Highly Par al Iel Resi due Arithmetic Chi p Based on Multiple－Val ued Bi di rectional Current－Mbde Logi c

著者	亀山 充隆
j ournal or publ i cati on title	I EEE Journal of Sol id－St ate Circuits
vol une	24
nunber	5
page range	$1404-1411$
year	1989
URL	ht tp：／／hdl ．handl e．net／10097／46839

Highly Parallel Residue Arithmetic Chip Based on Multiple-Valued Bidirectional Current-Mode Logic

MICHITAKA KAMEYAMA, MEMBER, IeEE, TSUTOMU SEKIBE, AND
TATSUO HIGUCHI, senior member, ieee

Abstract

This paper discusses the implementation of a residue arithmetic circuit using multiple-valued bidirectional current-mode MOS technology. Each residue digit is represented by new multiple-valued coding suitable for highly parallel computation. By the coding, mod m_{i} multiplication can be simply performed by a shift operation. In $\bmod \boldsymbol{m}_{i}$ addition, radix-5 signed-digit (SD) arithmetic is employed for a high degree of parallelism and multiple-operand addition, so that high-speed arithmetic operations can be achieved. Finally, the mod 7 three-operand multiply adder is designed and fabricated as an integrated circuit based on $10-\mu \mathrm{m}$ CMOS technology.

I. Introduction

THE DEMANDS for high-speed computations are obvious in many real-time applications such as ultra-high-speed signal processing and digital control systems. Many VLSI architectures have been proposed to perform real-time computation with large amounts of data. However, arithmetic operating speed is restricted by carry propagation in conventional binary systems, so that a new computer arithmetic system which provides faster computing speed than a conventional system is expected.

The residue number system (RNS) is of particular interest because of the inherent property that addition and multiplication are executed very fast without the need for carry propagation [1]. These residue arithmetic operations have usually been implemented by storing mod m_{i} arithmetic tables in read-only memories (ROM's), and sustain operations limited only by the access time of ROM [2]. However, this implementation is not always appropriate with respect to compactness and speed because a large number of ROM's is required to store all arithmetic tables, and the access time of ROM is not enough for some high-speed applications.

This paper presents a new residue arithmetic circuit based on multiple-valued coding and multiple-valued bidirectional current-mode MOS technology [3]. The RNS is

[^0]essentially a number system which corresponds directly with multiple-valued logic system since each digit takes on m_{i} values. It has been well known that the use of multiplevalued logic has potential advantages [4], [5], so that multi-ple-valued coded RNS has been investigated for effective implementation [6]-[8]. However, the implementation of m_{i}-valued logic circuits with m_{i} signal levels is very difficult when m_{i} is large. Here, a new multiple-valued coded residue digit representation is introduced based on the pseudo-primitive root. With this coding, mod m_{i} multiplication and $\bmod m_{i}$ addition can be executed using only shift and radix- 5 arithmetic operations, respectively. Furthermore, $\bmod m_{i}$ multiplication by a constant coefficient can be performed simply by exchanging wire connections.

Multiple-valued bidirectional current-mode MOS technology is employed to implement the required multiplevalued coded residue arithmetic circuits [9], [10]. Bidirectional current-mode circuits are suitable for arithmetic operations in symmetric number systems because linear addition including polarity can be performed by wiring. Through the use of these circuits, a radix- 5 signed-digit full adder (SDFA) can be constructed easily. In a radix-5 SDFA, carry propagation is always limited to one position independently of the word length, so that $\bmod m_{i}$ addition can be performed for each residue digit in parallel. Multi-ple-operand addition is also effective for high-speed computation [11]. In the residue arithmetic circuit described, three-operand addition can be performed simultaneously using the redundancy of the multiple-valued coding.

In order to confirm the principle operations, the mod7 three-operand multiply adder composed of 190 transistors has been designed and fabricated in $10-\mu \mathrm{m}$ CMOS technology. This arithmetic circuit has a regular array structure which offers the potential for compact VLSI implementation.

