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Abstract
In this paper, we prove that every lax generalized Veronesean embedding of the

Hermitian unital U of PG(2, L), L a quadratic extension of the field K and |K| ≥ 3,
in a PG(d, F), with F any field and d ≥ 7, such that disjoint blocks span disjoint
subspaces, is the standard Veronesean embedding in a subgeometry PG(7, K′) of
PG(7, F) (and d = 7) or it consists of the projection from a point p ∈ U of U \ {p}
from a subgeometry PG(7, K′) of PG(7, F) into a hyperplane PG(6, K′). In order to do
so, when |K| > 3 we strongly use the linear representation of the affine part of U (the
line at infinity being secant) as the affine part of the generalized quadrangle Q(4, K)
(the solid at infinity being non-singular); when |K| = 3, we use the connection of U
with the generalized hexagon of order 2.

Keywords: lax embedding, Hermitian unital, standard Veronesean embedding.

1 Introduction

The theory of embeddings of point-line geometries related to spherical buildings is now
rather well developed when taking as points the elements of the type corresponding with
the first vertex of the diagram, in natural (Bourbaki) order. Especially the theory of em-
beddings of generalized quadrangles and polar spaces is well understood, and much about
existence is known for the exceptional diagrams. The dual polar spaces are also getting
into good shape thanks to recent and ungoing work of De Bruyn, Pasini, Cardinali. By
work of the second author and Thas and Steinbach, some partial results on generalized
hexagons are available. However, it seems hard to establish the embedding rank for the
ordinary split Cayley hexagons, and the triality hexagons and their duals. This question
is intimately related to the generating rank of these geometries, which also remains a
mystery. The main obstacle to deal with embeddings of these generalized hexagons is the
fact that the classical methods used for quadrangles and polar spaces do not work, since
slicing with subspaces does not necessarily produce subhexagons—it does when one im-
poses the rather strong condition of being flat, but this restriction, producing most of the
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partial results mentioned above, is too restrictive to be used for the general case, although
it yields nice and complete results. One way to minimize the main obstacle is to gather
as much embedding information as possible for as many substructures as possible—and
not only for subhexagons. A successful example of this approach has been obtained in [7],
where the classification of generalized Veronesean embeddings of finite projective planes is
used to classify certain non-flat embeddings of the split Cayley hexagons of characteristic
2 in projective spaces of dimension 12.

With an eye on the triality hexagons, the second author jointly with some others [1]
looked at lax generalized Veronesean embeddings of projective planes—or more general,
projective spaces. The reason is that a triality hexagon contains a split Cayley hexagon as
a subhexagon, but not as a full subhexagon. So these subhexagons are laxly embedded!
Another important subgeometry of the split Cayley hexagon, or rather of its dual, is
the Hermitian unital. In characteristic 3, the classical embedding of the split Cayley
hexagon gives rise to a Veronesean embedding of such unital. Hence the second author
jointly with De Wispelaere and Huizinga, started to investigate Veronesean embeddings
of these unitals in a general framework, see [6]. In the present paper, we continue this
job, shifting the emphasis to the lax case, in order to deal later with the triality hexagons
in characteristic 3. Of course, this restriction on the characteristic does not simplify the
arguments one uses, and so we treat the question in full generality.

So far for motivation. Let us now formulate the problem in question.
The classical Hermitian unital U (for precise definitions, see below) admits a Verone-

sean embedding in 7-dimensional space, i.e., the points of U are points of a 7-dimensional
projective space, and the blocks of U are planar conics. This representation is essentially
unique, as shown in [6], and no such representation exists in higher dimensional projective
space. In a certain sense, this embedding is a full one, since conics cannot be properly
contained in other conics. The corresponding non-full or lax notion is when blocks are
planar arcs, or, even more generally, just planar point sets. We call the correspond-
ing embeddings generalized lax Veronesean. For projective planes, and more generally,
projective spaces, generalized lax Veronesean embeddings are classified, under the only
condition that they occur in high enough dimensional projective space, see [1]. For reasons
explained in the previous paragraphs, we would now like to do the same for the Hermi-
tian unital, where “high enough dimension” means “dimension at least 7”. However,
unlike projective planes, blocks in unitals do not always meet, and this seems to cause
insuperable problems, unless one assumes that disjoint blocks span disjoint subspaces (a
block is allowed to span a line instead of a plane). This seems to be a natural condition,
and it gives rise to the following natural and general embedding problem: suppose one
has a morphism α of a point-line geometry into the point-line geometry of a projective
space, and suppose that α is not injective, but it is injective on pairs of points in the
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most general position. What can we say? In our setting, we will be confronted with this
question for the point-line geometry arising from the orthogonal generalized quadrangle
Q(4, K) by deleting a (full) grid, see below. In fact, we will have a slightly more restricted
situation (we will know that certain sets of points—the Hermitian conics—are contained
in a plane), which the more will show that such a question is highly non-trivial. We were
unable to solve the problem without this condition although we neither found counter
examples.

The paper is structured as follows. In Section 2, we introduce notation, define the
Hermitian unital and review its linear representation in 4-space. In Section 3, we introduce
generalized lax Veronesean embeddings and state our Main Result, which we then prove
In Section 4.

2 The Hermitian unital and its linear representation

Let L be a quadratic Galois extension of the field K and let PG(2, L) be the projective
plane over L. A Hermitian curve of PG(2, L) is the set of the absolute points with respect
to a non-degenerate Hermitian sesquilinear form. Every line of PG(2, L) intersects such
a curve in at most one point or in a Baer subline, i.e. a set of points isomorphic to a
projective line PG(1, K). Let P be the set of points of the curve and B the set of sublines
arising from the nontrivial intersection of the curve with non-tangent lines and I be the
natural incidence relation, then U = (P ,B, I) is a linear space also called the Hermitian
unital and the elements of B are sometimes also called blocks, since when K is the finite
field Fq the unital is a 2− (q3 + 1, q + 1, 1) design.

If the Hermitian sesquilinear form considered above is degenerate (i.e. the defining
matrix is singular), then the set of singular points with respect to it are either a Hermitian
cone (i.e. when the the matrix associated to the form has rank 2) or a line (i.e. when
the the matrix associated to the form has rank 1). In particular, a Hermitian cone is also
called a Baer subpencil because it is a subset of a pencil through a point p such that its
intersection with a line not through p is a Baer subline. The point p is referred to as the
vertex of the pencil.

Let PG(3, K) be the 3-dimensional projective space over the field K, consider as un-
derlying 4-dimensional vector space L×L and let S = {"∞}∪{"a, a ∈ L} be the following
line partition of PG(3, K): "∞ = {(0, x), x ∈ L} and "a = {(x, ax), x ∈ L}. This is a gen-
eralization of the so called Desarguesian spread of finite projective spaces, and, as in the
finite case, it gives rise to an incidence structure isomorphic to the affine plane AG(2, L)
(see [3] for the finite case). Embed PG(3, K) as a hyperplane “at infinity” in PG(4, K);
the points of the incidence structure are the ones of AG(4, K) = PG(4, K) \ PG(3, K), the
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lines are the planes of PG(4, K) intersecting PG(3, K) in a line of S and the incidence is
the natural one. In [4], the author describes how the Hermitian unital U is represented
in this setting. The following can be extracted from this reference, or follows from it in a
rather straightforward way. Let Q(4, K) be a non-singular parabolic quadric of PG(4, K)
intersecting the hyperplane at infinity in a hyperbolic quadric Q+(3, K) that shares a
regulus of lines with S and let AQ(4, K) be the affine part of Q(4, K). If U intersects the
line at infinity in a subline B, then the points of U correspond to the points of a suitable
AQ(4, K). If a subline intersects B non-trivially, then it corresponds to a line of AQ(4, K).
Otherwise it corresponds to a conic of AQ(4, K), that we will call Hermitian conic, con-
tained in a plane intersecting the hyperplane at infinity in a line of S not belonging to
Q+(3, K). We remark that in U every two points are collinear, that means that there is a
block containing both. But in AQ(4, K) we say that two points are collinear if and only
if there is a line contained in AQ(4, K) joining them. In AQ(4, K) there are two kinds of
affine hyperbolic quadrics, also called grids, the grids of Type 1 and the grids of Type 2,
according to whether the grid intersects the hyperplane at infinity in two intersecting lines
or a conic. Also, a grid consists of two families of lines, called (opposite) reguli, such that
if the grid is of Type 1, then two lines meet in one point if they belong to two different
reguli, they are skew otherwise; if the grid is of Type 2, then two lines belonging to the
same regulus are skew and a line belonging to a regulus R1 intersects in one point all the
lines of the regulus R2 but one. Also, we recall that Q(4, K) is a generalized quadrangle,
hence for every point P and every line L such that P /∈ L, there exists a unique line
through P intersecting L. This implies in AQ(4, K) that for every P and L as before there
is at most one line through P intersecting L.

Finally, we take a look at Baer subpencils. A Baer subpencil through the point p ∈ U ,
viewed as a Hermitian curve in PG(2, L), containing the tangent at p to U will be referred
to as an affine Baer subpencil with vertex p, whereas a projective Baer subpencil with
vertex p does not contain the tangent line at p to U . A transversal of a projective Baer
subpencil is a block of U that does not pass through p and that intersects all the blocks
of the pencil. Every point distinct from p on some block of a projective Baer subpencil
belongs to a transversal. This contrasts with the fact that there is no block intersecting
at least three different blocks of a given affine Baer subpencil. An affine Baer subpencil
which contains the block on the line at infinity of AG(2, L), corresponds in AQ(4, K) to an
affine quadratic cone with vertex a point at infinity. Likewise, a projective Baer subpencil
which contains the block on the line at infinity of AG(2, L), corresponds in AQ(4, K) to
all affine lines of a regulus belonging to a grid of Type 1; the transversals are the lines
belonging to the opposite regulus. Also, a projective Baer subpencil with affine vertex for
which the block contained in the line at infinity of AG(2, L) is a transversal, corresponds in
AQ(4, K) with a cone with affine vertex, and every such cone arises in this way. It follows
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that any such cone without its affine vertex is partitioned into Hermitian conics. Note
that also a grid of Type 2 is partitioned into Hermitian conics, as the 3-space spanned
by it intersects PG(3, K) in a plane, which contains a unique line of the spread (since the
spread is a regular spread, it is also a dual spread—hence a spread of the dual projective
space—as is easily verified).

