5,877 research outputs found

    User Experience for Model-Driven Engineering : Challenges and Future Directions

    Get PDF
    Since its infancy, Model Driven Engineering (MDE) research has primarily focused on technical issues. Although it is becoming increasingly common for MDE research papers to evaluate their theoretical and practical solutions, extensive usability studies are still uncommon. We observe a scarcity of User eXperience (UX)-related research in the MDE community, and posit that many existing tools and languages have room for improvement with respect to UX [26], [44], [37], where UX is a key focus area in the software development industry. We consider this gap a fundamental problem that needs to be addressed by the community if MDE is to gain widespread use. In this vision paper, we explore how and where UX fits into MDE by considering motivating use cases that revolve around different dimensions of integration: model integration, tool integration, and integration between process and tool support. Based on the literature and our collective experience in research and industrial collaborations, we propose future directions for addressing these challenges

    Applying model-driven paradigm: CALIPSOneo experience

    Get PDF
    Model-Driven Engineering paradigm is being used by the research community in the last years, obtaining suitable results. However, there are few practical experiences in the enterprise field. This paper presents the use of this paradigm in an aeronautical PLM project named CALIPSOneo currently under development in Airbus. In this context, NDT methodology was adapted as methodology in order to be used by the development team. The paper presents this process and the results that we are getting from the project. Besides, some relevant learned lessons from the trenches are concluded.Ministerio de Ciencia e Innovación TIN2010-20057-C03-02Junta de Andalucía TIC-578

    Applying Model-Driven Engineering to Development Scenarios for Web Content Management System Extensions

    Get PDF
    Web content management systems (WCMSs) such as WordPress, Joomla or Drupal have established themselves as popular platforms for instantiating dynamic web applications. Using a WCMS instance allows developers to add additional functionality by implementing installable extension packages. However, extension developers are challenged by dealing with boilerplate code, dependencies between extensions and frequent architectural changes to the underlying WCMS platform. These challenges occur in frequent development scenarios that include initial development and maintenance of extensions as well as migration of existing extension code to new platforms. A promising approach to overcome these challenges is represented by model-driven engineering (MDE). Adopting MDE as development practice, allows developers to define software features within reusable models which abstract the technical knowledge of the targeted system. Using these models as input for platform-specific code generators enables a rapid transformation to standardized software of high quality. However, MDE has not found adoption during extension development in the WCMS domain, due to missing tool support. The results of empirical studies in different domains demonstrate the benefits of MDE. However, empirical evidence of these benefits in the WCMS domain is currently lacking. In this work, we present the concepts and design of an MDE infrastructure for the development and maintenance of WCMS extensions. This infrastructure provides a domain-specific modelling language (DSL) for WCMS extensions, as well as corresponding model editors. In addition, the MDE infrastructure facilitates a set of transformation tools to apply forward and reverse engineering steps. This includes a code generator that uses model instances of the introduced DSL, an extension extractor for code extraction of already deployed WCMS extensions, and a model extraction tool for the creation of model instances based on an existing extension package. To ensure adequacy of the provided MDE infrastructure, we follow a structured research methodology. First, we investigate the representativeness of common development scenarios by conducting interviews with industrial practitioners from the WCMS domain. Second, we propose a general solution concept for these scenarios including involved roles, process steps, and MDE infrastructure facilities. Third, we specify functional and non-functional requirements for an adequate MDE infrastructure, including the expectations of domain experts. To show the applicability of these concepts, we introduce JooMDD as infrastructure instantiation for the Joomla WCMS which provides the most sophisticated extension mechanism in the domain. To gather empirical evidence of the positive impact of MDE during WCMS extension development, we present a mixed-methods empirical investigation with extension developers from the Joomla community. First, we share the method, results and conclusions of a controlled experiment conducted with extension developers from academia and industry. The experiment compares conventional extension development with MDE using the JooMDD infrastructure, focusing on the development of dependent and independent extensions. The results show a clear gain in productivity and quality by using the JooMDD infrastructure. Second, we share the design and observations of a semi-controlled tutorial with four experienced developers who had to apply the JooMDD infrastructure during three scenarios of developing new (both independent and dependent) extensions and of migrating existing ones to a new major platform version. The aim of this study was to obtain direct qualitative feedback about acceptance, usefulness, and open challenges of our MDE approach. Finally, we share lessons learned and discuss the threats to validity of the conducted studies

    A Practical Example for Model-Driven Web Requirements

    Get PDF
    The number of approaches for Web environments has grown very fast in the last years: HDM, OOHDM, and WSDM were among the first, and now a large number can be found in the literature. With the definition of MDA (Model- Driven Architecture) and the acceptance of MDE (Model-Driven Engineering) techniques in this environment, some groups are working in the use of metamodels and transformations to make their approaches more powerful. UWE (UMLBased Web Engineering) or OOWS (Object-Oriented Web Solutions) are only some examples. However, there are few real experiences with Web Engineering in the enterprise environment, and very few real applications of metamodels and MDE techniques. In this chapter the practical experience of a Web Engineering approach, NDT, in a big project developed in Andalusia is presented. Besides, it shows the usability of metamodels in real environments

    HybridMDSD: Multi-Domain Engineering with Model-Driven Software Development using Ontological Foundations

