

DISSERTATION
for the Degree of

Doctor of Natural Sciences (Dr. rer. nat.)

Applying Model-Driven Engineering
to Development Scenarios for Web

Content Management System Extensions

Submitted by

Dennis Priefer
born February 24, 1987 in Wetzlar.

Department of Mathematics and Computer Science Submitted: 10 March 2021
Philipps-Universität Marburg Defended: 2 July 2021
University Reference Number: 1180

Marburg, 2021.

Supervisors:
Prof. Dr. Gabriele Taentzer Philipps-Universität Marburg
Prof. Dr. Peter Kneisel Technische Hochschule Mittelhessen

Co-Advisor:
Dr. Daniel Strüber Radboud Universiteit Nijmegen

Referees:
Prof. Dr. Gabriele Taentzer Philipps-Universität Marburg
Prof. Dr. Manuel Wimmer Johannes Kepler Universität Linz

Priefer, Dennis.
Applying Model-Driven Engineering to Development Scenarios
for Web Content Management System Extensions.
Dissertation, Philipps-Universität Marburg (1180), 2021.

Curriculum vitae
2012, Informatik M.Sc., Technische Hochschule Mittelhessen
2009, Informatik B.Sc., Fachhochschule Gießen-Friedberg

Originaldokument gespeichert auf dem Publikationsserver der
Philipps-Universität Marburg

http://archiv.ub.uni-marburg.de

Dieses Werk bzw. Inhalt steht unter einer
Creative Commons

Namensnennung
Keine kommerzielle Nutzung

Weitergabe unter gleichen Bedingungen
3.0 Deutschland Lizenz.

Die vollständige Lizenz finden Sie unter:
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Meiner Frau Christina und
meinen Kindern Noah und Mila

Acknowledgements

Now that I have completed this work, I often think of the many people who inspired and motivated
me during its creation and who made this work possible in the first place. I would like to take
this opportunity to thank them for all their support over the years.

First and foremost, I would like to thank Prof. Dr. Gabriele Taentzer. Her support and
trust throughout my academic journey have been the cornerstone of my research. Her insightful
feedback has supported me in the conception, structuring and implementation of my publications,
including this dissertation. Her expertise and assistance over the years have been invaluable. In
the same breath, I also want to thank Prof. Dr. Peter Kneisel for his support, trust and the
freedom he has given me to conduct my research in a self-determined way. He has been a mentor
to me for years and has been instrumental in shaping me as a person.

Special thanks go to Dr. Daniel Strüber, who took on a mentoring role as a supportive co-
author of my publications and helped me to significantly improve the quality of my research.
His collaboration brought my work to a higher level, while his guidance helped me to steadily
improve my scientific skills over the past years.

Moreover, I would also like to thank Prof. Dr. Manuel Wimmer, who agreed to be my second
examiner. His suggestions helped me to improve the details of this dissertation. I would also
like to thank Prof. Dr. Bernhard Seeger and Prof. Dr. Christoph Bockisch, who immediately
agreed to be members of my examination committee.

I would like to express my gratitude to Wolf Rost for his active support in implementing the
JooMDD infrastructure presented in this thesis as well as in conducting and evaluating the em-
pirical work presented. He was by my side not only as a co-author, but also as a loyal companion
throughout my doctorate. I also would like to acknowledge Dieudonne Timma Meyatchie, who,
in addition to his support in the implementation of the JooMDD infrastructure (code generation,
extension extraction), was also an important interlocutor in many discussions during the creation
of this thesis.

In the context of the JooMDD infrastructure, I would also like to thank Andrej Sajenko and
Alexander Heinz (model extraction), Peter Janauschek (model validation), Max Steinwachs
(CI/CD), Lukas Kimpel (web editor), Leon Peulings (IDE plugins), Lukas Schmitt (testing
and documentation), Kevin Linne and Samuel Schepp (model interpreters), as well as Mehmet
Ali Pamukci as initial user of the infrastructure. Without the support of my colleagues of the
project, I would only have been able to present a fraction of the MDE infrastructure presented.

Next, I would like to thank the other (former) members of the Institute of Information Science
at the Technische Hochschule Mittelhessen who have constructively supported me during my
academic journey over the years by providing feedback during rehearsal talks, on draft papers and
during academic discussions. Tim Häuser and James Antrim deserve special mention here. The
same applies to my colleagues in the MNI department at the Technische Hochschule Mittelhessen,
as well as the colleagues and former members of the software engineering group at the Philipps-
Universität Marburg - in particular Steffen Vaupel, Kristopher Born, Nebras Nassar and Felix
Rieger.

I would like to thank the Joomla community for the constructive feedback regarding our JooMDD
infrastructure. Listing all the names would go beyond the scope of this paper, but I would like
to express my very special thanks to Roland Dalmulder and Benjamin Trenkle for their guidance
and support. Both of them have always motivated and supported me in improving my MDE
approach and making it accessible to the community.

vii

Furthermore, I would like to thank all participants in the empirical studies shown in this paper.
On the one hand for the time invested, on the other hand for the constructive feedback.

Moreover, I would like to thank the anonymous reviewers of the published papers in the context
of this thesis for their constructive critique and suggestions which helped to improve the quality
of my research.

Last but not least, I would like to thank my family and friends who have always motivated me
from the idea to the completion of this dissertation. Most of all, I would like to thank my lovely
wife Christina for her patience and support over the past years.

Abstract

Web content management systems (WCMSs) such as WordPress, Joomla or Drupal have es-
tablished themselves as popular platforms for instantiating dynamic web applications. Using a
WCMS instance allows developers to add additional functionality by implementing installable ex-
tension packages. However, extension developers are challenged by dealing with boilerplate code,
dependencies between extensions and frequent architectural changes to the underlying WCMS
platform. These challenges occur in frequent development scenarios that include initial devel-
opment and maintenance of extensions as well as migration of existing extension code to new
platforms. A promising approach to overcome these challenges is represented by model-driven
engineering (MDE). Adopting MDE as development practice, allows developers to define software
features within reusable models which abstract the technical knowledge of the targeted system.
Using these models as input for platform-specific code generators enables a rapid transformation
to standardized software of high quality. However, MDE has not found adoption during exten-
sion development in the WCMS domain, due to missing tool support. The results of empirical
studies in different domains demonstrate the benefits of MDE. However, empirical evidence of
these benefits in the WCMS domain is currently lacking.

In this work, we present the concepts and design of an MDE infrastructure for the development
and maintenance of WCMS extensions. This infrastructure provides a domain-specific modelling
language (DSL) for WCMS extensions, as well as corresponding model editors. In addition, the
MDE infrastructure facilitates a set of transformation tools to apply forward and reverse engi-
neering steps. This includes a code generator that uses model instances of the introduced DSL,
an extension extractor for code extraction of already deployed WCMS extensions, and a model
extraction tool for the creation of model instances based on an existing extension package. To
ensure adequacy of the provided MDE infrastructure, we follow a structured research methodol-
ogy. First, we investigate the representativeness of common development scenarios by conducting
interviews with industrial practitioners from the WCMS domain. Second, we propose a general
solution concept for these scenarios including involved roles, process steps, and MDE infrastruc-
ture facilities. Third, we specify functional and non-functional requirements for an adequate
MDE infrastructure, including the expectations of domain experts. To show the applicability
of these concepts, we introduce JooMDD as infrastructure instantiation for the Joomla WCMS
which provides the most sophisticated extension mechanism in the domain.

To gather empirical evidence of the positive impact of MDE during WCMS extension develop-
ment, we present a mixed-methods empirical investigation with extension developers from the
Joomla community. First, we share the method, results and conclusions of a controlled ex-
periment conducted with extension developers from academia and industry. The experiment
compares conventional extension development with MDE using the JooMDD infrastructure, fo-
cusing on the development of dependent and independent extensions. The results show a clear
gain in productivity and quality by using the JooMDD infrastructure. Second, we share the
design and observations of a semi-controlled tutorial with four experienced developers who had
to apply the JooMDD infrastructure during three scenarios of developing new (both independent
and dependent) extensions and of migrating existing ones to a new major platform version. The
aim of this study was to obtain direct qualitative feedback about acceptance, usefulness, and
open challenges of our MDE approach. Finally, we share lessons learned and discuss the threats
to validity of the conducted studies.

ix

Kurzfassung

Web-Content-Management-Systeme (WCMS) wie WordPress, Joomla oder Drupal haben sich
als beliebte Plattformen für die Erstellung dynamischer Webanwendungen etabliert. Ein großer
Vorteil von WCMS ist die funktionale Erweiterbarkeit durch installierbare Erweiterungspakete.
Entwickler solcher Erweiterungen stehen jedoch vor der Herausforderung, sich mit großen Mengen
an Boilerplate-Code, Abhängigkeiten zwischen Erweiterungen sowie Architekturanpassungen an
der zugrunde liegenden WCMS-Plattform auseinanderzusetzen. Diese Herausforderungen treten
in gängigen Entwicklungsszenarien auf, welche sowohl die Entwicklung und Wartung von neuen
Erweiterungspaketen, als auch die Softwaremigration von bestehenden Erweiterungen auf neue
WCMS Plattformen umfassen. Einen vielversprechenden Ansatz zur Bewältigung dieser Her-
ausforderungen bietet der Einsatz von Model-Driven Engineering (MDE). MDE als Software-
entwicklungsmethode sieht vor, fachliche Softwareanforderungen innerhalb von wiederverwend-
baren Modellen zu beschreiben, mit dem Ziel, technische Details über das Zielsystem weitest-
gehend zu abstrahieren. Die Verwendung solcher Modelle als Eingabe für plattformspezifische
Codegeneratoren ermöglicht eine automatisierte Übersetzung in standardisierte Software von ho-
her Qualität. Allerdings hat MDE bei der Entwicklung von Erweiterungen in der WCMS-Domäne
aufgrund fehlender Werkzeugunterstützung bisher wenig Akzeptanz erreicht. Während Ergeb-
nisse empirischer Studien in anderen Domänen den Nutzen von MDE aufzeigen, fehlen derzeit
empirische Belege für etwaige Vorteile im Kontext der Entwicklung von WCMS Erweiterungen.

In dieser Arbeit werden die Konzepte sowie das Design einer MDE-Infrastruktur für die Entwick-
lung von WCMS-Erweiterungen vorgestellt. Die vorgestellte Infrastruktur umfasst eine domä-
nenspezifische Modellierungssprache (DSL) für WCMS-Erweiterungen, Modelleditoren, sowie
Werkzeuge zur Unterstützung von Forward- und Reverse-Engineering-Prozessen, bestehend aus
einem Codegenerator, welcher Modellinstanzen der vorgestellten DSL verwendet, einem Werkzeug
für die Code-Extraktion aus installierten WCMS-Erweiterungen, sowie einem Werkzeug zur In-
formationsgewinnung, welches basierend auf bestehenden Erweiterungspaketen Modellinstanzen
der vorgestellten DSL generieren kann. Der Entwurf der gezeigten Infrastruktur befolgt folgenden
Prozess: Zunächst wird die Repräsentativität gängiger Entwicklungsszenarien untersucht, indem
Interviews mit Entwicklern aus der WCMS-Domäne durchführt werden. Als nächstes wird ein
allgemeines Lösungskonzept für diese Szenarien vorgeschlagen, welches Rollen, Prozessschritte
sowie notwendige MDE-Infrastrukturkomponenten umfasst. Daraufhin werden funktionale sowie
nicht-funktionale Anforderungen an eine adäquate MDE-Infrastruktur gesammelt. Um die An-
wendbarkeit der vorgestellten Konzepte zu zeigen, wird die JooMDD-Infrastruktur vorgestellt,
welche die Entwicklung von Erweiterungen für das Joomla WCMS adressiert, welches im Ver-
gleich populärer WCMS den anspruchsvollsten Erweiterungsmechanismus bietet.

Um Belege für den positiven Einfluss von MDE während der Entwicklung von WCMS-Erweiterun-
gen zu sammeln, werden die Ergebnisse empirischer Studien mit Erweiterungs-Entwicklern aus
der Joomla-Community vorgestellt. Dabei werden zuerst Methode, Ergebnisse sowie Schlussfol-
gerungen eines kontrollierten Experiments mit Entwicklern aus dem akademischen sowie indus-
triellen Bereich präsentiert, welches konventionelle Erweiterungs-Entwicklung mit dem MDE
Ansatz vergleicht. Die Ergebnisse zeigen einen deutlichen Gewinn an Produktivität und Quali-
tät durch den Einsatz der JooMDD-Infrastruktur. Weiterhin werden Design und Beobachtun-
gen eines semi-kontrollierten Tutorials mit Entwicklern aus der Joomla-Community präsentiert.
Unter Verwendung der JooMDD-Infrastruktur in mehreren Entwicklungsszenarien wurde qualita-
tives Feedback über die Akzeptanz, Nützlichkeit sowie offene Herausforderungen des vorgestellten
MDE-Ansatzes gesammelt. Abschließend werden Lessons Learned sowie auftretende Validitäts-
gefährdungen der durchgeführten Studien präsentiert.

xi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 3
1.3 Contributions . 5
1.4 Methodology . 6
1.5 Outline . 7
1.6 Thesis-Related Publications and Presentations 8

2 Web Content Management Systems 11
2.1 WCMS Features . 12

2.1.1 Sections and Roles . 12
2.1.2 Core Features . 13
2.1.3 Extensibility and Programmability . 15

2.2 Commonalities and Differences in WCMS Extension Development 17
2.2.1 WCMS Market . 17
2.2.2 Extension Development Comparison . 20

2.3 Common Extension Development Scenarios . 32
2.3.1 Scenario 1: Development of Independent Extensions 32
2.3.2 Scenario 2: Development of Dependent Extensions 33
2.3.3 Scenario 3: Migration of a Legacy Extension to a new Platform (Version) 34
2.3.4 Further Scenarios . 36

3 Model-Driven Engineering 39
3.1 Terminology . 40
3.2 MDE in Software Development . 42
3.3 MDE Infrastructure Development . 42

3.3.1 Design of Domain-Specific Languages . 43
3.3.2 Providing Transformations . 44
3.3.3 Support for MDE Tool Development . 47
3.3.4 IDE Integration . 48
3.3.5 Custom Code Integration . 49
3.3.6 Development Process . 49

4 MDE of WCMS Extensions -
General Solution Concept and Requirements 53
4.1 Interviews with Extension Developers . 53

4.1.1 Set-up . 53
4.1.2 Results . 55
4.1.3 Interpretation . 62

4.2 MDE Concept for WCMS Extensions . 63
4.2.1 Model-Driven Engineering of Independent Extensions 65
4.2.2 Model-Driven Engineering of Dependent Extensions 66
4.2.3 Model-Driven Migration of Legacy Extensions 68
4.2.4 Additional Scenarios . 70

xiii

4.3 MDE Infrastructure Requirements Elicitation . 72
4.3.1 Domain-Specific Language . 73
4.3.2 Model Editors . 76
4.3.3 Code Generator . 78
4.3.4 Reverse Engineering Facilities . 81
4.3.5 General Infrastructure Requirements . 82
4.3.6 Summary . 83

4.4 Discussion . 83
4.4.1 Relevance of Scenarios 1-5 (RQ1.1) . 84
4.4.2 MDE Concept for Scenarios 1-5 (RQ1.2) 85
4.4.3 MDE Infrastructure Requirements for Scenarios 1-5 (RQ1.3) 85

5 Domain-Specific Language for WCMS Extensions 87
5.1 State of the Art . 87
5.2 Language Design . 88

5.2.1 Data Modelling . 92
5.2.2 Interaction Modelling . 94
5.2.3 Extension Modelling . 97
5.2.4 Core Support . 101

5.3 Well-formedness Rules . 103
5.3.1 Data Modelling . 104
5.3.2 Interaction Modelling . 106
5.3.3 Extension Modelling . 107

5.4 Model Editors . 108
5.5 Showcase Models . 109
5.6 Evaluation . 112

5.6.1 Requirement Verification and Validation 113
5.6.2 Adequacy of the DSL . 114
5.6.3 Threats to Validity . 115

6 Transformation Tools 117
6.1 State of the Art . 117

6.1.1 Translation to Extension Code . 118
6.1.2 Handling of Legacy Extensions . 119

6.2 Code Generation of WCMS Extensions . 120
6.2.1 Concept . 121
6.2.2 Joomla-specific Extension Generator . 124

6.3 Extraction of Deployed WCMS Extensions . 141
6.3.1 Concept . 143
6.3.2 ExtPorter: A Joomla-Specific Component Extractor 143

6.4 Model Extraction of Legacy Extensions . 145
6.4.1 Concept . 145
6.4.2 JExt2eJSL: Model Extraction of Joomla 3 Components 146

6.5 Evaluation . 149
6.5.1 Requirement Verification and Validation 149
6.5.2 Threats to Validity . 158

7 MDE of WCMS Extensions -
Quantitative and Qualitative Analysis 159
7.1 State of the Art . 159

7.2 Quantitative Analysis - Conducting a Controlled Experiment 161
7.2.1 Method . 161
7.2.2 Results . 165
7.2.3 Discussion . 172

7.3 Qualitative Analysis - MDE Workshop with Industrial Practitioners 173
7.3.1 Method . 173
7.3.2 Observations . 176
7.3.3 Discussion . 177

7.4 Lessons Learned . 178
7.5 Threats to Validity . 179

7.5.1 Construct Validity . 179
7.5.2 Internal Validity . 180
7.5.3 Conclusion Validity . 180
7.5.4 External Validity . 180

8 Summary and Outlook 183
8.1 Summary . 183
8.2 Outlook . 185

A Semi-Structured Expert Interview 189

B Meta-Model of the cJSL DSL 209

C Well-Formedness Rules for eJSL 213

D Generator Scalability Tests 219

E Controlled Experiment: Documents 225

F Controlled Experiment: Results 251

G Hands-on Tutorial 261

Bibliography 269

List of Figures

1.1 WCMS usage throughout the last years (based on [251]) 1
1.2 Web Shop Extension within a WordPress-based Website [261] 2
1.3 Different Extension Types on a Joomla-based Website [133] 2
1.4 Gartner Hype Cycle [76] . 5
1.5 Outline of this Thesis . 7

2.1 Composition of a WCMS-based Web Application 12
2.2 Aggregation of Articles as Index Page in Joomla 4 Administration 14
2.3 Edit Interface for Blog Posts within WordPress 5 Administration Section 14
2.4 Concept of Installable WCMS Extensions . 16
2.5 WCMS market share (based on [252], stand October 2019) 18
2.6 Module representation within a running Drupal instance (administrator view) . . 28
2.7 Development of Independent Extensions . 33
2.8 Development of Dependent Extensions . 33
2.9 Common Dependencies Between Joomla Extensions (cf. [186]) 34
2.10 Migration of an Extension to a new Platform (Version) 34
2.11 Differing file structure of a Joomla 3 (left) and a Joomla 4 (right) component

(administrator folder) . 35
2.12 Partial Augmentation of a Legacy Extensions . 36
2.13 Modernization of a Legacy Extensions . 37

3.1 Relationship between MDA, MDD, MDE, and MBE (cf. [28]) 40
3.2 Abstraction Level Specification of MDA . 40
3.3 Template-based Code Generation (cf. [221, p. 189]) 45
3.4 MDE Tools based on EMF [38] . 47
3.5 Domain Engineering and Application Engineering (adapted from [84]) 50
3.6 Domain Analysis Concept (adapted from [221]) 51
3.7 Agile MDE Infrastructure Development Process in Action (adapted from [244]) . 52

4.1 Standard View with CRUD Functionality within a WCMS Extensions 54
4.2 MDE Infrastructure Concept for WCMS Extension Development (cf. [28]) . . . 64
4.3 Model-Driven Development of Independent Extensions 65
4.4 Model-Driven Development of Dependent Extensions 67
4.5 Forward, Reverse and Reengineering [54, p. 9] . 69
4.6 Model-Driven Migration of Legacy Extensions . 70
4.7 Model-Driven Augmentation of Legacy Extensions 71
4.8 Model-Driven Modernization of Legacy Extensions 72
4.9 Interaction between different representations of various data 74

5.1 Overview of the eJSL Meta-Model . 89
5.2 Parameters of a Joomla 4 component (Users Component) 90
5.3 List and Details View of an installed Conference Component 91
5.4 List View of an installed Conference Component (Frontend) 91
5.5 Data Modelling Part of eJSL . 92
5.6 Representation of an Entity Reference to another Entity Attribute 94
5.7 Interaction Modelling Part of eJSL . 95
5.8 Filters for Existing Participants (J4 Backend) . 96
5.9 Extension Modelling Part of eJSL . 97

xvii

5.10 Concept of eJSL and cJSL Integration (cf. [183]) 101
5.11 cJSL Meta-Model for Concrete WCMS Instances (Excerpt) 102
5.12 Core Support based on eJSL Models . 102
5.13 Generalization Cycle between Entities . 104
5.14 Reference Cycle between Entity Attributes . 106
5.15 Link Attribute Must Exist in Referenced Entity 106
5.16 eJSL Model Editor within Eclipse IDE . 108
5.17 eJSL Model Editor within PhpStorm IDE . 109
5.18 Project Wizard within PhpStorm IDE . 109
5.19 Web IDE Comprising the eJSL Model Editor . 110
5.20 Showcase Model - Conference . 110
5.21 Showcase Model - Shop . 111

6.1 Generator Front-End including the Decorator API and Resource Transformer . . 122
6.2 Generator Back-End including the WCMS-specific Code Templates 123
6.3 Preprocessing of many-to-many Relationships between two Entities 126
6.4 Generated Language Files and File Contents . 129
6.5 Architecture of Joomla Components . 130
6.6 Automatically Created Component Link as Menu Item in the Administration Sec-

tion of a Joomla Instance (J3) . 130
6.7 Generated File Structure of a Joomla 3 (left) and 4 (right) Component 131
6.8 Frontend Details View of a generated Component 132
6.9 Form Field for Referenced Attributes . 133
6.10 Additional Tab in Edit View with Form Field for Multiple References 134
6.11 Representation of Multiple References in a List View 134
6.12 Architecture of Joomla Modules . 136
6.13 Generated File Structure of a Joomla 3 (left) and 4 (right) Module 137
6.14 Representation of a Generated Module illustrating the Data of an installed Com-

ponent in the Frontend of a Joomla Instance) . 138
6.15 Configuration of a Generated Module in the Administration Section 138
6.16 Architecture of Joomla Plugins . 139
6.17 Generated File Structure of a Joomla 3 and 4 Plugin 139
6.18 Architecture of Joomla Templates and Libraries 140
6.19 Generated File Structure of a Joomla Template and Library 140
6.20 Separation of a Deployed Joomla Component . 142
6.21 Extension Extraction Concept . 143
6.22 Details View: Create a new Extracted Component 144
6.23 Details View: Installable Component Package as Zip File 144
6.24 List View of the ExtPorter Component . 145
6.25 Model Extraction Concept . 146
6.26 Overview of the JExt2eJSL Architecture . 146
6.27 Extension Parsing Process . 147
6.28 List View for Pre-Course Management . 150
6.29 Edit/Details View for Pre-Course Management 150
6.30 Generated File Structure of Partial Update Code (left) and Installable Component

Code (right) . 152
6.31 Scalability Test 1 (Components) . 153
6.32 Scalability Test 2 (Pages) . 154
6.33 Scalability Test 3 (Entities with References) . 154
6.34 Scalability Test 4 (References in one Entity) . 155
6.35 Scalability Results of all Tests . 155
6.36 Gradle Tasks for Build Automation of JooMDD Plugins 156

7.1 Entity Model of Possible Solution for CRM Requirement 163
7.2 Procedure Overview . 165
7.3 Passed Test Case Ratio (Overview) . 166
7.4 Q-Q Plot for Productivity Result Sets (Traditional/MDE) 168
7.5 Code Style Violations / LoC Ratio (Overview) 170
7.6 Q-Q Plot for Quality Result Sets (Traditional/MDE) 172
7.7 Tutorial Procedure Overview . 176

B.1 cJSL Application with all cJSL Parts . 209
B.2 cJSL Configuration Part . 209
B.3 cJSL User Part . 210
B.4 cJSL Menu Part . 210
B.5 cJSL Content Part . 211
B.6 cJSL Page Part . 212

D.1 Measurement Setting (Test 1) . 219
D.2 Measurement Setting (Test 2) . 220
D.3 Measurement Setting (Test 3) . 221
D.4 Measurement Setting (Test 4) . 222
D.5 Measurement Setting (Test 5) . 223

E.1 Consent Form . 225
E.2 Experiment Presentation (1) . 226
E.3 Experiment Presentation (2) . 227
E.4 Experiment Presentation (3) . 228
E.5 Experiment Presentation (4) . 229
E.6 Experiment Presentation (5) . 230
E.7 Experiment Presentation (6) . 231
E.8 Experiment Presentation (7) . 232
E.9 Experiment Presentation (8) . 233
E.10 Experiment Presentation (9) . 234
E.11 Demographic Questionnaire . 235
E.12 Self-Assessment (Self-Assessment: General Software Development and Joomla) . 236
E.13 External Assessment: Joomla Knowledge) . 237
E.14 Self-Assessment (Self-Assessment: MDE) . 238
E.15 Self-Assessment (External Assessment: MDE) . 239
E.16 Questionnaire after Session 1 . 240
E.17 Questionnaire after Session 2 . 240
E.18 Feedback Questionnaire . 241
E.19 Requirement A: University Management . 242
E.20 Requirement A: Test Cases (1) . 243
E.21 Requirement A: Test Cases (2) . 244
E.22 Requirement A: Test Cases (3) . 245
E.23 Requirement B: Customer-Relationship Management 246
E.24 Requirement B: Test Cases (1) . 247
E.25 Requirement B: Test Cases (2) . 248
E.26 Requirement B: Test Cases (3) . 249

G.1 Hands-on Tutorial Presentation (1) . 261
G.2 Hands-on Tutorial Presentation (2) . 262
G.3 Hands-on Tutorial Presentation (3) . 263
G.4 Hands-on Tutorial Presentation (4) . 264
G.5 Hands-on Tutorial Presentation (5) . 265

G.6 Hands-on Tutorial Presentation (6) . 266
G.7 Hands-on Tutorial Presentation (7) . 267
G.8 Hands-on Tutorial Presentation (8) . 268

List of Tables

1.1 Number of officially listed extensions for current WCMS versions (Sept. 2020) . 3

2.1 Developer Support . 29
2.2 Extension Features (1) . 29
2.3 Extension Features (2) . 30
2.4 API Support . 30
2.5 API Support (2) . 31
2.6 Scoring of WCMS Extensibility . 31

4.1 Experience with Joomla (C1) . 55
4.2 Development of Joomla/WCMS Extensions (C2) 56
4.3 Migration of Joomla/WCMS Extensions (C3) . 57
4.4 Extension Characteristics (C4) . 58
4.5 MDE Approach during Extension Development/Migration (C5.1) 59
4.6 MDE Approach during Extension Development/Migration (C5.2) 61
4.7 MDE Infrastructure for WCMS Extensions - Requirements 84

6.1 Tool support for WCMS Extension Development Scenarios (for Joomla 3) 118
6.2 Type Mappings for eJSL Standard Types and HTML Types 126
6.3 Type Mappings for eJSL Standard Types and SQL Types 134
6.4 Type Mappings for eJSL HTML Types . 135

7.1 Study Design . 163
7.2 Productivity Results: Overview (Amount of passed Test Cases) 166
7.3 Productivity Results: Detailed Insights (Component Structure) 167
7.4 Productivity Results: Detailed Insights (Component Views) 167
7.5 Productivity Results: Detailed Insights (Component CRUD) 168
7.6 Productivity Results: Detailed Insights (Module) 168
7.7 Quality Results: Overview (Violations/LoC) . 169
7.8 Quality Results: Detailed Insights (Component Views: List) 170
7.9 Quality Results: Detailed Insights (Component Views: Edit) 171
7.10 Quality Results: Detailed Insights (Module) . 171

D.1 Measurement Setting (Test 1) . 219
D.2 Measurement Result (Test 1) . 220
D.3 Measurement Setting (Test 2) . 220
D.4 Measurement Result (Test 2) . 221
D.5 Measurement Setting (Test 3) . 221
D.6 Measurement Result (Test 3) . 222
D.7 Measurement Setting . 222
D.8 Measurement Result (Test 4) . 223
D.9 Measurement Setting (Test 5) . 223
D.10 Measurement Result (Test 5) . 224

F.1 Developer Experience (1) . 251
F.2 Developer Experience (2) . 252
F.3 Experience with a WCMS and Joomla . 252
F.4 Experience with MDE . 253

xxi

F.5 Open-Mindedness towards MDE . 253
F.6 Session 1: Productivity Results (Row Data) . 254
F.7 Session 1: Quality Results (Row Data) . 254
F.8 Session 1: Session Feedback (Row Data) . 255
F.9 Session 1: Session Feedback - Development Approach (Row Data) 255
F.10 Session 2: Productivity Results (Row Data) . 256
F.11 Session 2: Quality Results (Row Data) . 256
F.12 Session 2: Quality Results - Modules (Row Data) 257
F.13 Session 2: Session Feedback (Row Data) . 257
F.14 Feedback Results - Experiment (Row Data) . 258
F.15 Feedback Results - MDE (Row Data) . 259

Listings

2.1 Minimum specification within the main PHP fle of a WordPress plugin 22
2.2 WordPress action hook . 22
2.3 Joomla plugin structure (Joomla’s user plugin) 24
2.4 Joomla manifest structure (Joomla’s user component) 25
2.5 Drupal configuration file (helloWorld example) 27
5.1 Data Model for Conference Extension (Inheritance and Attributes) 93
5.2 Data Model for Conference Extension (References) 93
5.3 Page Model for Conference Extension (Static Page) 96
5.4 Page Model for Conference Extension (Custom Page) 96
5.5 Page Model for Conference Extension (Index Page) 96
5.6 Page Model for Conference Extension (Details Page) 97
5.7 Extension Model for Conference Extension (Manifest) 98
5.8 Extension Model for Conference Extension (Languages) 98
5.9 Extension Model for Conference Copmonent . 99
5.10 Extension Model for Conference Module . 99
5.11 Extension Model for Conference Search Plugin 100
5.12 Extension Model for Conference Library . 100
5.13 Extension Model for an Example Template . 101
5.14 Core Model for WCMS User Management . 103
5.15 Extension Model with Reference to the WCMS Core 103
5.16 Constraint for Unique Attribute Identifiers (within one Entity) 104
5.17 Constraint for consistent Entity Inheritance . 104
5.18 Constraint for Transitive Closure of Entity Generalization (avoid Generalization

Cycle) . 105
5.19 Constraint for Auto Increment Property . 105
5.20 Constraint for Multiplicity Values . 105
5.21 Constraint for Valid Multiplicity Relations (Between min and max) 105
5.22 Constraint to avoid Entity Reference Cycles . 105
5.23 Constraint to Check if Datepicker (HTML Type) is Mapped to Time, Date and

Datetime (Entity Type) . 106
5.24 Constraint to Check if Linked Attribute in IndexPage is Consistent to Referenced

Entity Attribute . 107
5.25 Constraint to Check if Table Columns are Consistent to Referenced Entity in

IndexPage . 107
5.26 Constraint to Check the Consistency of Multiple Referenced Entities 107
5.27 Constraint to Check Unique Extension Names (Same Extension Kind) 108
5.28 Generic Showcase Model with Placeholders (Excerpt) 112
6.1 Example of Page Defintion before Preprocessing Step 127
6.2 Example of Page Defintion after Preprocessing Step 127
6.3 Language Specification for an Extension in an eJSL Instance Model 129
6.4 Entity Definition with unidirectional Reference 132
6.5 Entity Definitions with bidirectional Reference (Participant ←→ Talk) 133
6.6 Field Definition in A Form Specification File . 136
6.7 Module Dependency to a Model of a Component 137
6.8 Generated Search Plugin Class (Excerpt) . 139
6.9 Module Dependency to a Page of a Component 141
6.10 Component and Dependent Module as Part of an Extension Package 141
6.11 Placeholder within an Extracted Extension Model 148

xxiii

C.1 Well-Formedness-Rules: Context Entities . 213
C.2 Well-Formedness-Rules: Context StandardTypes 213
C.3 Well-Formedness-Rules: Context Reference . 214
C.4 Well-Formedness-Rules: Context Feature . 214
C.5 Well-Formedness-Rules: Context DetailsPage (1) 214
C.6 Well-Formedness-Rules: Context DetailsPage (2) 215
C.7 Well-Formedness-Rules: Context IndexPage . 216
C.8 Well-Formedness-Rules: Context Library . 216
C.9 Well-Formedness-Rules: Context Class . 216
C.10 Well-Formedness-Rules: Context CMSExtension 217

1 Introduction

Research is to see what everybody else has seen,
and to think what nobody else has thought.

– Albert Szent-Gyorgyi

Development in the web domain has changed tremendously throughout the last years. Web ap-
plications are no longer static HTML documents with the intention of just providing information.
Nowadays, web applications are functional rich applications, which are no longer distinguishable
from native applications. They are used within various domains for almost every purpose. To
this end, the web domain consists of the most fluctuating and growing technologies nowadays.
Besides conventional client-server development (by using HTML, CSS and JavaScript), a massive
set of tools and frameworks exist to support web developers during the creation of functional rich
web applications. Especially the rise of server-side JavaScript for backend development using the
Node.js framework [68] as well as JavaScript-based frameworks for frontend development, such
as Angular [79] and React [63], became very popular throughout the last years.

Among these frameworks, web content management systems (WCMSs) established as the most
popular choice for creating a web application. During the last decade, WordPress [266], Joomla
[171], and Drupal [34] stand out as the most popular choice for creating a WCMS-based web
application. The purpose of a WCMS platform is to provide certain core functionalities such as
management of users, content, sites, media, templates, and languages. Using a WCMS typically
simplifies the creation of a web application, since it usually can be configured within a simple
installation dialogue. This even allows non-developers to create a web application.

In 2011 only 25% of all websites were based on a WCMSs (top 5: 19%), whereas in 2020 the
majority of all websites are based on a WCMS (more than 57%, top 5: 43% [252]).

2012 2013 2014 2015 2016 2017 2018 2019 2020 20210%

20%

40%

60%

80% No WCMS
Top 5 WCMS

Figure 1.1: WCMS usage throughout the last years (based on [251])

1.1 Motivation
Most of the common WCMSs provide the possibility of functional augmentation by installable
software extensions. These software extensions can vary from simple widgets for data represen-
tation at any website position up to functional rich stand-alone extensions, which are used for

1

2 Chapter 1. Introduction

the management of whole domain objects. This allows, e.g., the integration of a media manager
or a web shop into a WCMS instance without changing the platform itself. So, some valuable
benefits can be ensured. E.g., leaving the platform unchanged guarantees consistency of the
system, even after version updates. Additionally, the encapsulation of function implementations
as extensions supports the reuse and free distribution of functionality.

The following figures present the typical appearance of WCMS extensions within WCMS-based
websites. In Chapter 2 we will take a closer look at the differences between the mentioned
WCMSs and their functional extensibility.

Figure 1.2: Web Shop Extension within a WordPress-based Website [261]

Figure 1.2 illustrates the use of a web shop plugin (WooCommerce [261]) within a WordPress-
based website. With the use of this extension, the administrator of the site is able to provide a
web shop, even though the basic core of WordPress is intended to manage blog posts.

Figure 1.3: Different Extension Types on a Joomla-based Website [133]

Figure 1.3 illustrates how the more sophisticated extension mechanism of Joomla is used within
a Joomla-based website. To ensure homogeneous integration of extensions into the host system,
Joomla provides various extension types which can be used within a Joomla instance. The two
most frequently used extension types are components and modules. Components can extend the
functionality of a Joomla-based site tremendously, since they typically consist of own database
tables and allow the management of custom data entities. This usually exceeds the typical
functional scope of extensions which are used within other WCMSs. Modules typically represent
data which is managed by one or more components within module positions on a Joomla instance.

1.2. Challenges 3

Such interdependencies are also common between extensions of other WCMSs like WordPress
and Drupal, allowing extension developers to augment already existing extensions by custom
features and is therefore a popular procedure.

A look at the current extension statistics of the most popular WCMSs (Table 1.1) indicates
their relevance for WCMS-based websites. The statistic contains only the number of extensions
which are listed in the official extension directories of the respective WCMS. Without the use of
extensions, WCMSs would have hardly been so successful over the last years.

Table 1.1: Number of officially listed extensions for current WCMS versions (Sept. 2020)

WCMS Versions # of Existing Extensions
WordPress [266] all versions 57.487
Joomla [170] 3.x, 4.0 beta 7.449
Drupal [34] 9.x 3.906

To support extension developers, the most common WCMSs provide an API for using the WCMS
as framework. This decreases the amount of extension code and allows a simplified deployment.
Usually, extensions can be deployed to a running WCMS instance by using an installation dia-
logue within the WCMS instance. However, this requires the implementation of prescribed API
functions. Though, developing against the API of a WCMS requires technical knowledge and is
only helpful for advanced extension developers.

A closer look to the required code structure points out the typical side effect of standardized
API code - a tremendous amount of boilerplate code. Due to e.g. Joomla’s architecture, code of
the same structure has to be repetitively developed in accordance with the required development
standards. These in turn can require strange rules such as same identifiers for class and file names
to ensure correct interaction between the core platform and the installed extension. Novices in
the domain are often overstrained leading them to develop extensions without following the API
guidelines or to apply the clone-and-own1 approach - developers copy and adapt existing code
to new requirements without an actual understanding of the code. This error-prone procedure
often leads to low quality extensions which are hard to maintain.

1.2 Challenges
WCMS extension developers face several challenges during common development scenarios.
These scenarios include the initial and further development of independent and dependent exten-
sions as well as the migration of existing extension code to new platforms including new major
versions of the same platform. Especially developers with less experience must invest immense
effort to implement or maintain standard extensions of high quality.

Usually, a tremendous amount of generic code fragments have to be implemented for every
popular WCMS in order to adhere to their coding standards and using their API properly. A
common procedure for extension developers is to make a copy of existing extension code which is
then adapted to the new requirements (clone-and-own practice). However, this is an error-prone
practice, e.g. if developers have lacking knowledge of the existing code which is used as baseline
code [125, 124, 268]. In our context, this often leads to oversized extensions which contain useless
code or features which are not required. This effect is intensified, if code from different extensions
is merged into a new extension. To ensure high extension quality, requires refactorings of the
new extension, provoked by the development practice.

1The clone-and-own approach is a common practice in software product line (SPL) development where software
variants are part of software families [48]. This ensures high reusability of software features during the derivation
of new product variants.

4 Chapter 1. Introduction

⇒ Problem Statement 1: Ensuring high quality in WCMS extensions requires tremendous effort
due to required coding guidelines and APIs which have to be implemented.

Typically, WCMSs go through several version changes within their life cycle (see Section 2.2.1).
According to the last major version releases of the most popular WCMSs, these changes are
usually accompanied by architectural modifications in the code base of the WCMS platform.
Extension developers are forced to migrate their extensions to the new versions to ensure their
operability within updated WCMS instances, which is a time-consuming process. A high number
of extensions to migrate typically leads to escalating maintenance effort. As experience has
shown, missing documentation and required effort often lead to dying extensions since developers
were not able to migrate their software in a proper way. If this happens, administrators have to
replace the extension which in turn is associated with additional effort for them. Since WCMS
extensions may include dependencies to other extensions, a missing migration typically affects
depending extensions as well.

⇒ Problem Statement 2: The code migration of existing extensions to new platform (versions)
requires tedious effort, especially if the number of extensions to migrate rises.

Another challenge faced by extension developers occurs, if WCMS administrators make use of
third-party or legacy extensions in a WCMS instance which have to be functionally augmented.
Maintainers of third-party extensions are not always willing to augment their extensions. So,
legacy extensions are typically not further maintained by their initial developers but may com-
prise valuable features for WCMS administrators. Therefore, it is common practice to augment
(legacy) extensions by new features or re-implement the extension, e.g. if it must be migrated
to a new major platform version. Both requires a reverse engineering process which must be
tediously performed by extension developers.

⇒ Problem Statement 3: The augmentation and re-engineering of (legacy) extensions requires
a time-consuming reverse engineering process.

Managing dependencies between extensions is a challenging task, since every evolution of the
dependency could break the dependent extension. Due to the missing dependency management in
popular WCMS frameworks, administrators have to ensure proper interplay between depending
extensions in a WCMS instance. Extension developers must react to each dependency update
and migrate dependent extensions to new versions of the dependency - a tedious task, if the
dependency is maintained by different developers.

⇒ Problem Statement 4: The maintenance of dependent extensions is tedious due to the missing
dependency management between extensions.

To address the high amount of repetitive code, developers of WCMS extensions often publish
empty boilerplate code or boilerplate generators to create an initial extension. However, they can
only be used for initial development and do not support developers during further development
of the extensions. Usually the boilerplate code contains only exemplary excerpts of the required
artefacts such as model, view or controller files. If a developer requires more than one of these
artefacts he must develop them by hand (usually by copy&paste). So, boilerplate solutions are
helpful for the initial creation of an extension but are not very helpful during the further devel-
opment of an extension. Especially, if a new extension has to be developed which augments an
existing legacy extension, developers have to understand and manually incorporate dependencies
tediously. The same applies to extensions which have to be migrated to a new major platform
version or a different WCMS platform. This scenario is not supported by current tool support.

⇒ Problem Statement 5: Existing tool support does not support iterative extension develop-
ment, augmentation of existing legacy extensions, or extension migration to new platforms.

1.3. Contributions 5

1.3 Contributions
In order to support WCMS extension developers during the development and maintenance of
WCMS extensions, developers should make use of a sophisticated development practice. The
current practices in the domain, clone-and-own and using boilerplate code, are not sophisticated
and provoke additional maintenance effort for developers. In accordance to [160], there is “little
recent research literature reporting on modern web development practices, especially concerning
the use of platforms such as WordPress”.

A promising development practice is represented by model-driven engineering (MDE). By using
models as reusable artefacts developers can be protected from the technical knowledge. This in
turn is placed within code generators which use these models as input and generate the most parts
of the application. Due to the ability of using models in different (versions of) code generators,
code can be simultaneously generated for different platforms or versions of the same platform.
Therefore, MDE should be researched as an alternative development approach, to investigate its
usefulness during WCMS extension development.

In 2012 Gartner researched the hype [76] of model-driven architecture (MDA2) among other
emerging technologies. Gartner came to the result, that MDA is on its way to the point of
disillusionment [13]. However, in accordance to [28], it passed the point of disillusion and is
currently passing the "Slope of Enlightenment" on its way to the "Plateau of Productivity". To
reach this plateau requires evidence for its productivity within different domains. We assume
that the WCMS domain is one of the domains where an MDE adoption can increase productivity.

Figure 1.4: Gartner Hype Cycle [76]

General MDE approaches as the ones described in [27], [137], [42], and [225] can be used to create
complete websites in a model-driven manner. However, the proposed approaches and tools are
not suitable for our research, since they do not address WCMSs and their extensions. The reason
for this is very straightforward: The use of WCMSs as dynamic web applications is a relatively
new procedure which has been established throughout the last decade.

To address the previously defined problem statements during common development scenarios, we
propose an MDE approach to WCMS extension engineering instantiated at the WCMS Joomla.
By applying this approach to WCMS extension development, we study its profitability to find
evidence for the following theory: A model-driven engineering approach is profitable in
the WCMS domain.

2MDA is a formal specification of MDE and was typically used as the main term for any MDE adoption in
industry.

6 Chapter 1. Introduction

So, the fundamental goal of this work can be achieved by showing that a model-driven approach
is supportive in the domain of WCMSs (better quality, less complex development) and is a
profitable (faster) alternative to common development practices in the WCMS domain. In this
work, the following contributions are provided:

• Overall MDE concept for common WCMS extension development scenarios. This includes
the comparison of extension development for the most popular WCMSs, the elicitation
of common extension development scenarios, and the confirmation of these scenarios by
industrial practitioners from the WCMS domain. The stressed scenarios include initial and
continuous engineering scenarios also for existing legacy extensions in running systems.

• Development of an MDE infrastructure for WCMS extensions based on a conducted re-
quirements elicitation. This includes a platform-independent domain-specific modelling
language for the abstract description of WCMS extensions, model editors, and showcase
models which can be used e.g. for the creation of prototype extensions. In addition, the
infrastructure consists of a platform-specific code generator supporting extension devel-
opment of two major versions of the Joomla WCMS. Moreover, platform-specific reverse
engineering facilities for the same WCMS are included.

• Evaluation of the profitability of MDE for the development of WCMS extensions. This eval-
uation is based on two empirical user studies with novice and expert extension developers
of the WCMS community.

In this work, we concentrate completely on the development of software extensions for WCMSs
by applying a model-driven approach. This leads to some limitations. Since there is little
related research in the problem domain we have to concentrate on the main challenges to obtain
first results about the applicability and profitability of the approach. We mainly focus on the
WCMS Joomla as first reference system expecting similar research results for other WCMSs.
Even though we investigate the suitability of the approach in other WCMSs such as WordPress
and Drupal, we only scratch the surface of the generalization of the approach. Further research
should focus on generalizability of our findings.

Another limitation is given by the used framework for the infrastructure development. Currently,
the Eclipse Modeling Framework (EMF), combined with Xtext and Xtend, is the state of the art
in the development of MDE infrastructures. So, we do not investigate infrastructures developed
with alternative frameworks. However, we will introduce alternatives with related references in
Section 3.3.

Moreover, we consider the common development scenarios regarding the development life cycle
of WCMS extensions. Though, we do not investigate new methods or tools for the life cycle of
the MDE infrastructure itself. This has already been done in early stages of MDE throughout
the last decade (cf. [72]). Another limitation of this work is the management of individual code
within model-driven development scenarios. Nevertheless, we will discuss possible integrations
in Chapter 3.

1.4 Methodology
In this work we follow a straightforward approach to research the applicability and profitability of
an MDE approach during common extension development scenarios. In this context, we address
the following general research questions:

RQ1: How can MDE support common WCMS extension development scenarios?

RQ2: To which extend can MDE support WCMS extension developers during development and
maintenance of WCMS extensions?

1.5. Outline 7

To address RQ1, we collect the common features of WCMSs and compare the most popular sys-
tems to identify the equalities and differences between the systems and ensure an appropriate
choice of a reference system. We use one specific WCMS as reference in a first phase in order to
generalize the findings to other WCMSs to ensure the external validity of the approach. Based
on this, we begin with the identification of relevant development scenarios in the domain. For
this purpose, we specify common scenarios and confirm their relevance as well as the typical
development challenges by conducting a set of interviews with domain experts, in our case prac-
titioners from the WCMS community. For these scenarios, we define a general solution concept
for the integration of MDE infrastructure components within model-driven process recommenda-
tions. Based on these concepts and the results of the conducted expert interviews, we collect
MDE infrastructure requirements based on a research of common WCMSs such as WordPress,
Joomla and Drupal.

In order to address RQ2, an MDE infrastructure is developed as basis for a comparison of MDE
with conventional extension development. Based on the previously elicited requirements, we
discuss existing DSLs and their suitability for modelling WCMS extensions. Building on this,
a platform-independent DSL is developed in addition to well-formedness rules, model editors,
and showcase models. To gain insights about the profitability of MDE during WCMS extension
development we define concepts for MDE transformation tools such as code generators and model
extractors and implement platform-specific prototypes based on appropriate reference extensions
for a reference WCMS - in our case the Joomla WCMS. To ensure high quality of these tools,
we follow an iterative development method and adhere to reference extensions which follow the
Joomla guidelines.

By applying our MDE infrastructure during the confirmed development scenarios in the next
phase, we compare conventional WCMS extension development with model-driven engineering.
To this end we conduct a controlled experiment with the focus on the development of independent
and dependent extensions as first iteration to allow conclusions on the general suitability of a
model-driven approach in the WCMS domain. We quantitatively research the impact of MDE
in terms of the development speed during WCMS extensions development and the quality of
WCMS extensions. In addition, we investigate, if it is possible for inexperienced developers to
develop a WCMS extension by using an MDE infrastructure.

Moreover, we apply the MDE infrastructure during common extension development scenarios
in a semi-controlled tutorial with industrial practitioners from the Joomla community to gain
insights of its appropriateness during these scenarios in a qualitative manner. By applying the
approach within real-world development projects throughout the chosen development use cases,
we contrast to typical academic research in the same domain.

1.5 Outline
As Figure 1.5 illustrates, this work is structured as follows.

Foundations

• Web Content

Management

Systems

• Model-Driven

Engineering

General Solution

Concept and

Requirements

• Expert Interviews

• General MDE

Solution Concept

• MDE Infrastructure

Requirements

MDE

Infrastructure for

WCMS Extensions

• Domain-specific

Modelling Language

• Transformation Tools

Quantitative and

Qualitative Analysis

(Mixed Methodologies)

• Experiment: Comparison of

Conventional Development and

MDE of WCMS Extensions

• Observation: MDE Workshop

with Industrial Practitioners

from the WCMS Domain

Figure 1.5: Outline of this Thesis

8 Chapter 1. Introduction

In Chapter 2, we outline the fundamentals of web content management systems and their ex-
tensibility through installable software extensions. This includes a specialized focus on their
development challenges and a comparison of popular WCMSs in order to identify a suitable ref-
erence system for the initiation of our research. Additionally, the elicitation of common extension
development scenarios is placed in this chapter.

Subsequently, we give an overview of the common terminology of model-driven engineering and
present common MDE infrastructure artefacts in Chapter 3. This also includes the presentation
of popular frameworks and development methods for MDE infrastructure development.

Chapter 4 presents the general MDE concept and requirements for WCMS extension development
scenarios. This also includes the presentation of the results of our conducted expert interviews
with industrial practitioners. The presented concepts are a proposed solution for the previously
described problem statements 1-4.

Based on the collected MDE infrastructure requirements, we present a domain-specific modelling
language for WCMS extensions in Chapter 5 and transformation tools for WCMS extensions in
Chapter 6. Both chapters comprise a discussion of the respective current state of the art, general
concepts, examples, and a conclusive evaluation. With the presented infrastructure, the concepts
as defined in Chapter 4 can be realised in order to address problem statements 1-4. Furthermore,
the presented tools represent a necessary extension of the existing tool landscape for the iterative
development of WCMS extensions, with which we directly address problem statement 5.

The controlled experiment which compares conventional with model-driven WCMS extension
engineering is presented in Chapter 7. This includes a state of the art discussion of empirical
studies on MDE in practice, the introduction of our study designs, results and interpretation, as
well as an evaluation considering the validity threats of our studies.

With Chapter 8, we summarize and evaluate our work followed by an outlook on further research.

1.6 Thesis-Related Publications and Presentations
The following list of papers are a collection of related contributions addressing this thesis (in
chronological order):

[183] D. Priefer. Model-driven development of content management systems based on Joomla.
In I. Crnkovic, M. Chechik, and P. Grünbacher, editors, Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, pages 911–914, New York,
2014. ACM.

[188] D. Priefer, P. Kneisel, and G. Taentzer. JooMDD: A Model-Driven Development Environ-
ment for Web Content Management System Extensions. In ICSE Companion ’16: Com-
panion Proceedings of the 38th International Conference on Software Engineering, pages
633–636, New York, NY, USA, 2016. ACM.

[187] D. Priefer, P. Kneisel, and G. Taentzer. A Model-Driven Process to Migrate Web Con-
tent Management System Extensions. In A. Bozzon, editor, Web engineering, volume
9671 of Lecture Notes in Computer Science Information systems and applications, incl.
Internet/Web, and HCI, pages 603–606, Cham and Heidelberg, 2016. Springer.

[186] D. Priefer, P. Kneisel, and D. Strüber. Iterative Model-Driven Development of Software
Extensions for Web Content Management Systems. In A. Anjorin and H. Espinoza, editors,
Modelling Foundations and Applications: 13th European Conference, ECMFA 2017, Held
as Part of STAF 2017, Marburg, Germany, July 19-20, 2017, Proceedings, pages 142–157,
Cham, 2017. Springer International Publishing.

1.6. Thesis-Related Publications and Presentations 9

[185] D. Priefer, P. Kneisel, W. Rost, D. Struber, and G. Taentzer. Applying MDD in the Con-
tent Management System Domain: Scenarios and Empirical Assessment. In ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and Systems, pages
56–66. IEEE, 2019.

[190] D. Priefer, W. Rost, D. Strüber, G. Taentzer, and P. Kneisel. Applying MDD in the
content management system domain: Scenarios, tooling, and a mixed-method empirical
assessment. Software & Systems Modeling, 2021.

All conference papers were presented by the author of this thesis.

The developed MDE infrastructure (JooMDD), which is presented in this work, was presented at
the following national and international Joomla conferences and developer meetings (in chrono-
logical order):

D. Priefer. JooMDD - Model-driven Development Environment for Joomla Extensions. Pre-
sentation at the international Joomla! Conference J and Beyond, Prague, Czech Republic,
2015.

D. Priefer. JooMDD - Joomla Extension Creation for Everybody. Presentation at the
Joomla!Dagen Nederlande, Zeist, Netherlands, 2016.

D. Priefer. Augmentation of existing Extensions using a Low-Code Platform. Presentation at
the international Joomla! Conference J and Beyond, Kraków, Poland, 2017.

D. Priefer. Augmentation of existing Joomla! Extensions using a Low-Code Platform. Presen-
tation at the international Joomla! World Conference, Rome, Italy, 2017.

D.Priefer, W. Rost. JooMDD Workshop . Joomla! Developer Meeting NL, Dongen, Nether-
lands, 2017

D. Priefer, W. Rost. Create a Joomla 4 Component with JooMDD. Presentation at the
Joomla!Dagen Nederlande, Eindhoven, Netherlands, 2018.

D. Priefer, W. Rost Create a Joomla 4 Component with JooMDD Presentation at the inter-
national Joomla! Conference J and Beyond, Cologne, Germany, 2018.

The JooMDD project is hosted as open source project on GitHub: [184]

10 Chapter 1. Introduction

2 Web Content Management Systems

Compared even to the development of the
phone or TV, the Web developed very quickly.

– Tim Berners-Lee

In today’s web domain the creation of functionally rich applications from scratch is outdated and
no longer state of the art. Instead, web developers use existing Web Content Management
Systems (WCMSs) [150] which contain the main functionality of a typical web application like
user management with ACL1 support, content management and relating menu management,
media management, template management, and multi language support.

Popular web development frameworks like Laravel [174], Laminas (Zend) [141], or CakePHP
are still used for PHP-based web applications. However, with the introduction of the Node.js
framework for server-side JavaScript applications [68] in addition to frameworks for front-end
development like Angular [79], React [63], and Vue [267], JavaScript-based frameworks have
emerged as a valuable alternative to PHP-based frameworks within the last years. Though, both
PHP- and JavaScript-based frameworks require more technical knowledge and are mainly used
for individual projects without the need of core functionality out of the box. Additionally, the
development and maintenance of all software artefacts must be provided by the developer itself.
By using a WCMS, this effort is outsourced to the respective community or provider of the
WCMS. Therefore, more than half of the existing websites are based on a WCMS according to
current WCMS usage statistics [251].

Since WCMSs are that popular, the web prefix is often skipped in common language use. So,
whenever people talk about CMSs they most likely mean WCMSs. The domain of CMSs, how-
ever, encompasses different types of systems. WCMSs are typically used to provide web-based
applications, whereas Enterprise Content Management Systems (ECMSs) are used within
companies to manage content in order to support the organizational processes [2, 145]. The lat-
ter systems are often tailored directly to the need of the employees - typically as intranet-based
systems. Usually, ECMSs are integrated into the daily work routine of employees so that they do
not notice that the underlying system is a CMS. ECMS-based solutions are often integrated into
other ERP2 software such as SAP ERP or Oracle E-Business Suite. Most ECMSs are proprietary
and commercial. This leads to a significant lower market share in comparison to open source
and free-to-use WCMSs. However, they play a significant role in industry.

Another often mentioned CMS type is represented by so-called Component Content Man-
agement Systems (CCMSs). In contrast to WCMSs, these systems manage content as reusable
components of a system, which has to be stored in a consistent and accurate way [5]. WCMSs
like WordPress or Joomla manage their content in posts, pages, or articles what can lead to
inconsistent or redundant content. The aim of CCMSs is to avoid inconsistencies and store
the available content fragments (components) to allow their reusability. Even though popular
WCMSs are no CCMSs, extensions for them are usually intended to manage content in form of
reusable components or assets (see Section 2.2.1). So, a WCMS-based web application with such
an extension installed can be seen as a hybrid between WCMS and CCMS.

1Access Control List
2Enterprise Resource Planning

11

12 Chapter 2. Web Content Management Systems

To complete the terminology of CMSs, Digital Asset Management Systems (DAMSs) should
be mentioned. The set of content types of DAMSs is limited to digital assets (images, audio, and
video) which can be used in other media [17]. Since DAMSs are also used for editing the media
assets, add-ons for media-related software, such as Adobe’s Creative Cloud, are available for the
popular systems.

2.1 WCMS Features
In this section, the main features of WCMSs will be collected. Beside the given core function-
ality like content, user, and menu management, WCMSs are characterized by their extensibility
features. Both aspects will be examined on the following pages in an objective manner to ensure
a deep understanding of WCMSs in general.

2.1.1 Sections and Roles
Typically, a WCMS-based website is divided into two accessible sub-sites (sections). Besides the
so-called frontend, the section which website users access, the most WCMSs provide an additional
administrator section which is usually called the backend. The backend is typically accessed by
administrators to configure the WCMS instance and users with the rights to configure or publish
content (content managers), whereas the frontend is accessed by website visitors. However, most
of the systems allow some administrative actions in the frontend, too. To which extend depends
on the given rights of the users.

Webserver

ConfigurationContent

WCMS

Frontend Backend

Content

Manager

Content

Manager

AdministratorAdministrator

VisitorsVisitors
Access

Content

Manager

Manage

Manage

Configure

Configure

Figure 2.1: Composition of a WCMS-based Web Application

Figure 2.1 illustrates the typical composition of a WCMS-based website. Administrators can
configure the WCMS via the backend. Usually, this includes the system configuration which is
required for a smooth interaction between the WCMS, the web server, and a connected database.
Additionally, the administrators define the menu structure for the website and create a permission
concept for users and user groups. The installation of additional extensions is also typically
assigned to the administrator. This also includes the installation and configuration of a basic
theme/template for the frontend.

2.1. WCMS Features 13

Content managers are responsible for the management of content (pages, articles, blog posts,
or frontend modules). Usually, the content managers are separated into different user groups
with the specific permissions to create (authors), edit (editors), or publish (publishers) content.
Depending on the user group, a content manager can access the backend or has to work via the
frontend of a WCMS-based website. This, however, is up to the administrators of the page.

Visitors of a WCMS-based website can access the content via the frontend of the site. Often,
they can also register and login to the site to gain access to content provided for specific user
groups. For instance, if a student is registered to a WCMS-based university website the student
can login to get access to specific information, such as a personalized schedule or study program.
Typically, visitors of a WCMS-based website do not recognize, that the site is based on WCMS,
even though some indicators allow inferences to the underlying WCMS (see Section 2.2.1).

2.1.2 Core Features
In [17] the author defines the basic and extended core features which should be included by a
WCMS. These features consist of content management features as well as features for user, multi-
site, language, and media management. Within the following sub sections the relevant aspects
for this work are determined more detailed based on the definitions of [17].

Basic Functionality

The basic core functionality of a WCMS obviously includes features for managing content in
a comfortable way for all users. Typically, every WCMS implements a suitable content model
which defines the structure of the managed content. The content model defines the structure
of the content elements and specifies their types. Usually, the content and its representation
should be separated. In this case, the content model defines the internal type definition of the
content elements (e.g. the type of a text field or the required values for a content type) while
they can be represented in various presentation formats. Some systems allow customization of
their content model whereas others like WordPress and Joomla allow customizations through
custom field definitions.

Furthermore, embedding and references between content elements can be specified in the content
model3. Besides text formats, other media formats like images and videos became essential
content types. Therefore, the content model must allow users to embed these formats e.g.
into articles. An example for content references is the possibility of including links to articles
which refer to other articles. In addition, references include content inheritance and content
composition. The latter is typically implemented in form of content categories which can be a
collection of sub-categories.

Another powerful basic feature of WCMSs is the aggregation of content in suitable representation
formats. This includes navigation links like menu items in menus as well as result pages of a
content search. Additionally, content aggregation in form of index pages which list interrelated
content elements. If the content elements are ordered, such pages typically allow to reorder the
elements. Another basic feature for aggregated content are filters which can be used to reduce
illustrated content based on filter rules (e.g. specific content types, author, or matching search
expression). The following example (Figure 2.2) illustrates a list view of articles within a Joomla
4 administration section. The aggregated articles can be reordered and filtered by various filter
rules.

Figure 2.2 also illustrates additional basic features. First, the functionality to enable CRUD4

actions for a content element, e.g. articles. Second, the feature to bind states (e.g. published,
archived, trashed) to content. So, a publishing work-flow can be implemented.

3In [17], the authors address this as relational content modelling.
4Create, Read, Update, Delete

14 Chapter 2. Web Content Management Systems

Figure 2.2: Aggregation of Articles as Index Page in Joomla 4 Administration

To enable such features to publishing users of the WCMS instance, a suitable editing interface
must be provided by the core system of a WCMS. This interface must support the content
owners, editors, and publishers during the publishing work-flow. This includes form elements like
WYSIWYG editors (allowing rich-text editing), image and file picker, content preview support,
category selection, and publishing options for content scheduling and expiration. Figure 2.3
illustrates a composition of these features within a WordPress editing page for blog posts within
the administration section.

Figure 2.3: Edit Interface for Blog Posts within WordPress 5 Administration Section

Additionally, an editing interface typically comprises a management section for content-related
files. This usually includes an option for file uploads and image processing functionality. Some
systems also include live validation for the form data, version management, and multi-language
associations as basic functionality.

2.1. WCMS Features 15

In order to ensure an appropriate workflow management for various user groups, the core func-
tionality of a WCMS usually provides a configurable permission system. This allows the ACL
management for the respective site, i.e. an association of permitted actions based on user roles.

Extended Functionality

In addition to the previously described core functionality, some WCMSs also provide extended
features like form building support for content managers or support for multiple languages.
Other features like content search or administrator dashboards are also common as extended
functionality in popular WCMSs but are not relevant in the context of this work. Therefore,
these features are not further described. A detailed description of them can be found in [17].

By providing form building support, WCMSs allow content managers to create individual content
structures which are integrated homogeneously to the system. So, individual form fields can be
extended by validation rules, error messages, and form data handling (e.g. to send and use form
elements as link parameters). Some WCMS provide form building features as part of their core
system, whereas other systems depend on third-party extensions for such features. Additionally,
systems like Joomla provide mechanisms to extend existing forms by custom form fields [119].

Support for multiple languages is another extended feature, which is often provided by WCMSs.
If given, a mechanism for managing content in multiple languages can be a powerful feature
- especially, if the CMS is used for international presence or used by content managers across
national borders. Multi-language support is often provided for various roles. A mechanism for
mapping different languages to content and menus is useful for content managers, whereas a
mechanism based on language files is useful for all roles including users and content managers,
and administrators. The latter mechanism allows an international representation of the system
itself. This includes the public section of a running WCMS as well as its administration section.
Moreover, such a mechanism is useful for extension developers, since they may use it to enable
multi-language support for their extensions. So, once installed to a running WCMS instance,
they can be used as homogeneously deployed part of the system.

2.1.3 Extensibility and Programmability
If the core functionality of a WCMS is not sufficient in order to fulfil the functional requirements
of a WCMS-based web application, additional features must be implemented. To this end,
developers are able to change the platform code of the WCMS. However, a more elegant way
is typically enabled by the most WCMSs. Besides the previously described core features, the
most WCMSs provide a mechanism for being functionally enhanced by overrides (templating)
or deployable software extensions (deeper customization) [17]. So they can be extended without
changing the existing platform code. This ensures its further use and smooth updates which
should not affect the extension.

Customizations of a running WCMS are typically required by content managers who are often
not able to implement them easily due to missing technological knowledge of the system itself.
By following the templating approach, content managers often create overrides of the core system.
Such extensions are typically not affected by system updates, since they are usually bound to
templates or themes which represent a special extension kind. So, even content managers without
extensive technical knowledge are able to extend a WCMS.

Popular WCMSs, like Joomla, provide features to create and manage core overrides but restrict
them to customize views only. So, even though the templating approach allows a quite simple
way to customize a running WCMS instance, the dependency to a specific extension kind does
not allow a flexible (re-)use of the custom features. Also, deeper customizations are only possible
by error-prone workarounds. Therefore, the most WCMSs provide a programming framework,
consisting of a flexible API, which enables programmers to develop encapsulated and reusable

16 Chapter 2. Web Content Management Systems

software packages - WCMS extensions. Typically, these packages can be deployed to a running
WCMS instance by an installation dialogue within its administration section. This allows users
with the suitable permission (e.g. administrators and content managers) to install and manage
extensions via the web application itself (see Figure 2.4). This powerful WCMS feature led to a
whole market of WCMS extension in form of extension directories for the most popular WCMSs.

WCMS Extension Directory

WCMS

Frontend Backend
Content

Manager

Content

Manager

AdministratorAdministrator

VisitorsVisitors Manage

Install on

WCMS Instance

Extension

Developer

Extension

Developer

Develop

Manage

WCMS

Extension

Figure 2.4: Concept of Installable WCMS Extensions

In WCMS extension directories, vendors provide extensions for practically every demand of
WCMS users. Although some vendors provide their extensions as part of a commercial package,
most of these extensions are available as open source software. The use of such third-party
extensions is popular for the most systems, as the number of listed extensions and their downloads
shows. The WordPress plugin directory, for instance, features more than 57k plugins with up to
5M downloads of the most popular plugins [266]. The downside of using third-party extensions
appears after major platform changes of the WCMS core. Often, missing maintenance leads to
version-specific inconsistencies or, in the worst case, that the extension cannot longer be used
after a platform update. Due to the fact, that most extensions are small applications by their
own, their migration to the new API of the updated WCMS core platform can take months
(cf. Section 4.1). Especially the migration of standardized extensions which follow certain code
conventions in order to make use a specific WCMS API to ensure homogenous interoperability
with the core systems are concerned. Consequently, extension developers avoid the use of a core
API or create extensions completely anew, if a new platform version of the respective WCMS is
released (cf. Section 4.1).

Depending on the WCMS, various extension kinds exist to customize a running WCMS instance.
To customize the appearance of a system, most WCMSs support templates or themes as extension
kind. This allows installable and reusable packages, which can be used to individualise the style of
a WCMS instance. Another extension kind is featured by its event-based functional enhancement
of a WCMS. So, events like a user login or search request can trigger custom functionality. The
APIs of systems like Joomla and WordPress, e.g., enable the implementation of plugins (Joomla)
and actions (WordPress) for this purpose.

An additional popular extension kind typically encloses a set of segregated but related features
with a separated configuration part and often an own database part, once installed to a WCMS
instance. Usually, these extensions can represent complete applications within a running WCMS.
Examples for such extension types are shop systems, calendars, media and file managers, backup
managers, or form builders. The variety of features is nearly limitless and almost all necessi-

2.2. Commonalities and Differences in WCMS Extension Development 17

ties of content managers are covered by existing extensions of this type. In WordPress, this
extension kind is represented by plugins, whereas Joomla calls them components, and Drupal
modules. Often, these extensions are augmented by a related but different extension kind for the
representation of existing data within a certain template position on a WCMS instance. These
extensions are often called widgets or, as in Joomla, modules.

Besides the previously described extension types, libraries, language file plugins, and editor plu-
gins for the customization of content editors are commonly used.

Typically, interdependencies between extensions exist. As previously mentioned, these depen-
dencies happen between extensions that manage and extensions that represent the same data
(e.g. Joomla components and modules). Additionally, dependencies between these extensions
and language plugins and libraries are common and often inevitable. The fact that extensions
may depend on existing data or features of other extensions has to be considered during their
further development and maintenance.

Some systems like Joomla and Drupal also use extensions for the encapsulation of their core
features. Joomla, for example, uses components for their basic features like user, content, menu,
and media management, whereas it provides several representation modules as well as search,
authentication, and system plugins. This allows administrators to enable/disable core features
to downsize a running instance to their specific needs and hide irrelevant features from content
managers.

2.2 Commonalities and Differences in WCMS Extension
Development

Various popular WCMSs exist in the WCMS market. Most of these systems provide the previ-
ously described features and can be customized by functional software extensions. In order to
find a suitable reference WCMS for the research of this work, we explore the WCMS market and
compare the most popular and suitable WCMSs by their extension features.

For an objective comparison, we adhere to the following criteria which influence the extensibility
of the respective WCMS: popularity, community, version strategy, core feature integration (con-
tent management, multi-site management, language handling, file handling, menu management
or page composition, user management and ACL, performance), and extensibility features (com-
plexity, architecture, API, backwards-compatibility). So, during the following comparison, we
take the previously presented WCMS features into account and consider the influential aspects
for WCMS extension development. The result of the comparison will reveal a suitable reference
WCMS for the research scope of this work.

2.2.1 WCMS Market
The most popular WCMSs, or so called “second-generation content management systems” [160],
which support their extensibility through installable software extensions are WordPress [266],
Joomla [170], and Drupal [33].

Other well-known CMSs like Magento [144], Shopify [212], and Blogger [80] are even widely
spread, but the market share is significantly lower compared to the previously mentioned top 3
WCMSs. Additionally, their functionality is mainly tailored to one specific domain. For instance,
Magento and Shopify are used for web shop instances, whereas Blogger is intended exclusively
for web blogs. However, we must additionally mention Typo3 [239] here, since it is one of the
most matured WCMSs and enjoyed much popularity in industry throughout the last decade.
Other systems like Wix [259] or Squarespace [219] enjoy high popularity in media due to their
design-centric features. However, such systems are typically used as site builders and cannot be

18 Chapter 2. Web Content Management Systems

Figure 2.5: WCMS market share (based on [252], stand October 2019)

customized in the sophisticated way as the top 3 WCMS. Another WCMS to mention is Con-
tentful, which acquired popularity due to its modular integration of various services. WCMSs
like Contentful and Strapi [223] are characterized by their decoupling of content and its repre-
sentation. Therefore they are also known as headless CMSs. Such features can also be enabled
by traditional WCMSs by web service implementations. One of the most popular services using
Contentful is Spotify.

Within the following subsections we present the most popular WCMSs and illustrate their sim-
ilarities and differences in order to find a first suitable reference WCMS for an MDE approach.
We will only select systems, which are flexible enough to allow all kinds of web applications
without restriction to one specific feature. I.e. we exclude page builders like Wix or Squares-
pace, mere blogging systems like blogger, and feature-specific systems like Magento and Shopify.
Even though the Contentful WCMS and other headless CMSs like Strapi gained popularity over
the last years, their popularity is still small compared to the top 3 WCMSs. Additionally, their
architecture does not allow general conclusions. Therefore, they cannot be used as reference
WCMS and will not be considered during the following comparison.

WordPress

Over the last decade WordPress became the most popular open source CMS in the web domain.
Currently, around 80 million5 websites are based on WordPress. This corresponds to a WCMS
market share of 61.5% (cf. Figure 2.5). Although WordPress was intended as weblog software,
it evolved as full WCMS, since it exhibits much of the same functionality as other WCMSs.
This includes editorial functions for content management, role based user management, page
composition, administration interface. According to [264], WordPress is distinguished by its ease
of installation, which takes no longer than 5 minutes.

Since early versions of WordPress, its core platform enables developers to customize and extend
its base functionality through different extensions kinds. Themes can be implemented to enclose
style definitions as reusable packages, whereas plugins allow the functional extension of a Word-
Press instance. Existing themes and plugins are provided via an extension directory which can
directly be accessed from the administration section of a WordPress instance. In Section 2.2.2,
we present the WordPress extension mechanism in more detail.

5Stand June 2019. According to the total amount of 235 million unique and active domains [159] and a share
of 34% of WordPress [252].

2.2. Commonalities and Differences in WCMS Extension Development 19

Like other Open Source WCMSs, WordPress has a large and active community, even though
WordPress itself is profit-oriented (e.g. by using the WordPress hosting platform wordpress.
com). So, support and documentation for installation, operation, and extension development is
provided to WordPress administrators and content managers.

During its life cycle, WordPress was subject to several platform improvements in form of new
major version releases. According to [265], WordPress underwent 34 main releases in 5 major
versions since version 1 in 2004. With every major version, the underlying platform evolution
required extension developers to migrate their extensions to the new WordPress core in order to
ensure their functional operability on deployed and migrated WordPress instances.

Joomla

Like WordPress, the open source WCMS Joomla gained high popularity during the last decade.
However, the market share is significant lower, which is due to the fact that the Joomla system
possesses a higher complexity than WordPress. Nowadays, around 6.5 million websites are based
on Joomla according to actual web statistics ([252] and [159]).

Even though Joomla requires more technical affinity in contrast to WordPress the higher com-
plexity allows the creation of more flexible and dynamic web applications, whereas WordPress
is mostly used as basis for simple websites with a high amount of static content. Analogous to
WordPress, Joomla offers a rich range of functionality to enable the creation of dynamic content-
based web applications. This also includes content and menu management, an administration
interface, multi-language handling, and flexible ACL features. However, the biggest strength of
Joomla is its sophisticated extension mechanism which will be explained in detail below (see
Section 2.2.2).

Joomla is a community-driven project. Therefore, many contact points exist which support
administrators, content managers, and extension developers. This includes forums and docu-
mentation platforms maintained by the community itself. Another contact point is the extension
directory which introduces existing Joomla extensions. This directory is also available from the
administration section of a Joomla instance, similar to WordPress.

Since the first version release in 2005, 16 main and 3 more major releases were published by the
Joomla community. In the past, the version strategy of Joomla was considerably flexible. With
the 1.5 version release in 2008 the extension API became more sophisticated, e.g. by requiring
the implementation of a model-view-controller pattern in Joomla components. This pattern
has established itself through the simplification and standardisation during development of own
extensions. The next major changes came with the release of version 1.6 and 1.7. which extended
this API by new ACL functionality. In order to follow a more strict versioning strategy, the
major changes of 1.6 and 1.7 flew directly into the long-term-support version 2.5. Since version
3, Joomla follows a strict version strategy by adhering to the semantic versioning guidelines [182].
The current version 4 (beta) release comes with completely new features, such as a publishing
workflow, web service integration, and a new extension API.

As the version history of Joomla shows, major version changes came with tremendous architec-
tural changes of the system. Hence, existing third-party extensions were immediately influenced
and had to be migrated to new system API requirements.

Drupal

Drupal is one of the most widely used WCMSs besides WordPress and Joomla. Based on [252],
its popularity established directly behind Joomla with a market share of 3.1% (cf. Figure 2.5).
This means, according to the presented statistics in [252] and [159], that in 2019 4.6 million
websites are based on Drupal.

wordpress.com
wordpress.com

20 Chapter 2. Web Content Management Systems

From a structural and technical perspective, Drupal does not differ tremendously from the other
presented WCMSs. It comes with similar core functionality for content and user management,
ACL support, multi-language handling, and is extensible by functional extensions which are called
modules. In addition, Drupal stands out for its multi-site capability. However, unlike WordPress
or Joomla, Drupal is intended to be used as community platform. To this end, various social-
community extensions are provided to enable blog features, forums, and social media integration.
Therefore, most of the core features have to be added manually after the installation of a Drupal
instance to keep the system lean. This feature can be seen as a drawback, if Drupal shall be
used as functional rich and full WCMS similar to WordPress and Joomla. Though, the Drupal
community provides distributions which enclose the Drupal core and suitable modules for various
purposes.

Another feature, what can be seen as drawback by some Drupal users, is its administration inter-
face. Systems like WordPress and Joomla provide a separate administration backend, whereas
Drupal has integrated the administration into the frontend of the system. This means, no specific
interface is provided - the management functionality can be accessed by sub menus depending
on the access rights of the user. Typically, such a feature is also provided by the other top
WCMSs. Though, a common workaround is the use of a configuration theme, which enables a
nearly separated administration interface.

One of the biggest strengths of Drupal is its community support. Similar to the Joomla project,
forums, mailing lists and documentation sites exist, which are driven by the community. Ad-
ditionally, an extensive extension directory exists. Like the Joomla core, the core system of
Drupal is implemented by developers of the community. Therefore, contribution documentation
for developers is also available in many languages.

As mentioned before, Drupal can be customized by functional extensions. Similar to other
systems, the maintenance of the extensions depends directly on every update of the system
core. Drupal evinced 9 major versions since its first release in 2001. Similar to other systems,
the releases typically came with tremendous API changes, which directly affected all installed
modules on a running Drupal instance. Moreover, even minor releases sometimes brought changes
to the core, which affected the operability of installed modules. Therefore, all installed modules
must be checked and re-implemented to guarantee flawless Drupal instances. In contrast to
WordPress and Joomla, this also includes modules with typical core functionality. Especially
modules with dependencies to other modules challenge site administrators. If a dependency is
not migrated to the new version, the dependent module usually cannot be used as well. According
to [10], Drupal instances typically have 50-60 module dependencies. Thus, this missing backwards
compatibility is one of the biggest disadvantages of Drupal.

2.2.2 Extension Development Comparison
Based upon similar popularity, core features, and extensibility, we can assume, that the previously
introduced top 3 general6 WCMSs (WordPress, Joomla, and Drupal) will remain in a healthy
state of competition for a longer period of time. Each of these systems has a big community
standing behind it and is continuously enhanced by contributors around the globe.

In order to determine a suitable reference system for the profitability research of a model-driven
approach during extension development, we compare the extensibility features of these systems
under consideration of the prevailing extensibility features which are described in Section 2.1.3.
Related work in this context, provide comparisons of overall features but not for extension
development (cf. [148]) or only consider security aspects (cf. [151]).

6As of September 2020, Shopify has overtaken Joomla and Drupal in the WCMS usage statistics [252]. Due
to its limitation for WCMs-based web shop systems, it is not further considered in this work.

2.2. Commonalities and Differences in WCMS Extension Development 21

We follow the straightforward Software Architecture Comparison Analysis Method (SACAM) as
proposed in [222]:

1. Preparation: Identifies the relevant business goals needed in the comparison and examines
available documentation for each architecture candidate.

2. Criteria Collation: Derives comparison criteria from the business goals and refines them
to quality attribute scenarios.

3. Determination of Extraction Directives: Determines the architectural views, tactics, styles,
and patterns that are looked for during the following extractions to find supporting evidence
for the scenarios of Step 2.

4. View and Indicator Extraction: Extracts the architectural views for each candidate accord-
ing to the extraction directives from step 3. Detects indicators that support the quality
attribute scenarios from Step 2. Architecture recovery techniques may be needed to gen-
erate relevant views.

5. Scoring: Scores the fitness of a candidate architecture to support the criteria.

6. Summary: Summarizes the analysis results and provides a recommendation for the decision-
making process.

For each top 3 WCMS, we explore the complexity and architecture of the respective extension
development API and assess developer support during extension development by documentation
and the community. This also includes the determination of challenges during development and
inspection of existing development infrastructures which support extension developers and qual-
ity assurance support, e.g. by test suites and coding standards. So we can ensure support during
the further elicitation of a model-driven engineering infrastructure for WCMS extensions. Ad-
ditionally, we explore the WCMS-specific extension kinds and their features like core support,
database support, section-specific views (frontend/backend), homogeneous integration to a run-
ning WCMS instance, and interoperability with other extensions.

After a separate analysis of the extensibility of the top 3 WCMSs, we present a direct comparison
of the extensibility features. This includes a quantitative scoring for developer support, extension
features and the API of each system. So, we aim to identify the system with the most sophisticated
extension mechanism in an impartial manner.

During the comparison, we will not consider strategies for local development environments using
e.g. XAMPP, MAMP, LAMP or WAMP stacks in detail. Tools like Bitnami for XAMPP [11]
support most of the mentioned WCMSs, including WordPress, Joomla, and Drupal during local
extension development equally. Therefore, a WCMS-specific comparison of this feature is not
mandatory.

Development of WordPress Extensions

As mentioned before, WordPress allows developers to extend the core functionality by functional
plugins and style definitions in form of installable themes. The community supports extension
developers in forums [262] and by an extensive documentation [263]. The latter includes detailed
guidelines on how to develop WordPress plugins. Even a documentation for security assurance is
available, since WordPress websites are popular targets of hacker attacks. Additional developer
support is given by existing boilerplate generators, even though these are not provided by the
WordPress project itself.

WordPress does not store any extension-specific information in the database which allows a
straightforward plugin deployment during development. It directly scans a specific folder on the
file system and integrates all contained plugins.

22 Chapter 2. Web Content Management Systems

Besides plugins and themes no other extension kinds are provided. So, all extension features
are directly covered by these two kinds. Themes are used for the reusable implementation of
style definitions, whereas plugins incorporate all possible features for the functional extension
of the WordPress core system. These features include core support (e.g. user access), own
administration menu definition, short-code support for content editors, JavaScript support (Ajax
and jQuery), cronjob integration, and internationalization and localization support, provided by
a sophisticated multi-language translation mechanism.

WordPress provides an API for plugins and themes, even though the use of it is not mandatory.
This API is also used by the core itself, since it offers functions for database, core, and webservice
features. However, it is also possible to implement own functions without using the API. The
complexity of WordPress plugins can vary from simple plugins for content filtering up to extensive
integrated applications like a web shop. Since there is no development standard for WordPress
plugins, developers are free to decide if they implement them based on a structured architecture
or put everything into one PHP file. The latter, a main PHP file, is the only artefact WordPress
requires. This file must consist of a header DocBlock in a given format with the plugin name as
minimum specification (Listing 2.1). Additionally, plugin information like description, version,
and author information can be placed in this DocBlock. Another configuration file is not needed.

1 <?php
2 /∗∗
3 ∗ Plugin Name: MyWordPressPlugin
4 ∗/

Listing 2.1: Minimum specification within the main PHP fle of a WordPress plugin

In addition to the configuration DocBlock, the main PHP file may contain implementations for
additional features in form of PHP functions which can be assigned to WordPress events as
parameters (hooks). So, the implementation of event-handlers is required, which are triggered
by specific events calling a given function (callback).

1 f unc t i on my_action_function () {
2 // custom a c t i o n s
3 }
4 add_action (’init’ , ’my_function’) ;
5

6 f unc t i on my_f i l te r_funct ion () {
7 // custom f i l t e r
8 }
9 a d d _ f i l t e r (’the_title’ , ’my_filter_function’) ;

Listing 2.2: WordPress action hook

This programmatic feature is similar to other event-based implementations like e.g. event han-
dlers in JavaScript. WordPress provides two kinds of hooks: actions and filters. Action hooks in-
clude system events like initialisation, (de-)installation, or user registration/login/logout, whereas
filter hooks aggregate content-centric events.

Listing 2.2 presents the required structure of an action hook which has a custom function
(my_action_function()) given as callback for the init event and a filter hook which calls
the my_filter_function() when the the_title event is triggered. WordPress also allows to
register custom hooks which can be used within other plugins.

Since WordPress plugins mainly consist of PHP functions, developers have to avoid name con-
flicts between their and other installed plugins. The WordPress documentation recommends the
straightforward use of prefixes or the implementation of OO by own classes. Based on this chal-

2.2. Commonalities and Differences in WCMS Extension Development 23

lenge and given the fact that everything is incorporated in one php file (plugin manifest, PHP
code for functions and hooks, HTML and CSS definitions, and often JavaScript code), some
architectural patterns have become popular best practices in the WCMS community. Even though
these patterns are not directly required by the core system, extension developers can increase the
internal code quality tremendously by implementing them, following the separation of concerns
design. One recommended pattern, Slash, incorporates singletons, loaders, actions, screens, and
handlers [101], whereas another popular pattern is based on a model-view-controller (MVC) pat-
tern. Both patterns are also applicable for themes development, since the mechanism is rather
similar. In order to separate administration functionality from public features and translation
rules, a minimum file structure for plugins is recommended by the community.

In conclusion, developers are free to implement plugins in their preferred way. This allows a
straightforward deployment to a running WordPress instance, since the only requirement is a
configuration header in a PHP file. No other files, e.g. for creating database tables during in-
stallation are required. However, such features must be considered by plugin developers and are
not validated by the system itself. This can be seen as an disadvantage, since the main respon-
sibility for a homogenous interplay between the system and the extension must be guaranteed
by the developers. Another drawback of the philosophy appears, if an existing plugin has to
be refactored, e.g. by different developers. Even experienced developers may require additional
effort to understand the code of a third-party plugin, since there is no given standard structure.

Development of Joomla Extensions

In contrast to the extension mechanism of WordPress, Joomla supports a set of different ex-
tension kinds. So, Joomla separates extension kinds based on their complexity and function,
whereas WordPress only provides two extension kinds which can include features of various com-
plexity. Similar to WordPress, an extension kind (templates) for the reusable style definition of
a running instance exists. Joomla plugins represent an extension kind for the implementation of
actions which are initiated by specific events (e.g. authentication, search, or content loading).
These plugins are comparable to WordPress plugins, whereas more sophisticated feature imple-
mentations should be placed in provided extension kinds: components and modules. Components
represent mini applications, usually coming with their own database tables, management views
for the administration section (backend), and views for the public section (frontend) of a Joomla
instance. Modules encapsulate lightweight features for placing any information, mostly data of
one or more components, on specific template positions on a Joomla instance, such as widgets.
A package is a special extension type, since it allows to group extensions into one installable
extension. So, several extensions can be installed during one installation routine.

Similar to WordPress, developers of Joomla extensions are also supported by an extensive doc-
umentation [105], including tutorials and API description. This documentation is also tailored
to the Joomla-specific extension kinds. However, components get the most attention, since they
represent the most complex extension kind. The developer community of Joomla also provides
support in forums and developer workshops which ware given during national and international
community conferences. To ensure high quality extensions, the community proposes an own
coding standard and alternatively recommends to follow the PSR-12 standard recommendation
for PHP [179]. In addition, a test suite for extensions is also provided by the Joomla project.

To speed up extension development, a variety of boilerplate generators exist. Some of them, like
the Joomla component builder [242] can be used as Joomla extension from the administration
section of a Joomla instance. Others are available as IDE plugins, like the Joomla boilerplate
generator which is integrated in JetBrains’s PhpStorm IDE, or are available online, like the
Joomla component generator [217] or the component creator [102]. The limitation of these boil-
erplate generators is the missing or limited support for other extension kinds besides components
and interoperability between various extensions.

24 Chapter 2. Web Content Management Systems

The sophisticated extension mechanism of Joomla allows extensions to be homogeneously inte-
grated to running Joomla instances. For each extension kind, a specific administration section is
provided. So, administrators can restrict extension configuration explicitly for specific user roles.
An example is the creation and configuration of a module instance in the backend, which could
be accessible for content managers, whereas the plugin configuration section is restricted exclu-
sively to administrators. In contrast to WordPress, such restrictions must not be considered by
extension developers. Independent to the extension kind, developers can make use of Joomla’s
translation mechanism (internationalization and localization) which is based on language files
with key-value definition and language keys as output values. It is also possible to implement
language packages, which can be installed to a running Joomla instance. During the installation
routine of a new Joomla instance, administrators can directly download and configure existing
language packages from the community.