3 Lax embeddings and the Main Result

Let Mn+1(L) be the vector space of the square matrices of order n + 1 over the field L
and let Hn+1 be the set of Hermitian matrices of rank 1. In [5], the authors prove for
the finite case that Hn+1 is the algebraic variety of PG(n2 + 2n, K) corresponding to a
particular case of the variety Vr,t introduced in [9] with t = 2 and it is called the Hermitian
Veronesean of index n of PG(n2 + 2n, K). Also, Hn+1 is the image of an injective map
θ defined on PG(n, L) and called the Hermitian embedding. Under the action of θ, the
points of PG(n, L) correspond to the points of Hn+1, the lines of PG(n, L) correspond to
elliptic quadrics Q−(3, K) contained in Hn+1 and sublines correspond to conics contained
in the elliptic quadrics. Finally, the points of a hyperplane section of Hn+1 correspond
to the points of a Hermitian variety of PG(n, L). We are interested in the case n = 2:
this case is quite remarkable because if K is the finite field Fq and q ≡ 2 or 0 mod 3,
then a suitable hyperplane section of H3 is the unitary ovoid (see [8]) of the hyperbolic
quadric Q+(7, q) and is directly related to triality, see [12]. In fact, the embedding we are
interested in is the restriction of θ to the Hermitian unital U of PG(2, L) and by a slight
abuse of notation we will call it θ as well. Hence, we get an embedding of U in a PG(7, K)
such that the image of a block is a plane conic and if two planes intersect in a point,
then it must be a point of Uθ. This embedding is called in [6] the standard Veronesean
embedding of U . More in general, a Veronesean embedding of a linear space (P ,L, I) in a
projective space PG(d, F) is such that the image of P generates PG(d, F) and the image
of the points of a line is a plane oval. In the case of Veronesean embedding of U , we have
the following result:

Theorem 3.1 (See [6]). Every Veronesean embedding of the Hermitian unital of PG(2, K),
|K| ≥ 3, in a PG(d, F), with F any field and d ≥ 7, is the standard Veronesean embedding
and hence d = 7 and F ∼= K.

Following the terminology of [1], we will say that an injective map θ : U −→ PG(d, F),
with F any field, such that collinear points are mapped onto coplanar ones and PG(d, F)
is generated by the image, is a lax generalized Veronesean embedding of U in PG(d, F).

Our main result is the following:
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Main Result 3.2. Every lax generalized Veronesean embedding of the Hermitian unital
U of PG(2, L), L a quadratic extension of the field K and |K| ≥ 3, in a PG(d, F), with F
any field and d ≥ 7, such that disjoint blocks span disjoint subspaces of PG(d, F), either is
the standard Veronesean embedding in a subgeometry PG(7, K′) of PG(7, F) (and d = 7)
or consists of the projection from a point p ∈ U of U \ {p} from a subgeometry PG(7, K′)
of PG(7, F) into a hyperplane PG(6, K′), together with an arbitrary point p′ playing the
role of p in U , and lying outside the F-span of PG(6, K′), where K′ ∼= K.

Remark Compared with the main result of [1], the hypotheses we assume are some-
what stronger, but this is due to the fact that the lines of the projective planes pairwise
intersect in a point, whereas there are blocks of the unital with empty intersection. We
refer to the introduction for more comments on the hypotheses.

4 Proof of the Main Result

Let θ be a lax generalized Veronesean embedding of U in PG(d, F) such that disjoint blocks
span disjoint subspaces. From now on we identify the points and the blocks of U with
their image in PG(d, F). We fix the following convention for the notation: we denote by
capital letters points and lines of AQ(4, K) and by small letters the points of U and of
PG(d, F).

We first show that the image of collinear points spans a plane.

Lemma 4.1. Every block of U spans a plane of PG(d, F).

Proof. Suppose, by way of contradiction, that a block B is contained in a line of PG(d, F).
We project U \B from 〈B〉 onto a suitable (d−2)-dimensional subspace. Assume that this
projection is not injective and let p1, p2 be two points with same projection. Consider the
block D through p1, p2. Then 〈D〉 meets 〈B〉 in at least one point, and so our hypothesis
implies that B and D meet in U , say in the point p3. If the points p1, p2, p3 were not
collinear, then B would be contained in 〈D〉, a contradiction with our hypothesis, because
it is always possible to find a block B′ through a point of B disjoint from D and we would
get 〈B′〉 ∩ 〈D〉 ,= ∅. If we now consider two disjoint blocks B1 and B2 containing p1 and
p2 respectively, and intersecting B nontrivially (such blocks certainly exist!), then we see
that the planes spanned by B1 and B2 share a common point of the plane generated by B,
p1 and p2. This is again a contradiction, and we conclude that the projection is injective.

Now, Lemma 1 of [6] implies that d− 2 ≤ 4, hence d ≤ 6, a contradiction. The lemma
is proved.

We now divide our proof in three main parts. In the first part, we prove for |K| > 3,
that either all blocks are plane arcs, or there exists a point p ∈ U such that all the blocks
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B through p consist of the point p and the points of B \ {p} lying on a line not through
p, and then all blocks not through p are plane arcs. We call this the reduction step. In
the second part, we do the same for |K| = 3. In the last part, we then finish the proof.

We note that the case |K| = 3 roughly consumes one third of the space. We consider
that this is worth the trouble since it uses a beautiful connection with the generalized
hexagons of order 2, and since along the way, we can prove in a synthetic way some facts
that were previously only shown by computer (see the digression in Subsection 4.2).

4.1 Part 1: reduction step for |K| > 3

In this subsection, in order to avoid double work, we sometimes still allow |K| = 3, in
which case we will clearly say so.

Due to Lemma 4.1, we can talk about the plane πB generated by the block B, for any
block B of U . Our hypothesis easily implies that the plane πB containing the block B
does not contain any other point of the unital. Hence we can consider the projection from
πB of the points off B as a map α : AQ(4, K) −→ PG(d− 3, F) such that the image of α
generates PG(d− 3, F) and collinear points either map onto a unique point or onto some
subset of points of a line of PG(d− 3, F). Hence, when we consider the image of a block
B of U (or of a line L or a Hermitian conic C of AQ(4, K)) under θ, we will refer to it
as B (or L, or C respectively), whereas, if we consider its projection from a fixed plane,
then we will refer to it as Bα (or Lα, or Cα respectively).

Let us fix a plane π0 containing the block B0 and project from it. We get the following
three different cases.

Case 1 (|K| ≥ 3): 〈U \B0〉 ∩ π0 = ∅.
This implies that every block B intersecting B0 in the point p is such that all the points

of B\{p} lie on a unique line skew with π0 and hence, as it is proved in [6], dim〈U\B0〉 = 4
and d = 7. However, if π1 and π2 are two planes containing two disjoint blocks not meeting
B0, then π1 and π2 are certainly not disjoint, contradicting our hypothesis.

Case 2 (|K| ≥ 4): 〈U \B0〉 ∩ π0 = {p}.

Lemma 4.2. This case cannot occur.

Proof. If p /∈ B0, then again every block intersecting B0 in a point consists of points on
a line and a point on B0. Hence, by Lemma 1 of [6], we get that dim〈U \ B0〉 = 4 and
d = 6, a contradiction.

If p ∈ B0, then U \B0 is an embedding of AQ(4, K) in a PG(d−2, F) in such a way that
the points contained in a line not intersecting a fixed line at infinity L∞ are embedded in
a line of PG(d− 2, F), while the points on lines intersecting L∞ span at most a plane. A
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grid of Type 1 is such that it either contains the line L∞ (meaning that there is a regulus
of affine lines all intersecting L∞ in a point) or it has only one affine line intersecting L∞.

Let Q be a grid of Type 1 not containing L∞. It is easy to see that such a grid (viewed
as set of points of AQ(4, K)) spans a space of dimension at most three. Let L be an affine
line of Q not intersecting L∞ and such that the unique affine line of Q intersecting L∞
at infinity belongs to the regulus of L. If AQ(4, K) ⊆ 〈Q〉, then d − 2 ≤ 3, clearly a
contradiction. So there must be a line intersecting L, possibly at infinity, not contained
in 〈Q〉. If all the lines intersecting L in affine points are contained in 〈Q〉, then there
must be a line M intersecting L at infinity such that M ,⊂ 〈Q〉. Let R ∈ M be such that
R /∈ 〈Q〉. Let M ′ ,= M be a line through R and not intersecting L∞. Then M ′, L and
M are contained in a grid of Type 2 and all the points of M ′ \ {R} are contained in 〈Q〉.
This is possible only if M ′ spans a plane, hence the point at infinity of M ′ belongs to L∞.
Since there is only one line of a regulus with this property, the other lines of the regulus
of M ′ span lines of PG(d− 2, F) and hence M \ {R} is contained in Q. Since the line M
intersect L at infinity, M spans a line and so we get a contradiction. Hence there must
be a line M intersecting L in an affine point such that M ,⊂ 〈Q〉. Suppose that all the
lines meeting L in an affine point not contained in 〈Q〉 intersect L∞. Let M ′ be such a
line. The grid of Type 1 containing L and M ′ but not L∞ is such that all the lines of the
regulus of M ′ except M ′ are contained in 〈Q〉, but this easily leads to a contradiction.
Hence there must be a line M intersecting L in an affine point and disjoint from L∞, i.e.
〈M〉 is a line. There are two grids of Type 1 containing the lines M and L and none of
the two can contain L∞, since both M and L do not meet L∞. At least one of the two
intersects Q in L and in an affine line meeting L and let Q′ be such a grid. Hence we have
dim〈Q′〉 = 3 and dim〈Q, Q′〉 = 4. Let P be a point not contained in Q nor Q′. Suppose
that the line joining P and L is such that it intersects L in an affine point PL. Let R be
the intersection point of the lines contained in Q ∩ Q′. Suppose that PL ,= R. Then the
cone with vertex PL contains the line L, the line of Q meeting L in PL, namely N , and the
line of Q′ meeting L in PL, namely N ′ and we have N ,= N ′. The line N does not meet
L∞ because the line of Q that intersects L∞ is in the same regulus of L. Clearly, the line
N ′ cannot be a line of Q, and we have also that N ′ ,⊂ 〈Q〉, since if N ′ was contained in
〈Q〉, we would have two lines of Q′ of the same regulus (hence skew) in 〈Q〉, so Q′ ⊂ 〈Q〉,
a contradiction. So every Hermitian conic of the cone with vertex PL has a point on N ,
a point on L and one on N ′ that cannot be contained in 〈Q〉 and it is then contained in
the span of 〈N, L, N ′〉. Hence the cone is contained in 〈Q, Q′〉 and also P is. Now let P
be collinear with either the point at infinity of L, or R. Then there is a line N ′′ through
P such that N ′′ is not the line meeting L and does not intersect L∞. It follows that 〈N ′′〉
is a line and all its point except at most two (one collinear with R and one collinear with
the point at infinity of L) are contained in 〈Q,Q′〉. So also P ∈ 〈Q, Q′〉, because we have
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|K| ≥ 4. Hence we have proved that AQ(4, K) ⊂ 〈Q, Q′〉. Since dim〈Q,Q′〉 ≤ 4, we have
d− 2 ≤ 4, a contradiction.