II. Symmetric Residue Number System

The symmetric RNS is constructed from a set of relatively prime odd-numbered moduli, $\beta=\left\{m_{0}, \cdots, m_{i}, \cdots\right.$, $\left.m_{N-1}\right\}$, where the residue digit with respect to a modulus
m_{i} is represented by the symmetric set [1]:

$$
\begin{equation*}
L_{m_{i}}=\left\{-\left(m_{i}-1\right) / 2, \cdots, 0, \cdots,\left(m_{i}-1\right) / 2\right\} . \tag{1}
\end{equation*}
$$

Any integer $x \in[-(M-1) / 2,(M-1) / 2]$, where

$$
M=\prod_{i=0}^{N-1} m_{i}
$$

can be uniquely coded as a sequence of residue digit x_{i} according to

$$
\begin{align*}
x & =\left(x_{0}, \cdots, x_{i}, \cdots, x_{N-1}\right) \\
x_{i} & =|x|_{m_{i}}=x-\left[x / m_{i}\right] \cdot m_{i} \tag{2}
\end{align*}
$$

where $\left[x / m_{i}\right]$ is x / m_{i} rounded to the closest integer in the symmetric RNS, and each residue digit is defined to be the remainder of least magnitude when x is divided by m_{i}.

In the symmetric RNS, the addition and multiplication of two numbers $x=\left(x_{0}, \cdots, x_{i}, \cdots, x_{N-1}\right)$ and $y=$ ($y_{0}, \cdots, y_{i}, \cdots, y_{N-1}$) are performed by the following steps in the same way as in the ordinary RNS:

$$
\begin{align*}
x+y & =\left(x_{0} \oplus y_{0}, \cdots, x_{i} \oplus y_{i}, \cdots, x_{N-1} \oplus y_{N-1}\right) \\
x \cdot y & =\left(x_{0} \odot y_{0}, \cdots, x_{i} \odot y_{i}, \cdots, x_{N-1} \odot y_{N-1}\right) \tag{3}
\end{align*}
$$

where \oplus and \odot denote $\bmod m_{i}$ addition and $\bmod m_{i}$ multiplication, respectively, in the symmetric digit set of (1). Each residue digit can be computed independent of all others (i.e., carry-free arithmetic). This separability of binary operations allows for very fast parallel implementation.

In this number system, symmetry is retained as indicated in (4) for a sign conversion:

$$
\begin{equation*}
-x=\left(-x_{0}, \cdots,-x_{i}, \cdots,-x_{N-1}\right) . \tag{4}
\end{equation*}
$$

III. Multiple-Valued Coded Residue Number System

In the residue arithmetic, we must manipulate the numbers whose range is not a power of 2 , and whose digits are not ordered. This speciality causes difficulty in hardware implementation. ROM implementation is not always appropriate with respect to compactness and speed. Direct implementation, in which each residue digit needs m_{i} levels, is very difficult in present LSI process technologies.
Here, we discuss a new approach based on multiplevalued coded residue digit representation. The use of mul-tiple-valued logic enables simple and highly parallel implementation of residue arithmetic operations. In order to achieve effective multiple-valued coding, a concept of the pseudo-primitive root is introduced as follows.

Definition 1: Let the powers of an integer p in $\bmod m_{i}$ representation be $\left|p^{0}\right|_{m_{i}},\left|p^{1}\right|_{m_{i}}, \cdots$, and $\left|p^{\left(m_{i}-3\right) / 2}\right|_{m_{i}}$. If their magnitudes include every value of $1,2, \cdots$, and $\left(m_{i}-1\right) / 2$, then p is called the pseudo-primitive root in $\bmod m_{i}$.

Example 1: Let $m_{i}=7$ and $p=5$. Then

$$
\begin{equation*}
\left|5^{0}\right|_{7}=1, \quad\left|5^{1}\right|_{7}=-2, \quad \text { and } \quad\left|5^{2}\right|_{7}=-3 . \tag{5}
\end{equation*}
$$

It is clear that 5 is the pseudo-primitive root in mod 7 .
The multiple-valued coded residue representation based on the concept of the pseudo-primitive root is defined as follows.

Definition 2: If either $\left|5^{n}\right|_{m_{i}}=1$ or $\left|5^{n}\right|_{m_{i}}=-1$ for $n=$ $\left(m_{i}-1\right) / 2$ and if $\left|5^{k}\right|_{m_{i}} \neq \pm 1$ for all integers k such that $0<k<n$ (i.e., 5 is the pseudo-primitive root in $\bmod m_{i}$), then the residue digit x_{i} in $\bmod m_{i}$ is coded as

$$
\begin{align*}
x_{i} & =\sum_{j=0}^{n-1} x_{i j} j^{j} \quad\left(\bmod m_{i}\right) \tag{6}\\
x_{i j} & \in\{-2,-1,0,1,2\} . \tag{7}
\end{align*}
$$

