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Abstract -This paper discusses the implementation of a residue arith- 
metic circuit using multiple-valued bidirectional current-mode MOS tech- 
nology. Each residue digit is represented by new multiple-valued coding 
suitable for highly parallel computation. By the coding, mod m, multiplica- 
tion can be simply performed by a shift operation. In modm, addition, 
radix-5 signed-digit (SD) arithmetic is employed for a high degree of 
parallelism and multiple-operand addition, so that high-speed arithmetic 
operations can be achieved. Finally, the mod7 three-operand multiply 
adder is designed and fabricated as an integrated circuit based on 10-pm 
CMOS technology. 

essentially a number system which corresponds directly 
with multiple-valued logic system since each digit takes on 
m, values. It has been well known that the use of multiple- 
valued logic has potential advantages [4], [5], so that multi- 
ple-valued coded RNS has been investigated for effective 
implementation [6]-[8]. However, the implementation of 
mi-valued logic circuits with mi signal levels is very diffi- 
cult when m, is large. Here, a new multiple-valued coded 
residue digit representation is introduced based on the 
pseudo-primitive root. With this coding, mod m, multipli- 
cation and modm, addition can be executed using only 
shift and radix-5 arithmetic operations, respectively. Fur- 
thermore, mod mi multiplication by a constant coefficient 
can be performed simply by exchanging wire connections. 

Multiple-valued bidirectional current-mode MOS tech- 
nology is employed to implement the required multiple- 
valued coded residue arithmetic circuits [9], [lo]. Bidirec- 
tional current-mode circuits are suitable for arithmetic 
operations in symmetric number systems because linear 
addition including polarity can be performed by wiring. 
Through the use of these circuits, a radix-5 signed-digit full 
adder (SDFA) can be constructed easily. In a radix-5 
SDFA, carry propagation is always limited to one position 
independently of the word length, so that-niod m, addition 
can be performed for each residue digit in parallel. Multi- 
ple-operand addition is also effective for high-speed com- 
putation [ll]. In the residue arithmetic circuit described, 
three-operand addition can be performed simultaneously 
using the redundancy of the multiple-valued coding. 

In order to confirm the principle operations, the mod7 
three-operand multiply adder composed of 190 transistors 
has been designed and fabricated in 10-pim CMOS tech- 
nology. This arithmetic circuit has a regular array structure 
whch offers the potential for compact VLSI implementa- 
tion. 

11. SYMMETRIC RESIDUE NUMBER SYSTEM 

The symmetric RNS is constructed from a set of rela- 
. . , m,, . . , 

where the residue digit with respect to a modulus 
tively prime odd-numbered moduli, p = { 
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c, = 

m, is represented by the symmetric set [l]: 

3 . . . two-digit shift left and sign conversion 
2 one-digit shift left and sign conversion 
1 . - . no operation 
0 . . e 0  for all digits 

- 1 . sign conversion 
- 2 . .  . one-digit shift left 

L,,,, = { - ( m ,  - 1)/2,. - a ,O,  , (m,  - 1)/2}. (1) 

Any integer x E [ - ( M  - 1)/2, ( M  - 1)/2], where 

N - 1  

M =  n m ,  

can be uniquely coded as a sequence of residue digit x, 
according to 

r = O  

x = ( Xo; * * , XI,* * * , XN-1) 

x, = ]XI,, = x - [x/m,] - m ,  

where [x,",] is x/ml rounded to the closest integer in 
the symmetric RNS, and each residue digit is defined to be 
the remainder of least magnitude when x is divided by m,. 