So this case can not occur.

Case 3: dim(〈U \B0〉 ∩ π0) ≥ 1 for every block B0.

We begin by enumerating some easy and direct consequences of the fact that disjoint
blocks span disjoint planes.

(I) The images of two skew lines L and M such that their points at infinity are not
contained in the same line of the spread (i.e. the corresponding blocks in PG(7, K)
meet B0 in two different points) span two spaces 〈Lα〉 and 〈Mα〉 such that, without
loss of generality, either 〈Lα〉 is a point and 〈Lα〉 ! 〈Mα〉, with the latter a line, or
〈Lα〉 and 〈Mα〉 are two lines with at most one common point.

(II) If C is a Hermitian conic of AQ(4, K), then α is injective on it and dim〈Cα〉 = 2.
Since every pair of non-collinear points of AQ(4, K) is contained in a Hermitian
conic, this implies that Pα

1 ,= Pα
2 for every two distinct non-collinear points P1 and

P2.

(III) Let P be an arbitrary point of AQ(4, K). Then all the points R ∈ AQ(4, K) such
that Rα = Pα must lie on a unique line.

We can prove the following lemmas.

Lemma 4.3. Let Q be a grid of Type 1. The image of Q under α spans a space of
dimension at most three, and if one of the lines has as image a point, then the image of
Q spans a plane.

Proof. Let L1 and L2 be two opposite lines of Q such that the line at infinity intersecting
them is not a line of the spread. If Lα

1 is a point, then by (I), 〈Lα
2 〉 is a line which does

not contain Lα
1 . Hence the image of Q is contained in the plane 〈Lα

1 , Lα
2 〉. If a line of the

other regulus, say M , maps on a point, then all the lines of the regulus of L1 map on
distinct lines through the point Mα and no other point of those lines maps on Mα, by
(I) and (III). Hence another line of the regulus of M maps on a line that meets all the
lines of the regulus of L in a point distinct from Mα, hence their images are contained in
a plane. Suppose now that 〈Lα

1 〉 and 〈Lα
2 〉 are two lines, which, by (I), are distinct. If

〈Lα
1 〉 ∩ 〈Lα

2 〉 is not a point of the image of both L1 and L2 (this includes the empty set!),
then clearly Qα ⊆ 〈Lα

1 , Lα
2 〉. Suppose now 〈Lα

1 〉 ∩ 〈Lα
2 〉 = Pα

1 = Pα
2 for some P1 ∈ L1 and

P2 ∈ L2. Then P1 and P2 lie on the same line M . Since no other point of L1 and L2

can map on Pα
1 = Pα

2 , all the lines meeting L1 and L2 distinct from M map on the plane
〈Lα

1 , Lα
2 〉, so dim〈Qα〉 ≤ 3.
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Lemma 4.4. Suppose |K| ≥ 4. Let Q be a grid of Type 2, then the image of Q under α
spans a space of dimension at most three, and if one of the lines has as image a point,
then the image of Q spans a plane.

Proof. Let L be a line of Q such that Lα is a point and let R1 be the regulus of L. By (I),
any line L′ of R1 is such that Lα /∈ L′α. The lines intersecting both L and L′ in an affine
point are mapped on the plane πL′ = 〈Lα, L′α〉; their images have to be distinct by (I)
and no point of them can be mapped on Lα by (III). This readily implies that the plane
πL′ is independent of the choice of L′, and we denote it by π. So, varying L′ we see that
only the line M of Q intersecting L at infinity could possibly be mapped outside π. But
every point of M is contained in a line of R1 that has at least two points with distinct
images mapped on 〈Lα, L′α〉; hence every point of M is mapped on 〈Lα, L′α〉, which is a
plane.

From now on, we can assume that the images of all the lines of Q generate a line.
Suppose that there exist at least two lines L and L′ of the regulus R1 mapped on two
mutually skew lines. The lines intersecting both L and L′ in an affine point are mapped
in 〈Lα, L′α〉. Let M be the line of Q not belonging to R1 and intersecting L in a point at
infinity and suppose that some point P0 of M maps outside 〈Lα, L′α〉. Let L0 be the line
of R1 through P0. Let R2 be the regulus of Q opposite to R1 and let P ′

0 be the point of L0

such that the line of R2 through P ′
0 meets L′ at infinity. Then all the points of L0 other

then P0 and P ′
0 are mapped onto the same point of 〈Lα, L′α〉, say Pα. Since |K| ≥ 4, there

are at least two points mapped on Pα, hence there are at least two lines of R2 mapped
onto lines through Pα and meeting both Lα and L′α. So these cannot be skew, yielding
a contradiction. Hence Mα ⊆ 〈Lα, L′α〉. Similarly, the line of Q not belonging to R1 and
intersecting L′ in a point at infinity maps entirely in 〈Lα, L′α〉.

So we are reduced to the case that the images of the lines of R1 generate lines that
pairwise intersect. Of course, we may assume the same for the other regulus R2. Then
either all images of the lines of Ri, i = 1, 2, are contained in a plane, or they are lines
through a common point. In the former case, the lemma is proved, so we may assume
that the images of all lines of the regulus Ri, i = 1, 2, are lines sharing a common point
Pi. If P1 ,= P2, then we consider a line N1 of R1 whose image is not incident with P2.
We then see that all lines of R2 are contained in the plane 〈Nα

1 , P2〉, except possibly the
unique line of R2 meeting N1 in a point at infinity. But adding the image of that line,
the image of everything is contained in a 3-space and we are done.

Hence P1 = P2 and the images of all lines of Q go through P1. Let L be a line of Q
and let R ∈ L be such that Rα ,= P1. Let M be the other line of Q containing R, then
Mα ⊂ 〈Lα〉. By (I), there can not be any other line of the same regulus as M that is
mapped on 〈Lα〉, hence all the other points of L are mapped on P1. We can reason in
the same way for M , hence also all the points of M \ {R} are mapped on P1, yielding a
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contradiction by (III).

Lemma 4.5. The image under α of a cone K with an affine vertex spans a space of
dimension at most three, and if one of the lines has as image a point, then the image of
K spans a plane.

Proof. Let P be the vertex of K and let C be a Hermitian conic contained in K. If
Pα /∈ Cα, then clearly Kα ⊂ 〈Pα, Cα〉. If Pα ∈ Cα, then there is at most one line of the
cone that does not map on the plane 〈Cα〉, and hence K maps into a 3-space.

If some line L of K maps on a point, then clearly the image of K is contained in
〈Cα〉.

In order to proceed to the main step of the proof, we need to refine Lemma 4.3 in case
α is neither injective nor constant on the set of points of some line of the grid.

Lemma 4.6. Suppose |K| ≥ 4. Let Q be a grid of Type 1 and let M be a line of Q not
belonging to the same regulus as the spread line contained in Q. If α is neither injective
nor constant on the set of points of M , then the image of Q under α spans a space of
dimension three.

Proof. Let P1 and P2 be two points of M such that Pα
1 = Pα

2 . Note that Mα is not a
point, and that the two lines L1 and L2 of Q intersecting M in P1 and P2 have at infinity
two points not contained in a common line of the spread. Hence, by (I), their images are
two distinct lines, spanning a plane π. Suppose that Qα is contained in the plane π.

Suppose first that every line intersecting M in an affine point maps on π. Then, since
the image of AQ(4, K) generates a space of dimension at least 4, there exist two points R1

and R2 of AQ(4, K) collinear with the point at infinity of M such that 〈Rα
1 , Rα

2 〉 is skew to
π. If R1 and R2 were collinear in AQ(4, K), then the span of the image of any grid of Type
2 through R1 and M must contain the plane π (by our assumption that all lines meeting
M in an affine point map into π, and the ones of the grid cannot all go into the image of
M) and 〈Rα

1 , Rα
2 〉; so it would be a 4-space, contradicting Lemma 4.4. Hence R1 and R2

are not collinear. For every line L through Ri not meeting M at infinity, all points except
Ri are collinear with an affine point of M , i = 1, 2, so (L \ Ri)α is a unique point on π.
It follows that, if there exist two lines K1 and K2 through R1 and R2, respectively, such
that K1 ∩K2 is an affine point, then (K1 \R1)α = (K2 \R2)α, contradicting (III). So we
may assume that the two cones with vertices R1 and R2 meet only at infinity. Then we
choose two lines K1, K2 through R1, R2, respectively, not intersecting one another, not
intersecting M (at infinity) and such that the grid Q0 through K1 and K2 is of Type 2.
By the assumption made on R1 and R2, the line of Q0 through Ri distinct from Li meets
Lj at infinity, {i, j} = {1, 2}. Hence there are at least two lines N1 and N2 of Q0 meeting
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K1 and K2 in affine points distinct from R1 and R2. But since (Ki \ Ri)α, i = 1, 2, is a
unique point, Nα

1 and Nα
2 contradict (I).

