digit.

M!
Mt-i | L- M4 rj

\ - \ w  H

1
kVDD

M, r y
" " " w a r  ™ « r -

MlL
M2- H  M 9 J -

■ H L M 5  
iasl jVhiasl

MU M12
(>1 U i

(i.

M14

rL

Output 1 

M20

Output 2

!7 M19

vss

Figure 3.4: Current mode modular reduction and A/D conversion circuit.

The current, i, is the equivalent analog value of the binary inputs, which is compared with 

its complement value at the differential pair, through transistors (M1-M7). The voltage at 

the M2-M7 branch drops for values less than 2 and rises for values higher or equal to 2. This 

branch also turns transistor M14 ON or OFF. There are two comparators in this gate, the 

second one, formed by transistors M8 through Mil ,  is used for generating th e less significant 

bit of the CVNS adder output.

Transistors M12-M20 are used for binary output generation. The biasings of M13 and 

M15 cause the gates of M17-M18 to go HIGH for a  logic 1 and LOW for a logic 0. The
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output of this inverter is the less significant binary output digit. The more significant binary 

output digit is generated at the output of transistors M19-M20. The layout of the adder was 

dynamically tested and simulated with alternating inputs and taking into account all layout 

parasitics. The layout occupies an area of 2 ,300pm2 and is shown in Figure 3.5. The CVNS 

adder has a maximum delay of 460ps for adding two binary values of 0000,0000,0000,0001 

and 1111,1111,1111,1111 where the carry has to propagate through all the digits.

Figure 3.5: Layout of 16 bit radix-4 CVNS adder in TSMC 0.18pm CMOS process.

Analytical delay models are used to compare different styles. It has been shown that 

the logical effort model [30] can provide a rapid comparison between a variety of adders. 

For comparison purposes, the delay of several standard adders in terms of minimum-sized 

fanout-of-four (F04) inverter delays are given in Table 3.6. The fanout-of-four delay in 

TSMC 0.18pm process is around 90 ps, which means that the worst case delay of our design 

is roughly around 5.12 F04. This result shows that the continuous CVNS adder can achieve a 

speed comparable to the other high speed adder designs. A comparison against the only other 

published CVNS adder design [4] is shown in Table 3.7. The work in [4] was implemented 

with a 0.35pm CMOS process, therefore the results are scaled down for comparison purposes.
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This may not be a fair comparison, since both designs are analog and analog area does not 

scale as uniformly as digital designs, but it still shows strong advantages in applying the 

truncation method for the CVNS addition.

Table 3.6: Delay comparison of several 16-bit adders in terms of fanout-of-four

Adder Architecture Number of Fo4 delays

Ripple Carry 26.6

Conditional Sum 13

Carry Increment [79, 93] 15.7

Knowles [40] 9.9

Helper la  [30] 9.7

Helper lb  [30] 10.1

Helper 1.5 [30] 9.7

Helper 2 [30] 9.7

Radix-4 CVNS 5.12

Table 3.7: Comparison between two CVNS adders

CVNS Adder [67] Our design

Area 10,050 fim2 2,300 fim 2

Delay 49,885.7 ps 460 ps

Word length 8 bits 16 bits

The adder presented here is the first practical design of adders based on the CVNS theory. 

By comparing to standard binary designs we have shown that the CVNS can open up new 

design approaches for efficient arithmetic units. The work reported in this dissertation takes 

advantage of the maximum medium resolution for implementing the adder, which contrasts
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with the previous suggestion to use lower resolution for the addition and arithmetic, and use 

higher resolutions in the error correction process. By avoiding using error correction during 

the two operand addition, the area and worst-case delay has been decreased.

3.8 System and Cross Talk Noise

Switching noise is one of the major problems in VLSI designs. In a typical CMOS design, 

when many gates change state, a large cumulative current is drawn from the power supply. 

This in turn results in voltage fluctuations in the power supply distribution network in the 

chip. Moreover, parasitic capacitances between the substrate and transistors, inject current 

into the substrate due to the digital switching activity. The amount of this current is 

dependent to the slew rate of the switching voltage and total parasitic capacitances, which 

is referred to as the cross talk noise. As the operating frequency increases, the substrate 

noise increases as well. Therefore, a low-noise system should have minimum current sparks 

and slew rate on the supply rails.

The CVNS reduces the system noise because of the its current mode operations which 

have almost constant supply current. Current mode operations reduce the supply current 

variations and, hence, reduce switching noise. The supply current stays almost constant 

regardless of the binary inputs into the system. Moreover, in the CVNS adder, switching 

between different states is controlled and occurs with minimum voltage drop. In digital logic, 

by contrast, the output of logic gates switches rapidly from rail to rail. The idea of using 

analog circuitry for reducing system and cross talk noise is not new, and there have been 

previous attempts to implement digital arithmetic with analog circuity [36, 35] .

Two 1-bit full adders based on the CVNS methodology and regular complementary 

CMOS with pMOS pull-up and nMOS pull-down transistors were designed and simulated 

and the power supply variations for both systems were monitored. By taking the worst case 

time domain values of the transient analysis, we can judge the relative performance of the 

CVNS full adder against a complementary CMOS full adder. The CVNS full adder exhibits
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an almost constant current as expected, while the binary M l adder has high current sparks 

which contributes to its high switching and cross talk noise. The maximum current slops for 

the CVNS M l adder is 1.468A/ps and for the binary adder is 3.72A/ps.

T r a n sie n t R e s p o n s e  (b )

A m u

100M 

- 1 0 0 U

10m  s Lih'aiv £

1 0 m

10 n ’

* i ' J:
3 0  n 6 0 n

t i m e  { s  }

Figure 3.6: Instantaneous current drawn from the power supply (a) Complementary CMOS 

full adder (b) CVNS full adder.

The adder presented here is among the first designs based on the CVNS theory. By 

comparing to standard binary designs we have shown that the CVNS can open up new design 

approaches for efficient arithmetic units. The work reported here has taken advantage of
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the maximum resolution to implement the adder, while in previous CVNS adder designs the 

maximum resolution was used in the error correction process. By avoiding the need for error 

correction methods during the two operand addition, the area and worst-case delay has been 

decreased.

3.9 Summary

The CVNS theory has been explored for two operand binary addition. The CVNS theory 

offers carry-free addition; however, its implementation faces challenges due to the implemen­

tation medium. These factors are in contrast with the advantages that the CVNS can offer 

(analog implementation). Other previously reported methods such as the group method, 

also result in more complex systems, with higher delay.

The two new approaches of Sliding Groups and Uniform Groups have been introduced 

and evaluated in this chapter. These approaches resolve the implementation problems of the 

CVNS adder for large word length in analog circuitry. Moreover, the complexity of these 

methods are compared with earlier versions of the CVNS adder, and we have shown that 

both methods result in better structures. Specifically, the uniform group method not only 

has fewer interconnections and requires less area, but also achieves full CVNS information 

redundancy.

This method has been applied for a two operand binary addition fully designed in a 

target CMOS technology, and its performance has been compared with other adder forms. 

New circuits were proposed for the CVNS adder, which offer higher performance. Based on 

comparing the performance of the implementation, the CVNS was shown to offer a compu­

tational speed comparable to high speed adders but built with analog building blocks, while 

offering other potential advantages such as reduced system and cross-talk noise.

These methods are proposed for unsigned addition of two binary values; but they can 

easily be modified to facilitate addition between two binary signed or fractional values.

The adder proposed in this chapter can successfully be used as the basic building block
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for implementing reconfigurable adders, tree multipliers, and array multipliers.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 

CVNS Reconfigurable Adder

4.1 Introduction

To design efficient signal processing units for multimedia signal processing, reconfigurable 

adders are required, capable of processing data with varying word lengths without adding too 

much to the design complexity and overhead circuitry. An efficient adder design is critical for 

the development of the reconfigurable architectures, and it usually can add one 64-bit, two 

32-bit, four 16-bit or eight 8-bit operations [24, 23, 61, 60, 20, 78, 14, 57, 86, 45]. Generally, 

adding the reconfigurability property into the adder, increases the cost of implementation in 

terms of worst case delay, and power consumption [24, 60, 20].

Typically, to speed up the addition operation, summation terms are computed for both 

input carries of zero and one, and once the correct carry is determined, the proper signal 

then propagates through m ultiplexers in the adder.

The CVNS offers an efficient method for reducing the cost of reconfigurable adder imple­

mentation, where summation is performed digit wise with fewer number of interconnections. 

The adder described here has a modular architecture, and is created by replicas of the same
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block in a hierarchical design level. The 64-bit adder is implemented by cascading four sim­

ilar 16-bit radix-2 CVNS adders. Performance of the CVNS adder is evaluated in terms of 

worst-case delay, energy dissipation and area.

4.2 System Level design of the Reconfigurable 64-Bit 

Adder

CVNS is a  continuous number system, therefore it is implemented by VLSI analog circuits. 

To reduce the design time of the adder, a regular architecture has been employed throughout 

the 64-bit adder. The 64-bit reconfigurable adder is divided into four 16-bit adders, and each 

adder is divided to 4 uniform blocks. Inputs and outputs of the system are in binary form. 

In regular mode of operation, the system performs four parallel 16-bit additions.

To change the mode of operation of the 64-bit adder two signals are used namely; parti 

and part2 as shown in Table 4.1.

Table 4.1: Adder operation for different word lengths, controlled by parti and part2 signals

p a rti part2 Adder Configuration

0 0 Byte (8-bit)

0 1 Half-Word (16-bit)

1 0 Word (32-bit)

1 1 Double word (64-bit)

To partition the 16-bit adder whenever 8-bit operation is required, control signal breaks 

down the size of each of the 16-bit adders to 8 bits. This mode of operation is controlled by 

signal ctrl8 which is generated as follows:
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ctrl8 =  {parti V part2) (4.1)

A pair of the 16-bit adders is combined to perform 32-bit addition. The information 

is exchanged between the two adders, from the less informed adder to the more informed 

adder, not only in the 32-bit but also in the 64-bit mode of operation. Therefore, control 

signal can be changed from ctrl32 =  p a r ti A part2' to simplify only p a rti. By examining 

the Table 4.1 the ctrl,32 is equivalent to:

ctrlZ2 = part2 (4.2)

All four 16-bit adders are combined to work as a 64-bit adder when both parti and part2 

signals are one. Therefore, control signal for this configuration is setup as follows:

ctr/64 =  (parti A part2) (4.3)

These control signal are used to adjust the size and resolution of the adder on-demand. 

In the following sections a mathematical analysis of each 16 bit adder is given, followed by 

an explanation of how cascading these adders results in a reconfigurable 64-bit adder.

4.3 Mathematical Analysis

In this section a mathematical analysis of the 64-bit adder is given. We first start by looking 

at the structure of each 16-bit adder, and drive the mathematician expressions for truncation 

signals outside each adder. Then, input carry signal to each of the adders is generated from 

these signals. In general, the CVNS reconfigurable adder has a simple design with minimal 

interconnection for such systems.

4.3.1 Radix-2 16-Bit A ddition

A 16-bit CVNS adder converts binary data to CVNS, performs addition on the CVNS digits, 

and converts the final results back to binary. Binary numbers are converted to the CVNS
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representation very easily if conditions in (3.1) and (3.2) are satisfied, which are repeated 

here for convenience.

B m+1 _  pL+1 __ M

and

B U = P

For illustration purposes, the CVNS radix is chosen to be /? =  2. The reason for choosing 

a low radix for this design will be explained later. The relationship between 16-bit binary 

digits, inputs of each adder, Xi+t, and the real value they represent, x 4, is:

15
J =  £ x i+t.lT (4.4)x

i=0
where B  =  2 is the binary number system radix, and t = 0,16,32,48.

Based on the method given in chapter 3, a  direct relationship between the binary and 

the corresponding CVNS digits is obtained as follows:

15—j

((x))i5 _j+t =  x i+t.B i+3~15 0 <  j  < 15 (4.5)
*=o

The above equation is pre-congruent, meaning that the modular reduction operator, 

which is required for the CVNS digit generation as expressed by (2.5), is not included here. 

The digit-wise summation of two CVNS numbers, ((x )) and ((y)) is:

( (^ )) l5 -j+ t  =  (0c))l5—j+ t  +  ( [ y ) ) l 5 - j+ t  

15- j

=  f  y~l (xi+t +  yi+t) m o d f i  (4.6)
i= 0

A CVNS digit as shown by Equation (2.9) is composed of two parts; an integer part and 

a non-integer part, which is shared with its less informed digits. By applying Equation (2.9) 

in the above expression, the summation term can be expressed as follows:
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14—j + t

W l 5  - j + t  — (^ 1 5 - j+ t  +  2/15- j + t  +  2 1 (xi+t + yi+t)B i+i 15) mod/3 (4.7)
i=0

or

( (z ) ) i5 —j+ t =  ^-C is-j+ t +  V15—j + t  +  2 1((2;))14 _ j+ t ^ m o d ^  (4.8)

The term ((z))i5_J+t is in the CVNS form and has to be converted back into binary form.

