
This is a repository copy of User Experience for Model-Driven Engineering : Challenges 
and Future Directions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/118523/

Version: Accepted Version

Proceedings Paper:
Abrahao, Silvia, Bourdeleau, Francis, Cheng, Betty et al. (4 more authors) (2017) User 
Experience for Model-Driven Engineering : Challenges and Future Directions. In: 
Proceedings - ACM/IEEE 20th International Conference on Model Driven Engineering 
Languages and Systems, MODELS 2017. 20th ACM/IEEE International Conference on 
Model Driven Engineering Languages and Systems, MODELS 2017, 17-22 Sep 2017 
Institute of Electrical and Electronics Engineers Inc. , USA , pp. 229-236. 

https://doi.org/10.1109/MODELS.2017.5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



User Experience for Model-Driven Engineering:
Challenges and Future Directions

Silvia Abrahão ∗ Francis Bordeleau † Betty Cheng ‡ Sahar Kokaly
§ Richard F. Paige ¶ Harald Störrle ‖ and Jon Whittle ∗∗

∗ Department of Computer Systems and Computation, Universitat Politècnica de València, Spain

Email: sabrahao@dsic.upv.es
† CMind, Gatineau, Canada

Email: francis.bordeleau@cmind.io
‡ Department of Computer Science and Engineering, Michigan State University, US

Email: chengb@cse.msu.edu
§ McMaster Centre for Software Certification, McMaster University, Hamilton, Canada

Email: kokalys@mcmaster.ca
¶ Department of Computer Science, University of York, York, United Kingdom

Email: richard.paige@york.ac.uk
‖ QAware GmbH, Aschauer Str. 32, 81549 München, Germany

Email: Harald.Stoerrle@qaware.de
∗∗ Faculty of Information Technology, Monash University, Melbourne, Australia

Email: jon.whittle@monash.edu

Abstract—Since its infancy, Model Driven Engineering (MDE)
research has primarily focused on technical issues. Although
it is becoming increasingly common for MDE research papers
to evaluate their theoretical and practical solutions, extensive
usability studies are still uncommon. We observe a scarcity of
User eXperience (UX)-related research in the MDE community,
and posit that many existing tools and languages have much
room for improvement with respect to UX. Industrial feedback
indicates that UX is an important factor in the dissemination and
adoption of new technologies, where UX is a key focus area in the
software development industry. We consider this a fundamental
problem that needs to be addressed in the community if MDE is
going to gain widespread use. In this vision paper, we explore how
and where UX fits into MDE by considering motivating use cases
that revolve around different dimensions of integration: model
integration, tool integration, and integration between process
and tool support. These use cases help us to illuminate MDE-
related UX challenges. Based on the literature and our collective
experience in research and industrial collaborations, we propose
future directions for addressing these challenges.

I. INTRODUCTION

As computing-based systems continue to increase in volume

and complexity, more industrial organizations are considering

model-driven engineering (MDE) approaches. The perceived

benefit is that MDE enables developers to manage the com-

plexity of software by working at a higher level of abstraction

and offers the promise of automatic code generation. Indeed,

domains such as automotive have actively been using MDE

for the past 10 years, where some companies have developed

in-house code generators and others use off-the-shelf code

generators. Despite the inroads that MDE has made in industry,

a recurring complaint and obstacle for industrial organizations

considering MDE is the lack of sufficient tool support. When

we delve deeper into this obstacle, it becomes apparent that

the criticisms are often centered around poor User eXperience

(UX). This vision paper explores how and where UX issues

arise in the spectrum of MDE development activities, identifies

the corresponding research challenges, and proposes future

research directions to address them.

MDE claims several advantages over other approaches to

software development, including abstract representations of

complex system functionality, complementary views of a given

system (e.g., behavioral versus structural), and vertical refine-

ment of high-level system requirements models into design

models and eventually down to (automatically-generated) ex-

ecutable code. Much MDE research has focused on individual

elements of these capabilities (e.g., new modeling language

to represent behavior with timing constraints, model-based

testing technique, and semantic mappings for a given modeling

language). A notable challenge to a broader use of MDE is

the disparate nature of MDE languages, supporting techniques

and tools that puts the onus on the MDE developer to identify

and "stitch" together the necessary technology and techniques

to provide a uniform, cohesive, and seamless integrated expe-

rience when progressing from concept to deployed system in

a MDE-driven approach.

This paper introduces the concept of User eXperience for

MDE, termed MX to highlight the challenges and opportunities

surrounding UX for MDE-based development. While work

has been done over the past decade in UX for software

engineering, we posit that MX introduces new dimensions of

user experience that are unique to MDE-based development

which require complementary investigations. Specifically, at

the core of the challenges is the multi-dimensional notion



of integration: model integration, MDE-based tool integra-

tion, and integration between the MDE-based process and

development environment. These three dimensions of integra-

tion, collectively, must be addressed in order for the broader

community to adopt MDE-based development on a larger

scale. A foundational aspect of MDE is the reliance on the

use of multiple models that are used to describe a given

system. These models vary according to level of abstraction

(e.g., requirements model down to detailed design model) and

also viewpoint (e.g., structural versus behavioral models). As

such, the first challenge is model integration, where vertical

and horizontal model integration (syntactic and semantic) is

paramount in order to ensure consistency. Vertical integration

relies heavily on traceability from one level of abstraction to

the next, while horizontal integration requires maintaining con-

sistency amongst the different views, especially during vertical

refinement activities. Second, MDE tool support usually comes

from disparate sources and provides targeted capabilities (e.g.,

model analysis, code generation, test case generation, etc.).