Hence there is at least one line, say L, intersecting M in an affine point, say PL, such
that Lα ! π. Our aim is to show the claim that the whole image of AQ(4, K) is contained
in the 3-space Σ := 〈π, Lα〉, which will be the final contradiction. In order to prove this
claim, we proceed by showing that every grid or cone G through L and M is mapped into
Σ. For the time being, we assume that G does not share a line at infinity with Q. Hence
Q and G share, in addition to M , also a line L′ intersecting M in an affine point PL′ . We
distinguish some cases.

If L′α = Pα
L′ , then by the previous lemmas, the image of G is contained in the plane

〈Mα, Lα〉. If 〈L′α〉 is a line and 〈L′α〉 ,= 〈Mα〉, then dim〈Mα, L′α, Lα〉 = 3, and so it
contains the image of G; hence Gα ⊆ Σ. Finally, assume that 〈L′α〉 = 〈Mα〉. Then we
have to distinguish the different cases.

Suppose first that G is a cone. Let R be a point of L that does not map on π. Then
R is contained in a Hermitian conic C that has a point P on M and a point R′ on L′.
The three points R,R′, P map on three distinct points that can not lie on the same line.
Consequently Cα ⊆ 〈Lα, Mα〉. If no point of C maps on the image Pα

L of the vertex of the
cone, then clearly the image of the cone is contained in the plane 〈Lα, Mα〉, and hence in
Σ. Suppose now that there is a point of C that maps on Pα

L . Then it is not the point R
of L. But then no point of L except for PL maps on Pα

L as otherwise we would have two
non-collinear points with the same image (contradicting (II)). So we can (re-)choose for R
every point of L distinct from PL and we conclude by the foregoing that every Hermitian
conic on G maps into Σ, and hence so does the whole cone G.

Suppose secondly that G is a grid of Type 1. If no point of L′ maps on Pα
L , then

obviously the image of the grid is contained in the plane 〈L′α, Lα〉 ⊆ Σ. In the other case
PL′ necessarily maps onto Pα

L , and no other point of L′ does (by the injectivity of α on
non-collinear points). But again, this implies that the image of G is contained in Σ, as
the only line of G belonging to the same regulus as M and for which the intersections
with L and L′ do not map to distinct points, is M itself. But M is trivially mapped into
Σ.

Finally, suppose that G is a grid of Type 2. Then, reasoning as before, all the lines
intersecting both L and L′ in an affine point map into 〈Mα, Lα〉. Let M ′ and M ′′ be
the lines of G intersecting L′ and L, respectively, in a point at infinity. Suppose, by way
of contradiction, that there exists a point R ∈ M ′′ not mapped into the plane 〈Mα, Lα〉
and let N be the other line of G through R. Then all the points of N \ {R,M ′ ∩N} are
mapped on a unique point Sα. If Sα ∈ Mα, then all the lines meeting both L and L′ in an
affine point would be mapped on 〈Mα〉, contradicting (I). Hence the line N must meet
M at infinity and our argument implies that R is the only point of M ′′ not mapped on
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the plane 〈Mα, Lα〉. But then all the other points of M ′′ are mapped on a unique point of
L′. Now each of these points is collinear with a point of M , so we get distinct lines of the
regulus of L mapped on 〈L′α〉, and this is again in contradiction with (I). Consequently,
also M ′′ is mapped into the plane 〈Mα, Lα〉.

Likewise, if M ′ was not mapped into the plane 〈Mα, Lα〉, then the only point of that
line that would not be mapped in that plane is the point (which we can again denote by
R) collinear with the point at infinity of M . All the other points of the grid would be
mapped into that plane. In particular all points of M ′ \{R} map onto one point Tα. This
implies that PL′ ∈ {P1, P2}, as otherwise the lines of G through P1, P2 distinct from M
meet M ′ in affine points and are hence mapped onto the same line, contradicting (I).

Now, the point R is contained in a unique Hermitian conic C completely contained in
G and in this case we have that all the points of the conic distinct from R are mapped
into a line of the plane 〈Mα, Lα〉. We distinguish between two cases.

(i) Suppose C contains two distinct points of M and L′, say P and P ′, respectively.
Then (C \ {R})α ⊂ 〈Mα〉. Let S ∈ C \ {R,P, P ′} be arbitrary. Let L′′′ and M ′′′

be the lines of G through S. Then (L′′′ ∪M ′′′) ∩ (M ∪ L′) is a pair of non-collinear
affine points {P ′′, P ′′′}, with P ′′α ,= P ′′′α and both on Mα. Since also Sα belongs to
Mα, at least one of the lines L′′′ or M ′′′ maps onto Mα = L′α, contradicting (I).

(ii) Suppose that C contains the point M ∩L′. Recall that PL′ ∈ {P1, P2}, and we may
thus assume PL′ = P1. The line L′

2 of G distinct from M through P2 also contains
a point of C, and so we see that C \ {R} is mapped into 〈L′α

2 〉, which also contains
Tα. Let N ′ be an arbitrary line of the regulus of L′

2, but distinct from the one
through R, and distinct from L′. Then N ′α contains Tα, and it also contains the
image of a point of C \ {R}. These two cannot be the same, in view of (II). Hence
〈N ′α〉 = 〈L′α

2 〉, contradicting (I).

So we have shown that G maps into Σ.
Now we let G be the grid of Type 1 containing L and M and sharing a line at infinity

with Q. To complete the proof of our claim, we only have to show that G maps into Σ.
Suppose, by way of contradiction, that this is not the case. Let L′

i, i = 1, 2, be the line of
G different from M and incident with Pi. Then no point of Li \ {Pi} is mapped onto Pα

i

(by (III)) and the images of L′
1 and L′

2 are distinct (by (I)). Hence Gα is contained in
〈Mα, L′α

1 , L′α
2 〉. This implies that at least one of L′

1, L
′
2 is mapped outside Σ. Without loss

of generality, we may assume that L′
1 is mapped outside Σ. Then all points of L′

1 \ {P1}
are mapped outside Σ. Let R1 and R2 be two such points.

Consider a grid Q′ of Type 2 containing M and L′
1. If L ⊂ Q′, then Q′ is a grid of

Type 2 containing L and M , so from what we have already proved, we would get Q′α ⊂ Σ
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and this is a contradiction. Let N ,= L1 be a line of Q′ intersecting M (also at infinity),
then L, N, M are contained in a cone with affine vertex or in a grid, say G′, containing
L and M . If G′ = G, then Q′ and G would share three distinct lines: M, N and L, and
so G = Q′, clearly a contradiction (Q′ is a grid of Type 2 and G is a grid of Type 1).
So we have that G′α ⊂ Σ, and hence Nα ⊂ Σ. Then, all the lines of Q′ intersecting
M (also at infinity), except for L′

1, are mapped into Σ. So if Ni, i = 1, 2, is the other
line of Q′ through Ri, then all the points of Ni \ {Ri} are mapped on the same point
P ′α

i ∈ Σ. Consequently the lines of Q′ distinct from L′
1 intersecting both N1 and N2 in

an affine point—and there are at least two such lines in view of |K| ≥ 4— map onto the
line 〈P ′α

1 , P ′α
2 〉, which contradicts (I).

In this way, we have proved our claim that the image of AQ(4, K) is contained in
〈Lα, π〉, a final contradiction. The lemma is proved.

The next proposition is the main step of our proof:

Proposition 4.7. Let |K| ≥ 4. Either the map α is injective on the set of points of
AQ(4, K), or there exists a point p ∈ U \ B0 such that every block through p consists of a
set of points lying on a unique line plus the point p not on that line.

Proof. If α is either injective or constant on the set of points of any line of AQ(4, K), then
α is a so called linear projective stacking, and Lemma 1 of [6] implies that α is injective.
Hence we may assume that there is a line M on which α is neither constant, nor injective.

We use the same notation as in Lemma 4.6. So we have the line M with two points
P1, P2 mapped onto the same point Pα

1 = Pα
2 , and L1, L2 are two lines of a grid Q of Type 1

through M incident with P1, P2, respectively (where the line at infinity of Q meeting M
is a spread line). Let π be the plane 〈Lα

1 , Lα
2 〉. As shown in the previous proof, all the

lines of the regulus of M but M map into π, hence M does not map on π and there exists
a point R ∈ M such that Rα /∈ π. The point R is contained in another line of Q, say L3.
Our assumptions imply that Lα

3 intersects π in just one point Pα. Hence all the lines of
the regulus of M but M must map into lines in π through Pα. So, if a line of the other
regulus does not map into π, then a unique point of it maps outside π and into Mα. We
now claim that only L3 does not map completely into π.

Suppose by way of contradiction that some other line L4 of Q does not map completely
into π. Then R4 := L4∩M maps onto some point Rα

4 of Mα\{Pα
1 } and all other points of

L4 map into the same point Pα
4 in π. By (III), Pα

4 ,= Pα. Hence every line of Q distinct
from M but belonging to the same regulus as M maps onto the line Nα = 〈Pα, Pα

4 〉. The
line Nα is skew to 〈Mα〉, and so every line L of the regulus of L1 maps onto a pair of
points: L∩M maps onto some point of Mα, and the other points of L map onto one point
Pα

L of Nα. Let Q∗ be any grid of Type 1 containing M sharing with Q no line at infinity
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(i.e., the line at infinity of Q∗ in the same regulus as M is a spread line). The grids Q
and Q∗ share, apart from M , a second line L∗, concurrent with M . All lines of Q∗ in the
same regulus as M map onto lines through Pα

L∗ , which are all distinct by (I). Note also
that, by (III), the only points of Q∗ mapped onto Pα

L∗ are incident with L∗. Without loss
of generality, we may suppose that L∗ ,= L1 (otherwise rename L2 as L1). Also, without
loss of generality, we may suppose that L∗ ,= L3. Let L∗

1 and L∗
3 be the lines of Q∗ distinct

from M and incident with P1 and R, respectively. Then the foregoing implies that both
L∗

1 and L∗
3 map into distinct lines of the plane π∗ spanned by the images of the lines of

Q∗ belonging to the same regulus as M , but distinct from M . Hence π∗ contains Mα and
Pα

L∗ and so belongs to the 3-space 〈Mα, π〉.
This implies that all points of AQ(4, K) not collinear with the point at infinity of M

are mapped into the 3-space 〈Mα, π〉. Let S be a point of AQ(4, K) collinear with the
point at infinity of M , and let Ni, i = 3, 4, be the line through S meeting Li (possibly at
infinity). Since the points at infinity of L3 and L4 are collinear, one of the points L3 ∩N3

and L4∩N4 is affine, say L3∩M3. Then M and N3 are contained in a grid QS of Type 2,
and QS also contains L3. If Sα were not contained in 〈Mα, π〉, then, since all other affine
points of N3 are contained in there, all these points would map to a common point Rα

3 .
But this includes the intersection with L3, hence Rα

3 = Pα. As all but one points of L3 are
also mapped onto Pα, we obtain a contradiction with (III). Hence z, and consequently
the whole image of AQ(4, K), is contained in a 3-space, a contradiction. Our claim is
proved.