In the symmetric RNS, the addition and multiplication 
of two numbers x = (x0; e ,  x,; ., x ~ - ~ )  and y = 

(yo , .  + -, y,, . . , y N -  1) are performed by the following steps 
in the same way as in the ordinary RNS: 

x + y = (xo €8 yo,..  * , X I  €8 Y,?.  * - ,  XN-1 f W N - 1 )  

x - y  = (x0Oyo ,...,x,Oy,,...,XN-lOyN--l) (3) 

where 83 and 0 denote modm, addition and modm, 
multiplication, respectively, in the symmetric digit set of 
(1). Each residue digit can be computed independent of all 
others (i.e., carry-free arithmetic). This separability of bi- 
nary operations allows for very fast parallel implementa- 
tion. 

In this number system, symmetry is retained as indi- 
cated in (4) for a sign conversion: 

(4) - x = ( - Xo; . . , - XI,' * - XN-1).  

111. MULTIPLE-VALUED CODED RESIDUE 
NUMBER SYSTEM 

In the residue arithmetic, we must manipulate the num- 
bers whose range is not a power of 2, and whose digits are 
not ordered. This speciality causes difficulty in hardware 
implementation. ROM implementation is not always ap- 
propriate with respect to compactness and speed. Direct 
implementation, in which each residue digit needs m, 
levels, is very difficult in present LSI process technologies. 

Here, we discuss a new approach based on multiple- 
valued coded residue digit representation. The use of mul- 
tiple-valued logic enables simple and highly parallel imple- 
mentation of residue arithmetic operations. In order to 
achieve effective multiple-valued coding, a concept of the 
pseudo-primitive root is introduced as follows. 

Definitian 1 :  Let the powers of an integer p in modm, 
representation be Ipolm,, lpllm,, .  ., and lp(m1-3)/2(m,. If 
their magnitudes include every value of 1,2; . 0 ,  and 
(m, - 1)/2, then p is called the pseudo-primitive root in 
mod m,. 
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Example I :  Let m ,  = 7 and p = 5. Then 

l5'I7=1, 15l1,= -2, and 15217= -3. (5) 

It is clear that 5 is the pseudo-primitive root in mod 7. 
The multiple-valued coded residue representation based 

on the concept of the pseudo-primitive root is defined as 
follows. 

Definition 2: If either 15"/,( =1 or )5"1,, = -1 for n = 

(m, - 1)/2 and if 15kl,1 # & 1 for all integers k such that 
0 < k < n (i.e., 5 is the pseudo-primitive root in mod m , ) ,  
then the residue digit x, in mod m, is coded as 

n - 1  

x, = xIJ5J (modm,) ( 6 )  

X I J E  { -2, -1,0,1,2}. (7) 

J = o  

In practical arithmetic circuits, the pseudo-primitive root 
p = 5 is appropriate for the radix of the multiple-valued 
coded residue digit representation, because: 

radix-5 arithmetic circuit can be implemented eas- 
ily with multiple-valued bidirectional current- 
mode circuits; 
redundancy present in the multiple-valued coding 
with p = 5 enables simultaneous three-operand 
addition as shown later; and 
p = 5 is applicable to many moduli m,, such as 
m,=7,11,17,19,23, 31,43,41,53,59,13,79,83,97. 

For example, the residue digit in mod7 is written as (8) 
using (5). All of the coefficients in (8) have magnitudes 
of 1, 2, and 3: 

x, = 1 52x,2 + S'X,, + 5OxlO l 7  
= I - 3XI2 - 2XI1 + X I O  1 7 .  (8) 

Iv. HARDWARE ALGORITHM OF RESIDUE 
ARITHMETIC OPERATIONS 
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TABLE I 
MOD 7 MULTIPLICATION 

Moreover, multiplication by a constant coefficient can be 
realized simply by exchanging the wire connection. 

