24 research outputs found

    Ovoids and spreads of finite classical generalized hexagons and applications

    Get PDF
    One intuitively describes a generalized hexagon as a point-line geometry full of ordinary hexagons, but containing no ordinary n-gons for n<6. A generalized hexagon has order (s,t) if every point is on t+1 lines and every line contains s+1 points. The main result of my PhD Thesis is the construction of three new examples of distance-2 ovoids (a set of non-collinear points that is uniquely intersected by any chosen line) in H(3) and H(4), where H(q) belongs to a special class of order (q,q) generalized hexagons. One of these examples has lead to the construction of a new infinite class of two-character sets. These in turn give rise to new strongly regular graphs and new two-weight codes, which is why I dedicate a whole chapter on codes arising from small generalized hexagons. By considering the (0,1)-vector space of characteristic functions within H(q), one obtains a one-to-one correspondence between such a code and some substructure of the hexagon. A regular substructure can be viewed as the eigenvector of a certain (0,1)-matrix and the fact that eigenvectors of distinct eigenvalues have to be orthogonal often yields exact values for the intersection number of the according substructures. In my thesis I reveal some unexpected results to this particular technique. Furthermore I classify all distance-2 and -3 ovoids (a maximal set of points mutually at maximal distance) within H(3). As such we obtain a geometrical interpretation of all maximal subgroups of G2(3), a geometric construction of a GAB, the first sporadic examples of ovoid-spread pairings and a transitive 1-system of Q(6,3). Research on derivations of this 1-system was followed by an investigation of common point reguli of different hexagons on the same Q(6,q), with nice applications as a result. Of these, the most important is the alternative construction of the Hölz design and a subdesign. Furthermore we theoretically prove that the Hölz design on 28 points only contains Hermitian and Ree unitals (previously shown by Tonchev by computer). As these Hölz designs are one-point extensions of generalized quadrangles, we dedicate a final chapter to the characterization of the affine extension of H(2) using a combinatorial property

    Slices of the unitary spread

    Get PDF
    We prove that slices of the unitary spread of Q(+)(7, q), q equivalent to 2 (mod 3), can be partitioned into five disjoint classes. Slices belonging to different classes are non-equivalent under the action of the subgroup of P Gamma O+(8, q) fixing the unitary spread. When q is even, there is a connection between spreads of Q(+)(7, q) and symplectic 2-spreads of PG(5, q) (see Dillon, Ph.D. thesis, 1974 and Dye, Ann. Mat. Pura Appl. (4) 114, 173-194, 1977). As a consequence of the above result we determine all the possible non-equivalent symplectic 2-spreads arising from the unitary spread of Q(+)(7, q), q = 2(2h+1). Some of these already appeared in Kantor, SIAM J. Algebr. Discrete Methods 3(2), 151-165, 1982. When q = 3(h), we classify, up to the action of the stabilizer in P Gamma O(7, q) of the unitary spread of Q(6, q), those among its slices producing spreads of the elliptic quadric Q(-)(5, q)

    Low dimensional models of the finite split Cayley hexagon

    Full text link
    We provide a model of the split Cayley hexagon arising from the Hermitian surface H(3,q2)\mathsf{H}(3,q^2), thereby yielding a geometric construction of the Dickson group G2(q)G_2(q) starting with the unitary group SU3(q)\mathsf{SU}_3(q)

    General Galois Geometries

    Full text link

    Lax embeddings of the Hermitian Unital

    Get PDF
    In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital U of PG(2, L), L a quadratic extension of the field K and |K| ≥ 3, in a PG(d, F), with F any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry PG(7, K ) of PG(7, F) (and d = 7) or it consists of the projection from a point p ∈ U of U \ {p} from a subgeometry PG(7, K ) of PG(7, F) into a hyperplane PG(6, K ). In order to do so, when |K| &gt; 3 we strongly use the linear representation of the affine part of U (the line at infinity being secant) as the affine part of the generalized quadrangle Q(4, K) (the solid at infinity being non-singular); when |K| = 3, we use the connection of U with the generalized hexagon of order 2

    Down a mathematical memory lane with Norm

    Get PDF

    Some Remarks on Steiner Systems

    Get PDF
    The main purpose of this paper is to introduce Steiner systems obtained from the finite classical generalized hexagons of order q. We show that we can take the blocks of the Steiner systems amongst the lines and the traces of the hexagon, and we prove some facts about the automorphism groups. Also, we make a remark concerning the geometric construction of a known class (KW) of Steiner systems and we deduce some properties of the automorphism group

    Finite semifields and nonsingular tensors

    Get PDF
    In this article, we give an overview of the classification results in the theory of finite semifields (note that this is not intended as a survey of finite semifields including a complete state of the art (see also Remark 1.10)) and elaborate on the approach using nonsingular tensors based on Liebler (Geom Dedicata 11(4):455-464, 1981)

    Incidence geometry from an algebraic graph theory point of view

    Get PDF
    The goal of this thesis is to apply techniques from algebraic graph theory to finite incidence geometry. The incidence geometries under consideration include projective spaces, polar spaces and near polygons. These geometries give rise to one or more graphs. By use of eigenvalue techniques, we obtain results on these graphs and on their substructures that are regular or extremal in some sense. The first chapter introduces the basic notions of geometries, such as projective and polar spaces. In the second chapter, we introduce the necessary concepts from algebraic graph theory, such as association schemes and distance-regular graphs, and the main techniques, including the fundamental contributions by Delsarte. Chapter 3 deals with the Grassmann association schemes, or more geometrically: with the projective geometries. Several examples of interesting subsets are given, and we can easily derive completely combinatorial properties of them. Chapter 4 discusses the association schemes from classical finite polar spaces. One of the main applications is obtaining bounds for the size of substructures known as partial m- systems. In one specific case, where the partial m-systems are partial spreads in the polar space H(2d − 1, q^2) with d odd, the bound is new and even tight. A variant of the famous Erdős-Ko-Rado problem is considered in Chapter 5, where we study sets of pairwise non-trivially intersecting maximal totally isotropic subspaces in polar spaces. A combination of geometric and algebraic techniques is used to obtain a classification of such sets of maximum size, except for one specific polar space, namely H(2d − 1, q^2) for odd rank d ≥ 5. Near polygons, including generalized polygons and dual polar spaces, are studied in the last chapter. Several results on substructures in these geometries are given. An inequality of Higman on the parameters of generalized quadrangles is generalized. Finally, it is proved that in a specific dual polar space, a highly regular substructure would yield a distance- regular graph, generalizing a result on hemisystems. The appendix consists of an alternative proof for one of the main results in the thesis, a list of open problems and a summary in Dutch
    corecore