Consequently, the only point of Q not mapped into π is R, and so the points of each
line of Q through R distinct from R are mapped onto a single point. Varying Q, we see
that this is true for all lines through R. The image of all points collinear with R except
for R coincides with the image of every Hermitian conic in it, and is hence contained in
a plane π′. Using similar arguments as before, it is easy to see that there is at least one
grid of Type 1 containing R such that the image of it without R is not contained in π′.
Without loss of generality we may assume that the image of Q \ {R} is not contained in
π′; hence π ,= π′.

Notice that no line of Q is mapped into the line 〈Pα
1 , Pα〉, as this would imply that

all lines of Q not through R are mapped into 〈Pα
1 , Pα〉, and so all the lines but one of

both reguli would be mapped on a single line, which contradicts (I). This implies that the
image of every line not through R not intersecting Q at infinity and not meeting L3 or M ,
is contained in 〈π, π′〉. Since every point is contained in such a line (because |K| ≥ 4), this
implies that the image of AQ(4, K)\{R} is contained in the 3-space 〈π, π′〉. Consequently
Rα lies outside 〈π, π′〉, which implies in turn that the image of every block through R
consist of a set of points lying on a unique line plus the point Rα.

This completes the proof of the proposition.
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Corollary 4.8. Let |K| ≥ 4. If there exists a point p ∈ U such that all the blocks B
through p consist of the point p and the points of B \ {p} lying on a line not through p,
then d = 7 and dim〈U \ {p}〉 = 6. Also, if B0 is an arbitrary block through p, then the
corresponding projection α is injective on the set U \B0.

Proof. Suppose that dim〈U \ {p}〉 ≥ 7, then we can consider another lax generalized
Veronesean embedding of U . Indeed, we can consider U \{p} embedded as before and the
point p mapped not in 〈U \{p}〉. Hence we have a lax generalized Veronesean embedding
of U in some PG(d′, F) with d′ ≥ 8, and clearly, this embedding also satisfies the condition
that the planes generated by disjoint blocks are disjoint themselves.

Now project from a block through p on a (d′ − 3)-dimensional space and we are again
in the hypothesis of Case 3. If α is injective, then by [6], d′ − 3 = 4, a contradiction.
Consequently, we have a point r ∈ PG(d′, F) such that every block B through r consists
of the point r and the points of B \ {r} lying on a line not through r. But if we consider
the block through p and r we easily get a contradiction.

Likewise, if we consider a block B0 through p and the corresponding projection α, then
Proposition 4.7 implies that either α is injective or there is a point r ∈ U \B0 such that all
points except for r of every block through r are collinear. Considering the block through
p and r, we obtain a contradiction in the latter possibility.

The following gathers some immediate consequences of the previous results.

Corollary 4.9. Let |K| ≥ 4. Either there is a point p ∈ U such that all the blocks B
through p consist of the point p and the points of B \ {p} lying on a line not through p,
or every block is a plane arc. In either case d = 7. Moreover, we have B ⊂ 〈U \B〉 for a
block B if and only if B is a plane arc

4.2 Part 2: reduction step for |K| = 3

Many arguments above are not valid for the case |K| = 3. Hence, for this case, we have
to give alternative proofs. There is a tight connection with the generalized hexagons of
order (2, 2), and we will use this to derive a number of properties. Also, we will show that
the condition d ≥ 7 cannot be dispensed with by providing a counterexample for d = 6
and |K| = 3. We will construct that counterexample explicitly using the connection with
the hexagons.

Recall that a generalized hexagon (of order (s, t)) is a point-line structure H (with
s + 1 points on each line and t + 1 lines through each point) containing no ordinary m-
gons, for m < 6, and such that every two elements (points, lines or flags) are contained
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in an ordinary hexagon. Recall also that H(2) is the generalized hexagon constructed
as follows. Let ρ be a Hermitian polarity of PG(2, 9) and let U be the corresponding
unital. The points of H(2) are the self-polar (non-degenerate) triangles of PG(2, 9) with
respect to ρ, and the lines of H(2) are the blocks of U , hence the non-tangent lines to
U . If we identify a non-tangent line with its image under ρ, then incidence is inclusion
made symmetric. This definition is due to Tits [12], and an explicit treatment is given
in Section 1.3.12 of [13]. From that reference, and from the fact that the automorphism
group of U acts as a rank 4 group on the blocks of U (since it acts as a rank 4 group on
the lines of H(2)), one deduces the following connections:

(i) Two lines of H(2) are opposite (i.e. at distance 6 in the incidence graph) if and only
if the corresponding blocks of U intersect.

Concerning non-opposite lines in H(2), there are two kinds: two different lines can
intersect or be at distance 4 in the incidence graph. This distinction can be seen in U as
follows.

(ii) Two lines of H(2) are at distance 4 in the incidence graph if and only if the corre-
sponding blocks of U are transversals of a common projective Baer subpencil.

There is another way to distinguish pairs of blocks of U that come from pairs of lines
of H(2) at distance 2 or 4 in the incidence graph.

(iii) Two lines of H(2) are at distance 4 in the incidence graph if and only if in the
affine generalized quadrangle AQ(4, 3) corresponding to one block, the other block
is a Hermitian conic contained in an affine cone (and in this case it is contained in
exactly two cones and in one grid of Type 2); two lines of H(2) meet if and only if
in the affine generalized quadrangle AQ(4, 3) corresponding to one block, the other
block is a Hermitian conic contained in an at least two distinct grids of Type 2 (and
in this case it is contained in exactly two grids of Type 2 and in no cone).

So given a fixed line of H(2), the blocks of U corresponding to the lines of H(2) equal to
or concurrent with that fixed line form a spread of U , i.e. a set of disjoint lines partitioning
the point set of U . In fact, one can see from the definition of H(2) above that this spread
can also be obtained as follows: consider the block B of U corresponding to the fixed line,
and then take all blocks of U whose support in PG(2, 9) is incident with the polar point
of the support of B. The block B will be referred to as the base block of the spread.

We can also interpret the points of U in H(2). Indeed, the set of blocks through a point
corresponds to a set of 9 mutualy opposite lines of H(2). This is exactly a (distance-3)
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spread of H(2), and there are indeed 28 of them. They are obtained by intersecting the
standard representation of H(2) on Q(6, 2) with an elliptic hyperplane. Note that these
spreads contain 9 lines and can be naturally given the structure of the smallest unital.

Digression—From the foregoing it follows that a spread of U corresponds to a set of
seven non-opposite lines of H(2). But it is an elementary combinatorial exercise to show
that, in H(2), the only such sets are the ones obtained from a fixed line by considering the
lines at distance at most 2 from it in the incidence graph. Hence, we derive uniqueness of
spreads of U . It is now also easy to see that a resolution (i.e. a partition of the blocks of U
in spreads) corresponds to a (distance-3) spread of H(2). And it is an easy combinatorial
exercise to show that H(2) contains exactly 28 spreads, which are all Hermitian spreads.
This provides computer-free proofs of the following results. Betten, Betten, and Tonchev
[2] exhaustively search by computer for spreads and resolutions in certain unitals on 28
points. In particular, they find exactly 63 spreads of the Hermitian unital on 28 points (all
equivalent) and 28 resolutions (all equivalent). So there is a natural equivalence between
the points of U and the resolutions: to each point p we attach the following resolution:
each spread contains as base block a block through p.

Now consider a line L of H(2) with corresponding block B of U . Let C1, C2, D1, D2, E1,
E2 be the blocks of U corresponding with the lines of H(2) that intersect L, with the con-
vention that the lines corresponding to the blocks C1, C2 (D1, D2 and E1, E2, respectively)
also meet. The foregoing implies that for each (i, j, k) ∈ {1, 2}3, there is a point pi,j,k ∈ B
such that Ci, Dj, Ek are the transversals of a projective Baer subpencil Bi,j,k with vertex
{pi,j,k}, and we have pi,j,k = pi′,j′,k′ if and only if i+ i′ = j + j′ = k+k′ = 3. Since a line in
H(2) not opposite L and not concurrent with L is always opposite either C1, C2, D1, D2,
or C1, C2, E1, E2, or D1, D2, E1, E2, we see that each block of U not meeting B, and
not belonging to {C1, C2, D1, D2, E1, E2} meets either C1, C2, D1, D2, or C1, C2, E1, E2, or
D1, D2, E1, E2 in unique points. We refer to this property as (*).

From now on, we assume that U is embedded in some PG(d, F), with d ≥ 7, in such a
way that blocks are planar point sets, disjoint blocks span disjoint subspaces (and then,
by Lemma 4.1, blocks span planes), U spans PG(d, F), and, additionally,

(Hyp1) for no point p ∈ U , all blocks through p consist of p and three collinear points of
PG(d, L), and

(Hyp2) not all blocks of U are planar 4-arcs.

We are now ready to prove some lemmas, which will culminate in the non-existence of
such an embedding. The first two lemmas hold independently of (Hyp1) and (Hyp2).
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Lemma 4.10. Any Baer subpencil B spans either a 5-space or a 6-space. If it spans a 6-
space, and if the vertex is contained in the span of two transversals, then there is exactly
one point of the third transversal not contained in that span.

Proof. Since two transversals span disjoint planes, we readily deduce that B spans at least
a 5-space. Now suppose that the vertex x of B does not belong to the 5-space generated
by two transversals T1, T2. Every block of B (through x) contains two points of T1 ∪ T2,
and these generate, together with x, a unique plane which must then contain all points
of the block. It follows that B is entirely contained in 〈T1, T2, x〉, which is 6-dimensional.

