152 research outputs found

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Review. Monitoring the intermodal, refrigerated transport of fruit using sensor networks

    Get PDF
    Most of the fruit in Europe is transported by road, but the saturation of the major arteries, the increased demand for freight transport, and environmental concerns all indicate there is a need to change this means of transport. A combination of transport modes using universal containers is one of the solutions proposed: this is known as intermodal transport. Tracking the transport of fruit in reefer containers along the supply chain is the means by which product quality can be guaranteed. The integration of emerging information technologies can now provide real-time status updates. This paper reviews the literature and the latest technologies in this area as part of a national project. Particular emphasis is placed on multiplexed digital communication technologies and wireless sensor networks

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Remote machine condition monitoring based on power supply measurements

    Get PDF
    The most widely used rotating machines in the industry are three phase alternative current (AC) induction machines. With the advances in variable speed drive (VSD) technology, they have become even more reliable than their direct current (DC) counterpart. However, inevitably these motors soon begin to fail with time due to mechanical, electrical or thermal stress hence the need for condition monitoring (CM). Condition monitoring systems help keep machines running productively by detecting potential equipment failures before it actually fails. Many condition monitoring methods exist on the market including vibration monitoring; acoustic emission monitoring, thermal monitoring, chemical monitoring, current monitoring but most of these methods require additional sensors and expensive data acquisition system on top of a specialise software tool. This all increases the cost of ownership and maintenance. For more efficient monitoring of induction motor drive systems, this research investigates an innovative remote monitoring system using existing data available in AC drives based on AC motor operating process. This research uses standard automation components already present in most automated control systems. A remote data communication platform is developed, allowing access to the control data remotely over a wireless network and internet using PLC and SCADA system. Remote machine condition monitoring is not a new idea but its application to machine monitoring based on power supply parameters indirectly measured by an inverter is new. To evaluate the basic performance of the platform, the monitoring of shaft misalignment, a typical fault in mechanical system is investigated using an in-house gearbox test rig. It has resulted in a model based detection method based on different speed and load settings against the motor current feedback read by the inverter. The results have demonstrated that the platform is reliable and effective. In addition the monitoring method can be employed to detect and diagnose different degrees of misalignment in real time. This dissertation has major contributions to knowledge which includes: Understanding of real life machine condition monitoring problems for this application, including use of wireless sensor, communication over Industrial Ethernet and network security. The use of standard automation components (PLC and SCADA) in machine condition monitoring. MSc Research (Engineering) Thesis x An improved gearbox test rig platform which has the capability of remote control, acquiring and transferring data for monitoring induction machine drive system. The presented work shows that any machine using automated components such as PLC and SCADA and incorporating motor drive systems and other actuators has the potential to use the automated components for control, condition monitoring and reporting but this will require more tests to be done using the proposed platform

    Wireless Technologies for Industry 4.0 Applications

    Get PDF
    Wireless technologies are increasingly used in industrial applications. These technologies reduce cabling, which is costly and troublesome, and introduce several benefits for their application in terms of flexibility to modify the layout of the nodes and scaling of the number of connected devices. They may also introduce new functionalities since they ease the connections to mobile devices or parts. Although they have some drawbacks, they are increasingly accepted in industrial applications, especially for monitoring and supervision tasks. Recently, they are starting to be accepted even for time-critical tasks, for example, in closed-loop control systems involving slow dynamic processes. However, wireless technologies have been evolving very quickly during the last few years, since several relevant technologies are available in the market. For this reason, it may become difficult to select the best alternative. This perspective article intends to guide application designers to choose the most appropriate technology in each case. For this purpose, this article discusses the most relevant wireless technologies in the industry and shows different examples of applications

    Introduction to industrial control networks

    Get PDF
    An industrial control network is a system of interconnected equipment used to monitor and control physical equipment in industrial environments. These networks differ quite significantly from traditional enterprise networks due to the specific requirements of their operation. Despite the functional differences between industrial and enterprise networks, a growing integration between the two has been observed. The technology in use in industrial networks is also beginning to display a greater reliance on Ethernet and web standards, especially at higher levels of the network architecture. This has resulted in a situation where engineers involved in the design and maintenance of control networks must be familiar with both traditional enterprise concerns, such as network security, as well as traditional industrial concerns such as determinism and response time. This paper highlights some of the differences between enterprise and industrial networks, presents a brief history of industrial networking, gives a high level explanation of some operations specific to industrial networks, provides an overview of the popular protocols in use and describes current research topics. The purpose of this paper is to serve as an introduction to industrial control networks, aimed specifically at those who have had minimal exposure to the field, but have some familiarity with conventional computer networks.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739hb2016Electrical, Electronic and Computer Engineerin

    Managing emergency situations in the smart city: The smart signal

    Get PDF
    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City

    New Challenges in the Design of Microgrid Systems:Communication Networks, Cyberattacks, and Resilience

    Get PDF

    Communication protocols, queuing and scheduling delay analysis in CANDU SCWR hydrogen co-generation model

    Get PDF
    Industrial dynamical, Networked Control Systems (NCSs) are controlled over a communication network. We study a continuous-time CANada Deuterium Uranium-Super Critical Water Reactor (CANDU-SCWR) hydrogen plant and a discrete-time controller, sensor and actuator block, that are connected via a communication network, such as e.g. controller area network (CAN), Ethernet or wireless networks. Issues associated with NCSs are time-varying delays, timevarying sampling intervals and loss of data due to packet drop outs. Delays are also associated with software chosen, control system architecture and computation load. CANDU-SCWR hydrogen co-generation model reliability can be analyzed by dynamic flow graph methodology. We have analyzed the CANDU-SCWR feed water integration with the oxygen unit of copper chloride cycle and also conducted an analytical review of the current networked control system delays
    corecore