Similar to other WCMSs, Joomla provides an API, which provides simplified functions for com-
mon PHP features, enables core support (e.g. access to the user object), and offers an interface
for database operations. The API is also used by core extensions which implement the whole
functionality of the core itself. Moreover, the API can also be used as independent PHP frame-
work7 To ensure a homogeneous integration, Joomla extensions should implement architectural
patterns, required by the Joomla core. To this end, Joomla makes use of some popular design
patterns of software engineering which will be elaborated on below. Based on the extension kind,
different patterns are intended to be used.

As stated before, plugins for Joomla follow a similar event-based architecture like WordPress
plugins. However, WordPress requires the registration of event handlers, whereas Joomla forces
extension developers to implement the observer pattern. More specific, developers have to imple-
ment PHP observer classes which extend the API’s abstract observer plugin class. Additionally,
they have to follow a specific name pattern including the plugin type, e.g. authentication, con-
tent, system, or user. Based on the plugin type, associated methods can be implemented which
are invoked automatically if a specific event occurs. Listing 2.3 shows an excerpt of the class
structure of the Joomla user plugin which implements methods which are triggered by user-
specific events - in this case the login and logout of a user.

1 c l a s s PlgUserJoomla extends CMSPlugin
2 {
3 pub l i c func t i on onUserLogin ($user , $opt ions = array ())
4 {
5 // Check , i f user i s b locked , c r e a t e ses s ion , . . .
6 }
7 pub l i c func t i on onUserLogout ($user , $opt ions = array ())
8 { . . . }
9 }

Listing 2.3: Joomla plugin structure (Joomla’s user plugin)

Content plugins are used to modify content before it gets prepared for being displayed. This
enables short-code support for content editors. So, custom placeholders can be specified which
can be used during content creation and are replaced by content plugins. This powerful feature
allows dynamic content adaption.

In contrast to WordPress, the Joomla core is intended to be extensively augmented by functional
extensions. Plugins are sufficient for event-based functionality but are not designated for the
implementation of an additional application within a Joomla-based site. Therefore, Joomla
provides an architectural interface for such functionality for components, while in WordPress,
extension developers have to create their own architecture within the plugin environment. To this

7The Joomla! Framework project [106], see the official project documentation in [167].

2.2. Commonalities and Differences in WCMS Extension Development 25

end, another popular design pattern is implemented in the context of components - MVC. Joomla
uses this pattern to separate the presentation, functionality and data handling of components.
To make use of the core API, component developers have to implement this pattern in a required
structure on code and file level. Moreover, by following this standard, the interoperability between
the core system and installed components can be guaranteed. If developers do not adhere to this
pattern, error-prone extensions are highly probable. It is possible to create components in a
different way (e.g. by putting all the functionality to one PHP file). However, this is uncommon
in the domain and developers who implement such extensions are working against the community
standards.

Even though the architectural structure of all extension kinds is different, they have some com-
mon elements. The first common part of all Joomla extensions is represented by a configuration
file called manifest. Independent to the specific extension kind, extensions must consist of one
manifest file [107]. This XML file is required during the installation procedure of an extension.
It consists of extension metadata details such as name, extension kind, description, author, copy-
right, and license. Additionally, developers have to specify the file structure of their installation
packages. In addition, the path to the component-specific language files can be specified in the
manifest file. Dependent on the extension kind, the files of the extension package are moved
to specific sub-folders of the Joomla instance during the installation routine. Components, for
instance, usually provide files for the backend and the frontend which should be separated in
the installation package. However, Joomla does not require a strict file structure for installa-
tion packages. During installation, the backend files are moved to a respective extension folder
<Rootfolder>\administrator\components\<nameofthecomponent>, whereas all frontend
files will be copied to the <Rootfolder>\components\<nameofthecomponent> folder. The
same applies to language and media files which are moved to respective folders of the Joomla
instance. This approach differs from WordPress, where all plugin files are placed within one
plugin folder, and shows the relevance of correct definitions in the manifest files of a Joomla
extension. Listing 2.4 shows an excerpt of the manifest file of Joomla’s core user component.

1 <extens i on type="component" version="4.0" method="upgrade">
2 <name>com_users</name>
3 <author>Joomla ! Pro j e c t</ author>
4 <version>4 . 0 . 0</version>
5 . . .
6 <namespace>Joomla\Component\ Users</namespace>
7 < f i l e s f o l d e r="site">
8 . . .
9 </ f i l e s>

10 <languages f o l d e r="site">
11 <language tag="en-GB">language /en−GB. com_users . i n i</ language>
12 </ languages>
13 . . .
14 <admin i s t r a t i on>
15 < f i l e s f o l d e r="admin">
16 <f i l ename>u se r s . xml</ f i l ename>
17 <f o l d e r>C o n t r o l l e r</ f o l d e r>
18 . . .
19 </ f i l e s>
20 <languages f o l d e r="admin">
21 . . .
22 </ languages>
23 </ admin i s t ra t i on>
24 </ extens i on>

Listing 2.4: Joomla manifest structure (Joomla’s user component)

26 Chapter 2. Web Content Management Systems

The implementation of a required design pattern and standardized configuration structures may
ensure maintainable and reusable extensions. However, this approach also has some drawbacks.
The flexibility for extension developers is not given, since every discrepancy could lead to error-
prone extensions. In addition, the required structure necessitates strict name conventions on
code and file level. This could lead to errors which may occur during runtime, due to the fact
that PHP is used as interpreter language. This can be a hurdle for new developers in the domain,
but also for experienced developers who have to maintain existing extensions.

To sum up, extensibility is a main driver in the Joomla community. Therefore, a strong focus
is placed on the interoperability between extensions and the core system. To this end, Joomla
requires the implementation of popular design patterns to ensure homogeneous integration of
extensions. So, developers can focus on their actual feature implementation without the need of
considering, e.g., permission features. Additionally, a standardized extension structure enables
developers to refactor and re-engineer legacy extensions of other developers. The support of
various extension kinds allows extension developers to implement extensions in a more flexible
and reusable way. Moreover, this separation allows the core system to provide features for the
specific extension kinds, like the individual management of them in the administration section
of a Joomla instance. A drawback of Joomla’s extension mechanism is the missing standard
file structure for installation packages, even though some recommendations exist. Developers
are in charge to map the file structure to the given structure of the Joomla core system where
the files will be moved during the installation routine. This complicates the deployment during
development, since extensions cannot directly be copied to a certain folder as it is common in
WordPress. Another challenge which relates to this fact is the extraction from installed extensions
to create installable extension packages. In WordPress it is sufficient to extract the plugin folder
which contains all the plugin files, whereas in Joomla the extension files must be extracted from
different directories.

Development of Drupal Extensions

Drupal offers an extension mechanism which is comparable to the flexible but not standardized
WordPress mechanism based on a few provided extension kinds. However, similar to Joomla,
Drupal requires compliance with certain coding standards and architectural patterns. These stan-
dards are well described in a lucid documentation including coding, UI, and documentation
standards. Additionally, the documentation supports extension developers with guides for local
development, testing, development tools, and security assurance.

In addition to the documentation, Drupal developers are supported by a variety of boilerplate
generators and IDE integrations. The latter includes popular IDEs like Eclipse, Aptana, Net-
beans and PhpStorm. Similar to Joomla, installable extensions exist, which provide the devel-
opment of Drupal modules within a running Drupal instance. So, developers are able to develop
an extension in the Drupal environment without the need of any IDE. Like WordPress, Drupal
also provides cronjob support which allows automated actions, even for features of individual
extensions. In order to support quality assurance, Drupal recommends the use of a provided
PHP Unit test environment [57]. A special feature, which is also provided by Joomla, is the
provided dependency management support (using Composer [1]).

The provided extension kinds of Drupal include themes for reusable style definitions (like themes
in WordPress and templates in Joomla), and modules for functional features. The scope of
functions of a module can be as complex as desired, what is similar to WordPress. Modules are
classified as core (modules are shipped with Drupal and were developed by developers of the Dru-
pal core and the community), contributed (third-party - own developments of the community and
free of charge), and custom (custom developments for specific problem solutions of single Drupal
pages). Similar to Joomla, the functionality of the core system is also encapsulated within mod-
ules. In addition to themes and modules, Drupal also allows bundles of reusable features within

2.2. Commonalities and Differences in WCMS Extension Development 27

library-like extensions called plugins. These should not be mixed-up with WordPress or Joomla
plugins, which use the naming differently. A special extension kind in Drupal is represented by
installation profiles, which pack various modules and plugins together for specific needs. So, dur-
ing installation, administrators can narrow down the functional scope of their Drupal instance
more detailed and tailored to their specific needs in order to acquire lean applications.

To enable interoperability between extensions, Drupal extension developers can make use of ex-
isting core, contributed, or custom modules in their modules. Thus, core features for content
manipulation or user interactions can be integrated into custom modules. To ensure own admin-
istration interfaces, menus can be specified, even though an actual separation into a backend and
frontend is not implemented in Drupal. Similar to WordPress, Drupal allows to specify cronjobs,
even for custom modules. For internationalization and localization support, Drupal provides a
simple translation mechanism based on language files.

Similar to WordPress, Drupal extensions are automatically discovered, even though Drupal also
provides extension deployment through an installation routine in the application’s dashboard.
It is sufficient to place the extension files in specific folders of the instance, e.g. <Rootfolder>
\modules\custom\<nameofthemodule>. For a proper interoperability with the Drupal instance,
a main configuration file is needed, which has to follow a certain name pattern (<name of the
module.info.yml>) and must include some basic parameters. The example configuration for a
helloWorld module [56] in Listing 2.5 illustrates a configuration file with all possible configuration
parameters.

1 name : He l lo World Module
2 d e s c r i p t i o n : Creates a page showing " He l lo World " .
3 package : Custom
4

5 type : module
6 core : 8 . x
7

8 dependenc ies :
9 − drupal : l i n k

10 − drupal : views
11 − paragraphs : paragraphs
12 − webform : webform (>=8.x−5.x)
13

14 c o n f i g u r e : he l lo_world . s e t t i n g s
15

16 php : 5 . 6
Listing 2.5: Drupal configuration file (helloWorld example)

Drupal requires name, type, and core as basic properties. To group extension within the admin-
istration representation of a Drupal instance, it is recommended to use the package parameter
(cf. Figure 2.6). So, Drupal provides a categorisation view for extensions, which allows the
specification of own category names.

Special emphasis should be placed on the dependencies parameter. This parameter can be used
for the specification of extensions, which must be installed on the host instance. Otherwise,
dependencies to these extensions cannot be solved, what could lead to errors when the custom
extension is executed. Such a feature is also implemented in other WCMSs such as Joomla
(e.g. if modules depend on existing components). By specifying dependencies in the main
configuration file ensures a message in the administration view, if dependencies are missing. If
the site administrator uses Composer as dependency manager, extensions to which dependencies
exist can be installed automatically. This, however, requires an additional specification in a
composer file.

28 Chapter 2. Web Content Management Systems

Figure 2.6: Module representation within a running Drupal instance (administrator view)

Like WordPress and Joomla, Drupal also provides an API as interface for common PHP features
and database access. The Drupal API is built on the PHP framework Symfony [210], forcing
extension developers to implement their extensions object-oriented. Additionally, the API makes
use of the factory pattern and late static bindings, a PHP feature which can be used to reference a
called class in the context of static inheritance. Also, the Drupal API allows extension developers
to make extensive use of dependency injection and event-based features by hooks (similar to
WordPress). Another speciality of the Drupal API, based on the Symfony framework, is given
by the support of the template engine TWIG. This template engine can be used for a proper
integration of HTML and PHP code, increasing the internal quality of the code. However, the
Drupal API does not support other popular design patterns like MVC. Nevertheless, it should
be used by extension developers to ensure a homogeneous integration of e.g. modules into
a running Drupal instance. To this end, Drupal follows a configuration-based approach using
YAML configuration files for extension metadata. Additionally, since Drupal 8 other features
are also configured like routing mappings or menu links, whereas up to Drupal 7, exclusively
hooks (event-handlers with callback functions) were used. Provided that the Drupal API is used
in the expected manner based on Drupal’s coding conventions the API supports a convention
over configuration paradigm, keeping the configuration files as basic as possible.

Summarizing, the Drupal community attaches great importance on developer support in order
to ensure standardized extensions of high internal quality. To this end, an extensive documenta-
tion is provided which offers detailed information regarding coding standards, local development,
testing, development tools, and security assurance. In addition, vast IDE support and boiler-
plate generators are available. Besides an extension kind for appearance configuration (themes),
Drupal allows the installation of functional extensions (modules and plugins). Similar to Joomla,
Drupal also uses these extension kinds for the realisation of its core functionality. This enables a
straightforward interoperability between custom and core modules. Additional extension features
are: own administration interfaces, cronjob integration, and internationalization and localization
support based on language files. The Drupal API, which is based on the Symfony framework,
provides common PHP features and database access. Based on the API, extension developer
have to make use of OO. A special feature of the Drupal API is the support of dependency injec-
tion and hooks for the registration of custom actions based on Drupal events. Additionally, the
template engine TWIG can be used for an elegant integration of HTML and PHP code. Popular
design patterns like MVC are not supported directly by the Drupal API. The Drupal core sup-
ports YAML configuration files for extension configuration, routing mappings, and menu links.
Thus, Drupal follows a convention over configuration approach which allows basic configuration
files, provided that the API is used as expected within the extension implementation.

2.2. Commonalities and Differences in WCMS Extension Development 29

Overall Comparison of Extensibility Features

In this section, we compare the extensibility of the previously considered systems in order to
elicit a suitable reference WCMS as basis for our research of applying an MDE approach in the
WCMS domain. To this end, we contrast the presented extensibility features and identify the
system with the most powerful and complex extension mechanism. So, we can follow a bottom-
up approach by using this system as reference WCMS and transfer the findings to other WCMSs
with an equal or less sophisticated extension mechanism.

To evaluate the selected features, we use the following scheme:

✗: Feature not provided

(✓): Feature provided to some extend (rudimentary or workaround)

✓: Feature provided

✓✓: Feature provided (sophisticated)

The fist comparison criteria considers the developer support provided by the respective commu-
nity. This includes existing documentation, active forums, coding standards and existing test
suites. These artefacts are supportive during the development of new suitable tools for applying
model-driven development in the domain.

Table 2.1: Developer Support

WCMS Forums Documentation Coding Standard Test Suite
WordPress ✓ ✓ ✗ ✗

Joomla ✓ ✓ ✓ ✓

Drupal ✓ ✓ ✓ ✓

All of the presented systems provide forums and helpful documentation, whereas Joomla and
Drupal also provide community-valid coding standards and a test suite for quality assurance.
Even though test infrastructures for WordPress exist, these are not directly provided by the
community itself.

Another comparison aspect considers the characteristics of WCMS extensions. This includes
the range of extension kinds, interoperability support between extensions and WCMS core, sup-
ported features like integrated internationalization and localization, dependency management,
and Cronjob support. These aspects are the main requirements in order to evaluate existing or
new developed model-driven development tools.

Table 2.2: Extension Features (1)

WCMS
Template/
Theme
type

Separation
of functional
extension
types

Interoperability
between
extensions

Core
Support

WordPress ✓ ✗ ✓ ✓

Joomla ✓ ✓✓ ✓ ✓

Drupal ✓ (✓) ✓ ✓

All systems provide an extension type for reusable style definitions which can be used for the
configuration of the appearance of the respective WCMS instance. Additionally, extension kinds
for functional augmentation are supported by the core of all presented systems. As stated before,

30 Chapter 2. Web Content Management Systems

a variety of names for several extension kinds exist. Some of these names are intuitively chosen
like libraries or templates/themes, whereas others are used for different purposes depending on
the respective WCMS. However, WordPress and Drupal provide one main extension kind for
functional extension, whereas Joomla stands out for its sophisticated separation into various
extension types. This allows extension developers to encapsulate their features into suitable
packages based on the respective complexity (mini application, website widget, event-based ac-
tions). Drupal allows the encapsulation of re-usable interfaces into an additional extension type,
whereby WordPress developers can incorporate features of any complexity within one exten-
sion type. With respect to maintenance, standardization, and re-usability, Joomla’s approach is
significant better.

Additionally, the presented systems allow interoperability between extensions. A powerful fea-
ture which allows developers to (re-)use functionality from other extensions within their own
extensions. Since Joomla and Drupal also use their extension mechanism for the implementa-
tion of their core features, the provided interoperability also enables core support. WordPress
provides core support as well. However, extension developers must use the WordPress API in
order to use core features in their extensions.

Table 2.3: Extension Features (2)

WCMS Internationalization/
Localization

Dependency
management

Cronjob
support

WordPress ✓✓ ✗ ✓

Joomla ✓ ✓ ✗

Drupal (✓) ✓ ✓

The provided extension features of the selected WCMSs comprise internationalisation and local-
ization features based on translation files. WordPress, however, stands out for its sophisticated
translation mechanism based on reusable meta language files. The mechanism provided by Dru-
pal is rather basic and does not support full localization support. In addition to this feature,
Joomla and Drupal extensions can include automated dependency management to ensure proper
installations within a running website. Another feature, cronjob integration, is supported by
WordPress and Drupal. Joomla lacks such a feature innately.

Considering the API support for extension development, we compare supported development
conventions and implemented design patterns. Additionally, we compare the file and code struc-
ture of installable extension packages and their capability of homogenous integration into a
running WCMS instance. These aspects play a significant role during the elicitation of a suitable
domain-specific modelling language which has to generalize them properly.

Table 2.4: API Support

WCMS OOP Architectural patterns
(e.g MVC) Event-based support

WordPress (✓) ✗ ✓

Joomla ✓ ✓ ✓

Drupal ✓ ✗ ✓

The Joomla and Drupal APIs require developers to implement their extensions in an object-
oriented manner, whereas the WordPress API does not require an OO implementation. Though,
WordPress supports all kinds of implementations. The WordPress and Drupal APIs do not
support architectural patterns directly, even though some recommendations exist, which are

2.2. Commonalities and Differences in WCMS Extension Development 31

based on popular OO patterns. This allows extension developers to implement their preferred
architecture but is a drawback in consideration of maintainability, re-usability, and standard-
ization. Joomla requires an MVC implementation within its main extension type (components)
to adhere to the community’s development conventions. Though, all APIs provide interfaces
for event-based support. This allows developers to register actions which have to be performed
during system events like user authentication or content preparation.

Table 2.5: API Support (2)

WCMS Standard
file structure

Decoupled
extension
configuration

Backend/Frontend
support

WordPress (✓) ✗ ✗

Joomla ✓✓ ✓ ✓

Drupal ✓ ✓✓ (✓)

The APIs of Joomla and Drupal request extension developers to implement a standardized file
structure in order to ensure a homogeneous deployment to a running website. Joomla goes even
further, requiring a strict separation of the file structure based on the API’s MVC pattern. Addi-
tionally, Joomla provides conventions for all extension kinds. WordPress follows a more flexible
approach since no conventions for a file structure exist. However, the WordPress community
recommends a file structure which is popularly used.

Drupal’s configuration approach, which was introduced with the latest major version, allows a
sophisticated decoupled extension configuration. This brings some advantages since the actual
code may stay unaffected during extension evolution. For instance, if the menu logic for the
extension changes, developers must not change the code. Instead, they just have to change or
augment the parameters in the configuration file. Joomla, also provides decoupled configuration
files in order to follow a convention over configuration approach, but not in the sophisticated
way as Drupal does. WordPress configurations must be placed within the actual PHP files in
form of annotations, e.g. as part of DocBlocks.

Joomla allows to implement additional features separately for the desired section of the system
(frontend/backend), which ensures a standardized and reusable extension structure. WordPress
and Drupal also enable the development of features for a respective section, but delegate the
responsibility for the structure to extension developers. So, a convention based on the extension
mechanism can not be provided.

For an overall comparison, we sum up the score of the supported extensibility features based on
the introduced criteria for community support, extension features, and API support. In order
to quantify the score, we use the following relation: ✗→ 0, (✓) → 0.5, ✓→ 1, ✓✓→ 2. It must
be mentioned, that the validity of the scoring should be confirmed in future work. This can be
achieved, e.g. by interviews ad surveys with industrial practitioners. To keep the comparison as
objective as possible, the criteria is not weighted.

Table 2.6: Scoring of WCMS Extensibility

WCMS WordPress Joomla Drupal
Developer Support 2 4 4
Extension Features 6 7 6
API 2 7 5.5
Score 10 18 15.5

32 Chapter 2. Web Content Management Systems

Based on this score, Joomla stands out as the most suitable reference WCMS for an MDE
approach. Especially the extension features, like the separation into various extension kinds,
represents a well-suited reference implementation, since the extension mechanism of WordPress
and Drupal are less complex. Additionally, Joomla comes with the strictest API conventions,
based on coding standards and design patterns which have to be implemented by extension
developers.

Another motivational aspect, which distinguishes Joomla from other WCMSs like WordPress,
is based on its core implementation. Similar to Drupal, Joomla also uses extensions for the
implementation of core features. So, even the core development may benefit from an MDE
approach.

With this motivation, the idea of transferring the MDE approach of this work from Joomla to one
or all of the other WCMSs is within the realm of possibility. Especially the presented and most
popular WCMSs WordPress and Drupal should be suitable systems for further generalisation of
the approach, since their extension mechanisms are similar in most cases or less complicated in
comparison to Joomla. Requirement for the porting process is a matured modelling language,
which generalizes the presented extension features regardless to the target WCMS.

2.3 Common Extension Development Scenarios
As previously described, extension developers face various challenges during extension develop-
ment. Based on our experience in WCMS extension development, we identify three frequently
occurring development scenarios:

• Development of independent extension like WordPress plugins or Joomla components.

• Development of dependent extensions like Joomla modules.

• Migration of existing extensions between different (versions of) CMS platforms.

These scenarios are confirmed by professional extension developers during conducted semi-
structured expert interviews (see Section 4.1). In the following, we will describe these scenarios
more detailed.

2.3.1 Scenario 1: Development of Independent Extensions
The first scenario, as illustrated in Figure 2.7, addresses the development of independent ex-
tensions to be used in a running WCMS instance (cf. [188]). Such extensions are particularly
desirable during their evolution: If a developer changes the extension, no side effects due to
dependencies occur in the system where the extension is deployed to. Examples for independent
extensions are WordPress plugins, Joomla components, or Drupal modules which have no depen-
dencies to other extensions. During evolution of other installed extensions, the extension should
not show any side effects. The only dependency of such extensions is the use of the core API.

However, to ensure a correct interplay between the extension and the core of the underlying
WCMS instance it is fundamental to comply with the development guidelines and make use of
the respective core API. This requires additional development and testing effort, since even subtle
errors like wrong file or class name patterns can lead to unexpected crashes that are not discovered
until runtime (cf. problem statement 1). To tackle this challenge, extension developers typically
copy existing extensions and adapt them to their requirements (clone-and-own practice). This,
however, typically leads to oversized extensions including useless code. This challenge can be
addressed by a model-driven approach providing tool support, e.g. by code generators which
generate high quality extension code, which adheres to the code guidelines and implements the
provided WCMS API.

2.3. Common Extension Development Scenarios 33

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Use/Manage

(Re-)Install on

WCMS Instance

Initial Development

and Refinement

WCMS

Instance

FrontendBackend

Extension Deployment

WCMS

Extension

Use/Manage

Figure 2.7: Development of Independent Extensions

The scenario occurs in two variants: First, the initial development of an extension and second its
iterative improvement. Our scenario definition addresses both, whereas the initial development
can be interpreted as the first iteration. Existing boilerplate generators can support initial devel-
opment. Though, no tool support for iterative improvements exists (cf. problem statement 5).

2.3.2 Scenario 2: Development of Dependent Extensions
With the second scenario we introduce the development of extensions that depend on other
extensions, by using some of their artefacts – a common practice to prevent multiple implemen-
tations of the same functionality (cf. [188, 186]). Additionally, this allows developers to augment
existing extensions (e.g. third-party extensions) without changing their code base. We illustrate
this scenario in Figure 2.8.

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Use/Manage

(Re-)Install on

WCMS Instance

Initial Development

and Refinement

WCMS

Instance
Frontend

Backend

Extension Deployment

WCMS

Extension

Use/Manage

Augment/Depend on

Legacy

Extension

Figure 2.8: Development of Dependent Extensions

In WordPress, plugins may refer to other plugins, whereas Drupal allows interdependencies
between modules. A common interdependency of Joomla extensions typically exists between
components and modules. It is common practice to use artefacts of existing extensions within
a component or module to increase the functionality of a Joomla system without developing
software fragments anew. Components may reuse data access objects (DAO) or view templates
from other components, whereas modules often use the database of existing components, since
they usually provide no own data management.

34 Chapter 2. Web Content Management Systems

In Figure 2.9 a common dependency between modules and components is illustrated. As previ-
ously described, a Joomla module uses the data of a Joomla component. To this end, two popular
implementations of the dependency are presented. The first variant is based on a helper file in
the module which features the use of a component DAO via reference, using inclusion methods
of Joomla’s singleton implementation (Figure 2.9a), whereas the second implementation directly
accesses the components database by using SQL statements (Figure 2.9b).

(a) Joomla Module Referencing to an Existing
Joomla Component Model for Data Access

(b) Joomla Module Uses the Database of a
Joomla Component Directly

Figure 2.9: Common Dependencies Between Joomla Extensions (cf. [186])

During this scenario, developers are challenged by the required reverse engineering process which
necessitates understanding implementation details of the base extensions (cf. problem statement
3). Moreover, evolving base extensions which are installed on the same WCMS instance present
a challenge for administrators and developers. With every dependency the number of potential
vulnerabilities increases (cf. problem statement 4). This challenge is not covered by existing
tool support (cf. problem statement 5) but can be addressed by MDE, e.g. through specifying
dependencies within extension models. Tool support for reverse engineering of the base extension
supports developers to keep models of the dependencies updated.

2.3.3 Scenario 3: Migration of a Legacy Extension to a new Platform
(Version)

In the third scenario, as illustrated in Figure 2.10, we address the migration of an existing (legacy)
extension to a new WCMS platform or a new platform version of the same WCMS (cf. [187]).

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Migration and

Refactoring

Use/Manage

(Re-)Install on

WCMS Instance

WCMS Instance (Old Platform)

FrontendBackend

Extension Deployment

WCMS Extension

(for old Platform)

Use/Manage

MigrationMigration

WCMS Instance (New Platform)

FrontendBackend

Extension Deployment

WCMS Extension

(for new Platform)

Figure 2.10: Migration of an Extension to a new Platform (Version)

2.3. Common Extension Development Scenarios 35

Migrations to new platform versions of the same WCMS may require the same effort as migrations
to another system. System enhancements, feature addition, and architectural reconstruction in
order to increase the elegance, efficiency, and generalizability of a WCMS API is a worthwhile
motivation for WCMS communities to release new major versions (cf. [17, p.21]). However, ma-
jor version changes are typically characterized by tremendous changes of the core platform and
its API, which usually break existing extensions. So, every new platform version forces extension
developers to migrate their legacy extensions to the new API, to ensure their operability within
updated WCMS instances. The required effort grows immeasurable, if the number of extensions
to migrate rises (cf. problem statement 2). As experience has shown, missing documentation,
non-existing tool support (cf. problem statement 5), and required effort often led to dying ex-
tensions. Often developers are not able to migrate their software in a reasonable amount of time.
In this case, administrators have to replace their extensions which, in turn, is associated with
additional effort. If no alternative extension exists, administrators are often obliged to keep their
WCMS instance running with older platform versions until the required extensions are opera-
ble on it. By providing tool support for the migration of WCMS extensions to a new platform
(version), the required effort could be reduced. An MDE infrastructure comprising reverse and
forward engineering facilities allows support during the model extraction from existing extensions
and the generation of extension code for the new platform.

Figure 2.11 illustrates an example for the differing file structures of two consecutive Joomla
versions (3 and 48). In Joomla 3, a view folder contains both the view class and all corresponding
view templates whereas Joomla 4 requires a structure where both are completely separated
artefacts. Such differences must be considered by extension developers in order to update their
extensions to the new API specifications of the core system. Obviously, the same applies to the
code level.

Figure 2.11: Differing file structure of a Joomla 3 (left) and a Joomla 4 (right) component
(administrator folder)

8As of 2020, Joomla version 4 is successively re-developed due to its unstable state. The comparison is based
on the Joomla version 4 Alpha 12 [167], which was the latest release while this thesis was written.

36 Chapter 2. Web Content Management Systems

The migration scenario also includes the migration of extension data. Usually, data migration
requires rather small effort, since the database structures mostly depends on the respective
extension. After a platform update, this structure must not necessarily be changed for the
new version. Often, a copy of the extension’s data or a migration script is sufficient during the
migration process. The APIs of popular WCMSs provide functions to run implemented migration
scripts automatically during extension installation. This feature is typically used by extension
developers for extension updates and can also be used for migration purposes. However, by
following an MDE approach, these steps can be processed automatically by a code generator.

2.3.4 Further Scenarios
In addition to the previously described scenarios, two sub-scenarios should be mentioned due
to their relevance (cf. Section 4.1). These scenarios mainly address already existing legacy ex-
tensions which are not longer maintained by their original extension developers but used within
existing WCMS instances. Such extensions are often partially augmented by new features or com-
pletely reengineered by new extension developers. Additional possible scenarios or combinations
with less relevance should be addressed in further research.

Scenario 4: Partial Augmentation of Legacy Extensions

A common practice in WCMS extension development is the augmentation of existing extensions
with custom features (see Figure 2.12). This is a sub-scenario of scenario 2 (development of
dependent extensions) since the new feature is an augmentation to an existing and typically
deployed extension and usually depends on the original code or data. New features are added
directly to the existing extensions by new views, new or refined database structures, or overrides
(cf. Section 2.1). This is sufficient, if the extension is no longer maintained or the original
developers refuse to add the desired feature.

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Use/Manage

WCMS

InstanceFrontend

Backend

Use/Manage

Legacy
Extension +

new Feature

Development of

new Feature

Figure 2.12: Partial Augmentation of a Legacy Extensions

To augment an existing extension, developers have to gain insight about the extension struc-
ture. Standardized extension structures facilitate such a discovery, but are not necessarily im-
plemented. A challenge, developers have to face during the augmentation process is to check,
if their refinements influence other dependent extensions (cf. problem statement 3). This is a
fundamental requirement to avoid side-effects. Another challenge occurs, if the existing exten-
sion is augmented by custom code but contingent on further updates by the original developers
which may override custom refinements (cf. problem statement 4). In this case, administrators

2.3. Common Extension Development Scenarios 37

have to decide, if they refuse to update the extension or force developers to refine the updated
extension anew. Both challenges can be addressed by an MDE infrastructure which comprises
reverse engineering facilities for support during extension understanding and code generators
which provide partial code generation for existing extensions.

Scenario 5: Modernization of Legacy Extensions

Another common extension development scenario addresses the code quality of legacy extensions.
If an extension is not further maintained, but an essential part of a WCMS instance, developers
often submit it to a reengineering process. This scenario can be declared as sub-scenario of
scenario 3 (migration of a legacy extension to a new platform version), since the reengineering
process is similar to the code migration process. However, the targeted goal differs. The migration
scenario aims at porting an extension to a new platform, whereas the reenigneering scenario is
intended to modernize a legacy extension in order to refine it (scenario 4) or augment it by new
extensions (scenario 2). The modernization scenario is illustrated in Figure 2.13.

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Discovery and

Reengineering

Use/Manage

(Re-)Install on

WCMS Instance

WCMS Extension

(Legacy Code)

Use/Manage

ReengineeringReengineering

WCMS Extension

(Reengineered)

WCMS

Instance
Frontend

Backend

Legacy

Extension

Extension Deployment Extension Deployment

Figure 2.13: Modernization of a Legacy Extensions

Extension developers have to discover the structure of the legacy code in order to reengineer the
extension to the new desired structure (cf. problem statement 3). Then, after the reengineering
and re-implementation process, the resulting extension can be reinstalled to running WCMS
instances or provided as new version, e.g. in an extension directory. The main challenge is
to ensure that all features are provided by the new extension and the quality is not impaired.
Additionally, dependencies to the legacy extension like depending extensions must be considered
during the reengineering process in order to avoid errors during runtime. Similar to the previously
described scenario, an MDE infrastructure can be supportive for extension developers during the
reverse and forward engineering process.

38 Chapter 2. Web Content Management Systems

3 Model-Driven Engineering

The entire history of software engineering
is that of the rise in levels of abstraction.

– Grady Booch

Being a software developer these days changed tremendously compared to the past. New emerg-
ing programming languages and frameworks necessitate a high potential of flexibility and willing-
ness to learn. A promising approach to support developers dealing with complex and fluctuating
technologies is to change the abstraction level of programming languages and frameworks. This
allows the application of model-driven engineering (MDE) techniques to increase productivity.

During the last decades the use of models as abstract software representation became a common
practice in software development. Usually, models are used to describe a software system in
form of sketches (partial view) or blueprints (detailed specification) [28]. However, during the
last years they established as representation of an executable program [28]. So, besides improving
the understanding of a system and simplification of the communication between developers and
customers, they can serve as main drivers of a software system. Some developers go even further
and describe their programs as models what shows their relevance in today’s development. Using
abstract representations of software as input for code generators, which take over the work from
development teams, seemed to be the next logical step in software development. Therefore,
model-driven engineering practices enjoyed rising popularity in the last decade. Generating most
of the code facilitates a standardized code base with better quality requiring less development
effort in contrast to conventional software development.

Engineering software in a model-driven way usually requires, beside models, support by a set of
tools, further called MDE infrastructure. These tools enable rapid software development with a
minimum of required hand coding allowing a faster deployment of software artefacts [199]. An
MDE infrastructure typically comprises tools for forward engineering processes such as model
editors and code generators. Additionally, reverse engineering facilities, e.g. for model extrac-
tion from existing software can be included. By using frameworks such as the Eclipse Modeling
Framework (EMF) complete model-driven engineering solutions can be implemented. To inte-
grate such an infrastructure into the MDE process it is inevitable to support different develop-
ment platforms such as common development environments (IDEs) or the platform-independent
development using web technologies, such as web-based model editors. Though, the required
development effort for necessary infrastructure tools often exceeds the required effort of conven-
tional development methods. Especially, if the software system which has to be developed is too
complex, individual, or is not intended to be changed in the future, the initial development effort
for MDE tools can increase tremendously. This led to a collapsing popularity of model-driven
approaches in the last years.

For a proper explanation of MDE, we open up the scope a little more. To this end, this chapter
will give an overview of the most common terminology including a classification of MDE in
contrast to the related terms MDA, MDD, and MBE. So, we can differentiate between them
and clarify their relation to each other. Moreover, we introduce the fundamental artefacts of
MDE infrastructures, present popular development frameworks, and discuss suitable processes
for MDE tool development.

39

40 Chapter 3. Model-Driven Engineering

3.1 Terminology
Investigating literature and the web, there is a common misunderstanding or missing knowledge of
the differentiation within the model-driven engineering context. Most authors talk about model-
driven engineering, but in fact mean model-driven development (MDD) or even model-based
engineering (MBE). Sometimes authors write about different abstraction levels in model-driven
engineering without the knowledge of the specified standard called model-driven architecture
(MDA). This sub-section will clarify these terms and presents an overview about their limitations
and relationships among each other. According to [28], there is a containment hierarchy among
MDA, MDD, MDE, and MBE which will presented more detailed within the next paragraphs.

MBEMDEMDDMDA

Figure 3.1: Relationship between MDA, MDD, MDE, and MBE (cf. [28])

MDA
Applying model-driven approaches during software development gained high popularity within
the past decades. Therefore, the Object Management Group1 (OMG) defined a formal speci-
fication in form of a meta-model which can be used as reference during model-driven software
development - called Model-Driven Architecture (MDA). MDA defines a flexible solution for soft-
ware models (by means of UML2 in the first instance). Instead of using large and complex models
as monolithic artefacts, MDA recommends to split and arrange them within different levels of
specification abstraction (see Figure 3.2).

Computation

Independent

Model

(CIM)

Platform

Independent

Model

(PIM)

Platform

Independent

Model

(PIM)

Platform

Specific

Model

(PSM)

Platform

Independent

Model

(PIM)

Platform

Independent

Model

(PIM)

Platform

Specific

Model

(PSM)

Source Code

Source Code

Platform

Independent

Model

(PIM)

Platform

Independent

Model

(PIM)

Platform

Independent

Model

(PIM)

M2M

M2M

M2M

M2C

M2C

Figure 3.2: Abstraction Level Specification of MDA

The highest degree of abstraction in MDA is represented by the Computation Independent Model
(CIM). It is characterized by the colloquial description of system requirements. With the high
degree of abstraction, the business processes can be defined regardless of the underlying software

1The Object Management Group was founded in 1989 as a consortium to recommend standard specifications
for object oriented systems. For further reading see [162].

2Unified Modeling Language, a general purpose language for the visualisation of software design on the basis
of visual models.

3.1. Terminology 41

systems, e.g. as a use case diagram. Usually, a CIM is used as abstract reference for a Platform
Independent Model (PIM). By a (mostly manual) model-to-model (M2M) transformation one
or more PIMs can be created by a CIM. A PIM describes the functional aspects of a domain,
independently of the underlying platform. This ensures a high reusability of the models. A PIM
can be used as input for a (semi-) automated model-to-model transformation to create one or
more groups of Platform Specific Models (PSMs). These models describe the application with
regard to the specific platform in an abstract way, but relatively close to the source code for the
targeted platform. Like PIMs, PSMs are usually described with visual modelling languages such
as UML or textual models such as XML.

The most specific artefact of the MDA standard is represented by source code. By means
of a model-to-code (M2C) transformation, source code is generated, appropriate to a PSM or
PIM. This transformation is usually executed by one or more code generators which contain
the generic domain-specific information. For the case of individual code fragments, which can
not be generated, protected regions or code models should be provided, to allow a subsequent
augmentation of the code (see Section 3.3.5). However, this requires the consideration of adequate
reverse engineering techniques in case of a further generation of the same software artefact.

MDA is generally adopted to different problem domains in form of several (UML-based) modelling
languages and diagram types [28, p. 45]. Both perspectives are covered by MDA solutions.

MDD
Model-Driven Development (MDD) describes the development process, which can follow MDA,
but is more motivated in the generation of software, whereby the models are the main artefact
during the development. MDD is not a synonym for MDA, since MDA is a formal specialisation
of MDD. MDD can be seen as a technical implementation of MDA using an MDD infrastructure.
Typically, the term MDD is used for model-driven forward engineering of software including
suitable modelling languages and tools for M2M and M2C transformations on the basis of the
MDA specification.

MDE
The term which is mostly used within the model-driven context, as well as in this work, is Model-
Driven Engineering (MDE). MDE is actually a vague kind of MDD, since it includes the similar
motivation for software development using models. However, in contrast to MDD, MDE also uses
models as the main artefact for software evolution, documentation, testing, or reverse engineering.
This means, MDE approaches may include MDD, but can go beyond the forward engineering
process of model-driven software development. In related literature, such as [28], MD*E is often
used as synonym for MDE, whereby the * is a placeholder for the actual field of application. For
instance, MDSE (Model-Driven Software Engineering) describes software development by means
of a model-driven approach. Another example is MDRE for Model-Driven Reverse Engineering.
This allows a more concrete inference to the application of an MDE approach, even though the
term MDE is often referred to MDSE. In this work, we use the term MDE as synonym to MD*E,
since we address scenarios which include both forward and reverse engineering processes.

MBE
Within the context of model-driven software engineering, Model-Based Engineering (MBE) is
often mentioned or even used as synonym for MDE. However, according to [28], MBE differenti-
ates in its main motivation, since it does not describe a process for software generation based on
models as main drivers. The term fits better to processes where models are used as supportive
artefacts such as, e.g., domain models which help developers to understand a domain in order to
create suitable applications with their conventional development method.

42 Chapter 3. Model-Driven Engineering

3.2 MDE in Software Development
Obviously, supporters of MDE usually emphasize its advantages but rarely mention its disad-
vantages and threats. Especially at the beginning of the MDE hype, only the advantages were
considered in MDE-based projects. However, both sides must be investigated to get a clear
picture of the topic.

Besides a simplified and faster software development the flexibility of abstract models is one of the
main advantages. Models can be changed at any time and can be reused for several transforma-
tions. This allows both the development for different platforms and the migration between them
by using the same model. Moreover, the creation of models enables a better decoupling between
domain and technology knowledge. This, in turn, allows a better distribution of the software
development tasks, tailored to specific roles like domain experts and developers with technology
knowledge. Moreover, using abstract models for the formal description of a software system
may increase its general comprehensibility, even for non-developers. So, a better communication
between software developers and their customers can be enabled.

However, the application of model-driven engineering includes some downsides. A significant
drawback of MDE approaches is based on the high initial effort, required for the development of
modelling languages, model editors, and code generators. This effort is mostly underestimated
during an MDE adoption and led to a downward trend of MDE at the late 2000s. As mentioned
in [28], the drawbacks in industry which caused by failed MDE-based projects led to a chasm
between software developers and MDE. One of the biggest difficulties is to convince developers
to overcome their resistance to change and change their usual development habits.

Though, if advantages and disadvantages are clear, stakeholders of a software project can already
decide in the preliminary stage, if MDE is a suitable solution or not. A glance at successfully
adopted MDE approaches in industry (e.g. [16] and [94]) and case studies of MDE adoptions (e.g.
[258] and [32]) indicates that MDE is situated on the slope of enlightenment stage in the Gartner
Life Cycle3 [28, p. 19]. This means that an MDE approach, applied to an appropriate domain
in a suitable project, can be a helpful and profitable alternative to conventional development
approaches. In [233] the authors present the results of a survey with IT professionals considering
the expected and fulfilled benefits of adopting MDE approaches in industry. The result of this
survey emphasizes aspects like improved documentation, design and maintenance support, and
standardization as fulfilled benefits, whereas platform independence seems to be rarely relevant.
Quality and productivity are at the borderline of the fulfilment rate of the responses, due to
the amount of hype around MDE within the last years. The conclusion of the authors sum
up, that, if practitioners focus on a smaller set of benefits, MDE approaches become more
successful. It became clear, however, that the MDE adoption must be intentionally of pragmatic
nature. This means that not every detail has to be modelled to successfully adopt a model-driven
approach. The appropriateness of a problem domain for a model-driven engineering approach
must be further researched, though. This thesis will incidentally contribute to this research in
the domain of WCMSs and the development of WCMS extension.

3.3 MDE Infrastructure Development
Adopting a model-driven approach, as part of a software development process, requires a set of
tools to support developers. These tools must allow the creation and validation of models as
well as their transformation to instances of other modelling languages or to code. Additionally,
the tools should support developers in terms of versioning, testing, and integration of generated
artefacts into the whole software system. Especially, if model-driven engineering constitutes a

3See [76] for a further explanation of the Gartner Hype Cycle.

3.3. MDE Infrastructure Development 43

subsystem, the latter determines its success within the whole project. Speaking of the required
set of tools, the term MDE or MDD infrastructure has been established over the last decade,
even though the term low-code platform has become more commonly used during the last years.
The latter makes more sense for platforms which use textual models as the main development
artefacts.

Developing such an MDE infrastructure requires a suitable development process to consider all
the described artefacts. Due to the fact, that these artefacts must comply with the requirements
of the respective problem domain impedes the development process additionally. To address the
development challenges of MDE infrastructures, some best practices have been emerged in the
last decade. The guidelines as presented in [221], [28], and [132] are typically followed, even
though they do not specify standard procedures for the systematic infrastructure development.
In [244] the authors present an agile bottom-up development process which we apply within
this work. This process incorporates popular best practices into iterative development, what is
typically the most suitable practice for MDE infrastructure development.

Within the next subsections we will give an overview of MDE infrastructure development, consid-
ering the design of domain-specific modelling languages, transformation techniques, meta-tools,
IDE and custom code integration, and suitable processes for MDE tool development.

3.3.1 Design of Domain-Specific Languages
A fundamental decision at the beginning of introducing an MDE approach, is the choice of
a suitable modelling language to be used within the development process. Since models are
the main artefacts of an MDE approach, the language must fit to the problem domain to the
same extend as to support model designers during model creation in the most appropriate way.
Sometimes, a new DSL for a problem has to be developed. Since DSL development is a hard and
time-consuming process, an extensive decision phase should be placed in advance (cf. [135]).

The main task during specification of a DSL is the identification of domain concepts and their
integration as domain-specific language elements. The abstract definition of these elements,
including their relationships and dependencies, represent the abstract syntax of a DSL [135].
By applying meta-modelling techniques as presented in [154], [135], [8], and [28], the abstract
syntax can be extracted from existing domain knowledge. This includes existing legacy software
implementations and documentation (reference applications) as well as knowledge of domain
experts (developers and users). To gather knowledge from domain experts, empirical studies like
interviews and surveys can be conducted. This analysis phase should result in a domain model
which contains the terminology of the domain with relationships and dependencies of the domain
features (cf. [154]).

In accordance to the DSL construction patterns as defined in [154], the analysis step is typically
followed by a design and implementation phase - provided that the analysis is not leading to
reconsider the decision of implementing a new DSL. DSL developers have to determine the formal
nature of the language, i.e. if the DSL will be available as stand-alone language (external DSL)
or shall extend an existing (modelling) language (internal DSL). A popular realisation of the
latter is represented by UML profiles which extend the UML specification. Based on the design
decisions, the language can be described formal or informal in order to obtain a meta-model for
the domain. In [35], the author states that a meta-model is the main artefact of a DSL, "[...]
somehow equivalent to defining the grammar of a textual DSL". Following a meta-model-centric
design (cf. [28]), allows the use of a meta-model as base for further DSL implementations like
language constraints, concrete syntax, and model transformations. Language constraints can be
used to limit the possible models which can be created with the modelling language. So, more
complex validation rules can be specified. The most popular language for constraint definition
is the Object Constraint Language (OCL) [254].

44 Chapter 3. Model-Driven Engineering

Since the (in)formal definition of a DSL is useless for actual modellers, the implementation of
a concrete syntax is inevitable. The concrete syntax defines the actual notation of the defined
concepts of the abstract syntax within model editors. Whether the models shall be represented
in a more visual or textual form, depends on the respective needs of the problem domain and
tasks to be executed. While some developers prefer visual models (modelware), which usually
give a better overview of a (sub-) system, other developers would always choose a textual rep-
resentation (grammarware), due to its compact and structured form. Modelware approaches
explicitly require concrete syntax definitions, whereas in grammar-based DSLs the abstract and
concrete syntax can be defined in one step during grammar definition. A popular framework for
the development of grammarware is represented by Xtext [60]. Based on the concrete syntax,
which can be specified within an Xtext grammar a text-based editor can be generated auto-
matically. Usually, such an editor must be explicitly implemented for modelware approaches by
infrastructure developers.

3.3.2 Providing Transformations
As proposed by the MDA standard, it is useful to work with models of various abstraction de-
grees. By applying transformation on these models, model information can be transferred to
models of other languages or more concrete models in both the same and other languages. MDA
specifies the possible transformations as described in sub-section 3.1 (cf. CIM → PIM → PSM
→ Code). Transformations can be applied as model-to-model (M2M), model-to-code (M2C), and
code-to-model (C2M) transformations. A C2M transformation is typically used for reverse engi-
neering purposes for existing software, whereas M2C is the common transformation in a forward
engineering process. M2M transformations are mainly used for semantic mappings between dif-
ferent abstraction degrees of a system (vertical mapping) or between two systems (horizontal
mapping). By applying these transformations the interoperability4 between concerned software
artefacts of different formats can be achieved.

Model Discovery

In order to discover model information from existing code, e.g. for modernization of legacy soft-
ware, a transformation must be performed either manually or (semi-) automatically. The latter
requires the implementation of model discoverers which must be able to parse the code-format
and generate a model which conforms to the meta-model of choice. Typically, the result of a
model discovery process is a platform-specific model, which enables a further model transfor-
mation. Though, the model should include all aspects of the given code in order to fulfil the
completeness of the discovered software. However, this requires sophisticated discoverers for the
domain which have to incorporate all possible language features of the given code.

In contrast to conventional parser development, various frameworks for the implementation of
model discoverers became popular during the last decade. Most of them implement the Abstract
Syntax Tree Metamodel (ASTM) by OMG [161]. This meta-model describes a standard for
the re-use of abstract syntax trees independent of the input language. So, the interoperability
between various systems can be increased as well. One of the most popular frameworks for
model discovery of Java-based projects, which follows the ASTM standard, is MoDisco for Eclipse
[58, 29]. Even though the framework comes with a set of discoverers mainly for Java, MoDisco can
be used for any legacy system due to its extensibility by own discoverers. However, creating such
a discoverer requires the same amount of maintenance effort as conventional parser development.
Hence, the decision of using a framework like MoDisco or implementing an own model discoverer
depends on the problem domain and the related technologies.

4In the MDE context, the term model-driven interoperability (MDI) has become established as concept based
on injections (C2M transformations) and extractions (M2C transformations). For further reading see [28, p.34ff].

3.3. MDE Infrastructure Development 45

Model Transformations

To allow interoperability between heterogeneous systems, model transformations can be per-
formed. So, the semantic information of a model can be transferred to a model which conforms
to another meta-model. This allows development scenarios like migrations from one system to
another by using models as the main artefact. In addition, model transformations are typically
used for abstraction purposes. On the one hand, model transformations can be used for the
specialization of a given model, e.g. to augment models with platform-specific features. On the
other hand, model transformations are often used for the generalization of models e.g. during
model understanding in a reverse engineering process. So, resulting models of a model discov-
ery process can be transformed to platform-independent models describing the problem domain
independently of the underlying platform.

Model transformations can be executed within the same modelling language (endogenous) or
between different modelling languages (exogenous). Typically, the result of a model transfor-
mation is a new model of the target modelling language (out-place). However, especially for
endogenous transformations, model-refinements on the input model have been established over
the last decade. Such in-place transformations are mainly used for model refactoring purposes.
In [153], a more detailed taxonomy concerning model transformations is given. The Atlas Trans-
formation Language (ATL) [117, 116] has reached high popularity for exogenous and endogenous
out-place transformations, whereas graph transformation languages like Henshin [12] can be used
for endogenous in-place transformations.

Code Generation

A code generator typically creates concrete software implementations using a set of program-
ming languages for a specific domain. To this end, generators typically use input models which
contain abstract information about the artefacts which will be generated. This brings a variety
of advantages over conventional software development. Standardized and understandable code,
replaceable underlying technologies, reuse of legacy code, and the possibility of partial code gen-
eration are just a few to mention. Brambilla et al. present a more detailed list of code generation
benefits in [28, p29 ff.].

Designing a code generation approach requires the choice of an appropriate generation technique.
Stahl et al. present common generator techniques in [221, p. 186 ff]. Summarized, they compare
common generation techniques which differ in time of compilation, use of (meta-)models, and
interaction of existing and generated code. Most of these generation techniques became popu-
lar and are naturally applied in present software development: Generating documentation and
tests based on code annotations like docblocks (code attributes), filter-based template generation
using XML and XSLT, and aspect-oriented code generation, e.g. injection of loggers and tracers
into class methods (code weaving). Based on these techniques, literature proposes alternative
approaches for the creation of code generators, whereas the most common one in the MDE con-
text is the realisation of template-based approaches which are construed for the interplay with
instances of meta-models (cf. Figure 3.3).

Source Code

apply to M2CMeta-Model

Instance

Meta-Model

Code TemplatesCode Templates

Instance of

Figure 3.3: Template-based Code Generation (cf. [221, p. 189])

46 Chapter 3. Model-Driven Engineering

Code templates typically apply to the structure of a meta-model instance in order to use the
model information for code generation. This is done by mixing static code fragments with
gaps for schematically-recurring code information which comes from the input models (e.g. class
identifiers). The latter describes the part of template which depends directly on and is filled with
code information during code generation. In order to create human-readable code templates,
which are close to common code conventions in the problem domain, existing implementations
are typically used as reference during template definition. A popular solution for the realisation
of template-based generators with meta-model support is provided by the Xtend framework
[59] which perfectly fits to grammar-based DSL solutions created with Xtext [60]. Both will
be explained more detailed in Section 3.3.3, since they are relevant for the MDE infrastructure
implementation part of this work.

Template-based generators are often implemented as monolithic software with no need for variety.
However, in order to handle variability in code templates, a common procedure is to reuse
existing templates by copy&paste and adapting the new templates [114]. A more elegant way
is described in [81]. The authors present an approach for enabling variability in code templates
by using so-called variability regions. So, code templates can be used within software product
line engineering5.

Usually, code generators are used as part of MDE approaches, where model information is re-
quired during generation time. The resulting code can be deployed to the target system and can
be replaced by re-generated code after model refinements. If a more flexible use of models is
required, e.g. if the deployment of the generated code cannot be done easily or partial changes
should be allowed, model interpreters have been proved as an alternative. Model interpreters
allow the use and refinement of models during runtime by model parsing functionality within the
actual code. In the domain of mobile applications, model interpreters are promising artefacts
within MDE approaches. Typically, generated code becomes compiled to the native platform and
is then be installed on the mobile device. Every change of the model requires a new generation,
compilation, and deploy step for the whole application. A partial replacement of a generated
fragment is not possible. By using model interpreters, model changes can partially influence the
application without the need of a re-installation. However, both approaches can be combined as
hybrid approach, e.g. by using platform-independent models for code generation and platform-
specific runtime models. So, the heterogeneity of the various target platforms in the mobile
application domain can be flexibly addressed during installation as part of individual runtime
models whereas the actual application code is generated based on platform-independent domain
models. This is another advantage of model interpreters. In [243], the author presents a suc-
cessful realisation of a hybrid approach as part of an MDE infrastructure for the development of
mobile applications with context support. The presented infrastructure consists of a template-
based code generator for applications which can interpret runtime models once deployed to a
mobile device.

In the WCMS domain, model interpreters are not mandatory since the common technologies
allow partial replacement of files (e.g. after a re-generation). Additionally, the systems are
rather homogeneously in comparison to other domains. The software to be developed is mainly
based on interpreter languages. It seems, that the suitability of code generators in contrast to
model interpreters correlates to the target domain inversely. Code generator approaches are
more suitable for interpreted languages whereas model interpreter approaches fit in domains of
compiled languages. However, a hybrid approach is always possible and the generator/interpreter
design should be decided based on the required flexibility and needs of the targeted software and
development process.

5Software product lines comprise sets of “software-intensive systems sharing a common, managed set of features
that satisfy needs of a particular market segment or mission and that are developed from a common set of core
assets in a prescribed way” as Clements and Northrop state in [48]. Common artefacts in SPL engineering are
feature models which consist the features and variants of a software system.

3.3. MDE Infrastructure Development 47

3.3.3 Support for MDE Tool Development
If developers decide to adopt MDE within a software project, lots of matured MDE tools are
available nowadays. Especially Java developers are supported by a wide variety of tools, including
model editors and sophisticated code generators. Even the web domain and embedded systems
are domains which enjoyed much attention by providers of MDE tools. Besides commercial
and proprietary solutions, free and open source tools exist to support MDE. The most popular
representatives are Enterprise Architect [218], Matlab and Simulink [149], Rational Rhapsody
[96], ObjectiF [155], and MetaEdit+ [131, 215]. For further reading, find a comparison of actual
MDE tools in [123] and [122], whereas the authors of [120] compare and evaluate current tools.

The Eclipse Modeling Framework (EMF) [83] stands out by its variety of solutions for different
MDE use cases and MDE-based problems. Since it is open source, developers built a wide set of
tools for modelling, validation, transformations, model versioning, model merging, reverse engi-
neering, and MDE tool development itself. Even though all of the tools are initially developed for
the Eclipse IDE, other IDEs such as IntelliJ IDEA from JetBrains are also supported. Figure 3.4
illustrates the most popular EMF tools grouped by their intended area of application.

Figure 3.4: MDE Tools based on EMF [38]

EMF comes with a powerful meta-modelling language called Ecore. This language is an imple-
mentation of the (E)MOF6 standard, defined by the OMG. In addition to the Ecore language,
EMF provides tool support for the generation of Java-based API code to enable access to instance
model information within Java programs. In order to allow the creation of instance models for in-
dividual Ecore-based domain models, EMF provides a tree-based instance editor which contains
various reflection and validation features.

6The Meta-Object Facility standard represents a four-layered scheme, which describes the relationship between
objects (M0), their description as models on a more abstract layer (M1), and their specification by meta-models
on the next abstraction layer (M2), which in turn are described by meta-meta-models (M3). A popular imple-
mentation of the M2 layer is the UML meta-model, which can be used to create domain models on the M1 layer.
For further reading see the specification by OMG in [165].

48 Chapter 3. Model-Driven Engineering

One of the biggest advantages of EMF is its support for creating own formal specifications for
models in form of meta-models and domain-specific languages (DSLs). A prominent EMF-based
tool set is the combination of Xtext [60] for DSL development and Xtend [59] as sophisticated and
integrated template engine for creating code generators. Xtext allows the creation of domain-
specific modelling languages as grammars in an EBNF-like style. Based on an Xtext-based
grammar, Xtend can be used for the straightforward implementation of code generators which
use instances of self-described DSLs. The Xtend programming language allows the creation of
code templates embedded into a Java-like syntax which is generated automatically to Java code
during template implementation. Plain Java code is also allowed within Xtend templates, since
the language is a superset of Java.

Based on a grammar definition with Xtext, a set of Eclipse plugins can be generated, comprising
a text-based editor for the creation of model instances and a skeleton test infrastructure for
automated tests of both the grammar and generator. In addition, a web-based application can
be generated, which consists of a text editor for model instances. All generated editors come with
syntax highlighting, auto completion, and model validation. To enable individual enhancements,
the generated plugin structures allow the implementation of additional features like editor quick-
fixes, validation rules, and formatters. The generated skeleton files allow a straightforward
entry for infrastructure developers. So, DSL, editor, and code generator development can take
place simultaneously. This allows a more rapid and agile development of MDE infrastructures.
Regardless of the formal description of a DSL, EMF allows the (de-)serialization of operations to
open formats such as the XML Metadata Interchange (XMI) format. This allows tool developers
to create reverse engineering facilities like model extractors in combination with a self defined
DSL in an elegant way. Therefore, the Xtext/Xtend combination has been firmly established
during the last decade. In [24], the authors present how Xtext and Xtend can be used together
to build powerful MDE infrastructures.

Even though EMF comes with some drawbacks7, based on the Eclipse IDE itself or missing
documentation, the framework convinces by its matured state, extensibility, and versatile appli-
cation. Therefore, EMF is the MDE infrastructure development platform of choice in this work.
It assists tool developers to keep down the initial development effort and allows a straightforward
development and maintenance of MDE infrastructures.

3.3.4 IDE Integration
A drawback of EMF and EMF-based frameworks is the limitation to the open source Eclipse IDE.
Even though Eclipse enjoyed huge popularity in the first decade of the 2000s, it is replaced by
more modern IDEs like IntelliJ IDEA, Microsoft Visual Studio Code, or platform- and language-
specific IDE solutions like WebStorm, Android Studio, or XCode. However, due to its large
community and the availability as open source project, Eclipse is still popular in academia and
smaller companies. Another trend shows the popularity of web editors or so-called cloud IDEs,
which can be used platform-independently.

To support as many developers as possible, various IDE solutions should be considered during
the development of MDE tools. Otherwise, they cannot exploit the most possible MDE potential.
Studies as the one presented in [258] by Whittle et al. have shown, that potential developers
decide against a model-driven approach due to the tool integration into their common tool chain.

In this work, we consider both the development of IDE-based MDE tools such as Eclipse plugins
for modelling and code generation as well as their integration within a platform-independent
cloud IDE.

7See the work of Kahani et al. in [121] which presents results of a research addressing the barriers and common
problems of EMF.

3.3. MDE Infrastructure Development 49

3.3.5 Custom Code Integration
The main idea behind MDE is to deal with models and generate application code without the
need of handwritten code. However, based on empirically evidence, this is not possible in real-
world scenarios. A significant challenge of MDE adoptions is the integration of custom code
with generated code. Therefore, various approaches became popular in order to address this
challenge.

A widespread integration approach is the addition of protected regions to generated code [221].
These regions, which are typically introduced by an explicit comment section in the code, are
interpreted by code generators during a re-generation step in order to omit overwriting the file or
area during re-generation. So, a durability of custom code can be ensured. Protected regions can
be easily included into code templates and their use is a straightforward approach, if iterative
development is not required, e.g. during initial scaffolding. However, the use of protected regions
comes with several drawbacks during long-term MDE adoptions. If a generated file is augmented
by handwritten code it is usually checked-in in a version control system like git. However,
generated files should not be checked-in, since they are disposable artefacts in contrast to models
[250]. Generated files which are kept due to including custom code may become outdated since
they are not affected by model changes during iterative development. This, in turn, may lead to
additional refactoring effort in order to achieve clean code.

In accordance to the recommendations of Stahl and Völter in [221] and [250], generated and
handwritten code should always be kept in separated files or, better still, folders. In order
to integrate generated and custom code, extension points should be used. This includes the
implementation of suitable design patterns, such as the generation gap pattern [249, 71], as well
as prominent concepts like abstract classes and interfaces, dependency injection, or the use of
callbacks. The kind of extension point depends on the composition features of the target platform
and programming language. In the scope of this work, extension points are the most suitable
approach in order to compose generated with handwritten artefacts. In Section 6.2.2, we present
a code generator for WCMS extensions which augment and can be augmented by handwritten
extensions without mixing generated and handwritten code.

In addition to protected regions and separated files, custom code can be directly added on model
level, e.g. as code models. By linking models with custom code, e.g. by model annotations,
code generators can paste custom code directly into the generated code, without the need of
customizations after the generation process. This is an advantage for iterative MDE processes
including repetitive code generation. The lift of custom code to the model level is an alternative
to protected regions, if custom code integration cannot be achieved by extension points, e.g. if
the target platform does not support modular architectures.

3.3.6 Development Process
Developing an MDE infrastructure is equal to the development of any other software. There-
fore, infrastructure developers have to make the same decisions as application developers. This
includes the choice of an adequate development process as well as the tools to be used dur-
ing this process. Modern and flexible development methods such as Scrum, Kanban, XP, and
Feature-driven Development have become the standard development practices nowadays. All
these methods follow the agile manifesto [21], which defines the most valuable aspects of soft-
ware development in agile processes. In conclusion, the main principles of agile development
methods are early delivery of working software, and quick response to changes within the cus-
tomer collaboration. In the case of MDE infrastructure development, customers are developers
who should use the implemented MDE tools. Following an agile development process, achieves
rapid feedback and the provision of infrastructure components at early development stages, con-
sidering the feedback within further development iterations. Fortunately, a variety of supporting

50 Chapter 3. Model-Driven Engineering

frameworks exist, to allow rapid MDE infrastructure development. Meta frameworks like Xtext
and Xtend can be utilised to create an MDE infrastructure applying a model-driven development
approach during tool development. So, the advantages of MDE and agile development can be
combined to increase the success of the approach (cf. [221, p. 80]). As experience has shown,
this has been worked out well within actual projects, such as presented in [269] and [140].

In [73] and [84] the authors compare the development of MDE infrastructures with domain
engineering8 (also called product line engineering). Figure 3.5 illustrates the domain engineering
concept in the application engineering context.

Application Engineering

Domain Engineering

Domain Analysis Domain Design
Domain

Implementation

System Analysis System Design
System

Implementation

Reusable Assets

N
e
w

 R
eq

u
ir

em
en

ts

Domain
Knowledge

Domain
Model

Production
Plan

Reusable
Components,
DSL, Editor,
Generator

Figure 3.5: Domain Engineering and Application Engineering (adapted from [84])

Domain engineering is divided into three main process parts: Domain Analysis, Domain Design
and Domain Implementation [84]. To ensure sophisticated MDE infrastructure assets, such as
model editors and code generators, they have to encompass domain knowledge as much as possi-
ble. Ideally, fully developed frameworks with standardized functionality are available. To achieve
this goal, infrastructure developers have to analyse a set of reference applications to extract the
required domain knowledge. The common processes during the development of adequate refer-
ence applications are System Analysis, System Design and System Implementation [84]. In every
process, the application developers can use the current version of the MDE infrastructure and
give new requirements to the infrastructure developers.

This process, also called bottom-up development [15], represents the most proper way to develop
an MDE infrastructure. However, the resulting infrastructure can usually only be used for
a specific version of the application to be developed. In the case of rapid evolving software
domains, the process has to be repeated over the whole life span of the infrastructure. Initiated
by new user demands and changes in the underlying technology, components like DSLs or code
generators have to be refined or further developed. These changes, in turn, may affect dependent
artefacts such as model editors, showcase models, and reverse engineering facilities.

In [244], the authors propose an agile bottom-up development process, which addresses the chal-
lenges during infrastructure development for rapid evolving domains. This process is built on
three steps: domain analysis, continuous DSL and tool development, and adaption of related
artefacts. The steps will be described more detailed below, since this process is adopted during
the development of the MDE infrastructure for WCMS extensions which is presented in Chapter
5 (DSL) and Chapter 6 (transformation tools).

8The process of systematic investigation of a domain with focus on high reusability of the gained domain
knowledge [52].

3.3. MDE Infrastructure Development 51

Domain Analysis: At first, a domain analysis has to be performed in order to develop initial
versions of infrastructure components. This includes the extraction of schematically repetitive,
generic, and individual fragments from existing reference applications. The resulting domain
concepts can then be integrated into a DSL and code generator templates. The latter also
includes the generic code fragments from the reference applications. During the code generation
step, the generator must merge the generic code with model information based on the used DSL.
Figure 3.6 illustrates the domain analysis procedure.

Code of Reference Application Application

Model

Application

Model

Individual

Code Generic

Code
Schematic Repetitive

Code

analyse

Generator

DSL

Schematically

Repetitive Code

Schematically

Repetitive Code
Schematically

Repetitive Code

Schematically

Repetitive Code
Schematically

Repetitive Code

Schematically

Repetitive Code

Schematically

Repetitive Code
Schematically

Repetitive Code
Schematically

Repetitive Code

Individual

Code

Individual

Code

separate

uses creates

1

2

3

Figure 3.6: Domain Analysis Concept (adapted from [221])

The identification and investigation of adequate reference applications represents the initial step
(1) of the domain analysis. During this step, it must be ensured that the reference code follows
certain quality guidelines and implements suitable design patterns. Additionally, common anti-
patterns and code smells have to be identified, to address them during the next steps of the
domain analysis. This step can be supported by static code analysis tools. Examples for such
tools in the WCMS extension domain are PHPCodeSniffer [220], PHPMD (PHP Mess Detector)
[180], and JSLint [51].

Within the second step (2) of the domain analysis, the domain concepts are determined. These
concepts can directly flow into the DSL definition by abstracting schematically repetitive parts.
To identify repetitive code, clone detection tools can be used. To this end, promising approaches
for mining exact and near-miss code clones [271, 115, 224] exist. Comparisons and evaluation of
code clone or source code mining techniques have been conducted in [198] and [134].

In the third step (3) the code generator templates are specified. These templates comprise
generic code fragments and gaps for specific model information. During code generation, the
gaps are filled by the generator, using the application-specific information of the input model
(DSL instance). Even though first approaches arise, no tools addressing the automatic extraction
of generator templates based on reference applications, seem to exist.

Continuous DSL and Tool Development: The second step of the process addresses the
evolution of the MDE infrastructure, triggered by new requirements or changes of the underlying
technology. In accordance to the statements of Vaupel et al. in [244], infrastructure components
like DSLs, model editors, and code generators should be developed in fine-grained iterations (cf.
Figure 3.7).

If a new feature is determined to be supported by the MDE infrastructure, a prototype of
the application has to be generated and manually extended by the new feature. To this end
the application developer has to analyse the generated code and incorporate the new feature
homogeneously with the generated code. This, in turn, requires high quality of the generated
code. To ensure working application code with good quality, tests could be performed before and

52 Chapter 3. Model-Driven Engineering

Application Model

MDD Infrastructure

MDE Infrastructure Development

Application Development

Reference Application

Application

abstract generate

extend

Figure 3.7: Agile MDE Infrastructure Development Process in Action
(adapted from [244])

after the addition of the new feature. So, the procedure can be adopted within agile processes
like test-driven development. The infrastructure developers can then analyse the new code and
augment the infrastructure artefacts by the new feature in a synchronous manner. The same
applies to both DSL refinements and changes in respective generators. If tests were used during
the manual implementation of the feature, the same tests could be used after developing the new
feature with the refined infrastructure. Every iteration includes the domain engineering steps
which are illustrated in Figure 3.5.

Besides the addition of the new feature to the DSL and generator templates, according MDE
tools like model editors and reverse engineering facilities must be adapted as well. To main-
tain the MDE infrastructure, a variety of meta-tools exist. If tools like Xtext are used for the
development of a textual DSL, the textual model editor can be automatically generated anew
based on the DSL. However, if additional features like validators, formatters, or quick fixes
are part of the editor, they have to be refined as well. If the model-driven process consists of
model-transformations, tools like ATL [69] or Henshin [138] can be used for the definition and
refinement of transformation rules.

Adaptation of Existing Application Models: The third step focusses on the migration of
instance models after a refinement of the DSL. To keep the models consistent, all affecting changes
in the DSL must be identified and updated in the existing application models. A restriction
to allowed DSL changes which do not affect the existing instance models is not preferable,
since it compromises a maturing evolution of the DSL. Using DSL-specific validators allows a
manual refinement of existing instance models after DSL changes. However, to minimize the
required effort, approaches presented in [75], [91], and [46], should be considered during the
adaptation process. The mentioned approaches contain well-defined and reusable operators and
migration steps which can be performed independently to the problem domain or target platform.
Additionally, they present approaches for an automatic co-evolution of DSLs and instance models.
To enhance the co-evolution, M2M techniques like [130] should also be considered during the
infrastructure development as well. Other tools in this context like Eclipse Edapt [90] and
Epsilon Flock [228][195] require mapping configurations for applying migration operations. These
configurations can comprise predefined (reusable) operations or manual defined migration scripts.
To handle model versions (e.g. for fall-back strategies), tools like EMFStore [88] can be used.
Furthermore, tools like EMFCompare [227] and SiLift [129] allow model comparison, an essential
feature to support version management.

4 MDE of WCMS Extensions -
General Solution Concept and Requirements

The most important single aspect of software development
is to be clear about what you are trying to build.

– Bjarne Stroustrup

In order to research the profitability of model-driven development in the WCMS domain, we
propose a concept for MDE of WCMS extensions, based on the common development scenarios
in the domain. To this end, we refer to the presented extension scenarios from Section 2.3.
This includes the investigation of how MDE can be integrated into the development process
during these scenarios and helps to identify the necessary requirements to achieve this goal.
In this chapter, we aim to answer RQ1: How can MDE support common WCMS Extension
Development Scenarios? To address this question, we investigate three follow-up question:

RQ1.1: How relevant are development scenarios 1-5 for industrial practitioners?

RQ1.2: How can MDE support developers during these scenarios?

RQ1.3: Which facilities are required to achieve MDE during these scenarios?

To this end, we confirm the previously described challenges (cf. problem statements 1-5) and de-
velopment scenarios of WCMS extension development by the results of conducted semi-structured
interviews with domain experts. Additionally, we determine a concept for applying model-driven
engineering to these scenarios and collect requirements for an MDE infrastructure to realise the
concept. So, we directly address the defined problem statements which are defined in the intro-
duction of this work (see Chapter 1). During the requirements elicitation we also include the
expectations of domain experts considering model-driven engineering.

4.1 Interviews with Extension Developers
In this section we present the results of a set of conducted semi-structured expert interviews
with 8 industrial practitioners from the Joomla community in 2018. We aimed to validate the
relevance of the previously defined development scenarios (see Section 2.3) and determine, if
practitioners face the described development challenges which can be addressed by an MDE
approach. Additionally, we asked the interviewees about their opinion and wishes regarding
an MDE approach during extension development. So, the feedback can be incorporated into the
requirements elicitation for an MDE infrastructure.

4.1.1 Set-up
The quantitative and qualitative answers of the interviewees are categorized based on the fol-
lowing categories:

Experience with Joomla (C1): The first category concludes warm-up questions to determine the
experience of the interviewees. During the interview we asked the interviewees about the Joomla
versions they worked with and since when.

53

54
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Development of Joomla/WCMS Extensions (C2): With category 2 we aim to summarize the
findings of questions regarding the typical procedure of the interviewees during the development
of new Joomla/WCMS extensions. This includes the number of extensions, usual development
scenarios and the average time, they require, to develop new extensions. In order to confirm the
relevance of the previously described development scenarios (scenario 1 and 2), we also asked
questions considering the augmentation of existing extensions. The questions were designed for
Joomla components, since they represent the most complex extension kind in Joomla. This
should allow a more objective generalisation of the answers.

Migration of Joomla/WCMS Extensions (C3): In category 3 we cluster the results of questions
considering the migration of Joomla/WCMS extensions. This includes the number of migrated
extensions, preferred migration procedure, the target platform (new major version of the same
system or another WCMS), and the average time they invest during migrations of extensions.
So, we can investigate the relevance of the migration scenario (scenario 3).

Extension Characteristics (C4): To obtain information of the extension characteristics (category
4), we asked the interviewees, which extension kinds they developed/migrated and how complex
they are. In addition, we asked if dependencies between own and core or own and third-party
extensions exist. So, we gained further insights into the relevance of the previously described
scenarios. Moreover, we surveyed the interviewees about the amount of standard CRUD views
in their extensions. Based on our experience that most Joomla components comprise a large
amount of standard views with CRUD functionality, this question plays a significant role in order
to pursue an MDE approach during WCMS extension development. As shown in Figure 4.1, such
views comprise a list to present the entities, a toolbar of buttons to provide CRUD functionality,
and a detail page to create or edit an entity.

Figure 4.1: Standard View with CRUD Functionality within a WCMS Extensions

In a pre-study, we investigated the amount of views in regard to their type (standard CRUD/cus-
tom) in actual extension projects. We applied a structured process to obtain unique extensions
with components and available source code on the official Joomla extension directory [170]. Thus,
the most extensions represent data-intensive applications by their own. We adjusted the filter
criteria to only search for extensions that are components for Joomla 3 and free to download,
what resulted in 751 extensions. With a website crawler we were able to download 92 extension
archives directly. Every other download link referred to an individual download page which we
could not automatically address. However, we also added the top 50 extensions (overall user
rating) manually to our extension set. We removed duplicates, extensions that were tagged as
component but were none, and extensions that were not installable or led to errors. In total, we
considered 50 extensions with 592 views and found that 212 views were standard list views and
191 were standard detail views. In short, 68.07% of the views we inspected are standard views
with CRUD functionality.

4.1. Interviews with Extension Developers 55

MDE Approach during Extension Development/Migration (C5): Category 5 concludes questions
regarding the challenges during extension development and migration. We asked for poten-
tial pitfalls during the development process to identify challenges that can be addressed by an
MDE approach. Furthermore, we surveyed the opinion of the interviewees concerning MDE of
WCMS extensions. We asked for potential scenarios which could be supported by a model-driven
approach and inadequate scenarios for MDE. Additionally, we asked for expected features con-
sidering an MDE infrastructure. The latter were considered during the requirements elicitation
for a suitable MDE infrastructure (see Section 4.3 below).

These categories are designed as abstract as possible to be suitable during further interview
iterations, regardless of the preferred WCMS of the interviewee. So, we address the external
validity threat which is based on the fact, that all interviewed practitioners prefer Joomla as
target WCMS.

With one exception, all interviews were recorded and transcribed. In average, an interview took
20 minutes which led to a total time of around 3 hours of conversations, transcribed to 11050
words. Quotations from the transcripts are given in italicized and quotation marks. Citations
are presented in a verbatim form from the transcripts. Citations that were translated to the
English language are marked with a capitalized T as index.

4.1.2 Results
In this section we present the interview results, grouped by the previously described categories.
For each category, we summarize the results in respective tables and present striking answers.
The transcribed interviews can be found in Appendix A.

Table 4.1 indicates, that all interviewed participants used Joomla for multiple years. Four of
them stated, that they use and develop extensions for Joomla since the first released Joomla
version. All but one of the interviewees used and developed extensions for several major releases
of Joomla.

Table 4.1: Experience with Joomla (C1)

I Years of Joomla Experience Joomla Versions
I1 6 2.5 - 3.8
I2 5 2.5 - 3.8
I3 13 1.0 - 3.8
I4 13 1.0 - 3.8
I5 13 1.0 - 3.8
I6 13 1.0 - 3.8
I7 4 2.5 - 3.8
I8 10 1.5 - 3.8

Addressing the development of Joomla extensions, Table 4.2 summarizes the answers from the
interviewees. Half of the interviewed practitioners developed one or two extensions, whereas the
others developed between 10 and 100 extensions including components, modules, and plugins. All
interviewees typically follow either a clone-and-own procedure or use a boilerplate generator for
the development of new extensions. They stated: "Copy&Paste and adapt what is necessary"T ,
"We also have now our own boilerplate, we use just to create a component ...", and "If I need to
start a new component, I now would start with the boilerplate ...".

In reply to the question of how much time they spent to develop an extension, the interviewees
stated to require 2 to 8 hours to have an independent installable component with no business
logic following their usual (mostly clone-and-own) procedure: "... takes us, I think, two hours to

56
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Table 4.2: Development of Joomla/WCMS Extensions (C2)

I
of
Extensions
Developed

Procedure to
Implement a
new Extension

Average Duration Augmented a
component by

I1 1 Clone-and-Own a couple of hours Modules
I2 3 Boilerplate When we use our boilerplate it

still takes us, I think, two hours
to set up everything. So, two
hours for a component.

New views, Modules

I3 2 Clone-and-Own Two hours for a small Plugin I wanted to ... create
clean interfaces

I4 10-15 Boilerplate Having a backend view and a
front- end view it’s between
four to eight hours ... in an
hour I can make a frontend and
backend view, but that’s a very
basic.

New views

I5 100 Clone-and-Own Between 2-4 hours and 100
years

New views, Plugins

I6 20 Clone-and-Own n.a. Modules
I7 2 Clone-and-Own 3 to 4 days New views
I8 40 Clone-and-Own 10 minutes New views, Modules,

Plugins

set up everything. So, two hours for a component". Another interviewee said: "... it’s between
four to eight hours and that of course is still quite a bit more work..." and "... in an hour I can
make a frontend view and backend view, but that’s a very basic". One interviewee stated that he
requires 3 to 4 days for an installable and tested component.

Additionally, they stated that they also augmented existing components by new views, mod-
ules, and plugins. This includes both own and third-party components, e.g. by own modules.
Considering the typical scenario of augmenting an existing component by a new view even the
interviewee with no experience in this scenario sees the relevance of it: "... it would be a nice
case, but not one I use. But it’s a use case!". Typically, the practitioners’ procedure during
augmentation of existing components is copy and paste of existing code. They stated: "... copy
and paste and adapt", "Copy an old one and change what needs to be changed", and "Copy an
existing view, copy the existing model, change the names, change the database queries where
needed. ... in the template file ... change the column names. ... create the filter if there’s a filter.
... copy the table files". However, one interviewee answered that "For modules we use simple
module creator."

In Table 4.3 we conclude the answers to the questions considering extension migration. 6 in-
terviewees migrated extensions from one major Joomla version to another one. One interviewee
stated, that he also migrated extensions from WordPress to Joomla. Three of the respondents
migrated between 10 and 20 extensions throughout their life cycle to different major Joomla
versions. The common procedure during extension migration is to "Rewrite and fix errors until
it works". This also includes to rewrite some parts or the whole extension anew, following the
new API conventions.

4.1. Interviews with Extension Developers 57

Table 4.3: Migration of Joomla/WCMS Extensions (C3)

I # of Extensions
Migrated

Procedure to Migrate
a Component Average Duration Target

Platform
I1 2 n.a. "a couple days"

(8 h/day)
New Version

I2 - - - -
I3 - - - -
I4 10-15 "Rewrite and fix errors

until it works"
"a couple of months"
(8 h/day)

New Version

I5 15-20 "Rewrite most of the
extensions to get rid
of old stuff."T

9 months
(10-15 h/week)

New Version
Other WCMS

I6 n.a. "Iterative until it works."T "Within 2 years"T New Version
I7 2 "Iterative until it works."T one year (40 h/week) New Version
I8 15 "Read a migration guide

(if it exists) and then fix
errors until it works."T

6 months New Version

With regard to their migration procedures, the practitioners reported that it requires them a
couple of days for an extension migration to a new release version: "... migrating to the next
version took maybe a couple days." If the number of extensions and complexity grows, it took
them months, as some interviewees stated: "You should take a year. I think so if you want to
do it well. Of course, taking a year is not that I’m working full time for one year to migrate the
extension because the migration happens next to the other work I need to do. The daily business
goes on. ... Maybe without any interruptions, it still will take a couple of months" and "It took
me 6 months to migrate 10 extensions".

In consideration of the extension characteristics (C4), the answers are concluded in Table 4.4.
One interviewee only dealt with plugins, whereas another interviewee implemented and migrated
only modules. All the other interviewees developed and maintained various extension types,
while 4 of them worked with all main extension types (components, modules, plugins).

We asked the interviewees for an estimation of their extensions’ complexity. All of them stated
that their extensions are complex in consideration of code amount, individuality, and depen-
dencies to other extensions. I2 stated that their components are quite complex: "Yeah, they’re
complex. While we have one really large one we’re working on. It’s called Image Manager ...
it’s only a backend component just to organize the images and it has only one view. ... it has
some extra models that so they popping up with some extra information but it’s only actually one
view. ... high level of individuality ... compared to standard list views."

I4 answered: "I think my one component ... is a pretty complex one, because if you look at, for
example, there’s a view there called template in which you put all your settings you only use for
import or export. And depending on some settings you have it’s pulling different XML files and
rendering them individually. That is not something I really see in being done in Joomla. So
in that sense, I think that view specifically is very complex. ... with the template view there’s
actually an extra toolbar button to switch between the basic mode and advanced mode. You have
test buttons for testing FTP connections, testing file locations, and other things like that. Well,
that’s not something you have in your general edit screen. Because most edit screens are simply
for data input and this is doing more than that."

58
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Table 4.4: Extension Characteristics (C4)

I Extension
Types

Amount of
CRUD Views Dependencies between Extensions

I1 Modules n.a. Module depends on component data
I2 Components, Modules,

Plugins
less standard
views

Module depends on component data,
Plugins manage data of component

I3 Plugins n.a. Plugin depends on third-party component
I4 Components, Modules,

Plugins, Libraries
90% "I’m using the model from the third-party

component that has the logic in it"
I5 Components, Modules,

Plugins
100% Component checks, if plugins are installed ...

show plugin-specific features
I6 Modules, Plugins 80-90% Modules depend on component data
I7 Components, Modules 60-65% Modules depend on component data,

Component depends on plugin and core
component (user component)

I8 Components, Modules,
Plugins, Libraries

100% Modules depend on component data

The answers of I5 and I6 were more quantitative: "My largest component was a user management
component with 33 views in the backend and 7-8 views in the frontend. Later I separated the
component into 5,6,7 components with 5-6 components each and dependencies to each other"T

and "... in the backend we have 15 views and 7 in the frontend"T .

In accordance to our findings concerning the amount of standard views with CRUD functionality,
they stated: "I think that ninety percent, at least, are standard list views.". Other interviewees
stated around the same amount. They think that around 60 up to 100 percent are standard
views: "Most views are pretty standard because Joomla is based on listing pages and edit pages"
and "... backend was almost standard with list and form views. Only the details were more
individual"T .

With respect to dependencies between their extensions, all interviewees stated that their ex-
tensions are concerned. I2 stated: "Yes, we now have a component with five views and also a
module and also a couple of plugins. It’s a music database where teachers can collect songs they
can actually do with the children in the class. So, they open the player, in the player there are
all the songs and they can click on the songs and the player will start playing and they have all
the song texts next to the player. So that’s a really complex application with a lot of fun of use
and also a module which is also a player and a lot of plugins, which are actually doing all kinds
of stuff in the backend", whereas I5 answered that "... a component detected if plugins or other
components were installed to display specific features or menu items based on them"T , and I7 told
us: "... component to system plugin, content and profile module to component, ... component to
the core user component"T .

Additionally, dependencies to third-party extensions exist. I3 "... tried to get my hands dirty on
a REST component", whereas I4 stated: "I have done that. I’m still doing it. The example here’s
in my extension I’m exporting prices from a webshop and the whole logic of price calculation - I
don’t want to recover that - so I’m using the model from the third-party component that has the
logic in it." I5 has a loose coupling between own and third-party extensions: "If a third-party
extension and the plugin is installed, an additional field is displayed. If not then not."T

4.1. Interviews with Extension Developers 59

Table 4.5: MDE Approach during Extension Development/Migration (C5.1)

I Challenges during
Extension Development Potential Scenarios for MDE Support

I1 Adhere to Joomla
conventions

Initial and further development

I2 n.a. Initial development
I3 n.a. Initial and further development of dependent and

independent extensions, migration of legacy extensions
I4 Adhere to Joomla

conventions
Initial and further development (including migration
to new platform version)

I5 Keep up with the
latest standards

Initial and further development of dependent and
independent extensions, support during deployment
of new extension version

I6 Adhere to Joomla
conventions

Initial and further development of dependent and
independent extensions, initial migration step,
augmentation of existing extension by new dependent
ones

I7 Understanding of the
underlying API

Initial development and migration to new major
platform version

I8 Adhere to Joomla
conventions

Initial development and migration to new major
platform version

Considering the last category (C5), which is relevant for this work, we asked developers for
common challenges occurring during extension development. Additionally, we asked them for
their opinion on model-driven approaches during development and where they see potential
scenarios (see Table 4.5). Furthermore, we asked the interviewees what they expect from an
MDE infrastructure in this context (see Table 4.6). Responses to these questions are presented
in the following paragraphs.

Ensuring the required code conventions and using the API of the underlying system is one of the
most common challenges as stated by the interviewees. I1 stated "There are always mistakes." as
answer to the question, if adhering to the Joomla conventions leads to errors. I8 gave the following
answer: "Where I had big problems, was with language constants in the manifest file. There is
a filename, the component name and another name in the XML and a description. Especially
in the plugins. One file had to be similar to another file and then it had to be in the language
file or not ... it was very confusing"T and "These conventions, ... some of the conventions are
code style. I take that from PHPStorm ... but then PHPStorm wasn’t one hundred percent in
line with Joomla. ... It would be nice if they decide once and for all and then leave it"T .

As answer to the question, if such errors are common, I4 stated "Yes, renaming classes after
copy&pasting a model is standard procedure almost. ... if you are doing a couple of views I would
say it’s like a hundred percent chance that you forget something somewhere. Because you have
to change the name of the model you have to change the name of the controller the name of the
view, change the name of the table file. And the other thing you forget is change the query in the
table that needs to be queried. That is something also forget. It’s a tedious procedure." I7 stated
that the biggest challenge is to understand "... the MVC pattern and how it’s implemented by
Joomla and the whole Joomla framework in general."T I5 stated, that the biggest challenge is to
keep up with the latest standards of the API.