It is up to a MDE developer to identify the techniques and

corresponding tools to perform the necessary tasks. Finally, a

challenge to an MDE developer is to find a single Integrated

Development Environment (IDE) for MDE-based development

that seamlessly supports progression from concept (possibly in

natural language format) to code.

The challenges and future directions for research are pre-

sented in the context of two use cases that capture state

of the practice scenarios with MDE-based development. The

remainder of this paper is organized as follows. Section II

gives an overview of the origins of UX and defines appli-

cable terminology. Section III discusses UX in the context

of software engineering. Section IV gives the state of the

practice of UX in MDE. Section V presents the use cases

and identifies key challenges for the area of MX. Finally,

Section VI identifies promising future research directions to

tackle these challenges, as well as calls out communities that

should be engaged to collaboratively work on this increasingly

important area.

II. HISTORY OF UX

The area of UX originated in the context of usability of

software systems, but the scope of UX has grown beyond

a simple notion of usability [26]. Even the term usability

has several definitions. In Human-Computer Interaction (HCI),

the most widely accepted definition is the one proposed in

the ISO/IEC 9241-11 [22]: “the extent to which a product

can be used by specified users to achieve specific goals with

effectiveness, efficiency and satisfaction in a specified context

of use”. The intention was to emphasize that usability is an

outcome of interaction rather than a property of a product.

This standard has been replaced by the ISO/IEC 9241-210

[23], which extends the scope of software products to also

consider systems and services.

In Software Engineering (SE), the ISO/IEC 250101 [20]

1This standard is a revision of the ISO/IEC 9126-1 [21]. Other parts of
ISO/IEC 9126 define metrics for usability and quality in use.

recognizes that usability plays a dual role: it is a property

of a product affecting its internal and external quality and

the outcome of user interaction affecting the product’s quality

in use. This standard defines software product and computer

system quality from two complementary perspectives:

• A product quality model composed of eight character-

istics (including usability), which are further subdivided

into sub-characteristics (e.g., learnability, user error pro-

tection), that relate to static properties of software and

dynamic properties of the computer system. Usability

is defined as “the capability of the software product to

be understood, learned, used, and attractive to the user,

when used under specific conditions”. This means that

it can be measured as “conformance to specification”,

where usability is defined as a matter of products whose

measurable characteristics satisfy a predefined fixed spec-

ification. The objective is to predict usability problems

that users would experience if they were interacting with

the software product.

• A quality in use model composed of five characteristics

relating to the outcome of interaction when a product is

used in a particular context. This standard defines quality

in use as the “degree to which a product or system can

be used by specific users to meet their needs to achieve

specific goals with effectiveness, efficiency, freedom from

risk and satisfaction in specific contexts of use”.

These different definitions of usability directly affect how it

is evaluated, since each method or technique employed in these

evaluations may focus on different aspects of the term usability

(e.g., learnability of the user interface). The consequence is

that there are many individual methods for evaluating usability;

they are not well integrated into a single conceptual framework

that facilitate their usage by developers who are not trained in

the field of HCI.

Usability was operationalized mainly in terms of the user

performance (effectiveness and efficiency) given the many

problems that were experienced by users of commercial

systems. However, as the use of complex systems became

widespread, there was an increasing awareness of the im-

portance of the user’s subjective reactions and emotional

experience. This has led to the focus on User eXperience (UX).

UX is a maturing research area that goes beyond traditional

usability. It provides a richer scope where user emotions,

affects, motivations, and values are given as much, if not more,

attention than ease of use, ease of learning and basic subjective

satisfaction [25]. In contrast to task-oriented interactions, UX

represents a shift to “experience”, focusing also on hedonic

qualities2, and positive emotions and affect (e.g., interested,

enthusiastic, irritable) that people experience while interacting

with software products or systems.

Despite its importance, there is a lack of agreement on

the scope of UX. A formal definition of UX issued by ISO

2Hedonic quality refers to a product’s ability to provide stimulation (e.g.,
novelty and challenge) and identification (users can express themselves
through the product)



9241-210 [23]: “A person’s perceptions and responses that

result from the use and/or anticipated use of a product,

system or service” is ambiguous and needs to be refined

[24]. The work of Law et al. [25] surveyed the views of

275 researchers and practitioners working on user experience.

They found that different definitions of UX exist, but that they

share some key characteristics: UX is inherently subjective,

context-dependent, dynamic and individual (meaning that each

experience is unique) and it is concerned with positive or

valuable experiences.

Evaluation of UX not only depends on the various constructs

and factors that contribute to the overall experience, but can

be heavily influenced by the type of product, the various

development phases of the product, the interaction technique,

and contextual factors. UX has been evaluated using a variety

of methods [36] and metrics [3] .