For values of ((;z))i5 _j+i € [0,1), the binary outcome digit, z15_,-+t, is equal to 0, and for

((^))i5 -j+i £ [1,2) it is equal to 1. At this stage, the low radix of the CVNS allows us to 

remove the modular reduction operation (mod2) and replace the CVNS to binary conversion 

with a simple XOR operation, and to generate the binary outcome of the adder as follows:

^15- j + t  =  £ 15-j+ t © V15-j + t  © P l h - j + t  (4.9)

where © denotes the logical XOR function, and

P l 5 - j + t  ~  *

1 ifO < ( ( z ) ) u - j + t  <  1

(4.10)

0 i f l < ( ( z ) ) u - j + t < 2

To implement the term ((^ ))i4- j + t  a high resolution analog environment, equivalent to 14 

bits is required. If the implementation environment distinguishes only B %l> different levels, 

the above equation has to be changed to perform the summation over a fixed sized group 

of bits of length tjj with ip > 1. This parameter is technology dependent, limited by the 

maximum reliable resolution of the environment. We have chosen it to be equal to 4, which 

can not only be easily implemented by current-mode analog circuits in our target technology, 

but also simplifies the partitioning scheme. Truncated addition over a group of digits for 

16-bit summation with tp = 4 is:
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14 - j + t

« 1 4  —j + t  — ^  ^  {% i+ t +  y i + t ) B l+ j  14 +  B 4 f lV 1l  19+jT r14_j+t^modP (4.11)
i = 4 |- i i= i ± * 1

where T ru ^j+t is called the truncation signal and is equal to:

Tri4_j+t =^gt(fc+t) +  rt(k+t)9t(k+t-1) 4 F rt(k+t)rt(k+t-i) • • ■ rt(2+t)r *(i+t)C»nt)  (4-12)

where gt and r t  signals are:

oHk+t)

and

rt(k+t) =  <

4fc—1
1 if £  (a:i+t +  y ^ ) ^ - 4̂ 1 > 2

i=4k—4

0 otherwise

4k—1
1 if £  (xi+i +  y!+t)5 ’- 4fc+1>1.875

i=4k—4

(4.13)

(4.14)

0 otherwise

and k is an integer equal to T^r2] and t =  0,16,32,48.

The 64-bit adder is not entirely CVNS and rather it is a mix of both classical binary 

circuits, such as XOR for generating the output, and CVNS style circuits for evaluating 

terms such as (6.11) and (6.12). Analog circuits in this design axe the front circuits and 

are used for processing a group of input bits with higher speed and fewer interconnections. 

These analog blocks detect the existence of the truncation signals within a  group of binary 

inputs. Digital circuits are at the output stage of each adder and provide the required driving 

capability for various interconnection loadings in different adder configurations.

Equation (4.12) indicates tha t only a limited number of truncation signals are required 

within the 16-bit adder. Because of the low number of interconnections, control and parti­

tioning of the adder is performed with lower complexity. The number of truncation signals 

is dependent on the chosen length of the groups. Based on the chosen group length, in this 

design (ip — 4), in each of the 16-bit adders, three truncation signals are generated as follows:

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. CVNS RECONFIGURABLE ADDER

T r  t+4-.t+7 = gt( i+t) +  r t{i+t)C int (4.15)

T rt+8:t+11 =  ctrlS.in8+t +  ctrl8'(gt{2+t) +  r t{2+t)gt{i+t) +  rt(2+t)rt(1+t)C*nt) (4.16)

T rt+12:t+15 = gt(S+t) +  ri(3+;t) (ctrl8.ing+t + ctrlS1 (gt(2+t) +  Lt^+t)gt{i+t)

+  rt(2+t)rt(1+t)C'm£))  (4.17)

or

2Vt+12:t+15 =  gt(3+t) +  f"t{3+t)Trt+8:t+n (4.18)

where Cj„t is the carry input to each of the adders. The expression for this signal is derived 

in the next section.

The three truncation signals, given by the above equations, are the only signals that are 

passed from the second layer of the adder to the third layer. The carry out of the adder is 

generated in the same style. Figure 4.1 shows the gate level design of a 16-bit radix-2 CVNS 

adder.

CVNS addition in this chapter is performed in three main stages which axe: evaluating 

gt and rt signals from each group of input bits, as shown by gray blocks; combining the 

information for generating the truncation signals, as shown by the dashed blocks; and the 

final addition.

4.3.2 Radix-2 64-Bit A ddition

The reconfigurable 64-bit adder is generated by cascading four 16-bit radix-2 CVNS adders. 

This CVNS adder has a uniform design, making it suitable for reconfigurable media process­

ing and SoC applications. In this adder, information is generated locally for addition, hence 

the number of required interconnections is reduced. Between the four adders, there are eight 

truncation signals, which are similar to the gt and r t signals inside each adder, and are as 

follows:
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Cin,

~ Z j T "  j  Xl2+t:15+t J  
rt4+t yi2+i:]5+tA

ctrl8 12 +1:, '5+1

Figure 4.1: Gate level design of each 16-bit adder
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15) =  g t(t+ 12:t+15) +  P*(M -12:t+15)<#(t+8:i+ll)

+  ^ (t+ 1 2 :t+ 1 5 )^ (t+ 8 :t+ ll)fl'^ (t+ 4 :i+ 7 )

+  r ^ (t+ 1 2 :i+ 1 5 )^ (t+ 8 :i+ ll)r t(t+ 4 :t+ 7 )-fftt:i+ 3  (4-19)

r t(t:t+15) — ^ (t+ 12:< + 15)r ^ (t+ 8 :t+ ll)^ (t+ 4 :t+ 7 )^ (t : t+ 3 )  (4.20)

where t — 0,16,32,48.

The propagation of these signals is controlled by ctrl32 and ctrl64. The input carry into

each of the 16-bit adders, which has been shown in (4.11) as Cint, is as follows:

C m 16 =  ctrZ32/(5't(0:i5) 4- r t^ i^ .in o )  +  ctri!32.zn16 (4-21)

Cin32 =ctrlM '.in32 + ctrl64(gt{16:31) +  r t(6;31)gt{ 0:15) +  r t (16;31)r t m 5 )-in0) (4.22)

C in48 =  ctrl32'.in48 +  ctrl32^gt(32;47) + rt(32l47)(ctrl64'.in32 +  ctW64(0f(16:3i)

+  ^(16:31)5^(0:15) +  ^ (1 6 :3 1 )^ (0 :1 5 )-Wlo)) (4-23)

Figure 4.2 shows the general configuration of the 64-bit adder. Expressions for defining 

the general configuration of the system were derived in this section. In this figure, the 

numbers within the dashed blocks indicate the equations used, and configuration of the 

white blocks (indicating a 16-bit adder) have been presented in Figure 4.1.

4.4 Current-Mode Circuits

Differential style analog circuits were used for implementing the CVNS adder. These types 

of circuits increase the noise immunity of the analog circuits in the mixed signal design. Each 

gate was designed and sized to reduce power requirements.
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ctrl8

ctrlS

0:63

ctrlS

inn

ctrl8

48:63

(21), 
(25), (26)

m Ss/\

Figure 4.2: General configuration of the 64-bit adder
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4. CVNS RECONFIGURABLE ADDER

Circuit operations are in current mode, in order to achieve a low noise, low power and 

high speed adder. For example, the addition of the CVNS digits are performed by hardwiring 

the two values in a summation node. One example is shown in Figure 4.3. Binary digits are 

converted into the CVNS using a current mode DAC (Digital-to-Analog-Converter) and are 

added at the input of a PMOS current comparator (M20-M21). The comparator threshold 

is data dependent, meaning that data is compared with its complement value (1.875 — i). 

The complement value of the current is generated by the (M 22 — M23) transistor pair. The 

output of the comparator goes high when the added current is higher than the radix. These 

gates are used in the first and last stage of the adder. If it is at the first stage of the adder, 

the outcome is a gr or rt signal of that group of bits. Outputs of the gate at the third stage 

are sent to the XOR gates to generate the final results.

In this type of circuit, the major source of power consumption is static, and is directly 

related to the biasing current [31]. In this configuration the required biasing voltage is low, 

hence the constant current source generated by (M1-M3) is also low.

M20 iM23

M25M21 output

M22

M24
M8 M10 M12 M14 Mlfi M1!

Figure 4.3: The modular reduction circuit, and additional operations including the binary 

to CVNS conversion and current mode CVNS digits addition

At the truncation signal path, the second layer of the each of the 16-bit adders, signals 

are digital. Therefore, digital style circuits can be used in the implementation. Figure 4.4 

shows the path for generating the truncation signal of the most informed group within the 

16-bit adder along with the control signal, ctrlQ. When this signal is LOW, the adder is in 

normal mode. A HIGH signal indicates that the adder needs to be reduces to 8-bit, which is
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'• 'T rg+t;11+t

Figure 4.4: Module for generating the truncation signal to the more informed group, con­

trolled by the ctrl8 for 16- or 8-bit operations

performed by a large PMOS transistor which takes the input of the inverter HIGH; hence, 

a 0 is generated and prevents passing of the lower order group data.

4.5 Results

The adder was designed and simulated using process parameters from in the TSMC CMOS 

0.18fim  with 1.8V supply power, and was compared with several non-reconfigurable and 

reconfigurable digital adders [24, 61, 60, 20, 45, 55] as shown in Table 4.2. Figure 4.5 shows 

the delay of the adder of several outputs. The efficiency of the adders is not only evaluated 

in terms of the worst case delay, but also by power consumption and area. It should be noted 

than the efficiency of the arithmetic units is measured in terms of power-delay product, or 

energy-delay product [26, 27].

In [24] a  Brent-Kung Carry Look Ahead (BKCLA) adder is proposed. The input digits 

are partitioned into groups of length 4, and configuration is controlled by two control signals. 

In [61] a Reconfigurable Carry Skip Adder (RCSA) and in [60] a  S tatic Reduced Area Carry 

Select Adder (SRACSA) are presented. The adder in [55] is an optimized 64-bit adder, 

which a has a modular structure based on the Branch-Based Carry Select Adder (BBCSA) 

proposed for the SOI technology (Silicon On Insulator). This technology results in systems
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Figure 4.5: Delay measurement for bit positions z16 = 679 ps, z31 = 1.3ns, z47 =  1.4ns and 

z63 =  1.5n

Table 4.2: Comparison results

Delay (ns) Energy (pj) ED product Area (pm2)

BKCLA [24] 1.4 23 32.2 N/A

RCSA [61] 3 21 63 17,017

SRACSA [60] 1.7 18 30.6 N/A

BBCSA (SOI) (1.5V) [55] 0.72 96 69.1 205,800

AMCGG [20] 0.85 60 50 56,400

AFG [20] 0.85 52 43 53,976

HCLCS [45] 1.38 89.9 124 N/A

CVNS 1.5 14 21 13,250
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which are in general 35% faster, and 33% more compact compared to the bulk technology. 

Therefore, to compare the systems these effects has to be considered. However, the BBCSA 

still has a high Energy-Delay product and area, making it unsuitable and costly for this type 

of application.

The values for the power and energy given is this table are based on operating frequency 

of 1MHz, and it will increase as the frequency of operation increases. The CVNS power 

consumption stays almost the same regardless of the fan-in and fan-out and the frequency 

of the adder.

The reduced area of the CVNS is due to the fact that operations are in current-mode, 

therefore addition of group of input digits becomes low-cost in terms of hardware implemen­

tation of the system. Moreover, summation over a group of input digits does not require 

global carry information from all of the input digits, and this information is passed to appro­

priate blocks efficiently, requiring only a limited number of interconnections in the system.

4.6 Summary

In this chapter, the design and implementation of a mixed-signal 64-bit adder, based on the 

Continuous Valued Number System, has been demonstrated. The 64-bit adder is a cascade 

of 4 16-bit CVNS adders. Carry information is generated locally for each block, hence 

the number of required nets in the system is small. This property also reduces the design 

complexity and allows easy partitioning of the adder on demand. This property along with 

the compact and low-power low-noise properties, makes this adder suitable for media signal 

processing applications. The 64-bit adder designed in the TSMC CMOS 0.18pm technology 

resulted in an adder with a worst case delay of 1.5 ns and static energy dissipation of about 

14 p j  with a core area of 13250 pm2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 

CVNS Column-Compression  

M ultiplier

5.1 Introduction

Efficient logic circuit design is a fundamental task in the design of high performance devices. 

The design trend for the arithmetic system implementation in System-on-Chip (SoC) tech­

nologies, is to reduce the area, power dissipation and also system and cross-talk noise. Most 

modern arithmetic processors are built with architectures that have been well-established 

in the literature, with many of the latest innovations devoted to special logic circuits and 

the use of advanced technologies. Specifically, the design of multipliers is critical in digital 

signal processing applications, where a high number of multiplications is required. There are 

a wide variety of m ethods for m ultiplication w ith  com plexity order n  and log(n) gate delay 

[22, 34, 11, 76].

The Continuous Valued Number System can be used to reduce the interconnection com­

plexity and the number of active devices in the system. The CVNS is an appropriate for
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developing new types of arithmetic and signal processing units. Despite its analog nature, 

the CVNS theory, in fact, produces familiar arithmetic structures. While addition in the 

CVNS is digitwise, the general method of multiplication is based on the array multiplication 

approach.

Here, a new type of the CVNS multiplier is developed using CVNS compressors that 

can reduce the partial product columns by evaluating the values down to one gate delay. 

The final result is generated using a high-speed digitwise CVNS adder in radices other than 

the conventional binary radix. Such an approach is used to develop the digital multiplier 

discussed in this chapter, where the partial products are generated in the familiar digital 

form. The column compression and addition is based on the CVNS theory of digitwise 

addition. The proposed multiplier is designed into the target 0.18pm CMOS technology and 

favourably compared with standard binary multipliers in the same technology.

5.2 CVNS Multiplier

If the radix of the conventional number system is chosen as 2 (binary form), then y is 

represented in binary and each of its digits serve as an off-on switch for summing the CVNS 

partial products. Moreover, regular signed binary digits can also be used to reduce the 

summations.