Now suppose that x ∈ 〈T1, T2〉 and that the third transversal T3 is not contained in
〈T1, T2〉. Consider a point y ∈ T3 not contained in 〈T1, T2〉. The block through x and y
contains three collinear points in 〈T1, T2〉, say x, x1 ∈ T1 and x2 ∈ T2. If y′ were another
point of T3 not contained in 〈T1, T2〉, then we would obtain three collinear points x, x′1 ∈ T1

and x′2 ∈ T2. But then, in the plane 〈x, x1, x′1〉, the lines 〈x1, x′1〉 and 〈x2, x′2〉 would meet
in a point that belongs to both 〈T1〉 and 〈T2〉, a contradiction.

The assertion follows.

Lemma 4.11. (i) It cannot happen that all but exactly two points of U are contained
in a given 6-dimensional subspace of PG(d, F).

(ii) It cannot happen that all but exactly three points of U are contained in a given
5-dimensional subspace V of PG(d, F).

Proof. (i) Let V be a 6-space containing U \ {x1, x2}, for x1, x2 ∈ U , x1 ,= x2. Let
y ∈ U be such that it is not contained in the block B through x1, x2. Let B1, B2

be the two other transversals of the projective Baer subpencil B with vertex y and
transversal B. Since 〈B〉 is at most 6-dimensional, the space W =: 〈y, B1, B2〉 is
5-dimensional. But then Lemma 4.10 implies that at most one point is outside
W ⊆ V , contradicting the fact that both x1, x2 lie outside V .

(ii) Let V be a 5-space containing U \{x1, x2, x3}, for x1, x2, x3 ∈ U , x1 ,= x2 ,= x3 ,= x1.
Since d ≥ 7, we may assume without loss that 〈V, x1〉 ,= 〈V, x2〉 and x3 /∈ 〈V, x1〉.
Hence x2, x3 /∈ 〈V, x1〉, which is 6-dimensional, contradicting (i).

Corollary 4.12. Under the hypothesis (Hyp1), it cannot happen that all but at most two
points of U are contained in a given 6-dimensional subspace of PG(d, F), and it cannot
happen that all but at most three points of U are contained in a given 5-dimensional
subspace V of PG(d, F).

19



Proof. We only have to exclude the possibility that exactly one point x of U is not
contained in some 6-space V . But in this case, all blocks through x must have three
collinear points in V , contradicting (Hyp1).

Lemma 4.13. Under the hypotheses (Hyp1) and (Hyp2), we have that there exists some
projective Baer subpencil contained in a 5-space of PG(d, F).

Proof. Suppose by way of contradiction that every projective Baer subpencil spans a 6-
space.

By (Hyp2) there is a block B of U such that B is not a 4-arc in 〈B〉. Then there
is some point p ∈ B with the property that B \ {p} is a set of three collinear points in
PG(d, F). Let x ∈ B \ {p}, and let B′ be any block of U through p, with B′ ,= B, and
which we can choose in such a way that B′ \ {p} does not consist of three collinear points
(using (Hyp1)). Let B be the projective Baer subpencil with vertex x and transversal B′.

Let T1, T2 be the other two transversals. Clearly x ∈ 〈T1, T2〉. By Lemma 4.10, there
is a unique point y ∈ B′ not contained in 〈T1, T2〉. But y ,= p as B′ \ {y} is a set of
three collinear points. Hence for the block C ∈ B through x and y holds that C \ {y} is
a set of three collinear points. But then, just as in the proof of Lemma 4.10, the plane
〈C \ {y}, B \ {p}〉 contains a point of the intersection 〈T1〉 ∩ 〈T2〉.

This contradiction concludes the proof of the lemma.

From now on, we will assume that the projective Baer subpencil with vertex p1,1,1 and
transversals C1, D1, E1 is contained in 5-space V .

Lemma 4.14. Not all of p1,1,2, p1,2,1, p2,1,1 are contained in V .

Proof. Suppose, by way of contradiction, that B is entirely contained in V . Lemma 4.10
implies that each projective Baer subpencil B1,1,2, B1,2,1, B2,1,1 contains at most one point
not in V . Since the union of these Baer subpencils, together with p1,1,1,, which is in V , is
the whole point set of U , we have obtained a contradiction to Corollary 4.12.

Lemma 4.15. At most one of p1,1,2, p1,2,1, p2,1,1 is contained in V .

Proof. By Lemma 4.14, we may assume that p1,1,2 and p1,2,1 are contained in V and p2,1,1

is not. Note that at most one point of each of D2 and E2 is not contained in V , hence
by Corollary 4.12, not all points of C2 are contained in V . But not all points of D2 are
contained in V as otherwise Lemma 4.10 applied to B2,2,1 implies that at most one point
of C2 does not belong to V and so there are at most three points of U not belonging to V
(one on C2, one on E2, and p2,1,1), contradicting Corollary 4.12. Hence exactly one point
d2 of D2 is not contained in V , and, similarly, exactly one point e2 of E2 is not contained
in V .
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Now, since d ≥ 7, at least one of d2, e2 does not belong to W := 〈V, p2,1,1〉. Suppose,
without loss, that d2 does not belong to W . Let x be a point on C2 not lying on the block
through d2 and e2. We claim that x belongs to V . Indeed, the block through d2 and x
contains two more points either on C1 ∪D1, or in E1 ∪ {p1,1,2}, or in (E2 \ {e2})∪ {p1,1,1}.
But these two points are always contained in V , and if x was not contained in V , then
the line 〈d2, x〉 would be skew to V (as x ∈ W and d2 /∈ W ), contradicting the fact that
the block is a planar set of points. Our claim is proved.

Since there is at most one point of C2 also in the block through d2 and e2, at most
one point of C2 is not contained in V . Hence, by Corollary 4.12, exactly one point c2 is
not contained in V . By the foregoing, the block through d2, e2 contains c2, and hence
also p1,1,1. Consequently the block through p2,1,1 and d2 does not contain e2 and hence
contains two points of C1 ∪ (E2 \ {e2}). But again, the line 〈p2,1,1, d2〉 is skew to V , a
contradiction.

We conclude that this situation cannot happen, proving the lemma.

Lemma 4.16. None of p1,1,2, p1,2,1, p2,1,1 is contained in V .

Proof. By the previous lemmas we may assume that p2,1,1 ∈ V and p1,2,1, p1,1,2 /∈ V .
Now W := 〈V, B〉 is 6-dimensional, hence U \C2 is contained in W (since the projective

Baer subpencils B1,2,1 and B1,1,2 are contained in W ). But at most, and hence exactly,
one point c2 of C2 is not contained in W . But now all blocks through c2 have three
collinear points in W , contradicting (Hyp1).

Lemma 4.17. At least one of p1,1,2, p1,2,1, p2,1,1 is contained in V .

Proof. Suppose, by way of contradiction, that none of p1,1,2, p1,2,1, p2,1,1 is contained in V .
If all of p1,1,2, p1,2,1, p2,1,1 were contained in a common 6-space W containing V , then

B would be contained in W . But then U , as the union of the projective Baer subpencils
B1,1,2, B1,2,1, B2,1,1 and the point p1,1,1, is contained in W , a contradiction.

Define W1 = 〈p2,1,1, V 〉, W2 = 〈p1,2,1, V 〉 and W3 = 〈p1,1,2, V 〉. By the previous para-
graph, not all of these subspaces are equal. So we can distinguish two cases.

First suppose that W1 ,= W2 ,= W3 ,= W1. Then, by Corollary 4.12, there is a least one
point of C2 ∪ D2 ∪ E2 which does not belong to V . Without loss, we may assume that
some point c2 ∈ C2 does not belong to V . The block through c2 and p1,1,2 contains a point
of V on E1, and a point d2 of D2. If d2 ∈ V , then 〈c2, p1,1,2〉 must meet V , contradicting
W1 ,= W3. Hence d2 ∈ W2 \ V . Similarly the point e2 ∈ E2 on the block through c2 and
p1,2,1 belongs to W3 \ V .

Since the blocks meeting B cannot contain a triangle (as is clear from the fact that
they form AQ(4, 3)), the block F through d2 and e2 does not meet B, and hence, by (*),
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has two points in D1 ∪E1 ⊆ V . Again, this contradicts the fact that F is a planar set of
points and W2 ,= W3.

Hence, since d ≥ 7, we may assume that W1 = W2 ,= W3. Using Lemma 4.10, we
see that B2,1,1 and B1,2,1 are contained in W1, consequently only p1,1,2 and E2 are not
contained in W1.

If p1,1,1, C2 and D2 generated a 6-space, then this 6-space would coincide with 〈B2,2,2〉,
and so E2 ⊆ W1. This would imply that p1,1,2 is the only point outside W1, contradict-
ing Corollary 4.12. Hence p1,1,1, C2 and D2 generate a 5-space (contained in W1) and
Lemma 4.10 yields that at most one point of E2 lies outside W1. As before, (Hyp1) im-
plies that exactly one point e2 of E2 is contained in W3 \ V , and Lemma 4.11(i) shows
that this cannot occur.

The lemma is proved.

Hence we have shown that either there is a (unique) point p in U such that every block
through p consists of p plus three points on a line, or every block is a 4-arc. In the latter
case, the projection of U \ B from 〈B〉, for any block B, is a linear projective stacking
(see the beginning of the proof of Proposition 4.7) of AQ(4, 3), and hence an injective
embedding by Lemma 1 of [6]. In this case d = 7. In the former case, we can prove the
following lemma.

Lemma 4.18. If there is a (unique) point p in U such that every block through p consists
of p plus three points on a line of PG(d, F), then U \{p} spans a 6-space and d = 7. Also,
every block not through p is a 4-arc.

Proof. Let B be any block through p and let L be the line of PG(d, F) containing three
points of B. Now project U \ B from L (onto some skew subspace of dimension d − 2).
The arguments given in the proof of Lemma 4.1 can here be repeated verbatim to show
that this projection is injective (just do not use p for one of the points x1, x2 in that
proof). But it is a linear projective stacking of AQ(4, 3) because of our assumption on
p. Hence by Lemma 1 of [6], it is an embedding and the image generates a subspace of
dimension at most 4. Consequently, U \ {p} generates a subspace of dimension at most
6, hence exactly 6, and d = 7. Let {x1, x2, x3, x4} ,1 p be a block such that x1 ∈ 〈x2, x3〉.
Since B was arbitrary, we may suppose x1 ∈ L. But then 〈L, x2〉 = 〈L, x3〉, contradicting
the injectivity of the projection of U \B from L.