In practical arithmetic circuits, the pseudo-primitive root $p=5$ is appropriate for the radix of the multiple-valued coded residue digit representation, because:

1) radix- 5 arithmetic circuit can be implemented easily with multiple-valued bidirectional currentmode circuits;
2) redundancy present in the multiple-valued coding with $p=5$ enables simultaneous three-operand addition as shown later; and
3) $p=5$ is applicable to many moduli m_{i}, such as
$m_{i}=7,11,17,19,23,37,43,47,53,59,73,79,83,97$.
For example, the residue digit in $\bmod 7$ is written as (8) using (5). All of the coefficients in (8) have magnitudes of 1,2 , and 3 :

$$
\begin{align*}
x_{i} & =\left|5^{2} x_{i 2}+5^{1} x_{i 1}+5^{0} x_{i 0}\right|_{7} \\
& =\left|-3 x_{i 2}-2 x_{i 1}+x_{i 0}\right|_{7} . \tag{8}
\end{align*}
$$

IV. Hardware Algorithm of Residue Arithmetic Operations

A. Mod m_{i} Multiplication

In the above residue digit coding, $\bmod m_{i}$ multiplication can be performed simply by a shift operation, because all multipliers in the residue representation correspond to a power of 5 . However, sign conversion is often required since both negative and positive values are included in a single digit. For example, mod 7 multiplication is shown in Table I. Since $5^{0}=1,5^{1}=-2$, and $5^{2}=-3$ in $\bmod 7$, the multiplication by a multiplier c_{i} is performed by the following operations:

$$
c_{i}=\left\{\begin{array}{l}
3 \cdots \text { two-digit shift left and sign conversion } \\
2 \cdots \text { one-digit shift left and sign conversion } \\
1 \cdots \text { no operation } \\
0 \cdots 0 \text { for all digits } \\
-1 \cdots \text { sign conversion } \\
-2 \cdots \text { one-digit shift left } \\
-3 \cdots \text { two-digit shift left. }
\end{array}\right.
$$

TABLE I

Mod 7 Multiplication						
\odot	-3	-2	-1	1	2	3
$5^{0}=1$	5^{2}	5^{1}	-5^{0}	5^{0}	-5^{1}	-5^{2}
$5^{1}=-2$	-5^{0}	5^{2}	-5^{1}	5^{1}	-5^{2}	5^{0}
$5^{2}=-3$	-5^{1}	-5^{0}	-5^{2}	5^{2}	5^{0}	5^{1}

Moreover, multiplication by a constant coefficient can be realized simply by exchanging the wire connection.

B. Mod m_{i} Addition

Radix-5 SD arithmetic is employed in $\bmod m_{i}$ addition [9]. In radix-5 SD arithmetic, the addition of two numbers

$$
x_{i}=\left(x_{i n-1}, \cdots, x_{i j}, \cdots, x_{i 0}\right)=\sum_{j=0}^{n-1} x_{i j} 5^{j}
$$

and

$$
y_{i}=\left(y_{i n-1}, \cdots, y_{i j}, \cdots, y_{i 0}\right)=\sum_{j=0}^{n-1} y_{i j} 5^{j}
$$

is performed by following three successive steps in each digit:

$$
\left.\begin{array}{c}
z_{i j}=x_{i j}+y_{i j} \\
5 c_{i j}+w_{i j}=z_{i j} \\
w_{i j}=z_{i j}-5 \quad \text { and } \quad c_{i j}=1 \quad \text { if } z_{i j}>2 \\
w_{i j}=z_{i j} \tag{11}\\
w_{i j}=z_{i j}+5 \quad \text { and } \quad \begin{array}{c}
c_{i j}=0 \\
c_{i j}=-1
\end{array} \quad \text { if }-2 \leqslant z_{i j} \leqslant 2<-2
\end{array}\right\}
$$

where $z_{i j}, w_{i j}$, and $c_{i j}$ are, respectively, the linear sum of $x_{i j}$ and $y_{i j}$, a partial sum, and a carry, and where

$$
\begin{align*}
z_{i j} & \in\{-6, \cdots, 0, \cdots, 6\} \tag{12}\\
w_{i j} & \in\{-2,-1,0,1,2\} \tag{13}\\
c_{i j} & \in\{-1,0,1\} \tag{14}\\
s_{i j}^{\prime} & \in\{-3, \cdots, 0, \cdots, 3\} . \tag{15}
\end{align*}
$$

The sum $s_{i j}^{\prime}$ can be obtained almost in parallel and independently of the word length.