60
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

We asked the interviewees, if they are open for a model-driven approach during extension devel-
opment and in which scenarios they would apply MDE. Some of the interviewees already use a
kind of code generator or MDE infrastructure like I1: I’ve played with the Component Creator,
but what the component creator does, is take away a lot of typing. Which is fine, but what it
does not do is, it’s difficult to incorporate it in the workflow. So, if you use Component Creator
to start a component it’s fine and if this component is just implemented and that’s it, great. But
if you want to take these components and maintain it or to fill it up further or give it more
possibilities or functionality, I think the component creator is not really helping. It’s only the
first bit. But my idea was that if it’s only helping me in the first bits of typing a lot of stuff
to save a lot of time. I can also automate this otherwise." I2 uses a boilerplate generator in
the initial development phase: "Sometimes you need a boilerplate to create everything. It could
actually help and ... I think this is really useful to speed up the process and actually when you
have to create a standard component which has to do something really easy you can make one
really quick. So it can be a time saver. Yes I’m sure it can be."

In the context of a textual modelling language for WCMS extensions, I4 stated that: "... if I add
a new view in the model file, I would still copy&paste a view from there because the structures
mostly going to be the same. But there’s less to change because there’s only one single file where
I need to change maybe two names or three names then the rest will be generated. So, it’s less
error prone than what we’re doing now." Regarding suitable MDE scenarios, I4 emphasized the
need of generation for different major platform versions: "... because otherwise, I don’t need a
code generator. I can just change everything manually again. But having the main part of my
logic in the code generator would allow me to just export that."

The answer of I5 was based on experiences with the Laravel framework which follows a kind of
MDE approach during initial development: "I built something with Laravel sometime and they
have such a generator inside and in principle I think the idea is quite elegant."T Answering the
question of if a generator approach would be suitable for extension development I5 stated: The
problem is ... that they are never up to date. That’s what I think is the biggest problem with the
generators, so I think the idea is chic but I don’t use it myself for the reason, that when I use
a generator I want to use an all-in-one solution. Where I don’t have to check afterwards if it
contains the latest changes from two weeks ago. That prevents me from it. By copying where I
have to see through, I don’t lose much more time."T

Considering the scenarios we presented above, I5 added the following example: "... build some-
thing, you have a standard structure: table class, view, controller, model and now comes the
requirement: I need a new field. I have a system with thousands of data already and now I need
a new field in the database. Where in the worst case is a foreign key on something else. With
something like this it would be nice to get some support."T

I3 gave positive feedback on the previously described scenarios (see Section 2.3) whereas I6
emphasized scenario 2 and 3, the initial migration step and the augmentation of existing extension
by new dependent ones (new Joomla module for existing Joomla component). I7 told us that
the initial development scenario (scenario 1) is suitable for an MDE approach: "In general, I
think it’s an advantage to be able to generate something. ... it is always an advantage if you can
generate the basic scaffold. Then you have a consistent code quality, everything works and can
be installed. Then you can build on it."T Addressing the migration scenario, I7 said: "Manual
changes are always expensive. It would be nice, if you could generate it. That’s what I would
have wished during the migration of our components."T . Similar answers were given by I8: "...
for new projects or the migration of existing extensions."T Additionally, I8 stated that an MDE
approach would not be suitable for the development and migration of individual features.

Addressing the expectations and requirements for an MDE infrastructure for WCMS extension
development, the following answers were collected (see Table 4.6).

4.1. Interviews with Extension Developers 61

Table 4.6: MDE Approach during Extension Development/Migration (C5.2)

I MDE Infrastructure Expectations
I1 Integrability into continuous development process, history for generated artefacts
I2 Model creation dialogue (wizard)
I3 Custom code integration
I4 Generators for different platforms
I5 Generation of standard CRUD views, up-to-date generators, model creation dialogue

(wizard), core support
I6 Optional model creation dialogue (wizard)
I7 Partial code generation
I8 Generation of standard CRUD views

The generation of standard CRUD views is an emerging requirement for a model-driven approach
as I5 and I8 emphasize: "For standards like forms and lists you would not have to write any code
at all"T and "Handling of the entities. ... Including foreign keys and constraints. These CRUD
views should also be easy to handle"T .

I7 added the need for partial code generation (scenario 4): "Easily add new views to an existing
component."T , whereas I4 stresses the importance of generators for different platforms supporting
scenario 3 and 5 (migration and modernization of legacy extensions): "What I would expect is
that if I have my logic inside the code generator it would spit out a component in the new style
that I put in a different engine and the engine gives me different code to be doing with Joomla
3, Joomla 4, or whatever platform it’s supposed to be running on."

Another expectation is stated by I5 considering the core support during extension creation: "I
need the access management of Joomla"T

Some interviewees highlighted the need for modelling support, e.g. by a model creation dialogue
(wizard). I2 said: "Just a simple wizard that you have to just type in and it will make the whole
model for you and I think that just could speed up the process even more. ... just fill in the name
of the component and then you want a module created and a plug in or just a component and you
have to take which one you need and the model knows exactly what kind of code to generate."

I4 stated: "It would be nice if I do copy&paste, it would ask me what’s the new name of your view
and then because the names are always consistent it asks me for the name and could consistently
change it for me", whereas I5 required: "You build yourself a basic structure, so to speak, say
ok here, ... I have these table fields and at the end I want to output it, preferably mapped to
Joomla. That I can say ok I have a list view and I can also tell this table to take the data. ...
With commands like: build view x,y,z ... in any form a wizard"T .

I8 concludes: "That you can define what kind of module you want ... just a few templates and
how the module would handle the data. Also, I would expect different templates for plugins."T

One interviewee (I3) indicates the need for custom code integration: "... enable the generator to
hook into ... with your own custom code or with template kind of things that ... you’re not forced
to hack into the generated code but to just have enough possibilities to do your own stuff."

I1 emphasizes the integration of the MDE tools into a continuous development process: "I expect
that the generator is not a generator once and change never option. I expect that it’s meant to be
part of a continuous developing situation. ... If it appears to be a bug in my component after six

62
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

months, I want to be able to go back to the last one that was generated or the last one before that
or something like that. ... or at least have a history, yes. Because often if you find a bug, then
it can be a totally new bug. It also can be a known bug, that you had before that has returned
for some reason.". In this context, I5 stated: "The main requirement is that the infrastructure
is up-to-date. ... it should write as much code as possible. And this should not be limited to the
initial development, it must also be forward compatible. So, with one click my component will be
updated."T .

4.1.3 Interpretation
In the previous section, we presented the interview results with industrial practitioners. All of
them had many years of experience in extension development and migration for Joomla and
other WCMSs (C1). This indicates, that the interviewees are experts in extension development
and gave reliable answers.

Although some developers use boilerplate generators to create new extensions (C2), most of them
follow the clone-and-own approach, using existing code as reference for new code. Following this
approach, the development takes at least hours - even for a simple installable extension. This
also applies to the development of depending extensions like modules or new features for existing
extensions like new component views. This confirms the challenges during initial extension
development as described in Section 2.2.2.

Considering the migration of extensions (C3), it takes the developers at least a couple of days to
migrate their extensions to a new Joomla version. For the migration of more complex extensions,
however, they require months. This challenge is in line with our finding as described in Section
2.2.2. An interesting finding of the results is, that no interviewee uses a tool for extension
migration. The typical migration approach is mostly "... fix errors until it works.". I5 even
rewrites his extensions completely. Most of the interviewees typically migrate their extensions
between major versions of the same platform. However, one interviewee also migrated to another
WCMS. This scenario corresponds to our defined scenario 3 and can be directly addressed by an
MDE approach, using a platform-independent modelling language for extension description and
platform-specific code generators.

Considering the amount and types of his extensions, I5 puts high effort into the migration, even
though all component and module views are standard views with CRUD functionality (C4). This
statement was confirmed by almost every other interviewee for their extensions. The practition-
ers typically put tremendous effort into the migration of schematically recurring extension code.
Moreover, the typical extension characteristics (C4) support our own investigation of schemat-
ically recurring code in WCMS extensions. As the results show, the amount of standard views
with CRUD functionality is so high that most of the development and migration steps can be
performed automatically. Another indicator for the appropriateness of MDE are the existing
dependencies in the developed extensions. All interviewees have implemented extensions with
dependencies to other custom extensions (own or third-party). This is consistent to our described
scenario 2 and could lead to further challenges based on extension evolution. The migration of
a dependency could necessitate a migration of depending extensions.

As the results show, adhering to the WCMS’s conventions, like coding standards and API re-
quirements, is the main challenge during extension development (C5). This challenge can be
addressed by a code generator since they typically comprise the technological details like API
function names or naming conventions for files and code artefacts [221]. An interesting finding
is that experienced developers are not open for code generators. This finding coincides with the
results from other empirical assessments of MDE adoption in industry such as [95] and [142]. As
our interviews reveal, this is based on the developers’ experience with existing tools like boiler-
plate generators, which are rarely up-to-date or not integrable into their development process

4.2. MDE Concept for WCMS Extensions 63

(e.g. for extension evolution). However, all interviewees see potential for MDE support during
the scenarios which are described in Section 2.3, provided that certain requirements are fulfilled
by the MDE environment. Besides the generation of schematically recurring code fragments
(complete extension and partial code generation) for different WCMS platforms, the integration
into a continuous development process is required. The code generators must be kept up-to-date
and should support custom code. In addition, wizards for model creation are required by some
interviewees. Using such wizards could lower the hurdle for developers with little experience in
using an MDE infrastructure.

We can conclude that, considering RQ1.1, the relevance of our predefined scenarios is strongly
confirmed by the industrial practitioners’ statements based on the interview results. During
the last decade the interviewees had to face similar recurring challenges, such as implementing
requirements with a high amount of schematically redundant code and depending extensions.
Additionally, they had to go through major platform changes with the corresponding migrations
of their extensions. In both cases, extension maintenance requires large effort. With regard to
RQ1.2, the previously described scenarios can be directly addressed by MDE, since decreasing
development effort for these scenarios is an acknowledged strength of MDE. All interviewed
practitioners also see potential for MDE support during the presented scenarios. The collected
expectations can directly be used during the elicitation of requirements for an MDE infrastructure
for WCMS extensions in order to address RQ 1.3.

4.2 MDE Concept for WCMS Extensions
In this section, we propose concepts for the integration of a model-driven approach during the
previously described development scenarios of WCMS extensions (see Section 2.3). So, we aim
to answer the question of how MDE can support developers during these scenarios (RQ1.2). The
relevance of these scenarios is confirmed by industrial practitioners (see Section 4.1). To apply a
model-driven approach to a new domain requires the implementation of a set of MDE artefacts
(MDE infrastructure). To this end, we define concepts for integrating modelling languages and
models as well as model transformation tools into the development process of WCMS extensions.

In the following subsections, we distinguish between independent and dependent extensions in
accordance to the previously described development scenarios (1-3). This includes the initial
development and the evolution of both independent and dependent extension. Additionally,
we enclose the related sub-scenarios 4 (partial augmentation) and 5 (modernization of legacy
extensions). So, in order to ensure the maintenance of generated artefacts, techniques for fur-
ther development will be examined. In this context we consider (re-)development by hand and
the maintenance by using an MDE infrastructure. Figure 4.2 illustrates an overview of MDE
infrastructure support during the development of WCMS extensions.

As previously described, the main infrastructure artefact is represented by a modelling language
for WCMS extensions. Based on this language, model instances for actual extensions, e.g. for
conference management, can be defined. Since these models represent the main artefacts within
MDE, the language must consist of the necessary features of the domain, in our case WCMS
extension features (see Section 2.1). In addition to an appropriate modelling language, the
infrastructure must comprise facilities for code generation. To this end, various approaches
for code generation exist (see Section 3.3.2). In this work, we focus on template-based code
generation. The code generation step must result in installable WCMS extension packages which
are directly deployable to a running WCMS instance such as a Joomla or WordPress site.

In order to support the augmentation and re-engineering of existing extensions, we will also
consider legacy extensions within our MDE concepts. According to the definition of Seacord et
al. in [209], legacy code is a popular indicator in the maintenance context and often associated
with old code that is no longer needed. Demeyer et al., however, describe legacy code as "valuable

64
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Application MDE Infrastructure

Modelling Language

for WCMS ExtensionsExtension ModelExtension Model

Generator

Templates

Depends on

Defined

using

Uses

M
o

d
e
l
E
xt

ra
ct

io
n

M
o

d
e
l
E
xt

ra
ct

io
n

C
o

d
e
 G

e
n

e
ra

ti
o

n
C

o
d

e
 G

e
n

e
ra

ti
o

n
Model

ExtractorUses

Extension ExtractorExtension

Code Extraction
Uses

M
o

d
e
ll
in

g
A

u
to

m
a
ti

o
n

R
e
a
li
sa

ti
o

n

Extension

Deployment

WCMS

Extension

WCMS Instance

with Installed

Extension

Figure 4.2: MDE Infrastructure Concept for WCMS Extension Development (cf. [28])

software that you have inherited" in [54]. In [253, p.28 f], the author defines criteria for a more
accurate classification of legacy code based on basic (axiomatic) and derived criteria. This criteria
is based on the established definitions of Fowler et al. in [70], Feathers in [64], and Martin et al.
in [146]. In the context of WCMS extensions, two kinds of legacy extensions exist. The first kind
of legacy extensions is represented by installable packages which can be found, e.g. in extension
directories. These extension packages could be used directly for model extraction as part of
a reverse engineering step (cf. C2M in Section 3.3.2). By providing a model extraction tool,
this step can be automated. Another kind of legacy extensions are already deployed extensions
within a running WCMS instance. In WordPress and Drupal, both kinds are the same, since
the deployed extension structure is the same as the one of the installation package. Though, in
Joomla the structure of a deployed extension differs, since the extension files are moved during
the installation routine. Therefore, a code extraction from a running instance must be performed
in order to obtain an installable extension package.

With these infrastructure artefacts various development directions are possible. Besides forward
engineering, reverse engineering of WCMS extensions is supported. During reverse engineering
steps, we consider model discovery, understanding, refactoring, and augmentation [28] in the
following concept descriptions. A combination of both development directions can be used as
part of a round-trip engineering process [54]. However, round-trip engineering typically considers
changes on model-level as well as changes of the actual code. Though, the intention of MDE
is to deal with models as primary artefact without the need of custom code refinements [221].
Necessary custom code typically represents individual features, which are not considered by the
utilized modelling language. So, if the infrastructure does not consist of suitable mechanisms for
custom code, round-trip engineering is rather exceptional. An exception are approaches based

4.2. MDE Concept for WCMS Extensions 65

on framework-specific languages which are intended to complete existing framework features by
an MDE approach as explained by Antkiewicz et al. in [7], [6], and [8]. In this work, we limit
our research to the forward and reverse engineering of WCMS extensions and will not research
possible round-trip engineering scenarios.

As Norrie et al. describe in [160], there is little recent research on the development practices
for WCMSs. Most of the existing approaches with similarities to extension development such as
presented in [204, 205], [235], and [25], present platform-independent meta models and genera-
tors for the development of specific WCMS instances and their extensions. Though, alternatives
to extension development is not extensively researched. Only the work presented in [66] has
similar intentions providing an MDE approach for the development of extensions for the Dot-
NetNuke WCMS. As this WCMS has a limited extension mechanism, another language, providing
suitable abstractions and automation facilities for a more sophisticated extension mechanism is
needed. Existing platform-specific code generators for WCMS extensions are limited to initial
development scenarios for independent and corresponding dependent extensions but do not pro-
vide partial extension development or support extension developers during extension migration
or modernization activities. In Section 5.1 and Section 6.1, we present further related work
to extension development and MDE in this context. Following, we present MDE concepts for
the elicited development scenarios under consideration of the domain-specific roles and required
infrastructure artefacts.

4.2.1 Model-Driven Engineering of Independent Extensions
During the development of independent extensions we distinguish between initial development
and iterative (re-)development (see Section 2.3.1). In order to develop independent extension in
a model-driven manner, both scenarios must be supported by at least a modelling language and
suitable code generators, following a forward engineering approach (cf. [188, 186]). Figure 4.3
illustrates the proposed tool support for extension developers during MDE of independent WCMS
extensions and shows the involved roles and artefacts.

Application MDE Infrastructure

Modelling Language

for WCMS Extensions

Extension Model

(e.g. Conference

Model)

Extension Model

(e.g. Conference

Model)

Generator Templates

Depends on

Defined

using

Uses

Code

Generation

Code

Generation

M
o

d
e
ll
in

g
A

u
to

m
a
ti

o
n

R
e
a
li
sa

ti
o

n

Extension

Deployment

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Use/Manage

(Re-)Install on

WCMS Instance

Create/Refine

Use/Manage

Refine/

Add/Edit

Custom Code

WCMS

Extension

WCMS

Extension

WCMS Instance

with Installed

Extension

Figure 4.3: Model-Driven Development of Independent Extensions

66
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

The initial development, which is already supported by exiting boilerplate generators (cf. Sec-
tion 6.1), must result in an installable WCMS extension package. This extension package must
adhere to the WCMS-specific conventions on file and code base (cf. problem statement 1). Using
an MDE infrastructure for initial development requires the specification of the desired extension
features within extension models by extension developers. Model information can then be used
by WCMS-specific code generators. These merge generic code fragments with features from
the models during code generation. Through the formal platform-independent description of
extension features and the use of platform-specific code generators, different platforms can be
addressed concurrently. This allows the code generation for both extensions for different plat-
forms, such as Joomla and WordPress, and extensions for different versions of the same system.

Generated extension packages can be installed by WCMS administrators to a running WCMS-
based website where they can be used and managed by administrators and content managers,
depending on the respective extension’s remit. Iterative refinements like add, edit, and delete
operations must be done on modelling level to ensure up-to-date models which will be used
during a re-generation of the WCMS extension. The result, a new extension version, can then be
(re-) installed on WCMS instances. If an older version of the extension is already installed, the
respective files will be overwritten and, if required, respective database tables have to be updated.
This requires the generation of adequate database update scripts which are processed during
the re-installation process. This sub-scenario is not covered by existing boilerplate generators
(problem statement 5) as we conclude in Section 6.1.

Refinements to the generated code like the implementation of custom code requires no further
action, if a further development is not planned. In this case, the use of existing boilerplate
generators may be sufficient. Though, if a developed extension has to be maintained in a model-
driven manner, any refinement and additionally added custom code must be considered during
each iteration. To this end, an adequate approach like code models, model annotations, or
protected regions must be provided by the MDE infrastructure (cf. Section 3.3.5).

4.2.2 Model-Driven Engineering of Dependent Extensions
As previously described, the development of dependent extensions is not adequately covered by
existing related work, e.g by code generators in the domain. Therefore, we propose a concept
for model-driven engineering of dependent extensions to reduce effort ensuring high quality in
WCMS extensions (cf. problem statement 1). Moreover, our concept aims to reduce the high
effort which is required during reverse engineering of existing extensions (cf. problem statement
3) and the maintenance of dependent extensions (cf. problem statement 4). Similar to the
concept for MDE of independent extensions, we also consider both initial and iterative devel-
opment during the model-driven development of dependent WCMS extensions (cf. [186]). This
concept addresses the challenges during conventional development of dependent extensions (see
Section 2.3.2). Since this scenario is based on interdependencies between extensions, various
sub-scenarios must be covered by an MDE concept. This includes the development of extensions
which depend on existing (legacy) extensions, extensions which are also developed in a model-
driven manner, at best with the same MDE infrastructure, and features of the WCMS core
platform. A straightforward example for this scenario is the development of a Joomla module,
which illustrates the data of an already existing Joomla component. In Figure 4.4, we incorporate
the involved roles and artefacts of our concept for MDE of dependent WCMS extensions. Besides
the modelling language and generator templates, reverse engineering facilities for extension and
model extraction are considered.

Starting with the initial development of a dependent extension, our MDE approach proposes the
creation of an extension model with an adequate modelling language. To specify dependencies
to another extension on model level requires a respective extension model. So, the correct
identifiers can be used during the code generation process and, once deployed to a running

4.2. MDE Concept for WCMS Extensions 67

Application MDE infrastructure

Modelling Language

for WCMS Extensions
Extension Model

(Dependent Extension)

Extension Model

(Dependent Extension)

Generator

Templates

Depends on

Defined using

Uses

M
o

d
e
ll
in

g
A

u
to

m
a
ti

o
n

R
e
a
li
sa

ti
o

n

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Use/Manage

(Re-)Install on

WCMS Instance

Create/Refine

Use/Manage

Refine/

Add/Edit

Custom Code

Augment/

Depend on

Extension

Code Extraction

(optional)

Extension

Deployment

Extension Model
(MDE Extension, Legacy

Extension or Core Feature)

Extension Model
(MDE Extension, Legacy

Extension or Core Feature) Defined

using

Model

ExtractorUses

Augment/Depend on

M
o

d
e
l
E
xt

ra
ct

io
n

M
o

d
e
l
E
xt

ra
ct

io
n

C
o

d
e
 G

e
n

e
ra

ti
o

n
C

o
d

e
 G

e
n

e
ra

ti
o

n

Extension

ExtractorUses

Create/Refine

WCMS Legacy

Extension

(e.g. 3rd-party)

WCMS Legacy

Extension

(e.g. 3rd-party)

WCMS

Extension

WCMS

Extension

Augment/

Depend on

Legacy

Extension

WCMS Instance

with Installed

Extensions

Figure 4.4: Model-Driven Development of Dependent Extensions

WCMS instance, a correct behaviour can be guaranteed. If the extension, to which dependencies
exist, is already formally described within an extension model (e.g. by applying MDE during
scenario 1), extension developers can follow a forward engineering approach for both dependent
and independent extensions.

If no model exists, our concept provides that model information for existing extensions may
be extracted within a reverse engineering process. This process can be performed manually by
extension developers or automated, supported by a model extraction tool which creates extension
models based on existing extension packages. Whereas a manually processed reverse engineering
process is tedious for extension developers (cf. problem statement 3), support by means of
automation can reduce the effort during this process tremendously. We propose installable
extension packages as reference for model discovery, since they comply with the result of a code
generation process. Depending on the WCMS, the extension structures of extension packages
and deployed extensions may vary, as it is the case for the Joomla WCMS. If the extension
package for a required extension is not available, we propose the use of a tool for the automated
extension extraction from a running instance on which the extension is deployed. This step
however, can also be performed manually and could be unnecessary, e.g. if the extension model
is created manually as well.

68
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

If both dependent and independent extensions are formally described on model level, extension
developers can create dependencies in the dependent extension model, provided that the mod-
elling language provides suitable language elements. In addition, refinements in the model of the
independent extension can be made, e.g. if the model was automatically extracted from an ex-
isting extension package. Based on the new dependent extension model, the code generator has
to create an installable extension package which must homogeneously interact with the existing
extension, provided that both the generated dependent extension and the existing extension to
which dependencies exist are deployed on the same system.

During iterative development of the dependent extension, developers must ensure to keep the
extension model to which dependencies exist up-to-date. In the case, that both dependent
and independent extensions are developed in a model-driven manner, every refinement on the
dependency extension must be considered in the dependent extension model as well, in order
to ensure correct interaction during runtime. Changes (edit/delete) of model elements to which
dependencies exist may lead to an unexpected behaviour in the system. Though, this challenge
can be addressed easily. If both kinds of extensions are modelled by developers of the same team,
every new revision can be detected, e.g. by model versioning.

Similar to the other scenarios, existing custom code must be considered during iterative devel-
opment. If custom code is added to a generated extension, extension developers must ensure to
transfer it to the new extension version. We propose the use of code models or architectural pat-
tern instead of protected regions in order to ensure that generated code is completely overwritten
during a re-generation step (see Section 3.3.5).

The detection of changes in existing third-party extensions to which dependencies exist is a par-
ticular challenge for extension developers (cf. problem statement 4). Edit and delete operations
on critical parts may lead to broken extensions, if new versions of the extensions are deployed
to a running instance which also has dependent extensions installed. To address this challenge,
extension developers should be in contact with administrators of these running websites. Most
systems like WordPress, Joomla, and Drupal include an administration interface for extension
update information. If a new version of a third-party extension, to which dependencies exist,
is available and ready to install, administrators must inform extension developers to refine the
respective extension model and regenerate dependent extensions. The same applies to platform
updates, if an extension with dependencies to core features is developed.

4.2.3 Model-Driven Migration of Legacy Extensions
Alternatively to manually performed migrations of WCMS extensions (see Section 2.3.3), we
propose a model-driven migration process at a higher abstraction level. This allows the appli-
cation of common model-driven engineering practices, like, e.g., model refactoring for improving
the software quality. So we address the effort which is typically required, if extensions must be
migrated due to API changes of the underlying WCMS (cf. problem statement 2). Current tool
support does not support extension developers during this process (cf. problem statement 5)
and current work in this field does not address the migration of WCMS extensions. Based on
common reengineering concepts as described by Demeyer et al. in [54], our proposed migration
process consists of three main steps (cf. [238] and [187]):

1. Reverse engineering of legacy extensions from an old platform

2. Model refinement/transformation (migration/refactoring)

3. Forward engineering to a new platform

These steps build the well-known horse-shoe model of (model-driven) software modernization
(cf. [202]) which is illustrated in Figure 4.5.

4.2. MDE Concept for WCMS Extensions 69

Figure 4.5: Forward, Reverse and Reengineering [54, p. 9]

Similar to the previously described scenario, installable legacy extension packages should be
used as input for an automated model extraction. This may require extension extraction from a
running WCMS instance, if no installable extension package is available. The resulting extension
model should be as complete as possible. In order to keep custom code fragments which cannot be
described by the modelling language, we suggest to create code models, which contain platform-
specific code fragments and can be bound to abstract extension models. Alternatively, the code
can also be incorporated manually after the code generation step for the new platform.

Extension models can be refactored, extended, or migrated to models based on differing mod-
elling languages through model transformation techniques (cf. M2M in Section 3.3.2). These
transformations can be performed semi-automatically (e.g. model refactoring), or manually (e.g.
model extension). If the language is abstract enough, a discovered model can be used as it is for
the forward engineering step.

During a forward engineering step, the extension model should be used as input for code gener-
ators which create extensions for the new target platform. As previously described, this can be
a platform of another WCMS or a new platform version of the same WCMS.

Our migration concept aims at the migration of extension code. If the data of an already
installed extension has to be considered during the migration scenario, additional actions have
to be performed. Such data usually exists, if an extension includes an own data management
such as Joomla components. Barker proposes the following migration strategy for content in [17]
as follows:

1. Extraction: Content is extracted from the current environment.

2. Transformation: Content is altered, to simply clean it up or to change it to work properly
in the new environment.

3. Reassembly: Content is aggregated to correctly fit the new environment.

4. Import: Content is imported to the new environment.

5. Resolution: Links between content objects are identified and resolved.

6. QA: Imported content is checked for accuracy.

70
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

We suggest to follow these steps as well in order to migrate existing data from already installed
extensions. The extraction could be processed automatically to a suitable format, such as XML,
JSON, SQL, or another adequate DSL, in order to transform and reassembly it to a refactored
extension structure, if required. The result can then be incorporated with the migrated extension
as part of the forward engineering process. Alternatively, the data can be directly deployed to a
running system which is based on the new platform and has the new extension installed, e.g. by
using database scripts.

The proposed model-driven migration strategy is illustrated in Figure 4.6, which shows the roles
and artefacts within the horse-shoe model using the proposed MDE infrastructure facilities:

Application MDE infrastructure

Defined using

Refine/

Add/Edit

Custom Code

Extension

Model

Extension

Model Defined using

Uses

M
o

d
e
ll
in

g
A

u
to

m
a
ti

o
n

R
e
a
li
sa

ti
o

n

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Use/Manage

(Re-)Install on

WCMS Instance

Migration and

Refactoring

Use/Manage

Extension

Code Extraction

(optional)

Extension

Deployment

Uses

Model

Extraction

Model

Extraction

Code

Generation

Code

Generation

Uses

WCMS Instance

with Installed

Extension

(New Platform)

Extension

Model

Extension

Model
MigrationMigration

Modelling Language

for WCMS

Extensions

Generator

Templates

Depends on

Model

Extractor

Extension

Extractor

WCMS

Extension

(New Platform)

WCMS

Extension

(New Platform)

WCMS

Extension

(Old Platform)

WCMS Instance

with Installed

Extension

(Old Platform)

Figure 4.6: Model-Driven Migration of Legacy Extensions

4.2.4 Additional Scenarios
In accordance to the previously presented interview results (Section 4.1), the additional scenarios
4 and 5 (partial augmentation and modernization of legacy extensions), as described in Section
2.3, may occur during extension development. Based on the previously described scenario con-
cepts, including forward and reverse engineering approaches, we address these scenarios by an
MDE concept in this sub-section under consideration of the same MDE infrastructure facilities
as being used for scenario 1-3.

Model-Driven Augmentation of Legacy Extensions

In order to address the scenario of partial augmentation of existing legacy extensions (see Section
2.3.4), we propose to follow a similar concept as described in Section 4.2.2 (MDE of dependent
extensions). This concept, as illustrated in Figure 4.7, is based on an existing legacy extension
which is either deployed to a running instance or available as installable extension package.
This extension has to be used as input during a model discovery process, e.g. by using model
extraction facility. Extension developers can augment resulting models by new features which

4.2. MDE Concept for WCMS Extensions 71

Application MDE infrastructure

Modelling Language

for WCMS

Extensions
Extension ModelExtension Model

Generator

Templates

Depends on

Defined using

Uses

M
o

d
e
ll
in

g
A

u
to

m
a
ti

o
n

R
e
a
li
sa

ti
o

n

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Use/Manage

Copy to

WCMS Instance

Create/Refine

Use/Manage

Refine/

Add/Edit

Custom Code

Augment/

Depend on

Extension

Code Extraction

(optional)

Partial Code

Deployment

Model

Extractor
Uses

Model

Extraction

Model

Extraction

Code

Generation

Code

Generation

Extension

ExtractorUses

WCMS Legacy

Extension

(e.g. 3rd-party)

WCMS Legacy

Extension

(e.g. 3rd-party)

WCMS Instance

with Installed

Extension

Legacy
Extension +

new Feature

Figure 4.7: Model-Driven Augmentation of Legacy Extensions

augment the existing ones. Typically, developers augment existing extensions by new views
(cf. Section 4.1). During a code generation process, a new extension with the new features is
generated, based on the input model. Administrators can copy new files from the generated
extension package to the original extension package or already deployed extension. This step
offers a drawback of the concept, since we limit the augmentation to new files which do not
overwrite the original extension code. We propose to use model annotations for original features
which are used for references but can be skipped during code generation. If the generator can
interpret such annotations during the generation process, original model features can be skipped
in order to generate partial code only.

Model-Driven Modernization of Legacy Extensions

Another additional scenario which can be addressed by our proposed MDE concept considers
the modernization of legacy extensions (see Section 2.3.4). As previously described, this scenario
is relevant, if a legacy extension is an essential part of a running instance, but receives no
further maintenance by the original developers. Alternatively, a modernization may be required,
if the extension quality has to be enhanced. So, shortcomings in adhered coding standards
and architectural guidelines can be addressed. We propose to the same concept as proposed in
Section 4.2.3 above (model-driven migration of legacy extensions). For the purpose of performing
a model discovery, an installable extension package must be extracted from a running WCMS
instance. This extension then is to be used for the extraction of an extension model, which can
be optionally refactored on model level. Alternatively, the reverse engineering process can be
performed manually by extension developers. In this case, they have to discover and integrate
the knowledge of the legacy extension into new extension models from scratch.

72
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Application MDE infrastructure

Defined using

Refine/

Add/Edit

Custom Code

Extension

Model

Extension

Model Defined using

Uses

M
o

d
e
ll
in

g
A

u
to

m
a
ti

o
n

R
e
a
li
sa

ti
o

n

Content

Manager

Content

Manager

AdministratorAdministrator

Extension

Developer

Extension

Developer

Use/Manage

Re-Install on

WCMS Instance

Refactoring

Use/Manage

Extension

Code Extraction

Extension

Deployment

Uses

Model

Extraction

Model

Extraction

Code

Generation

Code

Generation

Uses

WCMS Instance

with Installed

Extension

Extension

Model

Extension

Model
ModernizationModernization

Modelling

Language for

WCMS Extensions

Generator

Templates

Depends on

Model

Extractor

Extension

Extractor

WCMS

Extension

WCMS

Extension
WCMS

Extension

(Legacy)

Figure 4.8: Model-Driven Modernization of Legacy Extensions

The modernized extension model is then be used for the generation of a new modernized exten-
sion. The difference to the migration scenario is the target platform to which the new extension
is intended to be deployed. A migration scenario has the objective of transferring an extension to
a new platform, whereas the modernization scenario aims at the modernization of an extension
for the same platform. In Figure 4.8, we illustrate the modernization scenario.

4.3 MDE Infrastructure Requirements Elicitation
In order to apply the previously defined MDE concepts, a requirements specification for adequate
supporting facilities like DSLs, editors, and code generators, must be elicited (RQ1.3). So, the
MDE infrastructure can be composed and evaluated against proper definitions addressing the
challenges which are faced by WCMS extension developers (cf. problem statements in Chapter
1). To this end we follow established procedures, as defined in [136], [200], and [178], during
requirement engineering of software systems. This mainly includes the execution of require-
ments analysis, requirements specification, and requirements validation. An essential task during
requirements elicitation is the identification of involved stakeholders and their needs in the con-
sidered problem domain. In our case the stakeholders are developers of WCMS extensions. To
improve the construct validity of our research, we include the results of the expert interviews with
industrial practitioners into the requirements analysis phase (see Section 4.1). This decreases
possible subjective bias, even though our extensive experience in the domain could be sufficient
for the requirements identification.

Additionally, we investigate existing reference extensions to identify the main features which
should be supported by an MDE infrastructure for WCMS extensions. As part of our develop-
ment approach, the list of requirements increases and becomes more accurate with each iteration.
We will not specify all infrastructure features completely at the beginning of our development

4.3. MDE Infrastructure Requirements Elicitation 73

process. Therefore, we cannot provide a high detailed specification for every possible require-
ment. However, the main requirements regarding the MDE infrastructure can be elicited at an
early stage. Taking into account that they will not change completely, but will be refined in
further iterations, the infrastructure components can be composed and developed in an agile
manner as described in Section 3.3.6.

Within the following subsections the main MDE infrastructure requirements for the realization
of MDE during WCMS extension development will be defined. This includes requirements for
a modelling language, model editors, and transformation tools like reverse engineering facilities
and code generators. Additionally, we will present overall infrastructure requirements for the
whole infrastructure and its integration into the development process of extension developers.
The presented requirements set includes functional as well as non-functional requirements. Non-
functional requirements1 typically consider functional correctness, usability, performance, and
maintenance of a software artefact [192]. We summarize these aspects to pragmatic requirements
to complete our set of requirements.

To facilitate the retrospective validation of the infrastructure, each requirement will consist of a
description and acceptance criteria.

4.3.1 Domain-Specific Language
Starting with the main artefact of an MDE infrastructure for WCMS extensions, the require-
ments for a domain-specific modelling language have to be collected. These requirements must
specify the basic needs during the model-driven development of WCMS extensions which will be
considered during DSL development.

Lots of guidelines for the development of DSLs exist, whereas the principles of DSLs defined in
[28, p. 70] conclude the main non-functional requirements the most appropriate:

• The language must provide good abstractions to the developer, must be intuitive, and make
life easier, not harder.

• The language must not depend on one-man expertise for its adoption and usage. Its
definition must be shared among people and agreed upon after some evaluation.

• The language must evolve and must be kept updated based on the user and context needs,
otherwise it is doomed to die.

• The language must come together with supporting tools and methods, because domain
experts care about maximizing their productivity in working in their domain, but are not
willing to spend huge amount of time in defining methods and tools for that.

• A good DSL should be opened for extension and closed for modifications, according to the
good old open-close principle, stating that "software entities (classes, modules, functions,
etc.) should be open for extension, but closed for modification."

Based on these principles the following main functional requirements describe the main aspects
which must be considered during DSL development. Since models (DSL instances) are the main
artefact of an MDE approach, all of the following requirements address the problem statements
1-4 by lifting extension features to model level.

1A collection of typical non-functional requirements can be found in the ISO/IEC 25000 standard. The
standard provides a detailed guide considering the quality requirements of software. The standard replaced the
ISO/IEC 9126 standard, which is referred frequently in literature. The standard can be found in [99].

74
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Requirement: Data Modelling

WCMS extensions represent data-intensive applications, i.e. software mainly dealing with a
large amount of structured data for a specific purpose [41]. The managed data typically consists
of entities with groups of typed attributes and references between them. Therefore, the DSL
must allow developers to create individual data models for different domains which represent
the required data structure of the extension to be developed. Features like data types, refer-
ences, and inheritance must be provided by the language to ensure re-usability. Usually, once
installed, the data structure of an extension can not be changed or configured within a WCMS
instance. Therefore, the DSL must not provide features for a configurable data structure during
runtime. However, the data models must be as detailed as possible to ensure the most possible
individuality.

Acceptance Criteria:

To fulfil this requirement, the DSL must provide features for a detailed data modelling of a WCMS
extension. This includes data modelling features like typed attributes, references between data
entities, and inheritance. The data modelling part of the language must not be limited to a
specific domain.

Requirement: Data Representation and Interaction Modelling

Data-intensive applications like the most WCMS extensions require user interfaces which allow
the management of its data. These interfaces combine the main application logic of the extensions
in a form-based way with the possibility to proceed user operations. Usually they provide
functionality for operations on data entities (e.g. CRUD) and allow interactions between various
representation pages. Interactions can be featured by links from one representation to another.
Based on the extension structure of the interviewed developers and our research of existing
reference extensions (see Section 4.1.1), WCMS extension representations can vary from static,
index (list of data entity entries), details (a specific data entry), edit, and custom views, whereas
custom views incorporate all other representation kinds. Figure 4.9 illustrates an exemplary
interaction between different representations of various data entities of a conference management.

Static

Conference Start

Index

ParticipantIndex

Index

TalkIndex

Index

RoomIndex

Details

ParticipantDetails

Details

TalkDetails

Details

RoomDetails

Participant

name: String

affiliation: String

Talk

title: String

time: Datetime

Room

name: String
Link Reference

Conference

Management

Figure 4.9: Interaction between different representations of various data

A DSL must provide features for data representation and interaction modelling. Thereby, stan-
dard operations like CRUD should be hidden by the language within abstract language elements.
So, the model can be as small as possible, whereas the feature allows conclusions to the actual
extension code, e.g. during further code generation. However, the language should be flexible
enough to allow developers to model more individual extension functionality. Extension devel-
opers require optional language features to bind individual actions to appropriate view types.

4.3. MDE Infrastructure Requirements Elicitation 75

The same applies to the representation specification. The language must provide optional model
elements to specify the appearance of a representation. Examples are representations in form of
custom HTML forms with sophisticated form fields like e.g. date or colour pickers. So developers
can model standard and more individual representations.

The interaction modelling part must allow the specification of a page flow between different
representations by a sophisticated link behaviour. This includes both the specification of internal
and external links, whereby internal links could contain context information (parameters of
HTTP methods) which must be considered during development of the DSL.

Acceptance Criteria:

The acceptance criteria for this requirement is divided into two main part. First, the DSL
must provide model features to specify representations of various kinds. For each representation
kind, optional language elements for individual representation modelling must exist. Second,
the DSL must allow interaction modelling based on these representations. This includes the
optional specification of individual actions and the definition of (context) links between several
representations in the model. Standard behaviour should be hidden in abstract model elements.

Requirement: Extension Modelling

Besides data, representation, and interaction modelling, extension developers require language
features to specify extension-specific meta-data. The minimal requirement to the language are
elements for the specification of manifest information and the supported languages of an extension
(cf. Section 2.1.3). Additionally, the language must provide a feature to map representations to
an extension and if required to a specific site section (frontend/backend) within the extension.
So, extension developers can differentiate between the sections of Joomla components or map a
representation directly to a Joomla or Drupal module or WordPress plugin.

In addition, a sophisticated language mechanism dealing with different extension kinds must be
provided. This includes features for creating references between the extensions. These can be
link, use, or containment relations. Moreover, the language must be flexible enough to allow
further augmentations to special extension features and new extension kinds.

Acceptance Criteria:

This requirement is fulfilled, if the DSL allows developers to create extension specifications with
relations to other extensions. The extensions part must provide language elements for meta
information, whereby manifest information and supported languages are the main requirements.
Additionally, the language should provide a way to include representations within an extension
specification. However, the extension modelling part should be abstract enough to hide the
technical knowledge of extensions.

Requirement: WCMS Core Support

As described in Section 2.1.3, WCMS extensions can use core features once deployed to a running
WCMS instance. For instance, if an extension requires user information, it typically can access
an interface of the core to achieve the required data. Therefore, a solution for core support should
be provided by the DSL as well. If developers require dependencies between their extension and
the core system, the language must provide interfaces to typical core functions. The interfaces
should be abstract enough to allow reusing the model for different WCMSs.

Acceptance Criteria:

The requirement can be declared as fulfilled, if the DSL provides platform-independent interfaces
to the WCMS core. So, developers should be able to create dependencies which will be resolved
when the extension is deployed to a running WCMS.

76
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Requirement: Configurable Generator Hooks

Extension developers require a language feature to highlight model elements which are required
during modelling but should not be considered during code generation. So, it should be possible
to model parts of legacy extensions to which the new extension will have dependencies during
runtime (cf. scenario 2 and 4 in Section 4.2). However, code for the legacy extension should not
be generated anew. This feature can directly be used to address the challenge of dependency
management between dependent extensions (cf. problem statement 4).

Acceptance Criteria:

This requirement is fulfilled, if the DSL provides a language feature which preserves model
elements from being used by the code generator during further transformation processes.

Requirement: Quality Assurance of Extension Models

To ensure consistency within extension models, rules for their well-formedness have to be defined.
These model validation rules prevent developers from wrong model specifications such as miss-
ing elements, useless references, or inconsistent relations between extensions. Using constraints
within automated validation, model violations can be found during the modelling process before
the model becomes translated to code. This reduces the defect potential and supports develop-
ers to create high quality extensions. Additionally, developers can learn the features of the DSL
faster, if they get direct feedback about the model quality.

The definition of language constraints is a popular task during DSL development. Over the past
years the Object Constraint Language (OCL) [254] has proven as standard within meta-modelling
approaches. The language allows standardized and reusable invariant definitions for modelling
languages. These can be incorporated easily into automatic model validation before any model
translation. Therefore, OCL constraints should be defined in order to ensure adequate model
quality checks.

Acceptance Criteria:

To accept this requirement as fulfilled, language constraints have to be specified. These con-
straints have to ensure well-formed and consistent models before these get translated to code.
In order to ensure reusable constraint specifications, they have to be formally described in an
appropriate constraint language like OCL, which may be supported during automatic validation
operations.

4.3.2 Model Editors
Besides a DSL for WCMS extensions, developers require a way to create model instances of
this language. In order to fulfil this requirement, a set of editors has to be implemented. This
addresses the challenge of missing tool support for WCMS extension development, especially for
applying an MDE approach (cf. problem statement 5). The following functional requirements
consider the main features, extension developers expect from these editors.

Requirement: Textual Model Representation

Model editors must provide a way to create model instances based on a DSL. In the course of
this, infrastructure developers have to decide which kind of representation is the most suitable
(cf. Section 3.3). This decision determines the required concrete syntax definition. Whereas the
language is built on abstract syntax definitions, the concrete syntax describes how the model is
represented. For some approaches graphical model representations are the best choice. Examples
for this are object-oriented modelling approaches using UML, which provides visual model repre-
sentations like class diagrams. This allows domain experts to create models without adhering to

4.3. MDE Infrastructure Requirements Elicitation 77

any grammar-specific rules. Additionally, visual modelling is more preferred by non-developers.
In contrast, textual representations, which follow a certain structure, e.g. provided by a gram-
mar, are more suitable for developers who are used to textual programming. If the textual
concrete syntax is close to the natural language, textual representations are more useful, e.g.
within requirements elicitation processes. This allows non-developers to create models without
learning a completely new language.

Since some parts of the required DSL must allow detailed modelling and the targeted adopters of
our approach are developers who are used to structured programming in the domain, a textual
language seems to be more suitable. Moreover, as we also address developers with less technical
knowledge we propose a new language which incorporates the domain features instead of an API
in the programming languages of the domain.

Frameworks like Xtext provide tools for language definitions based on EBNF-based grammars.
This allows the development of abstract and textual concrete syntax in one task. Additionally, a
text-based editor can be generated based on the grammar definitions. This decreases the required
development effort and ensures earlier delivery of the MDE tools. However, if a visual concrete
syntax is needed, tools like Eclipse Sirius [230] and EuGENia [229] can be used to augment a
textual DSL by a visual editor. These tools allow the development of visual editors based on
existing abstract syntax definitions in different formats, e.g. Ecore models (cf. Section 3.3.3).

Acceptance Criteria:

In order to fulfil this requirement, a text-based editor has to be developed. This editor must
consider the defined language features of the DSL, to allow developers the specification of text-
based definitions of WCMS extension models.

Requirement: User Support Features

Based on the previously described requirement, the text-based editor must ensure a supportive
usability. This includes editor features like syntax highlighting and auto completion to support
modellers during modelling actions in order to learn and ensure the required syntax of the lan-
guage. Formatters must get a particular attention during the editor development, since they play
an important role for automatically generated extension models, e.g. after a model extraction
of existing WCMS extension code. Validators, which should include the well-formedness rules
of the modelling language, are significantly involved during the validation of existing extension
models after a DSL refinement. Therefore, the validator part of the editor should be extensively
maintained during the whole infrastructure life cycle.

Fortunately, most of the features can be automatically generated, if frameworks like Xtext and
Xtend are used during infrastructure development. If a generated editor feature is not suffi-
ciently implemented, infrastructure developers are able to augment it by additional elements.
For example, the auto completion intentionally only contains the elements, which are defined
in the DSL’s grammar. If additional elements should be provided by the editor, they can be
defined within protected regions in form of respective classes for the specific feature. During the
code generation of the infrastructure itself, these additional elements become incorporated into
the auto completion feature homogeneously. The same applies to other features like validators,
which can be augmented by OCL definitions.

Acceptance Criteria:

This requirement is satisfied, if the model editor supports modellers by syntax highlighting,
auto completion, and error validation. Additionally, a (set of) formatter(s) must be provided to
increase the readability of automatically extracted models.

78
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Requirement: Platform Independence

The previously described frameworks for MDE infrastructure development mainly address mod-
elling in the Eclipse IDE. However, as interviews with extension developers reveal, Eclipse is
not the IDE of choice during extension development. The most preferred IDEs are the ones,
provided by JetBrains (e.g. IntelliJ IDEA [103] and PhpStorm [104]). Therefore, the minimum
requirement is the support of serialization formats like XMI, to transfer models between different
IDEs. A much more sophisticated support by explicit plugins for different IDEs is the preferred
solution.

Again, using Xtext, facilitates the development of plugins for various IDEs such as Eclipse and
IntelliJ IDEA in one step. Additionally, a rudimentary web IDE (or cloud IDE) can be developed.
This web editor can provide a foundation for implementing a platform-independent web-based
IDE. The advantage of an independent web-based platform can reduce technological bias of
extension developers. Developers can directly start modelling and create extensions on the fly
within a suitable development setting for the problem domain, since they do not have to deal
with the typical installation effort in an IDE. Due to the fact that both approaches, local IDE
plugins and web IDEs, have specific developer-centric advantages and disadvantages, solutions
for both approaches are required.

Acceptance Criteria:

The acceptance criteria for this requirement includes the successful implementation of a set of
plugins for various and common IDEs such as Eclipse, IntelliJ IDEA, and PhpStorm. Addition-
ally, a complete platform-independent IDE should be implemented.

4.3.3 Code Generator
A sophisticated MDE infrastructure for WCMS extensions requires the implementation of one or
more code generators. However, especially the development of code generators requires tremen-
dous effort by infrastructure developers. In order to follow an agile bottom-up development
approach, as described in Section 3.3.6, infrastructure developers have to inspect elaborated
reference extensions. Due to variations in the required extension structure, the development of
new reference extensions is inevitable. This main requirement results in the following developer
demands dealing with code generators for WCMS extensions as part of an MDE infrastructure.

Requirement: Full Installable Extensions Generation

Usually, WCMS extensions implement a required architecture allowing them to be directly instal-
lable to a running WCMS instance. This allows developers to distribute their extensions directly
to website integrators, i.e. WCMS administrators who are responsible for the supported features
of a WCMS instance. Developers stated, that they expect installable extension packages, if they
use an MDE infrastructure. Additionally, extensions must support the representation of the ex-
tension data by different representation kinds, e.g. views in Joomla components. As described in
Section 4.1, we conducted a study on the Joomla extension directory and investigated that 68%
of the views we inspected were standard CRUD views. This amount was confirmed by industrial
practitioners who stated to have more than 90% of CRUD views in some of their extensions.
Therefore, the main requirement to the generator is support for fully functional and installable
extension packages without the need of any handwritten code. This includes the guarantee of
interoperability between the generated extension and the core system where it will be installed.
So, the required effort to ensure high quality in WCMS extensions (cf. problem statement 1) can
be addressed. This requires the implementation of adequate reference extensions which can be
used as reference by tool developers during generator development. These reference extensions
have to be further developed during the whole life span of the generator in order to follow the
defined development process of this work.

4.3. MDE Infrastructure Requirements Elicitation 79

Acceptance Criteria:

This requirement is fulfilled, if the generator creates installable extensions which allow the man-
agement of specific data (CRUD) in the required extension format of a WCMS. This includes
the implementation of adequate reference extensions.

Requirement: Adhere to Coding Styles and Architectural Standards

A requirement to the internal code quality is the generation of extension code, which fulfils a set
of coding standards of the respective WCMS community. The generator templates must adhere
to the coding standards of every respective programming language of the generated artefacts.
For Joomla, a documentation of the required coding standards can be found at [166] but does
not fulfil the needs of all extension developers in the domain. In our conducted expert interviews,
developers stated that they rather follow official coding standards, such as the PSR-12 coding
style recommendation [179]. So, this requirement includes the determination of an adequate
coding standard for the programming languages for which code is generated.

Additionally, the generated code architecture must follow the given API pattern of the underlying
WCMS. In the case of Joomla, a specific model-view-controller (MVC) pattern on file and code
level (see Sect. 2.2.1) must be adhered in order to generate Joomla components. This pattern
must be implemented to ensure a proper installation and operability between the WCMS instance
and the extension and reduce effort to ensure extension quality (cf. problem statement 1).

Acceptance Criteria:

In order to fulfil this requirement all implemented code generators must ensure the adherence of
relevant coding standards within the generated extension code. Additionally, required architec-
tural patterns like MVC must be implemented by the generated extensions.

Requirement: Partial Code Generation

Developers stated, that they are satisfied with their already developed legacy extensions, but
would use an MDE infrastructure for further implementation of new extension parts without
creating the whole extension anew (cf. scenario 4 in the previous Section 4.2). Therefore, the
generator must allow the partial generation of code fragments, which can be directly integrated
into an existing extension. Fortunately, the related technologies in the domain of WCMSs allows
the conduction of partial code generation. Since developers mainly use interpreter languages, a
partial code generation can be easily integrated into the development process of WCMS develop-
ers. The generator templates must generate the correct dependencies to existing extension parts
in order to ensure a homogeneous functioning of the whole extension after deploying the new
code (e.g. by copy&paste) to the legacy extension. This in turn requires the possibility of creat-
ing relations of new to legacy artefacts on model level (see requirement Configurable Generator
Hooks above).

Acceptance Criteria:

This requirement is fulfilled, if the code generator is able to proceed partial code generations.
These code fragments must fulfil the requirement to be fully functional to be deployed to existing
legacy extensions. If defined on model level, relations between new and existing legacy code
artefacts must be generated to ensure proper interoperability between new and legacy code.

Requirement: Support for Smart and Dummy Models

MDE infrastructures often differ in the amount of generated features in dependency to the given
model information used during code generation. Some generators require detailed and accurate
models to create adequate software fragments (dummy approach). Others can generate most of

80
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

the code with abstract model definitions (smart approach). During the interviews with extension
developers (cf. Section 4.1 above), the needs for both approaches arose. If developers want to
create views like standard CRUD views, a smart generator is required, which can generate the
respective code with a minimum of model information. The drawback of a smart generator is
the required effort during its development and maintenance, since the whole logic for the implicit
code generation must be implemented, mainly resulting in extensive generator templates with a
tremendous amount of standard code.

If a more individual solution is required, developers have to create more enhanced models. The
generator then must be able to generate the code for these specific needs, but must not create most
of the code implicitly. An example for this case can be the need for individual view parameters,
which have to be configured within the administration of the extension after it became deployed
to a WCMS instance. Whereby a smart generator creates a set of standard parameters, a dummy
generator should create the parameters as they are defined in the model.

Both approaches have their advantages and drawbacks, but should be provided by the WCMS-
specific MDE infrastructure. Therefore, the generator for WCMS extensions must allow both the
implicit generation of standard code fragments based on lean abstract models and the generation
of code elements in accordance to enhanced model definitions.

Acceptance Criteria:

This requirement is fulfilled, if the generator is able to use abstract and enhanced models as
input during code generation. If an abstract model is given, the generator must create extensive
extension code implicitly.

Requirement: Custom Code Support

Developers stated, that they require support for individual functionality. Even though most
of their extensions consist of standard CRUD views, individual fragments should be considered
during code generation. This includes the realisation of an adequate mechanism to support
extension developers during manual code adjustments, i.e. they need to know, which parts of
the code can be changed without breaking the whole extension.

As described in Section 3.3.5, different approaches dealing with custom code arose over the last
years. The most simple one is the generation of placeholders for custom code (protected regions).
During a new generator run, handwritten code within these protected regions will not be over-
written. A better approach such as the 3-tier implementation presented in [221, p. 160 ff] should
be considered. The presented approach considers different kinds of relations between generated
and handwritten code by implementing architectural patterns providing separation between these
both code kinds. Another approach is the use of code models, which deals with individual code
on model level. However, maintaining solutions following this approach can exceed the effort of
working with the much more simpler approach of protected regions or architectural designs.

Matured frameworks for the development of code generators support tool developers during the
implementation of these different approaches. However, finding the right approach for this work
has to be determined as part of this requirement, since all come with different advantages and
drawbacks.

Acceptance Criteria:

To fulfil this requirement, an adequate approach which supports extension developers during the
development of custom features has to be determined and incorporated to the MDE infrastruc-
ture. Custom code should be integrated to the generated code in a proper manner without the
chance of being lost during further generation runs.

4.3. MDE Infrastructure Requirements Elicitation 81

4.3.4 Reverse Engineering Facilities
Some of the collected development scenarios require support for reverse engineering (RE) during
the development of WCMS extensions (cf. scenario 2, 3, 4, and 5 in Section 4.2). As developers
want to reuse existing legacy extensions or create new extensions that depend on existing third-
party extensions, it is necessary to provide a mechanism that raises the extension information to
model level.

Requirement: Extract Model Information of Existing Extensions

Some development scenarios are based on the consideration of existing legacy extensions. If an
extension evolves, dependencies to existing extension parts such as a data access object or view
templates could occur. Understanding existing extensions and managing dependencies to them
is a tedious task for extension developers (cf problem statement 4). To lift this dependency
to model level within MDE can only be done, if the required extension information is part of
the model. Another case is the development of a new extension, which depends on a third-party
extension. A mechanism to lift up the required information of the third-party extension is needed
to define the dependencies on model level within MDE.

To support these and other use cases, we propose a semi-automatically extraction of existing
extension information in contrast to a completely manual reverse engineering process. Therefore,
an adequate mechanism for the extraction of model information of existing legacy extensions
has to be implemented. This requires the implementation of model discoverers for the used
programming and mark-up languages of WCMS extensions (PHP, HTML, JavaScript, SQL).
Matured tools like MoDisco [29, 30] can be used for the extraction of Java-based application
information, but lack in support for current web-based technologies as required in the WCMS
domain (cf. problem statement 5). Even though discoverers for PHP code exist, the supported
language versions have been tremendously outdated. So, a tool for the model-driven reverse
engineering (MDRE) for modern (versions of) web-based languages has to be implemented. This
tool must at least allow the extraction of the minimal extension information, required for the
realisation of common development use cases such as (partial) augmentation (scenario 2 and 4),
migration (scenario 3), and modernization (scenario 5) of legacy extensions.

Acceptance Criteria:

To declare this requirement as fulfilled, a mechanism for the model extraction for legacy exten-
sions has to be implemented. The minimal required extension information for the creation of
new dependent extensions or extension parts has to be extracted and lifted up to model level
into a model instance of a suitable WCMS-specific modelling language.

Requirement: Extract Extensions of Running WCMS Instances

Understanding the code of a deployed legacy extension can become a difficult task. Once deployed
to a WCMS instance, corresponding extension fragments may become spread over the whole
application, as it is the case for Joomla extensions. Additionally, database entries which bind
the installed extension to the rest of the WCMS instance are created. So, in addition to the
previously described requirement, developers stated, that they require a mechanism to extract
an installed extension from a running WCMS instance. The result of this extraction should be
an installable extension package which can be used as input for a further manual or automatic
code understanding and model extraction.

Acceptance Criteria:

To fulfil this requirement, a mechanism for the automatic extraction of a deployed extension can
be processed on a running WCMS instance. The result of this process should be an installable
WCMS extension package for the respective WCMS.

82
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

4.3.5 General Infrastructure Requirements
In addition to the previously described requirements, we define overall infrastructure require-
ments, considering the quality assurance of the infrastructure itself, the adequate integration
into the development process of extension developers, and support for tool developers during
maintenance of the infrastructure.

Requirement: Quality Assurance

By definition, quality reflects the defined characteristics of a product, service or system. This also
applies to MDE infrastructures. However, the problem with quality is its subjective definition
by different stakeholders. It can deviate strongly between different persons, because they are
measured according to differing personal standards. In [257], Weinberg gives good examples of
the different views on software quality. Software users reflect the fast development of an error-less
system as good quality, whereas software developers usually define elegant code as indication for
high quality. The ISO/IEC 25000 (or SQuaRE2) quality model divides these different views into
internal and external software quality [97]3.

Internal quality considers software quality from the view of a developer, in our case tool develop-
ers. Tool developers require well-designed (meta-)models and clearly readable code, which can
be simply maintained and extended. Additionally, the testability of the infrastructure must be
given to allow developers to ensure correct functionality of their software artefact. Infrastructure
artefacts which do not fulfil these requirements may induce unpredictable side effects and system
behaviour, each time a change is made. This applies to the DSL, model editors, code generators,
and reverse engineering facilities, as well as to the exemplary showcase models. External quality
describes software quality from the customers view, or in our case the view of extension devel-
opers who will use the MDE infrastructure. The main focus of external quality is the quality of
software as product and the quality of the building process. If a bug or another defect appears,
extension developers may declare this as loss of quality, even though the defect has no effects to
other parts of the infrastructure. The same applies to other non-functional requirements such
as software usability (e.g. simple DSLs and user-friendly editors) and performance (e.g. dealing
with large models during modelling and code generation).

In addition, the internal and external quality of the generated artefacts have to be considered as
well. Actually, this is a special requirement for the code generator, which has to ensure generated
code with high internal and external quality. Extension developers require generated artefacts
with high maintainability and generated tests for the assurance of external quality. Though, we
treat and evaluate this requirement as part of the non-functional quality assurance requirement.

Another extending set of quality requirements for MDE infrastructures can be found in [221,
p. 366 ff]. The defined requirements, like a well-defined architecture, a stringent programming
model, and an up-to-date documentation, will also become incorporated into this requirement.
In [55] the authors specify an evaluation method based on existing quality standards and best
practices. This method is evaluated by an exemplary sample application. The evaluation method
will be considered during further evaluation of the MDE infrastructure, presented in this work.

Acceptance Criteria:

This requirement is fulfilled, if assurance techniques for the internal and external quality of
the MDE infrastructure are provided. This includes the assurance of high quality for different
quality aspects like maintenance, performance, testability, and usability. Moreover, the internal
and external quality of the generated artefacts has to be ensured by the code generators of the
infrastructure.

2SQuaRE: Software engineering-Software product Quality Requirements and Evaluation.
3This straight definition has been combined in 2011 to product quality, but both aspects are still considered

separately during quality measurement within the latest ISO/IEC 25000 standard version.

4.4. Discussion 83

Requirement: Integration into existing Extension Development Processes

In addition to the previously defined requirement, another overall requirement is the integration
of the MDE infrastructure into the development process of extension developers. To this end, the
MDE infrastructure should be usable in combination with other MDE tools for documentation,
versioning, and testing. So, developers can use it within different stages of extension development.
By providing IDE plug-ins which include a model editor and transformation tools, developers can
incorporate the infrastructure to their common development environment. Moreover, strategies
should be elaborated for a proper interaction of the MDE infrastructure with a test suite and a
continuous integration infrastructure.

The exchange of the project artefacts between the MDE infrastructure and other tools can be
achieved through serialisation mechanisms, e.g. for model instances. Due to varying development
procedures, the infrastructure must allow a certain variability. Some developers stated that they
exclusively work within their preferred IDE, whereas other developers integrate various tools and
IDEs within their common development process. Therefore, the MDE infrastructure for WCMS
extensions must be flexible enough to be suitable for different development processes.

Acceptance Criteria:

To fulfil this requirement, the infrastructure must be flexible enough to be integrated into various
development processes of extension developers. In addition, sample scenarios should be applied
and documented in order to simplify process integrations and allow portability to industry.

Requirement: Automatic Build of MDE tools for Different IDEs

Another overall requirement is the support of tool developers by automatic build mechanisms
for the infrastructure artefacts. The support of different IDEs and the provision of a web ed-
itor requires unnecessary effort during repetitive plug-in packaging. This effort can be saved
by providing automation mechanisms, e.g. as part of a continuous delivery pipeline including
automatic test execution and plug-in packaging for all supported IDEs. Additionally, continuous
deployment of web-based cloud IDEs should be realised to support infrastructure developers.

Acceptance Criteria:

In order to fulfil this requirement, automation mechanisms must be provided to support tool
developers during the creation of various IDE plug-ins and the web editor.

4.3.6 Summary
Table 4.7 summarizes the elicited requirements. In order to address the requirements in this work,
unique identifiers based on the subject are added. Moreover, we added the addressed problem
statements which were defined in Chapter 1 to the requirements. Some requirements necessitate
tool implementations in order to avoid missing tool support for our approach. Therefore, we
refer such occurring requirements to problem statement 5 (parenthetic), even though they do
not directly address the problem of missing supportive tools for WCMS extension development.

4.4 Discussion
In this section, we discuss how adequate RQ1 (How can MDE support common WCMS Extension
Development Scenarios?) and its related three sub questions were answered in this chapter.
RQ1.1 concerns the relevance of the previously presented development scenarios (Section 2.3),
whereas RQ1.2 is targeted on an MDE concept for these scenarios. The follow-up question
RQ1.3 aims at MDE infrastructure requirements for adopting MDE during WCMS extension
development.

84
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

Table 4.7: MDE Infrastructure for WCMS Extensions - Requirements

Subject ID Requirement Problem
Statement

Domain- R1.1 Data Modelling 1, 2, 3, 4
Specific R1.2 Data Representation and Interaction Modelling 1, 2, 3, 4
Language R1.3 Extension Modelling 1, 2, 3, 4

R1.4 WCMS Core Support 1, 2, 3
R1.5 Configurable Generator Hooks 3, 4
R1.6 Quality Assurance of Extension Models (5)

Model R2.1 Textual Model Representation 1
Editors R2.2 User Support Features (5)

R2.3 Platform Independence 5
Code R3.1 Full Installable Extension Generation 1, 2, 3, 5
Generator R3.2 Adhere to Coding Styles and Architectural Standards 1, 2, 5

R3.3 Partial Code Generation 3, 4, 5
R3.4 Support for Smart and Dummy Models 1
R3.5 Custom Code Support 1

RE Facilities R4.1 Extract Model Information of Existing Extensions 3, 4, 5
R4.2 Extract Extensions of Running WCMS Instances 5

General R5.1 Quality Assurance 1, 2, (5)
Infrastructure R5.2 Integration into existing Extension Development Process 5
Requirements R5.3 Automatic Build of MDD Tools for Different IDEs (5)

4.4.1 Relevance of Scenarios 1-5 (RQ1.1)
In order to ensure the relevance of the elicited development scenarios (RQ 1.1), we conducted a
set of semi-structured expert interviews with industrial practitioners from the WCMS domain.
Based on the interview results, the relevance of our predefined scenarios is strongly confirmed by
the statements of the interviewed industrial practitioners (see Section 4.1). Though, despite the
promising results, they are subject to a number of threats to validity (cf. [260]).

While the expert interviews confirm the crucial role of the elicited scenarios, the participants also
pointed us to an additional scenario that we did not consider yet. In particular, the abstraction
of shared functionality into libraries. This is a threat to construct validity, since we did not
consider this specific case during the preliminary scenario elicitation in Section 2.3. We aim to
study this case in future work. Another threat to construct validity is due to our interview guide.
Even though the interview results confirm that iteratively refining already existing extensions
(extension evolution) is a challenge, explicit questions considering this related sub-scenario are
not part of our interview guide. Further interview iterations should incorporate such questions
in order to get the interviewees opinion of this sub-scenario which is included in scenario 1
(development of independent extensions) and scenario 2 (development of dependent extensions).

An internal validity threat is given by the study design and the set of interview questions. The
initial study design was rather qualitatively in order to gain insight of the WCMS extension
development procedure of industrial practitioners in an inductive way. Therefore, the questions
were not directed (directly) to the development scenarios.

The interview results were interpreted in order to confirm the relevance of the scenarios and
their potential for MDE. However, the relatively small sample size of 8 participants leads to a
potential threat to conclusion validity.

4.4. Discussion 85

A threat to external validity is based on the involved interviewees. All experts are developers for
the Joomla WCMS with little or no experience in extension development for other WCMSs. It
has to be studied if the scenarios are also common during development of extensions for other
WCMSs. However, the conducted interviews fit into the scope of this work, since we consider
Joomla as reference WCMS (cf. Section 2.2.2).

4.4.2 MDE Concept for Scenarios 1-5 (RQ1.2)
Based on the elicited scenarios 1-5, we defined concepts for the adoption of MDE as alternative
to conventional WCMS extension development. These concepts show, how MDE can support de-
velopers during scenarios 1-5 as answer to RQ 1.2. To this end, interactions between the involved
roles (extension developer, administrator, content manager) and supportive MDE infrastructure
facilities were incorporated into MDE process definitions. The presented concepts consider the
common MDE infrastructure facilities for forward and reverse engineering tasks. These are in
accordance with used infrastructures of already adopted MDE approaches (cf. Section 3.2) and
are in compliance with the definitions of established literature such as [221] and [28].

As the interview results offer, the elicited scenarios are relevant and offer high potential for an
MDE approach. Therefore, they are providing a good basis for MDE concepts. For the sake
of completeness, additional scenarios should be elicited in future work. So, construct validity
of further empirical research based on these concepts can be ensured. Though, the presented
concepts should be adaptable for additional scenarios, based on the referenced forward and
reverse engineering facilities, as well as the given user roles of the domain. In order to ensure
external validity, we kept the concepts abstract without dependencies to a specific WCMS.

4.4.3 MDE Infrastructure Requirements for Scenarios 1-5 (RQ1.3)
To adopt the defined MDE concepts from Section 4.2, we collected the requirements for a suitable
MDE infrastructure as answer to RQ 1.3 (Which facilities are required to achieve MDE during
these scenarios?). These requirements consider all necessary facilities including the demands of
extension developers based on the expert interviews. With regard to the research of MDE in
practice during WCMS extension development, the requirements include acceptance criteria for
the evaluation of a suitable MDE infrastructure. However, the requirements elicitation of this
chapter is rather abstract in order to get the overall requirements for the MDE infrastructure.
Typically, requirements engineering consists of several explicit processes such as described in [136]
and [175]: elicitation, analysis and negotiation, documentation, validation, and management. So,
all necessary requirements can be collected at the beginning of a software project. Though, in the
scope of this work, abstract requirements are sufficient for MDE infrastructure development, since
we follow the agile bottom-up development process as proposed in [244] (cf. Section 3.3.6). More
specific requirements occur during the development process and extend the requirements list in
an agile manner. Moreover, the general requirement definition is sufficient for the discussion of
existing MDE infrastructures for extension development.

In [26], Boehm presents guidelines for the verification and validation of software requirements.
Hereafter, we discuss the presented requirements based on these guidelines in order to ensure a
sufficient requirements coverage. To be more specific, we assess their completeness, consistency,
and feasibility (cf. [26]). Based on the description of Boehm, all parts of a system must be con-
sidered and described by requirements to ensure completeness. Focusing on the presented MDE
concepts, all requisite infrastructure components are covered by our requirements definition. This
includes the main facilities for modelling (DSL, model editor), forward engineering (generator
templates), and reverse engineering (model and extension extractor). All requirements consist of
acceptance criteria and do not contain placeholders or non-existent references (cf. [26]). In or-
der to achieve consistency within the requirements specification, conflicts must be avoided. This

86
Chapter 4. MDE of WCMS Extensions -

General Solution Concept and Requirements

aspect is covered due to the limited set of requirements, but must be considered during further re-
quirement amendments. With the feasibility aspect, Boehm covers non-functional requirements
and the identification of high-risk issues considering the life-cycle of a system. This includes
maintainability, reliability, testability, and portability. These aspects are covered by our overall
MDE infrastructure requirements, since we consider the integration into existing development
processes by suitable IDE plugins and model serialisation mechanisms, as well as testing and
rapid delivery of the infrastructure by continuous integration/delivery/deployment support. In
addition, we suggest the use of popular meta frameworks for the realisation of the infrastructure
itself. So, the costs during development and maintenance can be minimized. A detailed overview
of common risks which are related to cost-effectiveness, can be found in [26].

5 Domain-Specific Language for WCMS Extensions

Any program
is a model of a model

within a theory of a model
of an abstraction of some portion

of the world or of some universe of discourse.
– Meir "Manny" Lehman

In this chapter, we present a domain-specific modelling language for WCMS extensions. After
discussing related work and existing suitable approaches, we demonstrate the language features
based on the elicited requirements as defined in the previous chapter. The presented language is
the cornerstone of our proposed MDE approach for WCMS extension development. Therefore,
the language is the main requirement in order to address the problem statements as described in
Chapter 1. This also includes the required tool support for the modelling process (cf. problem
statement 5). Therefore, well-formedness rules for the language, corresponding model editors,
and showcase models are introduced. Finally, we will evaluate the DSL and related editors
according to the requirements presented.

5.1 State of the Art
Adopting MDE in the web domain is not a completely new approach. Languages for general
web development like UWE (UML-based Web Engineering) [137], WSL (Web Specific Language)
[225], WebML (Web Modeling Language) [42, 41], WebDSL [247], and the IFML (Interaction
Flow Modeling Language) [27] can be used to create models of complete functionally-rich web
applications. It is worth mentioning, that the IFML language is standardized by the OMG (cf.
[164]) and is popularly used for web and mobile application development, e.g. with WebRatio
[256]. Though, these languages are not suitable for the elicited and confirmed development
scenarios which are stressed in this work, since they do not address WCMS extension development
(UWE, WebML, WebDSL, IFML) or are intended for other systems like Zope and Plone (WSL).
However, the basic language features for data and interaction modelling can be adapted to
WCMS-specific DSL requirements as presented in Section 4.3. Therefore, we will incorporate
those ideas that might suit to the WCMS domain as well.

In addition to existing DSLs for general web applications, only a few approaches for MDE
adoptions in the WCMS domain, considering its specific objects and features, exist. In [248],
Vlaanderen et al. research the adoption of the OOWS method [67] in the WCMS domain using
the OOWS Method Metamodel as DSL. The authors conclude, that the expressiveness of the
meta-model is not sufficient for WCMSs. Trias proposes a meta-model (CMS Common Meta-
model) for WCMS platforms based on an analysis of popular WCMSs in [235]. This meta-model
concludes basic WCMS features which are content, user, navigation, and behaviour. Saraiva et
al. propose the CMS-ML language for concrete WCMS instances [204, 205]. This meta-model
includes the common WCMS platform features and allows the creation of WCMS instance tem-
plates. A drawback of the language, as discussed by the authors, is its missing adequacy for
content-centric WCMSs like WordPress, Joomla, an Drupal.

87

88 Chapter 5. Domain-Specific Language for WCMS Extensions

The ReLiS framework, presented by Bigendako et al. in [25], is considered as a specialized CMS
with extension capabilities. It supports researchers during collaborative conduction of systematic
review (SR) projects. The authors present a DSL, a web-based editor, and further tool support
to automatically build, install, and (re-)configure individual SR projects as extensions to the
ReLiS platform. The authors propose an automatic deployment of generated extensions, which
is a promising support for our proposed infrastructure as well. However, the presented approach
operates on actual extension instances in a running application similar to the previously described
works, whereas our approach addresses extension development on a higher abstraction level.

Apart from these works, there is little recent research on the development practices for WCMSs,
an observation that is confirmed by Norrie et al. [160]. Most of the presented approaches propose
platform-independent meta-models for the development of specific WCMS instances. Though,
none of these works addresses the extensibility of WCMSs through standardized extension types
taking their interdependencies into account. Furthermore, these approaches focus on support
for WCMS administrators, since they only consider use cases of WCMS-based web applications.
MDE support for extension developers during development of additional functional features is
not in the scope of these approaches. Additionally, dependencies between newly developed and
existing extensions are not provided in any of these works. Though, the works are relevant for
the interaction of functional extensions and existing WCMS core features (cf. Section 5.2.4).

Only the work of Filipe et al. represents an adequate and up-to-date approach to close the gap
of missing MDE approaches for WCMS extensions. In [66] the authors present the XIS-CMS
language, a platform-independent DSL for WCMS extensions. The DSL is based on a UML profile
which supports WCMS developers by a smart and dummy approach. More specific, developers
can choose between small models whereas most of the application is generated automatically
(smart) or enhanced and detailed models which are used to create more individual extensions
(dummy) [193]. Even though the DSL is intended as platform-independent solution, it is strongly
evaluated for the DotNetNuke WCMS, which keeps less than 0.2% market share. Even though
this WCMS is not that widely used, it has gained popularity in recent years, since it is based
on Microsoft’s ASP.NET platform. Another drawback of the approach is the missing evaluation.
As this WCMS has a limited extension mechanism like WordPress, another language, providing
suitable abstractions and automation facilities for a more sophisticated extension mechanism is
needed. So, we further research the usefulness and profitability of MDE in the WCMS domain
concerning a more popular WCMS with a more sophisticated extension mechanism.

Addressing the challenges during WCMS extension development and researching the appropri-
ateness of MDE requires a suitable DSL for the high level description of WCMS extensions.
However, none of the previously described works proposes a suitable DSL which can be used
during MDE of the elicited development scenarios 1-5. Existing DSLs do not provide suitable
abstractions for a more sophisticated extension mechanism as the one implemented in the Joomla
WCMS. Moreover, they do not consider dependencies between extensions. Therefore, we pro-
pose a DSL for WCMS extensions hereinafter, taking these aspects into account. In addition,
we provide tool support for this DSL in form of model editors which can be integrated in the
development process of developers in the domain.

5.2 Language Design

In accordance to France et al. [72, p. 43f], the two main challenges during DSL development are
the abstraction challenge (How can one provide support for creating and manipulation problem-
level abstractions as first-class modelling elements in a language?) and the formality challenge
(What aspects of a modelling language’s semantics need to be formalised in order to support
formal manipulation, and how should the aspects formalised?).

5.2. Language Design 89

During the last decade two different, but not excluding, approaches, addressing these challenges,
have been established. The first approach is to implement a completely new language with
respect to the domain which has to be modelled (external DSL). Another approach is to create a
modelling language based on a general purpose language (embedded or internal DSL) [71]. This
allows a more rapid development of the language and decreases the implementation effort, since
most parts of the host language are reused. In order to elicit an appropriate kind of DSL (internal
or external) and modelling format (text-based or visual) for WCMS extensions, we refer to the
requirements of industrial practitioners. This is a requirement for the development of appropriate
model editors which shall be used intentionally by extension developers. Since developers require
a solution close to a programming language (cf. Section 4.1), a textual representation seems to
be the best solution for our approach. Using the Xtext framework allows a straightforward DSL
definition for WCMS extensions, based on a grammar-based DSL . This allows to create both,
the abstract and concrete syntax in one artefact. So, text-based editors can be created with
minimum effort and the addition of visual editors is possible on request.

Based on the extension features of popular WCMSs (cf. Section 2.2.2), we propose the eJSL
DSL. This DSL consists of three main modelling parts: a part to model the data management
of WCMS extensions (entities), a part for the definition of interactions between data repre-
sentations (pages), and a part for the structural description of an extension and its metadata
(extensions).

We decided to define the entities and pages parts as platform-independent as possible. So, we
allow a further use of the DSL, e.g. for other WCMSs. The design of these parts is influenced
by the Simple Web Application Language (SWAL) [28], WebDSL [247], and WebML [208]. This
language describes the data and interaction of a general web application. The extension part
is used for the specification of particular WCMS extensions. Since we decided to use Joomla
as reference WCMS, based on its sophisticated extension mechanism and support for various
extension types, the extension part of the DSL fits perfectly to the Joomla WCMS. However, it
can be used platform-independently for the extension description of any WCMS. An overview of
the main DSL features can be found in Figure 5.1.

Figure 5.1: Overview of the eJSL Meta-Model

90 Chapter 5. Domain-Specific Language for WCMS Extensions

As Figure 5.1 illustrates, the language additionally allows the specification of core elements to
create mappings between new extensions and the existing core features such as content, users,
and menus. Moreover, language features for the specification of own data types (Datatypes)
and parameters (Parameters) exist. These can be used within entity and page definitions. The
latter is used for various parameter description in different contexts. A Joomla component, e.g.,
can contain specific global parameters for its configuration (mostly called options), whereas its
contained elements like views can have their own parameters. Figure 5.2 illustrates an example
for the options of the users component in a Joomla 4 instance. The eJSL grammar is publicly
available as part of the JooMDD project on GitHub: https://github.com/thm-mni-ii/JooM
DD/blob/master/de.thm.icampus.joomdd.ejsl.parent/de.thm.icampus.joomdd.ejsl/sr
c/de/thm/icampus/joomdd/ejsl/EJSL.xtext.

Figure 5.2: Parameters of a Joomla 4 component (Users Component)

Henceforth, we present the language features in detail by illustrating straightforward model
examples. For a better understanding we provide instance models and their counterparts as
installed extension for each part of the language. As running example, we use a conference man-
agement extension which is also available as showcase model of the eJSL DSL (cf. Section 5.5).
This model represents a conference management component for WCMS-based websites. Once
installed, it provides functions to allow the management of common conference entities such as
participants, talks, rooms, and programmes. To this end, the component requires management
views to allow users with specific rights to perform CRUD actions on the respective entities. Ad-
ditionally, links between different views must exist to ensure a user-friendly interaction between
related component views. Figure 5.3 illustrates an exemplary interaction between the list and
details view of the participants view in the backend of the component (running within a Joomla
instance). Whereas the list view represents a list of all existing participants, the details view
allows to edit a participant. If a user with adequate rights clicks on a participant in the list view,
the respective participant must be selected in the related details view. The component provides
several filters (table options) for the list views of the respective entity. Details views allow the
creation of references between different entities. I.e. a participant can be referred to a talk to
be specified as a speaker. To ensure a homogeneous installation, as well as an adequate look
and feel, the component must contain meta information like supported languages, authors, and
the allocation of the component views to the frontend and backend section. This information
is also provided by the conference model. The frontend part of the extension illustrates the
existing conference data such as the programme, rooms, and participants (see Figure 5.4). Like
the backend list views, the frontend views may provide filters for the illustrated entities.

https://github.com/thm-mni-ii/JooMDD/blob/master/de.thm.icampus.joomdd.ejsl.parent/de.thm.icampus.joomdd.ejsl/src/de/thm/icampus/joomdd/ejsl/EJSL.xtext
https://github.com/thm-mni-ii/JooMDD/blob/master/de.thm.icampus.joomdd.ejsl.parent/de.thm.icampus.joomdd.ejsl/src/de/thm/icampus/joomdd/ejsl/EJSL.xtext
https://github.com/thm-mni-ii/JooMDD/blob/master/de.thm.icampus.joomdd.ejsl.parent/de.thm.icampus.joomdd.ejsl/src/de/thm/icampus/joomdd/ejsl/EJSL.xtext

5.2. Language Design 91

Figure 5.3: List and Details View of an installed Conference Component

Figure 5.4: List View of an installed Conference Component (Frontend)

Even though we use Joomla as reference within the examples, the concepts of the language are
not restricted to this WCMS, i.e. the DSL can be used for WCMS extensions in general. The
example conference model is further explained in Section 5.5.

92 Chapter 5. Domain-Specific Language for WCMS Extensions

5.2.1 Data Modelling
The data modelling part of eJSL allows developers to define data entities of an extension and their
relations to each other. This includes popular language features like inheritance, attributes and
references, as well as a flexible type system. Additionally, we introduce a language annotations
feature for model features which can be interpreted by generators during translations to code.
Figure 5.5 illustrates the entities part of the eJSL meta-model.

Figure 5.5: Data Modelling Part of eJSL

An entity can contain typed attributes and references to other entities. More specific, a reference
represents an attribute-to-attribute relation between two entities. To ensure valid references
between existing entity attributes, adequate constraints are implemented (cf. Section 5.3). To
allow inheritance, entities can extend each other. Entity attributes can be typed by predefined
standard types like Integer, Boolean, or Text. Additionally, modellers can define their own
data types which can be used for attribute typing. We decided to choose abstract standard
types, since they can become translated to different type representations in generated code. The
most straightforward example is represented by the type Short_Text for attributes like names
or titles. Whereas the type can be translated to varchar(255) in an SQL installation file, the
representation of the same attribute within a component view may be translated to a HTML text
input type (<input type="text">). This exemplifies the influence of the entities part during
further translations to code. Besides data management of an extension, entities may affect further
representation and interaction definitions of the data as well (e.g. CRUD operations).

Listing 5.1 shows an example for inheritance within an entities definition as part of an eJSL
instance model. Entity elements can be defined once and passed to extending entities. In the
example, the name and address attributes are defined for an abstract Person entity, whereas
the Participant entity extends this entity. During further code translations, the attributes can

5.2. Language Design 93

be inherited to participants, i.e. code for managing names and addresses of participants can
be generated. To avoid a code generation for the abstract entity, we introduce the @preserve
annotation. This annotation can be used for annotations of various model elements to avoid
code generation for annotated model elements. So, the language can support various develop-
ment scenarios such as scenario 2 (development of dependent extensions) and scenario 4 (partial
augmentation of legacy extensions). As the example illustrates, entity attributes can be declared
as unique attribute. Additionally, attributes can be tagged as primary attribute, which
may be useful for explicit database-specific definitions. However, in order to avoid the definition
of IDs within an eJSL model, unique and primary definitions are optional language features. To
prevent the further generation of several unique elements, modellers have full control on how
unique attributes are handled in the generated artefacts. The most common use case is the use
of unique IDs, which can be generated automatically without an explicit model definition.

1 Entity Person @preserve {
2 attributes {
3 Attribute name {
4 type = Short_Text
5 Unique attribute with ID
6 }
7 Attribute address {
8 type = Text
9 }}}

10

11 Entity Pa r t i c i pa n t extends Person {
12 attributes {
13 Attribute a f f i l i a t i o n {
14 type = Text
15 }
16 Attribute n a t i o n a l i t y {
17 type = Text
18 }}}

Listing 5.1: Data Model for Conference Extension (Inheritance and Attributes)

In Listing 5.2, an example for the use of references within an entity definition can be found.

1 Entity Talk {
2 attributes {
3 Attribute t i t l e {
4 type = Short_Text
5 Unique attribute
6 }
7 Attribute speaker {
8 type = Short_Text
9 }}

10 references {
11 Reference {
12 Ent i tyAtt r ibute = speaker
13 ReferencedEnt i ty = P ar t i c i pa n t
14 ReferencedEnt i tyAtt r ibute = P ar t i c i pa n t .name
15 min = 1
16 max = 1
17 }}}

Listing 5.2: Data Model for Conference Extension (References)

94 Chapter 5. Domain-Specific Language for WCMS Extensions

An entity attribute can refer to an attribute of another entity. This information can be relevant
for further code translation steps (e.g. UI code generation). A generated extension should
allow to create relations between existing data entries of different entities. Additionally, the
language allows the definition of reference multiplicities. This may affect further representation
and validation behaviour within generated extensions. Figure 5.6 illustrates how a reference to
another entity attribute can be represented in a generated extension view (installed to a Joomla-
based application). During the creation of a new talk, a speaker from a list of all existing
participants can be chosen. As the minimum and maximum number of speakers is defined to
one, a selection has to be made. Otherwise, a validation error will be shown.

Figure 5.6: Representation of an Entity Reference to another Entity Attribute

5.2.2 Interaction Modelling
To specify the interaction behaviour of a modelled extension, the pages part of the eJSL DSL
is defined (cf. Figure 5.7). This language part can be used for the definition of various entity
representation kinds as well as interactions between them by flexible link definitions and page
actions. This part of the DSL adopts the hypertext modelling concepts from the SWAL [28] and
WebML [208] languages. A page embodies a representation artefact within a WCMS extension,
i.e. a view in a Joomla component or a data representation in a Joomla or Drupal module.
The eJSL language provides several page kinds to facilitate various representation definitions. A
StaticPage describes a static HTML representation whereas a DynamicPage is the abstraction of
the CRUD views of an extension. The latter can be used to define views which represent a list of
existing entities (IndexPage) and a detailed and optionally editable overview of a selected entity
(DetailsPage). To allow inferences by code generators, a dynamic page must contain a reference
to a defined entity. The fields of a DetailsPage can be specifically configured to restrict the
(editable) attributes to a subset of all entity attributes which shall be illustrated within a details
view. Figure 5.3 above shows a list and details view for conference participants in a Joomla 4
component.

In addition to the previously described dynamic page kinds, the (CustomPage) kind is provided,
to allow the model description of custom entity representations which differentiate from standard
CRUD representations. However, to define the representation form of a custom page, modellers
can specify the page kind, i.e. either a list or detail representation, similar to the two Dynamic-
Page representations, or a complete custom definition. In the latter case all required files could
be created during further code generation but require manual refinements in the generated code.