III. UX IN SOFTWARE ENGINEERING

The SE community has recognized the importance of us-

ability. Efforts have focused on explaining the implications

of usability for requirements gathering, software architecture

design, software design, and the selection of software com-

ponents (e.g., [2], [7]). Several research efforts have consid-

ered integrating usability and user-centered design in specific

software development approaches such as agile (e.g., [10])

and MDE (e.g., [14], [4]). While the gap between HCI and

SE with regard to usability has somewhat been narrowed,

it may be widened again due to the emergence of UX.

Usability evaluation methods and metrics are relatively more

mature. In contrast, UX design and evaluation methods are

still taking shape. It is conceivable that feeding outcomes

of UX evaluation back to the software development cycle to

instigate the required changes can be even more challenging

than doing so for usability evaluation. We observe that most of

the initiatives that deal with the integration of UX in software

development are focused on agile methods. Systematic reviews

identified recurring themes and patterns of the most common

activities and artifacts used by teams when integrating UX in

agile processes [13] and some maturity models for guiding

companies with this integration start to appear [29], [31].

Outside of the MDE community, there is a long history of

considering the role of the user – and how the user will interact

– in tool development. Indeed, some argue that even Heidegger

recognized this, making a distinction between tools (of the

non-software kind) that were ‘ready to hand’ versus ‘present

at hand’ [8]. Heidigger’s observation was that tools should be

so intuitive that they fade into the background for the user

– i.e., be ready to hand. In this case, the tool is completely

natural to use (the classic example is that of a hammer). In

contrast, many tools (especially in software development) –

those which are present at hand – are instead difficult to use

to the point that the user has to focus on the tool rather than

the problem s/he is trying to solve.

There is a distinguished body of work looking at how best

to take users’ existing practices into account when designing

software tools. These include consideration of the social and

organisational context of a new tool [17], designing tools

where there is a cognitive fit between users’ mental models

and tool representations [16], acknowledging that users have

cognitive biases that will affect tool adoption [30] and being

aware that business considerations usually out-trump technical

elegance of a tool [9]. The fields of participatory design

and co-design [32] have tackled these challenges head-on by

including users and other stakeholders as equal partners from

the very beginning of the design process. By contrast, in

the MDE community, tools are still typically designed and

implemented by technicians and users are asked for feedback

only once the tool is built, if at all. This has led to re-design

efforts that are very costly. A concrete example that illustrates

this is the case of the MetaSketch tool. As described in [19],

the original version of the tool allows software language engi-

neers to define metamodel languages and supports other users

(e.g., designers, developers, and other practitioners) in creating

models using a similar interface for metamodel definition and

modeling. This design does not comprehensively support users

of different levels of expertise and varied work styles: whatever

kinds of models or metamodels are used, the interface is the

same. The tool was redesigned and separated in many parts to

support different uses and to engage all potential user types.

IV. UX IN MDE: STATE OF THE PRACTICE

In this section, we give a brief overview of the state of

industrial practice in MDE, and use this to draw out some

typical pain-points for users of MDE with respect to UX.

As a result of discussions with numerous stakeholders and

collaborators in industry, we have developed two generic MDE

scenarios, which we will use to help distill some of the

common tasks carried out when using MDE, and which will

in turn be used to help derive MX challenges.

The first is a software engineering scenario for producing

aerospace control software. The scenario requires collaborative

modeling capabilities to support a team of software engineers.

The use of MDE starts after a significant number of require-

ments (safety, functional, non-functional) and constraints have

been derived or imposed by the system engineering process

or the embedding system. These requirements are usually

captured in a non-MDE tool such as DOORS, Excel or Word.

The requirements (and previous experience) are used to drive

customisation of UML for the particular project at hand;

the customisation is done via UML profiles, supported by

a suitable profile-aware UML tool such as Papyrus. Then,

iteratively, models and constraints on models are produced;

in some cases, the constraints are supplemented with “fixes”

that will run update transformations on the models when a

constraint is violated. Finally, a code generator is applied to

produce Ada code from the models. In rare but not totally

unknown cases, the code generator must be extended to

support new customisations or new domain constraints, e.g.,

forms of timing analysis.

The second scenario is from the automotive domain, where

the most common modeling languages used are UML and

SysML. Rhapsody is sometimes used as a tool to create



UML/SysML models to represent the structure of the software

architecture at a high level as well as to describe the behaviour

of the system via state machines. While Infotainment subsys-

tems rely heavily on UML, other subsystems, such as braking,

powertrain, door and window control, which involve lots of I/O

and control design, rely more on Stateflow/Simulink models.

In some cases, DOORS is used as a tool for capturing early

requirements, and then a so-called "bridge" (a model trans-

formation) is built in-house to go from DOORS to Rhapsody

for example. Most of the specified models are used for code

generation. However, some UML/SysML models are also used

to create models in Simulink. SysML in particular is used for

analysis. Stateflow/Simulink models are used both for analysis

(e.g., throughput analysis) and code generation.

From these scenarios we identify some common tasks that

engineers carry out when applying MDE:

• editing models (collaboratively, individually)

• customising modeling languages (via profiles, via anno-

tations, via creating a DSL)

• analysing models (verification, validation)

• managing models (transformation, merging, comparison)

The use of standard modeling languages (and customizations

of modeling languages) is a cross-cutting concern.