There are, however, other methods for multiplying binary numbers using the CVNS 

theory. In particular regular arrays of binary partial products can be generated and then 

reduced using the CVNS compressors; finally the summation is performed on these columns, 

rather than summing the CVNS partial products, using CVNS compressors. Compressors 

are implemented using Boolean logic [12, 33] or by applying threshold logic gates [63, 91, 82].

We define a  CVNS compressor as a unit which receives N  binary inputs, and generates 

[log2 N \ +  1 outputs. The outputs of a gate are equal to:

out i =  (N)mod2 (5.1)
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and
-l

OUtj = <
1 (N)mod 2j > 23~

(5.2)
0 otherwise

where 2 <  j  < [log2 N \ +  1.

Signal outi is also equivalent to the binary sum of N  binary inputs. However, to sum N  

bits in a binary medium, binary full adders are required. In the CVNS this is obtained using 

just one gate, as will be shown later. For example, 5 binary inputs generate [2.3J +  1 =  3 

outputs, where the outputs are owt\ — (5)mod2 =  1, oufa — 0 and outs =  1.

5.3 CVNS Binary Column Multiplier

A CVNS compressor gate has the capability of processing more than the usual values of 4 

or 7 binary inputs each time, hence increasing the speed of partial product reduction with 

lower complexity. Figure 5.1 shows an 8 x 8 binary multiplication. Each column of partial 

products is sent to a CVNS compressor, the compressor outputs are passed to the CVNS 

adders to obtain the final results. For this purpose high-radix two operand CVNS adders 

have been used. The adder radix is chosen higher than two, in order to reduce the number of 

required gates and interconnections. In this example, two high radix CVNS adders are used 

in series. A 9-bit and then another 13-bit radix-4 compute the final result. The addition of 

the two operand binary inputs is based on the truncation of inputs, and is repeated here as 

follows:

m—vj
((z ))l- j = [ ^ 2  (x* +  +  CL-j}mod+d

i=L\
where Cl - j is the truncation signal which is used for removing the uncertainty form the 

MID digits, L\ =  L  — u j — (ip — 1), and ip is a  technology dependent parameter limited by 

the maximum reliable resolution of the implementation environment.

The general configuration of the 8-bit multiplier is shown in Figure 5.2. The columns are 

processed in parallel and the layout of the final gates is very uniform with low complexity.
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outl3. out122 OUtllj outlÔ out92 0U1&2 out72 out62 out52 out4j out3j out22 outl2

OUtllj outlOj out93 outSj out73 out^ outs. out4, out33
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hs h* % hi zu ho h h h % Z5 h Z3 h h h

Figure 5.1: All of the required partial products are generated as required, and each column 

is compressed using the CVNS compressors. The final results are then added using high 

radix CVNS adders.
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OOili

(5, 3)

Partial
Product

Generator

onUQ)
OUllli

(3 , 2 )

Figure 5.2: The 8 x 8  multiplier configuration, where partial products are compressed using 

CVNS compressors, and final results are generated two high radix CVNS adders.
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The partial product generator block is the standard array of binary A N D  gates. To reduce 

these partial products, signed binary digits or Booth recoding can be used. The physical 

implementation and simulation results are given in the following section.

5.4 CVNS Column Multiplier Implementation

The central circuit of a CVNS adder is the modulus operation circuit, which is essentially a 

current comparator. In this design a differential current comparator is used, which provides 

higher noise immunity of the analog units.

We use the same style of circuit design as that of truncated adders. In our approach, the 

input current, i, is compared through a data dependent comparator, which results in lower 

power requirements, and decreases the area; it also provides improved better noise margin 

and higher gate speed.

 » ( i )  mod 2
 ■►©mod 4

“J
—M19
J  m  Output

~ M I8  Volc* £

rVDD

M 4 l

| H i
i

H u  4^115 
M14 I

M il M12
- > i

Vbiasl “*[

Figure 5.3: Current mode CVNS compressor.

The current, i, is the equivalent analog value of the binary inputs, which is compared 

with its complement value at the differential pair, through transistors M1-M7. The voltage 

in the secondary pair of the current comparator drops for values less than 2 and rises for 

values higher than or equal to 2. This branch also turns ON or OFF transistor M14 of the
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second comparator, which is formed by transistors M8 through M il. This branch is the 

indicator for voltages higher than 22 =  4.

Transistors M12-M19 are used for the output signal generation. The gate of transistor 

M14 is connected to the (i)mod2 branch, and the gate of M15 is connected to the (i)mod4 

branch. The biasing of M13 causes the gates of M16-M17 to go HIGH for a logic 1 and go 

LOW for a logic 0. Accordingly, if either of the (i)mod21,2 branches go high, M14 and M15 

are turned ON and cause a voltage drop at M16-M17 gates. The output of a (6, 3) CVNS 

compression gate is shown in Figure 5.4, where the input values are changing.

l i a n i s i v n t  R e b p ’* n v v

1 00

ti

1 til Iff m  

1 0U9 
1 40

;
1 0fe>m 
7 0 
1 0 
0 0

/ ksA

i
»U1*

I!i:
!|
iL

.

V.J u

If
h
il

i;

li

&

i P 1r li |
LJi____ i

400n

Figure 5.4: A sample output of a (6,3) CVNS compressor.

The differential pairs are biased statically, hence the multiplier block has static power 

consumption. The dynamic power consumption due to the partial product generator unit is 

not significant, and can be ignored. Total system noise is also reduced due to the limited 

voltage variations and analog nature of the CVNS blocks. The multiplier is realized in TSMC 

CMOS 0.18fim  technology, with a maximum delay of 900ps and a core area of 11200pm2.
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Table 5.1: Comparison between the 8-bit CVNS multiplier and several standard digital 

multipliers of the same width in the same technology.

Multiplier Type Delay

Wallace Multiplier 1.82 ns

MCML [73] 3 ns

Tree-RB [22] 2 ns

Reduced Tree Multiplier [88] 1.05 ns

Signed Multiplier [54] 1.6 ns

Pipelined Multiplier [39] 1.7 ns

Reconfigurable PLA and Multiplier [33] 1.1 ns

CVNS Multiplier 0.9 ns

The example demonstrates that CVNS designs can yield fast arithmetic circuits using low 

noise analog circuitry.

The functionality of the multiplier has been tested with more than 400 test vectors. In 

this configuration Column C12 has the longest path to the output and has to pass all three 

stages of compression and both CVNS adders. Therefore, it requires the computation of all 

of the truncation signals, and hence is the critical path of the multiplier. Table 6.1 shows 

the delay comparison between the CVNS adder and other digital multipliers.

5.5 Summary

The CVNS compressor function definition is introduced in this chapter, and a new CMOS 

current m ode circuit is developed. T he compressor design has been designed and simulated  

and its functionality verified. CVNS compressors are used for the partial product reduction 

in a digital multiplier, and the final addition is performed by two high-radix CVNS adders. 

The CVNS multiplier has high speed with a relatively small layout area. The design will
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generate lower system noise than its CMOS logic counterparts, because of the smooth nature 

of the analog transitions.
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Chapter 6 

CVNS Array Multiplier

6.1 Introduction

Array multipliers offer a regular layout, and are generated by a regular array of full adders 

and half adders [34, 71, 81, 80, 74, 13, 25].

The CVNS has the potential advantage of reducing the wiring complexity and the num­

ber of active devices required in arithmetic circuits. The number system can provide an 

alternative path in the development of new types of arithmetic and signal processing units. 

Classical analog circuit blocks are used to construct the multiplier with arbitrary precision. 

While addition in the CVNS is digitwise, multiplication , in this chapter, is based on the 

classical array multiplication structure.

The CVNS array multiplier consists of a regular arrangement of addition operations 

and exploits th e  CVNS redundancy. The term  A rra y  M ultip lier  is derived from the array 

structure of a collection of adders, where they are laid out on a two-dimensional plane. The 

basis of the array multiplication are integer residue scaling and residue addition. Such an 

approach is used in developing the digital multiplier discussed in this chapter. The proposed
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multiplier is designed into the target 0.18/im CMOS technology and favourably compared 

with standard binary multipliers in the same technology.

6.2 CVNS multiplication

Unlike addition, multiplication in the CVNS can not be performed digit wise. Therefore, 

CVNS multiplication is performed by summation of partial products, as in standard binary 

multiplication, using Equation 6.1 [67],

((z))i =  x Vi)modP I6-1)
V i

where 0 < j  < L.

In general, by increasing the radix of the CVNS, fewer CVNS digits are required. There­

fore, in the addition process discussed earlier, radices higher than 2 are used to reduce the 

hardware cost of implementation. However, this trend does not apply to CVNS multiplica­

tion. Thus the general expression given for the CVNS multiplication, generates redundant 

terms that are needed to be removed by modular reduction operations in higher radices 

(P > 2). The general expression for CVNS multiplication is less efficient in higher radixes.

As an example, radix-4 CVNS digits of a 4-bit multiplier are obtained as below. Based 

on the given expression for the CVNS multiplication, the 4-digit CVNS representation of x, 

{((x))3, ((x))2, ((x))0 }, is as follows:

((x))0 =  2xi +  x0 (6.2)

((x))i =  2x3 +  x2 +  2-1xi + 2~2x0 (6.3)

((x))3 =  2 -2((x))2 =  2 -2(2-2((x))1) (6.4)

Also, y  is converted into its radix-4 positional number system representation. This mul­

tiplication scheme generates 4 output terms, as follows:
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(iz ))o =  ((2®! +  ®o)-(2yi +  y0))mod4 -  ( ax^ i +  2xiy0 +  2x0yi +  x0y0)mod4 (6.5) 

( (4 i  — ((2®3 +  ® 2  +  2 1x± +  2 2xo).(2yx +  yo) +  (2®i +  ®o)-(2y3 +  y ^ m o d A

=  (4(y3*i +  yi*s) +  2(y3®o +  y^xx + yxx 2 + y0x 3) +  (y2x0 +  yxx i +  y0x2) 

4- 2~1(y1x0 +  yoXi) +  2~2y0x0)  ?nod4 (6.6)

((2 ))2 = ( 2  2(2 x 3 +  x 2 +  2 1x i  +  2 2x 0).(2 y j +  y0) 

+  (2 x 3 +  x 2 +  2 1x x +  2 2x o )(2 y 3 +  y2)^ (6.7)

((z))3 =  ^2 4(2 x 3 +  x2 +  2 1x i + 2 2x0).(2y i+  y0) 

+  2 ~ 2(2 x 3 +  x2 +  2_1xx +  2_2xo)(2y3 +  y2)^ (6 .8)

In each term, the first partial product summation is canceled out by the modular reduc­

tion operator. This scheme yields accurate results; however, in terms of efficiency it is not 

the most efficient method of multiplication, due to the redundant and unused terms. The 

number of these unused terms increases in the CVNS representations with higher radices, 

and for larger input word lengths. These redundant terms have no effect on the output 

and are not useful for fine tuning the results either. Moreover, the design of the modular 

reduction circuit becomes more complex, in order to be able to detect additional levels and 

remove these terms, so as to form the canonic CVNS digits.

The effect of redundant terms may not seem drastic for a  small multiplier, with low word 

length. However, for a higher number of input digits, the overhead cost of implementation 

increases. This effect does not happen for radix-2 CVNS multiplication based on the general 

expression for the multiplication.

If the radix is chosen equal to 2 (binary form), then y is represented in binary and each 

of its digits serve as an on-off switch for summing the CVNS partial products. Figure 6.1 

shows the general configuration of a 4-bit, radix-2 CVNS multiplier.
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x.y = z*I I i l l

Figure 6.1: The CVNS 4-bit multiplier
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It should be noted that this configuration is also suitable only for small word lengths. 

This method has two drawbacks; a low CVNS radix necessitates a larger number of digits, 

and multiplication based on Figure 6.1 requires error correction for higher word lengths. 

Error correction increases the delay of the operation, which is not desirable.

An approach that can perform the multiplication in higher radixes, with lower complexity 

and delay is more desirable. There are, other methods for multiplying binary numbers using 

the CVNS theory. In particular regular arrays of the CVNS adders can be generated and 

partial product terms are reduced by a series of high-radix CVNS adders. This approach is 

explained in the next section, followed by a design example of a 16 x 16 multiplier.

Moreover, two alternative methods of multiplication are given which can be easily im­

plemented using the same circuit design style. We call these methods MID Switching and 

Comparator Multiplier. The general approach of multiplication in these suggested methods 

is similar to the array multiplier.

6.3 CVNS Array Multiplier

In this approach, the CVNS digits of x  are generated, and are added together according 

to the digit values of y. Digits of y are used as enable signals. This will ensure that the 

multiplication scheme remains efficient. Moreover, in this approach the complexity of the 

multiplier is reduced, while the information redundancy is kept at its maximum. Therefore, 

general expression for the CVNS multiplication is not used, instead the CVNS multiplier 

structure is generated by an array of high radix CVNS adders. The proposed method takes 

advantage of high performance CVNS adders, where CVNS digits can be represented in 

higher radices.

At the first layer of the array multiplier for m  x m-bit multiplication, m /2 L -bit CVNS 

adders are required. At each layer, the number of terms is reduced by half, considering the 

fact that two operand CVNS adders are used. The number of layers, at this configuration, is 

dependent only on input word length. We demonstrate this approach through an example;
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the design and implementation of an 16 x 16 CVNS array multiplier.