5.2. Language Design 95

Figure 5.7: Interaction Modelling Part of eJSL

To enable interactions between different pages, a page can contain one or more links to other
pages. A link can be mapped to a PageAction which describes an action to be performed if a
link is clicked. The eJSL language provides a set of common page actions in WCMS extension
(PageActionKinds). Page actions can be specified within a page definition in addition to the
represented entity attributes. During a further code generation, a page action may be translated
to a button which will be placed within a specified position (PagePositionKind). Besides external
links, internal links can be specified for pages. Internal links refer to other pages and can deal
with context parameters (LinkParameter).

Listing 5.3 shows an example for a static page representation as part of the conference exten-
sion model. Within a HTMLBody section the HTML body can be defined, which is used in a
corresponding view. This HTML body can contain a complete individual HTML description. In
Listing 5.4 an example definition for a custom page is presented. Besides the referenced entity,
the eJSL language allows to define the page type. This allows to generate different variants
of custom representations. The listing also contains a page action for the action type SAVE.
Consequentially, adequate code for storing data for the referenced entity can be generated. The
(optional) position feature stores the information on how the page action shall be represented in
a generated extension. In this example, a button has to be placed on the top of the view.

96 Chapter 5. Domain-Specific Language for WCMS Extensions

1 StaticPage Welcome {
2 HTMLBody {
3 "HTMLBody"
4 }
5 }
Listing 5.3: Page Model for Conference

Extension (Static Page)

1 CustomPage Speakers {
2 Page type : custom
3 ∗ Entities Pa r t i c i pa n t
4 pageactions {
5 PageAction save {
6 type = SAVE
7 position = top
8 }}}
Listing 5.4: Page Model for Conference

Extension (Custom Page)

A more sophisticated model extract can be found in Listing 5.5 which shows the definition of a
dynamic list representation (IndexPage). The excerpt illustrates a model specification for a list
representation of the participant entity. This representation can be interpreted and generated
e.g. as list view in a Joomla component which illustrates the attributes of existing entities with
context links to a detail view for each list entry (cf. Figure 5.3). As the model excerpt shows,
the language allows to limit the table columns explicitly (representation columns).

1 IndexPage P a r t i c i p a n t s {
2 ∗ Entities Pa r t i c i pa n t
3 representation columns = Pa r t i c i pan t .name, Pa r t i c i pan t . address ,

Pa r t i c i pa n t . a f f i l i a t i o n
4 f i l t e r s = Par t i c i pan t .name, Pa r t i c i pan t . a f f i l i a t i o n
5 l inks {
6 InternalcontextLink D e t a i l s {
7 target = Pa r t i c i pan t
8 linked attribute = Pa r t i c i pan t .name
9 linkparameters {

10 Parameter name = ∗Attribute "Participant.name"
11 }}}}

Listing 5.5: Page Model for Conference Extension (Index Page)

In addition, modellers can specify the list filters. This information can be used during code
translation to create filter functionality for the respective view (see Figure 5.8).

Figure 5.8: Filters for Existing Participants (J4 Backend)

5.2. Language Design 97

The defined context link shows an interaction example between the specified list of an entity
type (Participant) and a detailed representation of a specific entity. The details page definition
can be found in Listing 5.6. The context link is specified to be set for the name attribute of each
list item with the participant details page as target. Additionally, a parameter containing the
name of the selected participant is specified. So, e.g. the name of the clicked list entry will be
sent as GET or POST parameter, dependent on the interpretation by a code generator.

1 DetailsPage Pa r t i c i pa n t {
2 ∗ Entities Pa r t i c i pa n t
3 l inks {
4 InternalLink Index {
5 target = P a r t i c i p a n t s
6 linked attribute = name
7 }}}

Listing 5.6: Page Model for Conference Extension (Details Page)

The specified details representation for a specific participant includes an internal link back to
the participants list page with the identifier Participant. This information should be sufficient
for a further translation to interacting views providing CRUD of participants.

5.2.3 Extension Modelling
The third part of the eJSL language provides language features for the definition of extension-
specific information. So, abstract meta information about the extension, the extension type,
referred pages, and the supported languages can be specified (see Figure 5.9).

Figure 5.9: Extension Modelling Part of eJSL

98 Chapter 5. Domain-Specific Language for WCMS Extensions

As described in Section 2.2.1, the extension mechanism of the Joomla WCMS supports various
extension kinds varying in their functionality and intended purpose. This is the major difference
and advantage in comparison to other WCMSs. Therefore, the extension part of the eJSL DSL
follows the extension kinds supported by Joomla. This allows complex extension definitions, as
required for Joomla, as well as specifications for other systems with less complex extension kinds.
In order to allow further DSL refinements, we decided to implement a composite pattern for the
extensions part. This allows us to easily implement a solution for extension packages which in
turn may contain other extension packages, as well as extensions of various extension kinds.

As Figure 5.9 illustrates, every extension definition may consist of a manifest and language
specifications. The latter can be used to create key value pairs in different languages for language
constants. This feature addresses the internationalisation and localisation feature of WCMSs.
Supported languages can be listed in the format <country code>-<language>. Some WCMSs
support language management in a separated way for the frontend and backend of an instance.
To support such a feature, the eJSL language includes a system tag for language specifications.
The manifest part follows a straightforward approach. It consists of meta information such as
author, copyright, licence, and version of the extension. All required fields can be specified
or should be filled by default values during further code generations. Listing 5.7 illustrates an
example manifest specification, whereas Listing 5.8 shows an exemplary specification of supported
languages for an extension.

1 Manifest {
2 authors {
3 Author "John␣Doe" {
4 authoremail = "john.doe@example.org"
5 }
6 }
7 copyright = "Copyright␣(C)␣2020␣All␣right␣reserved."
8 l icense = "GNU␣General␣Public␣License␣version␣2␣or␣later;␣see␣LICENSE.

txt"
9 version = "1.0.1"

10 }
Listing 5.7: Extension Model for Conference Extension (Manifest)

1 languages {
2 Language en−GB
3 {
4 keyValuePairs
5 {
6 SUCCESS_MESSAGE = "This␣was␣successful!"
7 . . .
8 }
9 }

10 Language system en−GB {}
11 Language de−DE {}
12 Language system de−DE {}
13 }

Listing 5.8: Extension Model for Conference Extension (Languages)

The variety of extension kinds leads to sophisticated modelling possibilities. Depending on the
specified extension kind, extensions can be mapped to existing pages and entities. In particular,
Joomla components and modules are extension kinds which mainly consist of views for the
representation of any kind of data. Therefore, the language allows optional references between

5.2. Language Design 99

these extension types and pages. By adding additional information to such a page reference,
it is possible to describe dependencies between several extensions in an abstract manner. The
Component, Module, and Plugin parts of the language require few mandatory elements as basis
for installable software extensions with a large code base, whereas the Library and Template
parts require elaborated specifications for a further code generation.

Components and modules are mainly used for the management and representation of any data.
Therefore, the respective extension parts of the DSL are tailored to these features, providing
abstract model elements for them. A Component specification can contain references to existing
pages (see Section 5.2.2 above). These page references can be specified for the respective section of
Joomla components (frontend or backend). So, interaction models (pages) can be reused within
different components and sections of one component. In Listing 5.9 an exemplary page mapping
within a component specification is illustrated. For each section of a component (frontend,
backend), the existing participants pages are referred. This is an example for the reuse of the
same page within one component.

1 Component MyConference {
2 Manifest { . . . }
3 languages { . . . }
4 sections {
5 Frontend section {
6 ∗Pages {
7 ∗Page : P a r t i c i p a n t s
8 ∗Page : Pa r t i c i pan t
9 . . .

10 }
11 }
12 Backend section {
13 ∗Pages {
14 ∗Page : P a r t i c i p a n t s
15 . . .
16 }}}}

Listing 5.9: Extension Model for Conference Copmonent

Listing 5.10 illustrates a more sophisticated page reference. The language allows the specification
of how a module can access the data it handles. In the example, the module has a reference
to the existing participants page. Additionally, the example specifies that the module should
use the backend data access object (DAO) of the existing MyConference component instead
of managing the database access itself. Besides this variant other options are possible. The
frontendDAO option can be used, if the DAO of the frontend section has to be used. With
database, it can be specified that the module shall use a component’s data by direct access to
its database tables. If the data should come from a web service, the webservice option can be
used. The from keyword is used to initiate references to the existing component. Instead of a
modelled component, it is possible to create a reference to the WCMS core features (content,
menu, and user). This kind of mapping can also be used for page references in component
specifications.

1 Module p a r t i c i p a n t s {
2 Manifest { . . . }
3 languages { . . . }
4 ∗Page : P a r t i c i p a n t s from : MyConference data backendDAO
5 }

Listing 5.10: Extension Model for Conference Module

100 Chapter 5. Domain-Specific Language for WCMS Extensions

Plugin specifications must include an assignment to a specific plugin kind (Plugintype). The
selectable plugin kinds correspond to the existing ones supported by the Joomla WCMS. This
should cover plugins of other WCMSs as well. So, further code generations can create appropriate
plugin code. Some plugin kinds handle data of existing extensions. Search plugins, e.g., usually
proceed a search on data of specific component data. An example for this can be found in
Listing 5.11. The modelled plugin has to deal with the data of the participants entity.

1 Plugin Part i c ipants_Search {
2 Manifest { . . . }
3 languages { . . . }
4

5 pluginType = search
6 ∗ entit ies = Pa r t i c i pan t
7 }

Listing 5.11: Extension Model for Conference Search Plugin

In addition to the previously described extension kinds, the eJSL DSL supports libraries in the
extension part. Library definitions can contain references to existing entities (see Listing 5.12).
Moreover, libraries can contain classes and packages. Packages in turn can contain other
packages and classes, whereas classes may extend or have references to other classes. Within a
class, modellers can specify methods with methodParameters and a returnValue. This part of
the eJSL language is inspired by common OO implementations. This allows modellers to create
code-related model elements for individual purposes. We forewent to provide language elements
for the explicit specification of class attributes within a class definition. However, since classes
can contain entity references, modellers can augment them by entity attributes. In other words,
entities become classes extended by methods through class definitions.

1 Library MyConference {
2 Manifest { . . . }
3 languages { . . . }
4

5 ∗ Entities Talk , Room
6

7 packages {
8 Package con f e r ence {
9 classes {

10 Class Par t i c ipantHe lpe r {
11 ∗ entit ies = Par t i c i pan t
12 methods {
13 Method checkPayment {
14 returnValue = madePayment : Boolean Defau l t = "false"
15 methodParameters {
16 methodParameter par t i c ipant ID : Integer
17 }}}}}}}}

Listing 5.12: Extension Model for Conference Library

Additionally, eJSL also allows the specification of templates, the last supported extension type
of popular WCMSs. Templates (or themes) are extensions with style definitions for a running
WCMS instance (see Section 2.1.3). This feature is supported by the eJSL language by language
elements for CSS style definitions as the model excerpt in Listing 5.13 exemplifies. Additionally,
module positions can be specified. This allows to place modules or component views on a WCMS
instance. The suitable position type can be assigned to the Positiontype element.

5.2. Language Design 101

1 Template myTemplate {
2 Manifest { . . . }
3 languages { . . . }
4

5 positions {
6 TemplatePosit ion name {
7 pos i t i onParameter s {
8 Posit ionParameter name {
9 pos i t ionType = component

10 }}}}
11

12 cssblocks {
13 CssBlock ".myCSSClass" (
14 KeyValuePairs {
15 c o l o r = "#ff6347"
16 . . .
17 }) }}

Listing 5.13: Extension Model for an Example Template

5.2.4 Core Support
In order to describe interactions between extensions and core features like content, users, and
menus, within an extension model, the eJSL DSL includes a language feature for WCMS core
support. To use this feature necessitates a suitable formal description of the core features.

In [183] a concept for integrating WCMS extension development and concrete WCMS instance
development is presented (see Figure 5.10). This includes the interplay between an instance model
of the eJSL language (e.g. a shop extension model) with the meta-model of WCMS instance
features. So, actual instance models of WCMS instances (actual WCMS-based websites) can
be described in combination with actual instances of a modelled extension. To this end, an
additional meta-model for WCMS instances (cJSL) is defined, which includes the core features
of a WCMS. This model incorporates the concepts which are presented by Saraiva et. al in
[204, 205] and Trias et. al in [236]. These concepts propose MDE of concrete WCMS instances
but provide limited support for the integration of custom extensions.

M1

Extension

Model

M2

eJSL

Instance of

Extension

Model
Extension

Model

M0

WCMS Instance

Model

cJSL

Instance of

Extension References

Core References

Extension

Modelling

Concrete WCMS

Instance Modelling

Figure 5.10: Concept of eJSL and cJSL Integration (cf. [183])

102 Chapter 5. Domain-Specific Language for WCMS Extensions

Based on the comparison of common WCMS features (see Section 2.1.3), the design of the cJSL
language is inspired by the Joomla WCMS. However, the language concepts can be used for
WCMSs in general, since their core features are fairly similar (cf. Section 2.1.2). In Figure 5.11,
an excerpt of the cJSL meta-model is presented, whereas in Appendix B, a detailed overview of
the language features is given.

Figure 5.11: cJSL Meta-Model for Concrete WCMS Instances (Excerpt)

Due to the addressed research direction of this work, the focus has been led to extension develop-
ment and maintenance. Therefore, the MDE concept of concrete WCMS instance development
was not further researched. Though, in order to enable core support during extension modelling,
the WCMS features of the cJSL meta-model should be accessible from an eJSL instance. To this
end, we enriched the eJSL meta-model with features for WCMS core modelling. So, the same
language can be used to create both core models and extension models which can access them
directly without the need of model weaving techniques1. We propose to incorporate the features
of the cJSL meta-model into the core model. Though, extension developers can create own core
models, based on their requirements. References to custom core models may not be supported
by further code generation, though. Figure 5.12 illustrates the proposed core support based on
the same meta-model, whereby the core model includes the features of a core meta-model for
WCMS platforms (in our case the cJSL DSL).

M1 M1

Extension

Model

M2

eJSL

Instance of

Extension

Model
Extension

Model

M0

WCMS Instance

Model

cJSL

Instance of

M2M

Core

References

Extension

Modelling

Concrete WCMS

Instance Modelling

Core

Model

Instance of

Figure 5.12: Core Support based on eJSL Models
1Model weaving describes a generic operation that enables correspondences between model elements from

different models based on different meta-models [53].

5.3. Well-formedness Rules 103

Listing 5.14 shows an example of a user management core model, which can be referenced by an
extension model, as can be found in Listing 5.15. As part of future work, platform independent
WCMS core feature definitions should be added to the DSL definition explicitly. Currently, the
same language features are used for extension and core modelling. More specific, core models
consist of entity and page definitions, which can be referenced by extension models.

1 eJSLModel "Core_User"{
2 eJSL part : CMS Core{
3 entit ies {
4 Entity usergroup {
5 attributes {
6 Attribute name {
7 type = Short_Text
8 }}}
9 Entity user { . . . }

10 Entity v i e w l e v e l { . . . }
11 }
12 pages {
13 CustomPage LoginPage { . . . }
14 CustomPage UserPro f i l ePage { . . . }
15 CustomPage Edi tUserPro f i l ePage { . . . }
16 CustomPage Reg i s t rat ionPage { . . . }
17 }}}

Listing 5.14: Core Model for WCMS User Management

1 eJSLModel "Conference"{
2 eJSL part : CMS Extension {
3 entit ies {
4 Entity Talk {
5 attributes {
6 Attribute t i t l e { . . . }
7 Attribute ^ d e s c r i p t i o n { . . . }
8 Attribute speaker { . . . }
9 }

10 references {
11 Reference {
12 Ent i tyAtt r ibute = speaker
13 ReferencedEnt i ty = Core_User . user
14 ReferencedEnt i tyAtt r ibute = user .Name
15 }}}}
16 pages { . . . }
17 }}

Listing 5.15: Extension Model with Reference to the WCMS Core

5.3 Well-formedness Rules
In order to validate the consistency of extension models, we added a set of well-formedness rules
for the eJSL DSL. These rules can be used to evaluate model instances and ensure valid model
elements. In this sub-section, we present the implemented rules as formalized OCL specifications
and describe them. In addition, we will explain some violation examples for a better understand-
ing of constraints with higher complexity. In Appendix C a collection of all well-formedness rules
as developed in the context of this work can be found.

104 Chapter 5. Domain-Specific Language for WCMS Extensions

The list of constraints for the eJSL language contains a set of similar validation rules for various
contexts. The most straightforward rule concerns the identifiers of instance model elements. For
the most elements the rule for unique identifiers follows a similar implementation as Listing 5.16
exemplarily illustrates for attribute identifiers in the Entity context. For all entity attributes,
the constraint checks if the name property of attribute pairs which are not the same differ from
each other. Additionally, the constraint considers the ’^’ prefix, if an identifier is used which is
spelled like an eJSL keyword.

1 context Entity inv u n i q u e A t t r i b u t e I d e n t i f i e r :
2 s e l f . a t t r i b u t e s
3 −>c o l l e c t (’^’ . concat (name))
4 −>union (s e l f . a t t r i b u t e s −>c o l l e c t (name))
5 −>isUnique (a | a)

Listing 5.16: Constraint for Unique Attribute Identifiers (within one Entity)

5.3.1 Data Modelling
The set of constraints for the data modelling part of the modelling language includes various
rules considering the well-formedness of entities, attributes, and references. Due to the supported
inheritance of entities, some constraints are defined which ensure valid models.

To avoid that an entity inherits from itself, we implemented the constraint in Listing 5.17.

1 context Entity inv ent i tyDoesNotExtendI t s e l f :
2 s e l f . supertype −> exc ludes (s e l f)

Listing 5.17: Constraint for consistent Entity Inheritance

To avoid possible generalization cycles, a more sophisticated problem of inheritance, the previ-
ously described constraint can be easily extended by the closure function. This function ensures a
transitive closure of the whole inheritance hierarchy. So, even cycles in a more complex hierarchy
will be found (Figure 5.13). Therefore, this constraint replaces the previously described rule as
well, since a generalization cycle also exists, if an entity inherits from itself. In [47] and [14], the
theoretical background for transitive closure of inheritance in modelling languages can be found.

Entity 1

Entity 2

...

Entity n

Figure 5.13: Generalization Cycle between Entities

5.3. Well-formedness Rules 105

1 context Entity inv noGenera l i za t i onCyc l e s :
2 s e l f . supertype
3 −> c l o s u r e (supertype)
4 −> exc ludes (s e l f)
Listing 5.18: Constraint for Transitive Closure of Entity Generalization (avoid Generalization

Cycle)

Moreover, rules for attribute types have been implemented. So, invalid or unnecessary type clas-
sifications can be identified. One of these rules limits the auto increment property of attributes to
the Integer type. This constraint relates to the StandardTypes context which is a sub context
of attributes.

1 context StandardTypes inv autoIncrementForInteger :
2 s e l f . type=StandardTypeKinds : : Integer
3 implies
4 s e l f . autoincrement

Listing 5.19: Constraint for Auto Increment Property

In the context of entity references, a set of rules for valid multiplicities exist. Listing 5.20 shows an
example for the valid range of multiplicity values, whereas Listing 5.21 illustrates the constraint
for relations between the minimum and maximum value of a reference. The latter is required
to exclude inaccurate multiplicities like a maximum of ’0’ or a minimum multiplicity, which is
higher the maximum.

1 context Reference inv allowedMinValues :
2 Set{’0’ , ’1’ , ’-1’} −> i n c l u d e s (s e l f . min)

Listing 5.20: Constraint for Multiplicity Values

1 context Reference inv c o n s i s t e n t M u l t i p l i c i t i e s :
2 s e l f . max <> ’0’
3 and
4 (
5 s e l f . min <> ’-1’
6 or
7 s e l f . min = s e l f . max
8)

Listing 5.21: Constraint for Valid Multiplicity Relations (Between min and max)

In addition, a rule for transitive closure of referenced entity attributes is defined (Listing 5.22).
So, loops between references, as Figure 5.14 illustrates, can be avoided. The constraint checks, if
no attribute in the closure of all referenced attributes references on the attribute of the current
reference context. This constraint is relevant for complex models with a sophisticated entity
section.

1 context Reference inv noReferenceCyc les :
2 s e l f . e n t i t y . r e f e r e n c e s
3 −> c l o s u r e (e n t i t y . r e f e r e n c e s)
4 −> f o r A l l (r | r . a t t r i b u t e r e f e r e c e d <> s e l f . a t t r i b u t e)

Listing 5.22: Constraint to avoid Entity Reference Cycles

106 Chapter 5. Domain-Specific Language for WCMS Extensions

Entity 1

Attribute A

Entity 2

Attribute B

Entity 3

Attribute C

Figure 5.14: Reference Cycle between Entity Attributes

5.3.2 Interaction Modelling

In addition to the data modelling constraints, we propose a set of rules for the interaction
modelling part of the language. This includes rules for all page kinds and comprising links to
other pages.

The first set of constraints addresses the consistency between the field type of a details page field
and the type of its mapped entity attribute. An example can be found in Listing 5.23. For edit
fields of the HTML type Datepicker, the constraint checks, if the mapped entity attribute is
of type Time, Date, or Datetime. In Appendix C, further similar rules for type consistency of
detail page fields can be found.

1 context Deta i l sPage inv de ta i l s Pag eF i e ld Da tep i ck e r :
2 l e t attrType : Sequence =
3 s e l f . e d i t f i e l d s . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType

(StandardTypeKinds)
4 in attrType = StandardTypeKinds : : Time−>asSequence ()
5 or attrType = StandardTypeKinds : : Date−>asSequence ()
6 or attrType = StandardTypeKinds : : Datetime−>asSequence ()
7 implies
8 s e l f . e d i t f i e l d s . htmltype . oclAsType (HTMLTypes) . oclAsType (SimpleHTMLTypes)

. htmltype . oclAsType (SimpleHTMLTypeKinds) =
9 SimpleHTMLTypeKinds : : Datepicker−>asSequence ()
Listing 5.23: Constraint to Check if Datepicker (HTML Type) is Mapped to Time, Date and

Datetime (Entity Type)

Another constraint (Listing 5.24) considers the consistency of a link in an index page which
represents an entity. If an attribute is used as link, it must exist in the referenced entity and the
linked details page must refer to the same entity (cf. Figure 5.15).

Entity 1

Attribute A

IndexPage 1

Link Link2DP
DetailsPage 1

ReferencedEntity ReferencedEntity

LinkedAttributeEntity

Figure 5.15: Link Attribute Must Exist in Referenced Entity

5.3. Well-formedness Rules 107

1 context IndexPage inv l i nked IndexAtt r ibu teCons i s t en t :
2 s e l f . l i n k s
3 −> f o r A l l (
4 l | s e l f . e n t i t i e s . a t t r i b u t e s . name−>i n c l u d e s (l . l i n k e d A t t r i b u t e . name)
5 and
6 s e l f . tableco lumns . name
7 −> i n c l u d e s (l . l i n k e d A t t r i b u t e . name)
8)
Listing 5.24: Constraint to Check if Linked Attribute in IndexPage is Consistent to Referenced

Entity Attribute

In Listing 5.25 we present a rule to check if table columns in index pages are consistent to the
referenced entity. I.e., the table columns must be consisting attributes of the referenced entities.

1 context IndexPage inv RepCol sandFi l t e r sCons i s t ent :
2 s e l f . tableco lumns
3 −> f o r A l l (
4 tc | s e l f . e n t i t i e s
5 −> i n c l u d e s (tc . oc lConta iner ())
6 and
7 tc . oc lConta iner () . oclAsType (Entity) . a t t r i b u t e s
8 −> i n c l u d e s (tc)
9)
Listing 5.25: Constraint to Check if Table Columns are Consistent to Referenced Entity in

IndexPage

An additional check is used as consistency check for multiple referenced entities within a page
definition (see Listing 5.26). The DSL allows to define a set of multiple referenced entities which
must consist of references to each other. So, related attributes of different entities can be joined
in one page. A valid model may consist of tree-based entity relationships with one base entity,
since reference cycles are not allowed (see Listing 5.22). Therefore, the constraint fails, if no or
more than one base entity exists.

1 context IndexPage inv Mult ip l ePageEnt i tyReferences :
2 l e t mainEntity : Sequence (Ent ity) =
3 s e l f . e n t i t i e s
4 −> s e l e c t (
5 e | s e l f . e n t i t i e s . r e f e r e n c e s . e n t i t y
6 −> exc ludes (e)
7)
8 in e n t i t i e s −>s i z e () > 1
9 implies mainEntity−>s i z e () = 1

Listing 5.26: Constraint to Check the Consistency of Multiple Referenced Entities

5.3.3 Extension Modelling
The extension modelling constraints mainly consist of checks for unique extension names, lan-
guage keys, and library class and method identifiers. Unique extension names, however are only
necessary for the same extension kind (see Listing 5.27). Other necessary checks, like correct
use of sections or references between extensions, are covered by the automatically generated
validation rules based on the grammar definition.

108 Chapter 5. Domain-Specific Language for WCMS Extensions

1 context CMSExtension inv uniqueExtNames :
2 s e l f . e x t e n s i o n s . oclTypes ()
3 −>f o r A l l (
4 t | s e l f . ex tens ions −>s e l e c t (oclType () = t)
5 −>isUnique (name)
6)

Listing 5.27: Constraint to Check Unique Extension Names (Same Extension Kind)

5.4 Model Editors
To use the eJSL DSL, a set of plug-ins for the most commonly used development environments
in the WCMS domain is provided. So, we avoid the problem of missing supportive tools during
extension development (cf. problem statement 5). Based on own experience and the require-
ments of the WCMS community, these environments currently are IntelliJ IDEA, PhpStorm,
and Eclipse. The provided editor plug-ins are customized for integration with each of these
environments. All IDE plug-ins are available on GitHub and can be easily installed directly to
the preferred IDE via the respective plugin repositories: https://github.com/thm-mni-ii/
JooMDD/tree/master/updateSites. The IDE plug-ins provide a textual editor with syntax
highlighting, error messages, dependency checks, and auto completion support for keywords and
references between model elements. Figure 5.16 illustrates the plug-in representation within
Eclipse, whereas Figure 5.17 shows the plug-in within PhpStorm.

Figure 5.16: eJSL Model Editor within Eclipse IDE

During model-driven engineering of WCMS extensions, developers typically expect kinds of sup-
portive project initialization dialogues to avoid modelling from scratch (cf. Section 4.1). There-
fore, we incorporated a project wizard to the editor plug-ins (see Figure 5.18). This wizard can be
used for the initial creation of the eJSL project structure and allows to choose one of our showcase
models (see Section 5.5 below) as initial example model. This feature proved to be worthwhile
during the application of MDE during WCMS extension development (see Chapter 7).

https://github.com/thm-mni-ii/JooMDD/tree/master/updateSites
https://github.com/thm-mni-ii/JooMDD/tree/master/updateSites

5.5. Showcase Models 109

Figure 5.17: eJSL Model Editor within PhpStorm IDE

Figure 5.18: Project Wizard within PhpStorm IDE

In addition to the IDE plug-ins, a platform-independent web IDE is provided (see Figure 5.19):
https://tinyurl.com/joomdd-web. This web IDE facilitates eJSL model editors with Joomla-
specific transformation tools (see Chapter 6). So, developers can apply MDE of WCMS exten-
sions without installing the plug-ins locally. All the features of the editors in the plug-ins are
also provided by the web-based editor.

5.5 Showcase Models
In order to support extension developers during the use of the eJSL language, a set of showcase
models are provided. These showcase models comprise examples of various complexity, providing
a steep learning curve for new developers. In this section we present some concepts of the
showcase models, whereas the actual eJSL models can be found publicly available on GitHub:
https://github.com/thm-mni-ii/JooMDD/tree/master/de.thm.icampus.joomdd.ejsl.pa
rent/de.thm.icampus.joomdd.ejsl/instances.

https://tinyurl.com/joomdd-web
https://github.com/thm-mni-ii/JooMDD/tree/master/de.thm.icampus.joomdd.ejsl.parent/de.thm.icampus.joomdd.ejsl/instances
https://github.com/thm-mni-ii/JooMDD/tree/master/de.thm.icampus.joomdd.ejsl.parent/de.thm.icampus.joomdd.ejsl/instances

110 Chapter 5. Domain-Specific Language for WCMS Extensions

Figure 5.19: Web IDE Comprising the eJSL Model Editor

Conference and Pre-Course Models

The conference model which is also used as running example in this work, incorporates a set of
straightforward WCMS extensions, including a component with a set of 8 frontend and 8 backend
views, as well as a dependent module which illustrates data from the component. The model
comprises 4 entities (participants, talks, rooms, and programme) with appropriate references to
each other. Additionally, the model contains 8 page definitions - one index and one details page
for each entity including links to each other. Figure 5.20 illustrates the references between the
entities, pages and extensions of the conference model. The conference model was also used as
basic example during the controlled experiment (see Chapter 7) in order to create extensions
with standard CRUD views.

Pages

EntitiesEntities

Index

Participants

Index

Participants

Index

Talks

Index

Talks

Details

Participant

Details

Participant

Details

Talk

Details

Talk

ParticipantParticipant

name: Short_Text

affiliation: Text

nationality: Text

address: Text

name: Short_Text

affiliation: Text

nationality: Text

address: Text

Participant

name: Short_Text

affiliation: Text

nationality: Text

address: Text

TalkTalk

title: Short_Text

description: Text

speaker: Ref

title: Short_Text

description: Text

speaker: Ref

Talk

title: Short_Text

description: Text

speaker: Ref

ProgrammeProgramme

title: Short_Text

time: Datetime

talk: Ref

room: Ref

title: Short_Text

time: Datetime

talk: Ref

room: Ref

Programme

title: Short_Text

time: Datetime

talk: Ref

room: Ref

0...1

Link

Reference

RoomRoom

roomname: Short_Text

position: Text

roomname: Short_Text

position: Text

Room

roomname: Short_Text

position: Text0...1

0...1

Index

Programme

Index

Programme

Details

Session

Details

Session

Index

Rooms

Index

Rooms

Details

Room

Details

Room

Extensions

Component

MyConference

Frontend

Component

MyConference

Frontend Backend

Component

MyConference

Frontend Backend
Module

Talks

backendDAO

Figure 5.20: Showcase Model - Conference

5.5. Showcase Models 111

A similar showcase model which can be used as reference model is represented by the pre-
course model. This model was initially created during the model-driven engineering of a Joomla
extension for pre-course management at the university of applied sciences in Gießen, Germany
(Technische Hochschule Mittelhessen, THM). This and other use cases are presented in Section
6.5.1 below. The pre-course model consists of 4 entities and 8 pages which are referenced all by
the backend and frontend section of a component in the extension section. In contrast to the
conference model, the pre-course model does not include a module definition. The references
between the pages and entities are similar, though.

Shop Model

In contrast to the previously described conference and pre-course models, the shop model com-
prises a more complex model structure, based on various extension kinds.

Extensions

Package

Shop

Pages

EntitiesEntities

CreditInstituteCreditInstitute

name: Short_Text

address: Text

iBan: Text

bic: Text

name: Short_Text

address: Text

iBan: Text

bic: Text

CreditInstitute

name: Short_Text

address: Text

iBan: Text

bic: Text

ProductProduct

name: Short_Text

price: Text

desc: Text

value: Integer

supplier: Ref

name: Short_Text

price: Text

desc: Text

value: Integer

supplier: Ref

Product

name: Short_Text

price: Text

desc: Text

value: Integer

supplier: Ref

OrderOrder

ordNr: Integer

customer: Ref

date: Date

items: Ref

ordNr: Integer

customer: Ref

date: Date

items: Ref

Order

ordNr: Integer

customer: Ref

date: Date

items: Ref

1…*

CreditInstitute

Link

Reference

LocationLocation

postCode: Integer

name: Short_Text

postCode: Integer

name: Short_Text

Location

postCode: Integer

name: Short_Text

Component

ExampleShop

Frontend

Component

ExampleShop

Frontend Backend

Component

ExampleShop

Frontend Backend
Module

Customers
backendDAO

SupplierSupplier

name: Short_Text

bank: CreditInstitute

location: Ref

address: Text

tel: Text

product: Ref

name: Short_Text

bank: CreditInstitute

location: Ref

address: Text

tel: Text

product: Ref

Supplier

name: Short_Text

bank: CreditInstitute

location: Ref

address: Text

tel: Text

product: Ref

CustomerCustomer

name: Short_Text

address: Text

tel: Text

bank: Ref

name: Short_Text

address: Text

tel: Text

bank: Ref

Customer

name: Short_Text

address: Text

tel: Text

bank: Ref1…*

1…*

1...1

OrderItemOrderItem

product: Ref

quantity: Integer

product: Ref

quantity: Integer

OrderItem

product: Ref

quantity: Integer

1…*

1…*

1…1

1…*

Details

Creditinstitute

Details

Creditinstitute

Index

Creditinstitutes

Index

Creditinstitutes

Details

Creditinstitute

Index

Creditinstitutes

Details

Supplier

Details

Supplier

Index

Suppliers

Index

Suppliers

Details

Supplier

Index

Suppliers

Details

Order

Details

Order

Index

Orders

Index

Orders

Details

Order

Index

Orders

Details

Creditinstitute

Details

Creditinstitute

Index

Creditinstitutes

Index

Creditinstitutes

Details

Creditinstitute

Index

Creditinstitutes

Details

Product

Details

Product

Index

Products

Index

Products

Details

Product

Index

Products

Details

Customer

Details

Customer

Index

Customers

Index

Customers

Details

Customer

Index

Customers

Supplier Order, OrderItem

Location Product Customer

Customers, Customer, Products, Product All Pages

Figure 5.21: Showcase Model - Shop

The shop model consists of 7 entities and 12 pages in total. Similar to the previously described
models, one index and one detail page for each entity is defined. The only exception is given in
the orders and order page definitions. These pages refer to the Order and OrderItem entity,
which form a set of belonging entities. The speciality of the shop model can be found in the
extension definition. Similar to the conference model, the shop model contains a component
and dependent module specification. Though, both extensions are specified as part of a package
extension. This information may be helpful during code generation, since implicit dependencies
between the extensions can be assumed.

112 Chapter 5. Domain-Specific Language for WCMS Extensions

Weblinks Model
The weblinks model comprises similar features, such as the weblinks component [181] for the
Joomla WCMS. This component was part of the Joomla WCMS core until 2015 and is now one
of the independent extensions, which is maintained by the Joomla community. This component
is often used as reference by extension developers, since it adopts the typical features of a Joomla
component and follows the coding guidelines of the community (cf. Section 2.2.1). The model
has one entity and 4 pages (2 index and 2 detail pages) but the most detailed parameters and
language definition. Moreover, a component as well as a dependent module is specified. The
model was created automatically by the model extraction tool, which is presented in Section 6.4.

Generic Example Model
In addition to the previously described model examples, a generic model example is provided.
In order to allow a straightforward creation of own models, the simple model consists of model
elements with placeholders. The complexity of the model is similar to the weblinks model. Listing
5.28 shows an excerpt of the pages section which shows the format of the placeholder identifiers
which are used in the example model.

1 IndexPage IndexPage2 {
2 ∗ entit ies = e n t i t y 2
3 representat ionColumns = e n t i t y 2 . a t t r i but e1 , e n t i t y 2 . a t t r i b u t e 2
4 f i l t e r s = e n t i t y 2 . a t t r i b u t e 1 , e n t i t y 2 . a t t r i b u t e 2
5 l inks {
6 InternalLink d e t a i l s {
7 target = Deta i l sPage2
8 l i n k e d A t t r i b u t e = e n t i t y 2 . a t t r i b u t e 1
9 }

10 }
11 }
12

13 DetailsPage Deta i l sPage2 {
14 ∗ entit ies = e n t i t y 2
15 l inks {
16 InternalLink a l l E n t r i e s {
17 target = IndexPage2
18 l i n k e d A t t r i b u t e = e n t i t y 2 . a t t r i b u t e 1
19 }
20 }
21 }

Listing 5.28: Generic Showcase Model with Placeholders (Excerpt)

5.6 Evaluation

In order to evaluate the previously presented DSL and corresponding editors for abstract WCMS
extension specifications, we discuss the coverage of the requirements as defined in Section 4.3
above as well as the adequacy of the language with regard to existing design guidelines for DSLs.
Moreover, we discuss the validity threats of the design decisions. Since the language is designed
for model creation as basis for code generation, we cover empirical evaluation by case studies
using the DSL and its editors in combination with suitable transformation tools within the next
chapter (Chapter 6).

5.6. Evaluation 113

5.6.1 Requirement Verification and Validation
In this sub-section, we examine the coverage of the DSL and editor requirements as defined in
Section 4.3 by our presented artefacts. We check, whether the acceptance criteria for each of the
related requirements is fulfilled or not. This is in accordance with the verification and validation
definitions of Boehm in [26]. In order to address the respective requirement, we use the defined
requirement identifiers for the DSL (R1.1-R1.6) and corresponding model editors (R2.1-R2.3) as
well as the general infrastructure requirements (R5.1-R5.3) as defined in Table 4.7 in Chapter 4.

Subject: Domain-Specific Language

The presented language provides appropriate features for data modelling, within a respective
entities section in a model instance, in order to fulfil Requirement R1.1. This includes the
possibility of defining entities with attributes and references to other entities. Additionally,
inheritance and the specification of own attribute types are provided. The current version of the
DSL allows data modelling independent on the domain or a specific WCMS. This allows to use
the language in various contexts and domains, even though we propose to use the language for
extension definition in the WCMS domain.

With the pages part of the presented language, representations of defined entities can be spec-
ified. To this end, the DSL provides various representation kinds for index, details, static, and
custom pages. These may include custom definitions, e.g. for the entity fields which have to
be represented. Additionally, interactions between pages in form of various link types can be
specified as well as individual actions based on page elements. These features address and fulfil
the acceptance criteria for Requirement R1.2.

By providing the extensions modelling section, the DSL allows modellers to encapsulate mod-
elled pages in form of WCMS extensions. According to Requirement R1.3, abstract modelling
elements for extension meta data and supported languages is provided. The latter can be ex-
plicitly extended by custom translations for specified languages. In order to specify references
between different extensions, the language provides suitable language features. Even though
the eJSL language provides various extension kinds, inspired by the sophisticated extension
mechanism of Joomla, the extension modelling part is abstract enough to allow specifications
independent of the targeted WCMS.

To cover Requirement R1.4, the DSL provides an interface to create references to WCMS core
features (user, menu, content) within the extensions section. This allows the definition of depen-
dencies between deployed extensions, such as a new module which extends a core component of
the Joomla WCMS. However, the restriction to the extension part is a current limitation of the
language which has to be extended to the entities and pages part within future DSL refinements.
So, dependencies to the core can be specified explicitly for extension parts like models or views.

In accordance to Requirement R1.5, the DSL allows @preserve annotations within instance
models for entities, entity attributes and references, and all kinds of pages. This annotation
indicates preservable model elements, shall be ignored during transformation processes like code
compilation. So, development scenarios which consider extensions as dependencies which do not
have to be generated can be realised. Additionally, the development of partial extensions for
already deployed extensions can be covered, if adequate code generators use this information.

With the specification of well-formedness rules for instances of the eJSL DSL, we fulfil Require-
ment R1.6. These rules assure the quality of defined extension models during the modelling
process. So, modellers can avoid errors during the code generation process and inappropriate
extension code. A variety of well-formedness rules are defined in the OCL syntax. So, MDE
infrastructure developers can transfer the rules into appropriate formats, e.g. for validation or
refactoring functionality within corresponding model editors.

114 Chapter 5. Domain-Specific Language for WCMS Extensions

Subject: Model Editors

The presented model editors allow the creation of text-based instance models of the eJSL lan-
guage, including all specified language features (Requirement R2.1). In order to support exten-
sion developers during the modelling process (Requirement R2.2), the introduced editors provide
syntax highlighting, auto completion, and error validation. To ensure readable models after au-
tomatic reverse engineering steps, the editors also provide model formatters.

Since we use the Xtext framework for DSL development, the basis for adequate textual editors,
for both the Eclipse IDE and IntelliJ IDEA, can be generated automatically. These generated
editors already include rudimentary validators, syntax highlighting, and auto completion which
are refined and extended by the previously mentioned formatters. Additionally, an editor plugin
for the PhpStorm IDE and a completely platform-independent, web-based cloud IDE are pro-
vided. The latter incorporates both the DSL-specific editor features for user support as well as
the transformation tools which are explained in the next chapter (Chapter 6). The additional
editors are also incorporated into an automatic build process in order to cover Requirement R5.3.
Moreover, quality assurance (Requirement R5.1) for the editors and showcase models is ensured
by language tests which fail, if DSL refinements are not covered by the showcase models or
editor features which have been additionally added to automatically generated editor artefacts.
The editor features which are automatically generated by the Xtext framework meet the quality
assurance requirement implicitly, since they are directly generated based on the DSL. So, every
refinement is considered during a re-build of the editors.

As indicated by Kahani et al. in [121], working with Eclipse-based MDE tools can become
a challenging task - especially for new MDE adopters. Therefore, the automatically generated
Eclipse based-editors plugins are extended by plugins for other common IDEs used in the WCMS
domain such as PhpStorm, as well as a complete platform-independent cloud IDE. So, extension
developer must not deal with a completely new development environment. The variety of editor
plugins addresses the platform-independence (Requirement R2.3) and enables a straightforward
integration into the preferred development process of extension developers (R5.2). The latter is
also supported by project wizards and the presented showcase models, which provide developers
a starting point for extension development.

5.6.2 Adequacy of the DSL
As discussed in the previous subsection, the presented DSL and editors are developed in ac-
cordance to the specified MDE infrastructure requirements from Section 4.3. However, the
acceptance criteria is expressed on a high level due to the applied iterative development process.
Therefore, we discuss our language design decisions based on published guidelines such as the ones
presented in [8] and [127]. In [8], the authors propose a comprehensive process for framework-
specific language development. Even though the guidelines are well-described with case studies,
it would go beyond the bounds of this work to follow the complete guidelines. Though, the
proposed development process is similar to the followed iterative process of this work, which is
driven by the common development scenarios in the domain (Section 2.3). Karsai et al. propose
a lean set of guidelines for DSL development in [127], based on the following categories: Language
Purpose, Language Realization, Language Content, Concrete Syntax, and Abstract Syntax. Based
on these categories, we reflect on the language design of our DSL hereinafter.

Language Purpose: The proposed language will be used for code generation and model discov-
ery of WCMS extensions in order to cover the identified development scenarios. Extension
features are considered on a high abstraction level. So, the language can be used inde-
pendently for any target WCMS. The features are elicited from reference extensions and
interviews with industrial practitioners. These developers are the target group which is
intended to use the language.

5.6. Evaluation 115

Language Realization: Due to the specialised requirements of the problem domain, the lan-
guage was implemented from scratch. Though, existing useful concepts from other lan-
guages have been incorporated. Based on the targeted modellers, we decided for a textual
realisation based on Xtext. However, a graphical concrete syntax can be created on the
basis of the defined DSL. By using Xtext, the abstract syntax of the language is generated
in the form of an ecore model, which may serve as basis for a GMF-based editor. The
well-formedness rules were specified in OCL, allowing to embed them into the language
and corresponding editors. By using a well-known type system as basis in the language
allows extension developers a straightforward adoption.

Language Content: To keep the language as simple as possible, we decided to add necessary
domain concepts iteratively, based on the reference extensions and requirements from actual
developers. So, it is possible that the language is missing some special features which
are supported by the domain but not necessarily used by developers. We limited the
number of language elements and possible constellations by our well-formedness rules.
Additionally, only a few elements must be mandatory in an instance model. We researched
our reference extensions carefully during the decision of putting an extension feature into
the DSL or corresponding transformation tools. E.g., the DSL does not reflect the extension
architecture of a specific WCMS. This technological knowledge must be placed in code
generators for a specific WCMS (cf. Section 6.2.2).

Conrete Syntax: The textual concrete syntax of the eJSL DSL adopts the common notation
of extension developers who are used to write program code in web languages like PHP and
JavaScript. To this end, a simple descriptive notation with curly brackets for scope borders,
sets of key-value pairs, and symbols for the definition of comments is provided. These syntax
elements allow the specification of hierarchical structures and can also be learned even by
less experienced developers. One difference, compared to common programming languages
in the domain, is that one symbol (=) is used for both declarations and assignments. This
feature, however, was not criticised during the tutorials or experiments. By using the same
notation style throughout the whole language for various features, we intended to increase
the understandability and make the language more intuitively usable. All identifiers can be
specified with qualified names, to provide references between model elements of different
models organized in different files. Explicit import and export features are not supported.

Abstract Syntax: Most of the elements in the abstract syntax align to the concrete syntax in
order to keep internal transformations and model presentation as simple as possible. To
this end, similar concepts are reused through sub-classing, e.g. for page and extension
kinds, or all kinds of types which are extendable by custom types in an instance model.
Moreover, the composite pattern is realised for extension kinds in order to extend them
easily during further refinements. The composition of the language into entities, pages,
and extensions enables modularity and increases the flexibility during modelling.

5.6.3 Threats to Validity
The presented DSL for WCMS extensions and the corresponding text-based editors were devel-
oped in accordance to the specified requirements as defined in Section 4.3. These requirements
resulted from the experience of extension developers for the Joomla WCMS. However, external
extension developers were not involved during the evaluation of the resulting artefacts after each
iteration. This is a threat to internal validity, since design decision which were implemented in
earlier versions could have affected the current state of the artefacts. In Chapter 7, we present
the results and lessons learned of a hands-on tutorial with external developers who used a late
version of the DSL in addition to Joomla-specific transformation tools. Some of the results in-
dicate suboptimal design decisions which could have been avoided, if additional experts were
involved earlier.

116 Chapter 5. Domain-Specific Language for WCMS Extensions

A threat to external validity is based on the requirements which are derived from the experience
of developers from the Joomla community, as well as the feature comparison of the most popular
WCMSs (WordPress, Joomla, and Drupal). Further research has to ensure that the language is
also suitable for other less popular WCMSs like TYPO3, Shopware, or Contentful. Moreover,
the user experience evaluation of the language and the corresponding editors is currently limited
to extension developers from the Joomla community, based on the empirical assessments which
were conducted. Event though the language is designed platform-independently, it has to be
further researched, if it is also suitable for other WCMSs with high popularity.

6 Transformation Tools

If forward engineering is about moving from high-level
views of requirements and models towards concrete realizations,

then reverse engineering is about going backwards
from some concrete realization to more abstract models [...]

– Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz in [54]

In addition to the previously described modelling language for WCMS extensions, we introduce a
set of transformation tools in the context of the Joomla WCMS in this chapter. These tools com-
plete the MDE infrastructure to perform forward and reverse engineering steps in order to apply
the common WCMS extension development scenarios in a model-driven manner as proposed in
Section 4.2. This includes the development of new independent and dependent extensions as
well as the migration and modernization of legacy extensions. So, the problem statements 1-5
as presented in Chapter 1 are addressed. We choose Joomla as target WCMS, since it provides
the most sophisticated extension mechanism, compared to the other market leaders (cf. Section
2.2.2). So, starting with Joomla as first target platform, implementations for other WCMSs
should be possible with less effort as part of further work. We discuss related work and highlight
suitable approaches which were considered during tool development. Moreover, we introduce
general concepts and Joomla-specific implementations of both code generators (model-to-code
transformation) and reverse engineering facilities (code-to-model transformation). The presented
generators address the challenges which occur during the development and migration of Joomla
extensions (cf. problem statements 1 and 2), whereas the reverse engineering facilities address
the challenges which originate from dealing with legacy extensions (cf. problem statements 3
and 4). The platform-specific implementations serve as proof of concept and can be directly used
during empirical studies such as the ones presented in this work (cf. Section 7.3 in Chapter 7).

The presented tools are incorporated with the previously described DSL and corresponding
editors as complete MDE infrastructure for extension development targeting the Joomla WCMS.
The infrastructure project, called JooMDD, is publicly available on GitHub: https://github
.com/thm-mni-ii/JooMDD.

6.1 State of the Art
As already mentioned in Chapter 5, several MDE approaches in the web domain exist, but do
not cover the domain-specific requirements in order to develop WCMS extensions. For example,
the code generation approach as proposed by Saraiva et al. in [206] covers concrete WCMS
instances but does not consider extensibility scenarios through standardised extension types
taking their interdependencies into account. However, some of these works provide adequate
transformation approaches which are highlighted within this section. Moreover, we compare
existing WCMS-specific MDE infrastructures, based on the development scenarios and problem
statements which are stressed in this work. This includes general WCMS-specific generators
for model-to-code transformations and reverse engineering facilities for code-to-model transfor-
mations. Additionally, we research existing Joomla-specific transformation tools and determine
their adequacy for our MDE approach.

117

https://github.com/thm-mni-ii/JooMDD
https://github.com/thm-mni-ii/JooMDD

118 Chapter 6. Transformation Tools

6.1.1 Translation to Extension Code
In accordance to Jörges [114], code generation is the key factor for the application of an MDE
approach, treating models as primary development artefact. As described in Chapter 3, code
generators enable model-to-code transformations based on different implementations such as
template-based generators. The development of code generators requires the elicitation of repet-
itive code parts which e.g. are put into generator templates. In [45] the authors present a
technique for the automatic examination of existing code in order to identify schematically re-
dundant code parts. A consideration of this aspect in this work will be a valuable contribution
in order to minimize the effort during generator development.

Based on the results of our conducted pre-study during the examination of reference extensions
for the Joomla WCMS, almost 70% of the researched views are characterised by their provided
CRUD functionality (cf. Section 4.1). This is a promising aspect which may be addressed by
automatic code generation in order to reduce development effort during extension development
(cf. problem statement 1 and 2). Papotti et al. evaluate the efficiency improvement during
CRUD-intensive web application development in [177]. The authors conducted an experiment in
a university environment and observed a time reduction of 90.89% by CRUD code generation.

In [194], the authors examine the CRUD aspect in web applications rigorously and propose an
approach for the automatic extension of CRUD operations in IFML models. Though, since we
decided to keep the DSL for WCMSs as abstract as possible, explicit CRUD definitions are not
provided on model level. Therefore, in contrast to this work, we presuppose that according
code generators implement this feature to implicitly generate CRUD operations based on a
representation kind in the instance model (cf. Section 5.2.2). The automatic generation of code
for CRUD-intensive web applications has been addressed by various works, mostly in form of
scaffolding generators. These generators can be used during early stages in development, but do
rarely adopt an MDE approach in order to support developers throughout the whole development
life cycle. Typically, these approaches operate at a low abstraction level and require manual
adaptions of generated artefacts.

As previously mentioned, the MDE infrastructure presented in [66] is the only work addressing
MDE of WCMS extensions more extensively. The proposed concepts are intended to cover
extension development platform-independently. However, the authors evaluate their proposed
concepts with code generators on the basis of the DotNetNoke WCMS, which has a significantly
less market share than WordPress, Joomla, or Drupal. Moreover, the adequacy of the approach
is not evaluated for WCMSs with a more sophisticated extension mechanisms, such as provided
by the Joomla WCMS. Nevertheless, we take concepts like e.g. the smart and dummy approach
[66, 193] during the development of code generators for MDE support into account.

Existing platform-specific code generators in the WCMS domain are limited to initial develop-
ment scenarios for independent and corresponding dependent extensions (cf. problem statement
1, 2, and 4). Table 6.1 summarizes existing tool support for the stressed development scenarios
of this work (cf. Section 4.2), exemplarily for the Joomla WCMS (version 3).

Table 6.1: Tool support for WCMS Extension Development Scenarios (for Joomla 3)

Tool S.1 S.2 S.3 S.4 S.5
Component Generator [217] ✓ ✗ ✗ ✗ ✗
Joomla Component Builder [242] ✓ ✗ ✗ ✗ ✗
Component Creator [102] ✓ ✓ ✗ ✗ ✗
Component Architect [214] ✓ ✓ ✗ ✗ ✗
JCCreator [4] ✓ ✓ ✗ ✗ ✗

6.1. State of the Art 119

Even though initial development scenarios are covered (cf. scenario 1), none of the frameworks
provide partial extension augmentation (cf. scenario 2 and 4), or support extension developers
during extension migration (cf. scenario 3) or modernization activities (cf. scenario 5). Never-
theless, we consider existing implementation details of these works during the implementation of
more sophisticated code generators for WCMS extensions below.

None of the existing approaches, presented in this section, can be used as direct MDE solution
for the specified problems during development scenarios 1-5 which require model-to-code trans-
formations. The discussed related work either addresses WCMS instances with their extensions,
only supports WCMSs with a less sophisticated extension mechanism, or exclusively supports
developers during development scenario 1 (e.g. for the exclusive generation of CRUD code).
Therefore, we present concepts and platform-specific implementations for model-to-code trans-
formations by code generators taking all the presented WCMS extension development scenarios
and related problem statements into account.

6.1.2 Handling of Legacy Extensions
In order to apply augmentation, modernization, or migration scenarios in a model-driven manner,
appropriate reverse engineering approaches for existing software artefacts must be realised. So,
the challenges during these scenarios can be addressed. This includes tedious reverse engineering
processes required for migration or augmentation of legacy extensions (cf. problem statement 3),
as well as management of dependencies between extensions (cf. problem statement 4). Various
existing approaches address reverse engineering in a model-driven context (MDRE). Most of the
approaches provide general concepts for model extraction based on existing source code, whereas
only a few works consider MDRE in the context of WCMSs.

A general approach for automatic extraction of models based on source code is presented in [6].
The authors propose and evaluate automatically retrieving of framework-specific models, based
on a simple code analysis technique. Due on the promising results, we follow a similar approach
in order to apply model discovery of WCMS extensions. However, further model transformation
techniques are required, since the abstraction level of resulting models is too low to fit to the
previously described WCMS-specific DSL.

Frameworks such as MoDisco [29] and MEFiSTo [82], provide solutions for MDRE from source
code to various abstraction levels including code-to-model and model-to-model transformations.
The MoDisco framework provides an environment for tool developers in order to develop solu-
tions for various MDRE scenarios. The framework facilitates a set of Eclipse plug-ins based on
EMF and supports several OMG standards [29]. This includes meta-models, model discoverers,
and a set of use-cases. A speciality of MoDisco is given by its extendibility by custom model dis-
coverers in form of code parsers. This feature led to a variety of discoverers for various systems.
However, most of the discoverers cover Java-based applications, whereas the implementation of
web-based languages, such as PHP, received less attention. Existing Java-based parsers for the
PHP language are outdated and can therefore not be used within custom discoverers. Therefore,
the framework can not be directly used in order to fulfil the model extraction requirement (cf.
Requirement 4.3.4) of this work which necessitates suitable discoverers for web-specific languages
such as PHP and JavaScript.

With the MEFiSTo framework [82], tool developers can specify domain-specific MDRE solutions
based on standardised meta-models such as the Knowledge Discovery Metamodel (KDM) [163].
In contrast to MoDisco, MEFiSTo addresses the development of modernization scenarios based
on Situational Method Engineering [89]. The framework allows the flexible definition of MDRE
processes, but requires a set of corresponding tools which are not provided by the framework.
These tools, such as parsers and code generators, have to be implemented by tool developers
in order to apply specified modernization scenarios. Another drawback of the framework is its

120 Chapter 6. Transformation Tools

limitation to the KDM standard. MDE adoptions which are not based on this standard are not
supported. This also includes the proposed approach of this work (cf. Section 4.2) which is based
on the eJSL modelling language (cf. Chapter 5).

Another promising approach in the context of this work is represented by the Gra2MoL language
[40]. This rule-based transformation language serves as interface between grammarware and
meta-models (cf. Section 4.2). The language is intended to retrieve information out of source code
and transform it to instances of abstract meta-models. In contrast to MoDisco and MEFiSTo,
which require external model transformation tools, Gra2MoL is based on a rule sets which serves
as layer between the grammar of the input code and the meta-model of the target instance model.
So, the approach is usable for legacy code of any GPL. This makes the language useful during the
development of model discoverers, also for MoDiso. Gra2MoL is available as part of an Eclipse
plugin which is not updated since 2014 [39]. Unfortunately, the plugin is not compatible to newer
IDE versions of Eclipse. Though, we will consider the concepts of Gra2MoL, as described in [40],
during the development of adequate model extraction facilities for WCMS extensions.

Existing MDRE approaches in the web domain are tailored to specific frameworks, modelling
language, or aspect such as the approaches described in [128] and [203]. The authors of [128]
consider automatic model extraction based on ASP.net applications and a transformation to
WebML [42, 41], whereas the proposed MDRE process in [203] addresses the examination of
graphical user interfaces in order to extract model information. Even though the latter work
is relevant for our work, since we have to retrieve UI information from legacy extensions such
as extension view or widget representations (scenario 2-5), these works are not suitable in our
specific domain.

MDRE principles have also been applied to address augmentation issues in the WCMS domain.
Trias et al. introduce a reengineering method [237] and a reverse engineering tool for the migra-
tion of complete WCMS-based applications [238]. So, migrations of an instance from one WCMS
to another WCMS can be realised. Even though the followed method can potentially improve
the model extraction step based on our concept (cf. Section 4.2), its usability was presented by
case studies for simple widgets for WordPress and Drupal, WCMSs with limited extensibility
features. The usefulness for other WCMSs with a more sophisticated extension mechanism, such
as Joomla, has yet to be investigated. We will incorporate the proposed method within our
concept definition in this chapter, though. In [246], Vermolen et al. present an approach for the
evolution of data models. This approach provides a well-defined strategy to deal with changes
to existing data entities. Incorporating it into our work will help us to improve the extensibility
during the (partial) augmentation of existing legacy extensions (scenario 2 and 4).

The previously described related work in the context of reverse engineering of legacy WCMS
extensions is not directly adoptable to our specific problem statements. The abstraction level
of resulting models created by most of the existing model discoverers is too low. Another open
problem is, that most of the proposed model discoverers in the web domain are outdated or
exclusively tailored to Java-based applications. Existing parsers for common web-based languages
need to be implemented by tool developers in order to address reverse engineering challenges
(cf. problem statement 2 and 3) related to modernization (scenario 3 and 5) or augmentation
scenarios (scenario 2 and 4).

6.2 Code Generation of WCMS Extensions
In this section, we present the design decisions for the implementation of WCMS-specific code
generators, based on the eJSL DSL which was presented in the last chapter (Chapter 5). To
this end, we introduce a general generator architecture based on adequate architectural patterns.
Moreover, a prototypical implementation of this architecture is demonstrated. This implementa-
tion comprises of extension generators for two major versions (3 and 4) of the Joomla WCMS.

6.2. Code Generation of WCMS Extensions 121

6.2.1 Concept
Implementing a code generator for a specific domain is a complex task, since no common architec-
tures or implementation methodologies are proposed. Usually, generators implement monoliths,
tailored to a specific language or system. This leads to the following challenges during generator
development and maintenance as stated in [62]:

• For each generator that is added (i.e. each new supported platform), redundant decisions
regarding design and architecture have to be made.

• Adding new generators is also burdensome.

• Supporting a high number of generators obviously earns no “scientific merits” but it is
required for business acceptance.

• Maintaining generators has an almost linear effort with regard to the number of generators.

• Platforms often provide best-practices for the architecture of apps. However, these best
practices do not incorporate the peculiarities of the code generators.

To tackle these challenges, we propose a reusable and extendible generator architecture. This
architecture realises various common design patterns1. So, we can ensure more quality in gen-
erator implementations and simplify further adjustments. Moreover, our proposed architecture
supports the extension of the generator in order to implement a cross-platform approach by
variability, based on the template-based approach (cf. [81]).

In accordance with the statements of [197], it is common practice to divide a generator into a
front-end and back-end. Thereby, the front-end part takes over the part of language processing,
i.e. parsing input models and creating an internal representation. The latter then can be used
by the back-end, the actual code generator. We follow these guidelines in order to split the
generator architecture into a front-end and a back-end part with platform-independent and
platform-specific components. So, we avoid a monolithic architecture and increase the reusability
of the platform-independent parts of the generator.

Generator Front-End

Since the eJSL grammar has been defined with the Xtext framework, corresponding application
code is automatically generated. This code serves as model API in Java applications and can be
directly used within generator templates to access model information of eJSL model instances.
The generated API code provides model elements as structured as in the Xtext grammar. How-
ever, the logic for sophisticated relationships between model elements has to be implemented
by the generator itself. Therefore, we propose a decorator pattern to extend the automatically
generated API code by additional semantic conjunctions. This structural pattern is a valuable
alternative to sub-classing, allowing the attachment of additional members and methods. This
part of the generator, the decorator API, serves as the interface between the API code of the
eJSL language (model API) and platform-specific code templates of the generator as part of the
generator front-end.

Figure 6.1 presents the proposed architectural generator frontend concept including the generated
model API which is extended by the decorator API. It consists of interfaces and helper classes
which are derived by the original model API. These can be mapped to the platform-specific
back-end part of the generator, independent to the targeted platform. The intention behind this
decision is to increase the reusability of the generator with template variants as much as possible.
So, further refinements of the language and augmentations of the generator can be supported
(e.g. to support a new platform version or another system).

1Design patterns describe reusable architecture guidelines for software systems. For further reading see [74]
and [77].

122 Chapter 6. Transformation Tools

EjslFeatureImplEjslFeatureImpl

<<Interface>>

EjslFeature

<<Interface>>

EjslFeature

ExtendedEjslFeatureImplExtendedEjslFeatureImpl

<<Interface>>

ExtendedEjslFeature

<<Interface>>

ExtendedEjslFeature

ResourceTransformerResourceTransformer

SpecificWCMSTransformerSpecificWCMSTransformer

+operation()

+operation()

+operation()

+additionalOperation()

+operation()

-additionalMember

+doTransformation()

+completeTransformation()

e.g. Joomla3Transformer

(platform-specific)

e.g. EntityImpl

(platform-independent)

e.g. ExtendedEntityImpl

(platform-independent)

Figure 6.1: Generator Front-End including the Decorator API and Resource Transformer

In order to follow the convention over configuration design paradigm, the generator allows ab-
stract models as well as concrete models (smart/dummy approach [66, 193]). Therefore, in order
to achieve full extension code, input models become preprocessed in an initial step of the code
generation process. To this end, the generator includes a resource transformer, which decorates
the input model by default model information, required for the code generation process. The
resource transformer is a composition of platform-specific transformers which add model ele-
ments that are required for a specific WCMS (cf. Figure 6.1). Examples for such elements are
entity attributes for WCMS-specific metadata (e.g. IDs, timestamps, or states), standard links
from index to details pages, or WCMS-specific extension parameters or languages. To access
model elements properly, the generated model API is used. So, the actual model elements can
be checked and, if necessary, updated. By implementing transformation logic within the pre-
processing front-end part of the generator, the back-end part can stay as lean as possible and
the required effort to handle the diversity of language features can be reduced to a minimum.
However, the transformer may apply platform-specific transformation rules for a specific WCMS.

Generator Back-End

In the platform-specific back-end part of the generator, we inherently propose an architecture
which is close to the structure of the generated code. This allows developers with technical
knowledge to augment the platform-specific part of the generator, if needed. Xtend, for instance,
provides mechanisms for reusing generator templates by separating them into reusable units.

As Figure 6.2 shows, the architecture of the proposed generator back-end follows a builder pattern
on two levels. First, we propose to split up the logic for the actual code generation separated
by the main features of the DSL: Entity, Page, and Extension. This allows a further extension
of the generator, if new features will be added to the language. On the next level, we follow
the same pattern for the actual parts of a specific model feature based on the targeted platform.
An exemplary implementation is the ExtensionGenerator which contains a handler (director)
for extension generation for a specific WCMS such as Joomla 3. This handler organizes the
specialized code generation for each technological feature of the chosen WCMS (version) by
generator templates. Examples for such special features are the variants of extension kinds

6.2. Code Generation of WCMS Extensions 123

which are provided by the WCMSs. This architecture simplifies the augmentation and increases
the interchangeability of the generator with templates for other WCMSs. If another system will
be supported by extension generation, a new handler for the new system must be implemented
and added to the specific feature generator. As we present below, we took advantage of this
pattern during the implementation of Joomla-specific generator templates (see Section 6.2.2).
We implement platform-specific handlers for different major versions of Joomla, which differ
tremendously in their code architecture.

<<Director>>

EjslGenerator

<<Director>>

EjslGenerator EjslFeatureGeneratorEjslFeatureGenerator

EntityGeneratorEntityGenerator PageGeneratorPageGenerator ExtensionGeneratorExtensionGenerator

<<Director>>

ConcreteWCMSHandler

<<Director>>

ConcreteWCMSHandler
WCMSFeatureGeneratorWCMSFeatureGenerator

ConcreteWCMSFeatureGeneratorConcreteWCMSFeatureGenerator

+beforeGenerate()

+doGenerate()

+afterGenerate()

+doGenerate()

+doGenerate() +doGenerate() +doGenerate()

+doGenerate()
+generate()

+generate()

e.g.

Joomla3ComponentGenerator

(platform-specific)

e.g.

Joomla3ExtensionGeneratorHandler

(platform-specific)

platform-independent

platform-independent

Figure 6.2: Generator Back-End including the WCMS-specific Code Templates

With the decision to split up the back-end part of the generator into a DSL-based and a
technology-based part allows full control of the code template separation. The main advantage
of this separation is the possibility of using and extending the code templates for both full and
partial code generation. If required, only fragments of the generator templates can be used for
generating parts of an extension, e.g. if developers want to partially generate the entity-specific
(data management) part of an extension. This is achieved by the direction of the EjslGenerator
class, which contains all specific feature generators. The same applies to the technology-based
part, e.g. if only the frontend part of a Joomla component has to be generated.

124 Chapter 6. Transformation Tools

Particularly worth mentioning is the containment relationship between actual implementations
of the EjslFeatureGenerator class. This allows us to reuse them for various contexts. The
architecture is comparable to the frame processor architecture as described in [221]. The code
templates are implemented as reusable frames which return variable code templates, based on
given arguments, to the actual code generator class. In concrete terms, we use this architecture
to allow a full generation of extensions using the entity and page implementation, whereas the
latter is also used for partial code generation. The benefit of this approach is, that the same
template code can be reused for various needs without implementing redundant template code.

General Generator Workflow

The whole generation process becomes initiated by the EjslGenerator class, which runs the
resource transformation and creates instances of the implemented generator classes. The general
generator workflow consists of the following steps taking an instance model of the eJSL language
as input and creating WCMS-specific extension code:

1. Preprocessing: During the initial preprocessing step, the input model becomes decorated
by default model information which is required for the subsequent generation process. This
task is done by the resource transformer (cf. Figure 6.1).

2. Extension Generation: In the next step, the generation of platform-specific extension code
is performed. To this end, the platform-independent extension generator is initialized. This
generator object creates instances of extension handlers, such as respective extension han-
dlers for Joomla 3 or Joomla 4, and invokes the actual platform-specific code generation
process. The handlers manage the code generation by invoking feature generator imple-
mentations. These contain code templates for the features of the targeted platform, such
as the code generation of component manifest files for Joomla 3. For accessing instance
model information, the decorator API is used (cf. Figure 6.2). The extension generator
also initializes the page and entity generators which create instances of platform-specific
page and entity handlers. These, in turn, invoke the generation process of platform-specific
extension code based on page and entity definitions in the input model. Examples are list
and details views (pages) or SQL installation files (entities) of a Joomla 3 component.

3. Partial Code Generation (optional): In addition to the extension generation, the generator
concept also allows the optional generation of partial extension code based eJSL features -
so far pages and entities. To this end, the EjslGenerator class may instantiate the page
or entity generators directly (cf. Figure 6.2) which instantiate handlers for the platform-
specific code generation based on the respective feature (see step 2 above). We propose
to generate placeholders for all code fragments which require extension-specific model-
information which is not given during partial code generation.

6.2.2 Joomla-specific Extension Generator
In this section, we present a prototypical implementation of the previously described generator
concept. We decided to use the Joomla WCMS as target platform, since it provides the most
sophisticated extension mechanism (cf. Section 2.2.2). For the sake of conducting research on
the profitability of MDE in the WCMS domain and addressing the related problem statements
in the domain (cf. Chapter 1), we realised platform-specific template variants for two different
major Joomla versions (3 and 4) which differ exceedingly in their actual code architecture. So,
we can cover the migration scenario, as stressed in this work (scenario 3) and provide a viable
solution to reduce required effort during development and migration of Joomla extensions (cf.
problem statements 1 and 2). The realised generator can serve as adequate example for further
generator implementations for other WCMSs with similar or less extension features. During the
development of the generator templates, we followed the described procedure of Section 3.3.6.

6.2. Code Generation of WCMS Extensions 125

Reference Extensions for Joomla 3 and 4

We inspected a variety of reference extensions including Joomla core and popular third-party
extensions as well as reference extensions of experienced Joomla developers. In order to fulfil
the required extension architecture and to ensure correct extension code as investigated in the
first part of this work, the reference extensions have been evaluated based on the community
guidelines and, if necessary, re-engineered. The reference extensions were reverse engineered in
order to identify generic and schematically recurring code fragments. The selected reference
extensions consist of extension features which are important in the context of this work. This
includes CRUD-intensive views, internationalisation and localisation features, and interactions
with other extensions. Based on the selection of Joomla as target system, we investigated a vari-
ety of adequate extension kinds such as components, modules, plugins, templates, and libraries.
Extensions with less or no data management are excluded during the investigation, since they are
not addressed by our MDE approach. The same applies to non-interoperable extensions which
are typically used for very special tasks such as components for backing up a Joomla instance
(e.g. Akeeba Backup [3]).

To support the migration scenario with our implementation, we researched Joomla 3 and 4
extensions which differ in their architecture on file and code base. Especially The extension ar-
chitecture of components differs tremendously between both versions. In contrast to the required
MVC structure on file and code base in Joomla 3 (cf. [168]) components, Joomla 4 components
must follow an improved file and code structure, still following the MVC approach (cf. [169]).
Moreover, Joomla 4 enables an orthogonal component structure which separates components into
vertical and horizontal [44, 172, 100]. Independent extensions such as the Joomla 4 core extension
are developed as vertical components (cf. scenario 1), whereas third-party developers can create
horizontal components to add additional features on top of them (cf. scenario 2). The latter are
useless without the vertical components on which they rely on. In addition, Joomla 4 requires
extension developers to make use of latest technologies like Bootstrap 4 [173], removed obsolete
technologies like the JavaScript framework MooTools [191], and specified PHP 7 as minimum
version, supported by the Joomla core. All these innovations must be taken into account when
developing suitable generator templates for Joomla 3 and 4 extensions.

Whereas Joomla 3 is in a stable version for years, including matured documentation, as of 2020
Joomla 4 is still in a beta phase. The presented generator in this chapter is based on the Joomla
4 alpha release from 2019 (Alpha 12 [167]), following the architecture which was documented
during this time. A stable release is planned for late 2020. In the following sections, we present
the differences between the two Joomla versions including an illustration of the required file
structures for each version. However, we will not present differences on code level, due to the
constantly changing code base. For further reading see the developer documentation for Joomla
3 [168] and Joomla 4 [169].

Preprocessing

As previously described, instance models of the eJSL language undergo an automatic prepro-
cessing step. So, abstract instance models become annotated before they are used during the
actual code generation process. The preprocessing step is executed by an implemented resource
transformer which includes platform independent and platform-specific decorations for model
instances.

Considering the data modelling (entities) part of an eJSL instance model, several preprocessing
operations are executed. Since Joomla is based on a relational database, primary attributes are
required in order to allow relationships along relations. Therefore, each entity is decorated by a
primary attribute, if none is defined. The DSL allows to create references between entities without
specifying primary attributes. To keep the generator as lean as possible, we decided to extend

126 Chapter 6. Transformation Tools

existing references by the newly created primary attributes, if necessary. This allows more flexible
generator template logic, since both attributes are part of the reference, the original attribute
and, if automatically added, the new primary attribute. A more complex preprocessing step is
executed, if a many-to-many cardinality between two entities is modelled. In order to support
the code generation for the relational database, these relationships are resolved by the creation
of a new entity with relationships to the original entities (cf. Figure 6.3). This entity serves
as linking entity which can be used for the generation of an associative table for the relational
database. The original attributes are preserved in the original entities in order to remember the
original reference attributes. These may be valuable during further code generation. In addition
to these actions, Joomla-specific standard attributes like state, ordering, and parameters are
added to all specified entities.

StudentStudent

IDIDPSPS

NameName

Lectures (Reference Attribute)Lectures (Reference Attribute)

LectureLecture

IDIDPSPS

NameName

Students (Reference Attribute)Students (Reference Attribute)

LectureLecture

IDIDPSPS

StudentLectureStudentLecture

Student (Reference Attribute)Student (Reference Attribute)

Lecture (Reference Attribute)Lecture (Reference Attribute) NameName

StudentStudent

IDIDPSPS

NameName

Preprocessing

0...*

0...*

0...* 0...*

Lectures (Preserved Attribute)Lectures (Preserved Attribute) Students (Preserved Attribute)Students (Preserved Attribute)

Figure 6.3: Preprocessing of many-to-many Relationships between two Entities

The interaction modelling (pages) part of an instance model is refined in order to complete index
and details page definitions. So, if not specified, each index page definition becomes decorated by
representation columns (table columns) and filters based on the attributes of the referenced
entity (cf. Figure 5.8 on Page 96). By default, we decided to add all entity attributes, except
automatically added primary key attributes, as representation columns and filters. Additionally,
a default context parameter in a link definition is added. This parameter is selected based on the
primary attribute of the referenced entity. Details page definitions are extended by editFields
specifications based on the respective attribute type of the referenced entity. The type mapping
is shown in Table 6.2.

Table 6.2: Type Mappings for eJSL Standard Types and HTML Types

Attribute Type HTML Type
Integer Integer
Decimal/Currency/Short_Text Text_Field
Boolean Yes_No_Buttons
Text Textarea
Time/Date/Datetime Datepicker
Link Link
Image Imagepicker
File Filepicker

6.2. Code Generation of WCMS Extensions 127

The following listings illustrate the page part of an eJSL instance model before (Listing 6.1) and
after (Listing 6.2) the preprocessing step.

1 IndexPage P a r t i c i p a n t s {
2 ∗ entit ies = P ar t i c i p an t
3 l inks {
4 Interna lContextLink D e t a i l s {
5 target = Pa r t i c i pan t
6 l i n k e d A t t r i b u t e = P ar t i c i p an t .name
7 }}}
8

9 DetailsPage Pa r t i c i pa n t {
10 ∗ entit ies = P ar t i c i p an t
11 l inks {
12 InternalLink Index {
13 target = P a r t i c i p a n t s
14 l i n k e d A t t r i b u t e = name
15 }}}

Listing 6.1: Example of Page Defintion before Preprocessing Step

1 IndexPage P a r t i c i p a n t s {
2 ∗ entit ies = P ar t i c i p an t
3 representat ionColumns = Pa r t i c i pan t .name, Pa r t i c i pan t . a f f i l i a t i o n ,

Pa r t i c i pa n t . n a t i o n a l i t y , P a r t i c i pa n t . address
4 f i l t e r s = Pa r t i c i pan t .name, Pa r t i c i p an t . a f f i l i a t i o n , P a r t i c i p an t .

n a t i o n a l i t y , P a r t i c i p an t . address
5 l inks {
6 Interna lContextLink D e t a i l s {
7 target = Pa r t i c i pan t
8 l i n k e d A t t r i b u t e = P ar t i c i p an t .name
9 l inkParameters {

10 Parameter id = ∗Attribute "Participant.id"
11 }}}}
12

13 DetailsPage Pa r t i c i pa n t {
14 ∗ entit ies = P ar t i c i p an t
15 e d i t F i e l d s {
16 Pa r t i c i pa n t .name {
17 htmlType = Text_Field
18 } ,
19 Pa r t i c i pa n t . address {
20 htmlType = Textarea
21 } ,
22 Pa r t i c i pa n t . a f f i l i a t i o n {
23 htmlType = Textarea
24 } ,
25 Pa r t i c i pa n t . n a t i o n a l i t y {
26 htmlType = Textarea
27 }
28 }
29 l inks { . . . }
30 }

Listing 6.2: Example of Page Defintion after Preprocessing Step

128 Chapter 6. Transformation Tools

With regard to the extension modelling part, two aspects are focused by the resource transformer.
First of all, the metadata part (manifest) of an instance model is extended, if not all language
features are specified. This includes extension information such as copyright, license, version,
and the creation date. The second decoration considers the internationalisation and localisation
of the extension which is specified in the languages part. If no extension language is specified,
en-GB (English/Great Britain) is added. Moreover, the language constants for all extension-
specific text labels are added. So, this logic can be maintained within the preprocessing part of
the generator and must not be part of the actual code generator templates.

Output Description and Generation Logic

As previously described, most of the actual MDE infrastructure implementation is realised with
Xtext and Xtend. We use Xtend for template realisations, whereas Xtext is used for the realisa-
tion of the eJSL DSL (cf. Chapter 5). By using these tools together, we ensure rapid development
of a high quality MDE infrastructure under consideration of the above-mentioned requirements
(cf. Section 4.3. The implemented generator uses eJSL model instances as input and supports
the generation of full extension code for two major Joomla versions (3 and 4). To this end,
the platform-specific parts of the generator were implemented for both Joomla versions allowing
developers to choose between the different versions. So, developers can flexibly generate Joomla
extensions for their required Joomla version based on the same eJSL instance model. The gen-
erator provides model-to-code transformation for common extension types which are supported
by the Joomla WCMS. However, we mainly focus on components and modules, due to their
sophisticated functionality and interoperability in comparison to other extension kinds. During
the development, we started with the development of generator templates for version 3 of the
Joomla platform. Then, we made use of the proposed generator architecture concept in order to
implement generator templates for the latest major version 4. As of the time of implementing the
templates in 2018 and 2019, the latest platform version was in an alpha state (Alpha 12 [167]).
Based on the current development of the project, similar extendibility features are provided. So,
the platform-independent parts of the generator were directly reusable or could be copied. The
same applies to the platform-specific parts of the most simple extension kinds (plugins, libraries,
and templates).

As stated in [114], descriptions of actual code generator implementations are typically made by an
adequate output description for the desired domain and the implemented generation logic. The
output description addresses the architecture of the generated artefacts, whereas the generation
logic describes how the input is mapped to the output. We consider both aspects in the following
presentation of the Joomla-specific generator implementation. This includes the architectural
variety of and dependencies between generated Joomla extensions. For a better understanding,
the already known conference model is used as running example. This running example is
simple enough to present the provided features of the generated code and is close to a real-world
extension project. As previously mentioned, we discuss differences between the two stressed
Joomla versions, such as differing file structures, without presenting code output due to the
constantly changing code base.

Supported Extension Kinds and Extension Metadata: All supported extension kinds of the Joomla
WCMS are covered by the presented generator implementation. However, components contain
the most sophisticated architecture following a model view controller pattern on code and file
base. Additionally, the variation between a component’s frontend and backend view becomes
considered as well, what results in suitable code for the respective section. Moreover, components
may include their own data management by an extension of the underlying database of the hosting
Joomla instance. Therefore, the development of adequate generator templates for this extension
kind was the most tedious process. Especially, the essential differences between Joomla 3 and
Joomla 4 components required the most effort during the evaluation of reference components
and iterative generator development. The main feature of the generated code is its architectural

6.2. Code Generation of WCMS Extensions 129

structure based on the specific extension kind. For all extension kinds, the required manifest and
language files are generated in the common Joomla structure. So, generated extensions can be
installed properly to a host instance. Manifest files contain all required extension information
under consideration of the specific extension kind (cf. Listing 2.4 on Page 25). The metadata
information is inferred from the Manifest definition in the extension part of an eJSL model
instance. To support the multi language feature of Joomla, language files which consist of
key-value pairs are generated, whereas the language keys are also generated into the respective
sections of the extension, e.g. the views of a component. Listing 6.3 shows an exemplary language
definition within an instance model, whereas Figure 6.4 illustrates the generated Joomla-specific
language files and an excerpt of the generated key-value structure. This feature is similar for
both supported Joomla versions. Therefore, the generator templates are quite similar.

1 languages {
2 Language en−GB
3 {
4 keyValuePairs
5 {
6 SUCCESS_MESSAGE = "This␣was␣successful!"
7 . . .
8 }
9 }

10 Language system en−GB {}
11 Language de−DE {}
12 Language system de−DE {}
13 }

Listing 6.3: Language Specification for an Extension in an eJSL Instance Model

Figure 6.4: Generated Language Files and File Contents

Generation of Joomla Components: Usually, MDE proposes to generate the smallest possible
amount of code. However, this is not possible or suitable for applications like Joomla components,
since they have to follow a certain structure to ensure a homogeneous behaviour in combination
with the hosting platform. Hence, the components which are generated by the presented code
generator consist of the same amount of generic and schematically redundant code as if they were
developed in the conventional way by hand. However, the generator does not generate cryptic
identifiers but rather creates code which cannot easily be distinguished from handwritten code.
This applies for the generator templates addressing both supported Joomla platform versions.

If a modelled component contains page references within its backend section the generator creates
Joomla code following the standard MVC architecture (cf. [112]). This architecture is extensively
described for Joomla 3 components in [109]. A description of the new MVC architecture of
Joomla 4 can be found in [108]. Figure 6.5 illustrates the supported MVC architecture of Joomla
components.

130 Chapter 6. Transformation Tools

Joomla Component (MVC)

Entry Point Controller

Layout

(Template file)

Database

View
Model

Joomla Framework

Figure 6.5: Architecture of Joomla Components

An entry point PHP file is required for the determination of the correct controller which has to
be called. To this end, the entry point file uses a request parameter which includes the action to
perform. So, the suitable method of the correct controller instance can be called. The controller
analyses the request and creates an instance of the necessary model. The model isolates the
details of data access from controllers and views. It is typically responsible for database requests
but can also obtain data from any source. Based on the task, the model is called by the controller
in order to update the database, e.g. during a CRUD operation. Another responsibility of the
controller is the instantiation of and redirection to the view which is requested by the WCMS
user. The view knows its corresponding model which is called in order to obtain the data which
has to be used for the actual HTTP response. Moreover, the view calls adequate template files
(layouts) which dynamically specify the actual HTML output for the view.

Entry points of deployed components are called by the Joomla framework based on the re-
quest parameters which must include the component. The correct component is assigned to
corresponding menu items automatically during the installation of a component for the admin-
istration section, or manually by administrators for the frontend section. Figure 6.6 illustrates
an automatically created menu entry in the backend section of a Joomla instance. This menu
entry is a link to the deployed conference component. To this end, option=COM_MYCONFERENCE
added as request parameter to the link. So, the entry point of the component is called.

Figure 6.6: Automatically Created Component Link as Menu Item in the Administration
Section of a Joomla Instance (J3)

6.2. Code Generation of WCMS Extensions 131

Such interoperability features between the Joomla framework and deployed components neces-
sitates the implementation of the required MVC architecture on code and file base. So, a homo-
geneous operability of deployed components can be ensured. Even though the same architecture
is supported by both considered major platform versions, the file and code structure of compo-
nents differ tremendously. Therefore, we provide respective generator templates for both versions
which adhere to the respective file and code architecture (cf. Figure 6.7).

Figure 6.7: Generated File Structure of a Joomla 3 (left) and 4 (right) Component

With the generated component views, users can operate on the entities which are referenced by
the pages of the modelled component. This comprises all CRUD operations in consideration of
the sophisticated permission management of a Joomla instance, including standard actions like
ordering, filtering, and search operations. Once installed, the look and feel of the generated views
is similar to other views of handwritten extensions which are installed. So, administrators can
operate on data entities managed by the component in the common way as Figure 5.3 on page 91
illustrates. Since there is no standard for the frontend section of a component view, we decided
to follow a similar view design. However, in the frontend section the permissions are considered
differently. Therefore, the generator also creates a details view which presents the details of
an entity without the possibility for edit operations. This view is generated automatically in
addition to the edit details view, if a details page is referenced by the frontend section of a
modelled component. If the frontend user has the permission to edit the entity item, additional
buttons are illustrated which open the edit view or allow to delete an entity (see Figure 6.8).

Typically, frontend views can be assigned to menu items. This is considered by the code generator
as well. However, the generated details views, which are not intended to be assigned to a menu
item are excluded from the assignable views. Such views typically require context information
such as the id of the entity item. In order to provide CRUD operations on component entities
also for frontend users, the generator creates similar business logic for the frontend. This feature
is not common for usual Joomla components, but was required by the interviewed developers
and users from the community.

132 Chapter 6. Transformation Tools

Figure 6.8: Frontend Details View of a generated Component

Handling references between entities is one of the most complex parts during code generation
of Joomla components. We decided to generate different HTML constructs in dependency of
the upper limit for the specified reference. Our proposed generator is able to generate code for
references with an upper bound of 1 and -1 (unlimited) independent of the minimum limit.
Other multiplicities and the definition of -1 as upper bound within an unidirectional reference
are currently not supported by the generator. Therefore, no logic for managing collections of
referenced attributes is generated. However, it is planned to include this feature into a further
version of the generator. Unidirectional reference specifications of 1, such as illustrated in List-
ing 6.4, are translated to a suitable form field (Select) in edit views of referencing entities (cf.
Figure 6.9). The instance model includes a reference from the Session entity to the roomname
attribute of the Room entity. So, the generator creates a select form field which includes already
created rooms as options in the edit view of sessions. This view is used during the creation and
editing of sessions. This feature is generated without the need of explicit specifications in the
pages part of the model which includes the page definitions.

1 Entity Room {
2 attributes {
3 Attribute roomname { . . . }
4 Attribute position { . . . }
5 }}
6

7 Entity Se s s i on {
8 attributes { . . . }
9 references {

10 Reference {
11 e n t i t y A t t r i b u t e = room
12 r e f e r e n c e d E n t i t y = Room
13 r e f e r e n c e d E n t i t y A t t r i b u t e = Room. roomname
14 max = 1
15 }}}

Listing 6.4: Entity Definition with unidirectional Reference

Bidirectional references without upper limits (many-to-many) are considered implicitly during
the generation of both list and details views. The example in Listing 6.5 illustrates such a
relationship by two entities with references to each other. The translated details views are
augmented by a new tab for the assignment of already defined entities that can be referenced
(cf. Figure 6.10). The new tab includes a Multiselect form field which allows to append existing
instances of the targeted entity. Moreover, the generator also considers multiple references in

6.2. Code Generation of WCMS Extensions 133

Figure 6.9: Form Field for Referenced Attributes

the list view (cf. Figure 6.11). All assigned references are shown in the table column, if it is
specified as representation column in a page definition within the input instance model. If
the referenced entity attribute is used within a link specification in the list page definition, links
to e.g. the details view of the reference are generated. The implemented generator also allows
multiple bidirectional references between two entities. In such a case, several tabs are generated
for the corresponding details view, one for each reference.