Because of the special property of the pseudo-primitive root, $\left|5^{n}\right|_{m_{i}}=1$ or $\left|5^{n}\right|_{m_{i}}=-1$ in the multiple-valued coded residue representation. Then, the carry $c_{i n-1}$ from the most-significant digit can be connected to the leastsignificant digit as shown in (16):

$$
s_{i 0}^{\prime}= \begin{cases}w_{i 0}+c_{i n-1}, & \text { if }\left|5^{n}\right|_{m_{i}}=1 \tag{16}\\ w_{i 0}-c_{i n-1}, & \text { if }\left|5^{n}\right|_{m_{i}}=-1\end{cases}
$$

The linear sum of the inputs $z_{i j}$ and the final sum $s_{i j}^{\prime}$ are determined by (12) and (15) for two-operand addition.

Fig. 1. Principle of bidirectional current-mode circuits.

In order to realize three-operand addition, $s_{i j}^{\prime}$ is converted into $s_{i j}$ having the range stated in (7) according to (17) and (18):

$$
\begin{align*}
& s_{i j}^{\prime}= \begin{cases}q_{i j}+2 q_{i k}^{\prime}, & \text { if }\left|2 \cdot 5^{j}\right|_{m_{i}}=\left|5^{k}\right|_{m_{i}} \\
q_{i j}-2 q_{i k}^{\prime}, & \text { if }\left|2 \cdot 5^{j}\right|_{m_{i}}=-\left|5^{{ }^{k}}\right|_{m_{i}}\end{cases} \tag{17}\\
& s_{i j}=q_{i j}+q_{i j}^{\prime} \tag{18}
\end{align*}
$$

where $q_{i j}, \quad q_{i k}^{\prime} \in\{-1,0,1\}$. Therefore, $s_{i j} \in\{-2,-1,0$, $1,2\}$.

Example 2: Consider the multiple-valued coded residue digit representation in $\bmod 7$ as shown in (8).

Let $\left(s_{i 2}^{\prime}, s_{i 1}^{\prime}, s_{i 0}^{\prime}\right)=(3,-2,3)$. Since $\left.{ }^{2} \cdot 5^{0}\right|_{7}=-\left|5^{1}\right|_{7},\left.\right|_{2}$. $\left.5^{1}\right|_{7}=-\left|5^{2}\right|_{7}$, and $\left|2 \cdot 5^{2}\right|_{7}=\left|5^{0}\right|_{7}$, each $s_{i j}^{\prime}$ is converted into $s_{i j}$ as follows. According to (17), we have, for each $s_{i j}^{\prime}$:

$$
\begin{aligned}
& s_{i 0}^{\prime}=3=q_{i 0}-2 \cdot q_{i 1}^{\prime} \\
& s_{i 1}^{\prime}=-2=q_{i 1}-2 \cdot q_{i 2}^{\prime} \\
& s_{i 2}^{\prime}=3=q_{i 2}+2 \cdot q_{i 0}^{\prime}
\end{aligned}
$$

where $q_{i j}$ and $q_{i k}^{i} \in\{-1,0,1\}$ are given by $q_{i 0}=1, q_{i \mathrm{I}}^{\prime}=$ $-1, q_{i 1}=0, q_{i 2}^{\prime}=1, q_{i 2}=1$, and $q_{i 0}^{\prime}=1$. From (18)

$$
\begin{aligned}
& s_{i 0}=q_{i 0}+q_{i 0}^{\prime}=(1)+(1)=2 \\
& s_{i 1}=q_{i 1}+q_{i 1}^{\prime}=(0)+(-1)=-\mathbb{1} \\
& s_{i 2}=q_{i 2}+q_{i 2}^{\prime}=(1)+(1)=2
\end{aligned}
$$

hence

$$
\left(s_{i 2}, s_{i 1}, s_{i 0}\right)=(2,-1,2)
$$

Since every $s_{i j}$ satisfies the conditions given in (7), it is possible to realize three-operand addition.

V. Residue Arithmetic Circuits Using Multiple-Valued Bidirectional Current-Mode MOS Technology

A. Multiple-Valued Bidirectional Current-Mode MOS Technology

Fig. 1 illustrates the principle of bidirectional currentmode circuits. From Kirchhoff's current law, the current z is equal to the sum of the two currents x and y. The current z is applied to successive bidirectional currentmode circuits, where the polarity and the current level are detected and arithmetic operations are performed using several basic circuits.

