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Abstract —This paper discusses the implementation of a residue arith-
metic circuit using multiple-valued bidirectional current-mode MOS tech-
nology. Each residue digit is represented by new multiple-valued coding
suitable for highly parallel computation. By the coding, mod m; multiplica-
tion can be simply performed by a shift operation. In mod m; addition,
radix-5- signed-digit (SD) arithmetic is ‘employed for a high degree of
parallelism and multiple-operand addition, so that high-speed arithmetic
operations can be achieved. Finally, the mod7 three-operand multiply
adder is designed and fabricated as an integrated circuit based on 10-pm
CMOS technology. )

1. INTRODUCTION

HE DEMANDS for high-speed computations are ob-

vious in many real-time applicatjons such as ultra-
high-speed signal processing and digital control systems.
Many VLSI architectures have been p loposed to perform
real-time computation with large a.mojlnts of data. How-
ever, arithmetic operating speed is festricted by carry
propagation in conventional binary systems, so that a new
computer arithmetic system which provides faster comput-
ing speed than a conventional system is expected.

The residue number system (RNS) is|of particular inter-
est because. of the inherent property |that addition and
multiplication are executed very fast without the need for
carry propagation [1]. These residue arithmetic operations
have usually been implemented by storing mod m; arith-
metic tables in read-only memories (RbM’s), and sustain
operations limited only by the access |time of ROM [2].
However, this implementation is not always appropriate
with .respect to compactness and speed because a large
number of ROM’s is required to store all arithmetic tables,
and the access time of ROM is not| enough for some
high-speed applications. o ,

This paper presents a new residue| arithmetic circuit
based on multiple-valued coding and multiple-valued bidi-

rectional current-mode MOS technoloé,y [3]. The RNS is
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essentially a number system which corresponds directly
with multiple-valued logic system since each digit takes on
m; values. It has been well known that the use of multiple-
valued logic has potential advantages [4], [5], so that multi-
ple-valued coded RNS has been investigated for effective
im'plementation [6]-[8]. However, the implementation of
m ~valued logic circuits with m, signal levels is very diffi-
cult when m; is large. Here, a new multiple-valued coded
residue digit representation is introduced based on the
pseudo-primitive root. With this coding, mod m, multipli-
cation and mod m, addition can be executed using only
shift and radix-5 arithmetic operations, respectively. Fur-
thermore, mod m, multiplication by-a constant coefficient
can be performed simply by exchanging wire connections.

Multiple-valued bidirectional current-mode MOS tech-
nology is employed to implement. the required multiple-
valued coded residue arithmetic circuits [9], [10]. Bidirec-
tional current-mode circuits are suitable for arithmetic
operations in symmetric -number systems because linear
addition including polarity can be performed by wiring.
Through the use of these circuits, a radix-5 signed-digit full
adder (SDFA) can be constructed easily. In a radix-5
SDFA, carry propagation is always limited to one position
independently of the word length, so thatsmod m; addition
can be performed for each residue digit in parallel. Multi-
ple-operand addition is also effective for high-speed com-
putation [11]. In the residue arithmetic circuit described,
three-operand addition can be performed simultaneously
using the redundancy of the muitiple-valued coding.

In order to confirm the principle operations, the mod7 -
three-operand multiply adder composed of 190 transistors
has been designed and fabricated in 10-um CMOS tech-
nology. This arithmetic circuit has a regular array structure
which offers the potential for compact VLSI implementa-
tion.

II.  SymMETRIC RESIDUE NUMBER SYSTEM

The symmetric RNS is constructed from a set of rela-
tively prime odd-numbered moduli, 8= {mg, - -, m, -,
my_q}, where the residue digit with respect to a modulus

OO"M 8-9200,/89,/1000-1404301.00 ©1989 IEEE
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m; is represented by the symmetric set [1]:

L, ={=(m~1)/2,--,0, -,(mi—l)/2}.
(M—-1)/2, (M —1)/2], where

(1)

Any integer x €[

O N-1
M= H m;
) i=0

can be uniquely coded as a sequence of residue digit X;

according to

X = (Xof Ty Xyt "xN—l).

xi=|x|mi=x_Lx/mi]'mi (2)
where [x/m,] is x/m, rounded to the closest integer in
the symmetric RNS, and each residue digit is defined to be
the remainder of least magnitude when x is divided by m,.