Our observations are consistent with those from a key

reference in the field [27], which surveys four large industrial

MDE projects carried out between 2006-2010. While the study

did not focus on UX concerns specifically, it did elicit the

following set of key MDE tasks carried out by the engineers:

• model engineering, i.e., constructing models, building

domain-specific languages, carrying out model manage-

ment - e.g., model transformation);

• verification and validation, i.e., testing models, carrying

out performance analysis, model simulation;

• run-time configuration and management of systems using

models, once systems have been deployed (so-called

models at runtime);

• modeling platforms, i.e., common architectures, standards

and repositories that underpin the three tasks above.

From this study, and from our experiences working with

industry on the scenarios described above, several pain-points

pertaining to UX have emerged, including:

• learning: learning to use MDE was determined to be nei-

ther easy nor hard, but significant engineer time needed

to be put into learning MDE basics (e.g., editing models).

• training: training personnel, and finding trained person-

nel, is difficult. In the aerospace scenario described above,

which was part of a large collaborative project, trained

personnel were concentrated in one or two organisations

(out of around 15 partners).

• lack of domain expert focus: MDE tools were largely

oriented to engineers, rather than considering diverse

types of users (e.g., domain experts);

• complex languages: the standard modeling languages that

were used - specifically UML - were considered to be

very complex.

With this in mind, we identify a set of MX challenges next.

V. UX IN MDE: CHALLENGES

From an industrial perspective, the main goals for using

MDE are to increase productivity (i.e. reduce development

time and cost), increase system quality, and increase overall

business and technical agility. There exist both UX and MX

challenges for achieving these goals, where we identify five of

the main challenges that must be addressed by MDE languages

and their corresponding tools.

A. User Model Integration

As illustrated in the scenarios, current MDE practices are

focused on functionalities and tasks. In order to achieve UX,

we should move MDE from a technology-driven approach to

a user-driven approach. This means that in order to properly

incorporate UX in MDE it is essential to identify “who the

users are” (e.g., developers, customers, suppliers, end-users),

and what their activities and concerns are (see [34] for a

starting point). This can be challenging for MDE as there

are many different potential users (e.g., domain modeler,

transformation user, metamodeler/language designer). A key

aspect at this stage is to establish a User Model for describing

a typical user. This kind of model can be used to set general

parameters (e.g., age, gender, qualifications), preferences (e.g,

preferred modeling abstractions and representations, level of

automation), level of expertise (e.g., novice, expert), etc.

The Persona technique [12], [6] is currently a well-known

approach for the modeling of users. Next, the business goals

and the interests, motivations and values of the users need

to be identified and understood. The software development

team should then have processes for tailoring UX design to

these goals, interests and motivations. Once the mechanics

have been applied, ongoing UX measurement, monitoring and

improvement are essential.

B. Processes for Tailoring UX

Three processes are relevant for tailoring UX for MDE:

(1) modeling UX; (2) design for UX; (3) evaluation and

improvement. The first activity is concerned with the need

to understand, scope and define the concept of MX. For this

purpose, we should understand what UX means for MDE.

• What is the unit of analysis for UX (social or individual)?

Is it a single aspect of an individual end-user interaction

with the language/tool or several aspects of multiple

users’ interactions (co-experience) are relevant as well?

• Many dimensions are involved (functionality, usability,

emotion, value, pleasure, beauty, social, hedonic quality,

etc.). There are studies [35] that show that some of them

hold for experiences in leisure domains (e.g., gaming)

and others for experiences in work domains, but what is

the relevance of these dimensions for MDE?

• What are the contextual factors (e.g., technology, phys-

ical environment, earlier experiences, task context) that

affect UX of MDE languages and tools?



The second activity is concerned with the design of UX in

MDE – that is, how can we consider UX and usability within

scenarios that apply MDE. In practical terms in MDE we are

always using a tool of some kind to create and manipulate

models (this includes digital tools as well as pen and paper).

Every tool comes with an inherent load factor; for pen and

paper this is small, but for Papyrus or Eclipse, it is larger.

We need to be able to assess a tool’s load factor on users

to ensure that it is acceptable. Techniques for achieving this

can be based on participatory design, focus groups, design

science, etc. This focuses on the process; we still need better

approaches to think about UX and usability of UML, Simulink,

or DSLs that we create. A potential starting point would be

the Physics of Notations [28] (which aspires to provide a

theory for assessing and designing effective visual notations),

or the Cognitive Dimensions Framework [16], which aims to

consider both notation and tooling. Creating or customizing

a language taking into account existing knowledge about

usability and cognitive effectiveness is a significant challenge.

The third activity is concerned with the evaluation of MX.

There are several specific challenges related to this evaluation:

• When should UX be evaluated? During the user inter-

action, before interaction or after interaction? The three

moments are relevant - industry is typically interested in

long-term user experiences, as temporary feelings are less

important than the overall product user experience when

people evaluate products.

• How can we evaluate UX in early stages of modeling

language or tool development? For developers, it is

essential to evaluate UX already in the early stages of the

language or tool development, so methods for evaluating

UX of anticipated use without the actual language or tool

will be very valuable.

• How can we operationalize and evaluate UX in MDE

against measurements, e.g., measurements pertaining to

cognitive effectiveness?