Bidirectional current-mode circuits are suitable for the multiple-valued coded RNS because both negative and

TABLE II
Basic Bidirectional Current-Mode Circuits

$\begin{aligned} & \text { BASIC } \\ & \text { CRRCUIT } \end{aligned}$	CURAENT	$\mathrm{N}-\mathrm{CH} . \text { TYPE }$	$\begin{aligned} & \text { TMIRRORS } \\ & \hline \text { P-CH.TYPE } \end{aligned}$	$\begin{aligned} & \text { THRESHOLD } \\ & \text { DETECTOR } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BIDIRECTIONAL } \\ & \text { CURRENT INPUT } \end{aligned}$
SYMBOL				$\underset{\sim}{x} \xrightarrow{x} \xrightarrow{T D(T, m)} \xrightarrow{y}$	
FUNCTION	$\left\{\begin{array}{l} y=0 \text { if } \bar{X}==^{\prime \prime} \\ y=m \text { if } \bar{X}=0^{\prime \prime} \end{array}\right.$	$\begin{array}{r} y_{1}=-a_{1} x \\ a_{1}: s c \end{array}$	for $\mathrm{i}=1, \ldots, \mathrm{n}$ le factor	$\begin{aligned} & y=0 \text { if } x \leq T \\ & y=m \text { if } x>T \end{aligned}$	$x^{*}=x \quad x=0$ if $x \geq 0$ $x^{*}=0 \times=x$ if $x<0$

Fig. 2. Sign inverter: (a) circuit and (b) symbol.

Fig. 3. Mod 7 multiplier.
positive values can be included in a single digit, and the radix-5 SD arithmetic can be implemented with reduced interconnections. Table II summarizes the basic multiplevalued bidirectional current-mode circuits. A detailed discussion of these circuits is found in [10].

B. Mod m_{i} Multiplier

Since $\bmod m_{i}$ multiplication is performed by a shift operation, the $\bmod m_{i}$ multiplier can be constructed using a barrel shifter with sign inverter. The circuit shown in Fig. 2 is the sign inverter used to invert the polarity of the input current. As an example, the $\bmod 7$ multiplier can be constructed using a 3×3 barrel shifter and sign inverters as shown in Fig. 3, where $c_{i 0}, c_{i 1}$, and $c_{i 2}$ are the control signals for the multiplier coefficients of $5^{0}, 5^{1}$, and 5^{2}, respectively. The products for the multiplier coefficients of $-5^{0},-5^{1}$, and -5^{2} are also obtained by sign inversion of the corresponding outputs. The multiply time is always determined by the propagation delay time of the pass transistor and the sign inverter independently of the word length.

(a)

(b)

Fig. 4. Radix-5 SDFA: (a) block diagram and (b) circuit configuration.

Fig. 5. Photomicrograph of radix-5 SDFA.

C. Mod mi Adder

The mod m_{i} adder can be constructed using a radix- 5 SDFA. In the bidirectional current-mode MOS technology, the addition steps of (9) and (11) can be performed as a wired sum. The main operation of the SDFA is defined by (10). The SDFA has been constructed using 22 transistors, and a block diagram and circuit configuration of the SDFA are shown in Fig. 4.

The SDFA has been fabricated at Tohoku University only to confirm the basic transfer characteristic using the usual $10-\mu \mathrm{m}$ CMOS design rule. Fig. 5 shows a photomicrograph of the integrated SDFA. The effective size is $490 \times 445 \mu \mathrm{~m}^{2}$. The current transfer characteristics of the

Fig. 6. Current-transfer curve of radix-5 SDFA. (a) Partial sum of SDFA. Horizontal axis: input $z_{i j}(97.6 \mu \mathrm{~A} /$ div $)$; vertical axis: partial sum output $w_{i j}(97.6 \mu \mathrm{~A} /$ div): (b) Carry of SDFA. Horizontal axis: input $z_{i j}(97.6 \mu \mathrm{~A} /$ div $)$; vertical axis: carry output $c_{i j}(97.6 \mu \mathrm{~A} /$ div $)$.

(a)

(b)

Fig. 7., Decoder: (a) block diagram and (b) circuit configuration.

Fig. 8. Modified threshold detector: (a) circuit and (b) symbol.