In-the symmetric RNS, the addition and multiplication

of two numbers x = (xg, ', X;," ", Xy_y) and y=

(Vs s Yoo Ve 1) are performed by the following steps
in the same way as in the ordinary RNS:
xX+y= (xoeayoa'"’xi®yi""’xN—l@yN—l)
Xy = (XOG)’O»' X0, Xy Oyyey) (3)

where @ and © denote modm,; addition and mod m,

multiplication, respectively, in the symmetric digit set of
(1). Each residue digit can be computed independent of all

others (i.e., carry-free arithmetic). This separability of bi-

nary operatlons allows for very fast parallel implementa-
tion.
In this number system, symmetry is retained as indi-
cated in (4) for a sign conversion:
_.x: (—xo,- . ~’~—xi,~ . ., _xN—l)‘
III. MuLTIPLE-VALUED CODED RESIDUE
NUMBER SYSTEM

In the residue arithmetic, we must manipulate the num-
bers whose range is not a power of 2, and whose digits are
not ordered. This speciality causes difficulty in hardware
implementation. ROM implementation is not always ap-
propriate with respect to compactness and speed. Direct

implementation, in which each residue digit. needs m, -

levels, is very difficult in present LSI process technologies.
Here, we discuss a new approach based on multiple-
valued coded residue digit representation. The use of mul-
tiple-valued logic enables simple and highly parallel imple-
mentation of residue arithmetic operations. In order to
achieve effective multiple-valued coding, a concept of the
pseudo-primitive root is introduced as follows.

Definition 1: Let the powers of an integer p in mod m,
representation be |p°|,,,|p'|,,, -+, and |pTI| If
their magnitudes include every value of-1,2,---, ‘and
(m;—1)/2, then p is called the pseudo-primitive root in
mod m;.

@
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Example 1: Let m;=7 and p=135. Then
5%, =1, I, =— 5%, =—3.

It is clear that 5 is the pseudo-primitive root in mod 7.

The multiple-valued coded residue representation based
on the concept of the pseudo-primitive root is defined as
follows.

Definition 2: If either |5 |m,=1 or |57, =—1 for n=
(m;~1)/2 and if |5%|,, # +1 for all integers k such that
0<k<n (ie., 5 is the pseudo-pnmltlve root in mod m,),
then the residue digit x; in mod m; is coded as

n—1
= Z x;,;57
j=0

x;; € {-2,

(5)

and

(modm,) (6)

(7)

In practical arithmetic circuits, the pseudo-primitive root
p =73 is appropriate for the radix of the multiple-valued

-1,0,1,2).

‘coded residue digit representation, because:

1) radix-5 arithmetic circuit can be implemented eas-
ily with multiple-valued bidirectional current-
mode circuits;

2) redundancy present in the muluple-valued coding
with p=35 enables simultaneous . three-operand
addition as shown later; and

~3) p=>5is applicable to many moduli m,, such as

m,=7,11,17,19,23,37,43,47,53,59,73,79,83,97.

* For example, the residue digit in mod?7 is written as (8)
using (5). All of the coefficients in (8) have magnitudes
of 1,2, and 3:

— 152 1 0 :
X; =57+ 5%, + 5%,

=|-3x,

_2xi1+xi0|7' (8)
IV. HARDWARE ALGORITHM OF RESIDUE
ARITHMETIC OPERATIONS

A. Mod m; Multiplication

In the above residue digit coding, mod m; multiplication
can be performed simply by a shift operatlon because all
multipliers in the residue representation correspond to a
power of 5. However, sign conversion is often required
since both negative and positive values are included in a
single digit. For example, mod 7 multiplication is shown in
Table 1. Since 5°=1, 5' = -2, and 5= —3 in mod7, the
multiplication by a multlpher ¢; is performed by the fol-
lowing operations:

3--- two-dlglt shift left and sign conversion

2 - - - one-digit shift left and sign conversion
1 - - - no operation

c;= 0---0 for all digits
—1--+sign conversion .
—2 - - - one-digit shift left

- two-digit shift left.
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TABLE 1
Mop 7 MULTIPLICATION

Moreover, multiplication by a constant coefficient can be
realized sumply by exchanging the wire connection.