6.3.1 16 x  16 Array M ultiplier

In this section, a design example for a 16 x 16 array multiplier, based on the CVNS approach, 

is demonstrated. The Proposed CVNS array multiplier is structured considering the required 

binary partial products. In this design, we will take advantage of our previously designed 

16-bit adder. The CVNS adders use a radix-4 truncated addition method which requires 

minor modification at the first layer.

At the first layer of the CVNS multiplier, multiplier digits act as activation signals for the 

CVNS adders. The general configuration of the multiplier is shown in Figure (6.2). There 

are in total log2 (m ) layers, where each layer reduces the partial products in half. For 16-bit 

multiplication, 4 layers are required.

6.3.2 A nalog Circuits

To design the first layer of the multiplier, a differential style circuit design is used for their 

obvious advantages in increasing the noise margin, and providing higher operational perfor­

mance.

To increase the symmetry of the differential pair and to reduce the mismatch effect at 

the input pair, the input signal to the differential pair is split into two equal sets of signals.

The input signal i is the result of adding a group of length tp digits. We apply the 

truncated addition method, and we need to detect the gt and rt signals, which are generated 

by the differential open-loop comparators. The inequality at this stage produces the following 

values of the gt and rt signals at the first layer of:
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Figure 6.2: 16 x 16 bit binary multiplication is performed by 4 layers of high radix CVNS 

adders.
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gt(p) — '

1 £  (Vj-iXi + VjXi- i)2i Ap 1 >  2
i=4p—4

0 otherwise

(6.9)

1 i ; 1 (% _i^ +  yJa;i-i)2i_4p" 1 >  1.875
j=4p—4

r t (p) =  <

0 otherwise

where 1 <  p < 3 is an integer, and 0 <  j  < 15 is the index value of y digits.

In our improved version of the comparator, we change the above inequalities to

(6 .10)

1 " e  yjXi-i2i~4p~1 >  2 -  yj-.i'xi2i~4p~l
i= 4 p —4

0 otherwise

(6 .11)

r t (p)

i
1 E 1 yjXi-tf*-4*-1 > 1.875 -  2*'-4p- 1

i=4p—4

0 otherwise

(6 .12)

The same principle for the addition and computation of the gt and rt signals is used; 

however, this time the differential pair circuit has a more symmetrical structure, and each 

input transistor is connected to a  more balanced configuration of parasitic capacitors.

Moreover, for computing the gt signals, the maximum value of each of the signals 

UjXi- 12*~4p_1 and y j- ix i2t~4p~l is ft — 2~^, which means that no carry is generated within

8 5
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the groups, if either one of yj or y j-i signals are equal to zero. Therefore, the differential 

pair circuit operation becomes data dependent, with the enabling signal switch =  yj A Vj-i- 

The new circuit, shown in Figure (6.3), exhibits low gate delay, and its driving capability 

can be increased by adding high drive buffers at the output.

, Switch 
(Binary D igit)

Figure 6.3: New MDAC style current comparator for detecting the carry information in a 

group of CVNS digit of length ip.

The modular reduction circuit, shown in Figure (6.4), can not take advantage of this 

configuration. Therefore, the input current which is the equivalent analog value of the 

binary inputs, is compared with its complement value at the current comparator. The 

output voltage of the current comparator drops for values less than 2 and rises for values 

higher or equal to 2, which turns ON or OFF transistor M19. Transistors M15-M19 are used 

for the binary output signal generation. The biasing of M18 causes the gates of the buffers 

to go HIGH for a logic 1 and go LOW for a logic 0. Accordingly, if the (i)mod2 branch goes 

high, M19 is turned ON and causes a voltage drop.

The CVNS multiplier is designed and simulated in the TSMC CMOS 0.18/xm technology, 

with a  maximum delay of 3.2 ns, and a core area of 42137jim2. The example demonstrates 

that CVNS designs can yield fast arithmetic circuits using low noise analog circuitry. For 

comparison purposes, the performance of the analog CVNS multiplier is compared with 

various types of digital array multipliers, and the results are shown in Table 6.1.
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Current rom jssratcr

Figure 6.4: Current mode modular reduction circuit

Comparisons between this example as the first implemented CVNS multiplier showed 

that it can achieve performance comparable to mature digital designs. The total area of 

the CVNS multiplier can be reduced even more, considering that the first layer requires 

copies of the CVNS digits of x. This means that the continuous value of this digit has to 

be distributed in the chip area, which requires a more carefully drawn layout. In this design 

we generated the MID digit locally for each adder, that contributed to an overhead in area; 

however, the robustness of the design against noise has been increased.

A reduced size multiplier has been sent for fabrication as a proof of concept design. A 

full custom 8 x 8  CVNS array multiplier layout has also been generated, and is ready for 

fabrication in a 40-pin package. In total, seven radix-2 8-bit and two radix-2 2-bit adders 

were designed. There are approximately 4000 transistors, individually sized and laid out. 

The layout is based on a common centroid method, and transistors are fingered in the same 

orientation for better matching. The minimum size for NMOS is 350/200, and for PMOS 

is 500/200. We have chosen a  lower radix for this design, in order to decrease the circuit 

complexity and to increase the robustness of our prototype chip. Figures 6.5, 6.6 and 6.9
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Table 6.1: Comparing the CVNS multiplier and several standard digital multipliers.

Multiplier Delay (ns) Area (fim?)

Low Switching Activity (0.25^xm) [15] 9.8 381,238

Split Linear Array Multiplier (24-bit) [34] 5.91 44680

Linear Array Multiplier (24-bit) [34] 5.88 ns 43217

Modified Linear Array Multiplier [25] 4.39 126000

Multiplexer Based Array Multiplier (Truncated) [13] 4.34 5980

Multiplexer Based Array Multiplier (Truncated) [13] 4.42 6094

Pipelined Array Multiplier [71] 3.4 N/A

Simple High Speed Multiplier (0.13/xm) [38] 4.42 14589

Array Multiplier using 12-T Adders (4 x 4) [81] 3.97 N/A

MCML Architecture (8 x 8) [74] 3.8 N/A

Optimal Bit-Level Multiplier [80] 3.52 36797

CVNS Array Multiplier (0.18/rtm) 3.2 42137

show parts of the layout and extracted view and the routed chip, respectively.

CVNS multiplication methods are not limited to only the above two approaches. There 

are a wide variety of different types of circuits and topologies, that can be applied for the 

CVNS multiplication. In this section, we have proved that the CVNS multiplication is 

feasible, and the end results are comparable to conventional digital designs. In the next 

sections, we briefly mention two alternative methods for the CVNS multiplication, followed 

by the summary.

6.4 Comparator Multiplier

This scheme is based on the array multiplier proposed in the previous section. Although 

in this technique, digital information is converted into the CVNS form, it does not require
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Figure 6.5: Layout view of some parts of the 8 x 8  array multiplier
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Figure 6.6: Extracted view of some parts of the 8 x 8  array multiplier
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Figure 6.7: 8 x 8  CVNS array multiplier
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conversion to binary after each two in put addition.

The CVNS digit set of x  and 2x are formed, and are multiplied with proper digits of 

y through MDACs, the same as the array mulitplier. At the second stage, proper CVNS 

digits can be added together in current mode, and therefore the speed of reducing the partial 

products increases. At the output, each column is compared with its adjacent column from 

the right. Comparison is based on the rounded floor function, which is used in the RE 

process. The operation speed of this multiplier is a factor of m  (number of input digits) 

higher compared to the basic CVNS multiplication architecture (which requires frequent 

error correction), because it does not require any correction.

Although this method offers higher speed, the modular reduction circuit design becomes 

rather complex.

6.5 MID Switching Multiplier

MID switching operations are mostly in the analog domain, and unlike the array multiplier 

it does not require frequent conversions to and from binary. The MID principal of operation 

is very close to a reduced area array multiplier architecture. The MID multiplier relies on 

the maximum reliable resolution of the analog domain, and generates only the MID digit. 

The MID digit has all of the required information of the lower informed digits, therefore 

required information can be extracted from it. Figure 6.8 shows the general configuration 

for a 4 x 4 multiplication scheme.

For low-resolution multiplication, the MID switching multiplier shows great savings in 

terms of area and power. MID Switching can also be used for the truncated multiplications. 

By cascading the MID switching multipliers, the range of the multiplication can be extended. 

The speed of this multiplier is dependent on the A/D converter speed. This multiplier is 

completely analog and summations in current mode result in a high speed of operation and 

area savings. However, it requires high speed A/D converters in order to generate all of the 

binary digits from a single analog CVNS digit.
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Converter

Carry-Out

Zj Zq

Figure 6.8: MID Switching CVNS multiplier
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Figure 6.9: Extending the range of MID multiplier
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6.6 Summary

In this chapter, we have explored the possibility of applying the CVNS theory for digital 

multiplication. The CVNS array multiplier is composed of a regular array of high radix 

CVNS adders. The CVNS multiplier has high speed and with a relatively small layout area. 

By applying this method, higher radixes can be used, which reduces the area and increases 

the efficiency of the operations. However critical path delay of operation may not decrease, 

as, in our scheme, it is dependent on the number of input digits.

The area of this multiplier can be reduced further using a more in trade off to a more 

careful layout. In our designs we have chosen a conservative approach, where we generate 

all of the required CVNS digits.

Two alternative methods of multiplication are also suggested. The CVNS field is new, and 

alternative methods offered here are not the only possibilities for the CVNS multiplication.
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Chapter 7

CVNS Based Neural Networks

7.1 Introduction

The field of neural networks takes a special place in analog and digital signal processing. 

Analog Neural Networks (Analog NN) [2, 3, 17, 28, 32, 37, 43, 58, 59] provide an efficient 

means for implementing neurons with simple and elegant nonlinear analog circuits and with 

only a few transistors. However, the low precision of analog circuits is a limiting factor for 

realizing large size Analog NNs. The size and complexity of such networks is affected by 

reduced noise margin, power supply and low resolution (6 to 7 bits) of analog circuits.

Digital Neural Networks [9, 92, 5], on the other hand, can extend the resolution, and offer 

a practical solution for storing the synaptic weights on the chip. However, such networks face 

the difficulty of generating a smooth neural activation function which is impeded by digital 

quantization and by increasing circuit com plexity required for im plem enting the nonlinear 

function. Proper network synaptic convergence depends on the differentiability of the non­

liner neural function, which makes requires the function to be analytic (or smooth).

The CVNS approach can extend the dynamic range of a continuous signal beyond the
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limitations tha t are imposed by the analog medium. In the CVNS, its smoothness of the 

nonlinear function is maintained in the digit with the highest index, and only a few additional 

digits are required to increase the accuracy. Moreover, the ability to keep the number of 

digits low, reduces the synaptic interconnection complexity.

In this chapter, a model of an Adaline neuron based on the function evaluation properties 

of the CVNS is proposed. We explore improvements in the CVNS implementation of Analog 

NN in order to improve the robustness of a network, built by such elements, to weight errors. 

The effect of weight inaccuracies are studied in this chapter through stochastic modeling of 

the proposed network. Section 7.2 presents our proposed CVNS Adaline, and section 7.3 

covers the stochastic model of a network of our proposed Adaline, followed by a summary.

7.2 CVNS Madaline Network

The Adaline (Adaptive linear element) is widely used in filter and signal processing. A 

network of such elements, called a Madaline, is a  feed-forward multi-layer network of Adaline 

elements. Such network is trained by the LMS or Widrow-Hoff algorithm, also known as 

delta rule [87].

A CVNS Adaline consists of a main function and a few sub-functions. Sub-functions 

have information overlap in the same way as the analog-digits. Therefore, CVNS operations 

have higher precision compared to purely analog implementations. Figure (7.1) shows the 

general configuration of our proposed single CVNS Adaline. Synaptic weights are stored on 

multilevel analog memories on the chip in the CVNS format. Inputs to the network are not 

required to be converted into the CVNS form and are kept in their original format (positional 

Number System). Multiplication in the CVNS does not require both values to be converted 

into the CVNS, and is based on scaling the modular CVNS digits.

The output of each multiplier is in the CVNS form, and is as follows:

(\u ))i\j,n =  x j-((w ))i\j,n (7-1)
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Figure 7.1: CVNS Adaline configuration, where inputs are multiplied by the CVNS synaptic 

weights, and nonlinear activation function, /, is developed from function evaluation properties 

of the CVNS.
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where —k < i < L i s  the number of CVNS digits, and ((n)),;^, indicates a CVNS digit with 

index i, at layer j  and node n.

Each CVNS Adaline nonlinear function consists of a main nonlinear function, and, de­

pending on the number of digits, there axe a few nonlinear sub-functions which are used for

digits, where each element, denoted as ((y))i, is given by:

N

=  (7.2)
t = l

where - k  <  i < L.

The output of a CVNS Adaline, yhn, is generated from multiple analog digits in a series 

method, called Reverse Evolution, and are repeated here for convenience.

where [a^J# =  [a* — a*-i / 0 \ r  and [•]/? is the rounded floor function operation.