    Get PDF
    Software development is a complex task. Executable applications comprise a mutlitude of diverse components that are developed with various frameworks, libraries, or communication platforms. The technical complexity in development retains resources, hampers efficient problem solving, and thus increases the overall cost of software production. Another significant challenge in market-driven software engineering is the variety of customer needs. It necessitates a maximum of flexibility in software implementations to facilitate the deployment of different products that are based on one single core. To reduce technical complexity, the paradigm of Model-Driven Software Development (MDSD) facilitates the abstract specification of software based on modeling languages. Corresponding models are used to generate actual programming code without the need for creating manually written, error-prone assets. Modeling languages that are tailored towards a particular domain are called domain-specific languages (DSLs). Domain-specific modeling (DSM) approximates technical solutions with intentional problems and fosters the unfolding of specialized expertise. To cope with feature diversity in applications, the Software Product Line Engineering (SPLE) community provides means for the management of variability in software products, such as feature models and appropriate tools for mapping features to implementation assets. Model-driven development, domain-specific modeling, and the dedicated management of variability in SPLE are vital for the success of software enterprises. Yet, these paradigms exist in isolation and need to be integrated in order to exhaust the advantages of every single approach. In this thesis, we propose a way to do so. We introduce the paradigm of Multi-Domain Engineering (MDE) which means model-driven development with multiple domain-specific languages in variability-intensive scenarios. MDE strongly emphasize the advantages of MDSD with multiple DSLs as a neccessity for efficiency in software development and treats the paradigm of SPLE as indispensable means to achieve a maximum degree of reuse and flexibility. We present HybridMDSD as our solution approach to implement the MDE paradigm. The core idea of HybidMDSD is to capture the semantics of particular DSLs based on properly defined semantics for software models contained in a central upper ontology. Then, the resulting semantic foundation can be used to establish references between arbitrary domain-specific models (DSMs) and sophisticated instance level reasoning ensures integrity and allows to handle partiucular change adaptation scenarios. Moreover, we present an approach to automatically generate composition code that integrates generated assets from separate DSLs. All necessary development tasks are arranged in a comprehensive development process. Finally, we validate the introduced approach with a profound prototypical implementation and an industrial-scale case study.Softwareentwicklung ist komplex: ausführbare Anwendungen beinhalten und vereinen eine Vielzahl an Komponenten, die mit unterschiedlichen Frameworks, Bibliotheken oder Kommunikationsplattformen entwickelt werden. Die technische Komplexität in der Entwicklung bindet Ressourcen, verhindert effiziente Problemlösung und führt zu insgesamt hohen Kosten bei der Produktion von Software. Zusätzliche Herausforderungen entstehen durch die Vielfalt und Unterschiedlichkeit an Kundenwünschen, die der Entwicklung ein hohes Maß an Flexibilität in Software-Implementierungen abverlangen und die Auslieferung verschiedener Produkte auf Grundlage einer Basis-Implementierung nötig machen. Zur Reduktion der technischen Komplexität bietet sich das Paradigma der modellgetriebenen Softwareentwicklung (MDSD) an. Software-Spezifikationen in Form abstrakter Modelle werden hier verwendet um Programmcode zu generieren, was die fehleranfällige, manuelle Programmierung ähnlicher Komponenten überflüssig macht. Modellierungssprachen, die auf eine bestimmte Problemdomäne zugeschnitten sind, nennt man domänenspezifische Sprachen (DSLs). Domänenspezifische Modellierung (DSM) vereint technische Lösungen mit intentionalen Problemen und ermöglicht die Entfaltung spezialisierter Expertise. Um der Funktionsvielfalt in Software Herr zu werden, bietet der Forschungszweig der Softwareproduktlinienentwicklung (SPLE) verschiedene Mittel zur Verwaltung von Variabilität in Software-Produkten an. Hierzu zählen Feature-Modelle sowie passende Werkzeuge, um Features auf Implementierungsbestandteile abzubilden. Modellgetriebene Entwicklung, domänenspezifische Modellierung und eine spezielle Handhabung von Variabilität in Softwareproduktlinien sind von entscheidender Bedeutung für den Erfolg von Softwarefirmen. Zur Zeit bestehen diese Paradigmen losgelöst voneinander und müssen integriert werden, damit die Vorteile jedes einzelnen für die Gesamtheit der Softwareentwicklung entfaltet werden können. In dieser Arbeit wird ein Ansatz vorgestellt, der dies ermöglicht. Es wird das Multi-Domain Engineering Paradigma (MDE) eingeführt, welches die modellgetriebene Softwareentwicklung mit mehreren domänenspezifischen Sprachen in variabilitätszentrierten Szenarien beschreibt. MDE stellt die Vorteile modellgetriebener Entwicklung mit mehreren DSLs als eine Notwendigkeit für Effizienz in der Entwicklung heraus und betrachtet das SPLE-Paradigma als unabdingbares Mittel um ein Maximum an Wiederverwendbarkeit und Flexibilität zu erzielen. In der Arbeit wird ein Ansatz zur Implementierung des MDE-Paradigmas, mit dem Namen HybridMDSD, vorgestellt

    Category Theory and Model-Driven Engineering: From Formal Semantics to Design Patterns and Beyond

    Full text link
    There is a hidden intrigue in the title. CT is one of the most abstract mathematical disciplines, sometimes nicknamed "abstract nonsense". MDE is a recent trend in software development, industrially supported by standards, tools, and the status of a new "silver bullet". Surprisingly, categorical patterns turn out to be directly applicable to mathematical modeling of structures appearing in everyday MDE practice. Model merging, transformation, synchronization, and other important model management scenarios can be seen as executions of categorical specifications. Moreover, the paper aims to elucidate a claim that relationships between CT and MDE are more complex and richer than is normally assumed for "applied mathematics". CT provides a toolbox of design patterns and structural principles of real practical value for MDE. We will present examples of how an elementary categorical arrangement of a model management scenario reveals deficiencies in the architecture of modern tools automating the scenario.Comment: In Proceedings ACCAT 2012, arXiv:1208.430
    corecore