B. Mod m ,  Addition 

Radix-5 SD arithmetic is employed in mod m ,  addition 
191. In radix-5 SD arithmetic, the addition of two numbers 

and 

is performed by following three successive steps in each 
digit: 

' 1  J = + YZJ (9) 

5c1, + wzj = zcj (10) 

clJ = 0 if -2 d z,, < 2 (loa) 

(11) 

1 w , ~  = z IJ  - 5 and c , ~  = 1 if z , ~  > 2 

wIJ = z l J  + 5 and e,]  = - 1 if zIJ < - 2 
w Z J  ' l {  

' / J  = wIJ + 'Z J - 1  

where z l J ,  w,,, and crJ are, respectively, the linear sum of 
x lJ  and y lJ ,  a partial sum, and a carry, and where 

z , ~ E  {-6; . - ,0; . . ,6} (12) 

wl, E { - 2 ,  - 1 , O J J }  (13) 

MULTIPLE-VALUED 

CURRENT-MODE 
CIRCUITS 

Fig. 1. Principle of bidirectional current-mode circuits. 

In order to realize three-operand addition, s;J is converted 
into sZJ having the range stated in (7) acciording to (17) 
and (18): 

' Z J  = 4, J + f7:J (18) 

where qlJ, q/k E { - 1,0, I}. Therefore, s,, E { - 2, - 1,0, 

Example 2: Consider the multiple-valued coded 
residue digit representation in mod7 as shovvn in (8). 

Let (s& s& s : ~ )  = (3, -2,3). Since /2.5'1, = - /5'/,, (2. 
5l1, = - 15'1,, and 12.j21, = 15'17, each sIJ is converted into 
slJ as follows. According to (17), we have, for each sIJ: 

L2>. 

Slo = 3 = qz0 - 2 ' q;l 

1 1  - 2 .4;2 " = - 2 = q  

s/2 = 3 = qz2 + 2.  q;o 

where qL1 and q,'k E { -1,0,1} are given by qL0 =1, 4/1 = 
-1, qZ1=O, q;2=l, qi2=1, and q:o=l. From(18) 

slo = q,o + 410 = (l) + (I) = 

s,l = qzl + 4,; = (0) + (- 1) = - 1 

s,2 = 4,' q/2 = (I) + = 

hence 

Since every s,, satisfies the conditions given in (7), it is 
possible to realize three-operand addition. 

E { - l , O J }  (14) V. RESIDUE ARITHMETIC CIRCUITS IJSING 
MULTIPLE-VALUED BIDIRECTIONAL 

CURRENT-MODE 
MOS TECHNOLOGY 

s:] € { -3;. , ,0; . . ,3}. (15) 

The sum s,', c m  be obtained almost in parallel and inde- 
pendently of the word length. 

Because of the special property of the pseudo-primitive 
root, 15"Im2 =1 or 15"),z = -1 in the multiple-valued coded 
residue representation. Then, the carry C Z n -  1 from the 
most-significant digit can be connected to the least- 
significant digit as shown in (16): 

A. Multple- Valued Bidirectional Current-Mode 
MOS Technology 

Fig. 1 illustrates the principle of bidirectional current- 
mode circuits. From Erchhoff's current law, the current z 
is equal to the sum of the two currents x and y .  The 
current z is applied to successive bidirectional current- 
mode circuits, where the polarity and the current level are 

(I6) detected and arithmetic operations are performed using 
several basic circuits. 

Bidirectional current-mode circuits are suitable for the 
multiple-valued coded RNS because both negative and 

WIO + e, n - 1 ,  

wi0 - c, n - l ,  

if )5"1,, =1 

if 15"Imz = - 1. 
s;' = 

The linear sum of the inputs z , ~  and the final sum s;, 
are determined by (12) and (15) for two-operand addition. 
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TABLE I1 
BASIC BIDIRECTIONAL CURRENT-MODE CIRCUITS 

in@: in+out 

-vs, 

( 4  (b) 
Fig. 2. Sign inverter: (a) circuit and (b) symbol. 

w 
Fig. 3. Mod7 multiplier. 

positive values can be included in a single digit, and the 
radix-5 SD arithmetic can be implemented with reduced 
interconnections. Table I1 summarizes the basic multiple- 
valued bidirectional current-mode circuits. A detailed dis- 
cussion of these circuits is found in [lo]. 