In the CVNS with radix /? and L + k digits, the main function, fa , has the highest level 

among the sub-functions. The nonlinear function used here is based on a sigmoidal function 

commonly used in multi-layer networks. The sigmoidal function is expressed as follows:

refining the output. Before the RE process, each CVNS Adaline output has L + k analog-

L({vM r =  [((»))< -  lfi-J0\RmodP (7.3)

and

(7.4)

=  i  +  e~2.~ =  to n s i9 (“ ) (7.5)

The highest level function, and the next sub-function are obtained as follows:

(7.6)

tansig(^j((u))LU!n̂ j  modp (7.7)
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It can be noted from the function evaluation properties of the CVNS that the sub­

functions can be obtained either from the lower or higher hierarchial functions. If we choose 

to find the sub-functions from lower hierarchial function, the precision increases; however, 

hardware cost of implementation also increases. On the other hand, if sub-functions are 

obtained from the higher hierarchial function, the cost decreases, but it may require more 

accurate circuits. Based on these trade offs, a choice for selecting different levels of hierarchy 

has to be made. In this chapter, we have selected a midway point, where each subfunction 

is obtained from its next higher hierarchial level. Therefore, the complexity of the network 

is low, and demand on the accuracy is not high. Moreover, one less CVNS digit is required 

for storage.

If a network is built by transconductance synapses, and current-mode resistive-type neu­

rons, summation and nonlinear functions in the network can be easily performed by hard­

wiring the outputs of the neurons to distributed resistive-type neurons. In this form neurons 

are divided into parallel sub-neurons, where the required number of such elements is equal 

to the number of inputs to the synapses multiplied by the number of CVNS digits. Such a 

network is shown in Figure 7.2, where neurons are indicated as resistors.

Resistive-type neurons have an adjustable activation function to allow increase of fan-in 

to the network. Moreover, distributing the neurons increases the signal to noise ratio of 

the network, and reduces network sensitivity to mismatch and non-idealities of the analog 

environment [21].

The required quality of the implementation, dictates the CVNS dimensions; namely the 

radix, and the number of digits. To increase the accuracy of the analog operations and 

increase the precision, more CVNS digits can be used. The number of digits is chosen based 

on the desired output Noise-to-Signal-Ratio (NSR). These relations are derived from the 

stochastic modeling of the CVNS analog neural network in the next sections.
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RE

Figure 7.2: CVNS Adaline with distributed neurons
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7.3 Neural Network Sensitivity to Errors

The required weight accuracy in a  neural network hardware realization has been studied 

extensively [62, 90, 1, 89, 16, 18, 56, 19]. The sensitivity studies in general are based on two 

methods; the analytical method, which defines the sensitivity as the partial derivative of the 

output to input; the statistical approach, which measures the sensitivity as the ratio of the 

standard deviation of output to the standard deviation of the synaptic weights or inputs. In 

the next section, the statistical approach is used to study the effect of implementation errors 

on a large network. The study considers the effect of error at the recall state or effects of 

implementation error on a trained network, and does not directly address these effects on 

the learning algorithms.

Stochastic modeling of the design allows us to compare the accuracy of our CVNS based 

neural network with regular networks in terms of NSR (Noise-to-Signal-ratio). The output 

Noise-to-Signal-Ratio (NSR) is defined as the ratio of the variance of the output error to 

the variance of the ideal output (without any error which may have been caused by the 

quantization effect, implementation issues, etc.). We are interested to explore the use of the 

CVNS to improve the accuracy of Analog NN implementations.

Stochastic modeling is used to identify the relationship between input and output of the 

network. In this way, the effect of an imperfect implementation is derived, which in turn 

allows us to decide on the complexity of the system. Based on the evaluated accuracy of the 

network and specifications of the environment, dimensions of the CVNS system are chosen.

The nonlinear function is an odd function, and all of the weights in the network have the 

same variance. Moreover, it is assumed that the mean value of each weight in the network 

is zero. The same assumptions are made for the inputs, errored weights and errored inputs.

The stochastic model provided in [62] defines the output and corresponding error of an 

Adaline in an arbitrary layer of the network as follows (given in CVNS terms):

((Y ))li.» = /(x T.((W))b>) (7.8)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7. CVNS BASED NEURAL NETWORKS

A((Y))U,„ =  /((X  +  A X f . (((W))K,„ + A((W))„,n))  (7.9)

Since weight and input matrices are considered zero-mean independent identically dis­

tributed variables, therefore the output variance of all CVNS outputs before RE in any layer 

are the same, and the NSR of the output is:

a 2
N S R  =  —2-- -)ib'n (7.10)

The output NSR ratio is a linear combination of input NSR, <7\x ./a~.., and weight NSR, 

crA((w)),!jn/ cr«t«))ibn’ amplified by a gain function g(.), expressed as follows:

N S R  =  g{VN axa({w))) x (7.11)
v ff* cr((-)) '

where N  is the number of inputs to the Adaline, ax and are the standard deviations of 

inputs and synaptic weights respectively, and, for convenience, the subscripts are removed.

The Analog NN implemented by the CVNS approach increases the precision of analog 

circuits using multiple analog digits. In our proposed neural network model, the final output 

of neuron is refined to increase the accuracy. There is, however, a small approximation error 

in the final value which is propagated upward from the unchecked Least Informed Digit. 

The approximation error is the implementation error of the LID and causes an error in the 

output as follows:

(7-12)

where A ([y])-k\j,n is the error in the Least Informed Digit.

The variance of the output error is:

(7 -1 3 )

Therefore, the final Noise-to-Signai-Ratio, N S R c v , is:

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7. CVNS BASED NEURAL NETWORKS

2 ^2
S N R ev  =  x ( 2 |  +  - 4 g » )  (7.14)

As an example a  case study is presented below to show the improvements.

Example: Improvements in error tolerance We are interested in implementing a three 

layer Madaline with 256 neurons in each layer. The acceptable, NSR is — 20dB, and weights 

and inputs are limited, by the hardware implementation, to [—0.3,0.3] and [—1,1] respec­

tively. Therefore, the estimated variance of weights and inputs is c rj^  =  0.03 and of =  1. 

The gain function is approximately equal to:

g ( y N a xa((w))  ̂ «  0.5 +  0.5 3 y /N a ^ a x (7.15)

The output NSR is:

M

The accuracy of the weights and number of digits is:

1 x % |  =  0 Q27 (7.17)
(3m+k < tm

Assuming tha t the dimensions of the CVNS are (3 — 2 and m  + k = 2, we have:

^ = 1  =  0.108 (7.18)

This means th a t the magnitude of the weight errors must be less than 0.108 of the 

magnitude of the weight. Without the CVNS, the magnitude of the weight error should be 

0.027 of the weight magnitude, and there is an improvement by a factor of 4 in the results for 

the CVNS network. The CVNS has improved the accuracy of the implementation medium, 

and makes the analog design more robust compared to regular analog neural networks.

Figure 7.3 shows the allowable error in the synaptic weight implementation using the 

CVNS approach for various NSR values as a function of number of layers of the Madaline.
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The dimensions of the CVNS are chosen as /3 =  2 and L = 2. For comparison purposes, the 

NSR of the regular Analog NN Madaline implementation is also shown. It can be noted that 

the CVNS offers a more relaxed implementation medium, by adding only one extra digit.

Figure 7.3: Allowable synaptic weight implementation error as a function of number of layers. 

In this case at each layer there are 256 neurons, weights are limited in the interval [-0.3, 0.3] 

and first layer inputs are bounded by [-1,1].

Figure 7.4 shows the required equivalent resolution for implementing the Analog NN for 

various output NSR values are shown. Again, the same function is evaluated for regular 

Analog NN, and results indicate that the CVNS implementation medium can tolerate a low 

resolution environment better with only one extra digits.

There is a tradeoff between CVNS radix, and the number of CVNS digits. A high radix 

increases the system and circuit design complexity. Therefore, it is preferable to choose the 

radix low, while satisfying the implementation requirements. However, a low radix value 

requires more digits, hence increasing the implementation cost.

The choice of radix dictates the complexity of the system, a high radix requires more 

accurate circuits, and minimum value that radix can take is 0  =  2. A low radix, decreases

NSR= —10 dB, CVNS

NSR= -20 dB, CVNS

NSR= -40 dB, CVNS
- 40 .IBrCVNS

2 3
Number o f  layers

4 5
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the complexity of the overall design. Number of required CVNS digits is decided from 

the desirable NSR of the network output from expression (7.14). For example, if network 

implementation requires equivalent of t -bit resolution, while the implementation medium 

can offer t < £ bits resolution, CVNS digits are required to refine the accuracy. The number 

of required CVNS digits is:

L + k =
log(2e~f) 
log(0)

(7.19)

Distributing the neurons in the network decreases the sensitivity and NSR of the outputs 

to the weight errors [21]. This means that implementing large size Analog NN on the analog 

platform can tolerate more non-ideal environment such as mismatches and nonlinearity in a 

fabricated chip. Increasing the inputs of the Adaline by a factor S  increases the NSR ratio, 

which means that the effect of weight quantization in a large size network increases.

NSR - —*40 dB

~NSR“ -40dB" CVNS

N SR = "30 dB,"CVNS" '

NSR= “20 cfB7CVNS "
N S R ^ m -d B - " "N Sff=-l0 3B,“CVNS~

3 4 52
Number of layers

Figure 7.4: Required resolution of the implementation medium as a function of number of 

layers. In this case at each layer there are 256 neurons, weights are limited in the interval 

[-0.3, 0.3] and first layer inputs are bounded by [-1,1].
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Ax i2m

= NSR

Figure 7.5: Stochastic model of an CVNS Adaline with distributed neurons

By distributing neurons in the network this unwanted effect can be reduced. The NSR 

of scaled Madaline, N SRi, and NSR of an scaled CVNS Madaline, N S R cvs are defined as:

N S R s = g (V K N a xai(w))) x ( %  +  (7.20)
v ax V ) )

l \ r q p  _  1  ,  V ^ crx cr((to)K w  f a A x  \  .

N S R cv’ ~  W ^ g{ > x U T +  4 ^ )  ( 7 ' 2 1 )

where 5  is the scaling factor.

Figure 7.5 shows the stochastic modeling of distributed neurons. A case study is demon­

strated next to show the improvements.

Example:NSR of scaled Madaline In a Madaline suppose the inputs and synaptic weights

are uniformly distributed over the range [—2,2]; therefore, a\ =  =  4/3. Assuming a

6-bit quantization scheme, weights are quantized by q — 1/64; therefore, weight values are 

equally spaced from each other by 1/16, and weight error variance is < 7 ^ ^  «  3.255 x 10-4. 

Output NSR of the lumped neuron of 25-input is:

N S R  =  (0.5 +  0.53^25 x 1.342) x 2.44125 x 10~4 

=  1.2836 x lO-3

When the number of inputs to the network increases to 100, the NSR of all three ap­

proaches are:
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N S R s = 2.573 x 1(T3 =  -2 6 dB  
1 -3NSRcv- = p ^T )1-283 x  10

=  -2 0 (L + k)logp -  29dB

NSR= -10 dB, CVNS

NSR= —20 dB, CVNS

NSR= -30 dB, CVNS

~~ JiSR=-20 dB
NSR= -40 dB, CVNS ------------
 — — —— NSRs

-----

Number o f layers

Figure 7.6: Improvements for a CVNS based Madaline for various scaling factors

The CVNS network improvements depend on the number system dimensions. The dif­

ference between the two value is:

—2(T 4- k)logj3 — 3 dB

Figure 7.6 shows the improvements for a CVND Madaline with two analog digits, for vari­

ous number of neurons based on the scaling factor S. As the number of inputs to the network 

increases, the noise improvements in the CVNS Madaline becomes more considerable.
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7.4 Conclusion

The CVNS representation can increase the precision of analog operations beyond the limi­

tations imposed by the analog environment. We have defined the function evaluation in the 

CVNS theory, which consists of a look-up in a set of continuous Overlapped Sub Functions 

(OSF). In particular the MID OSF is proportionate to  the original function, and is able to 

maintain smoothness of the nonlinear function in the MID, and few extra functions increase 

the accuracy of the continuous MID representation. The function evaluation properties of 

the CVNS were applied for developing a new kind of neural networks. In this chapter, we 

also showed that our model for implementing Analog NN using the CVNS is more reliable 

than classical analog circuits can be used for implementation, however the eventual result 

shows that this network has less sensitivity to analog imperfections.
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Chapter 8

Contributions, Conclusions and 

Future Work

The idea of the CVNS is taken from a very simple common household item, where operations 

in this system resemble the operations in reading a utility meter. The nature of the dials in 

the utility meter is to not only expand the dynamic range, but also to increase the precision 

of the defined value. The Continuous Valued Number System was developed from this idea 

to enable its replication in integrated analog circuits, and represented a new paradigm for 

the implementation of signal processing systems.

Values in the CVNS are represented by continuous-valued digits or “analog-digits” , and 

operations in this number system resemble the general operations of a utility meter. In 

the CVNS, the ensemble of digits tha t represents a number, allows for tolerance in the 

CVNS representation and in the im plem entation circuitry. Protection  against noise and 

other impairments is warranted through the redundancy among the CVNS digits. This 

redundancy allows for correction and restoration of the digits to  their original value.

Moreover, addition between the CVNS values is almost “carry-free” , which means that

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8. CONTRIBUTIONS, CONCLUSIONS AND FUTURE WORK

the general CVNS operations can be targeted to high speed implementations.

8.1 Contributions

In this dissertation, we have proposed simple and elegant solutions as the second generation 

designs based on this number system.

In Chapter 3, a simplified conversion technique from binary to CVNS representation, and 

a new technique for converting the CVNS results back to binary representation has been 

developed.. A general method for two operand binary addition was also developed, which 

has resulted in a new VLSI architecture and implementation.. Two alternative methods for 

generating the adder structure were introduced.

The computational complexity of CVNS adders has been derived, to provide a  measure of 

performance in terms of the VLSI implementation area and delay. This complexity measure 

has been used to compare different CVNS adder architectures with each other and with 

also Threshold Logic implementations of binary adders. Finally, we have demonstrated the 

design of a 16-bit two operand CVNS adder with controlled precision, targeted to the TSMC 

CMOS 0.18pm technology. Comparisons between the adders show that the CVNS adder is 

superior in terms of area, power and reduction of the system and cross talk noise.