Now we prove a result that it is needed in the next section.

Proposition 4.19. The image of a grid of Type 2 is at most 3-dimensional.

Proof. Let Q be a grid of Type 2, let L1 and L2 be two skew lines of Q, let M1 and M2

be the two lines of Q intersecting both L1 and L2 in an affine point, and let M3 and M4
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be the lines intersecting only L1 and L2 respectively in an affine point. If P is a point of
Mi, i = 3, 4, not contained in Li−2, then clearly 〈Qα〉 ⊆ 〈Lα

1 , Lα
2 , Pα〉 (we recall that α is

injective). Hence, if 〈Lα
1 〉 ∩ 〈Lα

2 〉 ,= ∅, then dim〈Qα〉 ≤ 3. Suppose now that the images of
skew lines of Q lie on skew lines, so Σ = 〈Lα

1 , Lα
2 〉 is a solid and suppose by contradiction

that Qα ! Σ. Let P ∈ M3 be such that P /∈ L1, let R ∈ M4 ∩ L2 and let C be a conic
of Q through them. The conic C has a point on the line M1 and a point on the line M2;
there are two choices for C and it is easy to check that, for exactly one choice, C does not
contain any point at infinity. Let C be that conic. Hence the points of (C \ {P})α are
all contained in Σ. If (C \ {P})α lies in a line, then the lines 〈Mα

1 〉 and 〈Mα
2 〉 lie in the

plane 〈Lα
1 , (C \ {P})α〉, a contradiction. So (C \ {P})α spans a plane and, since Pα /∈ Σ,

〈Cα〉 is a solid. A quadratic cone in AQ(4, 3) with vertex not in Q intersects Q in a conic
that has no points at infinity, since a point at infinity is contained in exactly two affine
lines, which must belong to Q if the point at infinity belongs to Q. Let R1 be a point not
in Q and collinear with R. The quadratic cone with vertex R1 intersects Q in a conic C ′

through R; suppose that this conic intersects M3 in the point M3 ∩ L1. Then, consider
the point R2 ∈ RR1 distinct from R and R1: it is also a vertex of a quadratic cone and
this cone intersects Q in a conic tangent to C ′ (since Q(4, q) is a generalized quadrangle),
and so it will intersect M3 in a point distinct from M3 ∩L1; without loss of generality, we
may assume that this is P .

So, we can assume that the conic C considered before is contained in a quadratic cone
with an affine vertex, and hence it is contained in two quadratic cones, say K1 and K2. We
have proven that 〈Cα〉 is a solid and since the image of a cone lies in a space of dimension
at most three, we obtain 〈Kα

1 , Kα
2 〉 = 〈Cα〉. Let Ci be the conic at infinity of Ki. Let S

be a point not contained in K1 ∪K2 and let KS be the quadratic cone with vertex S. If
the conic at infinity of KS does not coincide with C1 or C2 or does not have two points
on C1 and two points on C2, then Sα ∈ 〈Cα〉. Suppose that S is such that KS intersects
the space at infinity in Ci, for some i = 1, 2, and let S ′ be any affine point collinear with
S. The cone KS′ has only one point on Ci, so, by the above, S ′α ∈ 〈Cα〉 and so also Sα

belongs to 〈Cα〉.
There are exactly 24 affine points. Hence they determine 12 conics at infinity. We

already have C1 and C2 and then, as we have shown before, there must be two conics
intersecting C1 in only a point, for every point of C1. Consequently there are at most two
conics at infinity that may intersect both C1 and C2. Denote them by C3 and C4 (if they
exist; if only one of them exists, then the argument is similar) and let Pi, i = 1, . . . , 4, be
the vertices of the cones containing them. The points Pα

i are the only ones that may not
be in 〈Cα〉. But through every Pi, there must be at least one line that does not contain any
Pj, for all j ,= i. Hence Pα

i ∈ 〈Cα〉 and so AQ(4, 3)α ⊆ 〈Cα〉, clearly a contradiction.
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4.3 Part 3: end of the proof

Suppose now either

(ASS1) that the projection from the plane spanned by any block B is injective from U \ B
onto some 4-space PG(4, F), or

(ASS2) that there exists a point p such that all the blocks B through p consist of the point
p and the points of B \ {p} lying on a line of PG(7, F) not through p.

In both cases we have d = 7. We claim that U is contained in a projective subspace
PG(7, K′) such that K′ ∼= K and every block of U corresponds to a plane conic in PG(7, K′).

First we consider the projection α from the span of an arbitrary block B, which contains
p in case (ASS2). We show that the projection of U \B itself is contained in a 4-space over
K′ ∼= K. We identify every point of U \ B with the corresponding point in PG(4, F) (and
so blocks different from B get identified with certain point sets—collinear if the block
meets B, not collinear otherwise). First, let D be a block different from B but meeting B
in U non-trivially, say in x. Let E be another block of U also containing x, and suppose
E is contained in the affine Baer subpencil A determined by B and D. If the line LD

supporting D is skew to the line LE supporting E, then all the points P lying in a grid
of Type 2 together with D and E are contained in 〈LE, LD〉 (since the image of a grid is
at most 3-dimensional by Lemmas 4.3, 4.4 and Proposition 4.19). Let R ∈ AQ(4, K) be a
point contained in a cone with two lines at infinity together with D and E, and let M be
a line through R not in that cone. All the points of M \ {R} are contained in 〈LE, LD〉
by the foregoing, and so does R. Hence AQ(4, K) would be contained in a 3-dimensional
space, a contradiction. We conclude that LD and LE meet in a point, and so do all lines
supporting a block from the affine Baer subpencil A.

If |K| = 3, then LD and LE are the only two lines of A and we say that LD ∩LE is the
point at infinity of these two lines.

Now assume that |K| > 3. We claim that all the lines LF , with F ∈ A, meet in a
common point. Indeed, suppose by way of contradiction that this is not the case. Then
they are contained in the same plane π. Let F be a line of AQ(4, K) intersecting E in
an affine point, and denote by LF the affine span 〈F 〉. Then all the points P which are
contained in a grid of Type 2 together with E and F are contained in the solid 〈π, LF 〉.
Let R be a point not contained in a grid of Type 2 together with E and F . Let G be a
grid of Type 1 containing E and F and not containing R (such a grid exists since there
are precisely two grids of Type 1 containing E and F , and R is contained in at most one
of them). Let L∞ be the line at infinity of AQ(4, K) belonging to G and incident with
the point at infinity of E. Let H be the line of AQ(4, K) through R and meeting L∞ in a
point at infinity. Then no affine point of H is contained in G, exactly one affine point of
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H is contained in the other grid of Type 1 containing E and F , and exactly one point of
H is collinear with the intersection of E and F (by the choice of R, amongst the latter
two points there is R of course). Hence there are at least two points left on H contained
in a grid of Type 2 together with E and F . So the line LH is contained in 〈π, LF 〉 and so
is R. This is again a contradiction. Our claim is proved.

So with each affine Baer subpencil B containing B corresponds a point xB and we
will identify these points with the points at infinity of the lines of the affine quadrangle
AQ(4, K). We will also denote xB by xD, for D ∈ B. Note that there is some abuse of
language here and that in principle, it could happen that the points xD and xE coincide,
although they are two different points in the projective extension Q(4, K) of AQ(4, K).
We will prove later that this can never happen.

Now we note that

(∗) no pair of grids of Type 1 having a common line at infinity is contained in a solid,
and

(∗∗) no grid of Type 1 is contained in a plane of PG(7, F).

Indeed, we first show (∗). Let Q and Q′ be two grids of Type 1 having a common line at
infinity contained in a solid Σ of PG(7, F). Let p be any point of AQ(4, K). Then there
are at least four lines of AQ(4, K) through p, and it is easy to see that at least one of
them has at least two points in common with Q∪Q′. This implies that p is contained in
Σ and hence AQ(4, K) is contained in Σ, a contradiction.

Now we show (∗∗). Assume by way of contradiction that some grid Q of Type 1 is
contained in a plane π of PG(7, F). Let D, E be two affine lines of Q belonging to the
same regulus. Let e be the point at infinity of E and let E ′ be another affine line through
e. Then the grid of Type 1 containing D and E ′ generates in PG(7, F) a subspace Σ
of dimension at most 3 having D and e in common with π. This implies that π and Σ
generate a subspace of dimension at most 3, contradicting (∗).

Identifying affine Baer subpencils with their unique vertex, viewed as a point at infinity
of AQ(4, K), we now claim that the map B 3→ xB is injective on each line at infinity of
AQ(4, K). Indeed, suppose on the contrary that for two lines D, E of AQ(4, K), which
have collinear but distinct points at infinity, we have xD = xE. Then the grid of Type 1
defined by E and D is contained in a plane, contradicting (∗∗). The claim is proved.

Now we claim that the map B 3→ xB maps collinear points to collinear points. Indeed,
let L be the set of points of a line at infinity (in PG(7, F)) in a grid Q of Type 1. Let Q′

be another grid of Type 1 containing L and an affine line of Q, say D. By (∗), Q and Q′

intersect in a plane and so dim〈L〉 ≤ 2. Suppose that dim〈L〉 = 2, then D ⊆ 〈L〉 and
this would be true for every line of the regulus of Q containing D. Hence Q would be
contained in a plane, a contradiction. We conclude that L spans a line.
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Next we claim that the map B 3→ xB is injective. Indeed, suppose on the contrary
that for two lines D, E of AQ(4, K), which have non-collinear points at infinity, we have
xD = xE. Then it is easily seen that all points at infinity (this structure forms a grid G!)
are contained in a plane π. But then this plane is contained in the solid spanning any
grid of Type 1. Considering two grids of Type 1 containing the same arbitrary affine line,
this leads to the contradiction that every affine line must be contained in π. Our claim is
proved.