B. Mod m, Multiplier 

Since mod mi multiplication is performed by a shift 
operation, the mod mi multiplier can be constructed using 
a barrel shifter with sign inverter. The circuit shown in Fig. 
2 is the sign inverter used to invert the polarity of the input 
current. As an example, the mod7 multiplier can be con- 
structed using a 3 X 3 barrel shifter and sign inverters as 
shown in Fig. 3, where cio, czl, and ci2 are the control 
signals for the multiplier coefficients of 5O, 5l, and 5’, 
respectively. The products for the multiplier coefficients of 
- 5 O ,  - 9, and - 5 2  are also obtained by sign inversion of 
the corresponding outputs. The multiply time is always 
determined by the propagation delay time of the pass 
transistor and the sign inverter independently of the word 
length. 

(b) 
Fig. 4. Radix-5 SDFA: (a) block diagram and (b) circuit configuration. 

Fig. 5. Photomicrograph of radix-5 SDFA. 

C. Mod m, Adder 

The mod m, adder can be constructed using a radix-5 
SDFA. In the bidirectional current-mode MOS technol- 
ogy, the addition steps of (9) and (11) can be performed as 
a wired sum. The main operation of the SDFA is defined 
by (10). The SDFA has been constructed using 22 transis- 
tors, and a block diagram and circuit configuration of the 
SDFA are shown in Fig. 4. 

The SDFA has been fabricated at Tohoku University 
only to confirm the basic transfer characteristic using the 
usual 10-pm CMOS design rule. Fig. 5 shows a photomi- 
crograph of the integrated SDFA. The effective size is 
490 X 445 p d .  The current transfer characteristics of the 
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y=m if JdxlT, 

y = O  otherwise 

(b) 

I 
(a) 

Fig 8 Modified threshold detector. (a) circuit and (bj symbol 

Fig 9 Photomicrograph of decoder 

partial sum and the carry are shown in Fig. 6, where the 

deviation is observed around the threshold current, the 
characteristics following (10) are obtained in principle. 

(b) 
Fig 6 Current-transfer curve of radix-5 SDFA (a) Partial sum of 

SDFA Horizontal axis input I,, (97 6 pA/div); vertical axis: partial unit current is 50 PA. a 
sum output w,, (97 6 pA/dlv) (b) Carry of SDFA Honzontal m s  
input z,, (97 6 ~ W d l v ) ,  vertical m s  carry output clJ (97 6 ~A/div)  

5,;" 

D. Decoder for Three-Operand Addition 

The decoder of (17) is also effectively implemented 
using the bidirectional current-mode circuits. Since the 
radix-5 SDFA shown in Fig. 4 has no ability to restore 
signal levels, the current level should be quantized in the 
decoder. Fig. 7 shows a block diagram and the circuit of 
the decoder, using 32 transistors. In the decoder, a modi- 
fied threshold detector (MTD), shown in Fig. 8, is used. 
The operation is defined as 

Fig. 9 shows a photomicrograph of the decoder imple- 
mented using the same 10-pm CMOS design rule. The 
effective size is 490 x 475 pm2. The characteristics of the 

_implemented circuits are shown in Fig. 10. Fig. 10(a) and 
(b) shows the current transfer curves for the output qL, 
and q:k of the decoder, respectively. 

Let us consider the noise margin with respect to a device 
parameter deviation. If the statistical variation from the 
desired output of the current source exceeds the noise 
margin, logical errors will occur. The variation of the 
current-source output current AI  is mainly caused by the 
variation of the transistor threshold voltage AV,. The 
variation is represented as A I = (AV,/ V,)(2 + AV,/ V,) . 
I,, where 1, is the unit current. In the case where AV, = 50 Fig ecoder (a) block diagram and (b) circmt configurabon 
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radix-5 
SDFA 

1409 

radix-5 radix-5 
SD FA SD FA 

Fig. 12. Chip photomicrograph (2.00X 2.50 mm2). 

decoder 

(b) 
Fig. 10. Current-transfer curve of decoder. (a) Output q, of decoder. 