Chapter 4 has presented a new and important path for the CVNS. In this chapter, the 

design and implementation of a mixed-signal 64-bit CVNS adder was developed. The 64- 

bit CVNS adder is a cascade of four 16-bit adders. The reduced area implementation of 

the CVNS, along its the compact and low-power properties, makes this adder suitable for 

multi-media signal processing applications. The 64-bit adder, implemented in TSMC CMOS 

0.18pm technology, provides a worst case delay of 1.5 ns and a static energy dissipation of 

about 14 pJ with a  core area of 13250 pm2.

Chapter 5, proposed a new type of the CVNS multiplier using the new concept of the 

CVNS compressors to reduce the partial product columns where values are evaluated in 

only one gate delay. The final output is generated by using high-speed high-radix CVNS
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adders. The new multiplier was designed with the target 0.18pm CMOS technology and 

again, favourably compares with standard binary multipliers in the same technology, with 

the reduced noise advantages.

Chapter 6, presented our new CVNS array multiplier. Instead of using general configu­

ration for CVNS multiplication, arrays of high radix CVNS adders were used to increase the 

speed of operation, and to reduce the cost of hardware implementation. Two full custom 

designs have been carried out in CMOS target technology. A 16 x 16 and a reduced area 

8 x 8, from which the 8 x 8  array multiplier is currently in fabrication. Moreover, some 

suggestions were also given for alternative forms of multipliers in the CVSN theory.

In Chapter 7 we have developed an analog neural network implementation that uses 

direct analog input signals. The function evaluation properties of the CVNS were also 

used implementing a smooth (differentiable) non-linear function for each neuron. An CVNS 

Adafine neuron, was proposed, and we have used stochastic models of a CVNS Madaline to 

obtain suitable levels of robustness for the network. The error analysis indicates that the 

network is able to better handel implementation errors better in comparison to a classical 

analog neural networks.

In summary, the contributions of this dissertation are listed below:

•  Novel addition approaches are proposed for feasible implementation of CVNS. [53]

•  System complexity equations are derived, and compared with similar architectures.

[48]

•  New and more efficient methods for radix conversion and CVNS to binary conversion 

methods have been developed. [53, 48]

•  Efficient circuits have been developed, to increase the operational speed and to reduce 

the power consumption. [53, 48]

•  A full custom design example adder was designed and simulated to demonstrate the 

proposed approach. [53, 48]
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•  A new reconfigurable adder, with on-demand resolution. [52]

•  Four general classes of novel CVNS multiplication schemes are proposed.

•  An array multiplier with a regular architecture has been implemented in a CMOS

0. 18/mb technology and compared with standard digital designs. [50]

•  A prototype of an 8 x 8 array multiplier has been design, simulated and successfully 

sent for fabrication.

•  New CVNS compressors based on the modular reduction arithmetic are proposed, and 

applied to the implementation of an efficient CVNS Tree Multiplier. [51]

•  Additional multiplication schemes including the MID switching for truncated multipli­

cation and a more adaptable CVNS multiplier have been proposed.

•  The effect of implementation errors in analog environment with limited precision has

been studied. [49]

•  The effect of an imperfect analog environment on CVNS digits has been explored. [49]

•  The correction of digits in the CVNS has been compared with MVL correction. [49]

•  Analog complex function evaluation based on the CVNS is studied, which allows the 

future implementation of completely analog arithmetic units [47]

•  A CVNS Adaline is proposed to be used in a CVNS Neural Network.

•  Based on stochastic modeling of the CVNS Analog NN, we have demonstrated that 

the CVNS offers a more robust implementation. [47]

8.2 Future Research

The field of the CVNS theory is very new, and is able to offer a wide host of new solutions 

for various applications. In this section we offer a few suggestions for the future research on
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this number system.

Today, signal processing and arithmetic operations rely almost exclusively on digital 

processors and computers. On the other hand, almost all forms of data from the outside 

world are in analog form (music, image, voice and so on). To process these data in regular 

digital signal processing systems, these analog signals have to be digitized, and after the 

processing, results are converted back into the analog form again. The CVNS can offer an 

elegant solution to the implementation of such a processor.

Most of this dissertation, with the exception of Chapter 7, only deals with systems that 

have quantized input and output data. A proper starting point for future research is to 

deal directly with analog signals instead of utilizing quantized information. A good starting 

point for a fully analog design a continuation of the work we have started on the Madaline 

network.

Yet another important feature of the CVNS is the error correction method, which requires 

further attention. Error correction plays an important role in the CVNS operations. It is 

important to remember that the role of error correction should always be to fine-tune the 

outcome of the operations, and to be optional. Error correction should not be replaced with 

the actual arithmetic operations. This fact been demonstrated in the design of the CVNS 

adder, where the delay and area of the adder has been increased for the group adder.

Alternative methods for error correction are specially useful for storage and memory 

applications. Storage of the CVNS values is an important area of research, and needs to be 

addressed for fully analog CVNS systems implementation.

To implement denser and more reliable multi-level memories, non traditional and novel 

solutions are needed. The CVNS which is built on analog platforms uses the redundancy 

among the digits to detect and correct multiple errors. The Reverse Evolution in the Con­

tinuous Valued Number System, which is used for detecting and correcting multiple errors 

in the system may provide a novel solution to the reliability of multi-level memory systems.
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8.3 Final Conclusion

In this dissertation, various arithmetic units based on the CVNS have been proposed. We 

have compared all of these structures with the state of the art digital designs. The CVNS is 

able to offer great savings in terms of area and power consumption. The reduced area of the 

CVNS implementations in this dissertation are due to the the use of current mode circuitry, 

where summation is performed by hardwiring the nodes. Differential style circuit design has 

resulted in circuits with higher speed of operation and increased noise margin of the analog 

circuits. The CVNS implementations delay is comparable to the static digital designs.

With no guarantee on the end results and without any existing background information 

on the potentials that this approach may offer, the current research was initially motivated 

by academic curiosity.

Our results have finally demonstrated the potential superiority of the CVNS compared to 

conventional digital systems, where the reduced noise advantages of analog implementations 

can offer an attractive alternative for realizing advanced signal processing.

CVNS theory is still quite new and there are still many unknown possibilities, which 

require further investigation. Our results show that signal processing based on the CVNS 

is able to offer implementation savings, and may be a future alternative for some integrated 

microsystems tha t require low noise computer arithmetic.

In our research, we have explored and generalized the CVNS theory and proposed several 

high performance implementations for computer arithmetic and signal processing.

This CVNS project has been a part of an NSERC-CRD research grant between Gennum 

Corporation, Research Centre for Integrated Microsystems at the University of Windsor and 

the ATIPS Laboratories at the University of Calgary. The development of the CVNS along 

with other projects in our research centre were reported on a regular basis. This research 

has also been featured in the 2004 issue of the University of Windsor Alumni Magazine, 

the 2005-2006 Ontario Research Council Success Stories, and the annual iCORE (Alberta) 

Research Reports.
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Appendix A

CVNS Error Correction

The CVNS error correction allows for digit correction and restoration. The error correction of 

the CVNS digits, allows for more tolerance in the analog representation and implementation. 

In this appendix, the error correction features of the CVNS are presented in more details.

A .l Introduction

Although it has been mentioned that the CVNS is able to recover from possible errors caused 

by the environment in which it has been implemented [67], its nature has not been explored 

in details yet. In this dissertation, the error recovery mechanism of this number system is 

examined comprehensively. The error threshold for implementing digits, and the effect of 

the CVNS dimensions (radix and number of digits) on error recovery are studied. This study 

is able to provide a better understanding of implementation medium requirements. Error 

correction is studied here, in the context of its ability to enhance the CVNS representation 

due to reduced noise margin. The error correction presented in this chapter is an essential 

part of the CVNS representation, and it is required to develop mathematical and theoretical
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A. CVNS ERROR CORRECTION

foundations for it. Therefore, we start to look at the integrity of the CVNS representation 

considering various types of errors. The sources of such errors could be from nonlinear 

circuits, fabrication errors and system noise.

Section A.2 deals with different types of error that may affect the digits. The error 

correction concept starts by looking at linearly additive style errors in Section A.3, and in 

Section A. 10 a more robust method for removing the errors is given.

A.2 Error

A CVNS digit can be affected by three form of errors:

• A digit error which is added linearly into the analog digit which results in an erroneous 

digit value of

((i»4 =  ((*))i +  e, (A.l)

As a result, the digit value may go beyond the range of ±/3. This type of error is called 

linearly additive-style error, which is usually caused by the implementation medium. 

The error source can be linear or nonlinear source of error. However, in the CVNS all 

of these errors are called linearly additive due to their effect on the CVNS digits. In

this section we focus on removing this type of error from any CVNS digit, and develop

a non-iterative method which is able to enhance the representation.

• A digit error may be added to the digit values of modulus j3 which results in an errored 

digit as follows:

((£))* =  {((x ))i +  £°)mod(3 (A.2)

In this case, the digit value never reaches the ±/3. modularly additive-style errors are 

the result of imperfect CVNS operations. Many of the linearly additive-style error 

correction properties can be applied to this type of error as well.
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• A digit error of precisely an integer multiple of the radix is added to the digit which 

results in an errored CVNS digit as below:

((5% =  ((re)), +  l . f i  (A.3)

Errors from an imperfect modulus operation may introduce such congruence errors into 

the digit.

An additive error which is composed of all three type of errors and corresponding relative 

error are as follows:

£((*))* =  £i +  (£°)modf3 +  IEip  (A.4)

c - f M i  (a£((x))i ~  p  (A-5J

As a result, the digit value may go beyond ±/? range. The three errors are defined in Fig. 

A.l, for 0 <  £i <C /3, 0 <  e? P , and I£i = —1. From this figure, it is evident that a specific 

error can be decomposed into various combinations of these error styles, and hence is not 

unique. It is not important, however, to find the composition of the errors, and they can be 

removed. The CVNS digit error and the relative error which is defined as error related to 

the radix, are as follows:

The effectiveness of the proposed error correction will be optimized by measuring the 

Probability Density Function (PDF) of error, to obtain an efficient method for reducing the

error, and increasing the probability of success. The three main properties of the error PDF

are as follows:

PDF

In any PDF, a value e0 can always be found such that the occurrence of values less than e0

are more probable than occurrence of values greater than s0-

/ f£ 0  /  r - E  0  roo  \

p(e)de =  1 => Vp(e) : 3e0 >  0 : I p(e)de > f / p{e)de +  / p(e)de I (A.6)
J —eo \J  oo Je o J
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Figure A.l: CVNS digit errors: Linearly additive-Style, Modularly additive-Style and Con­

gruence errors

In practical electronic implementations, relatively small errors often occur more than 

large error values:

where Q is the maximum value of representation quantity in which the CVNS is implemented. 

If most of the errors happen between the 0 and £o> then f ^ <eop(e)d£ «  1.

It is not required to have p(e) equal to zero for any value or range of e, as occurs for 

instance outside of the boundaries of a uniform distribution, or that PDF be clock shaped 

as in the case of Gaussian distribution. It is only required that £0 Q.

Descriptive Point

The PDF of the error probability, p(e), can be compared by what is called a Descriptive 

Point (DP), £0, of a  specific PDF function. For a given £0, summation P£Q =  f eQ<]̂ p(c)d£ 

is computed for each PDF, and results are compared. The PDF with the smallest Pe o is 

more desirable. Similarly, we can obtain the corresponding DP for any PDF. In general, it 

is desirable to have P£Q as small as possible, in which case, £0 can be taken as a multiple of

/ p(e)de/  p{e)de 
J  |e |<so Jeo<\e\<Q

(A.7)

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. CVNS ERROR CORRECTION

the standard deviation of error.

Narrowing the PDF

An important feature is that if a PDF is narrowed by a factor A > 1 towards the vertical 

axis such that p'{e) — X.p(s.X), then f ^ p ' f y d e  = 1 is maintained. The PDF of the p'(e) 

has an equal P£>0 for a stricter DP which is equal to e'0 = £o/X. This means that for error 

PDF any operation that narrows the function, is a more favorable PDF, with a much smaller 

standard deviation of <x' =  a/X. A widened PDF of p'(e) =  A_1.p(e), has an equal Peo for 

£q = £0X with a larger standard deviation of a' = Act.

These properties are used to evaluate the effectiveness of error correction in the CVNS. 

In the next section, a method is proposed for linearly additive-style error correction and 

modularly additive-style error is explained later.