B. Mod m, Addition

Radix-5 SD arithmetic is employed in mod m, addition

[9]. In radix-5 SD arithmetic, the addition of two numbers

xi: (Xin——lf."xij?' T

T n—-1 g
xio) = Z xijsj
j=0

and

ylz;(yinwhu'7yij’”'>y10 Zylj

is performed by following three successive steps in ‘each
digit:

Z =Xt Vi

(9)

SCU-FWU:ZI-]: (10)

w,=z,;=5 and ¢, =1 .ifz;>2
Wi =2, » cl-j=0 if“2<zij<2 (10a)
w,=2z,;+5 and ¢, =—-1"1ifz,;<-2 '
S{= Wi (11)
where z,, w,;, and ¢;; are, respectively, the hnear sum of

x;; and y,, a partial sum, and a carry, and where

2, € {=6,-+,0,-6} (12)

w, € {-2,-1,0,1,2} (13).
¢, €{-1,01} (14)
s;€{=3,,0,---,3). (15)

The sum s/, can be obtained almost in parallel and inde-
pendently of the word length.

Because of the special property of the pseudo -primitive
root, 15", =1 or )5"|, = —1 in the multiple-valued coded
residue representatlon Then, the carry Cin—q1 from the
. most-significant digit can be connected to the least-
significant digit as shown'in (16):

W10+Czn 1

if 157, =
if (57,

T

Si0 = - (16)

Wig — €

in—1s

The linear sum of the inputs z,
are determined by (12) and (15) for two-operand addmon

- and the final sum s/,
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MULTIPLE-VALUED —©
BIDIRECTIONAL [——0
CURRENT-MODE
CIRCUITS

output

Fig. 1. Principle of bidirectional current-mode circuits.

/; is converted

having the range stated in (7) according to (17)

In order to realize three- operand addition, s/

nto s, J

and (18):
q;; +2q}, if ]2'5j| -=|5‘k.|m_
e S A )
9y =24l i RS, =~ 15",
Sij =4 4 (18)

where ¢,;, ¢/, €{—1,0,1}. Therefore, s;;€ {2,
1,2},

Example- 2: Consider the multiple-valued coded
residue digit representation in mod7 as shown in (8).
Let (s, 54, 8) = (3,~2 3) Since {2 5%, ==15Y,, 2-
S5'y=—15%;, and [2-5%,=5°|,, each s/, is converted into
s;; as follows. According to (17), we have for each s/;:

-1,0,

=3=q,0—2"9}
Si==2=q5~-2-qh
SH=3=¢q,+2-qj

where ¢, ; and g€ {101} are given by dio=1, q}=

-1, g,=0, 95 =1, ¢q,,=1, and ¢/, =1. From (18)
qu + QZO (1) + (1) 2
Sa=qatqh= <O)+(_1)\: -
Sn=4qptqh= (D+(1)=2
hence

(SiZ’ $i1s SiO) = (2

Since every s, satisfies the conditions given in (7), it is -
possible to realize three-operand addition.

,~1,2).

V. RESIDUE ARITHMETIC CIRCUITS USING
MULTIPLE-VALUED BIDIRECTIONAL
CURRENT-MODE
MOS TeCcENOLOGY

A Multiple- Valued Bidirectional Current-Mode
MOS Technology

Fig. 1 illustrates the principle of bidirectional current-
mode circuits. From Kirchhoff’s current law, the current z
is equal to the sum of the two currents x and y. The
current z is applied to successive bidirectional current-
mode circuits, where the polarity and the current level are
detected and -arithmetic operations are performed’ using
several basic circuits. .