1 Entity Pa r t i c i pa n t {
2 attributes { . . . }
3 references {
4 Reference {
5 e n t i t y A t t r i b u t e = t a l k s
6 r e f e r e n c e d E n t i t y = Talk
7 r e f e r e n c e d E n t i t y A t t r i b u t e = Talk . t i t l e
8 max = −1
9 }}}

10

11 Entity Talk {
12 attributes { . . . }
13 references {
14 Reference {
15 e n t i t y A t t r i b u t e = speaker s
16 r e f e r e n c e d E n t i t y = Pa r t i c i pa n t
17 r e f e r e n c e d E n t i t y A t t r i b u t e = Pa r t i c i pa n t .name
18 max = −1
19 }}}

Listing 6.5: Entity Definitions with bidirectional Reference (Participant ←→ Talk)

The generated output of references between entities is analogously implemented for both ad-
dressed Joomla versions, whereas the generator templates adhere to the platform-specific file
and code structures. The generator creates no custom styles for any form element. So, the
appearance of the views only depends on the activated template of the Joomla instance.

134 Chapter 6. Transformation Tools

Figure 6.10: Additional Tab in Edit View with Form Field for Multiple References

Figure 6.11: Representation of Multiple References in a List View

As stated before, the eJSL grammar provides a set of abstract data types (attribute types)
which can be used for entity attributes. These types become translated to suitable SQL types for
the database script during code generation of components (see Table 6.3). These types correspond
to standard types which are used by Joomla and third-party extensions. For the representation
of entity attributes in page implementations, HTML types are provided. So, modellers can decide
how the attributes will be represented in e.g. an edit view of a component. If, for example, an
entity attribute has the abstract Short_Text attribute type in an eJSL instance model, the type
gets mapped to varchar(255) in the SQL file.

Table 6.3: Type Mappings for eJSL Standard Types and SQL Types

Attribute Type SQL Type
Integer INT(11)
Decimal DECIMAL(10,10)
Currency DECIMAL(13,4)
Boolean TINYINT(1)
Text/ Link/ Image/ File TEXT
Short_Text/ Time VARCHAR(255)
Date DATE
Datetime DATETIME

If no specific HTML type is defined within a page definition, the resource transformer creates a
suitable type based on the mapping shown in Table 6.2. All attribute types which are part of a
page in the given instance model are mapped to HTML types (form fields). With this information
the generator creates suitable HTML implementations which can be found in Table 6.4.

6.2. Code Generation of WCMS Extensions 135

Table 6.4: Type Mappings for eJSL HTML Types

HTML Type Supported Attribute Types HTML

Integer Integer, Decimal, Currency

Yes_No_Buttons Boolean

Textarea Text, Short_Text, Integer, Dec-
imal, Currency, Time, Date,
Datetime, Link, Image, File

Text_Field Text, Short_Text, Integer, Dec-
imal, Currency, Time, Date,
Datetime, Link, Image, File

Link Text, Short_Text, Link

Datepicker Time, Date, Datetime, Text,
Short_Text

Imagepicker Image, Text, Short_Text

Filepicker File, Text, Short_Text

Editor Text, Short_Text

Select Integer, Text, Short_Text

Checkbox Text, Short_Text, Integer, Deci-
mal, Currency

Radiobutton Text, Short_Text, Integer, Deci-
mal, Currency

Multiselect/Encrypted_Text/
Hidden

Text, Short_Text n.a.

136 Chapter 6. Transformation Tools

The table lists the supported attribute types and shows the generated HTML code as interpreted
by the browser. Whereas form fields for HTML outputs of forms like edit views can be explicitly
specified in the layout files, Joomla provides a more elegant way for building the HTML output.
The Joomla framework allows the description of forms within a descriptor file (XML). These
forms consist of definitions for each form field (cf. Listing 6.6). Each declared form field is
translated automatically to the suitable HTML output by the Joomla framework. Moreover,
Joomla allows to specify custom field types which can be referred in form definitions. Based on
the supported HTML types of the eJSL DSL, form files for required pages are generated. The
same applies to custom form fields, which are used for references between entities, as described
above.

1 <f i e l d name="affiliation"
2 type="editor"
3 id="affiliation"
4 l a b e l="COM_MYCONF_FORM_LBL_PARTICIPANT_AFFILIATION_LABEL"
5 d e s c r i p t i o n="COM_MYCONF_FORM_LBL_PARTICIPANT_AFFILIATION_DESC"
6 />

Listing 6.6: Field Definition in A Form Specification File

Even though the HTML types can be mapped to various standard attribute types, such as a
HTML textarea which can represent an attribute of type Text, Image, Date, and more, the
generator does not check their consistency, since this task is done during modelling by model
validators.

Generation of Joomla Modules: In contrast to components, modules are a special extension kind,
since they usually depend on existing data, e.g. from components. Therefore, if a component
is referred to a module, dependencies to components are generated in the module to ensure a
proper interplay within the host instance where both component and module are installed. So,
if everything is modelled correctly, modules can be installed and used without any handwritten
code. Figure 6.12 illustrates the common architecture of Joomla modules.

Joomla Component (MVC)

Entry Point

Controller

Layout

(Template file)

View
Model

Joomla Framework

Joomla Module

Entry Point
Layout

(Template file)

Helper

Database

Figure 6.12: Architecture of Joomla Modules

Even though this architecture is not strictly required by the Joomla framework, most of the
core and third-party modules follow this file and code pattern. Similar to components, modules
consist of an entry point. This entry point is called by the Joomla framework of the hosting
Joomla instance, when users request a page which includes one or more instances of the module.

6.2. Code Generation of WCMS Extensions 137

If a module entry point is called, it returns the layout file which is used as part of the response
for the requested page. These layout files are similar to the layouts which are used by component
views. As already mentioned, modules typically illustrate data from any existing data source.
This aspect is covered by the eJSL DSL. The language allows to assign a data access object
(DAO) of a referenced component (frontendDAO or backendDAO) as data source. Additionally
the database of a component or a webservice can be specified as data source. Though, the most
common data source of a module is a corresponding component which manages the accessed data.
Therefore, a common implementation is the re-use of respective component models as reference
within the helper file of the module. So, the model can be used within the layout file in order
to obtain data via the component model. Though, this requires that the component is also
deployed to the same hosting Joomla instance as the module. Such dependencies can be defined
in the model by referencing a page which is also used within a corresponding component and
the assignment of backendDAO as data source (see Listing 6.7). The assignment of frontendDAO
leads to similar code using the frontend model of the specified component. Alternatively, code for
direct database access for component-specific database tables can be generated. In the case that
no dependency is specified, our generator creates placeholders for the required identifiers of the
preferred data source. This, however, requires handwritten customizations after code generation.
The provided DSL feature for using a web service as data source is currently not covered by the
presented generator, due to the lack of adequate reference extensions.

1 Module Talks {
2 Manifest { . . . }
3 languages { . . . }
4 ∗Page : Talks from : MyConference data backendDAO
5 }

Listing 6.7: Module Dependency to a Model of a Component

The generated module files and code correspond to the common module architecture based on
the most core and third-party extensions which were evaluated. In addition to the manifest and
language files, our generator creates an entry point file, a layout which defines the HTML output,
and a helper file. The latter is used for data access and depends on the selected data source in
the instance model. The structure of generated Joomla 3 and 4 modules is quite similar as the
example in Figure 6.13 shows.

Figure 6.13: Generated File Structure of a Joomla 3 (left) and 4 (right) Module

We decided to use given model information of page specifications in order to enhance common
module features during module configuration in the administration section of a Joomla instance.
So, in addition to common configuration features for menu assignment and permission specifica-
tion, our generated modules allow administrators to define which data is shown by the module.
So, in dependency of the selected page kind of the referenced page in the eJSL instance model,
one specific or a list of all entity instances is shown (see Figure 6.14). The latter, can be limited,
ordered, or filtered by entity attributes of existing entity instances. To this end, we use the same
logic as in components (cf. Figure 6.15).

138 Chapter 6. Transformation Tools

Figure 6.14: Representation of a Generated Module illustrating the Data of an installed
Component in the Frontend of a Joomla Instance)

Figure 6.15: Configuration of a Generated Module in the Administration Section

Our implemented generator does not support any kind of UI modelling. Therefore, generated
modules offer an unattractive representation. We suggest a manual refinement by adding custom
style sheets with adequate selectors for the generated HTML elements in the module.

Generation of Joomla Plugins: In addition to components and modules, the presented Joomla
generator also supports the translation to Joomla plugins. If a plugin is generated, the code
generator considers the selected plugin kind in the model. So, the specific plugin class of the
Joomla core can be extended. As stated before, plugins are not dependent of a specific section of
a Joomla instance. They provide actions which are performed, if specific events are triggered by
the hosting system. Such events occur, when a user clicks the search button, after login attempts,
or before an article is loaded. In [113], further information about Joomla plugins can be found.

According to the coding guidelines of the Joomla community, Joomla plugins must consist of at
least one PHP class file in addition to a manifest and supported language files. The plugin class
must extend a plugin class of the Joomla framework in order to ensure a correct operability on a
hosting Joomla instance. All deployed and activated plugins are then automatically instantiated
by the Joomla framework and the appropriate methods based on the event that occurred are
called. Based on the plugin type, plugins may access existing data sources such as the database,
e.g. for content preparation, user authentication, or the gathering of context-specific search
results (cf. Figure 6.16). Our presented generator adheres to given plugin standards and, based
on the selected plugin type in the input DSL instance, a class with suitable methods is generated.

6.2. Code Generation of WCMS Extensions 139

Joomla

Module

Joomla

Component (MVC)

Joomla Framework

Joomla Plugin

Plugin Class

Database

Figure 6.16: Architecture of Joomla Plugins
Figure 6.17: Generated File Structure of a

Joomla 3 and 4 Plugin

Listing 6.8 shows an excerpt of a generated class of a search plugin. Since the DSL does not
support an explicit definition of plugin actions, placeholders for custom code are generated.

1 c l a s s PlgSearchPart i c ipants_Search extends CMSPlugin
2 {
3 pub l i c func t i on p l g S e a r c h P a r t i c i p a n t s (&$subject , $params)
4 { . . . }
5 . . .
6 pub l i c func t i on onContentSearch ($text , $phrase = ’’ , $o rder ing = ’’ ,

$areas = n u l l)
7 {
8 . . .
9 $searchText = $text ; // not a lways used

10 . . .
11 switch ($phrase) {
12 case ’exact’ :
13 //TODO: p lace code here
14 break ;
15 case ’all’ :
16 case ’any’ :
17 default :
18 //TODO: p lace code here
19 break ;
20 }
21 . . .
22 $query = $db−>getQuery (true) ;
23 $query−>s e l e c t (’/*some␣code␣here*/’)
24 −>from (’#__Participants␣AS␣a’)
25 −>where (’/*some␣code␣here*/’)
26 −>order ($order) ;
27 $db−>setQuery ($query , 0 , $ l i m i t) ;
28 $rows = $db−>loadObjec tL i s t () ;
29 i f ($rows) {
30 foreach ($rows as $key => $row) {
31 //TODO: p lace code here
32 }
33 }
34 re turn $rows ;
35 }
36 }

Listing 6.8: Generated Search Plugin Class (Excerpt)

140 Chapter 6. Transformation Tools

Generation of Joomla Templates and Libraries: The presented generator implementation also
creates installable template extensions. However, they will not be explained in detail, since they
mainly consist of HTML definitions for template positions within PHP files and CSS definitions
which are part of the template assets (cf. Figure 6.18). The same applies to generated libraries
since they mainly consist of PHP classes, representing the class hierarchy as specified within an
eJSL model (cf. Figure 6.18). The benefit of modelling and generating these two extension kinds
seems rather low in contrast to manual development.

Functional Extensions

Joomla Module

Joomla Component

Joomla Framework

Joomla Plugin
Database

Joomla Library

ClassesClassesClasses

Joomla Template

Entry Point

Template Position

Definitions Assets

(js, css,

fonts,

images)

Template Position

Definitions
Template Position

Definitions Extension

Overrides

Figure 6.18: Architecture of Joomla Templates and Libraries

However, for reverse engineering purposes, e.g. for a model-driven migration, all extension kinds
are supported and integrated as complete as possible (cf. Figure 6.19). Even though HTML
override definitions in templates are often used to customize the appearance of core or third-
party extensions, they are not considered by the eJSL DSL. However, our generator creates at
least a placeholder file, to support developers during the creation of overrides. A drawback of the
current generator implementation is the lacking Joomla 4 support. Since no adequate reference
extensions existed during development of the generator, we decided to generate the same file
structure as for the Joomla 3 platform. Based on the current stand of Joomla 4, our generated
templates and libraries appear to be operable, due to the backwards compatibility of Joomla 4.

Figure 6.19: Generated File Structure of a Joomla Template and Library

Interactions between Extensions: Besides the specifically tailored code generation, based on
the extension kind, one of the most sophisticated features of the presented code generator is the
implicit code translation based on interaction definitions between components and modules in an
input model instance. As already described in Chapter 5, interdependencies between extensions

6.3. Extraction of Deployed WCMS Extensions 141

can be explicitly defined with the eJSL DSL. These dependencies can be specified on a high
abstraction level. The generated code, however, must be able to create correct dependencies
to ensure a proper interaction within hosting Joomla instances on which depending extensions
are deployed. If modules have an explicit reference to a component, as line 5 in Listing 6.9
illustrates, the respective dependencies will be generated based on the given model information.
In the given example, the generated module code consists of a reference to the model file (DAO)
of the component MyConferenceComponent.

1 Module MyConferenceModule {
2 Manifest { . . . }
3 languages { . . . }
4 ∗Page : P a r t i c i p a n t s from : MyConferenceComp data backendDAO
5 }

Listing 6.9: Module Dependency to a Page of a Component

However, if no data source assignment or component dependency is placed in the model, the
generator has to determine a suitable default implementation. To this end, the generator follows
different strategies, if components are placed together with dependent modules within the special
package extension kind (cf. Listing 6.10). In this case, the generator is able to translate depen-
dencies automatically without explicit references in the model. This, however, requires that the
referenced page in a module specification is also referenced by a component within the extension
package. If dependent extensions are not placed within an extension package, the generator
creates placeholders in the code, which must be filled manually after code generation.

1 ExtensionPackage MyConferencePackage {
2 . . .
3 extensions {
4 Component MyConferenceComp { . . . }
5 Module MyConferenceModule { . . . }
6 }
7 }

Listing 6.10: Component and Dependent Module as Part of an Extension Package

Extension Updates: Considering iterative refinements of generated extensions, the implemented
generator makes use of the extension update mechanism provided by the Joomla WCMS. This
allows the re-installation of new extension versions without the need of uninstalling previous
versions. During the installation process, existing extension files are replaced by the updated
files. If files have to be deleted, script files can be added which are executed automatically during
the installation routine. If database changes have to be executed, a higher version number is
required in the manifest file. Joomla supports the implementation of database update scripts
for explicit extension versions. These are processed even successively, if extension versions have
been skipped. Moreover, our generator can also be used for partial code generation. So, only
the frontend part or separate views of a component, SQL scripts, or the helper file of a module
can be replaced by newer versions.

6.3 Extraction of Deployed WCMS Extensions
As described in Chapter 4, most of the discussed scenarios require definitions of legacy extensions
on model level. So, forward engineering of dependent extensions or migration and modernization
steps can be applied in a model-driven manner. In order to reverse-engineer the features of
an existing extension, it should be available as installable extension package. In this case, all
corresponding files can be found in one place. Whereas WCMSs like WordPress or Drupal

142 Chapter 6. Transformation Tools

maintain installed extensions within a specific extension folder, systems like Joomla uncompress
extensions and keep their files separately. As previously described, Joomla components are
subdivided during the extension installation routine, whereby the files of the extension package
are placed in different folders (cf. Figure 6.20). In the context of Joomla, no tools exist which
support developers during the extraction of extension packages from already installed extensions
(cf. problem statement 5).

Running Joomla Instance

...

...

...

...

...

...

...

...

...

com_myextension

(Installable Extension Package)

Figure 6.20: Separation of a Deployed Joomla Component

An extraction of extension information from installed Joomla components can therefore be a
challenging task (cf. problem statement 3). Fortunately, third-party extensions are typically
available as installable extension package, e.g. within extension repositories. However, if this is
not the case and an installed extension has to be used during one of our addressed MDE scenarios,
developers have to extract it from the running WCMS instance first. The same applies to core
extensions, which are typically not available as installable extension package. As described in
Requirement 4.3.4, WCMS extension developers require support during the extraction process
of a deployed extension, especially for complex extensions as Joomla components. Therefore, we
propose an approach for the automatic extraction of deployed WCMS extensions from running
WCMS instances in this section. We introduce a general concept and present a platform-specific
implementation for Joomla components.

6.3. Extraction of Deployed WCMS Extensions 143

6.3.1 Concept
In contrast to a manual extraction of deployed WCMS extensions, we propose an automatic
extraction and extension package export provided by tool support. So, developers can be assisted
during the application of the addressed development scenarios. Moreover, MDE infrastructure
developers can be supported in order to gather extension features from reference extensions for
the iterative refinement of adequate code generators. Figure 6.21 illustrates a concept which
consists of various actions in order to automatically create installable WCMS extension packages
based on deployed extensions. These actions are:

• Extract deployed extension files. This includes all corresponding extension files, which are
spread over different folders in the filesystem of a WCMS instance.

• Extract the database scheme from the database. This allows the creation of adequate
database scripts for the extension.

• Gather concrete extension data from the database. So, the concept addresses development
scenarios which include the migration of deployed extension data.

• Build an installable extension package which aggregates all extracted extension files in the
correct structure as required by the WCMS. Moreover, the package must include database
scripts which contain the database scheme and concrete data of the extension.

Extension Extractor

Database

Installable WCMS

Extension Package

File System of WCMS Instance with

Installed Extensions

Administration SectionAdministration Section

Frontend SectionFrontend Section

Extension FilesExtension Files

Extension FilesExtension Files

File Extraction

Database Scheme and Concrete Data Extraction

Build

Bundle

File

Extractor

Database

Extractor

Extension

Packager

Extension

Files

Extension

Files

Write Files

Write Files

Figure 6.21: Extension Extraction Concept

6.3.2 ExtPorter: A Joomla-Specific Component Extractor
With regard to the evaluation of MDE during our addressed development scenarios, we imple-
mented an actual extension extraction tool for components of the WCMS Joomla (version 3).
This tool, called ExtPorter , implements the concept which is outlined above. It addresses the
extraction of Joomla component files and database schemes as well as actual data from corre-
sponding database tables. The current implementation does not support other extension kinds,
since they offer a similar file structure in installable packages and when deployed to a Joomla
instance. As mentioned above, the files of a Joomla component are copied to different folders of
the Joomla filesystem during its installation. Moreover, components typically represent the only
extension kind which manages own corresponding database tables.

144 Chapter 6. Transformation Tools

The ExtPorter tool itself is realised as Joomla 3 component. It must be installed to the system
where extraction activities have to be performed. This decision has two advantages. First,
information of installed extensions can be accessed by using functions of the Joomla framework.
So, the implementation effort can be reduced and direct access to the file system or the database is
not necessary. Second, Joomla developers can use the tool within their well-known environment.
The following extraction process is performed by the ExtPorter component:

1. File Extraction: First, the manifest file of the legacy component is parsed in order to gather
the corresponding folder structure and language files. Based on the result, the folders and
files are copied to a new target folder, following the community guidelines for component
file structures (cf. Section 6.2.2).

2. Database Scheme and Data Extraction: In the first step of database extraction, queries for
database schema definitions (e.g. CREATE, ALTER, DROP) are analysed. To this end, the SQL
installation script and all update scripts are investigated successively. All table definitions
are temporarily stored in a list, which is constantly updated during the analysis process, in
order to consider create, edit or delete operations. Then, all data manipulation queries (e.g.
INSERT INTO, UPDATE, DELETE) are parsed and added to the list. The resulting database
schema of the component and data manipulation queries are then written into a new
installation script file which is placed in the extension folder which was created during the
file extraction step. For parsing the SQL files, we use an existing PHP-based SQL_Parser
library [152] as lexer during syntactic analysis in addition to the PHP-SQL-Parser library
[226] for the actual parsing process gaining a hierarchical object representation of the
SQL queries. Both libraries provided the most robust solutions in comparison to other
SQL parsers in the PHP context. However, the SQL_Parser library detects more SQL
commands, whereas PHP-SQL-Parser library is better suited for parsing attributes and
types. Therefore, we combine both libraries for the best parsing result.

3. Extension Packaging: In the final step, the newly created extension folder is packed to a
Zip file, which can be downloaded via the administration section.

Once installed, the ExtPorter component can be used as common Joomla component in the
administration section of the hosting Joomla instance. It provides two views for the creation of
extracted components. The details view can be used for the creation of a new installable extension
package based on an installed component (see Figure 6.22). After the packaging process, the
component can be downloaded as Zip file which is linked in the view (see Figure 6.23). All
extracted components can be found in a list view (see Figure 6.24).

Figure 6.22: Details View: Create a new
Extracted Component

Figure 6.23: Details View: Installable
Component Package as Zip File

6.4. Model Extraction of Legacy Extensions 145

Figure 6.24: List View of the ExtPorter Component

6.4 Model Extraction of Legacy Extensions
In order to support development scenarios, which require reverse engineering of existing extension
code, we propose an approach for the automatic model extraction of WCMS extensions. After
introducing a model extraction concept, we present a prototypical implementation for the creation
of eJSL DSL instance models by extracting model information from existing Joomla extensions.

6.4.1 Concept
As described in Chapter 4, an MDE adoption during development scenarios in the WCMS
domain requires extension models which include features of existing extensions. To achieve this,
different model extraction strategies can be carried out. The most tedious strategy is the manual
creation of an extension model (cf. problem statement 3). However, by following this procedure,
modellers are not biased by implementation details and can focus on the required extension
features. In contrast, a fully automated general discovery process (e.g. with MoDisco) typically
leads to complex models, which are hard to refine and therefore require an additional model
transformation step. We propose a discovery strategy that is based on the exclusive extraction
of extension information which can be described by a specific DSL. This may lead to information
loss of implementation details, but ensures adequate DSL instance models. These models can be
used as basis for manual reengineering actions addressing our stressed development scenarios for
augmentation, migration and modernization of legacy extensions (cf. Section 4.2).

Our concept is based on three consecutive steps, taking installable extension packages as input
and offering an instance model of the eJSL language as output (see Figure 6.25):

1. Extension Inspection: To support various extension kinds, independently of the underlying
technology, we propose the inspection of the extension package as first step. Extension
packages from legacy extensions can be either downloaded from the WCMS-specific exten-
sion directory (cf. Section 2.2.1) or extracted from a running WCMS instance, e.g. based
on the concept we proposed above (cf. Section 6.3). The input package should follow the
file structure which is required for a clean installation on the target WCMS. This typically
includes a deployment descriptor such as the manifest file in Joomla or Drupal. Parsing
this file should be sufficient for the determination of suitable file parsers which are invoked
during the initiation of the next step.

2. Extension Parsing: In the second step, the extension is parsed and translated to an internal
representation. To this end, suitable parsers for the required languages must be included.

3. Model Generation and Evaluation: In the last step, the internal representation is trans-
lated to an instance model of a specific DSL, in our case the eJSL DSL. Furthermore, the
internal model can also be evaluated, e.g. in order to determine the applicability for reverse
engineering of the extension.

146 Chapter 6. Transformation Tools

Installable WCMS

Extension Package

Model Extraction

Instance Model

Create

Build

Retrieve File

Structure
Use

Instance of

eJSL DSL

Extension

Inspector Extension

Parser

Invoke

Parse Files

ParserParserParser
Use

Internal Model

Representation

Model

Generator

Use

Model

Evaluator

Use

Evaluation Report

Create

Figure 6.25: Model Extraction Concept

6.4.2 JExt2eJSL: Model Extraction of Joomla 3 Components
In order to achieve various development scenarios, such as augmenting or migrating an existing
Joomla extension, we developed a model extraction application named JExt2eJSL. So, we
provide tool support for decreasing the required effort during reverse engineering of existing
Joomla 3 extensions (cf. problem statement 3 and 5). The tool has been developed as Scala
application, which consists of domain-specific parsers for the various technologies which are used
during Joomla extension development. As part of a master thesis in 2019, the tool was refactored
and extended in the context of researching the discoverability of MDE compatibility of legacy
applications, prototypically for Joomla 3 extensions. Therefore, it parses existing Joomla 3
extension packages and creates representing eJSL models. Whereas, the tool is able to create
extension models for all supported Joomla extensions, the most effort went into support for
components, which are the most complex extension kind. Joomla 4 extensions are currently
not supported. Scala was the language of choice, since a set of sophisticated parser combinators
exist, e.g. the standard scala parser combinator [207] and FastParse [85]. So, the implementation
effort of required parsers could be reduced. Moreover, the decision provides a straightforward
integration of the application into a Java-based development environment, since it runs on the
Java VM. We provide different possibilities to use the tool: It can be used as independent
GUI, as Eclipse plugin, or by a CLI command. The latter allows a direct integration into an
automated test environment, e.g. as part of a continuous integration, delivery, or deployment
(CI/CD) pipeline. Moreover, we incorporated the model extractor homogeneously to the web
IDE which also includes the eJSL editor and the code generator for Joomla extensions (cf. Section
5.4). Figure 6.26 illustrates the implemented architecture of the JExt2eJSL application. This
architecture adheres to the model extraction concept which is mentioned above.

BuilderBuilder

<<use>><<use>>

HandlerHandler

ModelModel

GeneratorGenerator

<<use>><<use>>

<<use>><<use>>

ParserParser

<<use>><<use>>

<<use>><<use>>

<<use>><<use>>

EvaluationEvaluation

Figure 6.26: Overview of the JExt2eJSL Architecture

6.4. Model Extraction of Legacy Extensions 147

A general overview of the implemented transformations during the extraction process with
JExt2eJSL is illustrated in Figure 6.27.

Create

based on

eJSL DSL

Extension

Handler

Parse

Files

ParserParserParser

Call

Internal Model

Representation

Extension Code
(PHP, XML, SQL)

Extension

Model

Instance

of

Abstract Syntax Tree Instance

Model

Instance

of

Use Generator

Create

Create

Figure 6.27: Extension Parsing Process

Due to different development approaches for Joomla extensions, JExt2eJSL supports various
file structures of an extension package as input during extension inspection. To achieve this, the
builder class analyses the manifest file of the input extension which includes the folder structure
of the extension package. Based on the result, the extension kind and file structure is dispatched
to a suitable handler class, which creates an internal representation of the extension.

The extension parsing is performed by the invoked handlers, which extract actual extension
information. To extract as much model information as possible, the implemented handlers require
suitable parsers during the extension extraction process. So, we can operate on the Abstract
Syntax Tree (AST) [19] in order to extract relevant information from the source code. Based on
the gathered extension information, the handlers create the internal extension representation in
the style of the eJSL DSL. This can be achieved by using model classes which include the DSL
features which are definitions of entities, pages and extensions.

We included existing up-to-date parsers for SQL and XML, and implemented a new parser for
PHP which can be integrated into a Java-based project. For parsing SQL statements, we use
the JSQLParser [255] library which supports MySQL and transforms all kinds of SQL queries
to a traversable Java class hierarchy. The current version of JExt2eJSL exclusively parses data
definition queries, since the eJSL DSL facilitates no support for actual data. Additionally, we
include the stand-alone but standard Scala XML library [86] for processing XML files such as the
manifest and field descriptor files. Current existing PHP parsers are not up-to-date. Especially
PHP parsers which can be used in Java are clearly outdated. Therefore, we implemented a
general PHP parser which can be used for every kind of PHP project. It is based on the current
PHP 7 language specification and can be used as independent parser within Java and Scala
projects. The parser was initially developed as part of a bachelor thesis and published as open
source project on GitHub: https://github.com/thm-mni-ii/PHP-Parser.

To extract a model as complete as possible, the tool comprises various extraction strategies.
First, the extension metadata is extracted from the manifest file and all provided language files
are parsed. The result is translated to an extension definition as it is designed in the eJSL DSL.
Whereas the metadata can be extracted from the parsed manifest itself, the actual translations
are extracted from the referenced language files and are added to the language definition as
key-value pairs. If the input extension is a Joomla component, gathering the required page
references requires a more complex translation and depends on the discovery results of page
information (processed by the ComponentHandler). In the first step of the page discovery, view
classes are parsed and references to a model instance are searched. Then, the corresponding
model class is parsed in order to gather information about the page kind. If the model class
extends the ListModel, JModelList, or JModelLegacy class, the corresponding page is translated

https://github.com/thm-mni-ii/PHP-Parser

148 Chapter 6. Transformation Tools

to an index page object. Though, if the model class extends the ItemModel, JModelAdmin,
FormModel, JModelItem, or JModelLegacy class, the page is translated to a details page object.
Other model classes are not supported. Based on the page kind, special handler classes are
instantiated (IndexPageHandler, DetailsPageHandler), which extract the respective required
page information. To achieve the full extraction of e.g. form fields which are translated to
table columns of a list page, various files such as the view class file as well as the field and
the form description files are parsed and investigated. Moreover, all configuration descriptor
files are parsed and analysed, to extract parameter definitions which are translated to custom
parameters in the model representation. If no model information can be extracted, a custom
page object is created. This page kind is provided by the eJSL DSL to allow individual page
definitions (cf. Section 5.2.2). The gathered page information is then added to the extension
part of the component model, whereby frontend and backend pages are reused if they have the
same name and have references to the same entity.

Then, the handlers extract entity information by parsing SQL files (installation and update
scripts), table classes, the DAO (e.g. a model class in a component or a helper file within a
module), and data definition and manipulation statements within a view implementation. So,
all possible entity definitions are considered during the extraction process. Whereas the tables
are transformed to entity objects, table attributes are translated to entity attribute objects
including database attribute properties such as default values. In the latter case, database types
are mapped to the supported eJSL standard type kinds (cf. Section 5.2.1) based on the mapping
as presented in Table 6.3 on Page 134. If a type is found which is not supported by the eJSL DSL,
new data types objects are created. This is supported by the DSL in order to allow individual
types definitions. Foreign key definitions SQL files are transformed to entity references.

After extracting model information by the handlers, model generation and evaluation can be
performed. The generator part includes code templates for the creation of eJSL instance model
files. These templates adhere to the concrete syntax as defined in the eJSL grammar. Missing
model elements are translated to placeholders (cf. Listing 6.11).

1 l inks {
2 Interna lContextLink index {
3 target = <Refer to a target here>
4 }
5 }

Listing 6.11: Placeholder within an Extracted Extension Model

So, modellers can identify incomplete model parts which require a manual refinement. If an
extracted page cannot be assigned to a page kind, a custom page is created in the eJSL model.
This allows that the model can be used as input for an extension code generation, even though
the page must be further reviewed and refined by the modeller.

A drawback of the tool is based on its tailored implementation for the Joomla WCMS. It neces-
sitates input files which adhere to the architectural guidelines of the Joomla core. Inadequately
implemented extensions lead to inconsistent models or errors during the model extraction pro-
cess. Individual file structures are supported, if they are adequately specified in the manifest file.
However, if none of the mentioned classes are extended, e.g. in a respective model class, pages
cannot be resolved. The extraction tool is strongly based on the eJSL DSL. The intention behind
that is the straightforward support during the stressed development scenarios in this work based
on the eJSL DSL features (cf. Section 5.2). So, individual classes and methods cannot directly
be extracted. Though, by using a library as input extension allows the transformation of whole
packages, classes, methods, and attributes from code to model level. If the extension mainly con-
sists of individual file structures or does not follow common coding standards, a manual model
extraction strategy should be applied or the extension should be reengineered.

6.5. Evaluation 149

Another limitation of the current implementation of the JExt2eJSL tool is the lack of reports,
concluding the amount of extracted information. However, as Figure 6.26 illustrates, we included
evaluation features by providing a metric which determines the amount of code which can be
reverse engineered in order to indicate the ability for reverse engineering of the input extension.
So, developers can decide, if an automated extraction by using the model extractor is a reasonable
strategy. However, the evaluation part of JExt2eJSL is not relevant in the context of this work
and will therefore not be further considered.

6.5 Evaluation
In this concluding evaluation section, we discuss the results of this chapter with respect to
the specified MDE infrastructure requirements for code generation and reverse engineering of
legacy extensions which are defined in Section 4.3. Moreover, we demonstrate the Joomla-
specific generator concept implementation with three case study examples. Finally, we discuss
the technical adequacy of the implemented tools addressing quality assurance and presenting the
results of scalability tests of the code generator during runtime.

6.5.1 Requirement Verification and Validation
Analogous to the requirements verification and validation of the DSL and corresponding editors
(cf. Section 5.6), we examine the coverage of the transformation tool requirements (Section 4.3)
by the presented tools in this chapter. To this end, we examine the coverage of the acceptance
criteria for the generator (Requirements R3.1-R3.5) and reverse engineering facilities (Require-
ments R4.1 - R4.2). Additionally, we discuss the general infrastructure requirements coverage
for the presented MDE infrastructure facilities (R5.1-R5.3).

Subject: Code Generator

The main Requirement R3.1 for the code generator is fulfilled, if the generation of full installable
extension packages is provided. Due to the data-intensive operations of WCMS extensions, these
packages must comprise complete CRUD functionality for managed data entities. Based on the
extension kind to generate, this includes the generation of adequate file and code structure such
as the implementation of MVC for Joomla components. Moreover, the features presented in
Section 2.2.2 must be covered by the generator. These features include, among others, interna-
tionalization/localization by language files, interoperability between extensions, backend/fron-
tend support, and core support. These requirements are fulfilled by the presented code generator
concept and implementation for Joomla 3 and 4. As presented, the generator creates installable
Joomla extensions based on the community guidelines for extension development. The gener-
ated extensions adhere to the coding styles and architectural standards which are provided by
the Joomla community. Thus, the generator implementation covers the acceptance criteria for
Requirement R3.2.

Generated extensions include common extension features for the specific extension kind. To this
end, a set of adequate reference extensions were investigated during the development of generator
templates. To evaluate the generator, we used various eJSL instance models comprising the dif-
ferent aspects of the language in order to reach high coverage of generator features. Additionally,
we used the generator in combination with the eJSL model editors during three case study ex-
amples within the Institute for Information Sciences2. The institute developed and maintained
extensions for the WCMS Joomla throughout the last decade. These extensions are deployed to
several Joomla installations which represent the websites for the university of applied sciences in

2Institute at the computer science department at the Technische Hochschule Mittelhessen, https://www.thm.
de/mni/forschung/institute-gruppen/ii/

https://www.thm.de/mni/forschung/institute-gruppen/ii/
https://www.thm.de/mni/forschung/institute-gruppen/ii/

150 Chapter 6. Transformation Tools

Gießen, Germany, (Technische Hochschule Mittelhessen, THM) and its departments. Whereas in
the past, most of the extensions have been developed in the conventional way, we used the MDE
infrastructure for the development of new extensions or the augmentation of existing ones. In the
following, we present three case studies of how we used the tools for the initial development of
components in administrative and development activities, showing that the implemented MDE
infrastructure is ready for being used in realistic projects. These case studies have also been
presented in [190].

Pre-Course Management for Students: At THM, students can attend a pre-course before their
regular studies. This allows them to prepare for their study programme. The management of
pre-course students has been done by an outdated external website, which was not part of the
university’s official website pool. Therefore, the requirement was to incorporate the pre-course
management into the main Joomla installation of the university. To this end, we created an eJSL
instance model including the pre-course requirements and used the presented code generator for
the initial development of a Joomla component. This component can be used to manage pre-
courses and their attendees within a Joomla instance, since it provides CRUD views for the
management of courses (cf. Figure 6.28 and Figure 6.29) and registered attendees. Additionally,
the component works together with the user management of the Joomla core.

Figure 6.28: List View for Pre-Course Management

Figure 6.29: Edit/Details View for Pre-Course Management

The defined model consisted of 9 data entities and 18 pages, whereas the generated component
comprised 30 pages in form of MVC combinations. Since these combinations require the largest
amount of code, the high number of pages in the model led to ~25k LoC for the whole component
with only 347 LoC in the corresponding model. The generated extension was refined by individual
functionality (~2.5k LoC) before it was installed and used productively. Thus, more than 90%
of the component could be created in a model-driven manner. The missing 10% were custom

6.5. Evaluation 151

business logic which had to be incorporated by hand. Though, this was easily accomplished by
adding new functions to the controller and model files as well as changing HTML definitions in
a view file.

The initial development process was part of a student’s final project in 2016. The component
was then used productively at the THM. However, the features of the component became incor-
porated to another Joomla component (THM Organizer [9]) which is used for the whole resource
management like rooms, courses, and schedules of the university within a separate Joomla in-
stance [231]. Therefore, we refined the model to provide it as showcase model as already explained
in Section 5.5.

Joomla Extension Exporter: Another extension created with the generator is the previously
described ExtPorter component (cf. Section 6.5.1). Once installed, the component creates
an installable extension package by inspecting installed components of a Joomla instance and
copying all files into an installable package in the correct file structure. So, developers are able
to create installable packages of legacy components, e.g. to use them as input for the presented
model extraction tool JExt2eJSL (cf. Section 6.4.2). Even though the component has some
individual parts, the main structure and the management views of the component have been
fully generated by the presented code generator. The defined model consisted of only one data
entity and two pages which are used twice (frontend and backend) and had a total amount of 83
LoC. The generated component with 4 views resulted in ~5k LoC.

Besides the use of the generator in actual projects, we use it for teaching purposes in web
development lectures. In these lectures, students have to learn how to develop PHP-based
applications. To this end, they have to (further) develop extensions for Joomla or create new
features/patches for the Joomla core. In the first years, the students required most of the time
for learning the structure of Joomla extensions and how to implement them. By applying the
model-driven approach, we were able to reduce the learning effort. By using the eJSL model
editors and the Joomla-specific code generator, the students get a better understanding for the
required file and code structure, since they can easily change some abstract parts in the model,
generate extensions anew, and inspect the changes.

Moreover, the generator was used within the quantitative and qualitative analysis of MDE of
WCMS extensions within conducted experiments. During the experiments, participants had
to create full installable extension packages for the Joomla WCMS in order to apply the ad-
dressed development scenarios which are described above (cf. Section 4.2). The experiments are
presented in more detail within Chapter 7 below.

Our generator provides partial code generation which covers the acceptance criteria for Require-
ment R3.3. For each main part of the language (entities, pages, extensions), partial code frag-
ments are generated. Relations between legacy and new code fragments can be considered by
using the generator hook feature which is provided by the eJSL DSL (@preserve). The generated
files can be used for updating a deployed extension without using the update mechanism of the
Joomla system. New files can directly be copied to the respective extension folder within the file
system of the Joomla installation. This requires access to the file system, which is not typically
guaranteed. The file structure for the partial extension code adapts the structure of installable
extensions but does not contain extension-specific files like the manifest or entry file. Figure 6.30
illustrates the different file structures of an installable component and generated partial code.
For each referenced page in the eJSL instance, MVC and database-specific files are generated.

Support for smart and dummy models (cf. Requirement R3.4) is ensured by the proposed genera-
tor frontend. This frontend includes a resource transformer which performs a model preprocessing
step during each execution of the generation process. During this step the model is annotated
with default values for model features which are not specified but required during the actual
generation process.

152 Chapter 6. Transformation Tools

Figure 6.30: Generated File Structure of Partial Update Code (left) and Installable Component
Code (right)

In order to cover custom code support (Requirement R3.5), dummy code is generated for each
part of an extension which requires a manual refinement. However, if custom code is added
to generated code, it may be overwritten during further re-generation actions. Therefore, we
propose to make use of sub-classing in order to add custom features. Alternatively, developers
have to isolate refined files and assemble generated and custom files by hand. Based on the
addressed development scenarios and the extensive CRUD functionality of WCMS extensions,
the requirement had low priority during the development of the generator and is therefore not
completely fulfilled. During further research and refinements of the generator, custom code
support should get more attention. A promising approach could be the adaption of custom code
models which can be referenced by eJSL model instances.

To assure generator quality (cf. Requirement R5.1) we test the expected functional correctness of
generated extensions manually for both supported Joomla versions. After generator refinements,
we install generated extensions based on our showcase models (see Section 5.5) to a suitable
version of a Joomla instance (version 3 or 4) and test them by applying manual End-to End
(E2E) tests. We test the (de-/re-)installation routine, language translations (multi language fea-
tures), extension parameter features and configuration, the whole CRUD behaviour of managed
entities, dependencies between extensions (e.g. between modules and components), and correct
interaction between views (link behaviour). Unit tests for automated generator tests are not
implemented (during earlier stages of the generator development, test cases were implemented
but not further updated or maintained). Though, in order to support infrastructure developers
by automatic testing, we added test models and a main test class to our generator project. This
class can be used in order to implement functional tests which can be processed by the current
JUnit 5 testing engine [20]. Testers can use the test models as input and define parts of Joomla
extension code as expected output of the code generator as test cases. These tests can then
be executed after each generator refinement, e.g. automatically as part of a CI/CD integration
strategy.

6.5. Evaluation 153

Additionally, we ensure syntactical correctness of generated extensions after each generator re-
finement by using supportive tools like the PHPCodeSniffer [220], PHPMD (PHP Mess Detector)
[180], and JSLint [51]. In order to keep up with the community guidelines, we include the PSR-12
[179] and Joomla [111] coding standards which can be included in the PHPCodeSniffer.

In addition to functional tests, we measured the execution time during code generation in order
to test the scalability of the generator. We used eJSL instance models of different sizes with
different complexities in order to find performance drivers. We performed five scalability tests,
whereby we scaled different model features. All models consist of at least one component which
includes at least one list and one details page in the backend and the frontend section. For each
entity in the models, we added another pair of list and details pages which were added to both
sections of the component. In total, we used 38 different instance models which scale up to 5400
LoC for the most complex model. During each test, we executed the generation process five
times and profiled the average generation time, allocated RAM, number of generated files, and
size of the generated extension package. All tests were executed on a machine with an Intel Core
I7 8750H 2.21 GHz and 32GB RAM. For the profiling we used JProfiler [61] (version 11.1). In
order to measure the amount of generated files and their cumulated file size, we executed the
"find ./ -type f | wc -l && du -sh ." command within the root folder of each generation
result. All measurement concepts, settings, and results are collected in Appendix D.

Scalability Test 1 (Components): In the first test, we measured the impact of a scaling component
count within an eJSL instance model. We created a component with one list and one details page
which refer to one entity with four attributes and no references. During the test, we increased
the number of components in the model by duplicating the component. The pages and entities
were not changed during this test. According to the results of the test (see Figure 6.31), all
measured variables grow in a linear way. The generator required 26 seconds and allocated 92
MB RAM for the generation of 100 components with code for 4 views within 2 sections (6000
files with a complete file size of 36MB).

1 20 40 60 80 1000

10

20

30

0
20
40
60
80
100

Amount of Components

G
en

er
at

io
n

T
im

e
[s]

R
A

M
A

llo
ca

tio
n

[M
B]

CPU Time
RAM Allocation

(a) CPU Time and RAM Allocation

1 20 40 60 80 1000 k

2 k

4 k

6 k

0

10

20

30

40

Amount of Components

Fi
le

s
G

en
er

at
ed

Pa
ck

ag
e

Si
ze

[M
B]

Generated Files
Package Size

(b) Amount of Generated Files and Package Size

Figure 6.31: Scalability Test 1 (Components)

154 Chapter 6. Transformation Tools

Scalability Test 2 (Pages): The second test measured the impact of scaling list and details pages
within one component definition. During each test iteration, we added a new list and details
page to the model and created a reference to both pages in the backend and frontend section of
the component definition. To avoid any measurement biases, we decided to use the same entity
as entity reference within all pages. This entity consist of four attributes but has no references.
Figure 6.32 summarizes the test results. We measured a generation time for a component with
100 page pairs which are generated in the backend and frontend section of ~56 seconds with a
memory allocation of 87 MB. In total, 2535 files with a package file of 19 MB were generated.

1 20 40 60 80 1000

20

40

60

0
20
40
60
80
100

Amount of Page Pairs

G
en

er
at

io
n

T
im

e
[s]

R
A

M
A

llo
ca

tio
n

[M
B]

CPU Time
RAM Allocation

Figure 6.32: Scalability Test 2 (Pages)

Scalability Test 3 (Entities with References): Another test profiled the effect of a scaling number
of entities with references to other entities. We specified 1 entity without references and succes-
sively added entities with a reference to this same entity. For each new entity, a new list and
details page was added to the model. For each new page pair, we added a reference to both in
the backend and frontend section of one entity. The largest model comprised 404 page references
in the component. The test results show that the generation time and allocated memory grew
similarly (cf. Figure 6.33), whereas we measured a generation time of 162 seconds and 198 MB
RAM with the largest input model (3062 files, 21 MB package size).

1 20 40 60 80 1000

50

100

150

200

0

50

100

150

200

Amount of Entities with References

G
en

er
at

io
n

T
im

e
[s]

R
A

M
A

llo
ca

tio
n

[M
B]

CPU Time
RAM Allocation

Figure 6.33: Scalability Test 3 (Entities with References)

Scalability Test 4 (References in one Entity): In contrast to the previously described test, we
measured the effects of an increasing number of references within one entity definition. We
increased the number of entities without references and created a new reference in the same
entity to all of these new entities. Moreover, we added a list and details page for each new
entity and created a reference to all page pairs to the backend and frontend section of one
component. The most complex input model consists of 100 entities without references, 1 entity
with 100 references, 101 page pairs, and 1 component with 404 page references. During the test
we observed a quadratic growth of the generation duration, whereas the RAM allocation grew
linearly (cf. Figure 6.34). The most complex model led to a generation time of 204 seconds and
a memory allocation 139 MB. In total 3062 files were generated (22 MB package size).

6.5. Evaluation 155

1 20 40 60 80 1000

50

100

150

200

0

50

100

150

200

Amount of Referenced Entities

G
en

er
at

io
n

T
im

e
[s]

R
A

M
A

llo
ca

tio
n

[M
B]

CPU Time
RAM Allocation

Figure 6.34: Scalability Test 4 (References in one Entity)

Scalability Test 5 (Entities with Many-to-Many References): With the last test, we measured the
effect of scaling entities with many-to-many references. This is the most complex model feature
with the most complex generator logic due to the implicit translations to suitable database scripts
and views (cf. Section 6.2.2 above). Similar to the previously described test, we increased the
number of entities with references to one specific entity and added a new reference to this entity
back to the new entity within each test iteration. During this test, the generation time and
allocated memory grew quadratically (cf. Figure 6.35). In comparison to the other tests, we
observed a more critical data for all measured variables. The most complex model consists of
101 entities with 1..* references, whereby entity1 had a reference to each other entity, which in
turn had 1 reference to entity1 each (cf. Figure D.5 in Appendix D). This model led to a total
generation time of 18.5 minutes with 1.8 GB memory allocation (3762 files, 29 MB package size).

1 20 40 60 80 1000

100

200

300

400

Amount of Scaled Elements

G
en

er
at

io
n

T
im

e
[s] Test 1

Test 2
Test 3
Test 4
Test 5

n2

n ∗ ld(n)

(a) Generation Duration

1 20 40 60 80 1000

100

200

300

400

Amount of Scaled Elements

R
A

M
A

llo
ca

tio
n

[M
B] Test 1

Test 2
Test 3
Test 4
Test 5

n2

n ∗ ld(n)

(b) RAM Allocation

Figure 6.35: Scalability Results of all Tests

156 Chapter 6. Transformation Tools

In summary, the tests show that the code generation process for Joomla components is not
critical considering the scalability aspect. According to the results as presented in Figure 6.35
we extrapolate a quadratic runtime and memory allocation O(n2).

In addition to the quality assurance requirement, the integration of the generator into existing
development processes (see Requirement R5.2) is implicitly ensured by using Xtend for the actual
generator implementation. In combination with the Xtext framework which is used for DSL
definition, plugins for the Eclipse IDE and IntelliJ IDEA can be generated straightforwardly.
These plugins comprise the whole MDE infrastructure facilities for applying forward engineering
of WCMS extensions. Furthermore, a similar plugin for the PhpStorm IDE is provided and
the Joomla-specific generator is integrated into a web IDE, together with the model editor for
the eJSL DSL (cf. Section 5.4) and the model extraction tool JExt2eJSL (cf. Section 6.4.2).
All plugins can be generated automatically by executing automation scripts (Gradle) which
are provided as part of the JooMDD project (see Figure 6.36). These scripts include various
tasks for the automatic build of the JooMDD plugins and plugin repositories (or update sites)
for all supported IDEs (cf. the JooMDDDeploy task in Figure 6.36). This also includes tasks
for increasing a respective version number of the plugins in all necessary description files of the
project. The same applies to the web IDE which is assembled and can be deployed to a web server
automatically (cf. the jettyRun task in Figure 6.36). So, the whole infrastructure development
can be part of a CI/CD or even DevOps strategy which publishes new plugin versions within short
release cycles automatically. This aspect is a relevant driver in software development nowadays
(cf. [93], [241] and [270]) and is therefore considered in order to increase the maintainability of
the MDE infrastructure. To make use of GitHub Actions [78] for task automation in GitHub,
we currently work on the incorporation of the Gradle tasks into a CI/CD pipeline which will be
triggered automatically with each merge of a pull request into the JooMDD project. So, we will
enable distributed development within the open source projects.

Figure 6.36: Gradle Tasks for Build Automation of JooMDD Plugins

6.5. Evaluation 157

Additionally, tasks for testing purposes are also included. These tasks create the required IDE
plugin and starts an IDE instance which already includes the plugin. So MDE infrastructure
developers can test the current version without any installation overhead (cf. joomdd_live in
Figure 6.36). With the provided tasks for automated build and deploy actions, the acceptance
criteria of Requirement R5.3 is fulfilled.

Subject: Reverse Engineering Facilities

The reverse engineering facilities which are presented in this chapter comprise a model extraction
tool for installable Joomla extension packages as well as an extension extractor for deployed
Joomla components which creates such installable extension packages. So, we address both
main requirements R4.1 and R4.2. The model extraction tool, JExt2eJSL discovers extension
information and creates an eJSL model instance based on the provided feature of the extension
package. If a deployed extension has to be used for model extraction, the ExtPorter component
can be used in order to create the necessary folder structure for installable packages. In order
to support the stressed development scenarios exemplarily for the Joomla WCMS, the model
extraction tool is currently limited to the Joomla WCMS. Moreover, the tool is strongly tailored
to the eJSL DSL. It requires extension packages which strongly adhere to the architectural guide-
lines of Joomla. Inadequately implemented extensions are not supported, leading to inconsistent
models or exceptions during the use of the tool. Individual classes and methods cannot directly
be extracted, since the tool only considers special MVC classes which implement the extension
API of the Joomla core. However, by supporting the extraction of library extensions allows to
transform packages, classes, methods, and attributes to eJSL model definitions. Legacy exten-
sions which mainly consist of individual file and code architectures but have to be considered
during the stressed development scenarios (scenario 2-5), cannot be inspected by our proposed
tool. For this case, we propose to reengineer the extension before using the tool or apply a
manual reverse engineering process. In future work, a more general reverse engineering approach
should be researched, based on the presented concepts as presented in Section 6.4.1.

In order to ensure the quality of the RE facilities (cf. Requirement R5.1), we test the correct
behaviour of both implemented tools manually. We use generated extensions created with the
presented code generator based on the provided showcase models (cf. Section 5.5) as input for
the model extractor and compare the resulting model with the original showcase model. In
first development iterations, we used a set of popular third-party extensions from the extension
directory of Joomla as input packages. However, we observed, that most of these extensions
require a reengineering since they do not adhere to the architectural guidelines of the community
(cf. problem statement 1). Based on this insight, we implemented the extension inspection
as first step in order to allow a more flexible architecture. The ExtPorter component tool
was tested by extracting installed third-party components which were compared to the original
extension packages. So, we were able to identify and integrate special file structures which have
to be considered during the extension process. In contrast to the generator implementation, no
scalability tests were executed.

Addressing the integration of the RE tools into the development process of extension developers
(cf. Requirement R5.2), we followed different strategies. The extension exporter has to be used
as component within a Joomla installation on which the target extension is deployed. This allows
all administrators to extract an installable extension package in their well-known environment
without the necessity of using an additional application. However, the ExtPorter component must
be installed to the Joomla installation. This can typically only be performed by administrators.
This can be a drawback of the decision. In contrast, the model extraction tool is implemented as
stand-alone application, which is also provided as Eclipse plugin, and can also be used by a CLI
command. This allows the integration, e.g. into the web IDE where it is provided together with
all the other presented MDE facilities. Moreover the tool can be included to a CI/CD pipeline
which build the plugins and executable application file (cf. Requirement R5.3).

158 Chapter 6. Transformation Tools

6.5.2 Threats to Validity
In this chapter, we presented transformation tools for applying forward and reverse engineering
of WCMS extensions with prototypical implementations for the Joomla WCMS. These tools
extend the MDE infrastructure for WCMS extensions addressing the requirements which are
presented in Section 4.3. This includes a code generator for Joomla 3 and 4 extensions, as well
as an extraction component for deployed Joomla components, and a model extraction application
which creates an eJSL instance model based on an existing Joomla 3 extension package. Similar
to the internal validity threat as presented in the previous chapter, we did not involve external
extension developers during the evaluation of the presented transformation tools. So, early
adoptions of design decisions or even the presented concepts may have affected the latest versions
of the implemented tools which are incorporated in the JooMDD infrastructure. Furthermore,
the quality is not evaluated properly during each iteration, since no adequate unit tests for
automatic testing exist. The same applies to scalability tests for the RE facilities. However, in
the next Chapter, we present the results of a quantitative and qualitative analysis of applying
MDE in the WCMS domain with external developers. During a set of experiments, a late
version of the JooMDD infrastructure, including the presented transformation tools, was used
during the application of common development scenarios. Defects which were found during these
experiments were fixed and new feature request were implemented afterwards.

In order to ensure external validity of our approach, generators and RE facilities for additional
WCMSs should be implemented. So, the universal applicability of the eJSL DSL and the pre-
sented concepts for the transformation tools can be demonstrated. This, however, goes beyond
the bounds of this work and should therefore be addressed as part of further work. To this end,
we propose the implementation for popular WCMSs such as WordPress and Drupal. Moreover,
we suggest to evaluate the concepts also for domain-specific WCMSs, e.g. used for the imple-
mentation of shop systems. Worth mentioning is the project of Cabot which proposes a DSL
and corresponding code generator for the WordPress WCMS [37, 36]. The proposed DSL shows
similarities to some parts of our proposed eJSL DSL. However, in contrast to our proposed MDE
infrastructure, the DSL and generator for WordPress provides less language features and is not
able to handle extension dependencies. Moreover, sophisticated extension kinds such as the ones
supported by the Jooma WCMS are not considered. According to first investigations, all lan-
guage features are covered by the eJSL DSL. The same applies to the code generator concepts.
So, an integration of the proposed project into our work seems to be a promising step as part of
future work.

7 MDE of WCMS Extensions -
Quantitative and Qualitative Analysis

Since software engineering is in its adolescence, it is certainly a
candidate for the experimental method of analysis.

Experimentation is performed in order to help us better evaluate,
predict, understand, control, and improve the software development

process and product.
– Victor R. Basili, Richard W. Selby, David H. Hutchens in [18]

For the purpose of investigating the profitability of MDE during WCMS extension development,
we presented an MDE concept for the confirmed development scenarios in the domain (cf. Chap-
ter 4). Based on this concept and corresponding requirements, a DSL for WCMS extensions as
well as concepts for suitable transformation tool are presented in the previous chapters (Chapter
5 and Chapter 6). The latter also includes prototypical implementations addressing extensions
for the Joomla WCMS. In this chapter, we use quantitative and qualitative methods to research
the effect of an MDE infrastructure during WCMS extension development. So we address RQ2:
To which extend can MDE support WCMS extension developers during development and main-
tenance of WCMS extensions?

First, we present the design and results of a controlled experiment with WCMS extension de-
velopers. This experiment was conducted in order to quantitatively compare conventional with
model-driven extension development during development scenario 1 and 2 (cf. Section 4.2). We
discuss the results with regard to the impact of our presented MDE infrastructure on the devel-
opment speed and software quality during extension development. We also provide insights into
the extension development by inexperienced developers using our presented MDE infrastructure.
Additionally, the design and observations of a hands-on tutorial with industrial practitioners
from the Joomla community is presented in this chapter. During a workshop, the participants
applied our presented MDE infrastructure during development scenario 1-3‚ in a semi-controlled
manner. So, we achieved qualitative results to allow conclusions on the general suitability of an
MDE approach in the WCMS domain.

Excerpts from this chapter have already been published in [185] and [190]. The used docu-
ments during the empirical assessments (Appendix E, Appendix G) are also published as online
appendix in [189].

7.1 State of the Art
In the past, several efforts have been invested to investigate the impact of MDE in practice.
Studies which focus the practical and industrial adoption of MDE in the embedded systems or
mobile development domain are presented in [258] , [32], [139], [244], [216], [142], and [245].
Sousa et al. [216] present the adoption of MDE in an industrial modernization scenario, whereas
Whittle et al. [258] introduce a taxonomy of tool-related considerations based on empirical
data stemming from industry. The latter distinguishes technical factors (concerning technical
aspects of MDE tools) from organizational and social ones (focusing on tool use and application
within working processes). This taxonomy was used to analyse interviews from industry, mainly
at companies such as Ericsson and Volvo. Although developed for empirical studies in other

159

160
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

domains, most of their lessons learned are confirmed by our studies which are presented below
(cf. Sect. 7.4).

Mohagheghi et al. [156] reflect the adoption of MDE in four cases from companies in different
domains (enterprise applications, telecommunication, aerospace crisis management systems and
geological systems) based on interview and questionnaire studies, focusing on the practical mo-
tivation for using MDE and subjective usability aspects. Karg et al. [126] analyse the adoption
of MDE in the openETCS project (railway domain) based on practical experience, surveys, and
interviews. The authors of both studies state that MDE can be generally applied successfully,
affecting developers positively. However, they also mention that methodologies and tools are a
main inhibiting factor. An additional work in this context is presented by Baker et al. [16]. The
authors report of successfully applying MDE for 15 years at Motorola. As a result of the MDE
adoption, the authors report of 2.3 times less required effort, 1.2-4 times less defects, and 2-8
times greater productivity.

In addition to practical and industrial application, several experimental investigations have been
conducted in various domains in order to compare MDE with conventional development meth-
ods. Bunse et al. [31] present the results of 15 three member teams adopting MDE during the
development of components in the embedded systems domain. They came to the conclusion,
that MDE reduces effort and improves the reuse and quality of software artefacts in the domain.
Similar studies were conducted in the web domain. The study which was conducted by Fernan-
dez et al. [65] investigated the usability of web applications being developed in a model-driven
way, whereas the closest studies are presented in [147], [176], and [177]. Martinez et al. [147]
investigate the maintainability of web applications. The authors compare model-driven develop-
ment of web applications with code-centric development. They conducted an experiment with 27
graduate students, who had to perform a series of maintainability tasks in two groups. Specifi-
cally, they investigated the effectiveness, efficiency, usefulness, and ease of use of the development
approaches w.r.t. changeability. As result of that study, the authors found a perceived loss of
control with MDE approaches, that model-driven development is slightly more learnable and less
complex than code-centric development, and that developers are not as satisfied with the MDE
approach as expected. Panach et al. [176] compare model-driven development with conventional
development of web applications. The authors research the impact of MDE on quality, effort,
productivity, and developer satisfaction by conducting a controlled experiment with 26 students
as part of an MDD course. The same applies to the presented study of Papotti et al. [177].
The authors compare the performance of conventional development with MDE of web applica-
tions by conducting a controlled experiment with 29 senior students. Both studies observed a
positive effect on the researched variables during MDE adoption (e.g. 90% reduced development
time [177]).

To the best of our knowledge, there is no other empirical study researching the impact of an
MDE adoption in the WCMS domain (Problem Statement 6). Therefore, we aim to conduct an
experimental investigation to extend the results of the most cited benefits of MDE with respect to
quality, productivity, and developer satisfaction in this domain. In contrast to existing studies,
we performed our studies with experienced developers in addition to students. Experienced
developers are usually confronted with the development and evolution of much larger projects.
Specifically, they need to develop and integrate new software components and to migrate code,
tasks that are not covered by these studies. The subjects of our experiments have to implement
fully functional Joomla extensions during the stressed development scenarios. To this end, we use
the previously presented MDE infrastructure and follow the proposed MDE concept (cf. Section
4.2). However, the study design of our controlled experiment is similar to the ones described in
these works, since we are interested in related variables like quality and productivity. Therefore,
we compare our findings to the results of these works within the interpretation and lessons learned
sections below.

7.2. Quantitative Analysis - Conducting a Controlled Experiment 161

7.2 Quantitative Analysis - Conducting a Controlled Ex-
periment

In this section we present the methodology, procedure, and observations of a profitability evalu-
ation based on a controlled experiment with WCMS extension developers. This experiment has
been conducted twice as part of an exemplary pilot evaluation for the Joomla WCMS. By apply-
ing the previously described MDE infrastructure during the confirmed development scenarios,
we compare conventional WCMS extension development with MDE. The goal of this experiment
is to quantitatively research the impact of MDE in terms of development speed and code quality.
In addition, we investigate whether inexperienced developers can develop WCMS extensions of
appropriate quality using an MDE infrastructure.

In accordance to Panach et al. [176], it is impossible to evaluate all pros and cons of MDE within
one experiment. As previously described, several works have addressed the evaluation of MDE
adoptions in industry and during experimental investigations. The common results highlight the
advantages of MDE in terms of quality enhancement, effort reduction, productivity growth, and
stakeholder/developer satisfaction. In this context, we aim to extend these results by studying
the effect of MDE in the context of WCMS extension development (addressing problem statement
6) in order to answer the following research questions:

RQ2.1: Can MDE affect productivity during Joomla extension development?

RQ2.2: Can MDE affect the software quality of Joomla extensions?

7.2.1 Method
By conducting a controlled experiment based on development scenario 1 and 2 (cf. Section 4.2),
we aim to validate the effect of MDE in a systematic, disciplined, controlled and computable
manner [177]. To this end, we follow empirical guidelines as presented in [213], [118], and [260]
as well as the experimental design of Panach et al. [176] which fits to our desired goal. These
guidelines propose the formulation of hypotheses which can be tested in order to answer the
addressed research questions. Therefore, we formulate null hypotheses (H0) which indicate no
effect based on our selected treatment. The goal of our experiment is to falsify these hypotheses.

We formulate the following null hypotheses which address RQ2.1 and RQ2.2:

H01: The developer productivity during Joomla extension development applying MDE is similar
to productivity following a traditional development method.

H02: The software quality of Joomla extensions developed by applying MDE is similar to soft-
ware quality following a traditional development method.

Subjects

For the study, we selected 14 developers with significant expertise in Joomla extension devel-
opment. We justify the selection of student participants with their comparable performance to
professionals when using new software development tools [201]. In the conducted survey, the
participants stated that they used a variety of commonly used IDEs. All participants stated
that they have at least 2-5 years of experience as software developers with a satisfactory to high
experience with web technologies. 4 participants have more than 6 years and 2 participants
more than 10 years of experience in software development. Only one participant stated that he
never implemented software fragments in order to fulfil given requirements. Table F.1 and F.2 in
Appendix F summarize the self assessment results with regard to general software development
experience.

162
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

To ensure sufficient knowledge in extension development for the Joomla WCMS, we conducted a
questionnaire and an external knowledge assessment at the beginning of the experiment, based on
a multiple-choice test. Table F.3 in Appendix F shows the role of the participants and the time
spend with WCMSs in general. Some participants had taken on several roles (user, administrator,
developer). Considering the experience in Joomla development, all participants stated that they
developed software extensions for this specific WCMS. 5 participants were industrial Joomla
extension developers with a high level of experience (2 - 10 years of experience). 9 participants
were students from an intensive course on Joomla programming, 5 of them work productively
as Joomla developers in a university context. 5 participants stated that they also augmented an
existing extension by a new dependent one (scenario 2). In the external assessment, we found
that all participants have knowledge in extension development. However, 2 participants showed
a knowledge deficit in detailed extension development (MVC interaction).

Additionally, we conducted an assessment addressing the modelling experience of the partici-
pants. As the result in Table F.4 in Appendix F shows, all participants had average to high
experience in modelling. Based on our external assessment, the modelling experience was higher
as the estimated self-perception. Most of the participants had modelling experience with UML.

Moreover, we asked questions in order to get an impression of the open-mindedness towards MDE.
To this end, we asked for an estimation of the need for a tool/method for the transformation of
requirement documents into models and/or implementations using a five-point likert scale (see
Table F.5 in Appendix F). 29% estimated an average need, whereas 50% estimated a high and
21% a very high need for such tools and methods. 71% of the participants used code generators
before. This shows that none of the participants was disinclined from the outset.

Variables Definition

Experimentation requires the identification of adequate independent and dependent variables.
Independent variables (factors) can be controlled in order to investigate their effects on dependent
variables. The dependent variables (response variables) are the observed subjects of change based
on the effects of the treatments. To address the defined RQs mentioned above, each RQ needs
to be operationalized in terms of a dependent variable. Our presented experiment studies the
effect of two different development methods (levels): Traditional development (control) and MDE
(treatment) of WCMS extensions. So, the independent variable is development method.

RQ2.1 requires a dependent variable for measuring the effect of MDE to developer productivity.
Productivity is often measured as amount of fulfilled requirements to effort ratio [176]. In our
experiments, we decided for a constant effort (maximum time duration during development
sessions). Therefore, we measure productivity in terms of the amount of fulfilled requirements
based on passed test cases for each requirement (see the checklists in Appendix E).

RQ2.2 necessitates a dependent variable for the effect of the treatments to the quality of developed
WCMS extensions. We selected a variable tailored to the quality requirements of the WCMS
domain: General coding standard for PHP-based web application development. At the time of
the experiment two standards were popular in the domain, the Joomla coding standard [166]
and the more standardized PSR-2 (now PSR-12) [179]. In our conducted expert interviews (cf.
Section 4.1), developers stated that they rather follow official coding standards, such as the latter
coding style recommendation. This standard aims to "reduce cognitive friction when scanning
code from different authors" [87], thus contributing to maintainability, one of the internal quality
characteristics in the ISO25010 standard [99]. This standard is also adhered by the Joomla
extensions which are developed with the JooMDD infrastructure. To measure the effect of MDE,
we asked our participants to adhere to PSR-2 while implementing the requirements. We measured
quality in terms of the amount of code style violations to LoC ratio for each requirement. We
used the PHP_CodeSniffer [220] tool for violation detection and PHPLOC [22] for measuring
lines of code in each implemented view. Both tools are standard tools in the PHP community.

7.2. Quantitative Analysis - Conducting a Controlled Experiment 163

Design

As detailed presented by Juristo and Moreno [118], various and adaptable study designs for
controlled experiments exist. The design must fit to the number of subjects and treatments
and must adequately address noise factors and learning effects in order to ensure valid and
statistically significant results. As described above, we address one factor with two levels and
few subjects. Following the common between-groups design [43] requires to divide the subjects
into two groups whereas each group applies a different treatment for the same problem. However,
this design requires a large group of subjects and is more suitable for simple tasks. In contrast
the common within groups (crossover) design [43, 118] requires a fewer number of subjects,
since each group applies the same treatments successively (in a cross-over design). Though, this
design is highly vulnerable in terms of learning effect. Therefore, different experimental objects
(problems) are required which are addressed by the groups. Adopting this design during the
comparison of traditional development and MDE necessitates to let one group start with MDE
followed by the traditional method. This may lead to motivation biases due to the expected
positive effect of MDE. In [176], the authors compare common experimental designs and discuss
their advantages and disadvantages with regard to a similar setting in a more detailed manner.
Based on this comparison, we decided to follow an adapted within groups design (paired design
blocked by experimental objects [118, 176])) with two randomized groups. Both groups started
with conventional programming followed by a model-driven development session. To encounter
a possible learning effect, we handed out different tasks to the groups. So we address the
small number of subjects, possible learning effects, and emerging biases due to the order of
the development method. To avoid bias due to one of the tasks being more complicated, we
randomized the assignment of tasks to development methodologies between participants [118].
The design is shown in Table 7.1.

Table 7.1: Study Design

Session Factor Requirement A Requirement B
1 Traditional Group 1 Group 2
2 MDE Group 2 Group 1

The tasks, based on two different requirements of similar complexity, were handed out during
the development sessions. To fulfil the requirements, the groups had to implement extensions for
a university management (requirement A) and a custom-relationship management (requirement
B). Figure 7.1 illustrates a possible solution model with the entities of requirement B. Group 1
had to implement the first requirement by hand and the second one with MDE, whereas group
2 started with the second requirement followed with the first one. 10 subjects stated that they
realised extensions with similar complexity before (cf. Table F.8 in Appendix F).

ProductProduct

0...*0...*

PaymentMethodPaymentMethod CustomerCustomer

ContactPersonContactPerson

OrderOrder

11

11

1...*

1

1...*

1...*1...*

0...*

1...*

0...*

0...*0...*

1

0...*

1

1...*

1...*

ProductCategoryProductCategory

-name

+ProductCategory()

-name

+Product()

-description

-price

-stock

-name

+PaymentMethod()

-companyName

+Customer()

-shippingAddress

-billingAddress

-bankName

-BIC

-IBAN
-firstName

+ContactPerson()

-lastName

-phoneNumber

-email

-state

+Order()

-quantity

Figure 7.1: Entity Model of Possible Solution for CRM Requirement

164
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

Both requirements consisted of an independent Joomla component (scenario 1) with 14 views
in total. In particular, 6 list views and 6 edit views for the management of each entity in
the administration section (backend), as well as 1 list view and 1 details view for the end-user
(frontend). Each view consists of an representation part as well as a CRUD implementation in
the backend section. In addition, the subjects were asked to implement a dependent module
(scenario 2) which illustrates data of the implemented component. So, in total we had 28
test items for the subsequent evaluation of the results. Appendix E includes the requirements
description (Figure E.19 and Figure E.23) and the detailed specification lists for the test items
(Figure E.20-E.22 and Figure E.24-E.26).

Instrumentation

During the development sessions the subjects were free to use a development environment of
their choice for conventional programming. 12 subjects used a JetBrains IDE (cf. Table F.8 in
Appendix F), whereas 2 subjects did not provide information about the IDE they used. In the
traditional development session, they were allowed to make use of boilerplate code generators
such as the built-in Joomla extension boilerplate generator. 3 subjects stated, that they used
existing generators during session 1 (see Table F.9 in Appendix F). During the model-driven
development session all subjects had to use the JooMDD web IDE (cf. Section 5.4) for extension
development. So, we minimize technical noise regarding the installation of IDE plugins.

For all subjects, we prepared accounts for the web IDE which had to be used during the MDE
session. So, we ensured persistence of the created artefacts like models and generated code.
Moreover, we prepared a corresponding Joomla testing instance for each subject. So, they were
able to test extensions within an isolated environment in addition to local testing.

Statistical analysis

To analyse our results statistically, we tested the two null hypotheses H01 and H02 using a
standard hypothesis testing approach. First, to select an appropriate test, we first check whether
our measurement data are normally distributed by creating Q–Q (quantile-quantile) plots [232]
and applying the Shapiro-Wilk test [211]. Alternatively, the non-parametric Kolmogorov-Smirnov
test [50] can be applied to test a data set for normal distribution. This test, however, is rather
used for larger sample sizes, whereas the Shapiro-Wilk test is more powerful for small sample
sizes (cf. [157]).

Our study design is based on two samples with different groups which apply the same development
method in a session with different requirements as blocking factor. These may have an effect
on the observed variables but their effect is not of interest. Nevertheless, we test the hypothesis
for both requirements to address this aspect. Popular candidates for hypothesis testing are
ANOVA, t-tests [158, 118]. ANOVA tests are typically used for more than two levels of one or
more than one factor designs, whereas t-tests compare the means of two sample sets which are
normal distributed. However, t-tests require normally distributed data sets. In contrast, the
non-parametric Mann–Whitney U test [92] is applicable for data sets which are not normally
distributed. Both tests yields a p-value, which allows to reject the null hypothesis in case that
p is smaller than an upfront-defined significance threshold. In our tests, we use a standard
significance threshold of α = 0.05.

Furthermore, we consider the effect sizes for the comparisons. Whereas Cohen’s d [49] is com-
monly used for normally distributed data sets, Vargha and Delaney’s A12 score [240] measures
the effect size when the data is not normally distributed. The latter measures effects on a scale
between 0 and 1. Vargha and Delaney suggest to interpret the A12 score using the following
reference values: 0.56 = small; 0.64 = medium; 0.71 = large [240].

7.2. Quantitative Analysis - Conducting a Controlled Experiment 165

Procedure

Before the actual development session started, a presentation including an experiment and task
description was given. This also included the presentation of the definition-of-done (DoD) speci-
fication for the resulting extensions. To ensure anonymous handling of the results and eliminate
possible biases between the subjects and the experimenter, the subjects were identified by a
random subject-ID, which had to be written down on each artefact they filled out during the
experiment. After completing a demographic questionnaire, the subjects had to complete the
knowledge assessment (development, Joomla, MDE), followed by the two programming sessions.
The knowledge assessment consisted of a self-assessment and external assessment part. During
the development sessions, the subjects used their own notebooks with their familiar development
set-up of choice.

At the start of the first session, a requirements specification was given to all subjects. Both
groups had to implement Joomla extensions (1 independent component and 1 dependent module),
whereby group 1 had to consider requirement A, while group 2 had to follow requirement B. In
a presentation before the second session, an overview of the eJSL DSL, the code generator,
and the web IDE was given. In the second session, the subjects had to implement the remaining
requirement in a model-driven manner. In each session, the participants had to check the fulfilled
requirements in the specification list.

After each session the subjects had to submit their solutions and answer questions considering
the development method as well as the quantity and quality of the development results. At
the end, a closing questionnaire was conducted, to get insights to the acceptance of the MDE
approach. After 9 hours the experiment ended.

The whole procedure, including the duration of each step, is illustrated in Figure 7.2. The
presentation and documents which were handed out to the participants, can be found in Appendix
E and as online appendix in [189].

Questionnaire

(30 min)

Questionnaire

(30 min)

Consent Form

(5 min)

Consent Form

(5 min)

Introduction

(10 min)

Introduction

(10 min)

Joomla and

DoD Description

(20 min)

Joomla and

DoD Description

(20 min)

✔

Development Session 1:

Traditional Method

(180 min)

Development Session 1:

Traditional Method

(180 min)

JooMDD

Introduction

(30 min)

JooMDD

Introduction

(30 min)

Development Session 2:

MDE

(180 min)

Development Session 2:

MDE

(180 min)

Session

Questionnaire

(10 min)

Session

Questionnaire

(10 min)

✔

Session

Questionnaire

(10 min)

✔

Session

Questionnaire

(10 min)

Session

Questionnaire

(10 min)

✔

Session

Questionnaire

(10 min)

✔

Feedback

Questionnaire

(5 min)

Feedback

Questionnaire

(5 min)

✔

Feedback

Questionnaire

(5 min)

✔

Figure 7.2: Procedure Overview

7.2.2 Results
The test results of the submitted solutions are presented below based on the observed dependent
variable (productivity, quality). In addition to overall results, we present a detailed description
to gain insight about the effects of MDE on the development of different requirement groups.
The row data for each subject is included in Appendix F. In order to verify these results, we test
each corresponding null hypothesis based on the previously described statistical analysis.

166
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

Productivity

Table 7.2 summarizes the results of the controlled experiment based on the amount of fulfilled
requirements per development sessions (3h each). In order to gain general productivity growth
insights, we count the amount of passed test cases and build the average percentage of requirement
fulfilment. These results are clustered by requirement groups (A and B) with the respective mean
and (to expunge outliers) median productivity coefficient as well as the standard deviation (SD)
for both development sessions (baseline, MDE). As the table shows, the overall mean coefficient
between the baseline session and the session with MDE varies between 5.9 and 11.7 and the
overall median coefficient varies between 14.6 and 18.2.

Table 7.2: Productivity Results: Overview (Amount of passed Test Cases)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 7.8 91.3 11.7

median 6.3 90.9 14.4
SD 6.9 4.4

B
mean 9.6 56 5.8

median 3.6 59.7 16.6
SD 10.3 34.4

Overall
mean 8.7 73.7 8.5

median 4.9 89.2 18.2
SD 8.5 29.9

Figure 7.3 illustrates the box plot for the overall productivity result to visualize the productivity
differences and variances. The productivity variance of requirement A is quite small for both
treatments, whereas MDE of requirement B shows a wide range of productivity amounts. How-
ever, this result is based on two outliers (8% and 13%) which were not removed due to the small
sample size. Nevertheless, the median of the overall MDE productivity ratio is 30% lower for
requirement B. This indicates an effect based on the complexity of the requirement.

Requirement A Requirement B Overall

0

20

40

60

80

100

7.82

91.29

9.57

56

8.69

73.65

Pa
ss

ed
Te

st
C

as
e

R
at

io
[%

]

Traditional MDE

Figure 7.3: Passed Test Case Ratio (Overview)

7.2. Quantitative Analysis - Conducting a Controlled Experiment 167

Detailed Results

Table 7.3 - 7.6 present more detailed results for our productivity measurements. For each sub-
ject we measured the percentage of passed tests and summarized the results based on relevant
requirement groups in each development session. For each requirement group, we calculated the
mean and (to expunge outliers) the median.

In Table 7.3 the overall percentage of functional completeness of the implemented component
structure by all participants is summarized. This requirement group considers a component that
is installable, supports multi-language ability (by language files) and provides update scripts
which are processed during a re-installation step.

Table 7.3: Productivity Results: Detailed Insights (Component Structure)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 53.6 100 1.9

median 50 100 2
SD 22.5 0

B
mean 67.9 71.4 1.1

median 75 100 1.3
SD 31.3 48.8

Overall
mean 60.7 85.7 1.4

median 75 100 1.3
SD 27.2 36.3

The following table (Table 7.4) includes the overall percentage of implemented view features
(e.g. table columns, filters, orderings, correct fields and HTML field types) of all implemented
component views.

Table 7.4: Productivity Results: Detailed Insights (Component Views)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 5.7 88 15.4

median 5.4 90.2 16.7
SD 6.4 6.3

B
mean 5.61 55.6 9.9

median 0 61.3 N/A
SD 7 35.1

Overall
mean 5.7 71.8 12.6

median 2.7 87.7 32.5
SD 6.5 29.5

Table 7.5 summarizes the overall percentage of implemented component CRUD functionality
for each view. This includes the required CRUD buttons and a correct implementation of the
associated actions. In Table 7.6 we provide the overall percentage of fulfilled requirements based
on a module that is installable, uses the data of the implemented component, and illustrates the
data in a module position. The module requirement group represents scenario 2 (development of
a dependent extension), whereas the previously presented requirement groups in union represent
development scenario 1 (development of an independent extension).

168
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

Table 7.5: Productivity Results: Detailed Insights (Component CRUD)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 7.1 97.6 13.8

median 4.2 100 23.8
SD 7.9 6.3

B
mean 10.1 57.4 5.7

median 0 66.7 N/A
SD 15.6 33

Overall
mean 8.6 77.5 9

median 2.1 91.7 43.7
SD 12 30.9

Table 7.6: Productivity Results: Detailed Insights (Module)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 0 52.4 N/A

median 0 66.7 N/A
SD 0 50.4

B
mean 0 28.6 N/A

median 0 0 N/A
SD 0 48.8

Overall
mean 0 40.5 N/A

median 0 0 N/A
SD 0 49.2

Hypothesis Testing

The previously presented results show a significant (positive) effect of MDE during Joomla
extension development. To verify these results statistically, the corresponding null hypothesis
H01 (The developer productivity during Joomla extension development applying MDE is similar
to productivity following a traditional development method) has to be rejected. To elicit an
adequate hypothesis test, we have to evaluate, if the data set is normally distributed. To this
end, we created Q-Q plots, which are illustrated in Figure 7.4. Based on the Q-Q plots, normal
distribution of our productivity data sets can be assumed vaguely.

−2 −1 0 1 2

−2

0

2
Normal Q-Q Plot (Traditional)

−2 −1 0 1 2

−2

0

2
Normal Q-Q Plot (MDE)

Figure 7.4: Q-Q Plot for Productivity Result Sets (Traditional/MDE)

7.2. Quantitative Analysis - Conducting a Controlled Experiment 169

However, applying the Shapiro-Wilk test [211] on our data sets results in the test statistic results
of 0.845 (traditional) and 0.762 (MDD). Based on this test, the null hypothesis can be rejected, if
the test statistic is below the critical value of 0.875 for the significance level α = 0.05. Since both
values are below the critical value, we have to reject the null hypothesis and assume that our
data sets are not normal distributed. Therefore, we applied a non-parametric Mann–Whitney U
test, comparing the mean of two data sets (traditional, MDD). According to this test, there is
a statistically significant difference in the productivity results of both treatments with U = 11,
Z = −4.318, and p = 1.58 · 10−5. Considering the effect size based on the A12 measure yields
a score of 0.944. Consequently, we can quantify the effect of using MDD to productivity as
large [240].

Quality

In Table 7.7, the overall results of the quality measurements are presented. As previously de-
scribed, we measured the number of code style violations to LoC ratios for all implemented views
of session 1. Based on these views we measured the exact same views from session 2 only, even
there might be more views. So, we can compare the ratios for the same views considering the
low productivity of session 1. In the first session, the subjects implemented 4 different views in
total for requirement A, whereas for requirement B they implemented 12 different views. How-
ever, the high number for requirement B relates to one subject who used a boilerplate generator,
which generated most of the views (cf. Appendix F). As Table 7.7 illustrates, the overall mean
coefficient between the baseline and the MDE session varies between 0.42 and 0.47 times less
violation and the overall median coefficient varies between 0.42 and 0.43 times less violations
with MDE.

Table 7.7: Quality Results: Overview (Violations/LoC)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 1.42 0.66 0.47

median 1.6 0.67 0.42
SD 0.48 0.04

B
mean 1.77 0.75 0.42

median 1.58 0.67 0.43
SD 1.58 0.21

Overall
mean 1.59 0.71 0.44

median 1.59 0.67 0.42
SD 1.11 0.15

To use as many artefacts as possible for our quality assessment, we considered all implemented
views from both development sessions, even if they did not pass our test cases. This approach
may potentially provide an advantage to traditional development style, for which fewer solutions
were handed in for the more complex extension types (cf. the results presented above). To
mitigate bias, we present the quality results itemized by different extension types (which avoids
bias especially in the simpler cases). Bias in the complex cases is mitigated by the fact that, in
the worst case, the bias is negative against our approach – the reported quality benefit presents
a lower bound.

In Figure 7.5, the corresponding box plot for the overall result of the violation to LoC ratio is
presented. As previously described, one outlier (4.42%) led to a higher mean value for the ratio
of requirement B in the first session. However, the median of both requirements is quite similar
for the respective development method. This indicates, that the requirement had no explicit
effect on the measured code quality.

170
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

Requirement A Requirement B Overall

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1.42

0.66

1.77

0.75

1.59

0.71

V
io

la
tio

ns
/L

oC
R

at
io

[%
]

Traditional MDE

Figure 7.5: Code Style Violations / LoC Ratio (Overview)

Detailed Results

In Table 7.8 - 7.10, we present more detailed results of the code style measurements. Similar
to the detailed results of the productivity measurement, we calculated the mean, median, and
standard deviation (SD) for each requirement based on the implemented views of session 1. In
contrast to the detailed productivity results, we measured the violations/LoC ratio for edit/list
and details views of components as well as for implemented modules. The representation and
CRUD parts of the views are not explicitly measured, since they are interwoven within the same
files.

Table 7.8 shows the overall percentage of code style violations of the implemented component
list views of session 1. In session 2, the subjects produced 0.38 to 0.43 times less errors for the
same views.

Table 7.8: Quality Results: Detailed Insights (Component Views: List)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 1.55 0.60 0.39

median 1.83 0.54 0.30
SD 0.68 0.12

B
mean 1.46 0.63 0.43

median 1.43 0.54 0.38
SD 0.74 0.19

Overall
mean 1.51 0.61 0.41

median 1.63 0.54 0.33
SD 0.67 0.15

In Table 7.9 the overall percentage of code style violations of implemented component edit views
is summarized. Similar to the list view results, the violations/LoC ratio was reduced in the MDE
session (0.31 - 0.56 times less).

7.2. Quantitative Analysis - Conducting a Controlled Experiment 171

Table 7.9: Quality Results: Detailed Insights (Component Views: Edit)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 1.32 0.74 0.56

median 1.27 0.81 0.64
SD 0.46 0.12

B
mean 2.84 0.87 0.31

median 1.23 0.80 0.65
SD 4.05 0.26

Overall
mean 2.08 0.81 0.39

median 1.25 0.81 0.65
SD 2.83 0.21

A comparison of code style violations in modules is not possible, due to the fact that no subject
submitted adequate module code after the first session. Nevertheless, we inspected the submitted
modules of the MDE session in order to compare the violation/LoC ratio with the ratios of the
component views. As Table 7.10 shows, the overall ratio is between 0.38% and 0.4%. This value
is lower than the overall ratios of the component views after the MDE session (0.61% and 0.8%).

Table 7.10: Quality Results: Detailed Insights (Module)

Requirement Baseline (%) MDD (%) Coefficient

A
mean 0 0.38 N/A

median 0 0.38 N/A
SD 0 0.02

B
mean 0 0.40 N/A

median 0 0.40 N/A
SD 0 0

Overall
mean 0 0.38 N/A

median 0 0.39 N/A
SD 0 0.02

Hypothesis Testing

Similar to the productivity result, the previously presented results show a positive effect on the
quality of Joomla extension by applying MDE. In order to evaluate the corresponding null hy-
pothesis H02 (The software quality of Joomla extensions developed by applying MDE is similar to
software quality following a traditional development method.), we determine a suitable hypothesis
test by examining the data set for normal distribution. Here, too, the corresponding Q-Q plots,
shown in Figure 7.6, do not allow us to draw conclusions about the normal distribution of our
quality data sets based on the different development methods.

Based on the Shapiro-Wilk test [211] our data sets results in the test statistic results of 0.564 (tra-
ditional) and 0.524 (MDD). Therefore, the null hypothesis that the data is normally distributed
can be rejected, since the test statistic is below the critical value of 0.875 for the significance level
α = 0.05. So, we applied the non-parametric Mann–Whitney U test, which results in quality
results of both treatments with U = 29, Z = −2.593, and p = 0.01 which is below α. Based on
the A12 score of 0.793, we can quantify the effect of using MDD to the quality measurement as
large [240].

172
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

−2 −1 0 1 2

−2

0

2
Normal Q-Q Plot (Traditional)

−2 −1 0 1 2

−2

0

2
Normal Q-Q Plot (MDE)

Figure 7.6: Q-Q Plot for Quality Result Sets (Traditional/MDE)

7.2.3 Discussion
Based on the previously presented results we can answer our defined research questions RQ2.1
and RQ2.2. Considering the effect of MDE on productivity during WCMS extension development
(RQ2.1), we found that even the lowest measured mean coefficient is higher than 5. This shows
that the subjects were significantly more productive by applying MDE during the implementation
of each requirement in session 2 of the experiment. This is statistically confirmed by the huge
effect size of 0.944 (A12 score).