A.3 Linearly Additive-Style Error

Correction of the digits starts from the less informed digits, and then applied to more in­

formed digits. The starting point is by checking the relation between any two adjacent digits, 

which was given in (2.9). The linearly additive-style CVNS errored version of two neighbor­

ing digits are ((£))* =  ((a;))* +  for the more informed digit, and ((£))»_i =  ((z))i-i -I- £i-i for 

the less informed digit. A successful error correction is able to recover the associated integer 

correctly or in other word [((£))» j =  •

As an initial attempt, we use the floor function to obtain the integer from the errored 

CVNS digits or in other words |_((£))ij =  [((r))jj. In order to obtain the recovered digit, 

((£)), errored digits are placed in (2.9) as follows:

((*))< =  LIKM + (A.8)

Successful error recovery depends on both correct integer extraction and existing error 

in the less informed digit. It is required tha t the result of the floor function to be a close
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approximation of the original CVNS integer. Only when the original CVNS value lies closely 

to an integer, the symmetric error e* is small enough, and floor function results in correct 

extraction of the integer. The error which comes from the lower less informed digit denoted 

by ej, is the correction error and is equal to:

Only for error values such that the digit error has decreased. Properties of

error PDF are used to evaluate the effect of error correction using the regular floor function, 

and to compute the error PDF of the new CVNS digit. The PDF of the error of the corrected 

digit, p(£i), is now a narrower version of the PDF of the less informed digit, which is the 

result of multiplication by the radix (j3 > 2). The error PDF of the recovered digit, using 

the the floor function is:

For a mid-integer CVNS digit value of ((5))* =  1 + 1, where I  =  0 , . . . ,  /3 — 1, we conclude 

that P ([((£'))jj =  [((x))jj) =  1. However, for integer CVNS values of ((x))* =  0 ,... ,/? , this 

probability is reduced to To enhance the results, we have to find an approach that delivers 

P(L((x))iJ =  L((x))jj) =  1 for all CVNS values. The relation between the CVNS digits can 

be used to develop a more accurate approach in reducing the error.

The difference between the two values of ((x))* and ((x))j_i//3 is ideally the integer value 

of [((x))ij =  ((x))i — ^ <~1. This can be used as the starting point to find a more accurate 

approximation of the associated integer by using a rounded floor function. The operation 

of rounding is to find the closest integer to a real value. On the ring this means finding the 

closest integer on the range to the point in question. The rounding on the real ring for any 

positive or negative value of a is defined as:

(A.9)

p(e') =  p.p(£i-1./3) (A-10)

The probability of success is:

(A. 11)
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(A.12)((g))i-11 
P  Ji?

Rounding can be defined for real values outside the set [0, P),  however, the integer out­

come has to be within the ring range for the CVNS application. The CVNS digits are placed 

into above equation to obtain a better approximation of the associated integer value, as 

follows:

L P ) ) di \ R
a m - 1

p R

((*))<

For bounded error values, it can be concluded that:

(A.13)
R

£j-i
P < \  => 1 P M  =  L M iJ P

(A. 14)

Under the condition in (A. 14), this process will always yield to a close approximation of 

the integer value [P ) ) d  — P- This condition is always true regardless of whether either of 

the errored digits ((x))i  or p ) ) i - i  exceed ±p.

After the correction it is necessary to check for the digits for saturation. It is possible for 

digits to overflow and pass the boundaries, if implementation medium allows it. This will 

happen more for digits that are close to the lower or upper boundary set. This issues will 

be solved later by a more robust error correction in Section A. 10

A.4 Linearly Additive-Style Error Correction

By using the rounded floor function instead of the regular floor function, a more robust error 

recovery process is derived, which is required to be applied to all of the CVNS digits. The 

developed error correction is a sequential process, which starts from the Least Informed Digit 

up to the Most Informed Digit. The LID remains uncorrected, since there is no reference digit

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. CVNS ERROR CORRECTION

for its correction. To increase the efficiency of the process, corrected lower informed digits 

are used for the recovery, which means that every digit requires to wait for the correction of 

all of it’s less informed digits.

Linearly additive-Style Error Correction Steps:

The error correction method is a non-iterative approach developed for linearly additive- 

style errors and is summarized as follows:

• For the linearly additive-style error correction condition

satisfied for any two adjacent digits to have a successful correction.

S i — 1

0 < \  should be

Correction starts from ((r))_fe+i, which is the digit next to the LID. It is assumed 

that ((x))_/c =  ((x))~k =  ((r))-fc, which means that the value of the LID is considered 

un-errored.

For each pair of digits, ((x))* and ((x))i-i, find integer [((x))»J from (A.13) which is 

repeated here again. It should be noted that the corrected version of the less informed 

digit is used.

m ) i \ R P ) ) i i > —k
0

•  After finding the integer, the current digit value can be corrected using the recovered 

version of the less informed digit as follows:

«i))< =  < > - *  (A. 15)

Correction proceeds to the next higher index digits up to the MID.

Example: Given the value x  =  98.792 within the range M  =  1000 the decimal CVNS 

(/? =  10) requires n  =  2, and I = — 2 is chosen. The first two rows in Table A .l show CVNS 

digits and their associated integers. The next two rows contain altered CVNS digits with 

their associated integers. The last two rows are the results of error recovery using both floor 

function, and rounded floor function. Although floor function is mathematically simpler 

than the rounded floor function, it is not able to retrieve the integer values correctly and
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results are not acceptable. The last row shows the results of the correction based on the 

algorithm given for linearly additive-style error correction. The only error in the digits is 

the result of un-corrected LID error, which has propagated into the more informed digits.

i 2 1 0 - 1 - 2

» 0.97792 9.7792 7.792 7.92 9.2

0 9 7 7 9

m ) i 1.12792 9.9292 7.942 8.07 9.35

ip ) ) d 1 9 7 8 9

( (x) ) i  by Floor Function 1.978935 9.78935 7.8935 8.935 9.35

((£))* by Rounded Floor Function 0.977935 9.77935 7.7935 7.935 9.35

Table A.l: Error correction example for x  =  97.792 with /3 =  10 and Maximum Range of 

M  = 1000

A.5 Linearly Additive-Style Correction Error

After applying the sequential error correction, the remaining error is due to possible errors 

in the LID that during the correction propagates upward. Digit errors after correction are 

equal to:

f
e-k

£i = <
£-)
W+1

and the error PDF of the digits is:

P(£'i)= Pi+l-P(e-k) (A. 17)
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The MID error coming from the LID, after correction is:

<  = p i  (A. 18)

This error causes a small difference between the root and recovered value. The difference 

between the two, e = x — x, is now proportional to the MID error (e =  Since L  +  k

indicates the total number of CVNS digits, this error can be reduced by increasing the 

number of digits. In other words, precision of the final results is controlled by the number 

of digits, the same as the Positional Number System. The relative error is found to be equal 

to:

£ = —  =  ^ ~  x  =  g- fc (A 191
M  M  {3L+k+l 1 }

The PDF of the relative error p(e), is a narrowed version of the PDF of the LID error, 

and improvements are exponential with increasing the number of digits.

p(e) = p ( l - k.pL+k+1).f3L+k+1 (A. 20)

The standard deviation of the p(i) is:

(A-21)

A.6 Error Threshold

It is required to find the largest value of the tolerable error as the threshold of error for a 

pair of digits such tha t all of the error combinations can be removed successfully. From the 

statistical point of view, and to obtain the maximum value of the DP of error PDF has to 

be obtained such that (A. 14) is satisfied for all error values less than that. The quality of 

the implementation medium should be able to accommodate the required error threshold. 

For a  radix-/? the error threshold is always higher than the error Descriptive Point.
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Fig. A.2 shows the map of error digits. The slanted lines indicate the digit errors, 

with parameter /3. The top line indicates =  (e* +  /?, and the bottom line indicates

l i - i  =  (e* — | )  (3. The dashed area indicates the points were digit errors satisfy (A.14). It 

is assumed that is the error threshold for digit ((x))*, and £thi-i is the error threshold of 

digit ( ( x ) ) j _ x .  The error bound of two adjacent digits is |£j| < ethi and |£i_i| < S th ^ , and 

points on the map that satisfy these conditions he within a rectangle defined as 0 , which is 

centered around the origin and is the largest rectangle that fits within the dashed area. The 

larger the rectangle, the higher the error threshold for a pair of digits.

(3/2

12

-p/2

Figure A.2: Error Map of two adjacent CVNS digits

This rectangle touches the upper line at point q\ : [ethi, (f — Sth,)3), and the lower line 

at q2 : (—£*/*,(—5  + £tiH)3)- Therefore, within this area, threshold pair ethi and are 

related as follows:

=  5  -  ejj ±  (A-22)

Before correction, all of the CVNS digits have the same chance of error, and the error 

PDF of all of the CVNS digits is essentially the same (p(£i) =  p(£t_i)). Since this assumption 

holds true for DP of two adjacent CVNS digits, the same threshold for both digits is expected 

(ethi = £thi+1 = £th) ■ Therefore, error threshold of the CVNS digits obtained from (A.22) is:

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. CVNS ERROR CORRECTION

£th 2  (/? +  1 ) Â '23^

The area associated with the relative error threshold =  £th/0) is shown in Fig. A.2 

by rectangle 0 , and defined as:

e* = J  = WTT) ( A ' 2 4 )

The LID error affects the overall accuracy of the CVNS representation, after applying

error correction. If errors were bounded by the error threshold associated with the radix of 

choice, the error in the the LID is bounded well (|e~k| <  £th)- As expected, this condition 

reduces the relative approximation error of the CVNS representation given in (A. 19) to:

£ -  jji+k =  2(0 +  1 )/3L+k (A‘25)

Equations (A. 19) and (A. 25) show that the CVNS error representation reduces exponen­

tially with increasing the number of digits. An important conclusion can be drawn here; 

although redundancy in the CVNS is similar to the basic form of adding redundancy in po­

sitional number systems which is used to increase the accuracy (repetition of binary digits), 

it improves the result of representation more and is more robust to errors. In the case of 

positional numbers and repetition of data, the value is simply extracted by averaging the 

multiple replicas, in which the approximation error is linearly proportional to the number of 

replicas, hence it is linearly proportional to the number of digits.

At this point the error threshold of the CVNS and MVL systems can be compared. 

In a typical MVL system, the radix is chosen such tha t the error threshold allows for an 

acceptable low error probability, that can be considered practically zero. This threshold is 

often termed noise margin, since it relates to the physical distance between two subsequent 

digit integer values. In this condition, by increasing the radix of the system, the threshold 

of the system decreases. The relative error threshold of the MVL system in this case is:
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€th 2(B  -  1) Â'26^
The maximum radix which can be chosen in either CVNS or MVL systems, should be 

chosen considering the error threshold. The upper bound of the allowable radix for both 

case can be obtained from (A.24) and (A.26) as follows:

Ano* =  r ^ - l  C V N S  (A.27)

JSmox =  - ^  +  1 M V L  (A.28)
*£th,

For the same value of relative error threshold in both environments, i th =  hh, CVNS can 

take advantage of lower radix values compared to the MVL, which means less implementation 

complexity.

A.7 Probability of Success of the Proposed Linearly 

Additive-Style Error Correction

In a typical environment p(ei) with DP £ 0  -C 1, practically all error values are within the

threshold limit, and hence P([((*))jJ/j =  L((x)) d )  1 , which can be computed precisely for

a given environment. A successful error recovery requires to a close approximation of the 

associate integers ( |_ ((£))* J-R [((x))jj =  e ,) . The ideal case is when there is no error (e* =  0). 

The total probability of occurrence of £< is:

e i i =  oo r j3 (£ i+ i-£ ,)

p ( L P ) ) i J n  -  =  ei) =  /  P & )- p tE i-^d E i-x  (A.29)
Jei=-OO J P{u-%-ei)

This equation does not take into account that the error values may be limited to a 

maximum or minimum value, which is imposed from the implementation bounds. There­

fore, (A.29) provides a lower bound for the probability. The general properties of the PDF
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are, that the total probability is equal to 1 , and that a positive variance exists such that 

e2.p(e)de — a1. Moreover, the sample PDF should be twice integrable in order to find 

an analytical solution. For this reason, we consider a negative absolute exponential Laplace 

PDF as shown:

p(e)
s-V2 |e|/cr

V2a
(A.30)

Analytical solutions of (A.29) do not exist for other forms of the error of type e""*2, bell 

shaped curves of type cos(2atan(e) +1), the Cauchy distribution and 1 — tanh2(e). The 

reason is that the variable of the outer integral occurs in the limits of the inner integral. 

By substituting the Laplace PDF of (A.30) for both p fe )  and p(£i~i) in (A.29), for the 

particular case of interest =  0 , using the analytical software tools we obtain:

0*e7h  -  evfe
(A.31)

( P -  1
Considering a similar case for the MVL, the probability of successful digit retrieval by 

rounding is:

J -i / 2  P(e) de 0 <  Xi < B  — 1

P(Xi = Xi) =  i f-i/2  P(e) de Xi = B -  1

fl£p(e)de Xi = 0

(A.32)

By replacing the same PDF given by (A.30) in the above equation, the probability of 

success for MVL systems is:

P ( X i  -  X i )  -  <

1 — Xi = 0, B — 1

(A.33)

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. CVNS ERROR CORRECTION

The probability of success in the MVL system is independent of the radix, however for 

the CVNS it directly affects the CVNS dimension, namely the radix value. The equality 

P(l((x))iJjR =  L((z))iJ) =  1  is true for error that is at most bounded by the error thresholds 

of each environment. The importance of these equations is that in any environment with a 

required confidence which is represented by function P, the dimensions of the CVNS namely 

the radix can be set to meet these requirements.

A.8 Selecting the CVNS Dimensions

The dimensions of the CVNS are determined by the number of digits and the radix value. 

These parameters determine the eventual accuracy of the representation, depending on the 

implementation medium. In general, the implementation parameters axe fixed and it is 

required to specify the eventual representation from a system perspective. Dimensions of 

the CVNS are decided as follows:

•  Quality of the medium determines the highest selectable radix. If error values were 

bounded to the error threshold value, radix (3 is the free variable and can be set to 

increase the threshold. In this case, the CVNS radix does not require to be high. Other 

factors such as system complexity as a function of the CVNS radix may restrict the 

selection range.

• Demand on the accuracy of the CVNS approximation sets the number of digits. The 

previously chosen radix of the CVNS is now used to decide on the required number of 

digits.