Fig. 9. Photomicrograph of decoder.
partial sum and the carry are shown in Fig. 6, where the unit current is approximately $50 \mu \mathrm{~A}$. Although a slight deviation is observed around the threshold current, the characteristics following (10) are obtained in principle.

D. Decoder for Three-Operand Addition

The decoder of (17) is also effectively implemented using the bidirectional current-mode circuits. Since the radix-5 SDFA shown in Fig. 4 has no ability to restore signal levels, the current level should be quantized in the decoder. Fig. 7 shows a block diagram and the circuit of the decoder, using 32 transistors. In the decoder, a modified threshold detector (MTD), shown in Fig. 8, is used. The operation is defined as

$$
\operatorname{MTD}\left(T_{1}, T_{2}: m\right)= \begin{cases}m, & \text { if } T_{1} \leq x \leq T_{2} \tag{19}\\ 0, & \text { otherwise }\end{cases}
$$

Fig. 9 shows a photomicrograph of the decoder implemented using the same $10-\mu \mathrm{m}$. CMOS design rule. The effective size is $490 \times 475 \mu \mathrm{~m}^{2}$. The characteristics of the implemented circuits are shown in Fig. 10. Fig. 10(a) and (b) shows the current transfer curves for the output $q_{i j}$ and $q_{i k}^{\prime}$ of the decoder, respectively.

Let us consider the noise margin with respect to a device parameter deviation. If the statistical variation from the desired output of the current source exceeds the noise margin, logical errors will occur. The variation of the current-source output current ΔI is mainly caused by the variation of the transistor threshold voltage ΔV_{T}. The variation is represented as $\Delta I=\left(\Delta V_{T} / V_{T}\right)\left(2+\Delta V_{T} / V_{T}\right)$. I_{a}, where I_{a} is the unit current. In the case where $\Delta V_{T}=50$

Fig. 10. Current-transfer curve of decoder. (a) Output $q_{i j}$ of decoder. Horizontal axis: input $s_{i j}^{\prime}(48.8 \mu \mathrm{~A} /$ div $)$; vertical axis: output $q_{i j}$ (48.8 $\mu \mathrm{A} / \mathrm{div})$. (b) Output $q_{i k}^{\prime}$ of decoder. Horizontal axis: input $s_{i j}^{\prime}(48.8$ $\mu \mathrm{A} /$ div $)$; vertical axis: output $q_{i k}^{\prime}(48.8 \mu \mathrm{~A} /$ div $)$.

Fig. 11. Mod 7 three-operand multiply adder.
$\mathrm{mV}, V_{T}=2 \mathrm{~V}$, and $I_{a}=50 \mu \mathrm{~A}, \Delta I$ becomes about $2.5 \mu \mathrm{~A}$. This variation is not large enough to cause logical errors.

E. Implementation of the Mod 7 Three-Operand Multiply Adder

Fig. 11 shows a block diagram of the $\bmod 7$ three-operand multiply adder which is composed of sign inverters, radix-5 SDFA's, and decoders. In this circuit, only multiplication by a constant coefficient is required, such that $s_{i}=\left|2 x_{i}+3 y_{i}-2 z_{i}\right|_{7}$, and it is composed of 190 transistors.

Fig. 12. Chip photomicrograph $\left(2.00 \times 2.50 \mathrm{~mm}^{2}\right)$.

Fig. 13. Mod m_{i} three-operand multiply adder.
Fig. 12 shows a photomicrograph of the current-mode residue arithmetic chip based on $10-\mu \mathrm{m}$ CMOS technology. This chip contains a mod 7 three-operand multiply adder, a radix- 5 SDFA, and a decoder. The chip size is $2.00 \times 2.50 \mathrm{~mm}^{2}$ with a total of 244 transistors, and the effective circuit size of the mod 7 three-operand multiply adder is $1.55 \times 1.99 \mathrm{~mm}^{2}$.

VI. Evaluation

In order to demonstrate an advantage of the proposed residue arithmetic circuit, let us compare typical threeoperand multiply adders.

Fig. 13 shows the $\bmod m_{i}$ three-operand multiply adder based on the proposed residue arithmetic circuits. It is clear that the structure is very regular even if m_{i} is large.
The worst-case total delay time $t_{\text {total }}$ of the $\bmod m_{i}$ three-operand multiply adder is expressed as

$$
\begin{equation*}
t_{\text {total }}=t_{m}+t_{s}+t_{d} \tag{20}
\end{equation*}
$$

where t_{m}, t_{s}, and t_{d} are the maximum propagation delay times of the $\bmod m_{i}$ multiplier, the SDFA, and the decoder, respectively. By substituting these delay times ob-

Fig. 14: Binary implementation of three-operand multiply adder.