Regarding the effect of MDE on software quality of WCMS extensions (RQ2.2), the subjects
submitted extensions with improved code quality by reducing the amount of code style violations
in average at least by the factor 0.42. This result is especially remarkable due to the initial
advantage for traditional development, for which less implementations for the more complicated
requirements were submitted.

Both experiment results adhere to the interview statements and our previous research, according
to which a large amount of extensions consists of generic code for standard views with CRUD
functionality. By applying MDE, these extension parts can be developed faster with better
quality. This supports the following alternative hypotheses to both rejected null hypotheses:

H11: The developer productivity during Joomla extension development applying MDE is higher
than productivity following a traditional development method.

H12: The software quality of Joomla extensions developed by applying MDE is higher to software
quality following a traditional development method.

The same applies to the development of dependent extensions, whereas the significance of the
module development requirement should be interpreted with caution. The experiment design
did not allow to conduct a separate module development session. Only one subject decided to
implement a module during the first session without any results. The other subjects focused on
component development within the time slot of the first session. Due to the fact that all subjects
were faster during the second session, more of them were able to develop the required module.

An additional observation based on the experiment results considers the developer satisfaction
during the MDE session. Based on the collected feedback after the experiment, all subjects
stated that the development with JooMDD was more comfortable. Though, we observed that
inexperienced extension developers (<1 year of Joomla experience) were able to fulfil similar
amounts of requirements using JooMDD (cf. Table F.10 in Appendix F). Moreover, only one
subject refined the generated solution after code generation (cf. Table F.13 in Appendix F). This
indicates a positive answer addressing a further research question: Is it possible for inexperienced
developers to develop WCMS extension by using an MDE infrastructure?

7.3. Qualitative Analysis - MDE Workshop with Industrial Practitioners 173

In order to answer this new research question and confirm the previously discussed results, a
replication of the experiment with more subjects should be applied. By the instantiation of
our study design with further requirements, development scenarios, and MDE infrastructures for
other WCMSs, the results may be extended to a broader WCMS context. We propose, to split the
development of dependent and independent extensions into separate experiment instantiations
to gain better results for the comparison of both treatments. However, based on the complexity
of the requirements and the WCMS context, experiment extensions may make it more difficult
to find suitable experiment participants, especially from the non-academic area.

7.3 Qualitative Analysis - MDE Workshop with Industrial
Practitioners

During the controlled experiment, we focused on forward engineering of the first two scenarios
and did not address scenario 3 which require reverse engineering steps (e.g. migration), due
to the high effort for understanding and implementing the requirements with two different de-
velopment methodologies. So, in addition to the quantitative analysis of applying MDE in the
WCMS domain as presented in the previous section, we conducted field research with four ex-
tension developers of the Joomla community in December 2017. To complement the results with
additional qualitative insights regarding the usefulness, acceptance, and open challenges of MDE
during our stressed scenarios in this work, we conducted a semi-controlled hands-on tutorial with
four extension developers of the Joomla community. We observed the developers adopting MDE
during three development sessions including forward engineering and reverse engineering steps.
So, we address the following research question:

RQ2.3: Can common WCMS extension development scenarios be addressed with an MDE in-
frastructure?

This allows conclusions to the applicability of the proposed MDE concepts from Section 4.2 with
the MDE infrastructure instantiation as presented in the previous Chapter 6.

7.3.1 Method
Below, we describe the setting of the workshop including a description of the subjects, the design
of the tutorial, instrumentation, and procedure.

Subjects

For the workshop, we asked extension developers from the Joomla community to take part in
an extension developer meeting. Such meetings are common events in the domain, allowing to
exchange ideas. Due to first points of contact with our MDE approach and the JooMDD tool
set during Dutch Joomla events, we asked developers from the Dutch Joomla community to
instantiate our tutorial as part of one of their developer meetings. Four extension developers
with a high level of experience (5-13 years) participated in the workshop. All of them had good
knowledge of the processes and problems during extension development and migration.

Design

To provide replication of the workshop based on the addressed development scenarios, we propose
a repeatable tutorial design. This includes the specification of suitable requirements which can
be handed out to the subjects. Due to the limited time slot of one day, the requirements must
be realisable in short time but should be complex enough to allow further conclusions with high
external validity. Moreover, adequate solutions must be provided to allow the subjects to proceed
with the tutorial, even if they get stuck during the realisation of a requirement.

174
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

Our tutorial design is oriented on the three main development scenarios, which we address in
this work (cf. Section 2.3 and Section 4.2). Therefore, we ask all subjects to apply MDE during
the development of an independent and dependent extension and the migration of an existing
extension package within three consecutive sessions.

MDE of an Independent Joomla Component (Scenario 1): In the first session, we instantiate
the proposed MDE concept for scenario 1 (cf. Figure 4.3 in Section 4.2). Similar to the tasks
of the controlled experiment, we asked the subject to implement a Joomla component in the
first part of the tutorial, since they are the most commonly developed type of independent
extensions. We set the task to develop a conference management component as an extension
to the Joomla core (cf. the conference showcase model which is presented in Section 5.5). We
decided to keep the complexity of the requirement as low as possible to ensure a high realisation
coverage by the subjects. To stipulate the requirements, we specified a class model including
the conference management entities. The goal of the first session was to develop a component
for the management of conference data by standard views with CRUD functionality, similar to
the requirements of the controlled experiment. The resulting component must at least consist of
4 list views and 4 edit views for the management in the backend and 8 views for the frontend
representation of the entities. For every view the respective MVC and CRUD code has to be
generated as well. Our reference extension model for this scenario has a total of 230 LoC. This
includes 4 data entities and 8 different pages which are used for both the frontend and backend.
The generated component, including 16 views, consists of 17k LoC. We did not consider more
complex extension logic due to the time restriction of the workshop of 6 hours including training
(cf. procedure description below).

MDE of a Dependent Joomla Module (Scenario 2): The second session is an instantiation of our
proposed MDE concept for scenario 2 (cf. Figure 4.4 in Section 4.2). The task was to add a new
Joomla module to the existing conference component developed in the first session. The model
should use the MVC model of the component (cf. Section 6.2.2) to provide a new representation of
the conference talks within a Joomla site to which the conference component and the module are
deployed. Once installed, the module should work together with the already installed conference
component (cf. Figure 6.14 in Section 6.2.2). As previously mentioned, we did not expect more
complex extension logic in the module due to the time restriction. With more time, this scenario
would be realisable, e.g. by developing a dependent component with more complex application
logic based on operations on retrieved information from the dependency extension.

Model-Driven Migration of a Legacy Joomla Component from Joomla 3 to Joomla 4 (Scenario
3): In the third session, we required the code migration of an existing Joomla component from
Joomla platform version 3 to the Joomla 4 platform which was in an early alpha state in 2017.
So, this session represents an instantiation of our suggested MDE concept for scenario 3 (cf.
Figure 4.6 in Section 4.2). Even though the new major release of Joomla requires a completely
new extension structure (cf. Section 6.2.2)), the migrated component should include the same
features as the existing extension for the old Joomla version. So, the whole extension structure
of an existing Joomla 3 component has to be migrated to the required Joomla 4 structure. Once
installed to a Joomla 4 instance, the component views should also be displayed homogeneously
and work properly, such as the components for Joomla 3.

Instrumentation

In order to reduce technical noise, we asked the subjects to use the JooMDD web IDE (cf.
Section 5.4) during the development sessions. As described above, the web IDE integrates all
MDE infrastructure components homogeneously. This includes the eJSL model editor, showcase
models, code generator for Joomla 3 and Joomla 4 extensions, and the model extraction tool
JExt2eJSL (cf. Chapter 5 and 6). Additionally, we provided a Joomla installation of the latest
available version (3.8) at that time (December 2017) to ensure equal conditions for all subjects.

7.3. Qualitative Analysis - MDE Workshop with Industrial Practitioners 175

Procedure

We started the tutorial by introducing our MDE infrastructure JooMDD and the JooMDD web
IDE. This included a detailed DSL description based on an example model and the presentation
of the editor features. The presentation can be found in Appendix G.

The first session started by introducing the requirements for the conference component. In this
context, we also proposed a possible development procedure using the JooMDD web IDE. This
procedure comprises the use of an example model in the web IDE and changing it to the required
conference structure. In the next step, the subjects had to generate a component based on their
specified model. As part of the introductory presentation, we explained the structure of the
generated code and presented a possible solution. As a next step, the subjects had to install
the component to the Joomla installation, which we provided. The subjects then had to check
if the extension was installed properly and if it worked as homogeneous part of the website. To
this end, they had to create some conference data and test the common CRUD functionality. In
addition, they had to create frontend menu entries, to check, if the frontend representation of the
conference entities works properly. As next step, the subjects had to refine their existing model
iteratively. They had to add a new data entity and pages to display and manage this new entity.
Delete operations were not allowed since the JooMDD version at that time did not support an
intelligent update mechanism. After the model refinement, the subjects had to re-generate the
component and reinstall it to the Joomla installation. After that, the subjects had to check
again, if the extension works properly. If everything was done correctly, the existing conference
data should be still available in the system.

By handing out the requirements for the dependent module, the second session started. This
scenario requires an existing extension package of a conference management component. To this
end, the subjects could use the already downloaded extension package from scenario 1 or an
extension package which we handed out as possible solution. As next step, they had to upload
the extension package to the JooMDD web IDE and use the JExt2eJSL tool for model extraction
from the uploaded component package. By using the generated component for model extraction,
we make sure that the input extension matches the Joomla standard file and code schemes to
ensure that the extracted models are as complete as possible. After this step, the subjects had
to inspect the resulting model and make sure that these model elements are annotated with an
@preserve tag (cf. Section 5.2.1) to avoid the generation of code for them. This tag is used by
the JooMDD code generator later to ignore the annotated elements. Additionally, if the resulting
model contains some validation errors (e.g. illegal identifiers), the subjects had to refactor these
model elements. A further step in this session required the subjects to augment the resulting
model by a new Joomla module definition with references to the extracted component-specific
model elements. Then, using the new model as input, the subjects had to use the code generator
of the web IDE to create an installable extension package of the new module. To complete this
session, the developers were asked to install the module to our provided Joomla installation to
which the conference component is already deployed (session 1). If it has been installed properly,
the subjects had to create a module instance, which has to be placed on the frontend section of
the website. If everything worked properly, the module had to illustrate the data of the already
installed component similar to Figure 6.14 in Section 6.2.2.

At the beginning of the third session, we presented the requirements for the migration scenario.
Based on the required reverse engineering actions, the first steps of the procedure were similar
to the ones described for scenario 2. The subjects had to use an installable extension package
of a Joomla 3 component, upload it to the web IDE, extract a model, and refactor that model.
Again, we decided to use the conference component to ensure a full model extraction. However,
in contrast to session 2, the subjects had to remove all @preserve annotations in this session.
In session 2, the extracted component information was only relevant for the module generation,
whereas in this session the whole component had to be migrated. To avoid naming problems

176
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

during further steps, the subjects had to add a J4 prefix to the component name in the model.
After the model refinement step, the subjects had to generate the component by choosing J4
as generator option in the web IDE and download the resulting extension package. During the
tutorial in 2017, the version of the code generator did not generate fully operable components
but created the correct new file structure as proposed in 2017 with the main code changes for
Joomla 4. This was due to the missing documentation and unstable state of the early alpha
release. Therefore, the subjects had to inspect the new components to get an overview of the
new component structure.

After 6 hours the tutorial ended. To provide direct feedback of the subjects, we subsequently
conducted interviews with the subjects addressing the MDD approach during the scenarios.
These interview results were part of the interview set which is presented in Section 4.1 in Chapter
4. In Figure 7.7 the described procedure is illustrated.

JooMDD

Introduction

(60 min)

JooMDD

Introduction

(60 min)

Development Session 1:

Development of an

Independent Component

(90 min)

Development Session 1:

Development of an

Independent Component

(90 min)

Feedback and

Interviews

(90 min)

Feedback and

Interviews

(90 min)

✔

Feedback and

Interviews

(90 min)

✔

Requirement

Description

(10 min)

Requirement

Description

(10 min)

Development Session 2:

Development of a

Dependent Module

(90 min)

Development Session 2:

Development of a

Dependent Module

(90 min)

Requirement

Description

(10 min)

Requirement

Description

(10 min)

Requirement

Description

(10 min)

Requirement

Description

(10 min)

Development Session 3:

Migration of a Component

from Joomla 3 to Joomla 4

(90 min)

Development Session 3:

Migration of a Component

from Joomla 3 to Joomla 4

(90 min)

Figure 7.7: Tutorial Procedure Overview

7.3.2 Observations
During the tutorial, we made the following observations based on the actual development session
addressing a specific development scenario.

Session 1: MDE of an Independent Joomla Component (Scenario 1): Before the first session
started, we observed some reservations against the adoption of a model-driven approach. This
also applied to the introduced MDE infrastructure JooMDD. Though, after the first session, the
subjects were surprised that the tool worked so well. By using the example models as a reference,
the developers were able to quickly learn the concepts of the DSL and how to use the model editor

7.3. Qualitative Analysis - MDE Workshop with Industrial Practitioners 177

and generator provided by the JooMDD web IDE. Several editor features were well-received, like
the auto completion, error validation, and syntactical sugar, such as curly brackets in the DSL
which clarify the structure and model hierarchy.

However, some subjects had problems with keywords of the DSL. Especially, the page keyword
in the model made some problems. The subjects expected the keyword view, since pages in the
model represent views in actual components. This is due to the specialised Joomla experience
of the subjects. Another technical aversion, we observed, relates the usability of the web IDE.
Even though three of the subjects liked the platform-independent editor, the functions of the
buttons have not been clear enough without our explanation. One of the subjects disliked the
platform-independent solution and would have preferred to use the available IDE plugin for
PhpStorm.

After 20 minutes all subjects had installed their first generated component to the provided Joomla
installation. We did not observe different results between participant with more or less techno-
logical knowledge. The resulting components after the first session fulfilled our requirements, so
that all subjects were able to use them as reference within the following sessions.

Session 2: MDE of a Dependent Joomla Module (Scenario 2): During the second session we ob-
served that two of the subjects had problems with the resulting model after the model extraction
step, even though they used the generated component from the first session. Since the model
was not completely free of validation errors, the developers found it hard to orient themselves,
due to the mass of generated model code they are not used to. As described in Section 6.4.2,
the JExt2eJSL tool extracts as much information as possible in order to ensure high discovery
completeness. This is in contrast to the relatively simple models on which the subjects had to
operate in the first session. However, with some help, the subjects were able to create the new
modules in minutes and test them, deployed to the provided Joomla installation.

Session 3: Model-Driven Migration of a Legacy Joomla Component from Joomla 3 to Joomla 4
(Scenario 3): In the third session we made the observation that, except for one participant, the
group had no experience in extension development for the new Joomla 4 version. However, by
using the JooMDD facilities and following the predefined steps as described above, the group
was able to create their first Joomla 4 components, based on the previously generated conference
component for Joomla 3. Since the process was similar to the one from session 2, the subjects
required less help to use the tools correctly. They were fascinated by the applied scenario, since
the whole process did not require more than 5 minutes and 4 clicks for the example component.
Due to the fact that no migration steps are defined in any documentation, the subjects were
grateful to use the generated extension as first reference for their future extension development.

7.3.3 Discussion
The previously presented observations during the tutorial with extension developers from the
Dutch Joomla community allow conclusions in order to answer our defined research question
RQ2.3. Addressing the first and second development scenario (development of independent and
dependent extensions), we observed high acceptance by the subjects, similar to the observations
of the controlled experiment. The subjects were able to adopt MDE during these session by
using the provided MDE infrastructure JooMDD. In a short time, the subjects were able to
produce installable extensions which were operable on a running Joomla installation. However,
the complexity of the required conference management is relatively low in comparison to the
requirements specified during the controlled experiment. Moreover, no complex application logic
was required, what threatens the validity of the results.

Considering scenario 3 (migration of a legacy extension), RQ2.3 can also be answered positively.
The subjects were able to migrate an existing extension with the given tools in a model-driven
manner. This indicates a positive answer for the development scenario 4 and 5, even though

178
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

these scenarios were not explicitly evaluated. The additional scenarios include a similar process
including reverse and forward engineering steps in order to discover model information from
existing extensions which is then used for code translation. However, to answer the research
question in consideration of all scenarios, further executions of the tutorial with an extension of
these scenarios should be applied.

Negative remarks during the tutorial exclusively addressed language features of the eJSL DSL
or the usability of the JooMDD web IDE. The MDE approach itself was received positively.
This leads to the assumption, that MDE is a suitable alternative development method in the
WCMS domain. However, to increase the external validity of our conclusion requires to repeat
the tutorial with more subjects from other communities, since our discussion is based on the
relatively small number of 4 subjects. By using MDE infrastructures for other WCMSs, we can
address the research question to a broader WCMS context.

7.4 Lessons Learned
In this section we share the general lessons learned of using an MDE approach within the WCMS
domain based on our conducted studies among WCMS extension developers as also presented in
[185] and [190]. Besides the results of the presented studies in this chapter, we also incorporate
the findings from the expert interviews presented in Section 4.1 and the realised case studies
which are presented as part of the generator evaluation in Section 6.5.1, as they are closely
related to the findings of this chapter.

Most of the lessons learned are consistent to the ones presented by Whittle et al. in [258]. This
applies especially to the following ones:

Finding the right problem is crucial. All stressed development scenarios for WCMS exten-
sions, which are described earlier in this work (cf. 2.3), have proven to be significant.
However, the migration scenario as adopted during the tutorial is considered as especially
pressing and got most attention.

More focus on processes, not only on tools. Developers ask for supportive wizards sup-
porting them in following pre-defined processes as they occurred in selected application
scenarios. This includes dialogues and pre-defined artefacts which can be used out of the
box.

Match tools to people, not the other way around. Developers refused working with the
Eclipse IDE1. Instead, they are used to common IDEs in the domain such as the ones
provided by JetBrains or web IDEs and await corresponding tool support. In this context,
as developers pointed out, MDE has the potential to reduce error susceptibility in contrast
to clone-and-own approaches.

Additionally, we found three specific sub-lessons:

1. Integrate MDE tooling seamlessly into already used tool environments. De-
velopers also asked to consider possibilities for custom code integration into gener-
ated code.

2. Use domain terminology as much as possible. A DSL dialect may better re-
flect the developer’s understanding of a specific domain (such as WCMS extension
development with Joomla).

3. Handle models as usual development artefacts. Developers specifically asked
for version management support to consider model histories.

1For potential reasons see [121].

7.5. Threats to Validity 179

In addition, we have found further lessons learned which are in accordance to existing MDE
adoptions like [31], [234], [23]:

Apply MDE to develop components instead of whole systems. While certain kinds of
system components are well suited for MDE adoptions, others may be not. The developers
shall be guided to the promising applications.

MDE for learning new platform versions. By automatically migrating a vast part of a
WCMS extension, developers can learn how a new platform version (here Joomla 4) shall
be used. It also becomes easier to add individual code where needed.

MDE for teaching activities. Teaching a complex system to inexperienced developers can be
overwhelming for them, due to technical hurdles (cf. [234]). Using an MDE infrastructure
to obfuscate technical details and produce high quality software components encourages
students to become acquainted with a new technology. Furthermore, they can do changes
on a high abstraction level in the model and re-generate the software artefact on demand.

MDE for rapid prototyping. Since MDE enables rapid development of software artefacts
that cover a high amount of domain standards, it can also be used for rapid prototyping,
e.g. within an iterative development process (cf. [23]). The prototype, realised by applying
MDE, can be successively refined to the final product or even be completely discarded in
an early iteration, if it does not fulfil the stakeholders’ requirements.

7.5 Threats to Validity
Notwithstanding the promising results of both presented studies, they are subject to a number
of validity threats. Below, we discuss from which threats our studies suffer and describe how we
avoided typical threats during experimentation. To this end, we follow the classification which is
discussed by Wohlin et al. in [260]. This classification is based on four types of validity threats:
construct, internal, conclusion, and external.

7.5.1 Construct Validity
To ensure construct validity, we must ensure, that our studies are close to reality without biases
based on inadequate procedures. In the experiment and tutorial, we study practical applicability
of MDE by focusing on three development scenarios that we consider as common in the domain.
These scenarios have been confirmed as frequently occurring scenarios by industrial practitioners
from the domain (cf. Section 4.1). However, as previously addressed as validity threat in Section
4.4, additional scenarios exist which are not considered yet. Such scenarios must be studied in
future work.

All experiment measurements were done by the experimenters, even though the subjects had
to work through the requirements specification lists for the test items (Figure E.20-E.22 and
Figure E.24-E.26). We performed functional tests regarding productivity and code style checks
addressing the quality of the submitted results by ourselves. So, the students were not able
to falsify the measurement results. However, our measure of quality only focuses on adherence
to coding guidelines, which is positively correlated with maintainability [87]. Software qual-
ity, though, is a comprehensive construct with further concerns. Based on the ISO/IEC 25010
standard [98], the quality aspect includes several sub-characteristics which can be composed
as external and internal quality. External facilitates characteristics like functional suitability,
performance efficiency, security, and usability, whereas internal quality addresses the maintain-
ability of a software product. Additional experiments and measurements with the focus on these
sub-characteristics are required to extend our findings regarding the effect of MDE on software
quality.

180
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

In order to address evaluation apprehension by the subjects, we only choose volunteer participants
from academia and industry during the experiment and only industrial practitioners during the
workshop. Additionally, all documents and development results of the experiment were submitted
anonymized, to reduce biases based on relationship between the experimenters and the subjects.

7.5.2 Internal Validity
Internal validity is given, if we can assure that a causal relationship between the treatment
we used in our experiment and the observed results exists. Based on our decision of using
different requirements during the two sessions, we address the threat of learning effects during
the experiment. Besides affecting the outcome based on the requirements, a learning effect could
also affect the choice of the development approach during the traditional development session.
This effect is avoided by our study design: traditional in the first session, MDE in the second.
Another design would have affected the outcome, as some of the subjects would have used
other boilerplate generators, if we had exchanged the treatments between the groups during the
sessions. This also concerns subject motivation which was guaranteed due to the chosen study
design. Otherwise, subjects might find it frustrating to realise the given requirement following a
traditional development method after applying MDE. Additionally, our study design avoids the
compensatory rivalry threat, since all subjects applied the same treatment.

7.5.3 Conclusion Validity
The reliability of the results relies on the quality of the artefacts provided to the participants, in
particular, the tasks and examples. To mitigate the associated threat, we worked with examples
and tasks that are already well-proven from use in teaching and measured the results with
objective metrics. A severe threat to conclusion validity is based on the statistical significance
due to our small sample size. To address this threat in the experiment, we applied the blocked
within groups design. So, we could collect date from all subjects during both sessions, which we
were able to compare directly. However, the sample size during the tutorial was too small to
make any reliable conclusion.

To avoid that a heterogeneous knowledge of the subjects affect the outcome, we applied external
knowledge assessments at the beginning of the experiment (multiple-choice tests). So, we assured
that all subjects provide an adequate background in extension development and modelling, re-
quired to apply both development methods.

During the measurements, we used the complete data sets without removing the outliers. So we
avoided the threat of data fishing, which is often applied to mine data to get a specific result,
but may lead to incorrect conclusion. Our results, however, may be distorted due to the outliers
we included during measurement. Though, there is no effect on the conclusion validity, since
they lead to an advantage for traditional development. Removing them would only strengthen
our conclusion.

Our studies suffer from the threat of random irrelevancies, since we cannot ensure that all subjects
spend the complete time with extension development. However, since we did not explicitly
measure time during the studies, there is no direct effect on the conclusions. Again, the significant
experiment result would not be different, if we could avoid this threat.

7.5.4 External Validity
By applying our MDE approach within real-world development projects throughout the chosen
development scenarios with experts from a specific WCMS domain, we contrast to typical aca-
demic research in the same domain. Though, in order to guarantee external validity, we must
ensure that the observed results can be generalised beyond the scope of the conducted studies.

7.5. Threats to Validity 181

Since we only considered extension development of the Joomla WCMS as pilot examination, the
external validity is threatened. It yet has to be investigated, if MDE as method to fulfil the
selected requirements is also suitable for other WCMSs, in particular WordPress, the most pop-
ular WCMS nowadays. Though, since Joomla has the most complex extension mechanism, it is
likely that the positive results for Joomla may also generalize to other WCMSs like WordPress.
However, a new code generator and model extractor is required for the specific needs of each
given WCMS.

Another external validity threat is based on sample size which is still relatively small due to the
fact that we involved experts from the domain as participants. Even though their background
ensures reliable quantitative and qualitative results, further studies have to be conducted to allow
generalisable conclusions.

Our work suffers from a third external validity threat, since our experiment and tutorial rely on
specific tooling, namely, our JooMDD infrastructure. We chose JooMDD, since it was the only
tool available fully supporting our three considered scenarios. Though, it has to be shown, that
the given infrastructure is representative enough to increase external validity of the findings.
Moreover, it would be worthwhile to compare the ability of different tools to support developers
during a subset of the scenarios.

An additional external validity threat is based on the textual syntax of our proposed DSL, whose
design was informed by available examples from the Xtext framework developers, rather than a
user study. While variations in the textual syntax could affect the productivity, there are some
inherent trade-offs. For example, while our syntax for entity definition could be more concise,
we consider the use of keywords such as Attribute as beneficial to non-expert users due to their
explanatory value.

Moreover, our experimental setting prohibited the use of industrial large-scale example applica-
tions including more complex application logic in the requested extensions, due to the required
effort for understanding a large-scale system. We argue that the resulting extensions which were
developed during the studies (experiment and workshop), are still representative for many ap-
plications in the field, even though they mainly support CRUD operations. This assumption is
supported by the amount of CRUD implementations in popular WCMS extensions which are
published in public extension directories (cf. Section 4.1.1 on Page 53).

182
Chapter 7. MDE of WCMS Extensions -

Quantitative and Qualitative Analysis

8 Summary and Outlook

A model-driven engineering approach
is profitable in the domain of WCMSs.

– Dennis Priefer (et al.)

Conclusively, we summarize the contributions of this work which addresses MDE of WCMS
extensions. Additionally, we discuss potential solutions addressing the limitations of this work
and outline further research possibilities based on the presented MDE infrastructure and results
of empirical research.

8.1 Summary
The use of web content management systems like WordPress, Joomla, or Drupal has estab-
lished as a popular choice for the creation of a dynamic web application (57% of all websites
[252]). By using a WCMS instance, developers can add additional features by implementing
installable extension packages. However, developers face various challenges during development
of such extensions: tremendous amounts of required boilerplate code (e.g. for CRUD function-
ality), interdependencies between extensions, and frequently occurring architectural changes of
the underlying WCMS platform. These challenges occur during common development scenarios
comprising the initial development and maintenance of independent and dependent extensions
and the migration of existing extension code to new platforms including new major versions of
the same platform. So, extension development is a time-consuming and complex task, even for
experienced extension developers. Based on these challenges, we defined the following problem
statements in Chapter 1:

⇒ Problem Statement 1: Ensuring high quality in WCMS extensions requires tremendous effort
due to required coding guidelines and APIs which have to be implemented.

⇒ Problem Statement 2: The code migration of existing extensions to new platform (versions)
requires tedious effort, especially if the number of extensions to migrate rises.

⇒ Problem Statement 3: The augmentation and re-engineering of (legacy) extensions requires
a time-consuming reverse engineering process.

⇒ Problem Statement 4: The maintenance of dependent extensions is tedious due to the missing
dependency management between extensions.

⇒ Problem Statement 5: Existing tool support does not support iterative extension develop-
ment, augmentation of existing legacy extensions, or extension migration to new platforms.

A promising approach to address the challenges faced by extension developers is represented
by model-driven engineering. Adopting MDE as development practice, allows developers to
define software features within reusable models which abstract the technical knowledge of the
targeted system. Using these models as input for platform-specific code generators enables a
transformation to software extensions for different WCMS platforms. That is, why we propose
the use of MDE during common development scenarios as efficient alternative to conventional
programming in the WCMS domain in order to address the above-mentioned problem statements.

183

184 Chapter 8. Summary and Outlook

In this work, we introduced an MDE infrastructure for the development and maintenance of
WCMS extensions. This infrastructure provides a domain-specific modelling language for WCMS
extensions generalizing common extension features. To address problem statement 4, the DSL
incorporates features for the specification of dependencies between extensions. The presented
DSL supports a smart and dummy approach. So, valid models can be defined including only a
minimum of extension information which allows a straightforward forward engineering, e.g. as
solution for problem statement 1. Additionally, the DSL allows the specification highly detailed
extension information. So, we support reverse engineering approaches, lifting existing extension
information to model level as required to address problem statements 2 and 3. To support
extension developers during modelling actions, we introduced model editors, well-formedness
rules, and a set of showcase models.

Additionally, the MDE infrastructure facilitates a set of transformation tools to apply forward
and reverse engineering steps. This includes a code generator using model instances of the
introduced DSL, an extension extractor for the code extraction of already deployed WCMS
extensions, and a model extractor which creates a model instance of the DSL based on an existing
extension package. In accordance with the presented DSL, the generator supports a smart
and dummy model approach allowing a straightforward development of high quality extensions
(solution to problem statement 1). With the presented reverse engineering facilities, we directly
address problem statements 2 and 3. The whole presented infrastructure directly addresses
problem statement 5, since it complements existing tools providing a solution for iterative WCMS
extension development supporting new and legacy extensions.

To ensure adequacy of the provided MDE infrastructure, we followed a structured research
methodology, which proved to be effective. First, we conducted semi-structured interviews with
industrial practitioners from the WCMS domain to study the representativeness of common
development scenarios which we presented beforehand in the background section. Second, we
defined and presented a general solution concept for these scenarios including involved roles, pro-
cess steps, and MDE infrastructure facilities. Third, we specified functional and non-functional
requirements for an adequate MDE infrastructure including the expectations of domain experts.
With our presented concepts and the resulting requirements we propose a general solution for
problem statements 1-4 following a model-driven approach.

The whole infrastructure was realised by following an agile bottom-up development process as
proposed in [244]. We discussed related work and presented the general concepts of the DSL
and transformation tools. To show the applicability of these concepts, all of the transformation
tools were instantiated for the Joomla WCMS which provides the most sophisticated extension
mechanism in the domain (based on a comparison which is presented in the background sec-
tion). Together with the generally usable DSL, these platform-specific tools are incorporated
in the JooMDD infrastructure which is publicly available. The proposed DSL and correspond-
ing model editors were validated with respect to popular guidelines for DSLs and the specified
requirements based on domain-specific extension features. The same applies to the transforma-
tion tools which were evaluated addressing the specified requirements. We presented three case
studies to demonstrate the applicability and functional completeness of the code generator and
applied five scalability tests which showed that the generation process is not critical regarding
scalability (O(n2)). Moreover, we discussed validity threats based on the followed methodologies
during DSL and tool development.

By using the introduced JooMDD infrastructure during empirical studies with extension devel-
opers from the Joomla community, we researched the suitability and profitability of MDE during
the confirmed development scenarios in a quantitative and qualitative manner. So, we can make
a statement about whether an MDE adoption in the WCMS domain, following our general MDE
concepts and using our MDE infrastructure, represents a reasonable solution for the collected
problem statements.

8.2. Outlook 185

First, we shared the method, results and conclusions of a controlled experiment which was
conducted with 14 developers from academia and industry. We compared conventional extension
development with MDE using JooMDD. During the experiment, we focused on the first two
scenarios (development of dependent and independent extensions). The results showed a clear
gain in productivity and quality by using an MDE infrastructure. We found a productivity
growth up to factor 11.4 and a quality increase up to factor 2.4 during the MDE session. These
results were verified by applying hypothesis tests (Mann–Whitney U) for the corresponding
null hypotheses. Based on the test results, we rejected the null hypotheses and showed, that
MDE has a large positive effect on the developer productivity and extension quality based on
Vargha and Delaney’s A12 score. Moreover, we presented the design and observations of a semi-
controlled tutorial with four experienced developers who had to apply the JooMDD infrastructure
during the three major development scenarios (development of both dependent and independent
extensions and migration of an extension to a new platform version). The goal of this study was
to obtain direct qualitative feedback about acceptance, usefulness, and open challenges of our
MDE approach. Conclusively, we shared the lessons learned and discussed the threats to validity
of the conducted studies.

In conclusion, we answered the two main research questions of this work. We showed how MDE
can support developers during common WCMS extension development scenarios (RQ1), and
researched to which extend the MDE approach supports developers in terms of development
speed during WCMS extensions development and the quality of WCMS extensions (RQ2). The
positive outcome of the conducted studies substantiate that MDE is a promising development
method in the WCMS domain in contrast to conventional development. So, this work represents
a step forward in order to confirm the theory that MDE is profitable in the WCMS domain.

8.2 Outlook
We propose to address the following limitations and open challenges considering the proposed
MDE Infrastructure (cf. Section 5.6 and Section 6.5) in further work:

Extensions to the Domain-Specific Modelling Language: The proposed DSL for WCMS exten-
sions incorporates the features and requirements which were emphasized by domain experts.
Though, it is currently mainly tailored to data-oriented extensions. So, mainly CRUD features
are supported, whereas complex features such as references to specific core features cannot be
specified by the proposed DSL. The same applies to sophisticated UI specifications, e.g. for com-
ponent views, which are currently not provided by the presented DSL. We propose an extension
of the DSL by means of further language elements to address these limitations. Moreover, the
provided core support should be further extended in order to allow more interdependencies of an
developed extension with the underlying system. This requires a rigorous investigation of inter-
dependencies of WCMS extensions and underlying core platforms beyond the context of Joomla
to ensure a general use of the DSL. In this context we also suggest the provision of additional
DSL features for the specification of specialised extension features, e.g. payment features for web
shop realisations.

WCMS-Specific Modelling Languages: To allow modellers to specify more technically-oriented
features tailored to a specific WCMS, we suggest the introduction of platform-specific sub-
languages or dialects which can be used together with the proposed DSL. So, domain experts with
less technical knowledge can produce abstract extension models which incorporate their ideas of
the extension features, whereas developers with experienced knowledge of a specific WCMS can
extend these models by platform-specific design decisions which are typically outsourced to code
generators. This allows more individual extension development and will enable expert develop-
ers to use their common terminology. In this context, a model-to-model transformation between
instances of platform-independent and platform-specific models may increase model reusability.

186 Chapter 8. Summary and Outlook

Tool Implementations for other WCMSs: In order to ensure external validity of our findings,
we propose the implementation of generators and RE facilities for additional WCMSs. This
allows conclusions regarding the universal applicability of the introduced DSL and the presented
transformation tool concepts. As next step, we propose the realisation for WordPress and Drupal,
due to their similar extension mechanisms and popularity in the domain. As already described
in Section 6.5.2, the integration of the project of Cabot [37, 36] which proposes a simple DSL
and corresponding code generator for the WordPress WCMS into our MDE infrastructure seems
to be a promising step as part of future work. According to first investigations, all language
features of the proposed DSL are covered by our introduced DSL. The same applies to the code
generator concepts which show similarities to our concepts.

Custom Code Support: Similar to the most MDE infrastructures, the manual extensibility of
generated extension code is limited, due to the provided custom code strategy based on generated
dummy code. Since our current infrastructure is tailored to the development of CRUD code,
which typically makes up the largest part of an extension, the integration of a sophisticated
custom code integration had low priority in this work. However, developers emphasized this
feature as a substantial requirement to an MDE infrastructure. Therefore, we suggest to put more
attention on this feature as part of further work. A promising approach could be the integration
of custom code models which can be referenced by model instances of the proposed DSL.

Due to the existing threats to validity of the empirical studies cf. Section 7.5, we also suggest
further empirical investigation of MDE adoptions in the WCMS domain:

Validation of the Controlled Experiment Results: To increase the validity of our experiment re-
sults, we recommend to repeat the experiment with more subjects. To ensure reliability of the
results, the appropriateness of the given requirements during the experiment should be confirmed
by domain experts. Moreover, we like to conduct more qualitative studies of extension develop-
ment for other WCMSs, like WordPress or Drupal. This, however, requires code generators and
model extractors for these WCMSs.

Extension of the Study Designs: Since we exclusively studied the effect of MDE on developer
productivity and software quality, we propose an extension of the study design of the experi-
ment in order to measure additional dependent variables. Especially the quality aspect could be
extended to measure potential effects of MDE on other quality characteristics such as efficiency,
compatibility, security, or usability. Moreover, further studies should explicitly research, if it is
possible for inexperienced developers to develop WCMS extensions by using an MDE infrastruc-
ture. Even though we made first observations in this context, an extension of our study design
by suitable definitions of dependent variables should be done as part of future work. The design
of the tutorial could be extended by additional requirements and dependent variables in order
to allow its adoption as field experiment. So, the study can be applied more systematically to
gain empirical evidence of how our MDE infrastructure is used by developers of the domain.

Evaluation of Sub-Scenarios: Since our conducted studies exclusively address development sce-
narios 1-3, we recommend to conduct additional studies to research the appropriateness of the
additional scenarios 4 (partial augmentation of existing extensions with custom features) and
scenario 5 (reengineering of a legacy extension in the context of quality assurance). Since our
proposed MDE infrastructure allows the application of these scenarios in the Joomla context, we
propose to start with suitable case studies with developers from this community.

Identification of Further Scenarios: Further development scenarios, common in the WCMS do-
main, must be studied. As pointed out by one of the practitioners during our conducted in-
terviews, the abstraction of shared functionality into libraries is a viable development scenario.
Moreover, further combinations or sub-scenarios of the described scenarios may exist, such as
the presented scenarios 4 and 5. In this context, a further investigation of the applicability of
round-trip support should be applied. This enables the consideration of additional scenarios,

8.2. Outlook 187

e.g. considering dependencies to third-party extensions which are further developed by external
developers. The identification of new scenarios requires the definition of new MDE concepts and
may necessitate the specification of additional requirements for the MDE infrastructure.

Industrial Application of the MDE Infrastructure: To research the usefulness of our proposed
MDE infrastructure, additional case studies in the domain should be conducted. Especially
the most pressing migration scenario could be researched in the field, due to upcoming major
releases such as the new Joomla 4 version which is announced for being released in 2020. Based on
anecdotal evidence, there is interest in the Joomla community in using our MDE infrastructure
instantiation JooMDD for the migration of existing extensions. This allows us to apply our
infrastructure during actual case examples to infer the usefulness of our approach empirically.
Moreover, we can iteratively refine our MDE infrastructure based on new emerging requirements
which occur during the realisation of these case examples.

Moreover, we emphasize possible research directions to which we discovered points of contact
during the work on this thesis. This includes existing contributions which were not addressed in
the context of this work.

Development of Model Interpreters: The rising popularity of web frameworks for front-end devel-
opment such as Angular [79], React [63], and Vue [267] should be considered during further work.
The fact that these frameworks are also used in the WCMS domain, such as the Vue framework
for the media manager extension in Joomla 4 (cf. [110]), emphasizes their relevance. In order to
provide support for such frameworks, we propose to extend the presented MDE infrastructure by
model interpreters. While our generator parses model instances of our DSL at compile time and
generates installable extensions from them, an interpreter can represent changes to the model
live at runtime without having to be recompiled. This is especially suitable for the mentioned
front-end development frameworks, which swap most of the logic to the client side of the applica-
tion. By providing such an interpreter, model refinements can be directly applied in the running
application without the need of a compilation step. So, the approach can be used beyond the
scope of installable WCMS extensions. However, this strategy requires the implementation of
model interpreters, which can be incorporated to the respective application. As part of a student
project, an Angular interpreter was realised, which can be used as part of an Angular app which
interprets model instances of our eJSL DSL [143]. The examination of this strategy, including the
identification of suitable case examples, could be a further research direction. Another benefit
of this approach is that we can extend the general usability of the language which goes beyond
the scope of Joomla.

Evaluation of MDE Applicability of Existing Code: One aspect that has led to a decline in
the popularity of model-driven approaches over the last decade is the inappropriate selection of
projects. If the software to develop is too individual, MDE might not be a suitable approach.
The same applies to small software projects which can also be adequately addressed by con-
ventional development methods. If a software artefact has to be developed only once without
the need of replication as variant of the artefact, MDE might also be to expensive. Developers
must consider these aspects when they start a project or think about reengineering of legacy
software. This also applies to the WCMS domain, where extensions of various complexity and
individuality are developed and maintained. To support developers during the decision of adopt-
ing MDE as appropriate development method, we propose an evaluation step as part of the
reverse engineering of existing extensions. To this end, we already incorporated an evaluation
step to our model discovery concept in Section 6.4. Moreover, we already specified a metric
called RevEngA. This metric gives a hint about the reverse engineering applicability of an input
extension package. To measure the amount of schematically recurring code fragments of a legacy
extension, we developed a code clone clustering tool which produces a report of the amount of
same files with similar code structures. This tool is used within an instantiation of the concept
for Joomla extension packages together with the parsers presented in Section 6.4.2 and is part

188 Chapter 8. Summary and Outlook

of the JExt2eJSL tool of the JooMDD infrastructure. Using this evaluation feature supports
Joomla extension developers to evaluate the appropriateness of existing extensions to be further
developed with our proposed JooMDD infrastructure.

Automatic Extraction of MDE Infrastructures: One argument against MDE is the pain of initial
DSL and tool development for new domains. The same applied to our presented infrastructure,
which took several years to develop. Even though meta tools for MDE infrastructure develop-
ment like the Eclipse Modeling Framework (EMF), Meta Programming System (MPS), or Xtext
address this challenge, an appropriate mechanism for the semi-automated creation of infrastruc-
ture artefacts are not available. Therefore, an additional research direction could address the
reduction of initial effort during MDE infrastructure development. A promising approach is
based on the extraction of meta models or grammars and corresponding code templates from
existing reference applications. This could be achieved by mining schematically repetitive and
generic code fragments using clone detection techniques. The discovered code clusters should be
reviewed by technology experts in order to ensure a proper subsequent (automatic) processing.
Especially in the WCMS domain, where a tremendous amount of existing extensions exist, this
approach could be useful. In the context of this work, the approach could be a supportive strat-
egy to extract code templates for the creation of platform-specific code generators for additional
systems like WordPress or Drupal. For the realisation of the approach as tool environment,
existing parsers like the ones presented in this work (cf. Section 6.4.2) could be integrated. For
the evaluation of resulting tool environments, we propose the use of existing MDE infrastruc-
ture instantiations, such as the one introduced in this work, as reference environments. A first
publication in this context is made by Rost [196].

A Semi-Structured Expert Interview

In the following sections, the original transcribed results of the conducted semi-structured expert
interviews are presented. Seven of the Interviews were recorded, whereas one was documented
in writing.

Interviewee 1
Interviewer: Wolf Rost, Date: 09.12.2017, Location: Dongen, NL
Q: First, if we publish this interview, we will anonymize the data. So we just don’t put names in there. Did

you develop Joomla extensions?

I1: Not really. I maintained some.

Q: OK you maintained.

I1: I maintained some that’s already in place but I also had to move one extension from 1.5 to 2.5. And extension
was used on 200 (or so) sites.

Q: How long did it take you to migrate the extension to the new Joomla version?

I1: I don’t know it’s been some time ago. I think, it was not as hard as I thought it would be. So migrating to
the next version took maybe a couple days.

Q: 8 hours per day?

I1: Yes. It was a component that existed of very little. Most stuff first online in the plugins. And I figured it
would be a lot of work. And I was lucky it wasn’t. In the year later or a year and a half later I found one
bug as a result of the migration in all those two hundred sites. Yeah it was funny because it’s between two
versions of Joomla some names can change so where in the old version it was com_User the new version is
com_Users but we had to use the name of the new one We hadn’t seen there was a problem at first.

Q: Can you tell me more about the extensions you migrated? How many? What type of extensions?

I1: This was a specific case. I was working at a company that’s doing automation for sports communities in the
Netherlands. And one way of using this was publishing data from the sports communities on Joomla sites.
So it means that if the community is playing football or hockey or volleyball or something similar, they can
have Joomla sites with all the competition data. And the members can log in with their credentials and all
those kind of stuff. And the plugin was managing all the communication between their Application, that
was a Java application of Oracle and all kind of stuff and the Joomla site which is P.H.P. and on a different
server.

Q: Did you ever try to use parts of a third party extension for your own extension? So, like we saw at one of
the use cases, did you use the model of a third-party extension to get data for your own extension?

I1: No, it would be a nice case, but not one I use. But it’s a use case!

Q: Did you ever experience that the Joomla conventions like the file structure or the naming lead to errors,
during the migration for example? You forgot to change the name in one controller or sth. like that and
that broke the site.

I1: Yeah maybe. There are always mistakes.

Q: Did it occur a few times or often.

I1: No, I would not say more than regular. I mean it certainly you make mistakes but as long as you don’t make
the same mistake very often, it’s fine

Q: So you could say it occurs like every other error you did not just "Oh, it’s this error again. I forgot to rename
the class"?

189

190 Appendix A. Semi-Structured Expert Interview

I1: No.

Q: So, you saw our generator approach. Do you have experience with other Joomla generators like the boilerplate
generator?

I1: I’ve played with the Component Creator, but what the component creator does is take away a lot of typing.
Which is fine, but what it does not do is, it’s difficult to incorporate it in the workflow. So, if you use
Component Creator to start a component it’s fine and if this component is just implemented and that’s it,
great. But if you want to take these components and maintain it or to fill it up further or give it more
possibilities or functionality, I think the component creator is not really helping. It’s only the first bit. But
my idea was that if it’s only helping me in the first bits of typing a lot of stuff to save a lot of times I can
also automate this otherwise. There’s no need for a component creator if this is all it’s really helping with.
Sort of boilerplate would have been fine as well but it wasn’t there.

Q: So, you would say that for initializing or for the first step in creating an extension it’s helpful but for further
development, it’s not?

I1: At least not as I’ve seen it. Maybe it’s better now I don’t know. There’s change in the component creator.
Improving also. But yeah.

Q: Which functionality do you expect from a generator tool?

I1: I expect that the generator is not a generator once and change never option. I expect that it’s meant to be
part of a continuous developing situation.

Q: So not just for the first step.

I1: If it appears to be a bug in my component after six months and I want to be able to go back tot he last
one that was generated or the last one before that or something like that. And with the components I have
seen for generating this was not possible. In the component creator it’s like you create something and if you
change it afterwards and creating a new one that’s in place of the old one. The old one is gone.

Q: You would like to have sth. like a versioning system?

I1: Yeah or at least have a history yes. Because often if you find a bug then it can be a totally new bug. It also
can be a known bug that you had before that has returned for some reason.

Q: Last question, Did you augment an existing extension by a new view or module?

I1: Only modules.

Q: So you had a component and you created a new module for it?

I1: Yes.

Q: What was your procedure to do that?

I1: Copy an old one and change what needed to be changed.

Q: How long did it take you? Can you quantify it?

I1: Not much, a couple of hours.

Q: OK. Thank you very much.

Interviewee 2
Interviewer: Wolf Rost, Date: 09.12.2017, Location: Dongen, NL
Q: If we publish the results then we don’t put any personal data in it.

I2: Ok, it’s fine. If you want to put my name somewhere I don’t mind. You can always use a link to our website.

Q: First question is, did you develop extensions?

I2: Yes, I have to develop extensions.

Q: For how Long?

I2: The company where working for twelve years and at first we started with only custom templates and I think
now the last five years we are also developing extensions.

Q: What kind of extensions?

191

I2: Well in the beginning mostly modules and plugins just to make small changes to websites or put some
content that you actually need from the database and the last two years we’re actually making our own
custom components.

Q: What size does the component have? How many views? Do you think they are complex?

I2: Yeah, they’re complex. While we have one really large one we’re working on. It’s called Image Manager and
it has well actually it’s only a backend component just to organize the images and it has only one view. So,
it has some extra models that so they popping up with some extra information but it’s only actually one
view.

Q: Okay, but there is really much behind it?

I2: Yeah, just to make it’s really simple for end users to use the extension. That is actually our main goal just
to make it as easy as possible for the end user to use the extension. But in the back end there happens a lot
of stuff.

Q: So, you would say there is a high level of individuality in your component compared to standard list views.

I2: Yes.

Q: What is your standard procedure to implement components? Do you look at the documentation? Use a
reference application?

I2: Yes. We also have now our own boilerplate we use just to create a component and we use Grunt for that.
It puts all your old files in the right places and creates all the default classes and all the meta information.
This is the main way we go and sometimes well if it’s just a small component we actually do it by hand but
most of the time we use the Grunt installer. And for the modules and plugins I also use a website. It’s a
really nice one. You put in some information you press a button and you get a standard module with all the
information in it.

Q: Do you also create extensions, modules, that use date from a component?

I2: Yes, we now have a component with five views and also a module and also a couple of plugins. It’s a music
database where teachers can collect songs they can actually do with the children in the class. So, they open
the player, in the player there are all the songs and they can click on the songs and the player will start
playing and they have all the song texts next to the player. So that’s a really complex application with a lot
of fun of use and also a module which is also a player and a lot of plugins who are actually doing all kinds
of stuff in the backend.

Q: And you used the boilerplate generator for all this?

I2: Yes.

Q: And does it support other extension types besides components?

I2: No, only components. For modules, we use the simple module creator. Since plugins are mostly only four
files (it’s a plugin, an XML and two language files) that is something I mostly do by hand.

Q: Can you quantify how long it takes you to create a component?

I2: When we use our boilerplate it still takes us, I think, two hours to set up everything. So, two hours for a
component.

Q: Without any individual changes. Just to get an installable component.

I2: Yes, and to create all the views and make it installable as an empty component. Because every view has
different information we have to create the database after creating the component. We have to create all
the tables and because there’s something that’s not in our boilerplate. So, that’s what is taking most of the
time. Just creating the database and the tables and then also creating the views and queries, sometimes
even by hand because that squares quicker. Just log in and creating all the columns. So we actually don’t
have an actual workflow we use when we make an extension.

Q: Did you ever try to use a model from a third party extension for your own extensions?

I2: We have worked with the Component Creator and it’s I think it’s really nice if you’re not that good in
programming. But if you look at the code, it’s not as easy to change all the things like the way it should
work. I think in some situations it could be a really nice solution but if you want to make your own
components it’s better to start from scratch. That’s our experience at least.

Q: Did you migrate an extension from Joomla version to another?

192 Appendix A. Semi-Structured Expert Interview

I2: Well, I think the components we’ve created now are all for Joomla 3 and most of the modules they actually
worked on 2 and 3. So we didn’t any of component migrations. Probably our first migration will be to
Joomla 4 and I think our programmer is already up to the standards of Joomla 4 so Image Manager should
also run now on Joomla 4.

Q: Did you experience that the Joomla conventions like the file structure or the naming of the classes lead to
errors? Are there errors, that occur often?

I2: I don’t know because I’m not into component creation myself. I’m just mostly testing every view and the
code so I’m not writing that much so it is something I have to ask our programmer.

Q: In which scenario do you think code generators could help you?

I2: Sometimes you need a boilerplate to create everything. It could actually help and as I’ve seen some examples
today (JooMDD tutorial) I think this is really useful to speed up the process and actually when you have to
create a standard component which has to do something really easy you can make one really quick. So it’s
can be a time saver. Yes I’m sure it can.

Q: Which functionality do you expect from such a generator tool?

I2: I have to see what’s missing right now. I was talking about the wizards which can even speed up to the
process even more so that’s something you have to look into because I think that could be really powerful
just a simple wizard that you have to just type in and it will make the whole model for you and I think that
just could speed up the process even more.

Q: A QA game?

I2: Yeah, just fill in the name of the component and then do you want a module created and a plug in or just a
component and you have to take which one you need so and the model knows exactly what kind of code to
generate. That could be a bigger time timesaver.

Q: OK, that’s it. Thank you very much.

Interviewee 3
Interviewer: Wolf Rost, Date: 09.12.2017, Location: Dongen, NL
Q: If we publish this interview with all the other interviews we will make any personal data anonymous. I hope

it’s OK for you?

I3: Oh yeah I’ve never been to one I think I have nothing to hide I don’t care. Whatever you want to know it’s
just okay with me.

Q: Did you develop some extensions?

I3: Yeah. Components not that many. Not even a handful I think. Mostly, I if I needed I created a plugin. I
use a lot of plugins and I do really weird things with plugins. I then think when they’re finished "Maybe this
would have been something to create a component for" actually sometimes.

Q: So, your plugins are quite complex or big?

I3: Some. I created quite a specific plugin. A payment plugin. The risk is there is a special Joomla component
called formToContent which is a very specialized CCK (Content Construction Kit). This one is really simple.
The only thing you can do with it, is create articles. Nothing more, nothing less. Very simple. And there
was a guy in Australia and I don’t know why but he approached me to create a payment facility for people
who would post an article they had to pay before the article was being posted and I created a program to
make that work with this CCK. And that was a bit of a complex plugin.

Q: So, you also have a high level of individuality in your code? Youn don’t just use standard Joomla code?

I3: I try to use the Joomla API wherever I can. As much as possible.

Q: What is your procedure to create a new plugin? Do you look at the documentation? Do you copy an existing
plugin?

I3: Well because I have a few now, I copy the ones from myself. Yeah. The first one I created I think I created
this from scratch but it’s been some time so I can’t really remember. But these days I copy a plugin. I
created one yesterday. There’s another client of mine or a colleague who has a client who wanted a request
form he pushed into a cloud-based C.R.M. client relation management. So they have an interface, a web
service, and I created a form with RSForm. It’s a form component, I think the most used form component
for Joomla. And it’s easy to interface on a very simple level. So I had it almost working and then I found

193

out that I couldn’t get it completely working so I crafted a small plugin because they have a lot of plugin
events scattered all over the code and I could do it like this so.

Q: How long did it take you to create the plugin?

I3: Two hours I think in this case.

Q: So, this was a smaller one?

I3: It was because I had the basic code already. I created the business logic, so to speak, completely separate
from Joomla. It was just talking to the API and everything. And then I just had to integrate it. So, the
plugin is a wrapper around the actual application logic.

Q: Did you ever try to use parts of a third-party extension in your own extensions. E.g. use the model from
another extension to access its data in your plugins?

I3: Yes, I tried that. Actually, I tried to get my hands dirty on a REST component, like so many people
because we missed it in Joomla. And I wanted to make it quite general. So, I wanted to really create clean
interfaces so it would be either easy to interface with components directly or easy to sort of plug in your
own specific component interfaces. And then you run into all kinds of problems. It’s amazing how tightly
coupled everything is in Joomla.

Q: So that was difficult?

I3: Yeah, you know it’s one of those projects I mentioned earlier today that’s lying around somewhere unfinished
and because it would take too much time for. In Joomla it’s very difficult to create because the whole
architecture is all too connected it’s still too dependent on each other. I mean there are so many funny
things you must do to instantiate a model. It’s weird.

Q: Did you ever have to migrate from one version to another?

I3: Well, not really I mean I have good contact with Roland. I hear things when he has to migrate to get through
to new versions so it’s difficult. Well you know it’s already difficult to upgrade a website to a new version.
Even a simple website with a few extensions from a third party. I still have a few laying around from clients
which I didn’t think.There is one with a component which I made actually. Was one of the components I
did. But it’s either very simple or it’s so perfectly developed. It didn’t need any upgrading it just still works
in (version) 3.8. And I don’t think I will have the client still when Joomla 4 is coming out so I won’t have
to upgrade it I think.

Q: Did you ever experience that the Joomla conventions lead to errors in your own extensions. E.g. if you
forgot the file structure or naming conventions. Would you say this lead to erros often?

I3: I never experienced it.

Q: Maybe, because of the plugins?

I3: Right. They are quite small quite self-contained.

Q: We presented our generator approach. Did you used some other similar approaches or generators?

I3: For one component once I used Component Creator. It was a simple component. It created well short of
also boilerplate and I added the specific client wishes to it. I think in the very beginning I wrote a few shell
scripts to generate boilerplate for components and stuff but that’s like ten or fifteen years ago. I don’t think
that’s really generated. I mean it’s a generator, not much more, very simple.

Q: Which functionality do you expect from such a code generator? What scenarios do you think are suitable?

I3: I think the number of scenarios is limited. So what I’ve seen from JooMDD (use cases shown in the workshop).
That a bit like as much as I expect from it. I think and what I said before the focus should be on what you
do should be good and enable to generator to hook into with yourself with your own custom code or with
template kind of things that you’re not restricted to just the generated part and you’re not forced to hack
into the generated code but to just have enough possibilities to do at your own stuff. I think there should
be the focus and not try to cover too much. Because then I think it will never be finished and it will never
be stable because you will run into all kinds of weird bugs and stuff and you’ll be working eighty percent of
the time on twenty percent of the functionality.

Q: That’s it. Thank you very much.

I3: You’re welcome.

194 Appendix A. Semi-Structured Expert Interview

Interviewee 4
Interviewer: Wolf Rost, Date: 09.12.2017, Location: Dongen, NL
Q: If we publish the results of the interviews we will don’t put any personal data in it.

I4: You can do what you want. I really have no preference.

Q: Did you develop extensions?

I4: I did and I still do as well.

Q: Since which Joomla version?

I4: I started on mambo. Pre Joomla. So you can basically say since Joomla 1.0.

Q: What kind of extensions do you develop (extension kinds)?

I4: I do all of them. Well, all extensions for Joomla. It’s components, modules, plugins. I do not do templates,
because templates is a completely different discipline. And that’s really the four major ones that are used
in Joomla anyway.

Q: Is it focused on components and modules?

I4: No, it’s focused on componens but because of the components plugins and modules are part of it to be
able to display certain information for modules then and for plugins to catch triggers that are sent by other
components and by own components.

Q: What do you think, are they complex in meaning of how many views they have or references between the
views in your components?

I4: I think my one component, CSV Improved, is a pretty complex one because if you look at for example
there’s a view there called template in which you put all your settings you only use for import or export.
And depending on some settings you have it’s pulling different XML files and rendering them individually.
That’s is not something I really see in being done in Joomla. So in that sense, I think that view specifically
is very complex. Most views are pretty standard because Joomla is based on listing pages and edit pages.
But with the template view there’s actually an extra toolbar button to switch between the basic mode and
advanced mode. You have test buttons for testing FTP connections, testing file locations, and other things
like that. Well, that’s not something you have in your general edit screen. Because most edit screens are
simply for data input and this is doing more than that.

Q: Can you quantify, how many views are standard views and how many views are individual?

I4: I think that ninety percent at least are standard listing views. If I look at for example the logs view which
has a listing of all the log files have been recorded in the list field there, after each log, there’s a button to
show, to download, or to open the log file. That is something that is not standard in Joomla. I actually
have it in both my components because both are doing log files and it’s been simply an easy way for users to
see a log file. But the code behind the billing is standard Joomla again because it simply shows the modal
popup and inside it loads the text file.

Q: What is your procedure to implement a new component? Do you look at the documentation or do you copy
an existing one?

I4: If I need to start a new component I now would start with the boilerplate that I have created for Joomla.
Simply because the basics are there. Of course before I even started I have a good idea of what I want to
build. Because I need to see if a component is actually the right approach for what the goal is to be achieved.
But if the goal results in having a component to be built, I would use a boilerplate to get started because
in PhpStorm it is just a click new project to the project -> component and the whole thing is there and I
can get started with. I just need to change. Perhaps the name of the default field because the default field
is basically your dashboard. And then you add the other views for whatever functionality you need.

Q: How long did it take you to develop a new component?

I4: Of course, it completely depends on how many views you need and what it needs to do. The boilerplate of
course as soon as they have to check out of that it’s installable but in general if I look at having a backend
view and a frontend view it’s between four to eight hours and that of course is still quite a bit more work
because in an hour I can make a frontend and backend view but that’s a very basic.

Q: What is your procedure if you have an existing component and add a new view?

I4: Copy&paste. Copy an existing view, copy the existing model, change the names, change the database queries
where needed. The most work is still in the template file because you have to change the column names

195

and stuff like that. You have to create the filter if there’s a filter. But the basic fastest way is copy&paste
because you just have to change a few things in most of the files and it’s working. Well and don’t forget you
have to copy the table files because it’s active record procedure so Joomla is always looking for a table file.

Q: What is your experience with the Joomla conventions. Do you think the conventions like file structure and
naming often lead to errors or did you never experienced that. E.g. if you change a class name.

I4: The Joomla convention I think it’s fine. Because in all the twelve years Joomla existed, it hasn’t been
changed. So whenever you learn or learning to work with a new system you just have to learn whatever
everybody else is using. It can be good it can be bad but at least it’s been consistent over the last twelve
years. If I forgot to change a class name that’s my bad. The only thing that I think should change is that
class names in the frontend and the backend have the same name. Because not only is in IDE it cannot find
the class name you want to use. You always have to look "am I in the frontend or am I in the backend and
that’s the only thing that I would really change. Or maybe not even half a distinction between frontend and
backend for your models and your controllers but only for your views.

Q: But do you think such errors occurs often?

I4: Yes, renaming classes after copy&pasting a model is standard procedure almost. Because if you do one view
most likely enough forgetting because you only have two or three files to change but if you are doing a couple
of views I would say it’s like a hundred percent chance that you forget something somewhere. Because you
have to change the name of the model you have to change the name of the controller the name of the view,
change the name of the table file. And the other thing you forget is change in the query the table that needs
to be queried. That is something also forget. It’s a tedious procedure. It would be nice if I do copy paste it
would ask me what’s the new name of your view and then because the names are always consistent it ask
me the name and could consistently change it for me.

Q: So that could be a functionality that you expect from a code generator or a generator approach?

I4: Yes, that would be amazing. If I now look at JooMDD what we did today, if I add a new view in the model
file, I would still copy&paste a view from there because the structures mostly going to be the same. But
there’s less to change because there’s only one single file where I need to change maybe two names or three
names then the rest will be generated. So, it’s less error prone then what we’re doing now.

Q: Did you ever try to use parts of a third-party extension for your own extension. For example, do you use a
model from a third-party extension to get data for your own extension?

I4: I have done that. I’m still doing it. The example here’s in my extension I’m exporting prices from a webshop
and the whole logic of price calculation - I don’t want to recover that - so I’m using the model from the
third-party component that has the logic in it and that wasn’t easy. Mostly because the way the classes
are built. Because in PHP you have public, protected, and private properties and as soon as a property is
protected or private I cannot longer access it and that was my main problem. So I was able to create my
own class name with exactly the same name as they have. And because they check if the class is already
loaded, it would load mine first. And I am extending their class but I need it. Because I’m talking to my
class I can actually access the protected methods and that solve my problem. Because they don’t have a
public facing API I could use and that was, of course, be the most ideal solution. But there’s nothing public
facing in that sense.

Q: Did you ever migrate an extension from one version to another Joomla version.

I4: I have been in there since Joomla 1.0 so I had to migrate my extension through all versions.

Q: And was was your experience, how long did it take?

I4: You should take a year. I think so if you want to do it well. Of course, it taking a year is not that I’m
working full time for one year to migrate the extension because the migration happens next to the other
work I need to do. The daily business goes on. Maybe without any interruptions, it still will take a couple
of months.Of course, it depends on how big the code base is. If you have a component with two views you
could be done in a day. But this one with the very complex views a lot of complex logic in the importing
and exporting and because I support ten to fifteen other extensions, it needs a lot of testing and work and
that just takes a lot of time.

Q: Which kind of functionality do you expect from a generator tool?

I4: What I would expect is that if I have my logic inside the code generator it would spit out a component in
the new style that I put in a different engine and the engine gives me different code to be doing with Joomla
3, Joomla 4, or whatever platform it’s supposed to be running on.

Q: So it should support generation for different Joomla versions (platforms)?

I4: Exactly, because otherwise, I don’t need a code generator. I can just change everything manually again. But
having the main part of my logic in the code generator would allow me to just export that.

196 Appendix A. Semi-Structured Expert Interview

Q: Thank you very much.

Interviewee 5
Interviewer: Dennis Priefer, Date: 24.04.2018, Location: Gießen/Munich, Germany,
Note: The interview was conducted via Skype.
Q: Ist es ok für dich wenn wir das Interview aufnehmen? Wenn wir es veröffentlichen werden wir es auch

anonymisieren.

I5: Ja

Q: Hast du mal grob überschlagen wieviel Erweiterungen du schon entwickelt hast?

I5: Ich denke so 40-50 Komponenten. Zig Plugins und Module. Insgesamt ca. 100.

Q: Für welche Versionen hast du den das gemacht? Mit welcher Version hast du angefangen?

I5: Ich habe schon mit 1.0 angefangen. Komplett durch.

Q: Auch schon mit Joomla4?

I5: Mit einer Joomla-Core-Komponente.

Q: Wie komplex waren deine entwickelten Erweiterungen? Wieviele Views? Wieviele waren davon Standard-
CRUD-Views im Backend und Frontent? Hatten du auch komplexe Abhängigkeiten zwischen den Views?
Oder waren das eher sehr individuelle Geschichten?

I5: Meine größte Komponenten war eine Mitglieder-Verwaltung. Im Backend hatte die, 33 Views und im Fron-
tend 7-8 Views. Diese Komponente hatte ich dann aber mal in mehrere Komponenten aufgeteilt und im
Endeffekt die über 5,6,7 Komponenten, wo immer so 5-6 Views drin war, verteilt. Die dann aber auch mit
einander verbunden waren. Eine Komponente hat erkannt ob ein Plugin oder eine andere Komponente in-
stalliert war und dann entsprechend verschiedene Features oder Menüpunkte angeboten. Also ganz konkret,
eine Mitgliederverwaltung hat halt Mitglieder verwaltet und wenn ich dann ne Locationverwaltung oder eine
Kartenverwaltung installiert habe, dann hat die Kartenverwaltung plötzlich, Tabs bekommen mit dennen
man Mitglieder auf Karten anzeigen lassen kann. Da gabs dann Abhängigkeiten.

Q: Es waren unterschiedliche Kombinationen möglich.

I5: Genau entweder hat es, es dann angezeigt oder nicht.

Q: Hattes du da auch Standard-Crud-Views drin, wie man sie auch aus dem Joomla-Core kennt oder waren das
individuelle Geschichten?

I5: Es waren im Backend zu mindest von der Oberfläche her komplett Standard. Also immer Listen mit Form-
View. Es waren dann eher die Details die sehr individuell wurden. Wie z.b. das man eigene Formfelder
braucht oder Funktionalitäten wie einen Import-Knopf oder irgendwas. Aber es hat immmer auf dem Joomla-
Core aufgebaut. Es gab immer Controller, Model und View. Wenn etwas gespeichert werden musste, dann
wurde tatsächlich immer das Joomla-Speichern verwendet. Und wenn es gepublished werden muss, das
Joomla-Publishen und nicht irgendwie was komisches draufgebaut.

Q: Wie gehst du beim entwickeln einer neuen Erweiterung vor?

I5: Also der Vorteil von der Art wie ich es bau ist dass die Komponenten gleich sind, Details unterscheiden sich
aber meistens ist es so, dass ich irgend eine Komponente nehme und die kopieren und die Namen anpasse.
Also ich habe immer so Basis-View, ein Dashboard ist immer dabei und das nehm ich dann alles packs hin,
pass die Namen an und dann immer copy&paste, ja, es ist halt alles gleich. Wenns eine neue List-Views ist,
dann wird halt von irgendwo eine List-View kopiert, Name angepasst, Formularfelder angepasst.

Q: Bist da auch schonmal irgendwo auf Probleme gestoßen?

I5: Nein, bis jetzt nicht. Es kann natürlich sein das ein Tippfehler drin ist, aber ich weiß dann immer genau wo
der Fehler ist.

Q: Hast du schon einmal einen Codegenerator, wie ComponentCreator, ExtensionBuilder verwendet?

I5: Ich habe sie getestet. Ich habe sie durchgeteste. Also anderst rum. Ich habe irgendwann mal mit Laravel
was gebaut und die haben ja so einen Generator drin und im Prinzip finde ich die Idee recht schick. Das man
es so zusammenbaut und hab auch die Sachen die es für Joomla gibt angeschaut. Das Problem ist natürlich
immer die sind nie auf dem neuesten Stand. Das halte ich für das größte Problem an den Generatoren, also
ich finde die Idee schick aber nutze sie selber aus dem Grund nicht, das wenn ich einen Generator benutze

197

will ich eben so eine eierlegende Wollmilchsau. Wo ich nicht mehr hinterher durchschauen muss ob den die
neusten Änderungen von vor zwei Wochen drin sind. Das hindert mich dran. Durch das kopieren wo ich
dann auch durchschauen muss, verliere ich nicht viel mehr Zeit.

Q: Ok, wie lange brauchst du den wenn du mit dem Clone-and-Own Ansatz so eine Erweiterung erstellst? Im
Schnitt, wenn wir sagen ich brauche von dir eine Standard-Komponente mit 5 Views, also Dashboard und
4 weitere Views/Entitäten die ich verwalten will? Was meinst du wie lange du da brauchst? Installierbare
Version.

I5: Ich schätze mal 2-4 Stunden. Es kommt auf die Komplexität der Felder drauf an. Für eine komplexe
Komponente, 10 Jahre. :)

Q: Yeah, its a never ending process. Wie gehst du vor wenn du eine neue View einbauen willst?

I5: Kommt drauf an was für eine View, aber meistens wird eine bestehende View kopiert, der Name angepasst
und entsprechen die Funtkionalität hinzugefügt.

Q: Mit einer View ist es ja meistens nicht getan, es gehört auch noch ein Model hinzu.

I5: Ja, genau, das wird natürlich mitkopiert.

Q: Controller, Forms?

I5: Ja

Q: Also im Prinzip das gleiche. Du kopierst etwas vorhandenes und änderst es ab. Wenn es eine View sein soll
die neue Entitäten darstellen soll, wie gehst du da vor auch im Bezug auf die Datenbank?

I5: Also im Endeffekt bleibt es bei dem Prozess. Es wird kopiert und rausgeworfen was man nicht braucht und
das eingefügt was man braucht.

Q: Hast du in deinen Erweiterungen, Referenzen auf existierenden 3rd-Party-Extension?

I5: Ja, durch Plugins. Falls die 3rd-Party-Extension und das Plugin installiert ist, wird ein zustäzliches Feld
angezeigt, wenn nicht dann nicht. Es ist eine lose Abhängigkeit.

Q: Hast du deine Erweiterungen schon migriert?

I5: Meine Mitgliederverwaltung habe ich schon das vierte mal neugeschrieben. Einfach aus dem Grund weil ich
es hasse wenn da noch altes Zeug drinne ist, das nicht "State of the art" ist. Aber ich glaub seit 1.5 oder
so wenn man sich da an die Struktur gehalten hat, hätte ich das nicht machen müssen. Nur nen bisschen
Klassen anpassen und so polieren aber nichts neu migrieren oder so. Also von meinen ganzen Erweiterungen
habe ich ca 15-20 migriert und den größten Teil irgendwann sterben lassen. Wenn auch diese migriert hätte,
hätte ich es auch gescheit gemacht und dafür hatte ich keine Zeit.

Q: Wenn es da aber jetzt ein Tool gegeben hätte, dass das für dich gemacht hätte? Hättest du dann mehr
migriert?

I5: Also wenn das Tool dann wirklich auch "State of the art" und aktuell gewesen wäre hätte ich das sicher
gemacht. Ich bin eigentlich voll Fan von solchen Tools, wenn sie nicht veraltet sind. Mein Kriterium ist
immer, es muss die neusten Standards unterstützen, dann nutze ich so etwas auch. Aber das tuen die
wenigsten bis keiner.

Q: Wie lange hast du für eine Migration gebraucht?

I5: Das ist schwer zu sagen. Bei der Erweiterung mit den 33 Views war ich bestimmt ein 3/4 Jahr dran,
10h-15h pro Woche. Die nächste Migration war dann eigentlich der Schritt wo ich diese Extension auf
mehrere Extensions aufgeteilt habe und diese neu aufgebaut und die Gelegenheit genutzt habe um alten
Code rauszuwerfen. Bei großen Änderungen habe ich es immer neugeschrieben.

Q: Interessant, anderen habe immer einfach migriert.

I5: Ja, ich weiß, deshalb gibt es auch soviel Schrott weils keiner macht. Das ist halt immer ein riesen Aufwand.

Q: Hast du auch schonmal etwas von einem anderen System oder zu einem anderen System migriert?

I5: Nein, ich habe aber schon von Wordpress-Seiten auf Joomla migiert, das waren aber die Daten.

Q: Bei was ist die Entwicklung von Erweiterungen in Joomla schlecht?

I5: Das viele Klassen z.b. die Google-API entfernt wurde. Das wurde einfach gemacht. Ich habe diese benutzt
und muss es nun selbst machen.

Q: Du tendierst eigentlich schon dazu das man sich an den Joomla-Standard hält aber dann muss es auch so
einfach wie möglich nutzbar sein?

198 Appendix A. Semi-Structured Expert Interview

I5: Genau

Q: Es gibt ja verschieden Use cases im daily business eines Entwicklers, z.b. das initiale, das weiter entwickeln,
etwas vorhandenes um ein z.b. modul erweitern und migration. Siehst du das auch so oder fallen dir noch
weitere ein?

I5: Ich weiß nicht ob das schon abgedeckt ist mit einem der user cases. Konkretes Beispiel: bau irgendetwas, du
hast eine Standardstruktur: Table-Klasse, View, Controller, Model und jetzt kommt die Anforderung: Ich
brauch ein neues Feld. Ich habe ein System in dem schon tausende Daten vorhanden sind und jetzt brauch
ich eine neues Feld in der Datenbank. Wo im schlimmsten Fall noch ein Fremdschlüssel auf irgendetwas
anderes ist. Bei so etwas wäre es nett irgendwelche unterstützung zu bekommen.

Q: Ok, dieser Anwendungsfall ist auf jedenfall abgedeckt und das wäre etwas was du dir als Entwickler wünsche
würdest.

I5: Genau, auch für Initial, du startest ein Projekt. Also ich finde den Laravel-Ansatz echt schick. Du baust
dir so zu sagen eine Grundstruktur zusammen, sagst ok hier, ich habe das und das und das, habe diese
Tabellenfelder und am Schluss will ich es ausgeben, am besten auf Joomla gemappt. Das ich sagen kann
ok ich habe eine Listenansicht und ich kann sagen auch dieser Tabelle die Daten nehmen. Ich brauch die
Access-Verwaltung von Joomla und das und das und das. Für Standards wie Formulare und Listen müssten
man eigentlich gar keinen Code mehr schreiben.

Q: Das sind also so deine Hauptanforderungen an ein Generatortool.

I5: Die Hauptanforderung ist dass es Aktuell ist. Damit steht und fällt es und dann soll es soviel Code
schreiben wie möglich abnehmen. Und diese Aktualität soll nicht nur initial geben sein sonder es muss
auch vorwärstkompatibel sein. Das also auf Knopfdruck meine Komponente aktualisiert wird. Im Sinne von
Framework-Sachen.

Q: Also wenn ich es nochmal wiederhole. Dir ist es sehr wichtig das es aktuell ist, also nur aktueller und
qualitativ hochwertiger Code ausgespuckt wird. Zum anderen aber auch die Möglichkeit relativ einfach das
ganze zu konfigurieren oder zu modelieren.

I5: Da zu möchte ich etwas sagen. Idealerweise nicht, ich bin zum Beispiel kein Composer-Fan. Die Sache,
ich bau mir da irgendwie eine JSON- oder XML-Datei zusammen und führe diese dann aus. Das finde ich
so...puh...das sagt mir garnicht zu. Laravel ist echt optimal, ich komme da hin und ok, was will ich jetzt
machen. Mit Befehlen, bau mir View x,y,z und dann werden ich gefragt. Einen Wizard so zu sagen. In
irgend einer Form einen Wizard.

Q: Du wünscht dir also einen Dialog und nicht irgendwo eine Datei.

I5: Genau, natürlich was schön wäre wenn man etwas daraus generieren könnte, für das nächste Projekt. Das
man also das vorherige Projekt als Basis fürs zweite Projekt nutzen kann. Also dann aber wieder ein Wizard.
Ich importiere mir diese Konfigurationsdatei und mit dem Wizard wieder anpassen.

Q: So ein bisschen wie npm –init

I5: Genau

Q: Würdest du dir eher eine textuelle Form für diese Konfigurationsdatei wünschen oder auch eine visuelle
Editoren im Sinne von Klassendiagramme?

I5: Nein, ne, es geht auch wieder um Geschwindigkeit, wenn ich da mit Drag&Drop rumhantieren und so...das
ist nicht schnell. Ein Kriterium muss sein, ich muss schneller sein als wenn ich Copy&Paste mache. Für
Beginner ist das vielleicht sehr nett aber für mich wäre das nichts. Ich kopiere mir halt so eine Komponente
innerhalb 5 Minuten zusammen und dann muss ich noch die Sachen anpassen.

Q: Fällt dir sonst noch etwas ein, was du dir von einem Generatortool wünschen würdest?

I5: Datenbank-Versionierung, im Sinne von nicht nur von der Entwicklungsseite her sondern es wäre natürlich
auch krass wenn es auch Content-Versionierung wäre. Zum Beispiel verschiedene System zusammenführen
mit Content. Das ist noch ein ungelöstest Problem in der Informatik.

Q: Vielen Dank.

Interviewee 6
Interviewer: Dennis Priefer, Date: 23.04.2018, Location: Gießen, Germany,
Note: The Interview was not recorded but documented in writing.

199

Q: Is it ok that I record the interview? If we publish the results, all personal data will be made anonymous.

I6: Yes.

Q: Did you develop one or more Joomla extensions in the past?

I6: Yes.

Q: For which Joomla version(s)?

I6: Since Mambo.

Q: What kind of extension did you develop? (Component, Module, Plugins, or other)

I6: Modules and Plugins.

Q: How complex was/were the extension(s)? How many views? How many CRUD views? References between
extensions? How was the level of individuality?

I6: Between 80 and 90 % standard code. Modding of components (overrides). Extended project forks.

Q: What is your procedure to implement a new module?

I6: Clone-and-own approach. No Boilerplate generators

Q: Did you implement dependencies between extensions (component <-> module)?

I6: Yes, module dependencies to existing components.

Q: How long did it take to develop the extension(s)?

I6: Half a day.

Q: What is your procedure to augment a component by a template override?

I6: Copy and adapt the layout file which has to be overwritten.

Q: Did you ever try to use parts of a third party component in your own extension?

I6: Yes.

Q: Did you migrate an extension (code) from one Joomla version to another?

I6: Yes.

Q: Can you describe your procedure to migrate extensions?

I6: First, we create a Joomla test instance on a test server. Typically, we use a backup of an actual complex
Joomla installation as reference and update it to the new version. Then we install the old extension, test
it and refine it iteratively until it works. Since we mainly use third-party extensions, we wait for adequate
releases and install them. In the last step, we add the template extension and refine it to the new needs.

Q: How long do you need for a migration?

I6: Time window of 2 years.

Q: Did you migrate an extension (code) from one system to another (e.g. WordPress to Joomla)?

I6: No.

Q: How often did. . . /Did you ever experience that the Joomla conventions (file structure/naming) lead to errors
in your extensions?

I6: Sometimes. The typical problems/bugs (view not found, bugs in layout files, incorrect database query).

Q: In which scenario could a generator approach be helpful?

I6: It could be useful during the initial development and migration step. Also during the augmentation of existing
components if existing data is not required. Or if an extension has to be newly developed/reengineered.

Q: Which functionality/features do you expect from a model-driven/generator tool?

I6: No unnecessary features. Textual specification of features. Consideration of references (extending). Devel-
opment of modules for existing components. A wizard would be good but there is no urgent need.

200 Appendix A. Semi-Structured Expert Interview

Interviewee 7
Interviewer: Dennis Priefer, Date: 27.04.2018, Location: Gießen, Germany
Q: Hallo P7, schön dass du heute Zeit gefunden hast für das Interview. Ich nehme das Interview jetzt auf und

frage dich auch ob das ok ist. Ist das ok?

I7: Ja.

Q: Alles klar, dann legen wir doch direkt los. Du bist ja auch schon ein erfahrener Joomla-Entwickler. Seit
wann bist du denn schon dabei?

I7: Das sind jetzt schon 4 Jahre.

Q: 4 Jahre, aber du hast mit Joomla 3 angefangen?

I7: Genau mit der Migration von Joomla 2.5 auf 3.

Q: Ok, das heißt du hast schon mit Erweiterungen gearbeitet, Erweiterungen entwickelt und auch Erweiterungen
migriert? Ist das richtig?

I7: Eigene Entwicklung nicht, also Weiterentwicklung von Joomla-Komponenten, Plugins und Module und die
Migration halt.

Q: Die Komponenten, die entwickelt hast, wie komplex würdest du die den beschreiben.

I7: THM-Groups ist schon sehr komplex. Im Backend sind es 15 Views. Frontend weniger, ich glaub 7 Views.

Q: Würdest du sagen, dass der Code bzw. die Views in der Komponente Standard-Views sind oder sind das eher
sehr individuelle Views? Mit Standard-Views meine ich, typische CRUD-Views. Wo man eine Listenansicht
hat mit den Entitäten, man kann die Entitäten dann bearbeiten. Man klickt drauf dann öffnet sich eine
Detailansicht und man bearbeitet die, kann speichern und dann werden sie in der Liste wieder dargestellt.
Das ist eine Standard-View, wie man sie auch im Core-Erweiterungen, wie Users etc.. Würdest du sagen das
THM-Groups größtenteils aus Standard-Views oder aus individuellen Views besteht?

I7: Backend ist auf jeden Fall, größtenteils Standard-Views, also Liste-Views mit CRUD-Funktionalitäten. Fron-
tend, z.b. Profil-Edit ist sehr individuell.

Q: Im Frontend gibt es aber auch Listenansichten und wenn man draufklickt bekommt man Editieransichten.
Würdest du das nicht als Standard-View sehen?

I7: Ich bin jetzt eher von der Advanced-View ausgegangen.

Q: Könntest du das Quantifizieren? Also, du sagst im Backend, hauptsächlich Standard-Views. Wieviel Prozent
würdest du denn sagen der Komponenten an sich, würdest du sagen entspricht einer Standradansicht und
wieviel sind individuell? Entspricht also keiner Joomla-Komponente.

I7: 60-65

Q: Ok, das deckt sich mit unseren Erfahrungen. Hat die Komponente Abhängigkeiten zu anderen Erweiterun-
gen?

I7: Ja, zum System-Plugin, Content-Modul, Profile-Modul.

Q: Also es gibt Abhängigkeiten die von der Komponenten selbst abhängen. Hat den die Komponente selbst
Abhängigkeiten zu anderen Erweiterungen?

I7: Früher bestand eine Abhängigkeit zu einer Bibliothek. Aber das ist jetzt alles in die Komponenten verlagert
worden.

Q: Hat die Komponente Abhängigkeiten zu Core-Erweiterungen?

I7: Ja, zu der User-Komponente.

Q: Ok, das heißt es gibt Abhängigkeiten zu Core-Komponenten. Hast du in diesem Bereich mitentwickelt oder
eher an den anderen Views?

I7: Mein Part war die Typisierung von statischen und dynamischen Typen.

Q: Hast du auch die abhängigen Erweiterungen weiterentwickelt?

I7: Funktional nicht. Nur in der Datenbank.

Q: Würdest du sagen dass das einfach von der Hand ging oder war das etwas Komplexes?

201

I7: Manuelle Änderungen sind immer aufwendig, wenn man es generieren könnte wäre es schön.

Q: Bist du auf Probleme gestoßen welche mit der Architektur von Joomla zu tun haben?

I7: Nein eigentlich nicht.

Q: War das einfach zu erlernen?

I7: Naja, da ich nur weiterentwickeln musste war das kein Problem. Ich musste da nie so tief einsteigen.

Q: Hast du schon mal eine eigene View erstellt?

I7: Ja

Q: Wie bist du da vorgegangen?

I7: Copy&Paste und dann halt erweitert.

Q: Hast du schon mal irgendeinen Generatoransatz verwendet?

I7: Nein bis her nicht.

Q: Hast du den Boilerplate-Generator von PHPStorm verwendet?

I7: Nein, ich wusste gar nicht das es den gibt.

Q: Du kennst ja die Struktur der Komponenten. Wie lange brauchst du für die Entwicklung einer Komponente
mit: 6 Views, 3 Entitäten mit Einstiegsview im Backend ohne individuellen Code. Wie lange würdest du
dafür brauchen?

I7: Naja, schon so ungefähr 3-4 Tage.

Q: Wie würdest du dabei vorgehen? Kopieren?

I7: Ja, kopieren.

Q: Wie testest du die Erweiterung?

I7: Wir testen die Erweiterung per Hand.

Q: Hat die Komponenten Abhängigkeiten zu 3rd-Party-Eriweiterungen?

I7: Nein.

Q: Wie bist du beim Migrieren von Joomla 2 auf Joomla 3 vorgegangen?

I7: Wir haben damals geschaut was sich geändert hat, im Changelog von Joomla. Und sind dann schrittweise
vorgegangen die Sachen wieder zum Laufen zu bringen.

Q: Habt ihr primär darauf geachtet, dass es funktioniert oder auch Wert darauf gelegt den neuen Joomla 3-
Standard einzuhalten?

I7: Ich war damals ziemlich neu in der Joomla-Entwicklung und habe nur auf die Funktionalität geachtet. Mein
erfahrenerer Kollege hat aber auch auf den Joomla-Standard geachtet.

Q: Wie lange habt Ihr den dafür gebraucht?

I7: 1 Jahr

Q: 40h die Woche?

I7: Ja.

Q: Was waren den die Hürden am Anfang, als du neu in Joomla warst?

I7: Das MVC-Muster wie Joomla es umsetzt und das insgesamt große Joomla-Framework.

Q: Hast du auch schon mit andere CMS gearbeitet?

I7: Für meine Bachelorarbeit habe ich mal in Drupal und Wordpress reingeschaut. Aber nie großartig drin
entwickelt.

Q: Neben den Joomla-Konventionen (Namens, Dateistrukturen, Bezeichner), haben dich noch andere Hürden
aufgehalten?

I7: Das ist im Nachhinein schwer zu sagen. Nein eher nicht.

202 Appendix A. Semi-Structured Expert Interview

Q: Es gibt 3 große Entwicklungszenarien wenn man mit Joomla arbeitet. Zum einen die Entwicklung von
unabhängigen Erweiterungen. Die Entwicklung von Erweiterungen mit Abhängigkeiten. Der dritte Anwen-
dungsfall ist die Migration. Würdest du sagen das sind alle oder fallen dir noch mehr ein?

I7: Nein ich denke das waren alle.

Q: Bei welchen Anwendungsfällen, denkst du ist ein Generatoransatz sinnvoll?

I7: Auf jeden Fall beim Ersten. Also Neuentwicklung, dass ist immer von Vorteil wenn man das Grundgerüst
generieren lassen kann. Dann hat man eine einheitliche Codequalität, alles funktioniert und installierbar.
Darauf kann man dann aufbauen. Was war nochmal der zweite Anwendungsfall?

Q: Der zweite war die Entwicklung von abhängigen Erweiterungen.

I7: Generell finde ich es von Vorteil wenn man sich etwas generieren lassen kann.