The accuracy of presenting x  in the CVNS is compared with the quantization error of 

presenting it in MVL. In comparison, the relative quantization error of a real value depends 

on the represented value, and not on the implementation medium. We assume that the 

value x  is uniformly distributed within a boundary ±M , therefore, the relative error is also 

distributed evenly, and is bounded by:
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C \ * » A * tyWSwwdla&gev

(a) Bounded Digit Error (b) Unbounded Digit Error

Figure A.3: Error functions of two cases of bounded and unbounded error in the CVNS with 

respect to the quantization error in positional number system

H ^  2 (Bm + t + 1  -  1 ) Â-34^

The standard deviation of the quantized error with uniform distribution is:

ffe = 6(Bm+t+1 -  1) Â'35^

The CVNS error in both cases of bounded and unbounded LID error is compared to the

quantization error of the positional number system as follow:

£

€

2 pL+k Bounded error

{AM)

Unbounded error

These functions are shown in the Fig. A.3 as a function of the CVNS radix, and the 

number of the CVNS digits. Both show the same trend, where by increasing either one of 

the parameters, CVNS implementation error becomes less than the quantization error.
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A.9 Imprecise Correction

In the previous section, it was assumed that the correction is performed with infinite accuracy. 

This assumption helped to understand the theoretical bounds of the probability of success 

for the CVNS digit recovery. In general, the CVNS accuracy can be increased by increasing 

the number of digits, as long as the digit error remains within the limit. It was assumed, in 

studying the confidence of the error corrections, that the error PDF is practically zero for 

the error values higher than the threshold. In this section, we discuss the limitations of the 

overall accuracy imposed by an environment with imprecise correction.

Correction is essentially a two step algorithm; the first step uses an approximation of the 

associated integer, and second step corrects the digit. In this process, division, subtraction 

and rounding operations are performed, where each may introduce more errors. Moreover, 

the result of the rounding operation may not be an exact integer value. These errors, called 

correction error (siCi) > now exist in the corrected CVNS digit. Therefore, the error threshold 

requirement becomes more restrict and (A. 14) is changed to:

The addition of the error term, £/<?,, tightens the threshold requirements, but Reverse 

Evolution process should be able to restore the digits correctly. The total errors from an 

imperfect addition, subtraction, and rounding during the correction process result in a cor­

rected digit as:

The relative error, e has to be estimated, in order to provide the requirements for rel­

ative error threshold of the physical medium. During error correction, the correction error

(A.37)

(A.38)

The error in the digit is:

(A.39)
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accumulates in the eventual outcome, and the relative error is as follows:

g  _  £ - k  , V ~ '  £ ICi+ E  S  (A.40)

The standard deviation which was given in (A.21) for perfect error correction, under the 

assumptions:

•  The correction errors have Gaussian PDFs,

•  The standard deviation of all the relative correction errors are equal,

• The tightened error threshold applies to all of the digits errors, 

is now changed to:
(

ĵ ij+k

_ L + k - l

i= 0

For the correction error to become less significant compared to the LID error, it is im­

portant to have

^  (A-«> 

This means tha t the environment in which the correction is performed must have higher 

precision than the environment from which digits are generated. This confirms to the general 

notions of the requirements for a mixed-signal environment, where the analog domain should 

have a higher quality compared to the digital environment.

Basic theory of the error correction in the CVNS along with equations were derived in 

this section. In the next section, modularly additive-style errors are considered as well. A 

novel method is proposed, which removes all the line- as well as modularly additive- and 

congruence- style errors.
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A. 10 Modularly Additive-Style Error

CVNS is a modular number system and hence digit values are within a bounded ring [0, /?). 

When an error occurs in a CVNS digit which is close to the boundaries of the ring, that digit 

would wrap around the ring. Even if this event happens for only one of the CVNS digits, 

the linearly additive-style error correction can not correct it and will result in more errors 

during the correction.

In the previous sections, linearly additive-style errors were considered, which are typical 

for practical linearity additive-style quantities of hardware implementations of the CVNS. 

The general form of an errored digit was given in (A.4), and it is required to remove the 

modularly additive-style error from the CVNS digit as well. Many of the properties of the 

linearly additive-style errors can be easily expanded for the modularly additive-style errors.

A CVNS digit which contains three forms of errors is repeated here:

P))» = {({x))i +  c°) mod/3 + £i + I£i(3

The error in the digit is equal to:

£» =  (((x h  +  £i) modl3 +  ei +  Ie%/3 -  ((x))i (A.43)

Error can be decomposed into a congruent term, Ie.p and a remaining term, £,t. If linearly 

additive-style error correction presented in the previous section is applied to a CVNS digit 

with an error the same as the above, the term £t can be removed from the digit, but the 

congruent term stays and it is required to remove all forms of error from the digit. A robust 

modularly additive-style error correction method, therefore is able to remove any type of 

error that may be caused by the noise, nonlinearity or non perfect modulus operation. A 

Linearly additive-style error value < f  is always correctible. Two adjacent errored digits 

are:

p  ))i =  p ) ) i  +  £{ +  J^/9 (A.44)
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(A.45)

The CVNS digits lie on a ring which is a bounded set of real values [0, /3), and an error 

may cause the digits to warp around this ring, and generate completely wrong results. The 

implementation of this number system with quantities such as current, voltage or charge is 

also bounded, can be considered as a ring. To retrieve a close and accurate integer value of 

the associated CVNS digit a new modulus rounding function is used for restoring the digits 

as:

(p ))»  — ^ 0  1) modj3+ x  > 0

L P k li (A. 46)

( p ) ) i  — ^ mod(3~ x  < 0

In cases where the CVNS digit is close to the ring boundaries, the new function is more 

efficient. Notation [.]jj is used to combine the top and bottom terms as:

P ))i

Substituting the errored digit, results in:

m ) < h ((x ))i +  +  LetP ~

0
(A.47)

(A.48)

The rounding operation has the property [x + 1}$ =  [x]p 4-1 for any real value of x  and 

integer I. An expression for the associated integer is divided into an integer part, and a 

group of integer and non-integer error terms as follows:

£j-i
0 + le(0  + L€î 1 (A.49)
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Any two CVNS digits positioned on the real ring are related to each other as follows:

(l((x))ilp + &̂)™ od+P W i > 0

((*))< = (A.50)

( L M d / s  +  rnod & ((x ))i <  0

The restored CVNS digit which contains error using the above equation is equal to:

IM iJj} +  ^  ! +  V 1 +  [-1 ~ V  " L ,  , )  raod+3  ( (a ; ) ) i> 0

L W iJ j  +  +  V  +  [& 0 +  Lefi ~  Lei-! ) mod P ((*))< < 0
(A.51)

This step eliminates congruent error terms , and 1, due to the positive and 

negative modulus operation. By substituting, ((x )) i =  , and with the notation

mod± to combine the top and bottom terms, the recovered digit is:

+ 1

P
+

P‘Dmod±P (A.52)

we can formulate a new boundary for successful modularly additive-style error correction.

(e^modp -

{e.i-i)modp
P

< (A. 53)

This term is very similar to linearly additive-style error condition given in the previous 

section. The only remaining error is a  fraction ^ of the error of the less informed digit, 

which has propagated to the current digit.

P ) ) i ((*))< +  ) mod^p (A.54)

The error correction starts from the LID, and the error that propagates into the digit 

under correction is in fact a fraction 4 of the LID error, and possibly an integer multiple of
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the radix. Multiple integer of the radix error does not propagate into the next more informed 

digit due to the modulus operator. Error should be sufficiently small to warrant that the 

operand of the modulus term in (A.54) is less than p.

The ring implementation of the CVNS is the only true representation of the analog-digits 

used in this number system. Line implementation is an approximation, which was used for 

simplifying the mathematical equations. Modularly additive errors are characteristics of 

implementation the CVNS on the real ring. Moreover, it should be noted that while linearly 

additive-style error correction method is limited to errors that maintain ((£))* =  ((r))», the 

modularly additive error correction allows larger range. On the ring for two values to be 

equal, they should reside on the vicinity of each other. Digit errors in the amount of 0 ±  I-P 

are considered without any error.

A. 11 Modularly additive-Style Error Correction

Similar to linearly additive-style error removal, steps for the modularly additive-style error 

removal are summarized. In comparison, modularly additive errors require one more step, 

which is decomposition to congruent error term, and the remaining linearly additive errors.

Iterative Modularly additive-Style Error Correction Steps:

•  Decompose the error, which provides an insight into the correctibility of the CVNS 

digit.

•  If condition stated in(A.53) is satisfied, digits can be recovered correctly.

•  The LID remains the same, and is assumed to be unerroed. Correction starts from the 

more informed digit o f th e LID.

•  For each pair of the CVNS digits, the integer part is found from (A.46) which is 

repeated here. It should be noted that during the correction, the recovered version of 

the less informed digits is used.
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^((x))i — 252*_i j  mod(3+ x  > 0

m b i t  = <

(j(x))i — ^ mod{3~ x  <  0

•  By using this integer, the digit is corrected through (A.50) which is repeated here

+ ^ r l )m o d +{3 > 0

=

(LP))<Jj9  +  mod~p ((arjji <  0

•  This process is repeated for all of the CVNS digits up to the MID.

If a congruent error is in the CVNS digit, a wrap around the ring happens, and in the 

CVNS arithmetic this implies an overflow. The above scheme warrants that the corrected 

digits stay canonic, and are placed on the ring [0 , P). If the ring is implemented by a linearly 

additive-style implementation medium, and if all of the operations are performed by the 

linearly additive-style implementation medium and with infinite precision, then the digits 

end up to be canonic again.

Example: Given the value x = 98.792 within the range M  =  1000 the decimal CVNS, 

P =  10 requires L  =  2, and —k = —2 is chosen. Table A.2 shows the CVNS digits without 

any error, and also errored CVNS digits. Although floor function is mathematically simpler 

than the rounded floor function, it is not able to retrieve the integer values correctly and 

results are not correct. The last row shows the result of the correction based on the algorithm 

given for linearly additive-style error correction. The only error in the digits is the result of 

un-corrected LID error, which has propagated into the more informed digits.

This example shows tha t the rounded floor function is not able to recover errors in a 

modular environment, since it is designed and optimized for linearly additive-style errors.

The relative error is:
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i 2 1 0 - 1 - 2

((*))* 0.98792 9.8792 8.792 7.92 9.2

((x))i?nodl0 1.13792 0.0292 8.792 8.07 9.35

m h u 1 - 1 8 7 9

<0. 
—-__j

_
I 0 9 8 7 9

Table A.2: Error correction example for x  — 98.792 with (3 = 10 and Maximum Range of 

M  = 1000

X  —  X  £ _ k . .

e _  ~ U ~  ~  ^
This equation can be written as the previous error threshold developed for the linearly 

additive-style errors and can be applied to the errors on the ring as follows:

{(ePmod^Pl = ll&H < eth (A.56)

The condition |j < eth guarantees that if lej < eth, errors of ±  1.(3 are tolerated. 

The important consequence is that new correction method is more robust, and can accom­

modate congruent digit values as well. The condition given in the linearly additive-style 

error correction, is more strict and can not remove congruent error terms. When the CVNS 

is implemented in an environment which is not modular by nature, artificial congruence 

should have been applied. This method adds or subtracts integer multiples of the radix to 

or from the CVNS digit which might have been resulted from an addition or other types of 

arithmetic operations. This additional step, warrants that the CVNS digits are canonic and 

stay within the ring range. It should also be noted that the results developed for linearly 

additive-style error in terms of error statistics and chances of success are applicable to the 

modularly additive-style errors as well.

These correction schemes lay the foundations for digital architectures that internally
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employ CVNS analog processing. In this chapter, we showed that despite the uncertainty 

in the CVNS digits due to analog nature of the implementation medium, the CVNS can be 

restored. A set of digits which do not follow the general relation between the two adjacent 

digits, indicate error. The error correction returns the digits into their normal canonic form, 

and corrects the relation. These schemes can detect and correct multiple errors, if errors 

were bounded by the conditions which are defined in this dissertation. Within the CVNS 

context, digits are considered correctible if their associated digits were found with the aid 

of the less informed digits. A digit value is statistically enhanced if the absolute value of 

the less informed digit error is less than 0  times the absolute value of the error of the digit 

under correction.

A. 12 Conclusion

The CVNS digits do not have noise margin, unlike conventional number systems such as 

Binary or Multiple-Valued-Logic. Protection of the CVNS digits against noise and other 

implementation factors is warranted by the redundancy among the digits. The redundancy 

is systematic among the digits, and allows for digit errors during a non-iterative process. 

Error in the digits is detected when digits do not conform to their normal form. Error 

correction narrows the probability density of error in CVNS digits.

The CVNS error threshold is a digit error threshold boundary with associated statistical 

confidence which is a function of the digit error PDF. If all digit errors occur within the 

error threshold, then it is possible to restore the digits, regardless of which specific error 

combination might have occurred. Therefore, CVNS digits are recovered or at least enhanced 

from an error statistics point of view. The digit correction has to be performed in an 

environment which has comparable accuracy to the digital to analog conversion.

CVNS targets situations where the implementation cost function dictates low radices, 

despite the theoretical feasibly of high radices. Compared to Multiple-Valued-Logic number 

systems, CVNS does not require increasing the radix to increase the integrity of the CVNS
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digits. For a given choice of radix, any improvement in the error statistics immediately 

results in an improvement of the error variance compared to the quantized and Multiple- 

Valued-Logic implementations.
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