Fig. 15. ROM implementation.
tained from SPICE2 simulation using the $10-\mu \mathrm{m}$ device parameters to (20), the operating time is estimated to be 270 ns. Using the $2-\mu \mathrm{m}$ device parameters, the threeoperand multiply-add time can be estimated as 10 ns . These results are quite natural from the speed measurement of the similar current-mode logic circuits presented in [10]. The delay time is equivalent to the total multiplyadd time because of the parallelism of the multiple-valued residue arithmetic circuit.

Fig. 14 shows the 32×32-bit three-operand multiply adder constructed by the fastest 32×32-bit binary multiplier and the 64-bit three-operand binary adder based on $2-\mu \mathrm{m}$ CMOS technology. The 64 -bit three-operand binary adder is realized by a 64 -bit carry-save adder and a 64 -bit block carry-lookahead adder. The hardware complexity is increased to achieve high-speed operations.

Fig. 15 shows the ROM implementation of the $\bmod m_{i}$ three-operand multiply adder based on residue arithmetic. This implementation requires $2^{2 n} \times n$-bit memory capacity to store all possible outcomes of a binary operation, where $n=\left\lfloor\log m_{i}\right\rfloor$, and $\lfloor x\rfloor$ denotes the smallest integer such that $|x| \geqslant x$. The operating speed depends on the access time of ROM.

A comparison of the above various 32×32-bit threeoperand multiply adders is shown in Table III. The set $\beta=\{7,11,17,19,23,37,43,47,53,59,73,79,83\}$ equivalent to approximately 65.8 bit is chosen as the moduli set of the residue arithmetic circuits. In the proposed residue arithmetic circuit, the number of transistors is approximately 34 percent of that for binary arithmetic. Also, the regularity of the layout greatly contributes to the reduction of interconnection area in the multiple-valued residue arithmetic circuit. As a result, the chip area will be greatly reduced compared with the binary arithmetic circuit.

TABLE III
Comparison of Three-Operand Multiply adders
($2-\mu \mathrm{m}$ CMOS Technology)

	RESIDUE ARITHMETIC		BINARY Multiple- valued
Number of tramsistors	47,000	10^{6}	
Multiply-add time (ns)	10	$50^{*} \times 3$	85

It is clear that a highly compact and high-speed residue arithmetic chip can be realized using multiple-valued logic.

VII. CONCLUSION

In this paper, we have discussed the design of a multi-ple-valued coded residue arithmetic circuit based on the bidirectional current-mode MOS technology. Because of its high degree of parallelism, both mod m_{i} multiplication and $\bmod m_{i}$ addition can always be performed within a fixed delay time of the module. Furthermore, the hardware complexity is greatly reduced due to the regularity of the structure and the use of multiple-valued logic. Although residue arithmetic operations are restricted on integer arithmetic, the above high performance can hardly be achieved through the use of conventional binary arithmetic circuit. This highly parallel residue arithmetic chip will be of great use in many real-time applications.

ACKNOWLEDGMENT

The authors wish to thank Dr. S. Kawahito of Tohoku University for many helpful comments.