Q: Wie sieht es im Anwendungsfall, der Migration aus?

I7: So habe ich mir das für Groups vorgestellt. Weil ja jetzt auch in Joomla 4 Namespaces verwendet werden.

Q: Welche Features würdest du von einem modelgetriebenen Ansatz erwarten?

I7: Sehr einfach neue Views der vorhandenen Komponente hinzufügen. Mehr fällt mir jetzt nicht ein.

Q: Würdest du einen textuellen oder visuellen Modellierungsansatz bevorzugen?

I7: Über in Modellierungswerkzeug wie UML.

Q: Also visuell und nicht textuell. Würdest du dir einen Dialog oder Wizard wünschen?

I7: Muss nicht unbedingt sein.

Q: Ok, vielen Dank.

Interviewee 8
Interviewer: Wolf Rost, Date: 03.05.2018, Location: Gießen, Germany
Q: Als erstes will ich dich drauf Hinweis, dass wenn wird das hier veröffentlichen, wir die Daten natürlich

anonymisieren. In so fern du das willst.

I8: Mir egal.

Q: Die erste Frage an dich. Hast du schon einmal Joomla-Erweiterungen entwickelt und wenn ja für welche
Versionen?

I8: Ja, für 1.5, 1.6 und so weiter. Seit 1.5.

Q: Also kann man sagen seit 1.5 bis 3.8.

I8: Genau.

Q: Wie viele Erweiterungen hast du entwickelt?

I8: Um die 40. Erweiterungen die es noch gibt 15.

Q: Das heißt von den 40 sind jetzt noch 15 im Einsatz.

I8: Ja es sind einige dadurch das Joomla sich weiterentwickelt hat, sind sie unnötig geworden. Ich habe auch
auf einige keine Aufsicht mehr.

Q: Noch einmal eine Frage zu den 40 Erweiterungen. Was waren das den für Typen von Erweiterungen? Kannst
du quantifizieren wieviele davon Komponenten, Module...?

I8: 2 Hauptkomponenten, Organizer und Groups. Groups kam aber auch so dazu, da war ich nicht von Anfang
an dabei. Bibliotheken, ich habe das eine entwickelt und zwei davon in den Sand gesetzt. Templates, zwei
Templates selbst entwickelt, eins weiterentwickelt. Plugins, etliche. Diese Knöpfe, die Content-Plugins, die
die Sachen von den Knöpfen auflösen

Q: Also die ganzen Editor-Plugins. Vielleicht anderst, wie viele Module waren das? Kannst du das eher sagen,
weil das einfacher ist? Oder weniger?

I8: Auch da, so um die 15.

203

Q: Dann nochmal speziel auf die Komponenten eingegangen. Wie viele Views waren das ungefähr? Kannst du
das noch unterteilen in Frontend und Backend? Von deinen zwei Komponenten.

I8: Ich denke mal um die 50.

Q: Insgesamt oder nur Frontend/Backend?

I8: Achso dann so 60-65. Aber im Backend, gerade weil ich es sehr allgemein entwickelt habe. Obwohl es schon
reichlich viele Views sind, ist es eher im Endeffekt so wie 3 oder 4. Weil ich habe meine Edit-View, meine
Lists und meine Merge-View. Und ich verwende mein Werkzeug um neue Views auszustellen. Klar ich habe
ganz viele aber im Endeffekt ist der Quellcode sehr schmal. Weil sich da sovieles wiederholt im Backend.

Q: Weil du das dann ausgelagert hast?

I8: Ja

Q: Ah ok. D.h. du konfigurierst nur noch, rufst etwas auf und es erstellt dir eine View?

I8: Ja, im Endeffekt ich habe ein Model ohne Code, ich erbe alles vom Elternteil und ich geb da nur ein paar
Parameter zu und es läuft.

Q: Also 65 Views sind es Insgesamt obwohl es im Backend nur drei sind aber...

I8: Etliche ausführung.

Q: Das klingt ja sehr interessant. Dadurch dass du das auslagers, wie viel Prozenz denkst du den sind dann so
standard CRUD views.. Also so listen-views mit CRUD-Funktionalitäten und Detail-View, von diesen 65.

I8: Das ist halt sinn und zweck von backend.

Q: Also im Backend würdest du sagen, 100

I8: Also wenn die Frage eher so gemeint ist wieviel ich gespart habe, das kannst du eigentlich direkt nachvol-
lziehen, wenn du irgendwo reinschaust.

Q: Also mir ging es erstmal nur um die Art der Views und das wären dann also...

I8: List, Edit und Upload/Merge aber das Upload ist eher so ein Edit.

Q: Also sind es eigentlich 100

I8: Ehm, auch Batch, das habe ich vergessen. Das ist in Groups. Hätte ich eigentlich gerne im Organizer aber
ich hatte keine Zeit das anzugehen.

Q: Ok, und Batch ist dann individuell entwickelt?

I8: Ehm, je nach Batch. Das habe ich angepasst, diese Sache von Groups, die bilden assoziationen zwischen
x-Dings, so dass man erstmal eine Sache auswählt und dann mit dieser Sache die man ausgewählt hat etwas
hinzufügt und dann och etwas. Das ist sehr ausgefallen, aber in der Regel ist es auch eine Listen-View.

Q: Ok, dann passt das mit den 100

I8: In der Regel nicht, ich halte so etwas eher für Unsinn.

Q: D.h. entweder hast du gar keine Crossreferenzen oder die Crossreferenz geschieht dann über Buttons?

I8: Ich weiss nicht, eher so ein Feldtyp oder so. Bei Curriculum, wir haben Studiengänge und man kann dann
Module und Modulpools hinzufügen, wenn man auf die klickt kann man da hin gehen um sie zu editieren.
Allerdings ist dies nicht unbedingt...Ich denke die wenigsten machen das. Weil ansich man möchte nur eine
Hierarchy aufbauen und da braucht man eigentlich nur die Referenz auf sachen und nicht die Sachen zu
editieren ansich....das könnte ich eigentlich ausbauen...

Q: Du hast ja jetzt schon gesagt das 100

I8: Im Backend

Q: Im Backend, genau. D.h. dein Anteil von individuellem Code im Backend ist dann wahrscheinlich sehr
gering, wenns darum geht die Darstellung die Views aufzubauen.

I8: Ja es gibt nur ganz spezifische Views, wie der Stundenplan-Upload. Da hängt einiges dran.Es gibt sachen
die der Regel entsprechen und das ist dann 100

Q: Das ist dann aber individuell im Sinne der Businesslogik oder?

204 Appendix A. Semi-Structured Expert Interview

I8: Businesslogik, wie die Sachen interiert sind, welche zusammenhänge sie haben oder ich schaue auf die Mod-
ulnummer und dann such ich mit dieser Modulnummer in dem Kontext von Studiengang ob ich da eine
Zuordnung machen kann. und das geschieht alles im Hintergrund.

Q: Wie ist den dein Vorgehen wenn du eine neue Komponente entwickelt müsstest? Schaust du dir irgendwo
beispiele an? Fängst du von Null an und erstellst di e Dateien komplett neu? Oder hast du einen Generator?
machst du Copy&Paste von altem Zeug. Wie ist den da dein generelles Vorgehen?

I8: Mein generelles Vorgehen wäre erst einmal zu Überlegen welche Entitäten ich habe. Weil dies ist sehr
entscheidend wie die Sachen die Verwaltet werden zu einander stehen. Dann muss ich überlegen wie die
Kardinalitäten sind. Ich finde dieses zusammenspielt spielt eine entscheidene Rolle wie alles im Endeffekt
aussieht. Erstmal das festlegen und dann Datenbank. Dann erstelle ich einzelne Funktionen im Model,
welche die Sachen machen, mit den Daten, die ich für wichtig halte. Also diese CRUD-Geschichte von wegen
anlegen, löschen , editieren, muss da sein. Aber auch wie verbindet man wie sieht das aus? Ich finde gerade
diese Verbindungsgeschichte die fehlt in Joomla. Die machen sehr große Fortschritte bei der Datenbank,
also diese Datenbankabstraktion haben sie sehr gut gemacht.Aber mit MyISAM, da haben sie nicht so an
Foreign-Keys gedacht. Und das fehlt.

Q: Vielleicht nochmal anderst gefragt. Wie würdest du die Komponente an sich selbst umsetzen. Wie würdest
du da Anfangen die Views zu entwickeln? Das ganze Grundgerüst einer Komponente aufzubauen?

I8: Da würde ich tatsächlich auf Copy&Paste zurückgreifen. Zu mal es von Joomla gefordert wird. Man muss
ein Manifest haben, man muss bestimmte Dateien haben, diese müssen eine bestimmte Struktur haben.

Q: Wie siehst bei Modulen aus?

I8: Das komplette Ding, Copy&Paste, die Namen editieren und dann die richtigen Sachen angehen.

Q: Du hast Komponenten und Module entwickelt. Wahrscheinlich haben dann deine Module auch Abhängigkeiten
zu den Komponenten?

I8: Ja

Q: Weil sie die Daten anzeigen oder nutzen? Was machen die Module mit den Komponenten.

I8: In der Regel gehen sie auf die Daten um etwas darzustellen oder sprechen AJAX-Funktionen an, wenn es
dynamsich gehen soll. Aber diese AJAX-Funktionen habe ich dann als Views in der Komponente, also
wirklich eine AJAX-View die dann angesprochen wird.

Q: Ok, gehen deine Module direkt auf die Datenbank-Tabellen oder benutzen sie, das Module oder eine View
der Komponente?

I8: Kommt ganz drauf an, ich versuche so viel wie Möglich, die Abfragen in der Komponente zu machen, so
dass man sicherstellen kann diese noch funktionieren damit ich sicherstellen kann das wenn ich etwas in der
Komponente ändere das Modul noch funktioniert. Manchmal lässt sich das nicht vermeiden aber dadurch
das vieles in der Komponente geschieht...man meidet einges in Plugins und Modulen.

Q: So generell wenn du eine Komponente entwickelt müsstest, die installierbar und eine Frontend- und Backend-
View hat. Wie lange brauchst du dafür? Mit deinem Clone-and-Own approach...also die muss nur instal-
lierbar sein keien große Businesslogik.

I8: 10 Minuten

Q: 10 Minuten?

I8: Ja, im Endeffekt muss ich nur kopieren und einiges Löschen aber wenn ich entschlagt habe kann ich dann
per RegExpression oder String-Suche, einfach ersetzen. Das ist eine Sache von paar Minuten.

Q: Wenn du schon eine Komponente hast und diese nur um eine View erweitern musst. Wie gehst du da vor?

I8: Da kopiere ich eine ähnliche vorhandene View, also wenn es Backend ist, und pass es an. Ich habe sehr viel
ausgelagert...ich brauche dazu 3 Minuten.

Q: Wie sieht es bei einem neuen Modul aus?

I8: Kommt drauf an was es tun soll

Q: Ein Modul was Daten von einer Komponente anzeigen soll.

I8: Also einfach eine Liste?

Q: Genau, z.b. der Entitäten. Also erstmal, wie gehst du wieder vor? Hast du einen Generator oder Boilerplate-
Code?

205

I8: Hast du eigentlich schon gefragt bei einer anderen Frage... Also bei Modulen würde ich einfach ein vorhan-
denes Modul nehmen und kopieren.

Q: Also Copy&Paste und anpassen?

I8: Ja

Q: Wie sieht es bei Template-Overrides aus? Also wenn du eine View neu gestalten willst?

I8: Die meide ich, so gut es geht.

Q: Also benutzt du sie garnicht?

I8: Ich habe die Erfahrung, dass sich dadurch Fehler einschleichen, wenn die Komponente oder...welche Ex-
tension auch immer sich anpasst. Ich meine gerade da, da geschieht soviel im Model oder View und man
kann eigentlich nur das Template...mit bestimmten Ausnahmen. Alleine wenn sich die Variablennamen än-
dern...alles verloren. Ich verstehen warum man Template-Overrides benutzt, ich würde es aber nicht machen.

Q: Ok. Hast du schon einmal versucht, das Model (DAO) einer 3rd-Party-Erweiterungen in deiner eigenen
Komponente verwendet? Um z.b. Daten anzufragen.

I8: Das hatte ich vor langer Zeit gemacht als Groups noch nicht meine Sache war.

Q: Und wie hast du die Daten da angefragt? Bist du direkt auf die Datenbank gegangen oder hast du versucht
das Model von Groups zu verwenden?

I8: Ich bin in meiner Komponente auf die Tabelle von der Anderen um mir einen Link zusammenzubauen. Das
war statisch ohne Ende und das hat aber auch nicht lange überlebt.

Q: Also den Fall dass du das Model benutzt hast gab es nicht.

I8: Ich habe das bei den damaligen Groups-Entwicklern angefragt, aber in 3 Jahren hat es nicht geklappt.

Q: D.h. du hättest es gerne benutzt anstatt auf die Datenbank zugehen?

I8: Nein, ich wollte eigentlich nichts mit Groups nichts zu tun haben.

Q: Hattest du schon mit der Migration von Komponenten zu tun?

I8: Ja

Q: Kannst du auch sagen von welchen Versionen?

I8: Von 1.5 auf 1.6/1.7 und dann auf 2,3.

Q: Wieviele Erweiterungen musstest du da so migrieren?

I8: Nur meine Sachen, höchstens 15...eher 10.

Q: Wie bist du beim migrieren vorgegangen? Konntest du dich irgendwo orientieren? Hast du die Dokumenta-
tion gelesen, gab es ein Tool dass das für dich gemacht hat?

I8: Ich habe die Dokumentation gelesen und ich hab einfach alles angepasst, wo die anweisung von Joomla
waren, das musst du anpassen. Und dann habe ich ausprobiert bis es ging. Also die Fehler nach und nach
behoben.

Q: Also es gab einen Migration-Guide von Joomla dem du folgen konntest?

I8: Ist schon sehr lange her, ich sage mal ja. Es gab auf jedenfall hinweise.

Q: Kannst du dich noch dran errinern wie lange du für die 10 Erweiterungen gebraucht hast?

I8: Ich weiß nicht mehr genau, das war auch um die Zeit wo wir die Entwicklerinfrastruktur angeschaft haben.
Also mit Metriken, Copy&Paste, Zyklische Komplexität, etc. Ich würde sagen 6 Monate so grob. Allerdings
kann es sein das ich da auch ein wenig dass mit den Metriken reinmische.

Q: Also deine Codequalität verbessert hast?

I8: Ja ich weiß nicht mehr ob das ein und der selbe Vorgang war oder getrennt.

Q: Also ca. 6 Monate. Hast du auch schon versucht Erweiterungen von einer anderen Plattform oder zu einer
anderen Plattform, wie Wordpress zu migrieren?

I8: Nein, noch garnicht.

Q: Es gibt in Joomla ja Konventionen. Man muss sich an die Dateistruktur halten und bestimmte Namen/Beze-
ichner verwenden. Was denkst du, wie häufig das die Fehlerquelle war.

206 Appendix A. Semi-Structured Expert Interview

I8: Das hat mir nicht wirklich Steine in den Weg gelegt. Wo ich große Probleme hatte, war mit Sprachkonstanten
in dem Manifest. Es gibt einen Dateiname, den Komponentenname und einen anderen Namen im XML und
eine Beschreibung. Ich weiß besonderst bei den Plugins, da musste die eine Datei der anderen Datei gleichen
und dann auch in der Sprachdatei stehen oder auch nicht...es war sehr verwirrend.

Q: Das war auf jedenfall ein Punkt wo dir die Joomla-Konventionen, Steine in den Weg gelegt hat?

I8: Ja

Q: Vielleicht noch andere Sachen die Joomla eigen macht oder worüber man häufig stolpert?

I8: Diese Konventionen, ich bin einer der versucht immer alles Richtig zu machen. Auch wenn das ein bisschen
Ansichtssache ist. Einige der Konventionen von wegen Codestyle. Ich nehme das von PHPStorm und die
sprechen auch mit einander. Aber dann stimmte das von PHPStorm nicht hundertprozentig mit dem von
Joomla. Oder es ist von Joomla nachträglich etwas gekommen oder PHPStorm hat es nicht angepasst. Und
dann halt diese PSR2/4-Geschichte. Ich habe alles angepasst aber dann sollte es doch nicht so sein...ich
mochte den Joomla-Style mehr als den von PSR2, mit Ausnahme der Tabs. Es wäre nett wenn sie ein für
alle mal entscheiden und es dann belassen. Ich kann mit PSR2 leben auch wenn es nicht so schön ist. Aber
dass das immer wieder diskutiert werden muss...Wie macht ihr es in JooMDD?

Q: Wir halten uns PSR4 wegen den Namespaces und allem was in Joomla 4 reinkommen soll. Kennst du
Generatoransätze die dir ja Arbeit abnehmen solln? Im Bereich von Joomla?

I8: Ich habe von eurem Werk gehört allerdings noch nicht verwendet.

Q: Du weißt aber ungefähr was es kann? Wo für man es einsetzen kann?

I8: Ja für neues Projekt oder halt vorhanden migrieren.

Q: Denkst du auch das sind sinnvolle Szenarien? Bzw. wo so ein Generatoransatz helfen könnte?

I8: Ja, bestimmt.

Q: Fällt dir ein Szenario ein wo ein Generatoransatz garnicht passen würde?

I8: Beim Hochladen des Stundenplan oder importieren der Sachen aus LSF.

Q: Das sind also individuelle Sachen?

I8: Ja

Q: Und da kannst du dir einen Generatoransatz schwer vorstellen.

I8: Ja, nur für das Gerüst aber nicht für den Code an sich.

Q: Also die Businesslogik, also für ein Scaffolding schon. Was für Funktionalität oder Features erwartest du von
so einem Generatoransatz?

I8: Neue Extension erstellen: Handling der Entitäten.

Q: Also das du die Entitäten beschreiben kannst und die diese dann auch generiert werden? Die Tabellen z.b.

I8: Ja. Inklusive Foreign-Keys und Constrains. Das ist das A und O. Diese CRUD-Ansichen müssten eigentlich
auch locker von der Hand gehen. Die Frontend-Ansichten da sehe ich eher Schwierigkeiten, es sei den es
ist auch einfach nur eine Darstellung von Listen oder individuellen Attributen. Kann man Templates über
JooMDD machen?

Q: Nein, aber das wäre etwas was du erwartest?

I8: Wenn dann den schon, aber da sehe ich auch sehr große Schwierigkeiten weil es sehr grafisch ist. Und man
muss da vieles Bedenken, das nichts mit den anderen Extensions zu tun hat.

Q: Also wenn ich das nochmal zusammenfassen kann. Du denkst so Standard-Views, dass sollte das Tool auf
jedenfall können. Listen/Detail-Ansichten die ganzen CRUD-Funktionalitäten.

I8: Es gibt viele Module, die Listen oder einzelne Dinger anzeigen. Das wäre genau so eine View wie aus der
Komponenten nur halt dynamisch einzubinden und das müsste eigentlich ein Klacks sein für euch.

Q: Also Liste-/Entitäten-Ansicht

I8: Ja aber das würde ich quasi von euch für die Module als Template erwarten. Das man sagt was habe ich
da für ein Modul. Habe ich ein Listen-Modul, habe ich eine Item-Modul, habe ich ein Such-Modul, einfach
ein paar Template und wie das Modul mit den Daten hantieren würde. Die Button bzw. die Plugins, also
ähnliche Geschichte.

Q: Ehm, bei Buttons, du redest dann von Editor-Buttons?

207

I8: Genau von editor-xtd. Und auch System- und Content-Plugins. Auch da würde ich unterschiedliche Template
erwarten für Plugins. Und da auch unterschiedliche Templates würde ich erwarten für Plugins.

Q: Also unterschiedliche Templates.

I8: Von wegen was soll diese Plugin tun und wie soll es aussehen.

Q: Also dass man auch das Aussehen schon mit beschreiben kann. Ok, vielen Dank.

208 Appendix A. Semi-Structured Expert Interview

B Meta-Model of the cJSL DSL

Here, the meta-model parts of the cJSL DSL is presented in detail.

Figure B.1: cJSL Application with all cJSL Parts

Figure B.2: cJSL Configuration Part

z

209

210 Appendix B. Meta-Model of the cJSL DSL

Figure B.3: cJSL User Part

Figure B.4: cJSL Menu Part

211Figure B.5: cJSL Content Part

212
A

ppendix
B.

M
eta-M

odelofthe
cJSL

D
SLFigure B.6: cJSL Page Part

C Well-Formedness Rules for eJSL

Here, all constraints for the eJSL language are collected.

Entities

1 context Entity
2

3 −− Check i f e n t i t y names are unique
4 inv u n i q u e E n t i t y I d e n t i f i e r :
5 Entity . a l l I n s t a n c e s ()−>c o l l e c t (’^’ . concat (name))−>union (Entity . a l l I n s t a n c e s ()−>

c o l l e c t (name))−>isUnique (i | i)
6 −− A l t e r n a t i v e l y : Ent i ty . a l l I n s t a n c e s ()−>f o r A l l (e1 , e2 | e1 <> e2 i m p l i e s e1 .

name <> e2 . name and e1 . name <> ’^ ’ + e2 . name) Ent i ty . a l l I n s t a n c e s ()−>f o r A l l (
e1 , e2 | e1 <> e2 i m p l i e s e1 . name <> e2 . name and e1 . name <> ’^ ’ + e2 . name)

7

8 −− Check i f a t t r i b u t e i d e n t i f i e r s are unique
9 inv u n i q u e A t t r i b u t e I d e n t i f i e r :

10 s e l f . a t t r i b u t e s −>c o l l e c t (’^’ . concat (name))−>union (s e l f . a t t r i b u t e s −>c o l l e c t (name
))−>isUnique (a | a)

11 −− A l t e r n a t i v e l y : s e l f . a t t r i b u t e s −> f o r A l l (a1 , a2 | a1 <> a2 i m p l i e s a1 . name <>
a2 . name and a1 . name <> ’^ ’ + a2 . name)

12

13 /∗ The noGenera l i za t i onCyc l e s c o n s t r a i n t i n c l u d e s t h i s one
14 −− Check i f e n t i t y does not extend i t s e l f
15 inv ent i tyDoesNotExtendI t s e l f :
16 s e l f . supertype −> exc ludes (s e l f)
17 ∗/
18

19 −− Check i f a t l e a s t one unique (primary) a t t r i b u t e e x i s t s i f e n t i t y does not
extend another one . I f so , check i f c l o s u r e o f parent e n t i t i e s has a unique

a t t r i b u t e
20 inv pr imaryAtt r ibuteEx i s t s :
21 s e l f . a t t r i b u t e s −> e x i s t s (i s u n i q u e) or s e l f . supertype−>c l o s u r e (supertype) .

a t t r i b u t e s −> e x i s t s (i s u n i q u e)
22

23 −− Check i f no g e n e r a l i z a t i o n c y c l e e x i s t s (t r a n s i t i v e c l o s u r e)
24 inv noGenera l i za t i onCyc l e s :
25 s e l f . supertype−>c l o s u r e (supertype)−>exc ludes (s e l f)

Listing C.1: Well-Formedness-Rules: Context Entities

1 context StandardTypes
2 −− Check i f AutoIncrement i s used f o r s u i t a b l e t ypes
3 inv autoIncrementForInteger :
4 s e l f . type=StandardTypeKinds : : Integer implies s e l f . autoincrement

Listing C.2: Well-Formedness-Rules: Context StandardTypes

213

214 Appendix C. Well-Formedness Rules for eJSL

1 context Reference
2 −− Check i f min/max v a l u e s are −1, 0 , and 1
3 inv allowedMinValues :
4 Set{’0’ , ’1’} −> i n c l u d e s (s e l f . lower)
5

6 −− Check i f min/max v a l u e s are −1, 0 , and 1
7 inv allowedMaxValues :
8 Set{’1’ , ’ -1’} −> i n c l u d e s (s e l f . upper)
9

10 −− Check i f r e f e renced e n t i t y e x i s t s
11 inv r e f e r e n c e d E n t i t y E x i s t s :
12 Entity . a l l I n s t a n c e s () . name−>i n c l u d e s (s e l f . e n t i t y . name)
13

14 −− Check cons i t ency o f r e f e r e n c e d E n t i t y and r e f e r e n c e d E n t i t y A t t r i b u t e
15 inv c o n s i s t e n t E n t i t y A t t r i b u t e :
16 s e l f . e n t i t y . a t t r i b u t e s . name
17 −>i n c l u d e s (a t t r i b u t e r e f e r e c e d . name−>f i r s t ())
18

19 −− Check i f r e f e r e n c e s have no c y c l e s
20 inv noReferenceCyc les :
21 s e l f . e n t i t y . r e f e r e n c e s
22 −> c l o s u r e (e n t i t y . r e f e r e n c e s)
23 −> f o r A l l (r | r . a t t r i b u t e r e f e r e c e d <> s e l f . a t t r i b u t e)
24

25 −− Check i f a t t r i b u t e types are c o n s i s t e n t in r e f e r e n c e s
26 inv cons i s t entAtt r ibuteTypes :
27 s e l f . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType (StandardTypeKinds)

=
28 s e l f . a t t r i b u t e r e f e r e c e d . type . oclAsType (StandardTypes) . type . oclAsType (

StandardTypeKinds)
29

30 −− Check i f r e f e r e n c e i s a primary (unique) a t t r i b u t e
31 inv r e f e r e n c e I s P r i m a r y :
32 s e l f . a t t r i b u t e r e f e r e c e d −> e x i s t s (i s u n i q u e) or s e l f . a t t r i b u t e r e f e r e c e d −>

e x i s t s (i spr imary)

Listing C.3: Well-Formedness-Rules: Context Reference

Pages

1 context Feature
2 −− Check i f page uses an e n t i t y only once
3 inv useEntityOnlyOnce :
4 s e l f . e n t i t i e s −>f o r A l l (e | s e l f . e n t i t i e s −>count (e) = 1)

Listing C.4: Well-Formedness-Rules: Context Feature

1 context Deta i l sPage
2 −−− Check i f Text mapped to Textarea
3 inv d e ta i l s P a ge F i e l d Te x t a r e a :
4 s e l f . e d i t f i e l d s . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType (

StandardTypeKinds) =
5 StandardTypeKinds : : Text−>asSequence ()
6 implies
7 s e l f . e d i t f i e l d s . htmltype . oclAsType (HTMLTypes) . oclAsType (SimpleHTMLTypes) .

htmltype . oclAsType (SimpleHTMLTypeKinds) =
8 SimpleHTMLTypeKinds : : Textarea−>asSequence ()

Listing C.5: Well-Formedness-Rules: Context DetailsPage (1)

215

1 context Deta i l sPage
2 −−− Check i f Short_Text and Link mapped to Text_Field
3 inv deta i l sPageFie ldText_Fie ld :
4 l e t attrType : Sequence =
5 s e l f . e d i t f i e l d s . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType (

StandardTypeKinds)
6 in attrType = StandardTypeKinds : : Short_Text−>asSequence ()
7 or attrType = StandardTypeKinds : : Link−>asSequence ()
8 implies
9 s e l f . e d i t f i e l d s . htmltype . oclAsType (HTMLTypes) . oclAsType (SimpleHTMLTypes) .

htmltype . oclAsType (SimpleHTMLTypeKinds) =
10 SimpleHTMLTypeKinds : : Text_Field−>asSequence ()
11

12 −−− Check i f Boolean mapped to Yes−No−Buttons
13 inv deta i l sPageF i e ldBoo l ean :
14 s e l f . e d i t f i e l d s . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType (

StandardTypeKinds) =
15 StandardTypeKinds : : Boolean−>asSequence ()
16 implies
17 s e l f . e d i t f i e l d s . htmltype . oclAsType (HTMLTypes) . oclAsType (SimpleHTMLTypes) .

htmltype . oclAsType (SimpleHTMLTypeKinds) =
18 SimpleHTMLTypeKinds : : Yes_No_Buttons−>asSequence ()
19

20 −−− Check i f I n t e g e r mapped to Input I n t e g e r
21 inv d e t a i l s P a g e F i e l d I n t e g e r :
22 s e l f . e d i t f i e l d s . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType (

StandardTypeKinds) =
23 StandardTypeKinds : : Integer−>asSequence ()
24 implies
25 s e l f . e d i t f i e l d s . htmltype . oclAsType (HTMLTypes) . oclAsType (SimpleHTMLTypes) .

htmltype . oclAsType (SimpleHTMLTypeKinds) =
26 SimpleHTMLTypeKinds : : Integer−>asSequence ()
27

28 −−− Check i f Time , Date and Datetime mapped to Datepicker
29 inv d e t a i l s P a g e F i e l d D a t e p i c k e r :
30 l e t attrType : Sequence =
31 s e l f . e d i t f i e l d s . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType (

StandardTypeKinds)
32 in attrType = StandardTypeKinds : : Time−>asSequence ()
33 or attrType = StandardTypeKinds : : Date−>asSequence ()
34 or attrType = StandardTypeKinds : : Datetime−>asSequence ()
35 implies
36 s e l f . e d i t f i e l d s . htmltype . oclAsType (HTMLTypes) . oclAsType (SimpleHTMLTypes) .

htmltype . oclAsType (SimpleHTMLTypeKinds) =
37 SimpleHTMLTypeKinds : : Datepicker−>asSequence ()
38

39 −−− Check i f Image mapped to Imagepicker
40 inv d e t a i l s P a g e F i e l d I m a g e p i c k e r :
41 s e l f . e d i t f i e l d s . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType (

StandardTypeKinds) =
42 StandardTypeKinds : : Image−>asSequence ()
43 implies
44 s e l f . e d i t f i e l d s . htmltype . oclAsType (HTMLTypes) . oclAsType (SimpleHTMLTypes) .

htmltype . oclAsType (SimpleHTMLTypeKinds) =
45 SimpleHTMLTypeKinds : : Imagepicker−>asSequence ()
46

47 −−− Check i f F i l e mapped to F i l e p i c k e r
48 inv d e t a i l s P a g e F i e l d F i l e p i c k e r :
49 s e l f . e d i t f i e l d s . a t t r i b u t e . type . oclAsType (StandardTypes) . type . oclAsType (

StandardTypeKinds) =
50 StandardTypeKinds : : F i l e −>asSequence ()
51 implies
52 s e l f . e d i t f i e l d s . htmltype . oclAsType (HTMLTypes) . oclAsType (SimpleHTMLTypes) .

htmltype . oclAsType (SimpleHTMLTypeKinds) =
53 SimpleHTMLTypeKinds : : F i l e p i c k e r −>asSequence ()

Listing C.6: Well-Formedness-Rules: Context DetailsPage (2)

216 Appendix C. Well-Formedness Rules for eJSL

1 context IndexPage
2 −− Check i f l i n k e d a t t r i b u t e i s c o n s i s t e n t to e n t i t y in IndexPage
3 inv l i n k e d I n d e x A t t r i b u t e C o n s i s t e n t :
4 s e l f . l i n k s −>f o r A l l (l | s e l f . e n t i t i e s . a t t r i b u t e s . name−>i n c l u d e s (l .

l i n k e d A t t r i b u t e . name) and s e l f . tableco lumns . name−>i n c l u d e s (l .
l i n k e d A t t r i b u t e . name))

5

6 −− Check i f t a b l e columns and f i l t e r s are used only once in a page
7 inv tableColumnsFi ltersOncePerPage :
8 s e l f . f i l t e r s −>f o r A l l (f | s e l f . f i l t e r s −>count (f) = 1) and s e l f . tablecolumns−>

f o r A l l (tc | s e l f . tablecolumns−>count (tc) = 1)
9

10 −− Check i f f i l t e r s are a s u b s e t o f r e p r e s e n t a t i o n columns in IndexPage
11 inv f i l t e r s Inc ludedInTab l eCo lumns :
12 s e l f . f i l t e r s −>f o r A l l (f | s e l f . tablecolumns−>i n c l u d e s (f))
13

14 −− Check i f e n t i t i e s and a t t r i b u t e s are def ined , i f f i l t e r s are us ing them
15 inv F i l t e r A t t r i b u t e s A n d E n t i t i e s D e f i n e d :
16 s e l f . f i l t e r s −>f o r A l l (f | Ent ity . a l l I n s t a n c e s ()−>i n c l u d e s (f . oc lConta iner ()) and f

. o c lConta iner () . oclAsType (Entity) . a t t r i b u t e s −>i n c l u d e s (f))
17

18 −− Representat ion columns and f i l t e r s must be c o n s i s t e n t to ∗ Ent i ty in IdexPage
19 inv RepCol sandFi l t e r sCons i s t ent :
20 s e l f . tablecolumns−>f o r A l l (tc | s e l f . e n t i t i e s −>i n c l u d e s (tc . oc lConta iner ()) and

tc . oc lConta iner () . oclAsType (Entity) . a t t r i b u t e s −>i n c l u d e s (tc))
21 and s e l f . f i l t e r s −>f o r A l l (f | s e l f . e n t i t i e s −>i n c l u d e s (f . oc lConta iner ()) and f .

o c lConta ine r () . oclAsType (Entity) . a t t r i b u t e s −>i n c l u d e s (f))
22

23 −− I f a page uses more than one Enti ty , t he re can only be one main Ent i ty t h a t
i s not re f e renced by a l l o ther E n t i t i e s

24 inv Mult ip l ePageEnt i tyRefe rences :
25 l e t mainEntity : Sequence (Entity) = s e l f . e n t i t i e s −>s e l e c t (e | s e l f . e n t i t i e s .

r e f e r e n c e s . ent i ty −>exc ludes (e))
26 in e n t i t i e s −>s i z e () > 1
27 implies
28 mainEntity−>s i z e () = 1

Listing C.7: Well-Formedness-Rules: Context IndexPage

Extensions

1 context Library
2 −− Check i f l i b r a r y c l a s s e s are unique
3 inv uniqueLibClass :
4 s e l f . c l a s s e s −>notEmpty () implies s e l f . c l a s s e s −>f o r A l l (c1 , c2 | c1 <> c2

implies c1 . name <> c2 . name)

Listing C.8: Well-Formedness-Rules: Context Library

1 context Class
2 −− Check i f c l a s s method names are unique in l i b r a r i e s
3 inv uniqueLibMethNames :
4 s e l f . oc lConta ine r . oc lIsTypeOf (Library) implies s e l f . methods−>f o r A l l (m1, m2 | m1

<> m2 implies m1. name <> m2. name)

Listing C.9: Well-Formedness-Rules: Context Class

217

1 context CMSExtension
2 −− Check i f language keys are unique f o r one language d e f i n i t i o n
3 inv uniqueLangKeys :
4 s e l f . e x t e n s i o n s . languages−>f o r A l l (l | l . keyva luepa i r s −>f o r A l l (kvn1 , kvn2 | kvn1

<> kvn2 implies kvn1 . name <> kvn2 . name))
5

6 −− Unique ex tens ion names f o r e x t e n s i o n s o f same type
7 inv uniqueExtNames :
8 s e l f . ex tens ions −>f o r A l l (e1 , e2 | e1 <> e2 and e1 . oclIsTypeOf (e2 . oclType ())

implies e1 . name <> e2 . name)
9

10 −− Check f o r v a l i d data mapping f o r modules and components (i s component
e x i s t i n g . . .)

11 inv validCompModMapping :
12 s e l f . ex tens ions −>
13 f o r A l l (e | e . oc l IsTypeOf (Module) and e . oclAsType (Module) . pageRef−>notEmpty ()
14 implies Component . a l l I n s t a n c e s () . name−>i n c l u d e s (e . oclAsType (Module) . pageRef .

pagescr . r e f . name)
15)
16

17 −− Check i f not more than one backend and frontend i s de f ined
18 inv atomicBackFrontEnd :
19 s e l f . ex tens ions −>f o r A l l (e | e . oc l IsTypeOf (Component)
20 implies e . oclAsType (Component) . s e c t i o n s −>s e l e c t (s | s . oc l IsTypeOf (

FrontendSect ion))−>s i z e () <= 1 and
21 e . oclAsType (Component) . s e c t i o n s −>s e l e c t (s | s . oc l IsTypeOf (BackendSection))−>

s i z e () = 1
22)

Listing C.10: Well-Formedness-Rules: Context CMSExtension

218 Appendix C. Well-Formedness Rules for eJSL

D Generator Scalability Tests

In the following, we illustrate the settings and present the original results of the generator
scalability tests.

Scalability Test 1: Scaling the Number of Generated Com-
ponents

Entities

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Entity 1Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Link

Reference

Extensions

Component

Component 1

Frontend

Component

Component 1

Frontend Backend

Component

Component 1

Frontend Backend

Component

MyConference

Frontend

Component

MyConference

Frontend Backend

Component

MyConference

Frontend Backend

Component2

MyConference

Frontend

Component2

MyConference

Frontend Backend

Component2

MyConference

Frontend Backend

Component

MyConference

Frontend

Component

MyConference

Frontend Backend

Component

MyConference

Frontend Backend

Component

Component2

Frontend

Component

Component2

Frontend Backend

Component

Component2

Frontend BackendScaling

Amount of

Components

Figure D.1: Measurement Setting (Test 1)

Table D.1: Measurement Setting (Test 1)

Model # Components Index
Pages

Details
Pages

Referenced
Pages per
Component

Entities without
References

1 1 1 1 4 1
2 3 1 1 4 1
3 5 1 1 4 1
4 8 1 1 4 1
5 20 1 1 4 1
6 40 1 1 4 1
7 70 1 1 4 1
8 100 1 1 4 1

219

220 Appendix D. Generator Scalability Tests

Table D.2: Measurement Result (Test 1)

Model # CPU Time (s) RAM (MB) Generated Files Package Size (MB)
1 0.39 0.9 60 0.36
2 0.83 2.6 180 1.10
3 1.34 4.5 300 1.80
4 1.92 7.1 480 2.90
5 5.16 17.6 1200 7.20
6 9.89 35.4 2400 15.00
7 16 62.3 4200 25.00
8 25.90 92 6000 36.00

Scalability Test 2: Scaling the Number of Pages

Entities

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Entity 1Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Link

ReferenceExtensions

Component

Component 1

Frontend

Component

Component 1

Frontend Backend

Component

Component 1

Frontend Backend

Scaling

Amount of

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List2

Index

List2

Details

Details2

Details

Details2

Index

List2

Details

Details2

Figure D.2: Measurement Setting (Test 2)

Table D.3: Measurement Setting (Test 2)

Model # Components Index
Pages

Details
Pages

Referenced
Pages per
Component

Entities without
References

9 1 3 3 12 1
10 1 5 5 20 1
11 1 8 8 32 1
12 1 20 20 80 1
13 1 40 40 160 1
14 1 70 70 280 1
15 1 100 100 400 1

221

Table D.4: Measurement Result (Test 2)

Model # CPU Time (s) RAM (MB) Generated Files Package Size (MB)
9 0.76 4,30 110 0.76
10 1.17 6.80 160 1.10
11 1.89 10.20 235 1.70
12 5.77 17.40 535 3.90
13 14.12 34.40 1035 7.50
14 32.45 60.70 1785 14.00
15 55.47 87.00 2535 19.00

Scalability Test 3: Scaling the Number of Entities with Ref-
erences

Entities

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Entity 1Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Link

ReferenceExtensions

Component

Component 1

Frontend

Component

Component 1

Frontend Backend

Component

Component 1

Frontend Backend

Scaling

Amount of

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List3

Index

List3

Details

Details3

Details

Details3

Index

List3

Details

Details3

Entity 2Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

0...1

Entity 2Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

Entity 2Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

Entity 2Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Entity1

Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

0...1

Index

List2

Index

List2

Details

Details2

Details

Details2

Index

List2

Details

Details2

Scaling

Amount of

Entities with

References

Figure D.3: Measurement Setting (Test 3)

Table D.5: Measurement Setting (Test 3)

Model # Components Index/Details
Page Pairs

Referenced
Pages per
Component

Entities
without
References

Entities
with
References

16 1 2 8 1 1
17 1 4 16 1 3
18 1 6 24 1 5
19 1 9 36 1 8
20 1 21 84 1 20
21 1 41 164 1 40
22 1 71 284 1 70
23 1 101 404 1 100

222 Appendix D. Generator Scalability Tests

Table D.6: Measurement Result (Test 3)

Model # CPU Time (s) RAM (MB) Generated Files Package Size (MB)
16 0.53 2 92 0.60
17 1.23 4.20 152 1.10
18 2.03 6.40 212 1.50
19 3.45 10.30 302 2.10
20 11.13 26.40 662 4.50
21 32.09 59.00 1262 8.70
22 79.91 122.00 2162 15.00
23 162.32 198.00 3062 21.00

Scalability Test 4: Scaling the Number of References in one
Entity

Entities

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Entity 1Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr104: Ref

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr104: Ref

Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr104: Ref

Link

ReferenceExtensions

Component

Component 1

Frontend

Component

Component 1

Frontend Backend

Component

Component 1

Frontend Backend

Scaling

Amount of

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List3

Index

List3

Details

Details3

Details

Details3

Index

List3

Details

Details3

Entity 2Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

0...1 Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

0...1

Index

List2

Index

List2

Details

Details2

Details

Details2

Index

List2

Details

Details2

Scaling

Amount of

Entities

Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Scaling Amount

of References

Figure D.4: Measurement Setting (Test 4)

Table D.7: Measurement Setting

Model # Components Index/Details
Page Pairs

Referenced
Pages per
Component

Entities
without
References

Entities
with
References

24 1 4 16 3 1
25 1 6 24 5 1
26 1 9 36 8 1
27 1 21 84 20 1
28 1 41 164 40 1
29 1 71 284 70 1
30 1 101 404 100 1

223

Table D.8: Measurement Result (Test 4)

Model # CPU Time (s) RAM (MB) Generated Files Package Size (MB)
24 1.25 4.20 152 1.10
25 2.10 6.40 212 1.50
26 3.55 9.80 302 2.10
27 12.65 24.00 662 4.70
28 37.80 49.00 1262 9.00
29 102.93 91.70 2162 16.00
30 204.00 139.00 3062 22.00

Scalability Test 5: Scaling the Number of Entities with
Many-to-Many References

Entities

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Entity 1Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr104: Ref

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr104: Ref

Entity 1

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr104: Ref

Link

ReferenceExtensions

Component

Component 1

Frontend

Component

Component 1

Frontend Backend

Component

Component 1

Frontend Backend

Scaling

Amount of

Pages

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List1

Index

List1

Details

Details1

Details

Details1

Index

List1

Details

Details1

Index

List3

Index

List3

Details

Details3

Details

Details3

Index

List3

Details

Details3

1…*

Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

1…*

Index

List2

Index

List2

Details

Details2

Details

Details2

Index

List2

Details

Details2

Scaling

Amount of

Entities with

Reference

Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

Entity 3Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

Entity 3

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref
Scaling Amount

of References

Entity 2Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

Entity 2

attr1: Short_Text

attr2: Text

attr3: Text

attr4: Text

attr5: Ref

1…*

1…*

Figure D.5: Measurement Setting (Test 5)

Table D.9: Measurement Setting (Test 5)

Model # Components Index/Details
Page Pairs

Referenced
Pages per
Component

References
in Entity 1

Entities with
Reference to
Entity 1

31 1 2 8 1 1
32 1 4 16 3 3
33 1 6 24 5 5
34 1 9 36 8 8
35 1 21 84 20 20
36 1 41 164 40 40
37 1 71 284 70 70
38 1 101 404 100 100

224 Appendix D. Generator Scalability Tests

Table D.10: Measurement Result (Test 5)

Model # CPU Time (s) RAM (MB) Generated
Files

Package
Size (MB)

31 0.87 2.40 99 0.66
32 2.24 6.40 173 1.30
33 4.48 11.40 247 1.80
34 9.49 21.20 358 2.60
35 53.39 86.00 802 5.90
36 175.73 301.00 1542 12.00
37 618.00 895.00 2652 20.00
38 1110.00 1800.00 3762 29.00

E Controlled Experiment: Documents

In this chapter, we present the artefacts of the controlled experiment (cf. Section 7.2). This
includes the consent form, presentation, questionnaires, and tasks. Since the first iterations of
the experiment have been conducted in Germany, the presentation and forms are in German
language.

Figure E.1: Consent Form

225

226
A

ppendix
E.

C
ontrolled

Experim
ent:

D
ocum

entsFigure E.2: Experiment Presentation (1)

227Figure E.3: Experiment Presentation (2)

228
A

ppendix
E.

C
ontrolled

Experim
ent:

D
ocum

entsFigure E.4: Experiment Presentation (3)

229Figure E.5: Experiment Presentation (4)

230
A

ppendix
E.

C
ontrolled

Experim
ent:

D
ocum

entsFigure E.6: Experiment Presentation (5)

231Figure E.7: Experiment Presentation (6)

232
A

ppendix
E.

C
ontrolled

Experim
ent:

D
ocum

entsFigure E.8: Experiment Presentation (7)

233Figure E.9: Experiment Presentation (8)

234
A

ppendix
E.

C
ontrolled

Experim
ent:

D
ocum

entsFigure E.10: Experiment Presentation (9)

235

Umfrage:

Vielen Dank für Ihre Teilnahme an unserem Experiment. Damit wir die Ergebnisse des Experiments besser aus-

werten können, benötigen wir noch einige Informationen. Diese helfen uns dabei, den aktuellen Stand unserer

Werkzeuge zu bewerten und diese damit zu verbessern.

Die 1. Umfrage ist in 4 Teile aufgebaut. Im 1. Teil möchten wir einige Informationen zu Ihrer Person sammeln,

selbstverständlich in anonymisierter Form. Im 2. Teil möchten wir etwas über Ihre Erfahrung im Bereich der Soft-

wareentwicklung erfahren. Der 3. Teil besteht aus einer Selbst- und Fremdeinschätzung zu Ihren Joomla-Kennt-

nissen. Im 4. Teil möchten wir Ihre MDE-Kenntnisse ermitteln.

Bitte beachten Sie folgende Konventionen zur Auswahl Ihrer Antwortmöglichkeiten:

⃝ : Bitte kreuzen Sie nur eine Antwortmöglichkeit an

⬜ : Bitte kreuzen Sie eine oder mehrere Antwortmöglichkeiten an

 : Bitte tragen Sie eine Zahl ein

Wir bitten Sie die jeweiligen Abschnitte gewissenhaft und sorgfältig zu bearbeiten. Bei Fragen können Sie sich

jederzeit an die anwesenden Versuchsleiter wenden.

Sie können sich auf Wunsch die Ergebnisse des Experiments zusenden lassen. Hierzu erhalten Sie am Ende des

Fragebogens eine ID, welche Ihnen die Zuordnung Ihres Datensatzes ermöglicht.

Teil 1: Fragen zur Person
1.1 Alter

⃝ keine Angabe

⃝ < 20 ⃝ 20-25 ⃝ 26-30 ⃝ > 30

1.2 Geschlecht

⃝ keine Angabe

⃝ männlich ⃝ weiblich ⃝ divers

1.3 Deutschkenntnisse (Schulnoten)

Keine ⃝ 6 ⃝ 5 ⃝ 4 ⃝ 3 ⃝ 2 ⃝ 1 Sehr gut

1.4 Englischkenntnisse (Schulnoten)

Keine ⃝ 6 ⃝ 5 ⃝ 4 ⃝ 3 ⃝ 2 ⃝ 1 Sehr gut

⃝

Datensatz-ID:

Figure E.11: Demographic Questionnaire

236 Appendix E. Controlled Experiment: Documents

Teil 2: Fragen zu Entwicklungserfahrung
2.1 Wie hoch schätzen Sie Ihre Erfahrung als Software-Entwickler ein?

Unerfahren ⃝ 1 ⃝ 2 ⃝ 3 ⃝ 4 Sehr erfahren

2.2 Wie hoch schätzen Sie Ihre Kenntnisse bei der Implementierung von Anforderungen in einer

Technologie aus dem Web-Bereich (z.B. PHP, JS, HTML/JS etc.) ein?

⃝ keine ⃝ niedrig ⃝ ausreichend ⃝ befriedigend ⃝ hoch ⃝ sehr hoch

2.3 Wie viel Erfahrung haben Sie als Softwareentwickler (in Jahren)?

⃝ < 1 ⃝ 2-5 ⃝ 6-10 ⃝ 11-20 ⃝ > 20

2.4 Haben Sie bisher schon mit Entwicklungsumgebungen gearbeitet?

⃝ nein ⃝ ja

2.4.1 Wenn ja, welche Entwicklungsumgebungen benutzen Sie regelmäßig?

⬜ Eclipse

⬜ JetBrains

⬜ Cloud-IDE (Web-Editor)

⬜ Text-Editor, welchen: _________________________________
Andere, ___

2.5 Haben Sie bereits vor dem Experiment aus Anforderungen oder Anforderungsteilen eine Imple-

mentierung erstellt?

⃝ nein ⃝ ja

Teil 3a: Fragen zu Joomla-Kenntnissen (Selbsteinschätzung)
3.1 Haben Sie bereits vor dem Experiment mit einem CMS wie Joomla, WordPress, o.ä. gearbeitet?

⃝ nein ⃝ ja

Wenn ja, als

⬜ Benutzer

⬜ Administrator

⬜ Entwickler

3.2 Wie viel Erfahrung haben Sie im Umgang mit einem CMS (in Jahren)?

⃝ keine ⃝ < 1 ⃝ 2-5 ⃝ 6-10 ⃝ 11-20 ⃝ > 20

3.3 Haben Sie bereits vor dem Experiment Software-Erweiterungen für Joomla realisiert?

⃝ nein ⃝ ja

3.3.1 Wenn ja, zählen dazu auch Erweiterungen, welche auf vorhandenen 3rd-Party Erweite-

rungen aufbauen oder diese verwenden (z.B. deren Daten)?

⃝ nein ⃝ ja

3.4 Wie viel Erfahrung haben Sie als Entwickler von Joomla-Erweiterungen (in Jahren)?

⃝ keine ⃝ < 1 ⃝ 2-5 ⃝ 6-10 ⃝ 11-20

Figure E.12: Self-Assessment (Self-Assessment: General Software Development and Joomla)

237

Teil 3.2: Fragen zu Joomla-Kenntnissen (Fremdeinschätzung)
3.5 Welche Erweiterungstypen gibt es in Joomla? Kreuzen Sie die Typen an, die Ihnen bekannt sind?

⬜ Plugin ⬜ Modul ⬜ App ⬜ Segment ⬜ Bibliothek ⬜ Komponente ⬜Widget

⬜ Template ⬜ Injection ⬜ Wrap

Andere, __

3.6 Kreuzen Sie alle richtigen Diagramme an, welche die üblichen MVC-Muster in Komponenten ab-

bilden.

⬜

⬜

3.7 Kreuzen Sie die richtigen Aussagen an:

⬜ Im Frontend kann der Administrator die Struktur der Webseite verwalten.

⬜ Im Backend kann der Administrator die Struktur der Webseite verwalten.

⬜ Eine Komponente kann aus einem Frontend- sowie einem Backend-Anteil bestehen.

⬜ Eine Komponente hat immer nur einen Frontend-Anteil.

⬜ Eine Komponente hat immer nur einen Backend-Anteil.

⬜ Ein Modul kann auf die Daten einer Komponente zugreifen.

⬜ Ein Modul kann nur eigene Daten darstellen.

⬜ Ein Manifest ist zwingend erforderlich, um eine Erweiterung zu installieren.

⬜ Ein Manifest ist optional.

⬜ Ein Manifest enthält wichtige Metadaten der Erweiterung.

⬜ Ein Manifest enthält SQL-Abfragen.

⬜ Joomla erlaubt Mehrsprachigkeit durch die Verwendung der Datenbank.

⬜ Mehrsprachigkeit wird durch Sprachdateien (Key-Value) realisiert.

⬜ Mehrsprachigkeit wird durch Sprach-Erweiterungen realisiert.

⬜ Joomla unterstützt keine Mehrsprachigkeit.

⬜ Es gibt unterschiedliche Typen von Plugins, z.B. Such-, System- und Userplugins.

⬜ Plugins werden immer von den gleichen Events ausgelöst.

Figure E.13: External Assessment: Joomla Knowledge)

238 Appendix E. Controlled Experiment: Documents

Teil 4.1: Fragen zu MDE-Kenntnissen (Selbsteinschätzung)
4.1 Haben Sie bereits vor dem Experiment mit Modellierungssprachen gearbeitet?

⃝ nein ⃝ ja

Wenn ja, mit

⬜ UML ⬜ EMF Ecore ⬜ BPMN ⬜ BPEL ⬜ LabView

⬜ andere, __

4.2 Wie hoch schätzen Sie Ihre Kenntnisse bei der Modellierung von Anforderungen in einer Model-

lierungssprache (z.B. UML; EMF Ecore, BPMN, BPEL, etc.) ein?

⃝ keine ⃝ niedrig ⃝ ausreichend ⃝ befriedigend ⃝ hoch ⃝ sehr hoch

4.3 Wie viel Erfahrung haben Sie im Umgang mit Modellierungssprachen (in Jahren)?

⃝ keine ⃝ < 1 ⃝ 2-5 ⃝ 6-10 ⃝ 11-20 ⃝ > 20

4.4 Wie groß schätzen Sie den Bedarf eines Werkzeugs/Methode zur Formulierung und Überführung

von Anforderungsdokumenten in Modelle und Implementierungen ein?

⃝ kein Bedarf ⃝ niedrig ⃝ mittel ⃝ hoch ⃝ sehr hoch

4.5 Haben Sie bereits vor dem Experiment Codegeneratoren verwendet (z.B. zur Generierung von

Joomla-Erweiterungen)?

⃝ nein ⃝ ja

Wenn ja, zur

⬜ Generierung von Dokumentation

⬜ Generierung von Joomla-Erweiterungen

⬜ Generierung von mobilen Anwendungen

⬜ Andere, __________________________

Figure E.14: Self-Assessment (Self-Assessment: MDE)

239

Teil 4.2: Fragen zu MDE-Kenntnissen (Fremdeinschätzung)
4.6 Ergänzen Sie die Implementierung mit Hilfe der möglichen Lösungen anhand der Anforderung

(durch Mehrfachzuordnung der Nummern).

Eine Konferenz bietet Vorträge
an. Diese können von Besuchern
der Konferenz besucht werden.
Besucher haben eine Teilnehmer-
nummer. Jeder Mitarbeiter des
Konferenzteams hat eine Perso-
nalnummer und genau einen Mit-
arbeiter als Vorgesetzten. Besu-
cher und Mitarbeiter haben einen
Namen.

1) Person

2) Mitarbeiter

3) Besucher

4) List<Vortrag>

5) Vortrag

6) vorgesetzter

public class {
 private String name;
}

public class extends {
 private int teilnehmerNummer;
 private besucht;
}

public class extends {
 private int personalNummer;
 private ;
}

public class Konferenz {
 private List<Person> personen;
 private vortraege;
}

public class {}

4.7 Ergänzen Sie das Modell mit Hilfe der möglichen Lösungen anhand der Anforderung (durch Mehr-

fachzuordnung der Nummern).

Ein Krankenhaus besitzt ein oder mehrere Stationen. Eine Station gehört genau einem Krankenhaus an. Die
Stationen können mit Patienten belegt sein. Jeder Patient ist jedoch genau einer Station zugeordnet. Das
Krankenhaus beschäftigt mindestens ein Team für die Versorgung der Patienten. Ein Team arbeitet nur für ein
Krankenhaus. Ein Team besteht aus einem oder mehreren Ärzten. Ein Arzt muss keinem Team angehören. Je-
des Team wird von genau einem Arzt geleitet, während es Ärzte ohne Leitungsfunktion gibt. Ein Arzt betreut
einen oder mehrere Patienten. Jeder Patient wird von mehreren Ärzten, mindestens jedoch einem Arzt be-
handelt.

1. [0..1]
2. [1..1]
3. [0..*]

4. [1..*]
5. (Assoziation)
6. (Komposition)

⃝

⃝ ⃝

⃝

⃝ ⃝

⃝

⃝

⃝

⃝

Figure E.15: Self-Assessment (External Assessment: MDE)

240 Appendix E. Controlled Experiment: Documents

Umfrage zu Entwicklungsphase 1:

5.1 Wie sind Sie vorgegangen?

⬜ From Scratch (z.b. Tutorial, Doku)

⬜ Clone-and-own (copy&paste)

⬜ Orientiert an existierenden Erweiterungen

⬜ Eigene

⬜ 3rd-party

⬜ Core

⬜ Generator, welcher ___

5.2 Konnten alle Anforderungen umgesetzt werden?

⃝ keine (0) ⃝ nein (mindestens eine nicht umgesetzt) ⃝ ja (alle)

5.3 Haben Sie eine oder mehrere Entwicklungsumgebungen verwendet?

⃝ nein ⃝ ja

5.3.1 Wenn ja, welche?

⬜ Eclipse

⬜ JetBrains

⬜ Cloud-IDE (Web-Editor)

⬜ Text-Editor (Welcher)

⬜ Andere, ______________________________

5.4 Haben Sie schon einmal ein Projekt mit vergleichbarem Umfang umgesetzt?

⃝ nein ⃝ ja

Datensatz-ID:

Figure E.16: Questionnaire after Session 1

Umfrage zu Entwicklungsphase 2:

6.1 Konnten alle Anforderungen umgesetzt werden?

⃝ keine ⃝ nein ⃝ ja

6.2 Konnten Sie alle Anforderungen mit der gegebenen Modellierungssprache abbilden?

⃝ nein ⃝ ja

6.3 Konnten Sie aus Ihrem Modell installierbare Joomla-Erweiterungen generieren?

⃝ nein ⃝ ja

6.3.1 Wenn ja, mussten Sie den generierten Code von Hand anpassen?

⃝ nein ⃝ ja

Datensatz-ID:

Figure E.17: Questionnaire after Session 2

241

Feedback:
7.1 Hatten Sie ausreichend Zeit für die gestellten Aufgaben?

⃝ zu wenig ⃝ passend ⃝ zu viel

7.2 Konnten Sie durch das Verwenden der gegebenen Werkzeuge zur modellgetriebenen Entwick-

lung der Erweiterungen mehr Anforderungen umsetzen?

⃝ nein ⃝ ja

7.3 Fanden Sie die Entwicklung mit den gegebenen Werkzeugen zur modellgetriebenen Entwicklung

der Erweiterungen komfortabler im Vergleich zu Ihrer konventionellen Entwicklungsmethode?

⃝ nein ⃝ ja

7.4 Konnten Sie durch die Verwendung der gegebenen Werkzeuge zur modellgetriebenen Entwick-

lung der Erweiterungen die Entwicklung beschleunigen?

⃝ nein ⃝ ja

7.5 Hatten Sie das Gefühl, dass die Experiment-Umgebung Ihre Entwicklung beeinflusst hat?

⃝ nein ⃝ ja

Wenn ja

⬜ Bei der Umsetzung von Anforderung 1

⬜ Bei der Umsetzung von Anforderung 2

7.6 Was wollen Sie uns sonst noch mitteilen?

Datensatz-ID:

Figure E.18: Feedback Questionnaire

242 Appendix E. Controlled Experiment: Documents

Anforderung A
Erstellen Sie eine Joomla-Komponente zur Verwaltung von Hochschulveranstaltungen (Modulhandbuch). Berück-

sichtigen Sie dabei die folgenden CRUD-Akzeptanzkriterien (Definition of Done):

▪ Für alle Entitäten gilt, dass je eine Listenansicht sowie eine Editieransicht im Backend verfügbar sein

muss.

▪ Die Listenansicht sollen durch Suchoptionen (Suche/Filter) anpassbar sein. Das heißt, die Suche, sowie

Filter für alle Felder müssen implementiert werden.

▪ Außerdem müssen die Listeneinträge über die Spaltenüberschriften sortierbar sein. Um lange Listen zu

vermeiden, muss die Anzahl der darzustellenden Elemente auswählbar sein (Pagination). Dies gilt für

Listenansichten im Backend und Frontend.

▪ Die Ansichten im Backend müssen für alle Entitäten CRUD vollständig anbieten. Im Frontend werden

Detailansichten grundsätzlich nicht zum Editieren verwendet - können aber (z.B. durch einen Editier-

Button).

▪ Detailansichten und Editieransichten können nur aus dem Kontext von Listenansichten geöffnet werden

(z.B. neu oder bearbeiten von vorhandenem Listeneintrag).

Eine Hochschule hat eine oder mehrere Niederlassungen und beheimatet in der Regel Fachbereiche, welche einer

Niederlassung zugeordnet und wiederum unterschiedliche Studiengänge anbieten. Fachbereiche haben einen Na-

men, sowie eine Fachbereichsnummer. Niederlassungen werden durch einen Ort und eine Adresse definiert.

Studiengänge werden durch einen Namen und des zu erlangenden Abschlusses (B.A., B.Sc., B.Eng, M.A., M.Sc.,

M.Eng.), sowie durch die Anzahl der benötigten Semester beschrieben.

Das Angebot an Veranstaltungen der Hochschule umfasst Studiengangs- und sogar Fachbereichs-übergreifende

Veranstaltungen. Veranstaltungen haben je eine englische und deutsche Bezeichnung, eine Modulnummer, eine

Beschreibung und einen Typ (vorgegeben: Vorlesung, Seminar, Praktikum). Außerdem muss die Anzahl an Leis-

tungspunkten (CrP) vergeben werden.

Für jede Veranstaltung muss ein verantwortlicher Professor festgelegt werden. Neben üblichen Merkmalen

(Name, Adresse, Geburtsdatum) werden Professoren genau einem Fachgebiet (z.B. Machine Learning) zugeord-

net, welches ebenfalls verwaltet werden kann (Bezeichnung des jeweiligen Fachgebietes ausreichend). Außerdem

gehören Professoren immer genau einem Fachbereich an.

Im Frontend bietet das Modulhandbuch eine Übersicht über alle Veranstaltungen eines Studiengangs. In diesem

werden der deutsche Veranstaltungstitel und der verantwortliche Professor für jede Veranstaltung aufgelistet.

Durch die Eingabe von Suchkriterien lässt sich die Liste nach Veranstaltungstitel und Professor filtern. Der Veran-

staltungstitel führt beim Anklicken zu einer detaillierteren Ansicht, in welcher zusätzlich noch die Voraussetzun-

gen (andere Veranstaltungen) und Leistungspunkte angezeigt werden.

Erstellen Sie neben der Komponente ein Joomla-Modul, welches alle Professoren (Name) jeweils mit ihrem zuge-

ordneten Fachbereich als Liste darstellt.

Figure E.19: Requirement A: University Management

243

Akzeptanzkriterien - Checkliste:
Struktur der Erweiterungen:

⬜ Ist die Komponente installierbar?
⬜ Ist ein Update-Skript implementiert?
⬜ Ist die Mehrsprachigkeit (durch Sprachkonstanten und -dateien) realisiert?

⬜ Ist das Modul implementiert?
⬜ Ist das Modul installierbar?
⬜ Stellt das Modul die gewünschten Daten der Komponente dar?

Ansichten für Niederlassungen:

⬜ Gibt es eine Listenansicht für Niederlassungen im Backend?

Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:
⬜ ID ⬜ Ort ⬜ Adresse

⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Niederlassungen im Backend?

Wenn ja, kreuzen Sie die vorhandenen Felder an:
⬜ Ort ⬜ Adresse

⬜ Gibt es eine Verlinkung von der Liste aller Niederlassungen zur Editieransicht einer Niederlassung im Ba-

ckend?

CRUD-Funktionalität für Niederlassungen:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Niederlassungen im Backend?

Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen einer Niederlassung verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren einer vorhandenen Niederlassung verlinkt?
⬜ Editieren: Sind die Werte der ausgewählten Niederlassung bereits in editierbaren Feldern darge-

stellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht einer Niederlassung im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht einer Niederlassung im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht einer Niederlassung im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht einer Niederlassung im Backend?

⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Ansichten für Fachbereiche:

⬜ Gibt es eine Listenansicht für Fachbereiche im Backend?

Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:
⬜ ID ⬜ Name ⬜ Fachbereichsnummer ⬜ Niederlassung

⬜ Gibt es eine Verlinkung zur Editieransicht der jeweilen Niederlassungen in der Listenansicht?
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Fachbereiche im Backend?

⬜Wenn ja, kreuzen Sie die vorhandenen Felder an:
⬜ Name ⬜ Fachbereichsnummer

⬜ Gibt es ein Feld “Niederlassung” o.ä.?
⬜ Wenn ja, kann aus einer Liste vorhandener Niederlassungen gewählt werden?

⬜ Gibt es eine Verlinkung von der Liste aller Fachbereiche zur Editieransicht eines Fachbereichs im Backend?

CRUD-Funktionalität für Fachbereiche:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Fachbereichen im Backend?

Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen eines Fachbereichs verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren eines vorhandenen Fachbereichs verlinkt?
⬜ Editieren: Sind die Werte des ausgewählten Fachbereichs bereits in editierbaren Feldern dargestellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht eines Fachbereichs im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht eines Fachbereichs im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht eines Fachbereichs im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht eines Fachbereichs im Backend?

⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Figure E.20: Requirement A: Test Cases (1)

244
A

ppendix
E.

C
ontrolled

Experim
ent:

D
ocum

ents

Ansichten für Studiengänge:

⬜ Gibt es eine Listenansicht für Studiengänge im Backend?

Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:
⬜ ID ⬜ Name ⬜ Abschluss ⬜ Anzahl Semester ⬜ Fachbereich

⬜ Gibt es eine Verlinkung zur Editieransicht der jeweilen Fachbereiche in der Listenansicht?
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Studiengänge im Backend?

Wenn ja, kreuzen Sie die vorhandenen Felder an:
⬜ Name ⬜ Anzahl Semester

⬜ Gibt es ein Feld “Abschluss” o.ä.?
⬜ Wenn ja, kann aus einer Liste vorhandener möglicher Abschlüsse gewählt werden?

⬜ Gibt es ein Feld “Fachbereich” o.ä.?
⬜ Wenn ja, kann aus einer Liste vorhandener Niederlassungen gewählt werden?

⬜ Gibt es ein Feld “Veranstaltungen” o.ä.?
⬜ Wenn ja, können beliebig viele Elemente aus einer Liste vorhandener Niederlassungen ge-

wählt werden?

⬜ Gibt es eine Verlinkung von der Liste aller Studiengänge zur Editieransicht eines Studiengangs im Backend?

CRUD-Funktionalität für Studiengänge:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Studiengängen im Backend?

Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen eines Studiengangs verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren eines vorhandenen Studiengangs verlinkt?
⬜ Editieren: Sind die Werte des ausgewählten Studiengangs bereits in editierbaren Feldern dargestellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht eines Studiengangs im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht eines Studiengangs im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht eines Studiengangs im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht eines Studiengangs im Backend?

⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Ansichten für Veranstaltungen im Backend:

⬜ Gibt es eine Listenansicht für Veranstaltungen im Backend?

Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:
⬜ ID ⬜ Bezeichnung (eng.) ⬜ Bezeichnung (dt.) ⬜ Modulnummer
⬜ Typ ⬜ Leistungspunkte ⬜ Verantwortlicher Professor

⬜ Gibt es eine Verlinkung zur Editieransicht der jeweilen Professoren in der Listenansicht?
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Veranstaltungen im Backend?

Wenn ja, kreuzen Sie die vorhandenen Felder an:
⬜ Bezeichnung (eng.) ⬜ Bezeichnung (dt.) ⬜ Beschreibung
⬜ Modulnummer ⬜ Leistungspunkte

⬜ Gibt es ein Feld “Typ” o.ä.?
⬜ Wenn ja, kann er aus einer Liste vorhandener Typen gewählt werden?

⬜ Gibt es ein Feld “Verantwortlicher Professor” o.ä.?
⬜ Wenn ja, kann er aus einer Liste vorhandener Professoren gewählt werden?

⬜ Gibt es ein Feld “Studiengänge” o.ä.?
⬜ Wenn ja, können beliebig viele Elemente aus einer Liste vorhandener Studiengänge ausge-

wählt werden?

⬜ Gibt es eine Verlinkung von der Liste aller Veranstaltungen zur Editieransicht einer Veranstaltung im Ba-

ckend?

CRUD-Funktionalität für Veranstaltungen im Backend:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Veranstaltungen im Backend?

Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen einer Veranstaltung verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren einer vorhandenen Veranstaltung verlinkt?
⬜ Editieren: Sind die Werte der ausgewählten Veranstaltung bereits in editierbaren Feldern darge-

stellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht einer Veranstaltung im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht einer Veranstaltung im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht einer Veranstaltung im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht einer Veranstaltung im Backend?

⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Figure E.21: Requirement A: Test Cases (2)

245
Ansichten für Veranstaltungen im Frontend:

⬜ Gibt es eine Listenansicht für Veranstaltungen im Frontend?
⬜ Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:

⬜ Bezeichnung (dt.) ⬜ Verantwortlicher Professor
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge (nach Bezeichnung und Professor)?
⬜ Kann man in den Menüpunkteinstellungen nach einem bestimmten Studiengang filtern?

⬜ Gibt es eine Detailansicht für Veranstaltungen im Frontend?
⬜ Wenn ja, kreuzen Sie die vorhandenen Felder an:

⬜ Bezeichnung (eng.) ⬜ Bezeichnung (dt.) ⬜ Modulnummer
⬜ Typ ⬜ Leistungspunkte ⬜ Professor ⬜ Studiengang ⬜ Voraussetzungen

⬜ Gibt es eine Verlinkung von der Liste aller Veranstaltungen zur Detailansicht einer Veranstaltung im Front-
end?

Ansichten für Fachgebiete:

⬜ Gibt es eine Listenansicht für Fachgebiete im Backend?
Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:

⬜ ID ⬜ Bezeichnung
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Fachgebiete im Backend?
⬜ Wenn ja, kreuzen Sie die vorhandenen Felder an:

⬜ Bezeichnung

⬜ Gibt es eine Verlinkung von der Liste aller Fachgebiete zur Editieransicht eines Fachgebiets?

CRUD-Funktionalität für Fachgebiete:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Fachgebieten im Backend?
Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen eines Fachgebiets verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren eines vorhandenen Fachgebiets verlinkt?
⬜ Editieren: Sind die Werte des ausgewählten Fachgebiets bereits in editierbaren Feldern dargestellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht eines Fachgebiets im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht eines Fachgebiets im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht eines Fachgebiets im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht eines Fachgebiets im Backend?
⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Ansichten für Professoren:
⬜ Gibt es eine Listenansicht für Professoren im Backend?

Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:
⬜ ID ⬜ Name ⬜ Adresse ⬜ Geburtsdatum ⬜ Fachbereich ⬜ Fachgebiet

⬜ Gibt es eine Verlinkung zur Editieransicht der jeweilen Fachbereiche in der Listenansicht?
⬜ Gibt es eine Verlinkung zur Editieransicht der jeweilen Fachgebiete in der Listenansicht?
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Professoren im Backend?

Wenn ja, kreuzen Sie die vorhandenen Felder an:
⬜ Name ⬜ Adresse ⬜ Geburtsdatum

⬜ Gibt es ein Feld “Fachbereich” o.ä.?
⬜ Wenn ja, kann er aus einer Liste vorhandener Fachbereiche gewählt werden?

⬜ Gibt es ein Feld “Fachgebiet” o.ä.?
⬜ Wenn ja, kann aus einer Liste vorhandener Fachgebiete ausgewählt werden?

⬜ Gibt es eine Verlinkung von der Liste aller Professoren zur Editieransicht eines Professors?

CRUD-Funktionalität für Professoren:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Professoren im Backend?

Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen eines Professors verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren einer vorhandenen Veranstaltung verlinkt?
⬜ Editieren: Sind die Werte des ausgewählten Professors bereits in editierbaren Feldern dargestellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht eines Professors im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht eines Professors im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht eines Professors im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht eines Professors im Backend?

⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Figure E.22: Requirement A: Test Cases (3)

246 Appendix E. Controlled Experiment: Documents

Anforderung B
Erstellen Sie eine Joomla-Komponente, welche ein System zum Customer-Relationship-Management (CRM) für

B2B-Kunden realisiert. Berücksichtigen Sie dabei die folgenden CRUD-Akzeptanzkriterien (Definition of Done):

▪ Für alle Entitäten gilt, dass je eine Listenansicht sowie eine Editieransicht im Backend verfügbar sein

muss.

▪ Die Listenansicht sollen durch Suchoptionen (Suche/Filter) anpassbar sein. Das heißt, die Suche, sowie

Filter für alle Felder müssen implementiert werden.

▪ Außerdem müssen die Listeneinträge über die Spaltenüberschriften sortierbar sein. Um lange Listen zu

vermeiden, muss die Anzahl der darzustellenden Elemente auswählbar sein (Pagination). Dies gilt für

Listenansichten im Backend und Frontend.

▪ Die Ansichten im Backend müssen für alle Entitäten CRUD vollständig anbieten. Im Frontend werden

Detailansichten grundsätzlich nicht zum Editieren verwendet - können aber (z.B. durch einen Editier-

Button).

▪ Detailansichten und Editieransichten können nur aus dem Kontext von Listenansichten geöffnet werden

(z.B. neu oder bearbeiten von vorhandenem Listeneintrag).

Alle Informationen des CRM-Systems werden über das Backend einer Joomla-Instanz von Mitarbeitern (Admins)

verwaltet. Kunden sehen die angebotenen Produkte innerhalb eines Produktkataloges nur im Frontend der

Joomla-Seite und können diese über einen Bestellvorgang beziehen. Mitarbeiter pflegen im Backend die Daten

für Produkte, Produktkategorien, Kunden, Ansprechpartner, mögliche Zahlungsarten und Bestellungen.

In den Daten eines Kunden sind der Unternehmensname, das Bankkonto, die zugelassenen Zahlungsarten sowie

die Liefer- und Rechnungsadresse hinterlegt. Ein Bankkonto enthält die Informationen, welche für ein SEPA-Last-

schriftmandat nötig sind. Dazu gehören der Name und die BIC des Kreditinstituts, sowie die IBAN des Kunden. Die

Liefer-/Rechnungsadresse enthält Informationen zum Ort, der Postleitzahl, der Straße und dem Land.

Jeder Kunde hat einen oder mehrere Ansprechpartner. Neben den Stammdaten eines Ansprechpartners, wie Vor-

name, Nachname, Telefonnummer, Email-Adresse kann der CRM-Mitarbeiter den Ansprechpartner einem Kun-

den zuweisen.

Im Frontend des Shops sehen Kunden den Titel, Preis, die verfügbare Stückzahl und Produktkategorie, sowie die

Beschreibung eines Produktes.

Eine Listenansicht im Backend gibt den Mitarbeitern des Shops eine Übersicht über alle Bestellungen. Über eine

Schaltfläche “Neu” kann ein neuer Bestellvorgang geöffnet werden. Ein Bestellvorgang enthält eine Liste über alle

verfügbaren Produkte. Aus dieser wählt der Mitarbeiter das gewünschte Produkt aus. Anschließend gibt er die zu

bestellende Menge an und wählt den Kunden aus. Nachdem alle Eingaben getätigt wurden kann der Mitarbeiter

den Bestellvorgang über die Speichern-Schaltfläche abschließen. Über eine entsprechende Schaltfläche kann der

Mitarbeiter den Bestellvorgang ggf. auch abbrechen.

Ein Mitarbeiter kann eine Bestellung anklicken und sieht alle Informationen zu der ausgewählten Bestellung. Er

kann außerdem den Status der Bestellung von “Offen” in “In Bearbeitung” und “Geschlossen” ändern.

Erstellen Sie neben der Komponente ein Joomla-Modul, welches den Status aller Bestellungen anzeigt. In dem

Modul sollen nur die Auftragsnummer und der Status jeder Bestellung angezeigt werden.

Figure E.23: Requirement B: Customer-Relationship Management

247
Akzeptanzkriterien - Checkliste:
Struktur der Erweiterungen:

⬜ Ist die Komponente installierbar?
⬜ Ist ein Update-Skript implementiert?
⬜ Ist die Mehrsprachigkeit (durch Sprachkonstanten und -dateien) realisiert?

⬜ Ist das Modul implementiert?
⬜ Ist das Modul installierbar?
⬜ Stellt das Modul die gewünschten Daten der Komponente dar?

Ansichten für Produktkategorien:

⬜ Gibt es eine Listenansicht für Produktkategorien im Backend?
Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:

⬜ ID ⬜ Bezeichnung
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Produktkategorien im Backend?
Wenn ja, kreuzen Sie die vorhandenen Felder an:

⬜ Bezeichnung

⬜ Gibt es eine Verlinkung von der Liste aller Produktkategorien zur Editieransicht einer Produktkategorie im
Backend?

CRUD-Funktionalität für Produktkategorien:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Produktkategorien im Ba-
ckend?

Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen einer Produktkategorie verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren einer vorhandenen Produktkategorie verlinkt?
⬜ Editieren: Sind die Werte der ausgewählten Produktkategorie bereits in editierbaren Feldern darge-

stellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht einer Produktkategorie im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht einer Produktkategorie im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht einer Produktkategorien im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht einer Produktkategorien im Backend?
⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Ansichten für Produkte im Backend:

⬜ Gibt es eine Listenansicht für Produkte im Backend?
Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:

⬜ ID ⬜ Bezeichnung ⬜ Beschreibung ⬜ Preis ⬜ Stückzahl ⬜ Produktkategorie
⬜ Gibt es eine Verlinkung zur Editieransicht der jeweiligen Produktkategorien in der Listenansicht?
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Produkte im Backend?
Wenn ja, kreuzen Sie die vorhandenen Felder an:

⬜ Bezeichnung ⬜ Beschreibung ⬜ Preis ⬜ Stückzahl
⬜ Gibt es ein Feld “Produktkategorie” o.ä.?

⬜ Wenn ja, kann aus einer Liste vorhandener Produktkategorien gewählt werden?

⬜ Gibt es eine Verlinkung von der Liste aller Produkte zur Editieransicht eines Produkts im Backend?

CRUD-Funktionalität für Produkte im Backend:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Produkten im Backend?
Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen eines Produkts verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren eines vorhandenen Produkts verlinkt?
⬜ Editieren: Sind die Werte des ausgewählten Produkts bereits in editierbaren Feldern dargestellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht eines Produkts im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht eines Produkts im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht eines Produkts im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht eines Produkts im Backend?
⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Figure E.24: Requirement B: Test Cases (1)

248
A

ppendix
E.

C
ontrolled

Experim
ent:

D
ocum

ents

Ansichten für Produktkataloge im Frontend:

⬜ Gibt es eine Listenansicht für Produkte im Frontend?
⬜ Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:

⬜ Bezeichnung ⬜ Produktkategorie ⬜ Preis ⬜ Stückzahl
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?

⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Detailansicht für Produkte im Frontend?
⬜ Wenn ja, kreuzen Sie die vorhandenen Felder an:

⬜ Bezeichnung ⬜ Beschreibung ⬜ Preis ⬜ Stückzahl ⬜ Produktkategorie

⬜ Gibt es eine Verlinkung von der Liste aller Produkte zur Detailansicht eines Produkts im Frontend?

Ansichten für Zahlungsarten:

⬜ Gibt es eine Listenansicht für Zahlungsarten im Backend?
Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:

⬜ ID ⬜ Bezeichnung
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Zahlungsarten im Backend?
Wenn ja, kreuzen Sie die vorhandenen Felder an:

⬜ Bezeichnung
⬜ Gibt es ein Feld “Gewährt” o.ä.?

⬜ Wenn ja, können beliebig viele Elemente aus einer Liste vorhandener Kunden gewählt
werden?

⬜ Gibt es eine Verlinkung von der Liste aller Zahlungsarten zur Editieransicht einer Zahlungsarten im Backend?

CRUD-Funktionalität für Zahlungsarten:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Zahlungsarten im Backend?
Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen einer Zahlungsart verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren einer vorhandenen Zahlungsart verlinkt?
⬜ Editieren: Sind die Werte der ausgewählten Zahlungsart bereits in editierbaren Feldern dargestellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht einer Zahlungsart im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht eine Zahlungsart im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht einer Zahlungsart im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht einer Zahlungsart im Backend?
⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Ansichten für Kunden:

⬜ Gibt es eine Listenansicht für Kunden im Backend?
Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:

⬜ ID ⬜ Unternehmensname ⬜ Lieferadresse ⬜ Rechnungsadresse
⬜ Bankname ⬜ BIC ⬜ IBAN ⬜ Zahlungsarten

⬜ Werden alle zugewiesenen Zahlungsarten für jeden Kunden in der Listenansicht angezeigt?
⬜ Wenn ja, gibt es eine Verlinkung zu Zahlungsarten in der Listenansicht?

⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Kunden im Backend?
Wenn ja, kreuzen Sie die vorhandenen Felder an:

⬜ Unternehmensname ⬜ Lieferadresse ⬜ Rechnungsadresse
⬜ Bankname ⬜ BIC ⬜ IBAN

⬜ Gibt es ein Feld “Zahlungsarten” o.ä.?
⬜ Wenn ja, können beliebig viele Elemente aus einer Liste vorhandener Zahlungsarten gewählt

werden?

⬜ Gibt es eine Verlinkung von der Liste aller Kunden zur Editieransicht eines Kunden im Backend?

CRUD-Funktionalität für Kunden:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Kunden im Backend?
Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen eines Kunden verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren eines vorhandenen Kunden verlinkt?
⬜ Editieren: Sind die Werte des ausgewählten Kunden bereits in editierbaren Feldern dargestellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht eines Kunden im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht eines Kunden im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht eines Kunden im Backend?
⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht eines Kunden im Backend?
⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Figure E.25: Requirement B: Test Cases (2)

249

Ansichten für Ansprechpartner:

⬜ Gibt es eine Listenansicht für Ansprechpartner im Backend?

Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:
⬜ ID ⬜ Vorname ⬜ Nachname ⬜ Telefonnummer ⬜ E-Mail ⬜ Unternehmen

⬜ Wenn ja, gibt es eine Verlinkung zur Editieransicht der jeweiligen Kunden (Unternehmen) in der Lis-
tenansicht?

⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Ansprechpartner im Backend?

Wenn ja, kreuzen Sie die vorhandenen Felder an:
⬜ Vorname ⬜ Nachname ⬜ Telefonnummer ⬜ E-Mail

⬜ Gibt es ein Feld “Unternehmen” o.ä.?
⬜ Wenn ja, kann aus einer Liste vorhandener Kunden (Unternehmen) gewählt werden?

⬜ Gibt es eine Verlinkung von der Liste aller Ansprechpartner zur Editieransicht eines Ansprechpartners im Ba-

ckend?

CRUD-Funktionalität für Ansprechpartner:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Ansprechpartnern im Backend?

Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen eines Ansprechpartners verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren eines vorhandenen Ansprechpartners verlinkt?
⬜ Editieren: Sind die Werte des ausgewählten Ansprechpartners bereits in editierbaren Feldern darge-

stellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht eines Ansprechpartners im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht eines Ansprechpartners im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht eines Ansprechpartners im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht eines Ansprechpartners im Backend?

⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Ansichten für Bestellungen:

⬜ Gibt es eine Listenansicht für Bestellungen im Backend?

Wenn ja, kreuzen Sie die vorhandenen Tabellenüberschriften an:
⬜ ID ⬜ Status ⬜ Produkt ⬜ Menge ⬜ Kunde

⬜ Wenn ja, gibt es eine Verlinkung zur Editieransicht der jeweilen Produkte in der Listenansicht?
⬜ Wenn ja, gibt es eine Verlinkung zur Editieransicht der jeweilen Kunden in der Listenansicht?
⬜ Können die Listeneinträge über die Spaltenüberschriften sortiert werden?
⬜ Gibt es Such- und Filteroptionen für die Listeneinträge?

⬜ Gibt es eine Editieransicht für Bestellungen im Backend?

Wenn ja, kreuzen Sie die vorhandenen Felder an:
⬜ Status ⬜ Menge

⬜ Gibt es ein Feld “Produkt” o.ä.?
⬜ Wenn ja, kann aus einer Liste vorhandener Produkte gewählt werden?

⬜ Gibt es ein Feld “Kunde” o.ä.?
⬜ Wenn ja, kann aus einer Liste vorhandener Kunden gewählt werden?

⬜ Gibt es eine Verlinkung von der Liste aller Bestellungen zur Editieransicht einer Bestellung im Backend?

CRUD-Funktionalität für Bestellung:

⬜ Gibt es Buttons zum Erstellen, Editieren und Löschen in der Listenansicht von Bestellungen im Backend?

Wenn ja,
⬜ Erstellen: Wird zu einer leeren Editieransicht zum Anlegen einer Bestellung verlinkt?
⬜ Editieren: Wird zu einer Editieransicht zum Editieren einer vorhandenen Bestellung verlinkt?
⬜ Editieren: Sind die Werte der ausgewählten Bestellung bereits in editierbaren Feldern dargestellt?
⬜ Löschen: Werden einzeln ausgewählte Einträge erfolgreich gelöscht?
⬜ Löschen: Können mehrere Einträge auf einmal gelöscht werden?

⬜ Gibt es einen “Speichern”-Button in der Editieransicht einer Bestellung im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und wieder die gleiche Editieransicht angezeigt?

⬜ Gibt es einen “Speichern & Schließen”-Button in der Editieransicht einer Bestellung im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und die zugehörige Listenansicht angezeigt?

⬜ Gibt es einen “Speichern & Neu”-Button in der Editieransicht einer Bestellung im Backend?

⬜ Wenn ja, werden die geänderten Daten gespeichert und eine leere Editieransicht angezeigt?

⬜ Gibt es einen “Schließen”-Button in der Editieransicht einer Bestellung im Backend?

⬜ Wenn ja, wird ohne zu speichern die zugehörige Listenansicht angezeigt?

Figure E.26: Requirement B: Test Cases (3)

250 Appendix E. Controlled Experiment: Documents

F Controlled Experiment: Results

In this appendix, the detailed results of the controlled experiment are collected (cf. Section 7.2).
To anonymize the results, the subjects got a random subject-ID, which they had to put on each
document. We use this subject-ID in each table below to illustrate the row data for each subject.

Subjects
At the beginning of the experiment, the subjects received questionnaires in order to get insight
about their developer experience (see Table F.1 and Table F.2), their experience with a WCMS
and Joomla (see Table F.3), and their experience with MDE (see Table F.4). Moreover, we asked
questions in order to get insight about the open-mindedness towards MDE (see Table F.5).