" Bidirectiopal current-mode circuits are suvitable for the
multiple-valued coded RNS because both negative and

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 23:10:13 EST from IEEE Xplore. Restrictions apply.
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TABLE II
BASIC BIDIRECTIONAL CURRENT-MODE CIRCUITS
BASIC CURRENT CURRENT MIRRORS | THRESHOLD |BiIDIRECTIONAL
CIRCUIT SQURCE N—CH. TYPE [ P~CH. TYPE DETECTOR CURRENT INPUT]

, mvDD xlf le1".--¥,. __\_/D Thlr: mVnu _
SCHEMATIC[X oy @_ﬁ% J‘ xo >
; I A

Y Vs |X  Yi==¥s Y

L, <Y Y1

X m \ o X — y
SYMBOL ] 7 )g;—@:;% y" 217D, )_) -x*
=0 if X=1 : ; Y=0 if x<T|[x&Ex x=0if x20
o4 Yy=—ax for izt,..n . .
roNeTen {Y:m ifX=0 I a|I=SCALE FACTOR {Y:m if x>T [x:o *Ex i x<)

- Voo
in out  in o—-Do—oout
Vo5

Fig. 2. Sign inverter: (a) circuit and (b) symbol.

Fig. 3.

Mod 7 multiplier.

. positive values can be included in a single digit, and the
radix-5 SD arithmetic can be implemented with reduced
interconnections. Table I summarizes the basic multiple-
valued bidirectional current-mode circuits. A detailed dis-
cussion of these circuits is found in [10].

B. Mod m; Multiplier

Since mod m; multiplication is performed by a shift
operation, the mod m; multiplier can be constructed using
a barrel shifter with sign inverter. The circuit shown in Fig.

2 is the sign inverter used to invert the polarity of the input

current. As an example, the mod7 multiplier can be con-
structed using a 3 X3 barrel shifter and sign inverters as
shown in Fig. 3, where ¢y, ¢;, and ¢;, are the control
signals for the multiplier coefficients of 5% 5!, and 52,
respectively. The products for the multiplier coefficients of
—~5% —5' and —52 are also obtained by sign inversion of
the corresponding outputs. The multiply time is always
determined by the propagation delay time' of the pass
transistor and the sign inverter independently of the word
length.
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= . =20 -w;
- _ . (0,5)
[ 25 41 £ |TD25,5) —"<<o.77 ’—-w— ]
. D250
z ' :
zo22{Bei ' —|—<}—t
. ©.1) =0 ¢
<% T25,5) e
TD(25,1) =
-z*
Z
(@
25 5 1 Voo
R T J
% % o\
Zo—4 55

\.
oD

—0 ~W);

" .l*:é LL; :

®)
Fig. 4. Radix-5 SDFA: (a) block diagram and (b) circuit configuration.

Fig. 5. Photomicrograph of radix-5 SDFA.

C. Mod m; Adder

The mod m; adder can be constructed using a radix-5
SDFA. In the bidirectional current-mode MOS technol-
ogy, the addition steps of (9) and (11) can be performed as
a wired sum. The main operation of the SDFA is defined
by (10). The SDFA has been constructed using 22 transis-
tors, and a block diagram and circuit configuration of the
SDFA are shown in Fig. 4. ‘

The SDFA has been fabricated at Tohoku Un1vers1ty.
only to confirm the basic transfer characteristic using the
usual 10-pm CMOS design rule. Fig. 5 shows a photomi-
crograph of the integrated SDFA. The effective size is
490X 445 pm?. The current transfer characteristics of the

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 23:10:13 EST from IEEE Xplore. Restrictions apply.
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Fig. 6. Current-transfer curve of radix-5 SDFA. (a) Partial sum of
SDFA. quizontal axis: input z;; (97.6 pA/div); vertical axis: partial
sum output w;; (97.6 pA/div). (b) Carry of SDFA. Horizontal axis:
input z; (97 6 [LA/le) vertical axis: carry output ¢;; (97.6 pA/ div).

- - MTD(05,1.5:1 )[©1) -
-s 3 = =00,
= = TD2.5,1)_ Fon <]” %
N —>

1D(1.5,1)

s, /0==1BCl

(—S— A T 0,1 -
“HMTD0.51.5:1) %)
<1t 1D25,1)_ Fon)
= TD(1.5,1) =<0 - =-0qy
(a)"
05 15 25 1 1

] L1 L%

Sijo— th E!;E[:*i o)ss
BRlIEIE R ] S———
T PRE T

S ol

(b)

Fig. 7. Decoder: (a) block diagram-and (b) circuit configuration. -
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«

X ¥
O=MTD(T, To:m) =0

- y=m if TEx=T,
x 0— Fll "y=0 otherwise
o 4
@& (b)

Fig. 8. Modifjed threshold detector: (a) circuit and (b) symbol.