C. Empirical Studies of MX

Although there are some empirical studies that deal with

users of and usability in MDE (e.g., [1], [19], [4], [34]),

more studies are needed to build a body of knowledge about

MX. The absence of empirical research hampers theoretical

advancement on the understanding of MX. Empirical studies

can be used, for instance, to evaluate the suitability of existing

UX models proposed by the HCI community (e.g., [18])

in the MDE context. Empirical studies are also important

to understand how modelers actually work. In particular, it

is important to carry out studies to understand positive and

negative experiences with modeling languages, tools and pro-

cesses. Positive experiences are appropriate as understanding

their determinants and underlying mechanisms can help design

products that elicit these experiences, while negative experi-

ences may inform designers and tool vendors about potential

pitfalls in their product’s UX. We believe that qualitative and

quantitative studies of modeling work practices can help us

understand how to create modeling languages and tools that

better support specific user needs and work styles.

D. Customization and Domain Specific Modeling Support

A general-purpose tool is never really fit for purpose; one

size does not fit all. To increase productivity, it is essential

that MDE tools are customized for the specifics of the do-

main/context in which they are used. For this reason, MDE

tools need to provide first-class support for customization and

domain specific modeling. This involves three aspects: support

for tool simplification to allow adapting the tool environment

to only provide the set of concepts and capabilities that are

relevant to the users in their development context; support for

workflow customization to allow adapting the tool workflows

for the specifics of the development context; and support

for visually representing domain concepts in a way that is

meaningful to the different users, whether they are designers

developing the models or people to who the models are

presented. A box in which «Cat» is written may be understood

as a "cat" for a software engineer, but it is still a"box" for

most people. Since communication is a key aspect of complex

system development, the use of specific shapes or icons to

represent domain concepts is considered to be essential by

many stakeholders. Modeling must make communication with

the different stakeholders easier, not more difficult.

Support for customization and domain specific modeling

is an aspect that essentially all commercial UML modeling

tools have failed to address. UML tools typically present

the whole UML language to the user and they provide very

little capabilities to reduce the set of concepts and diagrams

to the subset the user needs. These general purpose tools

have forced people to adapt their way-of-working to the

constraints imposed by the tools. Such approach makes sense

from a tool vendor perspective (to avoid having to support

multiple modeling environments), but it results in an overall

tool environment that is much more complex then it needs to

be. While most people associate this problem with UML, it is

not a problem with UML itself, but with the UML tools.

While it is broadly agreed that Domain Specific Languages

(DSLs) provide a much simpler and better adapted environ-

ment, the use of DSLs also comes with a set of issues. France

and Rumpe [15] refer to the “DSL-Babel” challenge where

the surge in new DSLs poses significant challenges relating to

communication, interoperability, and training.

E. Interoperability

Interoperability has a significant impact on MX. There are

many dimensions to interoperability, including: model inte-

gration (i.e., vertically, across different levels of abstraction;

and horizontally, where we must integrate models at the same

level of abstraction but from different views or by different

engineers); tool integration (e.g., integrating an MDE tool like

EMF with a non-MDE tool like DOORS, or combining differ-

ent MDE tools through middleware or via shared repositories);

process integration (e.g., combining support for model trans-

formation and test-driven development, perhaps through an



IDE); and integration through collaboration, i.e., support for

integration among developers. Each form of interoperability

substantially impacts UX: in many cases today interoperability

is not seamless and hidden from the engineer, but requires

significant context switching overhead (e.g., using MDE tools

with a change management tool like Jira).

VI. UX IN MDE: FUTURE DIRECTIONS

In this section we identify several opportunities for future

research and development in MX, organized around some of

the key challenges described in the previous section.

A. Support for Model and Tool Integration

As computing-based systems increase in complexity and

become more pervasive, more demands are placed on the

modeling community, including the development of new

DSLs, new dialects or profiles for existing languages, and

new modeling concerns, such as run-time monitoring for

autonomous systems [5]. With this growth in language de-

velopment comes the extra burden of how to integrate models

in order to maintain consistency throughout the development

process and beyond (e.g., testing, run-time activities, etc.).

Vertical integration refers to the refinement relationship(s)

when moving from abstract to concrete representations and

vice versa (in the case of code refactoring and reverse en-

gineering). Horizontal integration refers to the integration

of complementary views/perspectives of different modeling

languages that together need to consistently describe the same

target system. These views may be represented by general

purpose languages (e.g., UML and SysML), domain-specific

languages (e.g., Simulink), or a combination thereof.

In order to provide useful tool support, the languages

and the integration between languages must be well-defined,

including traceability as the languages evolve. Both domain-

specific and general purpose languages should be amenable to

automated processing (e.g., analysis, synthesis, composition,

etc.) with these objectives in mind. Also, when different tools

are used for modeling, e.g. the combination of a UML/SysML

to describe the overall system and software architecture and

MathWorks Simulink to describe the signal processing aspect,

model integration also requires the integration of tools.

The GEMOC Initiative is an international group of MDE

researchers are taking a multi-pronged approach comprising

language engineering, tool/framework development, and pro-

cesses to enable the globalization of modeling languages [11].

And the long-running international conference on Software

Language Engineering (SLE) also includes research in this

direction.3 These examples are indicative of the MDE com-

munity’s awareness of the technical challenges, but none of

these are explicitly addressing MX.