It follows now that Q(4, K) is laxly embedded in PG(4, F). We now show that it is also
polarized, i.e., for every point x of the quadrangle, the points collinear in the quadrangle to
x are contained in a solid of PG(4, F). This already holds for all affine points of AQ(4, K)
by Lemma 4.5, but in order to prove it for the points at infinity, it is just as much trouble
to state and prove the following independent and general result.

Lemma 4.20. Let Q(4, K), |K| ≥ 2, be laxly embedded in PG(4, F), then either the em-
bedding is polarized, or |K| = 3 and for every point x of Q(4, K), the set of points of
Q(4, K) collinear with x generates PG(4, F).

Proof. The proof is completely similar to the finite case, see Theorem 5.2 in [11], but
we have to provide different appropriate references. First we treat the small cases. For
|K| = 2, the three lines through every point must generate a solid. For |K| = 3, the proof
of Theorem 5.1 in [11] applies verbatim. Alternatively, we can argue as in the general
case below.

Let |K| ≥ 3. Consider an arbitrary line L of Q(4, K), and a plane π of PG(4, F) skew
to L. Every line of Q(4, K) concurrent with L is projected from L into π onto some point.
Every grid containing L is likewise projected onto a line. This yields an embedding of the
dual of the affine plane AG(2, K) into π. By the dual of Lemma 1 of [1], this embedding
either extends to an embedding of the projective closure PG(2, K) of AG(2, K) in π, or
|K| = 3, F contains a nontrivial root of unity and the set of affine points of no line of
PG(2, F) that does not belong to AG(2, F) is mapped onto a collinear set of points of π.
This implies that either all lines through an arbitrary point of L are contained in a solid,
or |K| = 3 and for no point on L this is the case.

The lemma is proved.

Applied to our situation, where we know that the condition of being polarized is
satisfied for some points, this lemma means that the embedding of Q(4, K) in PG(4, F) is
polarized. Clearly, by looking in solids spanned by grids, lines of PG(4, F) either intersect
Q(4, K) in 0, 1, 2 points, or all points of a line of Q(4, K). Hence we can apply the main
result of [10] to conclude that there is a subfield K′ of F isomorphic to K such that Q(4, K)
is fully embedded in a subspace PG(4, K′).
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In particular we see that all blocks of U not intersecting B are conics in planes of
PG(4, K′). By varying B, we conclude that every block (not through p in case (ASS2)) is
a conic in some plane isomorphic to PG(2, K) of PG(7, F). Hence we can talk about the
(unique) tangent at a point to such conic, and consequently, to the tangent line at a point
of U to a block containing that point.

From now on we are in a position to follow the proof of the full case, see [6], but with
additional arguments and references where appropriate. We first assume that all blocks
are plane arcs.

Consider a point x on B, and a blok D ,= B through x. The tangent line at x to D is
projected from 〈B〉 onto a point at infinity of AQ(4, K) on the line at infinity corresponding
with x as in the Bose-Bruck-André representation of U . Hence all the tangents at x to
blocks of U containing x are contained in a 4-space, which also contains B, but no other
block through x. Considering the block D instead of B, and intersecting the thus obtained
4-space with the first one results in a 3-space Σx, containing all tangents at x to blocks
of U containing x.

Likewise, let B be an affine Baer subpencil containing B such that all members of B
contain x. Then the tangents at x to the members of B are contained in a plane πB.
Since the affine Baer subpencil in x defines the structure of an affine plane on the set of
blocks through x, we see that the projection from x of the set of tangents at x to blocks
through x onto a plane πx of Σx not through x, yields an affine plane A. Let T be the
tangent line at x to B, and let xT be its projection from x onto πx. Then the projection of
A from xT onto some line of A not through xT yields a projective subline over K′ (as this
projection can be identified with a line at infinity of AQ(4, K)). Hence, by Lemma 4.20,
the projective closure of A embeds as a subplane in πx, defined over the subfield K′ of F.

Now consider a point y not on B. The projection of all blocks through y intersecting
B from 〈B〉 onto PG(4, F) is a quadratic cone inside a solid of PG(4, K′). But since
this projection coincides with the projection of the tangents at y to these blocks, and
since these tangents themselves also span a 3-space Σy, the projection restricted to Σy is
bijective. Now we translate this situation to x (we let x play the role of y). Consider a
projective Baer subpencil P in x, say all members of P intersect the block D, and assume
B ∈ P. Then the projection of P onto πx is a conic in A. Moreover, let Θ be a 6-space of
PG(7, F) not containing x, but containing πx, then the projection of D onto Θ is a conic
is some projective plane πD over K′ (as the projection of D union its tangent at D ∩ B
from 〈B〉 is a projective line over K′), skew to πx. Now, considering the grid of AQ(4, K)
defined by P, we find for each point z ∈ B \ {x} a block Dz containing z and intersecting
each member of P. In projection from x onto Θ, this yields a set S of points with the
following structure: through every point u of S, there is a projective subline λu ⊆ S over
K′ (this amounts to the projection of a block of P union its tangent at x), and there is a
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conic Cu ⊆ S contained in a subplane over K′, such that S generates a 5-space Λ of Θ,
and every pair of distinct conics also generate this 5-space. Also, every line of S intersects
every conic of S. This structure can be interpreted and referred to as a Segre variety of a
plane conic and a projective line, both defined over K. We now show that S is contained
in a unique subspace of Λ defined over K′. In essence, we do not need all our data. More
exactly, we have the following lemma.

Lemma 4.21. Let S be a Segre variety of a plane conic and a projective line, both defined
over K, and embedded in the projective space PG(5, F). Suppose that S is not contained in
a hyperplane, suppose that there are two conics C, C ′ of S contained in a subplane over the
subfield K′ of F isomorphic to K, and suppose that one projective line of S is a projective
subline in PG(5, F) over the same subfield K′. Then S is contained in a subspace over the
subfield K′.

Proof. Consider the two conics C, C ′ of S in subplanes πK, π′K over K′, and let the line
L of S consist of the points of a projective subline of PG(5, F) over K′ (and we denote
that subline also by L). By choosing appropriate coordinates, we can put C, C ′, L in a
projective subspace PG(5, K′). We now show that every other point of S is also contained
in PG(5, K′). Indeed, let x ∈ S \ (C ∪ C ′ ∪ L). Let Cx be the conic of S containing x
and let y be the intersection of Cx with L. Then x is contained in a line M of PG(5, F)
intersecting both C and C ′. Hence, M is also a line of PG(5, K′) (but not all points on M
belong to PG(5, K′), of course!). We consider two other lines N, N ′ of PG(5, F) spanned by
lines of S, different from 〈L〉 and M . Both N and N ′ are also lines of PG(5, K′). Since no
three points of C and C ′ are collinear, the space η generated by y, N, N ′ is 4-dimensional
and meets M in a unique point x′, which, by our foregoing remarks, belongs to PG(5, K′).
But η also contains the conic Cx of S. This implies x = x′ and the lemma is proved.

So S is contained in a subspace PG(5, K′) of Λ.
Inspired by the last part of Section 3.3 in [6], we now consider a block F through x

not contained in P. It is easy to see that there exists a projective Baer subpencil PF

intersecting P in two members D1, D2. The projection F ′ from x onto Θ of F \ {x} is
a line not contained in Λ (because the projection from B of F \ {x} is not contained in
the projection from B of P \ {B}—the latter being a grid of Type 1 in AQ(4, K)). Now
F ′ together with the projection of the tangent line at x to F determines a unique subline
LF over K′. And LF together with PG(5, K′) defines a unique subspace PG(6, K′) over K′

of Θ.
The projection of all points on members of PF except x from x onto Θ is contained in

a unique subspace PG(5, K′)∗, which is, however, uniquely determined by the projective
closure of A, and the three sublines corresponding to (the projections of) D1, D2, F .
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Hence PG(5, K′)∗ is contained in PG(6, K′). Hence the projection of PF (taking out x) is
contained in PG(6, K′). This now holds by the same argument for every projective Baer
subpencil through x having three elements in common with P ∪PF . But, as argued in
the last paragraph of Section 3.3 of [6], such pencils cover the whole set of blocks through
x.

We conclude that the projection of U \ {x} from x is contained in PG(6, K′).
Now observe that, since the projection from x onto Θ of P is contained in Λ, the

union of the members of P generate a 6-space of PG(7, F). In fact, this holds for every
projective Baer subpencil, and we can now consider one, say P∗, that is entirely contained
in U \ {B}. We can now re-choose πx and Θ such that Θ contains P∗. Essentially since
blocks contain skeletons of planes (a skeleton of a projective space of dimension d is a
set of d + 2 points no d + 1 of which contained in a hyperplane), P∗ uniquely determines
PG(6, K′).

Now we pick a point x′ on B distinct from x. Then x, x′ and PG(6, K′) are contained
in a unique subspace PG(7, K′). We can project U \{x′} from x′ onto Θ. By the foregoing,
this projection lands entirely in PG(6, K′). Now let z be any point of U \{x, x′}. The lines
xz and x′z of PG(7, F) bot contain a point of PG(6, K′) and hence are both contained in
PG(7, K′). Consequently so is their intersection z.

We have shown that U is contained in PG(7, K′) such that every block is a conic in a
plane. We can now apply the main result of [6] to conclude the proof of our main result
in this case.

Next we assume (ASS2). In this case the projection of U \ {p} can be identified with
U \ {p} itself. Consider a projective Baer subpencil B with vertex p and transversal D.
Then, by the previous (the part where we project from a block through p), we obtain a
Segre variety of a conic and an affine line, both defined over K, and embedded in some
PG(5, F) in such a way that each conic is a conic in some subplane over the subfield K′ of
F isomorphic to K, and similarly for each affine line. Just as in Lemma 4.21, one can show
that this whole structure is embedded in a PG(5, K′). Moreover, projecting it from one
of its affine lines, we obtain a grid structure where one line is missing; hence the missing
conic is uniquely determined and the structure can be canonically completed to a Segre
variety of a conic and a projective line embedded naturally in PG(5, K′). Now continuing
as in the case (ASS1), we see that the structure U \{p} is unique in some PG(6, K′). Since
also the projection of standard Veronesean embedding of U from one of its points has
that very same structure, we conclude by uniqueness that U \ {p} is isomorphic to such
a projection. Adding p arbitrarily in PG(7, F) \ 〈PG(6, K′)〉, our main result follows.
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