References

[1] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology. New York: McGraw-Hill, 1967.
[2] G. A. Jullien," "Residue number scaling and other operations using ROM arrays," IEEE Trans. Comput., vol. C-27, pp. 325-336, Apr. 1978.
[3] M. Kameyama, T. Sekibe, and T. Higuchi, "Design of highly parallel residue arithmetic circuits based on multiple-valued bidirectional current-mode MOS technology," in Proc Int. Symp. Mul-tiple-Valued Logic, May 1988, pp 6-13
[4] K. C. Smith, "Multiple-valued logic: A tutorial and appreciation," IEEE Computer, vol. 21, no. 4, pp. 17-27, Apr. 1988.
[5] D. Etiemble and M. Israel, "Comparison of binary and multivalued ICs according to VLSI criteria," IEEE Computer, vol. 21, no. 4, pp. 28-42, Apr. 1988.
[6] M. Kameyama and T. Higuchi, "A new scaling algorithm in symmetric residue number system, based on multiple-valued logic," in Proc. IEEE Int. Symp. Circuit Syst. (Tokyo, Japan), July 1979, pp. 189-192.
[7] L. B. Wheaton and K. W. Current, "A quaternary threshold logic modulo-four multiplier circuit for residue number system nonrecursive digital filters," in Proc. Int. Symp. Multiple-Valued Logic, May 1981, pp. 48-53.
[8] M. A. Soderstrand and R. A. Escott, "VLSI implementation in multiple-valued logic of an FIR digital filter using residue number system arithmetic," IEEE Trans. Circuits Syst., vol. CAS-31, pp. 5-25, Jan. 1986.
[9] S. Kawahito, M. Kameyama, and T. Higuchi, "VLSI-oriented bidirectional current-mode arithmetic circuits based on the radix-4
signed-digit number system," in Proc. Int. Symp: Multiple-Valued Logic, May 1986, pp. 70-77.
[10] S. Kawahito, M. Kameyama, T. Higuchi, and H. Yamada, "A 32×32-bit multiplier using multiple-valued MOS current-mode circuits," IEEE J. Solid-State Circuits, vol. 23, no. 1, pp. 124-132, Feb. 1988.
[11] K. Hwang, Computer Arithmetic. New York: Wiley, 1979.

Michitaka Kameyama (M'79) was born in Utsunomiya, Japan, on May 12, 1950.' He received the B.E., M.E., and D.E. degrees in electronic engineering from Tohoku University, Sendai, Japan, in 1973, 1975, and 1978, respectively.
He is currently an Associate Professor in the Department of Electronic Engineering, Tohoku University. His general research interests include multiple-valued logic systems, VLSI systems, highly reliable digital systems, and robot electronics.
Dr. Kameyama is a member of the Institute of Electronics, Information, and Communication Engineers of Japan, the Society of Instrument and Control Engineers of Japan, the Information Processing Society of Japan, and the Robotics Society of Japan. He received awards at the 1984, 1986, and 1988 IEEE International Symposiums on Multiple-Valued Logic (with T. Higuchi et al.) and the Technically Excellent Award from the Society of Instrument and Control Engineers of Japan in 1986 (with T. Higuchi et al.). He was the Program Co-chairman of the 1986 IEEE International Symposium on Multiple-Valued Logic.

Tsutomu Sekibe was born in Fukuoka, Japan, on October 15, 1964. He received the B.E. and M.E. degrees in electronic engineering from Tohoku University, Sendai, Japan, in 1987 and 1989, respectively.
He joined Matsushita Electric Industrial Company, Ltd., Osaka, Japan, in 1989. His main interests and activities include ultrahigh-speed arithmetic VLSI system.

Mr. Sekibe is a member of the Institute of Electronics, Information and Communication
Engineers of Japan.

Tatsuo Higuchi (M'70-SM'83) was born in Sendai, Japan, on March 30, 1940. He received the B.E., M.E., and D.E. degrees in electronic engineering from Tohoku University, Sendai, Japan, in 1962, 1964, and 1969, respectively.

He is currently a Professor with the Department of Electronic Engineering, Tohoku University. His research interests include the design of one-dimensional and two-dimensional finite word-length digital filters, multiple-valued logic systems, fault-tolerant computing, and VLSI computing structures for signal processing and image processing.

Dr. Higuchi is a member of the Institute of Electrical Engineers of Japan, the Institute of Electronics, Information and Communication Engineers of Japan, and the Society of Instrument and Control Engineers of Japan. He received awards at the 1984, 1986, and 1988 IEEE International Symposiums on Multiple-Valued Logic (with M. Kameyama et al.), the Outstanding Transactions Paper Award from the Society of Instrument and Control Engineers of Japan in 1984 (with M. Kawamata), and the Technically Excellent Award from the Society of Instrument and Control Engineers of Japan in 1986 (with M. Kameyama et al.). He was the Program Chairman of the 1983 IEEE International Symposium on Multiple-Valued Logic, and he was the Chairman of the Japan Research Group on Multiple-Valued Logic.

[^0]: Manuscript received January 3, 1989; revised April 7, 1989.
 M. Kameyama and T. Higuchi are with the Department of Electronic Engineering, Tohoku University, Aoba, Aramaki, Sendai 980, Japan.
 T. Sekibe was with the Department of Electronic Engineering, Tohoku University, Sendai 980, Japan. He is now with the Matsushita Electric Industrial Company, Ltd., Osaka, Japan.

 IEEE Log Number 8929555.