Table F.1: Developer Experience (1)

Participant
Self-perception
(inexperienced -
very experienced)

Experience as
Software Developer
(years)

Experience with
Web Technologies

xmA2FN experienced 2-5 high
E7cPAZ experienced 2-5 satisfactory
medNCR very experienced 6-10 high
S4aA8A experienced 2-5 satisfactory
79nd5v less experienced 2-5 satisfactory
iEnQwP experienced 2-5 high
QWsYAL experienced 6-10 high
s4H6Gg experienced 6-10 high
CN4w9N experienced 2-5 high
745tzX experienced 2-5 high
g8S6vb experienced 2-5 high
jr6rC9 experienced 11-20 high
yR2tS3 experienced 6-10 satisfactory
HwmYfF experienced 11-20 satisfactory

251

252 Appendix F. Controlled Experiment: Results

Table F.2: Developer Experience (2)

Participant Used Development Environments Developed Software based
on given Requirements

xmA2FN JetBrains yes
E7cPAZ JetBrains, VisualStudio Code yes
medNCR JetBrains no
S4aA8A JetBrains, VisualStudio Code, Xcode yes
79nd5v JetBrains yes
iEnQwP JetBrains, VisualStudio Code yes
QWsYAL JetBrains yes
s4H6Gg JetBrains yes
CN4w9N Eclipse, JetBrains yes
745tzX JetBrains, Brackets yes
g8S6vb JetBrains, ViualStudio Code, VIM yes
jr6rC9 Eclipse, JetBrainse yes
yR2tS3 VIM, Notepad++, VisualStudio Code yes
HwmYfF Eclipse, JetBrains yes

Table F.3: Experience with a WCMS and Joomla

Participant CMS Experience Joomla Experience

Years

Role
(User,
Administrator,
Developer)

Years Scenario 2 External
Assessment Score

xmA2FN 2-5 U, A, D <1 yes 89%
E7cPAZ 2-5 D <1 no 100%
medNCR 6-10 U, A, D 6-10 yes 67%
S4aA8A 2-5 U, A <1 no 68%
79nd5v 2-5 D <1 yes 89%
iEnQwP 2-5 U, A, D 2-5 no 85%
QWsYAL <1 D <1 no 53%
s4H6Gg 2-5 D <1 no 56%
CN4w9N 2-5 U, A, D <1 no 41%
745tzX 6-10 U, A, D <1 no 33%
g8S6vb <1 U, A, D <1 no 93%
jr6rC9 6-10 A, D 6-10 yes 81%
yR2tS3 2-5 D 2-5 no 50%
HwmYfF 6-10 U, A, D 2-5 no 64%

253

Table F.4: Experience with MDE

Participant

Experience
with
Modelling
(years)

Languages

Self-
perception
(none -
very high)

External
Assessment
Score

xmA2FN 2-5 n.a. satisfactory 93%
E7cPAZ 2-5 UML sufficient 80%
medNCR <1 UML good 88%
S4aA8A 2-5 UML satisfactory 80%
79nd5v n.a. UML poor 73%
iEnQwP <1 UML sufficient 83%
QWsYAL 2-5 UML, EMF Ecore, MPS sufficient 93%
s4H6Gg 2-5 UML sufficient 80%
CN4w9N 2-5 UML sufficient 90%
745tzX 2-5 UML satisfactory 75%
g8S6vb <1 UML poor 80%
jr6rC9 2-5 UML, EMF Ecore satisfactory 85%
yR2tS3 2-5 UML, eJSL (JooMDD) sufficient 75%
HwmYfF 2-5 UML, eJSL (JooMDD) sufficient 85%

Table F.5: Open-Mindedness towards MDE

Participant Estimation of
MDE Relevance Experience with Code Generation

xmA2FN very high none
E7cPAZ very high UML → code (classes/methods/interfaces)
medNCR high none
S4aA8A average Generation of Documentation
79nd5v high none
iEnQwP high Generation of Documentation
QWsYAL average Generation of Documentation
s4H6Gg high Generation of Documentation
CN4w9N average none
745tzX high Generation of Documentation
g8S6vb very high Generation of Joomla Extensions
jr6rC9 high Generation of Joomla Extensions
yR2tS3 high Generation of Joomla Extensions

HwmYfF average Generation of Documentation/Joomla
Extensions/Mobile Applications

254 Appendix F. Controlled Experiment: Results

Development Session 1
In Table F.6 we present the row data of development session 1 (traditional development). This
includes the measurement results for productivity based on the ratio of passed test cases (accu-
racy). Both requirements (A and B) hat 28 test cases for 4 requirement groups in total (cf. the
requirement checklists in Appendix E).

Table F.6: Session 1: Productivity Results (Row Data)

Participant Requirement Structure
Component Views CRUD Structure

Module Overall

xmA2FN B 25% 0% 0% 0% 0.9%
E7cPAZ A 75% 0% 0% 0% 2.7%
medNCR B 75% 0% 0% 0% 2.7%
S4aA8A A 75% 14.3% 16.7% 0% 17%
79nd5v B 25% 0% 0% 0% 0.9%
iEnQwP A 50% 5.4% 4.2% 0% 6.3%
QWsYAL A 25% 5.9% 12.5% 0% 9.2%
s4H6Gg B 75% 12.5% 16.7% 0% 16.1%
CN4w9N A 75% 14.3% 16.7% 0% 17%
745tzX B 75% 14.3% 12.5% 0% 15.2%
g8S6vb B 100% 0% 0% 0% 3.6%
jr6rC9 A 50% 0% 0% 0% 1.8%
yR2tS3 B 100% 12.5% 41.7% 0% 27.7%
HwmYfF A 25% 0% 0% 0% 0.9%

Table F.7 below shows the row data of the quality measurement results of development session
1 (traditional development). For each submitted solution we counted the amount of views,
corresponding files and LoC, and violations in order to calculate the violations to LoC ratio.
One outlier exists (highlighted row). This is traced to the fact, that the subject used a code
generator during the first session.

Table F.7: Session 1: Quality Results (Row Data)

Participant Requirement Views Files LoC Violations
(PSR-2)

Violations
LoC

xmA2FN B 2 4 113 5 4.42%
E7cPAZ A 2 7 461 8 1.74%
medNCR B 6 16 1794 14 0.78%
S4aA8A A 2 9 1430 8 0.56
79nd5v B 0 0 0 0 0%
iEnQwP A 2 10 563 9 1.6%
QWsYAL A 2 8 450 7 1.56%
s4H6Gg B 2 9 570 9 1.58%
CN4w9N A 2 11 551 9 1.63%
745tzX B 2 11 542 9 1.66%
g8S6vb B 0 0 0 0 0%
jr6rC9 A 0 0 0 0 0%
yR2tS3 B 12 104 16763 68 0.41%
HwmYfF A 0 0 0 0 0%

255

After the session, we asked the subjects, if they implemented an extension with similar complexity
before and which development environment they used (see Table F.8). Additionally, the subjects
had to describe their development approach (see Table F.9). We asked, if they developed the
extension from scratch, applied a clone-and-own approach, and oriented on existing extensions.
Moreover, we asked, if the subjects made use of an existing code generator.

Table F.8: Session 1: Session Feedback (Row Data)

Participant Implemented an Extension with
similar Complexity before

Development
Environment

xmA2FN no none
E7cPAZ yes JetBrains
medNCR yes JetBrains
S4aA8A yes JetBrains
79nd5v no JetBrains
iEnQwP no JetBrains
QWsYAL yes JetBrains
s4H6Gg yes JetBrains
CN4w9N yes JetBrains
745tzX yes JetBrains
g8S6vb yes JetBrains, VisualStudio Code
jr6rC9 yes JetBrains
yR2tS3 no, not for Joomla none
HwmYfF yes JetBrains

Table F.9: Session 1: Session Feedback - Development Approach (Row Data)

Participant From
Scratch

Clone-
and-
Own

Oriented on
Existing
Extension

Used Code
Generator

xmA2FN yes yes 3rd-party component-creator.com
E7cPAZ yes no no no
medNCR no yes yes no
S4aA8A yes yes no component-creator
79nd5v yes no 3rd-party, core no
iEnQwP yes yes core no
QWsYAL yes no no no
s4H6Gg no no own no
CN4w9N no yes no no
745tzX yes yes own, 3rd-party, core no
g8S6vb no yes no no
jr6rC9 yes no no no

yR2tS3 no no no Joomla Component
Builder

HwmYfF yes no no no

256 Appendix F. Controlled Experiment: Results

Development Session 2
Table F.10 summarizes the row data of development session 2 (MDE). Again, this includes the
measurement results for productivity based on the ratio of passed test cases (accuracy). Two
measurement results can be interpreted as outliers (highlighted rows).

Table F.10: Session 2: Productivity Results (Row Data)

Participant Requirement Structure
Component Views CRUD Structure

Module Overall

xmA2FN A 100% 74.5% 100% 0% 83.7%
E7cPAZ B 100% 55.2% 66.7% 0% 59.7%
medNCR A 100% 90.2% 100% 100% 95.1%
S4aA8A B 100% 61.3% 58.3% 0% 59.2%
79nd5v A 100% 89% 100% 0% 90.9%
iEnQwP B 100% 97.3% 100% 100% 98.7%
QWsYAL B 0% 13.1% 16.7% 0% 13.7%
s4H6Gg A 100% 92% 83.3% 100% 88.8%
CN4w9N B 100% 93.5% 83.3% 100% 89.6%
745tzX A 100% 91.7% 100% 100% 95.8%
g8S6vb A 100% 86.3% 100% 0% 89.6%
jr6rC9 B 100% 61.9% 66.7% 0% 63.1%
yR2tS3 A 100% 92.6% 100% 66.7% 95.1%
HwmYfF B 0% 7.1% 10.4% 0% 8%

Table F.11 includes the row data of the quality measurement results of development session 2
(MDE). Smilar to session 1, we counted the amount of views, corresponding files and LoC, and
violations in order to calculate the violations to LoC ratio. However, during the measurement,
we only considered the same views, which were implemented during session 1.

Table F.11: Session 2: Quality Results (Row Data)

Participant Requirement Views Files LoC Violations
(PSR-2)

Violations
LoC

xmA2FN A 4 20 2374 16 0.67%
E7cPAZ B 10 50 5468 40 0.73%
medNCR A 4 20 2760 16 0.58%
S4aA8A B 8 40 4766 32 0.67%
79nd5v A 4 20 2331 16 0.69%
iEnQwP B 12 60 7458 48 0.64%
QWsYAL B 12 60 7795 48 0.62%
s4H6Gg A 4 20 2323 16 0.69%
CN4w9N B 12 60 6781 48 0.71%
745tzX A 4 20 2403 16 0.67%
g8S6vb A 4 20 2335 16 0.69%
jr6rC9 B 8 40 4768 32 0.67%
yR2tS3 A 4 20 2394 16 0.67%
HwmYfF B 2 10 1228 15 1.22%

Moreover, we measured the code style violations also for submitted modules after the MDE
session (see Table F.12). So, the data can be compared e.g. with results of further instantiations
of the experiment.

257

Table F.12: Session 2: Quality Results - Modules (Row Data)

Participant Requirement Files LoC Violations
(PSR-2)

Violations
LoC

xmA2FN A 0 0 0 0%
E7cPAZ B 0 0 0 0%
medNCR A 3 261 1 0.38%
S4aA8A B 0 0 0 0%
79nd5v A 0 0 0 0%
iEnQwP B 0 0 0 0%
QWsYAL B 3 247 1 0.4%
s4H6Gg A 0 0 0 0%
CN4w9N B 0 0 0 0%
745tzX A 3 281 1 0.36%
g8S6vb A 3 255 1 0.39%
jr6rC9 B 0 0 0 0%
yR2tS3 A 0 0 0 0%
HwmYfF B 0 0 0 0%

After the session, we asked the subjects, if all requirements could be expressed using the given in
modelling language (eJSL) and if they had to refine the generated code by hand (see Table F.13).

Table F.13: Session 2: Session Feedback (Row Data)

Participant All Requirements could be
expressed with the DSL Refined Generated Code

xmA2FN no no
E7cPAZ no no
medNCR no yes
S4aA8A yes no
79nd5v no no
iEnQwP no no
QWsYAL yes no
s4H6Gg yes no
CN4w9N yes no
745tzX no no
g8S6vb yes no
jr6rC9 no no
yR2tS3 yes no
HwmYfF yes no

Feedback
In Table F.14 and Table F.15 we present the feedback of the subjects which was questioned after
both sessions. The questions can be found in Appendix E.

258 Appendix F. Controlled Experiment: Results

Table F.14: Feedback Results - Experiment (Row Data)

Participant Enough Time
for the Tasks

Experimental
Environment
affected the
Development

Free Text

xmA2FN too little no -
E7cPAZ too little no -

medNCR appropriate yes, during
both sessions -

S4aA8A appropriate yes, during
session 2

Es hat sehr viel Spaß gemacht, mit
JooMDD zu arbeiten.
Eine wirklich einfache Sprache mit
mächtigem Output.

79nd5v too little no Super ;)

iEnQwP too little yes, during
both sessions

Die Doku ist noch ausbaufähig und
die Fehler manchmal zu generisch
(manchmal aber super hilfreich!).
Der Web-Editor ist praktisch.
Modellbeispiele waren hilfreich.
Ebenso die Experiment-Umgebung,
sonst wäre ich beim 1. Teil
depressiv geworden.

QWsYAL too little no JooMDD ist sehr gut!

s4H6Gg too little no Zu wenig Zeit für Teil 1, passend
für Teil 2

CN4w9N appropriate yes, during
session 2

Konventionelle Joomla-Entwicklung
hätte 3 Tage mehr beansprucht
Einführung in JooMDD mit Bei-
spielen, bei Joomla (konventionell)
nicht.

745tzX appropriate no
Für native Joomla!-Entwicklung
wäre die Zeit etwa 3- 8 Tage zu
knapp bemessen

g8S6vb - no

Dummy-Daten wären cool (ent-
sprechend der Typen, aktivierbar
mit einem Flag oder sowas)
Selects wären optional nützlich,
warum muss ich das hart über eine
Referenz regeln, wenn es auch ohne
geht.
WebEditor super Sache und Kriegs-
entscheidend für die Verwendung
bzw. das Marketing von JooMDD

jr6rC9 too little yes, during
session 1 :-)

yR2tS3 too little no -
HwmYfF too little no -

259

Table F.15: Feedback Results - MDE (Row Data)

Participant
Covered more
Requirements with
MDE Infrastructure

Development with
MDE Tools was
more comfortable

xmA2FN yes yes
E7cPAZ yes yes
medNCR yes yes
S4aA8A yes yes
79nd5v yes yes
iEnQwP yes yes
QWsYAL yes yes
s4H6Gg yes yes
CN4w9N yes yes
745tzX yes yes
g8S6vb yes yes
jr6rC9 yes yes
yR2tS3 yes yes
HwmYfF yes yes

260 Appendix F. Controlled Experiment: Results

G Hands-on Tutorial

In this appendix, we illustrate the presentation of the hands-on tutorial which was held in Dongen,
Netherlands on December 12, 2017.

Figure G.1: Hands-on Tutorial Presentation (1)

261

262
A

ppendix
G

.
H

ands-on
Tutorial

MODEL-DRIVEN DEVELOPMENT
OF JOOMLA! EXTENSIONS

DENNIS PRIEFER, WOLF ROST 09.12.17 3

IDE plugins:

¡ Eclipse
¡ IntelliJ IDEA
¡ PhpStorm

Web editor with model extractorCode generatorDomain-Specific Language

SESSION

DENNIS PRIEFER, WOLF ROST 09.12.17 4

SESSION
CONFERENCE MANAGEMENT

DENNIS PRIEFER, WOLF ROST 09.12.17 5

SESSION
CONFERENCE MANAGEMENT

DENNIS PRIEFER, WOLF ROST 09.12.17 6

Figure G.2: Hands-on Tutorial Presentation (2)

263
SESSION
CONFERENCE MANAGEMENT

DENNIS PRIEFER, WOLF ROST 09.12.17 7

SESSION
THE EDITOR

DENNIS PRIEFER, WOLF ROST 09.12.17 8

SESSION
THE EDITOR

DENNIS PRIEFER, WOLF ROST 09.12.17 9

¡ Test the editor without an account

¡ Login to save your models and generated code

SESSION
THE EDITOR

¡ Example models

¡ Auto completion

¡ Syntax highlighting

¡ Live validation

¡ Trigger code generation

DENNIS PRIEFER, WOLF ROST 09.12.17 10

Figure G.3: Hands-on Tutorial Presentation (3)

264
A

ppendix
G

.
H

ands-on
Tutorial

SESSION
THE EDITOR

¡ File Tree

¡ Download of sub nodes via button and context
menu

¡ Upload of existing Joomla! Extension

¡ Model extraction

DENNIS PRIEFER, WOLF ROST 09.12.17 11

SESSION
THE EDITOR

¡ Alternative IDE plugins

¡ Eclipse

¡ PhpStorm

¡ IntelliJ IDEA

à Model extraction has to be
executed manually with jext2ejsl

à https://github.com/icampus/JooMDD

DENNIS PRIEFER, WOLF ROST 09.12.17 12

¡ Data Modelling (with references)

¡ Page Modelling

¡ Extension Modelling

¡ Code Generation

¡ Installation to Joomla 3.8 Site

¡ Create Data

à Open the web editor: tinyurl.com/joomdd-web

à Getting Started

à Create an account (recommended)

SESSION
USE CASE 1 – DEVELOPMENT OF A JOOMLA COMPONENT

DENNIS PRIEFER, WOLF ROST 09.12.17 13

SESSION
USE CASE 1 – DEVELOPMENT OF A JOOMLA COMPONENT

DENNIS PRIEFER, WOLF ROST 09.12.17 14

¡ Data Modelling (with references)

Entities require a unique attribute

^ must be used, if a
name is a keyword. It
will not be generated.

Reference to
another entity

Figure G.4: Hands-on Tutorial Presentation (4)

265
SESSION
USE CASE 1 – DEVELOPMENT OF A JOOMLA COMPONENT

DENNIS PRIEFER, WOLF ROST 09.12.17 15

¡ Page Modelling Entity reference

View table columns

Link to edit page

SESSION
USE CASE 1 – DEVELOPMENT OF A JOOMLA COMPONENT

DENNIS PRIEFER, WOLF ROST 09.12.17 16

¡ Extension Modelling
Create your individual component

Component
views

SESSION
USE CASE 1 – DEVELOPMENT OF A JOOMLA COMPONENT

DENNIS PRIEFER, WOLF ROST 09.12.17 17

¡ Code Generation

SESSION
USE CASE 1 – DEVELOPMENT OF A JOOMLA COMPONENT

DENNIS PRIEFER, WOLF ROST 09.12.17 18

¡ Reinstallation to Joomla 3.8 Site

¡ http://icampus.thm.de/j3/administrator

¡ User: jdev

¡ PW: jdevmeeting2017

¡ Create data for your
own component

Figure G.5: Hands-on Tutorial Presentation (5)

266
A

ppendix
G

.
H

ands-on
Tutorial

¡ Export component from Joomla instance

¡ Model extraction with JooMDD editor

¡ Augmentation of the model

¡ Generation of new module

¡ Installation to Joomla 3.8 site

¡ Configure the module to be shown in the frontend

SESSION
USE CASE 2 – AUGMENTATION OF AN EXISTING COMPONENT BY A NEW MODULE

DENNIS PRIEFER, WOLF ROST 09.12.17 24

SESSION
USE CASE 2 – AUGMENTATION OF AN EXISTING
COMPONENT BY A NEW MODULE

DENNIS PRIEFER, WOLF ROST 09.12.17 25

¡ Export component from Joomla instance (with ExtPorter)
(legacy extension: MyConference_<your name>)

à Use your generated component

¡ Model extraction with JooMDD editor

¡ Upload extension package

¡ Select manifest file

¡ Extract model

.zip file

1

2

SESSION
USE CASE 2 – AUGMENTATION OF AN EXISTING
COMPONENT BY A NEW MODULE

DENNIS PRIEFER, WOLF ROST 09.12.17 26

¡ Load extracted model to the editor

1

2

SESSION
USE CASE 2 – AUGMENTATION OF AN EXISTING
COMPONENT BY A NEW MODULE

DENNIS PRIEFER, WOLF ROST 09.12.17 27

¡ Augmentation of the model (conftalks_<your name>)

Use the model of the
component’s backend

Figure G.6: Hands-on Tutorial Presentation (6)

267
SESSION
USE CASE 2 – AUGMENTATION OF AN EXISTING
COMPONENT BY A NEW MODULE

DENNIS PRIEFER, WOLF ROST 09.12.17 28

¡ Generation of new module

SESSION
USE CASE 2 – AUGMENTATION OF AN EXISTING
COMPONENT BY A NEW MODULE

DENNIS PRIEFER, WOLF ROST 09.12.17 29

¡ Installation to Joomla 3.8 Site

¡ http://icampus.thm.de/j3/administrator

¡ User: jdev

¡ PW: jdevmeeting2017

¡ Configure your module to be
placed in the frontend

¡ Export component from Joomla instance

¡ Model extraction with JooMDD editor

¡ Optional Refactorings

¡ Generation of new J4 extension

¡ …

SESSION
USE CASE 3 – MIGRATION OF AN EXISTING COMPONENT FROM JOOMLA 3 TO JOOMLA 4

DENNIS PRIEFER, WOLF ROST 09.12.17 30

SESSION
USE CASE 3 – MIGRATION OF AN EXISTING
COMPONENT FROM JOOMLA 3 TO JOOMLA 4

DENNIS PRIEFER, WOLF ROST 09.12.17 31

¡ Export component from Joomla instance (with ExtPorter)
(legacy extension: MyConference_<your name>)

à Use your generated component

¡ Model extraction with JooMDD editor

¡ Upload extension package

¡ Select manifest file

¡ Extract model

à Alternative: use your extracted model from use case 2

.zip file

1

2

Figure G.7: Hands-on Tutorial Presentation (7)

268
A

ppendix
G

.
H

ands-on
Tutorial

SESSION
USE CASE 3 – MIGRATION OF AN EXISTING
COMPONENT FROM JOOMLA 3 TO JOOMLA 4

DENNIS PRIEFER, WOLF ROST 09.12.17

¡ Optional Refactorings ¡ Generation of new J4 extension

SESSION
USE CASE 3 – MIGRATION OF AN EXISTING
COMPONENT FROM JOOMLA 3 TO JOOMLA 4

DENNIS PRIEFER, WOLF ROST 09.12.17

1

2

SESSION
USE CASE 3 – MIGRATION OF AN EXISTING
COMPONENT FROM JOOMLA 3 TO JOOMLA 4

DENNIS PRIEFER, WOLF ROST 09.12.17

¡ Have fun with Joomla 4 J

THANKYOU
TOOLS: GITHUB.COM/ICAMPUS/JOOMDD

TINYURL.COM/JOOMDD-WEB

Dennis Priefer
dennis.priefer@mni.thm.de

Wolf Rost
wolf.rost@mni.thm.de

Figure G.8: Hands-on Tutorial Presentation (8)

Bibliography

[1] N. Adermann and J. Boggiano. Composer - Introduction, 2019. URL: https://getcompo
ser.org/doc/00-intro.md.

[2] AIIM. What is Enterprise Content Management (ECM)?, 2021. URL: https://www.aiim
.org/resources/glossary/enterprise-content-management.

[3] Akeeba Ltd. Akeeba Backup - Homepage, 2020. URL: https://www.akeebabackup.com/.

[4] M. Alnasser. JCCreator, 2019. URL: https://jc-creator.com.

[5] R. Andersen and T. Batova. The Current State of Component Content Management:
An Integrative Literature Review. IEEE Transactions on Professional Communication,
58(3):247–270, 2015.

[6] M. Antkiewicz, T. T. Bartolomei, and K. Czarnecki. Automatic extraction of framework-
specific models from framework-based application code. In K. Stirewalt, A. Egyed, and
B. Fischer, editors, Proceedings of the twenty-second IEEEACM international conference
on Automated software engineering, page 214, New York, NY, 2007. ACM.

[7] M. Antkiewicz and K. Czarnecki. Framework-Specific Modeling Languages with Round-
Trip Engineering. In O. Nierstrasz, editor, Model driven engineering languages and systems,
volume 4199 of Lecture Notes in Computer Science, pages 692–706, Berlin, 2006. Springer.

[8] M. Antkiewicz, K. Czarnecki, and M. Stephan. Engineering of Framework-Specific Model-
ing Languages. IEEE Transactions on Software Engineering, 35(6):795–824, 2009.

[9] J. Antrim. thm-mni-ii/com_organizer, 2020. URL: https://github.com/thm-mni-ii/
com_organizer.

[10] AOE. Open Source CMS Vergleich: TYPO3 vs. Drupal vs. Joomla! vs. WordPress, 2019.
URL: https://www.aoe.com/de/knowledge-base/cms-vergleich-typo3-vs-drupal-
vs-joomla-vs-wordpress.html.

[11] Apache Friends. Bitnami for XAMPP, 2019. URL: https://www.apachefriends.org/
bitnami_for_xampp.html.

[12] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: Advanced Con-
cepts and Tools for In-Place EMF Model Transformations. In D. C. Petriu, N. Rouquette,
and Ø. Haugen, editors, Model driven engineering languages and systems, volume 6394 of
Lecture Notes in Computer Science, pages 121–135, Berlin and Heidelberg, 2010. Springer.

[13] A. Avram. Gartner’s Software Hype Cycles for 2012, 2012. URL: https://www.infoq.co
m/news/2012/08/Gartner-Hype-Cycle-2012.

[14] T. Baar. The Definition of Transitive Closure with OCL – Limitations and Applications
–. In M. Broy and A. V. Zamulin, editors, Perspectives of System Informatics, volume
2890 of Lecture Notes in Computer Science, pages 358–365, Berlin and Heidelberg, 2003.
Springer.

[15] H. Bagheri and K. Sullivan. Bottom-up model-driven development. In Proceedings of the
2013 International Conference on Software Engineering, pages 1221–1224, Piscataway, NJ,
2013. IEEE.

[16] P. Baker, S. Loh, and F. Weil. Model-Driven Engineering in a Large Industrial Context
— Motorola Case Study. In L. Briand, editor, Model driven engineering languages and

269

https://getcomposer.org/doc/00-intro.md
https://getcomposer.org/doc/00-intro.md
https://www.aiim.org/resources/glossary/enterprise-content-management
https://www.aiim.org/resources/glossary/enterprise-content-management
https://www.akeebabackup.com/
https://jc-creator.com
https://github.com/thm-mni-ii/com_organizer
https://github.com/thm-mni-ii/com_organizer
https://www.aoe.com/de/knowledge-base/cms-vergleich-typo3-vs-drupal-vs-joomla-vs-wordpress.html
https://www.aoe.com/de/knowledge-base/cms-vergleich-typo3-vs-drupal-vs-joomla-vs-wordpress.html
https://www.apachefriends.org/bitnami_for_xampp.html
https://www.apachefriends.org/bitnami_for_xampp.html
https://www.infoq.com/news/2012/08/Gartner-Hype-Cycle-2012
https://www.infoq.com/news/2012/08/Gartner-Hype-Cycle-2012

270 Bibliography

systems, volume 3713 of Lecture Notes in Computer Science, pages 476–491, Berlin and
Heidelberg, 2005. Springer.

[17] D. Barker. Web content management: Systems, features, and best practices. O’Reilly,
Beijing and Boston, first edition edition, 2016.

[18] V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in software engineering.
IEEE Transactions on Software Engineering, SE-12(7):733–743, 1986.

[19] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In Proceedings. International Conference on Software Maintenance,
pages 368–377, 1998.

[20] S. Bechtold, S. Brannen, J. Link, M. Merdes, M. Philipp, J. de Rancourt, and C. Stein.
JUnit 5 User Guide, 2020. URL: https://junit.org/junit5/docs/current/user-gui
de/.

[21] K. Beck, M. Beedle, A. van Bennekum, W. Cockburn, M. Fowler, J. Grenning, J. High-
smith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber,
J. Sutherland, and D. Thomas. Manifesto for Agile Software Development, 2001. URL:
http://agilemanifesto.org/.

[22] S. Bergmann. PHPLOC, 2020. URL: https://github.com/sebastianbergmann/phploc.

[23] M. L. Bernardi, G. A. D. Lucca, and D. Distante. Model-driven fast prototyping of RIAs:
From conceptual models to running applications. In 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages 250–258, 2014.

[24] L. Bettini. Implementing domain-specific languages with Xtext and Xtend: Learn how
to implement a DSL with Xtext and Xtend using easy-to-understand examples and best
practices. Packt Publ., Birmingham, 2013.

[25] B. Bigendako and E. Syriani. Modeling a Tool for Conducting Systematic Reviews Iter-
atively. In Proceedings of the 6th International Conference on Model-Driven Engineering
and Software Development, volume 1, pages 552–559, Funchal, 2018. Scitepress.

[26] B. W. Boehm. Verifying and Validating Software Requirements and Design Specifications.
IEEE Software, 1(1):75–88, 1984.

[27] M. Brambilla. Interaction flow modeling language: Model-driven UI engineering of web
and mobile apps with IFML. Morgan Kaufmann, Waltham, MA, 2015.

[28] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in practice.
Morgan & Claypool Publishers, San Rafael, California, second edition edition, 2017.

[29] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot. MoDisco: A model driven reverse
engineering framework. Information and Software Technology, 56(8):1012–1032, 2014.

[30] H. Brunelière, J. Cabot, F. Jouault, and F. Madiot. MoDisco: a generic and extensible
framework for model driven reverse engineering. In C. Pecheur, editor, Proceedings of the
IEEEACM international conference on Automated software engineering, pages 173–174,
New York, NY, 2010. ACM.

[31] C. Bunse, H. Gross, and C. Peper. Embedded System Construction – Evaluation of Model-
Driven and Component-Based Development Approaches. In M. R. V. Chaudron, editor,
Models in Software Engineering, pages 66–77, Berlin, Heidelberg, 2009. Springer.

[32] H. Burden, R. Heldal, and J. Whittle. Comparing and Contrasting Model-driven Engi-
neering at Three Large Companies. In Proceedings of the 8th ACM/IEEE International

https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
http://agilemanifesto.org/
https://github.com/sebastianbergmann/phploc

Bibliography 271

Symposium on Empirical Software Engineering and Measurement, ESEM ’14, pages 14:1–
14:10, New York, NY, USA, 2014. ACM.

[33] D. Buytaert. Drupal Homepage, 2018. URL: https://www.drupal.org/.

[34] D. Buytaert. Module project index | Drupal.org, 2020.

[35] J. Cabot. What is the exact difference between Meta Model and DSL in context of Model
driven software development?, 2017. URL: https://www.quora.com/What-is-the-exac
t-difference-between-Meta-Model-and-DSL-in-context-of-Model-driven-softw
are-development.

[36] J. Cabot. jcabot/WordPress-Plugin-DSL, 2019. URL: https://github.com/jcabot/Wo
rdPress-Plugin-DSL.

[37] J. Cabot. WordPress Plugin DSL and code-generator, 2019. URL: https://seriouswp.
com/wordpress-plugin-dsl-and-code-generator/.

[38] J. Canovas. Domain-Specific Languages, 2013. URL: https://fr.slideshare.net/zirr
us/domainspecific-langauges.

[39] J. Canovas. jlcanovas/gra2mol, 2014. URL: https://github.com/jlcanovas/gra2mol.

[40] J. L. Cánovas Izquierdo and J. García Molina. Extracting models from source code in
software modernization. Software & Systems Modeling, 13(2):713–734, 2014.

[41] S. Ceri. Designing data-intensive Web applications. Morgan Kaufmann Publishers, Ams-
terdam and Boston, 2010.

[42] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks, 33(1-6):137–157, 2000.

[43] G. Charness, U. Gneezy, and M. A. Kuhn. Experimental methods: Between-subject and
within-subject design. Economic Behavior & Organization, 81(1):1–8, 2012.

[44] A. Chauhan. Joomla 3 and Joomla 4 features comparison: 15 new things to take note |
JoomlArt, 2017. URL: https://www.joomlart.com/blog/joomla-3-vs-joomla-4-fea
tures-comparison-15-new-things-to-take-note.

[45] G. Chénard, I. Khriss, and A. Salah. Towards the automatic discovery of platform transfor-
mation templates of legacy object-oriented systems. In Proceedings of the 6th International
Workshop on Models and Evolution, pages 51–56, New York, 2012. ACM.

[46] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating Co-evolution
in Model-Driven Engineering. In 12th International IEEE Enterprise Distributed Object
Computing Conference, 2008, pages 222–231, Piscataway, NJ, 2008. IEEE.

[47] T. Clark and J. Warmer. Object Modeling with the OCL: The Rationale behind the Object
Constraint Language. Springer Berlin Heidelberg, 2003.

[48] P. Clements and L. Northrop. Software product lines: Practices and patterns. Addison-
Wesley, Boston and San Francisco and New York and Toronto and Montreal and London
and Munich and Paris and Madrid and Capetown and Sydney and Tokyo and Singapore
and Mexico City, 7. print edition, 2009.

[49] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Taylor and Francis,
Hoboken, 2nd ed. edition, 2013.

[50] G. W. Corder and D. I. Foreman. Nonparametric Statistics: A Step-by-Step Approach.
Wiley, 2nd ed. edition, 2014.

https://www.drupal.org/
https://www.quora.com/What-is-the-exact-difference-between-Meta-Model-and-DSL-in-context-of-Model-driven-software-development
https://www.quora.com/What-is-the-exact-difference-between-Meta-Model-and-DSL-in-context-of-Model-driven-software-development
https://www.quora.com/What-is-the-exact-difference-between-Meta-Model-and-DSL-in-context-of-Model-driven-software-development
https://github.com/jcabot/WordPress-Plugin-DSL
https://github.com/jcabot/WordPress-Plugin-DSL
https://seriouswp.com/wordpress-plugin-dsl-and-code-generator/
https://seriouswp.com/wordpress-plugin-dsl-and-code-generator/
https://fr.slideshare.net/zirrus/domainspecific-langauges
https://fr.slideshare.net/zirrus/domainspecific-langauges
https://github.com/jlcanovas/gra2mol
https://www.joomlart.com/blog/joomla-3-vs-joomla-4-features-comparison-15-new-things-to-take-note
https://www.joomlart.com/blog/joomla-3-vs-joomla-4-features-comparison-15-new-things-to-take-note

272 Bibliography

[51] D. Crockford. JSLint: The JavaScript Code Quality Tool, 2018. URL: https://www.jsli
nt.com/.

[52] K. Czarnecki and U. W. Eisenecker. Generative programming: Methods, tools, and appli-
cations. Addison-Wesley, Boston Mass. u.a., 6. print edition, 2005.

[53] M. D. Del Fabro, J. Bézivin, F. Jouault, and P. Valduriez. Applying Generic Model
Management to Data Mapping. In BDA, 2005.

[54] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-oriented reengineering patterns. Square
Bracket Associates, Switzerland, revised [ed.] edition, 2009.

[55] F. J. Domínguez-Mayo, M. J. Escalona, M. Mejías, M. Ross, and G. Staples. Quality
evaluation for Model-Driven Web Engineering methodologies. Information and Software
Technology, 54(11):1265–1282, 2012.

[56] Drupal community. Drupal: A "Hello World" Custom Page Module, 2016. URL: https:
//www.drupal.org/docs/8/creating-custom-modules/a-hello-world-custom-page-
module.

[57] Drupal community. Drupal: Agile Unit Testing, 2019. URL: https://www.drupal.org/d
ocs/8/phpunit/agile-unit-testing.

[58] G. Dupe and H. Bruneliere. Eclipse MoDisco, 2019. URL: https://www.eclipse.org/Mo
Disco/.

[59] S. Efftinge and M. Spoenemann. Xtend - Modernized Java, 2015. URL: http://www.ec
lipse.org/xtend/.

[60] S. Efftinge and M. Spoenemann. Xtext - Language Engineering Made Easy!, 2016. URL:
https://eclipse.org/Xtext/.

[61] eJ Technologies. Java Profiler - JProfiler, 2020. URL: https://www.ej-technologies.
com/products/jprofiler/overview.html.

[62] S. Evers, J. Ernsting, and T. A. Majchrzak. Towards a Reference Architecture for Model-
Driven Business Apps. In T. X. Bui and R. H. Sprague, editors, Proceedings of the 49th
Annual Hawaii International Conference on System Sciences, pages 5731–5740, Piscataway,
NJ, 2016. IEEE.

[63] Facebook Inc. React – A JavaScript library for building user interfaces, 2019. URL:
https://reactjs.org/.

[64] M. C. Feathers. Working effectively with legacy code. Prentice Hall Professional Technical
Reference, Upper Saddle River, NJ, 10. print edition, 2009.

[65] A. Fernandez, S. Abrahão, and E. Insfran. Empirical Validation of a Usability Inspection
Method for Model-driven Web Development. Systems and Software, 86(1):161–186, 2013.

[66] P. Filipe, A. Ribeiro, and A. R. da Silva. XIS-CMS: Towards a model-driven approach for
developing platform-independent CMS-specific modules. In 2016 4th International Confer-
ence on Model-Driven Engineering and Software Development (MODELSWARD), pages
535–543, 2016.

[67] J. Fons, V. Pelechano, M. Albert, and Ó. Pastor. Development of Web Applications from
Web Enhanced Conceptual Schemas. In I. Song, S. W. Liddle, T. Ling, and P. Scheuer-
mann, editors, Conceptual Modeling - ER 2003, volume 2813 of Lecture Notes in Computer
Science, pages 232–245, Berlin and Heidelberg, 2003. Springer.

[68] OpenJS Foundation. Node.js, 2019. URL: https://nodejs.org/en/.

https://www.jslint.com/
https://www.jslint.com/
https://www.drupal.org/docs/8/creating-custom-modules/a-hello-world-custom-page-module
https://www.drupal.org/docs/8/creating-custom-modules/a-hello-world-custom-page-module
https://www.drupal.org/docs/8/creating-custom-modules/a-hello-world-custom-page-module
https://www.drupal.org/docs/8/phpunit/agile-unit-testing
https://www.drupal.org/docs/8/phpunit/agile-unit-testing
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/MoDisco/
http://www.eclipse.org/xtend/
http://www.eclipse.org/xtend/
https://eclipse.org/Xtext/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://reactjs.org/
https://nodejs.org/en/

Bibliography 273

[69] The Eclipse Foundation. ATL, 2018. URL: http://www.eclipse.org/atl/.

[70] M. Fowler and K. Beck. Refactoring: Improving the design of existing code. Addison-
Wesley, Boston, 28. printing edition, 2013.

[71] M. Fowler and R. Parsons. Domain-specific languages. Addison-Wesley, Upper Saddle
River, NJ and Boston and Indianapolis and San Francisco and New York and Toronto
and Montreal and London and Munich and Paris and Madrid and Sydney and Tokyo and
Singapore and Mexico City, 2011.

[72] R. France and B. Rumpe. Model-driven Development of Complex Software: A Research
Roadmap. In L. C. Briand and A. L. Wolf, editors, Future of software engineering, 2007,
pages 37–54, Los Alamitos, Calif., 2007. IEEE Computer Society.

[73] D. S. Frankel. Model driven architecture: Applying MDA to enterprise computing. Wiley,
Indianapolis, Ind., 2003.

[74] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc, Boston, MA,
USA, 1995.

[75] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin. Managing Model Adaptation by Precise
Detection of Metamodel Changes. In Proceedings of the 5th European Conference on Model
Driven Architecture - Foundations and Applications, ECMDA-FA ’09, pages 34–49, Berlin,
Heidelberg, 2009. Springer.

[76] Gartner Inc. Hype Cycle Research Methodology, 2017. URL: http://www.gartner.com/
technology/research/methodologies/hype-cycle.jsp.

[77] M. Geirhos. Entwurfsmuster: Das umfassende Handbuch. Rheinwerk Verlag, Bonn, 2nd
ed. edition, 2018.

[78] GitHub. GitHub Actions, 2020. URL: https://github.com/features/actions.

[79] Google. Angular, 22.02.2019. URL: https://angular.io/.

[80] Google Ireland Limited. Blogger website, 2019. URL: https://www.blogger.com.

[81] T. Greifenberg, K. Müller, A. Roth, B. Rumpe, C. Schulze, and A. Wortmann. Modeling
variability in template-based code generators for product line engineering. In A. Oberweis
and R. Reussner, editors, Modellierung 2016, pages 141–156, Bonn, 2016. Gesellschaft für
Informatik e.V.

[82] M. Grieger. Model-driven software modernization: concept-based engineering of situation-
specific methods. PhD thesis, University of Paderborn, Germany, 2016.

[83] R. Gronback. Eclipse Modeling Project, 2017. URL: https://www.eclipse.org/modeli
ng/emf/.

[84] V. Gruhn, D. Pieper, and C. Röttgers. MDA: Effektives Software-Engineering mit UML2
und Eclipse. Springer Berlin Heidelberg, 2006.

[85] L. Haoyi. lihaoyi/fastparse, 2020. URL: https://github.com/lihaoyi/fastparse.

[86] A. S. Hawley. scala/scala-xml, 2020. URL: https://github.com/scala/scala-xml.

[87] P. Hegedus. Revealing the effect of coding practices on software maintainability. In 2013
IEEE International Conference on Software Maintenance, pages 578–581, 2013.

[88] J. Helming and M. Koegel. EMFStore, 01.11.2017. URL: http://www.eclipse.org/em
fstore/.

http://www.eclipse.org/atl/
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
https://github.com/features/actions
https://angular.io/
https://www.blogger.com
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://github.com/lihaoyi/fastparse
https://github.com/scala/scala-xml
http://www.eclipse.org/emfstore/
http://www.eclipse.org/emfstore/

274 Bibliography

[89] B. Henderson-Sellers, J. Ralyté, P. J. Agerfalk, and M. Rossi. Situational method engineer-
ing. Springer Berlin Heidelberg, 2014.

[90] M. Herrmannsdoerfer. Eclipse Edapt, 2018. URL: https://www.eclipse.org/edapt/.

[91] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth. An Extensive Catalog of
Operators for the Coupled Evolution of Metamodels and Models. In B. Malloy, S. Staab,
and M. van den Brand, editors, Software Language Engineering, pages 163–182, Berlin,
Heidelberg, 2011. Springer.

[92] T. P. Hettmansperger and J. W. McKean. Robust Nonparametric Statistical Methods. CRC
Press, 2010.

[93] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage, costs, and benefits of
continuous integration in open-source projects. In D. Lo, S. Apel, and S. Khurshid, edi-
tors, Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pages 426–437, Piscataway, NJ, 2016. IEEE.

[94] J. Hossler, M. Born, and S. Saito. Significant Productivity Enhancement through Model
Driven Techniques: A Success Story. In 10th IEEE International Enterprise Distributed
Object Computing Conference, 2006, pages 367–373, Los Alamitos, Calif., 2006. IEEE
Computer Society.

[95] J. Hutchinson, M. Rouncefield, and J. Whittle. Model-driven engineering practices in in-
dustry. In R. N. Taylor, H. Gall, and N. Medvidović, editors, 33rd International Conference
on Software Engineering (ICSE), pages 633–642, Piscataway, NJ, 2011. IEEE.

[96] IBM. Rational Rhapsody Developer, 2017. URL: http://www-03.ibm.com/software/pr
oducts/de/ratirhap.

[97] International Organization for Standardization. ISO/IEC 25000:2005(en), Software Engi-
neering — Software product Quality Requirements and Evaluation (SQuaRE) — Guide to
SQuaRE, 2005. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:25000:ed-1:
v1:en.

[98] International Organization for Standardization. ISO/IEC 25010:2011, Systems and soft-
ware engineering — Systems and software Quality Requirements and Evaluation (SQuaRE)
— System and software quality models, 2011.

[99] International Organization for Standardization. ISO/IEC 25000:2014 - Systems and soft-
ware engineering – Systems and software Quality Requirements and Evaluation (SQuaRE)
– Guide to SQuaRE, 2014. URL: https://www.iso.org/standard/64764.html.

[100] iTeam. Joomla 4 tutorials: Orthogonal Component Structure Revolution, 2020. URL:
https://www.jomsocial.com/blog/joomla-4-tutorials-orthogonal-component-str
ucture-revolution.

[101] J. J. Jacoby. SLASH Architecture – My approach to building WordPress plugins, 2012.
URL: https://jjj.blog/2012/12/slash-architecture-my-approach-to-building-
wordpress-plugins/.

[102] Jensen Technologies SL. Component Creator, 2019. URL: https://www.component-crea
tor.com.

[103] JetBrains. IntelliJ IDEA: The Java IDE for Professional Developers by JetBrains, 2018.
URL: https://www.jetbrains.com/idea/.

[104] JetBrains. PhpStorm: Lightning-Smart IDE for PHP Programming by JetBrains, 2018.
URL: https://www.jetbrains.com/phpstorm/.

https://www.eclipse.org/edapt/
http://www-03.ibm.com/software/products/de/ratirhap
http://www-03.ibm.com/software/products/de/ratirhap
https://www.iso.org/obp/ui/#iso:std:iso-iec:25000:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25000:ed-1:v1:en
https://www.iso.org/standard/64764.html
https://www.jomsocial.com/blog/joomla-4-tutorials-orthogonal-component-structure-revolution
https://www.jomsocial.com/blog/joomla-4-tutorials-orthogonal-component-structure-revolution
https://jjj.blog/2012/12/slash-architecture-my-approach-to-building-wordpress-plugins/
https://jjj.blog/2012/12/slash-architecture-my-approach-to-building-wordpress-plugins/
https://www.component-creator.com
https://www.component-creator.com
https://www.jetbrains.com/idea/
https://www.jetbrains.com/phpstorm/

Bibliography 275

[105] Joomla! community. Joomla! Documentation, 2019. URL: https://docs.joomla.org/
Main_Page.

[106] Joomla! community. Joomla! Framework - Github Project, 2019. URL: https://github
.com/joomla-framework.

[107] Joomla! community. Manifest files – Joomla! Documentation, 2019. URL: https:
//docs.joomla.org/Manifest_files.

[108] Joomla! community. Part 2: The Administrator code – Joomla! Documentation, 2019.
URL: https://docs.joomla.org/Part_2:_The_Administrator_code.

[109] Joomla! community. J3.x:Developing an MVC Component/Developing a Basic Component
– Joomla! Documentation, 2020. URL: https://docs.joomla.org/J3.x:Developing_a
n_MVC_Component/Developing_a_Basic_Component.

[110] Joomla! community. Joomla 4 Alpha is Out, 2020. URL: https://magazine.joomla.or
g/issues/issue-nov-2017/item/3290-joomla-4-alpha-is-out.

[111] Joomla! community. Joomla CodeSniffer – Joomla! Documentation, 2020. URL: https:
//docs.joomla.org/Joomla_CodeSniffer.

[112] Joomla! community. Model-View-Controller – Joomla! Documentation, 2020. URL:
https://docs.joomla.org/Model-View-Controller.

[113] Joomla! community. Plugin – Joomla! Documentation, 2020. URL: https://docs.joo
mla.org/Plugin.

[114] S. Jörges. Construction and evolution of code generators: A model-driven and service-
oriented approach. Springer Berlin Heidelberg, 2013.

[115] B. Joshi, P. Budhathoki, W. L. Woon, and D. Svetinovic. Software Clone Detection Using
Clustering Approach. In S. Arik, T. Huang, W. K. Lai, and Q. Liu, editors, Neural
information processing, volume 9490 of Lecture Notes in Computer Science, pages 520–
527, Cham and Heidelberg and New York and Dordrecht and London, 2015. Springer.

[116] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation tool.
Science of Computer Programming, 72(1-2):31–39, 2008.

[117] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: a QVT-like Transfor-
mation Language. In P. Tarr, editor, Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications, pages 719–720, New
York, NY, 2006. ACM.

[118] N. Juristo and A. M. Moreno. Basics of Software Engineering Experimentation. Springer
Publishing Company, Incorporated, 2010.

[119] A. Kaczmarek. How to use custom fields in Joomla 3 ?, 2019. URL: https://www.joomla
-monster.com/documentation/joomla-tutorials/custom-fields-in-joomla-3-7.

[120] N. Kahani. MDE TOOLS, 2017. URL: http://www.mdetools.com/.

[121] N. Kahani, M. Bagherzadeh, J. Dingel, and J. R. Cordy. The Problems with Eclipse Mod-
eling Tools: A Topic Analysis of Eclipse Forums. In Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and Systems, MODELS
’16, pages 227–237, New York, NY, USA, 2016. ACM.

[122] Nafiseh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen Dingel, and Daniel Varró.
Survey and classification of model transformation tools. Software & System Modeling,
18(4):2361–2397, 2019.

https://docs.joomla.org/Main_Page
https://docs.joomla.org/Main_Page
https://github.com/joomla-framework
https://github.com/joomla-framework
https://docs.joomla.org/Manifest_files
https://docs.joomla.org/Manifest_files
https://docs.joomla.org/Part_2:_The_Administrator_code
https://docs.joomla.org/J3.x:Developing_an_MVC_Component/Developing_a_Basic_Component
https://docs.joomla.org/J3.x:Developing_an_MVC_Component/Developing_a_Basic_Component
https://magazine.joomla.org/issues/issue-nov-2017/item/3290-joomla-4-alpha-is-out
https://magazine.joomla.org/issues/issue-nov-2017/item/3290-joomla-4-alpha-is-out
https://docs.joomla.org/Joomla_CodeSniffer
https://docs.joomla.org/Joomla_CodeSniffer
https://docs.joomla.org/Model-View-Controller
https://docs.joomla.org/Plugin
https://docs.joomla.org/Plugin
https://www.joomla-monster.com/documentation/joomla-tutorials/custom-fields-in-joomla-3-7
https://www.joomla-monster.com/documentation/joomla-tutorials/custom-fields-in-joomla-3-7
http://www.mdetools.com/

276 Bibliography

[123] Nafiseh Kahani and James R. Cordy. Comparison and Evaluation of Model Transformation
Tools. Technical report, Queen’s University, Kingston, Ontario, 2015.

[124] C. Kapser. Toward an Understanding of Software Code Cloning as a Development Practice,
2009. URL: http://hdl.handle.net/10012/4753.

[125] C. Kapser and M. Godfrey. "Cloning Considered Harmful" Considered Harmful. In H. Sel-
varaj, editor, 19th International Conference on Systems Engineering, pages 19–28, Piscat-
away, NJ, 2008. IEEE.

[126] S. Karg, A. Raschke, M. Tichy, and G. Liebel. Model-driven software engineering in the
openETCS project. In B. Baudry and B. Combemale, editors, 19th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages 238–248,
New York, New York, 2016. The Association for Computing Machinery.

[127] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel. Design
Guidelines for Domain Specific Languages. In M. Rossi, J. Sprinkle, J. Gray, and J.-P.
Tolvanen, editors, Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling
(DSM ’09), Helsinki, 2014. Helsingin Kauppakorkeakoulu.

[128] T. Katsimpa, Y. Panagis, E. Sakkopoulos, G. Tzimas, and A. Tsakalidis. Application
modeling using reverse engineering techniques. In H. M. Haddad, editor, Proceedings of
the 2006 ACM symposium on Applied computing, pages 1250–1255, New York, NY, 2006.
ACM.

[129] T. Kehrer. SiLift: Semantic Lifting of Model Differences, 2017. URL: http://pi.infor
matik.uni-siegen.de/Projekte/SiLift/.

[130] T. Kehrer, U. Kelter, and G. Taentzer. A rule-based approach to the semantic lifting
of model differences in the context of model versioning. In P. Alexander, editor, 26th
IEEE/ACM International Conference on Automated Software Engineering, pages 163–172,
Piscataway, NJ, 2011. IEEE.

[131] S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ A fully configurable multi-user and multi-
tool CASE and CAME environment. In P. Constantopoulos, J. Mylopoulos, and Y. Vas-
siliou, editors, Advanced Information Systems Engineering, pages 1–21, Berlin, Heidelberg,
1996. Springer.

[132] S. Kelly and J. Tolvanen. Domain-specific modeling: Enabling full code generation. Wiley
IEEE and IEEE Xplore, Hoboken, New Jersey and Piscataway, New Jersey, 2008.

[133] A. Kempkens. Joomla! - Content Management System to build websites & apps, 2019.
URL: https://www.joomla.org/about-joomla.html.

[134] S. Khatoon, G. Li, and A. Mahmood. Comparison and evaluation of source code mining
tools and techniques: A qualitative approach. Intelligent Data Analysis, 17(3):459–484,
2013.

[135] A. G. Kleppe. Software language engineering: Creating domain-specific languages using
metamodels. Addison-Wesley, Upper Saddle River, NJ, 2009.

[136] G. Kotonya and I. Sommerville. Requirements engineering: Processes and techniques.
Wiley, Chichester u.a., 2004.

[137] A. Kraus, A. Knapp, and N. Koch. Model-Driven Generation of Web Applications in UWE.
PhD thesis, Ludwig-Maximilians-Universität, Munich, Germany, 2008.

[138] C. Krause. Henshin Project Page, 2020. URL: https://www.eclipse.org/henshin/.

http://hdl.handle.net/10012/4753
http://pi.informatik.uni-siegen.de/Projekte/SiLift/
http://pi.informatik.uni-siegen.de/Projekte/SiLift/
https://www.joomla.org/about-joomla.html
https://www.eclipse.org/henshin/

Bibliography 277

[139] K. Krogmann and S. Becker. A Case Study on Model-Driven and Conventional Software
Development: The Palladio Editor. In S. Böttinger, L. Theuvsen, S. Rank, and M. Morgen-
stern, editors, Software Engineering 2007 – Beiträge zu den Workshops – Fachtagung des
GI-Fachbereichs Softwaretechnik, pages 169–175, Bonn, 2007. Gesellschaft für Informatik
e. V.

[140] V. Kulkarni, S. Barat, and U. Ramteerthkar. Early Experience with Agile Methodology in
a Model-Driven Approach. In J. Whittle, T. Clark, and T. Kühne, editors, Model Driven
Engineering Languages and Systems, pages 578–590, Berlin, Heidelberg, 2011. Springer.

[141] LF Projects, LLC. Home - Zend Framework, 2019. URL: https://getlaminas.org/.

[142] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson. Model-based Engineering in
the Embedded Systems Domain: An Industrial Survey on the State-of-practice. Software
& Systems Modeling, 17(1):91–113, 2018.

[143] K. Linne and S. Schepp. ejsl-angular-interpreter, 2020. URL: https://git.thm.de/kln
n67/ejsl-angular-interpreter/wikis/home.

[144] Magento. Magento - eCommerce Software & eCommerce Platform Solutions[online]. Avail-
able: https://magento.com, 2018. URL: https://magento.com/.

[145] Mancini, J. The next wave: Moving from ECM to Intelligent Information Management,
2017. URL: http://info.aiim.org/the-next-wave-from-ecm-to-intelligent-info
rmation-management-aiim.

[146] R. C. Martin, M. C. Feathers, T. R. Ottinger, J. J. Langr, B. L. Schuchert, J. W. Grenning,
and K. D. Wampler. Clean code: A handbook of agile software craftsmanship. Prentice
Hall, Upper Saddle River, NJ and Boston and Indianapolis and San Francisco and New
York and Toronto and Montreal and London and Munich and Paris and Madrid, Capetown
and Sydney and Tokyo and Singapore and Mexico City, 2009.

[147] Y. Martinez, C. Cachero, and S. Meliá. Empirical Study on the Maintainability of Web
Applications: Model-driven Engineering vs Code-centric. Empirical Software Engineering.,
19(6):1887–1920, 2014.

[148] J. Martinez-Caro, A. Aledo-Hernandez, A. Guillen-Perez, R. Sanchez-Iborra, and M. Cano.
A Comparative Study of Web Content Management Systems. Information, 9(2):27, 2018.

[149] MathWorks. MathWorks - Makers of MATLAB and Simulink, 2017. URL: https://uk.m
athworks.com/.

[150] S. McKeever. Understanding Web content management systems: Evolution, lifecycle and
market. Industrial Management & Data Systems, 103(9):686–692, 2003.

[151] M. Meike, J. Sametinger, and A. Wiesauer. Security in Open Source Web Content Man-
agement Systems. IEEE Security & Privacy Magazine, 7(4):44–51, 2009.

[152] S. Mendel, A. Knowles, B. Cook, and E. Enke. SQL_Parser, 2016. URL: https://pear
.php.net/package/SQL_Parser.

[153] T. Mens and P. van Gorp. A Taxonomy of Model Transformation. Electronic Notes in
Theoretical Computer Science, 152:125–142, 2006.

[154] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific
languages. ACM Computing Surveys, 37(4):316–344, 2005.

[155] MicroTool. objectiF – Model-driven Development, 2017. URL: https://www.microtool.
de/en/objectif-model-driven-development/.

https://getlaminas.org/
https://git.thm.de/klnn67/ejsl-angular-interpreter/wikis/home
https://git.thm.de/klnn67/ejsl-angular-interpreter/wikis/home
https://magento.com/
http://info.aiim.org/the-next-wave-from-ecm-to-intelligent-information-management-aiim
http://info.aiim.org/the-next-wave-from-ecm-to-intelligent-information-management-aiim
https://uk.mathworks.com/
https://uk.mathworks.com/
https://pear.php.net/package/SQL_Parser
https://pear.php.net/package/SQL_Parser
https://www.microtool.de/en/objectif-model-driven-development/
https://www.microtool.de/en/objectif-model-driven-development/

278 Bibliography

[156] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez. An empirical study of the
state of the practice and acceptance of model-driven engineering in four industrial cases.
Empirical Software Engineering, 18(1):89–116, 2013.

[157] N. Mohd Razali and B. Yap. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov,
Lilliefors and Anderson-Darling Tests. Statistical Modeling and Analytics, 2(1):21–33, 2011.

[158] D. C. Montgomery. Design and analysis of experiments. John Wiley & Sons, New York /
Chichester, 5th edition, 2001.

[159] Netcraft Ltd. Web Server Survey, 2019. URL: https://news.netcraft.com/archives
/category/web-server-survey/.

[160] M. C. Norrie, L. Di Geronimo, A. Murolo, and M. Nebeling. The Forgotten Many? A
Survey of Modern Web Development Practices. In S. Casteleyn, G. Rossi, and M. Winckler,
editors, Current Trends in Web Engineering, volume 8541 of Lecture Notes in Computer
Science, pages 290–307, Cham, 2014. Springer International Publishing.

[161] Object Management Group. About the Abstract Syntax Tree Metamodel Specification
Version 1.0, 2011. URL: https://www.omg.org/spec/ASTM/.

[162] Object Management Group. OMG, Object Management Group, 2017. URL: http://ww
w.omg.org/.

[163] Object Management Group. About the Knowledge Discovery Metamodel Specification
Version, 2018. URL: https://www.omg.org/spec/KDM/1.0/.

[164] Object Management Group. IFML: The Interaction Flow Modeling Language | The OMG
standard for front-end design, 2018. URL: https://www.ifml.org/.

[165] Object Management Group. Meta Object Facility Specification Version 2.5.1, 2019. URL:
https://www.omg.org/spec/MOF/.

[166] Inc Open Source Matters. Joomla Coding Standards Documentation, 2018. URL: https:
//developer.joomla.org/coding-standards.html.

[167] Inc Open Source Matters. Joomla! Framework, a framework for developing PHP applica-
tions, 2019. URL: https://framework.joomla.org/.

[168] Inc. Open Source Matters. J3.x:Developing an MVC Component/Developing a Basic Com-
ponent – Joomla! Documentation, 2020. URL: https://docs.joomla.org/J3.x:
Developing_an_MVC_Component/Developing_a_Basic_Component.

[169] Inc Open Source Matters. J4 Component example - Mywalks – Joomla! Documentation,
2020. URL: https://docs.joomla.org/J4_Component_example_-_Mywalks.

[170] Inc. Open Source Matters. Joomla! Extensions Directory, 2020. URL: https://extens
ions.joomla.org/.

[171] Inc Open Source Matters. Joomla!.org, ToDo. URL: https://www.joomla.org/.

[172] Open Source Matters Inc. Joomla 4 is on the horizon łdots Alpha 12, 2019. URL: https:
//developer.joomla.org/news/793-joomla-4-is-on-the-horizon-alpha-12.html.

[173] M. Otto, J. Thornton, and Bootstrap contributors. Bootstrap, 2020. URL: https://getb
ootstrap.com/.

[174] T. Otwell. Laravel - The PHP Framework For Web Artisans, 2019. URL: https://lara
vel.com/.

https://news.netcraft.com/archives/category/web-server-survey/
https://news.netcraft.com/archives/category/web-server-survey/
https://www.omg.org/spec/ASTM/
http://www.omg.org/
http://www.omg.org/
https://www.omg.org/spec/KDM/1.0/
https://www.ifml.org/
https://www.omg.org/spec/MOF/
https://developer.joomla.org/coding-standards.html
https://developer.joomla.org/coding-standards.html
https://framework.joomla.org/
https://docs.joomla.org/J3.x:Developing_an_MVC_Component/Developing_a_Basic_Component
https://docs.joomla.org/J3.x:Developing_an_MVC_Component/Developing_a_Basic_Component
https://docs.joomla.org/J4_Component_example_-_Mywalks
https://extensions.joomla.org/
https://extensions.joomla.org/
https://www.joomla.org/
https://developer.joomla.org/news/793-joomla-4-is-on-the-horizon-alpha-12.html
https://developer.joomla.org/news/793-joomla-4-is-on-the-horizon-alpha-12.html
https://getbootstrap.com/
https://getbootstrap.com/
https://laravel.com/
https://laravel.com/

Bibliography 279

[175] F. Paetsch, A. Eberlein, and F. Maurer. Requirements engineering and agile software
development. In Twelfth IEEE International Workshops on Enabling Technologies, pages
308–313, Los Alamitos, Calif, 2003. IEEE Computer Society.

[176] J. I. Panach, S. España, Ó. Dieste, Ó. Pastor, and N. Juristo. In search of evidence
for model-driven development claims: An experiment on quality, effort, productivity and
satisfaction. Information and Software Technology, 62:164–186, 2015.

[177] P. E. Papotti, A. F. do Prado, W. L. de Souza, C. E. Cirilo, and L. F. Pires. A Quantitative
Analysis of Model-Driven Code Generation through Software Experimentation. In C. Sali-
nesi, M. C. Norrie, and Ó. Pastor, editors, Advanced Information Systems Engineering,
pages 321–337, Berlin, Heidelberg, 2013. Springer.

[178] S. Patig and J. Dibbern. Requirements Engineering — Enzyklopaedie der Wirtschaftsin-
formatik, 2018. URL: http://www.enzyklopaedie-der-wirtschaftsinformatik.de/l
exikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwickl
ung/Problemanalyse-/Requirements-Engineering/index.html.

[179] PHP Framework Interop Group. PSR-12: Extended Coding Style, 2020. URL: https:
//www.php-fig.org/psr/psr-12/.

[180] M. Pichler. PHP Mess Detector, 2016. URL: https://phpmd.org/.

[181] Joomla PLT. Weblinks - Joomla Extension Directory, 2015. URL: https://extensions
.joomla.org/extension/weblinks/.

[182] T. Preston-Werner. Semantic Versioning 2.0.0, 2019. URL: https://semver.org/.

[183] D. Priefer. Model-driven development of content management systems based on Joomla. In
I. Crnkovic, M. Chechik, and P. Grünbacher, editors, Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, pages 911–914, New York,
2014. ACM.

[184] D. Priefer. JooMDD project site (GitHub), 2019. URL: https://github.com/thm-mni
-ii/JooMDD.

[185] D. Priefer, P. Kneisel, W. Rost, D. Struber, and G. Taentzer. Applying MDD in the Content
Management System Domain: Scenarios and Empirical Assessment. In ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems, pages 56–
66. IEEE, 2019.

[186] D. Priefer, P. Kneisel, and D. Strüber. Iterative Model-Driven Development of Software
Extensions for Web Content Management Systems. In A. Anjorin and H. Espinoza, editors,
Modelling Foundations and Applications: 13th European Conference, ECMFA 2017, Held
as Part of STAF 2017, Marburg, Germany, July 19-20, 2017, Proceedings, pages 142–157,
Cham, 2017. Springer International Publishing.

[187] D. Priefer, P. Kneisel, and G. Taentzer. A Model-Driven Process to Migrate Web Con-
tent Management System Extensions. In A. Bozzon, editor, Web engineering, volume
9671 of Lecture Notes in Computer Science Information systems and applications, incl.
Internet/Web, and HCI, pages 603–606, Cham and Heidelberg, 2016. Springer.

[188] D. Priefer, P. Kneisel, and G. Taentzer. JooMDD: A Model-Driven Development Environ-
ment for Web Content Management System Extensions. In ICSE Companion ’16: Com-
panion Proceedings of the 38th International Conference on Software Engineering, pages
633–636, New York, NY, USA, 2016. ACM.

[189] D. Priefer, W. Rost, D. Strüber, G. Taentzer, and P. Kneisel. Online Appendix: Model-
Driven Development in the Content Management System Domain: Empirical Assessment

http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Requirements-Engineering/index.html
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Requirements-Engineering/index.html
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Requirements-Engineering/index.html
https://www.php-fig.org/psr/psr-12/
https://www.php-fig.org/psr/psr-12/
https://phpmd.org/
https://extensions.joomla.org/extension/weblinks/
https://extensions.joomla.org/extension/weblinks/
https://semver.org/
https://github.com/thm-mni-ii/JooMDD
https://github.com/thm-mni-ii/JooMDD

280 Bibliography

during Common Development Scenarios, 2020. URL: https://figshare.com/articles/
journal_contribution/Model-Driven_Development_in_the_Content_Management_S
ystem_Domain_Empirical_Assessment_during_Common_Development_Scenarios/126
61538.

[190] D. Priefer, W. Rost, D. Strüber, G. Taentzer, and P. Kneisel. Applying MDD in the
content management system domain: Scenarios, tooling, and a mixed-method empirical
assessment. Software & Systems Modeling, 2021.

[191] V. Proietti and MooTools Developers. MooTools, 2020. URL: https://mootools.net/.

[192] S. Robertson and J. Robertson. Mastering the requirements process: Getting requirements
right. Addison-Wesley, Upper Saddle River, N.J, 3rd ed. edition, 2013.

[193] A. Rodrigues da Silva, J. Saraiva, R. Silva, and C. Martins. XIS-UML Profile for eXtreme
Modeling Interactive Systems. In J. Fernandes, editor, Fourth International Workshop
on Model-Based Methodologies for Pervasive and Embedded Software, pages 55–66, Los
Alamitos, Calif., 2007. IEEE Computer Society.

[194] R. Rodriguez-Echeverria, J. Preciado, J. Sierra, J. M. Conejero Manzano, and F. Sánchez-
Figueroa. AutoCRUD: Automatic generation of CRUD specifications in interaction flow
modelling language. Science of Computer Programming, 168:165–168, 2018.

[195] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Model Migration with Epsilon
Flock. In Proceedings of the Third International Conference on Theory and Practice of
Model Transformations, ICMT’10, pages 184–198, Berlin, Heidelberg, 2010. Springer.

[196] W. Rost. Mining of DSLs and Generator Templates from Reference Applications. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS ’20, pages 1–7, New York, NY,
USA, 2020. Association for Computing Machinery.

[197] A. Roth and B. Rumpe. Towards product lining model-driven development code gener-
ators. In 2015 3rd International Conference on Model-Driven Engineering and Software
Development (MODELSWARD), pages 539–545, 2015.

[198] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone de-
tection techniques and tools: A qualitative approach. Science of Computer Programming,
74(7):470–495, 2009.

[199] P. Rubens. Use Low-Code Platforms to Develop the Apps Customers Want, 2014. URL:
https://www.cio.com/article/2845378/development-tools/use-low-code-platfor
ms-to-develop-the-apps-customers-want.html.

[200] C. Rupp. Requirements-Engineering und -Management: Professionelle, iterative An-
forderungsanalyse für die Praxis. Hanser, München and Wien, 5., aktualisierte und erw.
aufl. edition, 2009.

[201] I. Salman, A. T. Misirli, and N. Juristo. Are students representatives of professionals in
software engineering experiments? In IEEE/ACM 37th IEEE International Conference on
Software Engineering, pages 666–676, 2015.

[202] J. Sánchez Cuadrado, O. Ávila García, J. L. Cánovas Izquierdo, and A. Sánchez-Barbudo
Herrera. On the automation of the horse-shoe model for software modernization, 2012.
URL: https://modeling-languages.com/on-the-automation-of-the-horse-shoe-m
odel-for-software-modernization/.

https://figshare.com/articles/journal_contribution/Model-Driven_Development_in_the_Content_Management_System_Domain_Empirical_Assessment_during_Common_Development_Scenarios/12661538
https://figshare.com/articles/journal_contribution/Model-Driven_Development_in_the_Content_Management_System_Domain_Empirical_Assessment_during_Common_Development_Scenarios/12661538
https://figshare.com/articles/journal_contribution/Model-Driven_Development_in_the_Content_Management_System_Domain_Empirical_Assessment_during_Common_Development_Scenarios/12661538
https://figshare.com/articles/journal_contribution/Model-Driven_Development_in_the_Content_Management_System_Domain_Empirical_Assessment_during_Common_Development_Scenarios/12661538
https://mootools.net/
https://www.cio.com/article/2845378/development-tools/use-low-code-platforms-to-develop-the-apps-customers-want.html
https://www.cio.com/article/2845378/development-tools/use-low-code-platforms-to-develop-the-apps-customers-want.html
https://modeling-languages.com/on-the-automation-of-the-horse-shoe-model-for-software-modernization/
https://modeling-languages.com/on-the-automation-of-the-horse-shoe-model-for-software-modernization/

Bibliography 281

[203] Ó. Sánchez Ramón, J. Sánchez Cuadrado, and J. García Molina. Model-driven reverse
engineering of legacy graphical user interfaces. Automated Software Engineering, 21(2):147–
186, 2014.

[204] J. Saraiva and A. R. da Silva. CMS-Based Web-Application Development Using Model-
Driven Languages. In Proceedings of the 2009 Fourth International Conference on Software
Engineering Advances, ICSEA ’09, pages 21–26, Washington DC USA, 2009. IEEE Com-
puter Society.

[205] J. Saraiva and A. R. da Silva. Web-Application Modeling With the CMS-ML Language.
In II Simpósio de Informática (INForum 2010), 2010.

[206] J. d. S. Saraiva. Development of CMS-based Web Applications with a Multi-Language
Model-Driven Approach. PhD thesis, Universidade Técinica de Lisboa, Lisbon, Portugal,
2012.

[207] Scala Community. scala/scala-parser-combinators, 2020. URL: https://github.com/sca
la/scala-parser-combinators.

[208] A. Schauerhuber, M. Wimmer, E. Kapsammer, W. Schwinger, and W. Retschitzegger.
Bridging WebML to model-driven engineering: From document type definitions to meta
object facility. IET Software, 1(3):81–97, 2007.

[209] R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing legacy systems: Software tech-
nologies, engineering processes, and business practices. Addison-Wesley, Boston, MA, 2003.

[210] SensioLabs. Symfony, High Performance PHP Framework for Web Development, 2019.
URL: https://symfony.com/.

[211] S. S. Shapiro and M. B. Wilk. An Analysis of Variance Test for Normality. Biometrika,
52(3-4):591–611, 1965.

[212] Shopify International Limited. Shopify Homepage, 2019. URL: https://www.shopify.co
m/.

[213] F. Shull, D. I. K. Sjøberg, and J. Singer. Guide to Advanced Empirical Software Engineer-
ing. Springer-Verlag London Limited, London, 2008.

[214] Simply Open Source. Component Architect, 2019. URL: https://www.componentarchi
tect.com.

[215] K. Smolander, K. Lyytinen, V. Tahvanainen, and P. Marttiin. MetaEdit— A flexible
graphical environment for methodology modelling. In R. Andersen, J. A. Bubenko, and
A. Sølvberg, editors, Advanced Information Systems Engineering, pages 168–193, Berlin,
Heidelberg, 1991. Springer.

[216] V. Sousa, E. Syriani, and M. Paquin. Feedback on How MDE Tools Are Used Prior to
Academic Collaboration. In Proceedings of the Symposium on Applied Computing, SAC
’17, pages 1190–1197, New York, NY, USA, 2017. ACM.

[217] Spacedog ApS. Component Generator, 2019. URL: https://www.componentgenerator
.com/.

[218] SparxSystems Software GmbH. Enterprise Architect Editionen, 2016. URL: https://ww
w.sparxsystems.de/uml/enterprisearchitect-editionen/.

[219] Squarespace Ireland Ltd. Squarespace website, 2019. URL: https://de.squarespace.c
om/.

[220] Squiz Labs. PHP CodeSniffer, 2021. URL: https://github.com/squizlabs/PHP_CodeS
niffer.

https://github.com/scala/scala-parser-combinators
https://github.com/scala/scala-parser-combinators
https://symfony.com/
https://www.shopify.com/
https://www.shopify.com/
https://www.componentarchitect.com
https://www.componentarchitect.com
https://www.componentgenerator.com/
https://www.componentgenerator.com/
https://www.sparxsystems.de/uml/enterprisearchitect-editionen/
https://www.sparxsystems.de/uml/enterprisearchitect-editionen/
https://de.squarespace.com/
https://de.squarespace.com/
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer

282 Bibliography

[221] T. Stahl and M. Völter. Model-driven software development: Technology, engineering,
management. John Wiley, Chichester, England and Hoboken, NJ, 2006.

[222] C. Stoermer, F. Bachmann, and C. Verhoef. SACAM: The Software Architecture Compar-
ison Analysis Method. URL: http://resources.sei.cmu.edu/library/asset-view.c
fm?AssetID=6605.

[223] Strapi. Strapi - Open source Node.js Headless CMS, 2020. URL: https://strapi.io/.

[224] J. Svajlenko and C. K. Roy. CloneWorks: A Fast and Flexible Large-Scale Near-Miss Clone
Detection Tool. In IEEE/ACM 39th International Conference on Software Engineering
companion, pages 177–179, Piscataway, NJ, 2017. IEEE.

[225] V. Svansson and R. E. Lopez-Herrejon. A Web Specific Language for Content Management
Systems. In Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling,
Montréal, Canada, 2007.

[226] J. Swanhart and A. Rothe. greenlion/PHP-SQL-Parser, 2019. URL: https://github.c
om/greenlion/PHP-SQL-Parser.

[227] The Eclipse Foundation. EMF Compare - Compare and Merge Your EMF Models,
10.11.2017. URL: https://www.eclipse.org/emf/compare/.

[228] The Eclipse Foundation. Epsilon Flock, 2014. URL: http://www.eclipse.org/epsilon/
doc/flock/.

[229] The Eclipse Foundation. EuGENia, 2014. URL: https://www.eclipse.org/epsilon/do
c/eugenia/.

[230] The Eclipse Foundation. Sirius - The easiest way to get your own Modeling Tool, 2018.
URL: https://www.eclipse.org/sirius/.

[231] THM Web Editorial Staff. THM Organizer - Home, 2020. URL: https://www.thm.de/o
rganizer/.

[232] H. C. Thode. Testing For Normality. Taylor & Francis, 2002.

[233] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio. Benefits from modelling
and MDD adoption. In Proceedings of the Second Edition of the International Workshop
on Experiences and Empirical Studies in Software Modelling, pages 1–6, New York, NY,
2012. ACM.

[234] J. Torres, J. Resendiz, I. Aedo, and J. M. Dodero. ORIGINAL ARTICLE: A Model-
Driven Development Approach for Learning Design Using the LPCEL Editor. Journal of
King Saud University - Computer and Information Sciences, 26(1):17–27, 2014.

[235] F. Trias. Building CMS-based Web applications using a model-driven approach. In C. Rol-
land, J. Castro, and Ó. Pastor, editors, Sixth International Conference on Research Chal-
lenges in Information Science, pages 1–6, Piscataway, NJ, 2012. IEEE.

[236] F. Trias, V. de Castro, M. López-Sanz, and E. Marcos. A Systematic Literature Review
on CMS-based Web Applications. In ICSOFT, 2013.

[237] F. Trias, V. de Castro, M. Lopez-Sanz, and E. Marcos. Migrating Traditional Web Applica-
tions to CMS-based Web Applications. Electronic Notes in Theoretical Computer Science,
314:23–44, 2015.

[238] F. Trias, V. de Castro, M. López-Sanz, and E. Marcos. RE-CMS: a reverse engineering
toolkit for the migration to CMS-based web applications. In SAC ’15: Proceedings of
the 30th Annual ACM Symposium on Applied Computing, pages 810–812, New York, NY,
USA, 2015. ACM.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6605
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6605
https://strapi.io/
https://github.com/greenlion/PHP-SQL-Parser
https://github.com/greenlion/PHP-SQL-Parser
https://www.eclipse.org/emf/compare/
http://www.eclipse.org/epsilon/doc/flock/
http://www.eclipse.org/epsilon/doc/flock/
https://www.eclipse.org/epsilon/doc/eugenia/
https://www.eclipse.org/epsilon/doc/eugenia/
https://www.eclipse.org/sirius/
https://www.thm.de/organizer/
https://www.thm.de/organizer/

Bibliography 283

[239] TYPO3 Association. TYPO3 - The Enterprise Open Source CMS [online]. Available:
https://typo3.org, 2019. URL: https://typo3.org/.

[240] A. Vargha and H. D. Delaney. A Critique and Improvement of the CL Common Lan-
guage Effect Size Statistics of McGraw and Wong. Journal of Educational and Behavioral
Statistics, 25(2):101–132, 2000.

[241] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov. Quality and productivity out-
comes relating to continuous integration in GitHub. In E. Di Nitto, M. Harman, and
P. Heymans, editors, Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, pages 805–816, New York, NY, 2015. ACM.

[242] Vast Development Method. Joomla Component Builder, 2019. URL: https://www.joom
lacomponentbuilder.com/.

[243] S. Vaupel. A Framework for Model-Driven Development of Mobile Applications with Con-
text Support. PhD thesis, Philipps-Universität, Marburg, 2018.

[244] S. Vaupel, D. Strüber, F. Rieger, and G. Taentzer. Agile bottom-up development of domain-
specific ides for model-driven development. In D. di Ruscio, J. de Lara, and A. Pierantonio,
editors, Proceedings of the Workshop on Flexible Model Driven Engineering co-located with
ACM/IEEE 18th International Conference on Model Driven Engineering Languages &
Systems, CEUR Workshop Proceedings, pages 12–21. CEUR-WS.org, 2015.

[245] S. Vaupel, G. Taentzer, R. Gerlach, and M. Guckert. Model-driven development of mobile
applications for Android and iOS supporting role-based app variability. Software & System
Modeling, 17(1):35–63, 2018.

[246] S. D. Vermolen, G. Wachsmuth, and E. Visser. Generating database migrations for evolv-
ing web applications. In E. Denney and U. P. Schultz, editors, Proceedings of the 10th
ACM International Conference on Generative Programming and Component Engineering,
SIGPLAN notices, pages 83–92, New York, NY, 2011. ACM Press.

[247] E. Visser. WebDSL: A Case Study in Domain-Specific Language Engineering. In R. Läm-
mel, J. Visser, and J. Saraiva, editors, Generative and transformational techniques in soft-
ware engineering II, volume 5235 of Lecture Notes in Computer Science, pages 291–373,
Berlin, Heidelberg, 2008. Springer.

[248] K. Vlaanderen, F. Valverde, and O. Pastor. Model-Driven Web Engineering in the CMS
Domain: A Preliminary Research Applying SME. In W. Aalst, J. Mylopoulos, N. M.
Sadeh, M. J. Shaw, C. Szyperski, J. Filipe, and J. Cordeiro, editors, Enterprise Information
Systems, volume 19 of Lecture Notes in Business Information Processing, pages 226–237,
Berlin, Heidelberg, 2009. Springer.

[249] J. M. Vlissides. Pattern hatching: Design patterns applied. Addison-Wesley, Reading,
Mass., 1998.

[250] M. Voelter. Best Practices for DSLs and Model-Driven Development, 2009. URL: http:
//www.jot.fm/issues/issue_2009_09/column6/index.html.

[251] W3Techs. Historical yearly trends in the usage of content management systems, January
2018, 2020. URL: https://w3techs.com/technologies/history_overview/content_m
anagement/all/y.

[252] W3Techs. Usage Statistics and Market Share of Content Management Systems for Web-
sites, January 2018, 2020. URL: https://w3techs.com/technologies/overview/cont
ent_management/all.

https://typo3.org/
https://www.joomlacomponentbuilder.com/
https://www.joomlacomponentbuilder.com/
http://www.jot.fm/issues/issue_2009_09/column6/index.html
http://www.jot.fm/issues/issue_2009_09/column6/index.html
https://w3techs.com/technologies/history_overview/content_management/all/y
https://w3techs.com/technologies/history_overview/content_management/all/y
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all

284 Bibliography

[253] C. Wagner. Model-Driven Software Migration: A Methodology: Reengineering, Recovery
and Modernization of Legacy Systems. Springer Fachmedien Wiesbaden, Wiesbaden and
s.l., 2014.

[254] J. B. Warmer and A. G. Kleppe. The object constraint language: Precise modeling with
UML. Addison-Wesley, Boston, 1999.

[255] T. Warneke. JSQLParser/JSqlParser, 2020. URL: https://github.com/JSQLParser/JS
qlParser.

[256] WebRatio. Webratio homepage. URL: https://www.webratio.com/site/content/en/h
ome.

[257] G. M. Weinberg. Systemdenken und Softwarequalität. Hanser, München and Wien, 1994.

[258] J Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal. Industrial Adop-
tion of Model-Driven Engineering: Are the Tools Really the Problem? In A. Moreira,
B. Schätz, J. Gray, and A. Vallecillo, editors, Model-Driven Engineering Languages and
Systems, volume 8107 of Lecture Notes in Computer Science / Programming and Software
Engineering, pages 1–17, Berlin/Heidelberg, 2013. Springer.

[259] Wix.com Ltd. Wix Homepage, 2019. URL: https://wix.com/.

[260] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln. Experimentation
in Software Engineering. Springer Publishing Company, Incorporated, 2012.

[261] WooCommerce. WooCommerce - eCommerce for WordPress, 2019. URL: https://wooc
ommerce.com/.

[262] WordPress community. Make WordPress - Get Involved, 2019. URL: https://make.wor
dpress.org/.

[263] WordPress community. Plugin Developer Handbook, 2019. URL: https://developer.wo
rdpress.org/plugins/.

[264] WordPress.org. Installing WordPress - Famous 5 Minutes Installation, 2019. URL: https:
//codex.wordpress.org/Installing_WordPress#Famous_5-Minute_Installation.

[265] WordPress.org. WordPress Versions, 2019. URL: https://codex.wordpress.org/Word
Press_Versions.

[266] WordPress.org. WordPress Plugins, 2020. URL: https://de.wordpress.org/plugins/.

[267] E. You. Vue.js, 2019. URL: https://vuejs.org/.

[268] G. Zhang, X. Peng, Z. Xing, and W. Zhao. Cloning practices: Why developers clone and
what can be changed. In 28th IEEE International Conference on Software Maintenance
(ICSM), pages 285–294, Piscataway, NJ, 2012. IEEE.

[269] Y. Zhang and S. Patel. Agile Model-Driven Development in Practice. IEEE Software,
28(2):84–91, 2011.

[270] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact of continuous
integration on other software development practices: A large-scale empirical study. In
G. Rosu, M. Di Penta, and T. N. Nguyen, editors, 32nd IEEE/ACM International Con-
ference on Automated Software Engineering, pages 60–71, Piscataway, NJ, 2017. IEEE.

[271] M. F. Zibran and C. K. Roy. Towards flexible code clone detection, management, and
refactoring in IDE. In J. R. Cordy, editor, Proceedings of the 5th International Workshop
on Software Clones, pages 75–76, New York, NY, 2011. ACM.

https://github.com/JSQLParser/JSqlParser
https://github.com/JSQLParser/JSqlParser
https://www.webratio.com/site/content/en/home
https://www.webratio.com/site/content/en/home
https://wix.com/
https://woocommerce.com/
https://woocommerce.com/
https://make.wordpress.org/
https://make.wordpress.org/
https://developer.wordpress.org/plugins/
https://developer.wordpress.org/plugins/
https://codex.wordpress.org/Installing_WordPress#Famous_5-Minute_Installation
https://codex.wordpress.org/Installing_WordPress#Famous_5-Minute_Installation
https://codex.wordpress.org/WordPress_Versions
https://codex.wordpress.org/WordPress_Versions
https://de.wordpress.org/plugins/
https://vuejs.org/

	Contents
	Introduction
	Motivation
	Challenges
	Contributions
	Methodology
	Outline
	Thesis-Related Publications and Presentations

	Web Content Management Systems
	WCMS Features
	Sections and Roles
	Core Features
	Extensibility and Programmability

	Commonalities and Differences in WCMS Extension Development
	WCMS Market
	Extension Development Comparison

	Common Extension Development Scenarios
	Scenario 1: Development of Independent Extensions
	Scenario 2: Development of Dependent Extensions
	Scenario 3: Migration of a Legacy Extension to a new Platform (Version)
	Further Scenarios

	Model-Driven Engineering
	Terminology
	MDE in Software Development
	MDE Infrastructure Development
	Design of Domain-Specific Languages
	Providing Transformations
	Support for MDE Tool Development
	IDE Integration
	Custom Code Integration
	Development Process

	MDE of WCMS Extensions - General Solution Concept and Requirements
	Interviews with Extension Developers
	Set-up
	Results
	Interpretation

	MDE Concept for WCMS Extensions
	Model-Driven Engineering of Independent Extensions
	Model-Driven Engineering of Dependent Extensions
	Model-Driven Migration of Legacy Extensions
	Additional Scenarios

	MDE Infrastructure Requirements Elicitation
	Domain-Specific Language
	Model Editors
	Code Generator
	Reverse Engineering Facilities
	General Infrastructure Requirements
	Summary

	Discussion
	Relevance of Scenarios 1-5 (RQ1.1)
	MDE Concept for Scenarios 1-5 (RQ1.2)
	MDE Infrastructure Requirements for Scenarios 1-5 (RQ1.3)

	Domain-Specific Language for WCMS Extensions
	State of the Art
	Language Design
	Data Modelling
	Interaction Modelling
	Extension Modelling
	Core Support

	Well-formedness Rules
	Data Modelling
	Interaction Modelling
	Extension Modelling

	Model Editors
	Showcase Models
	Evaluation
	Requirement Verification and Validation
	Adequacy of the DSL
	Threats to Validity

	Transformation Tools
	State of the Art
	Translation to Extension Code
	Handling of Legacy Extensions

	Code Generation of WCMS Extensions
	Concept
	Joomla-specific Extension Generator

	Extraction of Deployed WCMS Extensions
	Concept
	ExtPorter: A Joomla-Specific Component Extractor

	Model Extraction of Legacy Extensions
	Concept
	JExt2eJSL: Model Extraction of Joomla 3 Components

	Evaluation
	Requirement Verification and Validation
	Threats to Validity

	MDE of WCMS Extensions - Quantitative and Qualitative Analysis
	State of the Art
	Quantitative Analysis - Conducting a Controlled Experiment
	Method
	Results
	Discussion

	Qualitative Analysis - MDE Workshop with Industrial Practitioners
	Method
	Observations
	Discussion

	Lessons Learned
	Threats to Validity
	Construct Validity
	Internal Validity
	Conclusion Validity
	External Validity

	Summary and Outlook
	Summary
	Outlook

	Semi-Structured Expert Interview
	Meta-Model of the cJSL DSL
	Well-Formedness Rules for eJSL
	Generator Scalability Tests
	Controlled Experiment: Documents
	Controlled Experiment: Results
	Hands-on Tutorial
	Bibliography