B. Support for Domain Specific Modeling

Domain-specific tooling is critical for the broad adoption

and success of MDE. While important progress has been made

3http://www.sleconf.org/

over the last years to better support DSLs, more research and

development is required to reach the required level of MX.

• Domain-specific vs general-purpose tools .

Domain-specific tools offer better UX then general pur-

pose tools. However, it is important to distinguish be-

tween language and tool. In general, people tend to

establish some type of equivalence between a language

and the tools that are supporting it. For example, UML is

often put in opposition with DSLs based on the argument

that UML is too big and complex. However, the reason

for this oversimplification is not UML itself, but the tools

supporting it. UML is a general purpose language that

can be supported by both general-purpose and domain-

specific tools. As discussed in the previous section, the

existing commercial UML tools have mainly focused on

providing support for the complete UML language, and

not on providing first-class support for customization and

DSL. However, Papyrus, also based on UML, provides

advanced support for customization and DSLs and can

be viewed as a DSL workbench. Many companies have

successfully used Papyrus to develop their own DSLs.

The same reasoning applies to EMF, which is a general-

purpose language for which the Eclipse Sirius DSL

workbench has been developed.

In order to support domain specific modeling, a tool

must: 1) Be based on a language that provides the

required mechanisms for the definition of domain specific

languages, and 2) Provide tool customization capabilities

that allow adapting the menus, pallets, and workflows to

the specifics of the domain.

• Domain-specific environments to support integration.

A main challenge industry faces is that the desire to

optimize the productivity of the developers/engineers

requires that the development of complex systems uses

different domain specific environments/tools for different

"aspects" of the system. In order to ensure overall con-

sistency and enable system maintenance and evolution,

the models produced for these different aspects must be

integrated together. In this context, one way to reduce

the complexity and cost of integrating different DSLs is

to base different DSLs on the same underlying language

(or meta-model). While it is in general not possible or

practical to base all aspects on the same underlying

language, it is highly desirable to consolidate as much as

possible. For example, UML can be used as an underlying

language to define several DSLs for different software

and system aspects.

C. Support for User Model and Process Integration

• Support for Collaborative Modeling.

MX can be improved significantly by supporting col-

laboration. Comparing modeling IDEs to programming

IDEs, we see that model based tools lag in capabilities

such as diff/merge and code reviews: model diff/merge

is still considered unreliable or hard to use, and there is

essentially no real support for model reviews.



• Moving from a technology/functionality-driven ap-

proach to a user-driven approach.

As model-based tool developers, we often ignore the fact

that the majority of users who will be using our tools

are in fact not trained as MDE engineers. Most users

are trained as software engineers, and others, are do-

main experts who may have limited software engineering

knowledge. In order to overcome this gap, and make

our tools easier to adopt by non-MDE experts, we need

to consider various aspects: We need to understand the

context in which MDE languages and tools are used.

This should at least consider the users, the tasks, and

the work environment. For users, we should understand

their background, domain and expertise and try to provide

tools that help "bridge" the gap between what they know

and what is expected for them to know. We need to

understand and classify the tasks that these different types

of users of MDE are trying to accomplish (i.e., perform

task modelling). We also need to understand the work en-

vironment, which includes company policies, regulations,

etc. Finally, we should consider an incremental evaluation

of MX rather than a post facto evaluation.

D. Cross-cutting Areas to be Addressed

1) Evaluation Methods and Metrics for MX: In order to

make concrete progress in this area, we need to define methods

and metrics for evaluating MX with a sound theoretical basis.

These could be based on methods and metrics from UX

in general, but more needs to be done on adapting these

approaches to MDE artifacts, concepts and tools.

2) A Theory for MX:: In mature sciences, empirical theories

help gain and accumulate knowledge. If we want to understand

MX, we need to build an explanatory framework with a

number of factors that explain UX for MDE. The theory

should contain hypotheses that can be tested empirically in

order to provide evidence about why a certain phenomena

occur and how we can predict it. The theory will be useful to

understand how the different factors affecting MX (e.g., type

of task, task context, unit of analysis, UX dimension, MDE

technology, work environment, earlier experiences, etc.) relate

to each other. From a more practical viewpoint, a theory for

MX can give us input for decision-making regarding choices

of technology and resource management. Existing theories

from the SE field (e.g., theory for explaining the effect of

UML-based development [33]) or other disciplines such as

Behavioral Sciences and Cognitive Psychology (e.g., theory

of cognitive fit) can be adapted to MDE.

3) Engaging Other Disciplines: Given the range of issues

covered by MX, it is strategic for the MDE community to

engage researchers and stakeholders from other disciplines to

collaboratively address the numerous challenges including:

• cognitive behavioral scientists.

• graphical design and visualization technology experts.

• game designers (there is a wealth of work in educational

games that enables kids to focus on the "game" and not

become overwhelmed with the intricacies of a given tool.)

• domain experts to work on the respective DSLs, tools and

their integration with a domain-specific process.

4) Training and Support: A significant cross-cutting MX

issue is training: we currently rely heavily on weighty books

on our desks, and web articles, to help train users in MDE;

this offers a weaker UX than training approaches for program-

ming that are based on StackOverflow and YouTube videos.