Fig. 9. Photomicrograph of decoder. '

partial sum and the carry are shown in Fig. 6, where the
unit current is approximately 50 pA. Although a slight
deviation is observed around the threshold current, the
characteristics following (10) are obtained in principle.

D.. Decoder for Three-Operand Addition

The decoder of (17) is also effectively implemented
using the bidirectional current-mode circuits. Since the
radix-5 SDFA shown in'Fig. 4 has no ability to restore
signal levels, the current level should be quantized in the
decoder. Fig. 7 shows a block diagram and the circuit of
the decoder, using 32 transistors. In the decoder, a modi-
fied threshold detector (MTD), shown in Fig. 8, is used
The operation is defined as

(19)

' MTD(Tl,TZ:m)z{ma if TlS?CSTZ
' 0, otherwise.

Fig. 9 shows a photomicrograph of th‘e'decoder imple-
mented using the same 10-pm CMOS design rule. The
effective size is 490 X475 pm?. The characteristics of the

_implemented circuits are shown in Fig. 10. Fig. 10(a) and

(b). shows the current transfer curves for the output g,;
and. g/, of the decoder, respectively. .

Let us consider the noise margin with respect to a device
parameter deviation. If the statistical variation from the

~ desired output of ‘the current source exceeds the mnoise

margin, logical errors will occur.  The variation of the
current- -source output current A/ is mainly caused by the
variation of the transistor threshold voltage AV,. The
variation is represented as Al = (AVy/ Vo )2+ AV, / V)
I, where I is the unit current. In the case where AV, = 50

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 23:10:13 EST from IEEE Xplore. Restrictions apply.
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LEE )

()

Fig. 10. Current- transfer curve of decoder. (a) Output q;,; of decoder.
Horizontal axis: input s/, (48.8 pA/div); vertical axis: ou{put q; i (48.8

pA/div). (b) Output q,k of decoder. Horizontal axis: input s{; (48.8
p,A/dxv), vertical axis: output g/, (48.8 pA/div).

’$)%)Zln %Yzzlio X'2Y1Z§2

T

radix-5 radix-5 radix-5
SDFA SDFA SOFA
decoder decoder decoder
[ T B
Sia Sy Sio
Si = 2Xi+3y; 422i mod 7
Fig. 11. Mod7 three-operand multiply adder.

'mV, ¥, =2V, and I,=50 pA, AI becomes about 2.5 pA.
This variation is not large enough to cause logical errors.

E. Imple;hentation of the Mod 7 Three-Operand
Multiply Adder

Fig. 11 shows a block diagram of the mod 7 three-oper-
and multiply adder which is composed of sign inverters,
radix-5 SDFA’s, and decoders. In this circuit, only multi-
plication by a constant coefficient is required, such that

=|2x;+3y,—2z,],, and it is composed of 190 transistors.

where 1,

1409

Fig. 12. Chip photomicrograph (2.00 X 2.50 mm?).

_ Xirv tin-Z..."(liO Yn-l Ym-z ZinaZing .. .20
g:ﬁ-l" barrel b"-l" barrel g'“": barrel
" shifter |77 shifter |7 shifter
- | with sign with sign with sign
) ter © | inverter " inverter
a gl e it ——— ) cil
= Ll i —
) S ] l
* B
radlx-s radix-5 L radix-5
SDFA SOFA |~~~ 77T SDFA .
[T, 3
decoder| |decoder{ - - . - decoder
— l_'
Sin—1 sin—z
Fig. 13. Mod m, three-operand multiply adder:

Fig. 12 shows a photomicrograph of the current-mode
residue arithmetic chip based on 10-um CMOS technol-
ogy. This chip contains a mod 7 three-operand multiply
adder, a radix-5 SDFA, and a decoder. The chip size is
2.00X2.50 mm? with a total of 244 transistors, and the
effective circuit size of the mod 7 three-operand multiply
adder is 1.55x1.99 mm’.