Horizontal axis: input s,', (48.8 pA/div); vertical axis: oufput q,, (48.8 
pA/div). (b) Output q,'k of decoder. Horizontal axis: input s,', (48.8 
pA/div); vertical axis: output q,'k (48.8 pA/div). 

decoder decoder 

SI = 2~ ,+3y ,  -22, 

Mod7 three-operand multiply adder. 
mod 7 

Fig. 11. 

mV, V, = 2 V, and I, = 50 yA, A I  becomes about 2.5 yA. 
This variation is not large enough to cause logical errors. 

E. Implementation of the Mod 7 Three-Operand 
Multiply Adder 

Fig. 11 shows a block diagram of the mod 7 three-oper- 
and multiply adder which is composed of sign inverters, 
radix-5 SDFA's, and decoders. In this circuit, only multi- 
plication by a constant coefficient is required, such that 
s, = 12x, + 3y, - 2z,I7, and it is composed of 190 transistors. 

Sin-1 5,"-2 Si0 

Fig. 13. Mod m, three-operand multiply adder. 

Fig. 12 shows a photomicrograph of the current-mode 
residue arithmetic chip based on 10-ym CMOS technol- 
ogy. This chip contains a mod 7 three-operand multiply 
adder, a radix-5 SDFA, and a decoder. The chip size is 
2.00X2.50 mm2 with a total of 244 transistors, and the 
effective circuit size of the mod 7 three-operand multiply 
adder is 1.55 X 1.99 mm2. 

VI. EVALUATION 

In order to demonstrate an advantage of the proposed 
residue arithmetic circuit, let us compare typical three- 
operand multiply adders. 

Fig. 13 shows the mod m, three-operand multiply adder 
based on the proposed residue arithmetic circuits. It is 
clear that the structure is very regular even if m, is large. 

The worst-case total delay time ttotal of the modm, 
three-operand multiply adder is expressed as 

ttotal = + t s  -k t d  (20) 

where t,, t,, and t, are the maximum propagation delay 
times of the modm, multiplier, the SDFA, and the de- 
coder, respectively. By substituting these delay times ob- 
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Addit ion 
table ROM 
( 2 2 n x n  bit) 

VII. CONCLUSION 

structure and the use of multiple-valued logic. Although 
residue arithmetic operations are restricted on integer 
arithmetic, the above high performance can hardly be 
acheved through the use of conventional binary arithmetic 

of great use in many real-time applications. 

tained from SPICE2 simulation using the 10-pm device 
parameters to (20), the operating time is estimated to be 
270 ns. Using the 2-pm device parameters, the three- 

These results are quite natural from the speed measure- 
ment of the similar current-mode logic circuits presented 

Operand time can be estimated as ’’ ns. circuit. This Qhly parallel residue arithmetic &ip will be 

Addit ion 
table ROM 

(22n x n b i t )  

in [lo]. The delay time is equivalent to the total multiply- 
add time because of the parallelism of the multiple-valued 
residue arithmetic circuit. 

adder constructed by the fastest 32 X 32-bit binary multi- 
plier and the 64-bit three-operand binary adder ‘based on 
2-pm CMOS technology. The 64-bit three-operand binary 
adder is realized by a 64-bit carry-save adder and a 64-bit 
block carry-lookahead adder. The hardware complexity is 
increased to achieve high-speed operations. 

imp1ementation Of the mod m i  

three-operand multiply adder based on residue arithmetic. 
This implementation requires 22n X n-bit memory capacity 
to store all possible outcomes of a binary operation, where 

1x1 3 x. The operating speed depends on the access time of 
ROM. 

operand multiply adders is shown in Table 111. The set [61 Kameyama and Bguch, ‘‘A new scahng in 
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