People need to be able to quickly obtain answers to their

questions and understand how to best use the tools (based on

community experience and feedback). Conventional passive

documentation is no longer sufficient or viable. In industry,

it is common practice for users who have questions about

C++ or CDT to go on StackOverflow and quickly obtain an

answer (or many answers). When users have a problem with

(commercial or open source) MDE tools, there is no obvious

resource to consult for answers. We need a bigger and stronger

user community modeled on successes like StackOverflow.

Consider also the success factors for widely used modeling

tools such as those from Mathworks: they are used early and

often in university engineering programs. Students learn to use

the tools early in their education program and they continue

to use it when they get into the work place. Also, they learned

to live with (or adapt to) the limitations of the tools from the

beginning. Similar experiences with MDE tools – i.e., early

and often usage in university – may help mitigate the common

pain points related to MX.

VII. CONCLUSIONS

The MDE research community has claimed many successes

– we have developed powerful tools, and some of them have

been used to solve significant industrial problems. Can we

yet claim that our tools are useful? Given that we have not

broadly considered usability during the development of our

tools, and when evaluating their use in practice, it is difficult

to provide supporting evidence for such claims. Such evidence

is particularly important if we are aiming to provide holistic

or systemic support. In a nutshell, if we are claiming that our

MDE solutions are useful, we should not false advertise them.

One approach to improving MX would be to evaluate the

usability of our existing MDE tools, and use that process

to trigger improvements, e.g., to interfaces. Can we consider

usability and UX for MDE up front, before the tool or

metamodel has been built? What is the added value of doing

so? Can we iteratively and incrementally evaluate usability

while an MDE tool is being constructed, or being applied in

an engineering context?

These, and the other challenges identified in Section VI,

will hopefully set the stage for a program of research on UX

in MDE which will benefit both tool builders and users of

MDE – and the software engineering community as a whole.

VIII. ACKNOWLEDGMENTS

Thanks to Bran Selic, Jordi Cabot and Dimitris Kolovos who

provided valuable input for the "UX for MDE" panel at

MODELS’16.



REFERENCES

[1] S. Abrahão, E. Iborra, and J. Vanderdonckt. Usability evaluation of
user interfaces generated with a model-driven architecture tool. In
"Maturing Usability: Quality in Software, Interaction and Value", pages
3–32. Springer Berlin Heidelberg, 2007.

[2] S. Abrahão, N. Juristo, E. L.-C. Law, and S. Jan. Interplay between
usability and software development. Journal of Systems and Software,
83(11):2015–2018, 2010.

[3] W. Albert and T. Tullis. Measuring the User Experience: Collecting,

Analyzing, and Presenting Usability Metrics, Second Edition. Morgan
Kaufmann, USA, 2013.

[4] D. Albuquerque, B. Cafeo, A. Garcia, S. Barbosa, S. Abrahão, and
A. Ribeiro. Quantifying usability of domain-specific languages: An
empirical study on software maintenance. Journal of Systems and

Software, 101:245–259, 2015.

[5] N. Bencomo, R. B. France, B. H. C. Cheng, and U. Aßmann, ed-
itors. Models@run.time - Foundations, Applications, and Roadmaps

[Dagstuhl Seminar 11481, November 27 - December 2, 2011], volume
8378 of Lecture Notes in Computer Science. Springer, 2014.

[6] Buxton, Bill and Greenberg, Saul and Carpendale, Sheelagh and Mar-
quardt, Nicolai. Sketching User Experiences: The Workbook. Morgan
Kaufmann, 2012.

[7] L. Carvajal, A. M. Moreno, M. I. S. Segura, and A. Seffah. Quantifying
usability of domain-specific languages: An empirical study on software
maintenance. IEEE Trans. Software Eng., 39(11):1582–1596, 2013.

[8] M. Chalmers. A historical view of context. Computer Supported

Cooperative Work, 13(3):223–247, 2004.

[9] T. Clark and P. Muller. Exploiting model driven technology: a tale of
two startups. Software and System Modeling, 11(4):481–493, 2012.

[10] G. Cockton, M. Larusdottir, P. Gregory, and A. Cajander, editors.
Integrating User-Centred Design in Agile Development. Springer, 2016.

[11] B. Combemale, B. H. Cheng, R. B. France, J.-M. Jezequel, and
B. Rumpe. Globalizing Domain-Specific Languages, volume 9400 of
LNCS, Programming and Software Engineering. Springer International
Publishing, 2015.

[12] Cooper, Alan. The inmates are running the asylum. SAMS, 1999.

[13] T. S. da Silva, A. Martin, F. Maurer, and M. Silveira. User-centered
design and agile methods: A systematic review. In Proceedings of

the 2011 Agile Conference, Salt Lake City, USA, pages 77–86. IEEE
Computer Society, 2011.

[14] A. Fernandez, S. Abrahão, E. Insfrán, and M. Matera. Usability
Inspection in Model-Driven Web Development: Empirical Validation in
WebML. In "16th International Conference on Model-Driven Engi-

neering Languages and Systems (MODELS 2013), Miami, USA", pages
740–756. Springer Berlin Heidelberg, 2013.