VI. EVALUATION

In order to demonstrate an advantage of the proposed
residue arithmetic circuit, let us compare typical three-
operand multiply adders.

Fig. 13 shows the mod m; three-operand multlply adder
based on the proposed re51due arithmetic circuits. It is
clear that the structure is very regular even if m, is large.

The worst-case total delay time 7., of the modm,
three-operand multiply adder is expressed as

Potal = tm 15+ 1g (20)

t,, and ¢, are the maximum propagation delay
times of the mod m; multiplier, the SDFA, and the de-
coder, respectively. By substituting these delay times -ob- :

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 01,2010 at 23:10:13 EST from IEEE Xplore. Restrictions apply.
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a X b y c Lz
| AR SR S |
32X32bit || '32X32bit || 32X32bit -
muttiplier multiplier multiplier

j 1

L 64 bit three ~operand adder

S

Fig. 14: Binary implementation of three—operahd multiply adder.

.a X b y c .z

VR S TR SAS

Multiplication Multiplication Multiplication
table ROM table ROM ‘table ROM
22Ny 1 bit) (220x n bit) (220 % nbit)
‘Addition
table ROM
(220 x n bit)
Addition n=togm;
table ROM
(220 x 1 bit)
S

Fig.-15. ROM implenientation.

tained from SPICE2 simulation using the 10-um device
parameters to (20), the operating time is estimated to be
270 ns. Using the 2-pm device parameters, the three-
operand multiply-add time can be estimated as 10 ns.
These results are quite natural from the speed measure-
‘meiit of the similar current-mode logic circuits presented
in [10]. The delay time is equivalent to the total multiply-
add time because of the parallelism of the multiple-valued
residue arithmetic circuit.

Fig. 14 shows the 32%32-bit three-operand multiply
adder constructed by the fastest 32 x 32-bit binary multi-
plier and the 64-bit three-operand binary adder based on
2-um CMOS technology. The 64-bit three-operand binary
adder is realized by a 64-bit carry-save adder and a 64-bit
block carry-lookahead adder. The hardware complexity is
increased to achieve high-speed operations.

Fig. 15 shows the ROM implementation of the mod m,
three-operand multiply adder based on residue anthmeuc
This implementation requires 221 X n-bit memory capacity
to store all possible outcomes of a binary operation, where
n=|logm,|, and | x| denotes the smallest integer such that
Cx] = x. The operating speed depends on the access time of
ROM.

A comparison of the above various 32X32-bit three-

operand multiply adders is shown in Table TII. The set

B =1{7,11,17,19,23,37, 43,47,53,59,73,79, 83} equivalent

to approximately 65-8 bit is chosen as the moduli set of
the residue arithmetic' circuits. In the proposed residue
arithmetic circuit, the number of transistors is approxi-
mately 34 percent of that for binary arithmetic. Also, the
regularity of the layout greatly contributes to the reduction

of interconnection area in the multiple-valued residue

arithmetic circuit. As a result, the chip area will be greatly
reduced compared with the binary arithmetic circuit.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NQ. 5, OCTOBER 1989

TABLE III
COMPARISON OF THREE-OPERAND MULTIPLY ADDERS
(2-pm CMOS TECHNOLOGY)

RESIDUE ARITHMETIC | ginaRy .
Multiple~ | p oy | ARITHMETIC -
valued .
Number-of |50 108 140,000
transistors .
Multiply-add : * i ;
P 10 50%3 | 85

.+ ok access time of RdM .

It is clear that a highly compact and high-speed residue

 arithmetic chip can be realized using multiple-valued logic.

VII.. CONCLUSION

~ In this paper, we have discussed the design of a multi-
ple-valued coded residue arithmetic circuit' based on the
bidirectional current-mode MOS technology. Because of
its high degree of parallelism, both mod m, multiplication
and mod m; addition can always be performed within a
fixed delay time of the module. Furthermore, the hardware
complexity is greatly reduced due to the regularity of the .
structure and the use of multiple-valued logic. Although
residue arithmetic operations are restricted on integer
arithmetic, the above high performance can hardly be
achieved through the use of conventional binary arithmetic
circuit. This highly parallel residue arithmetic chip w111 be
of great use in many real-time applications.
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