[15] R. France and B. Rumpe. Model-driven development of complex
software: A research roadmap. In 2007 Future of Software Engineering,
pages 37–54. IEEE Computer Society, 2007.

[16] T. Green and M. Petre. Usability analysis of visual programming
environments: A ‘cognitive dimensions’ framework. Journal of Visual

Languages and Computing, 7(2):131 – 174, 1996.

[17] J. Grudin. Why CSCW Applications Fail: Problems in the Design and
Evaluationof Organizational Interfaces. In Proceedings of the 1988

ACM Conference on Computer-supported Cooperative Work, CSCW
’88, pages 85–93, New York, NY, USA, 1988. ACM.

[18] M. Hassenzahl, S. Diefenbach, and G. Anja. Needs, affect, and interac-
tive products – facets of user experience. Interacting with Computers,
22(5):353–362, 2010.

[19] K.-H. Huangand, N. J. Nunes, L. Nobrega, L. Constantine, and M. Chen.
Hammering models: designing usable modeling tools. In INTERACT’11

Proceedings of the 13th IFIP TC 13 international conference on Human-

computer interaction - Volume Part III, Lisbon Portugal, pages 537–554.
Springer-Verlag, Berlin Heidelberg, 2011.

[20] ISO 25010:2011. Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - System and

software quality models. ISO, Geneva, Switzerland.

[21] ISO 9126-1:2001. Software engineering - Product quality - Part 1:

Quality model. ISO, Geneva, Switzerland.

[22] ISO 9241-11:1998. Ergonomic requirements for office work with visual

display terminals (VDTs) - Part 11: Guidance on usability. ISO, Geneva,
Switzerland.

[23] ISO 9241-210:2010. Ergonomics of human-system interaction - Part

210: Human-centred design for interactive systems. ISO, Geneva,
Switzerland.

[24] E. Law and S. Abrahão. Interplay between user experience (ux)
evaluation and system development. International Journal of Human-

Computer Studies, 72(6):523–525, 2014.
[25] E. L.-C. Law, V. Roto, M. Hassenzahl, A. P. Vermeeren, and K. Joke.

Understanding, scoping and defining user experience: A survey ap-
proach. In ACM SIGCHI conference on Human Factors in Computing

Systems, pages 719–728. ACM, 2009.
[26] H. Marc and T. Tractinsky. User experience - a research agenda.

Behaviour and Information Technology, 25(2):91–97, 2006.
[27] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez. An em-

pirical study of the state of the practice and acceptance of model-driven
engineering in four industrial cases. Empirical Software Engineering,
18(1):89–116, 2013.

[28] D. L. Moody. The “physics” of notations: Toward a scientific basis
for constructing visual notations in software engineering. IEEE Trans.

Software Eng., 35(6):756–779, 2009.
[29] A. L. Peres, T. S. Da Silva, F. S. Silva, F. F. Soares, C. R. M.

De Carvalho, and M. S. R. D. Lemos. Agileux model: Towards a
reference model on integrating ux in developing software using agile
methodologies. In Proceedings of the 2014 Agile Conference, Orlando,

USA, pages 61–63. IEEE Computer Society, 2014.
[30] P. Ralph. Toward a Theory of Debiasing Software Development, pages

92–105. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
[31] D. Salah, R. F. Paige, and C. P. A. A maturity model for integrating agile

processes and user centred design. In 16th International Conference on

Software Process Improvement and Capability Determination (SPICE

2016), Dublin, Ireland, pages 109–122. Springer, 2014.
[32] E. B.-N. Sanders and P. J. Stappers. Co-creation and the new landscapes

of design. CoDesign, 4(1):5–18, 2008.
[33] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, and J. E. Hannay. Building

Theories in Software Engineering, pages 312–336. Springer London,
London, 2008.

[34] H. Störrle. How are Conceptual Models used in Industrial Software
Development? A Descriptive Survey. In E. Mendes, K. Petersen, and
S. Counsell, editors, Proc. 21st Intl. Conf. on Evaluation and Assessment

in Software Engineering (EASE). ACM, 2017.
[35] A. N. Tuch, P. Van Schaik, and K. Hornbæk. Leisure and work, good

and bad: The role of activity domain and valence in modeling user
experience. ACM Trans. on Computer-Human Interaction, 23(6):35:1–
35:32, 2016.

[36] A. P. Vermeeren, E. L.-C. Law, V. Roto, M. Obrist, J. Hoonhout, and
V.-V.-M. Kaisa. User experience evaluation methods: Current state and
development needs. In 6th Nordic Conference on Human-Computer

Interaction: Extending Boundaries, Reykjavik, Iceland, pages 521–530.
ACM, 2010.


	Introduction
	History of UX
	UX in Software Engineering
	UX in MDE: State of the practice
	UX in MDE: Challenges
	User Model Integration
	Processes for Tailoring UX
	Empirical Studies of MX
	Customization and Domain Specific Modeling Support
	Interoperability

	UX in MDE: Future Directions
	Support for Model and Tool Integration
	Support for Domain Specific Modeling
	Support for User Model and Process Integration
	Cross-cutting Areas to be Addressed
	Evaluation Methods and Metrics for MX
	A Theory for MX:
	Engaging Other Disciplines
	Training and Support


	Conclusions
	Acknowledgments
	References

