3,092 research outputs found

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Broadcasting in grid graphs

    Get PDF
    This work consists of two separate parts. The first part deals with the problem of multiple message broadcasting, and the topic of the second part is line broadcasting. Broadcasting is a process in which one vertex in a graph knows one or more messages. The goal is to inform all remaining vertices as fast as possible. In this work we consider a special kind of graphs, grids.;In 1980 A. M. Farley showed that the minimum time required to broadcast a set of M messages in any connected graph with diameter d is d + 2(M - 1). This work presents an approach to broadcasting multiple messages from the corner vertex of a 2-dimensional grid. This approach gives us a broadcasting scheme that differs only by 2 (and in the case of an even x even grid by only 1) from the above lower bound.;Line broadcasting describes a different variant of the broadcasting process. A. M. Farley showed that line broadcasting can always be completed in [log n] time units in any connected graph on n vertices. He defined three different cost measures for line broadcasting. This work presents strategies for minimizing those costs for various grid sizes

    Session-Based Programming for Parallel Algorithms: Expressiveness and Performance

    Full text link
    This paper investigates session programming and typing of benchmark examples to compare productivity, safety and performance with other communications programming languages. Parallel algorithms are used to examine the above aspects due to their extensive use of message passing for interaction, and their increasing prominence in algorithmic research with the rising availability of hardware resources such as multicore machines and clusters. We contribute new benchmark results for SJ, an extension of Java for type-safe, binary session programming, against MPJ Express, a Java messaging system based on the MPI standard. In conclusion, we observe that (1) despite rich libraries and functionality, MPI remains a low-level API, and can suffer from commonly perceived disadvantages of explicit message passing such as deadlocks and unexpected message types, and (2) the benefits of high-level session abstraction, which has significant impact on program structure to improve readability and reliability, and session type-safety can greatly facilitate the task of communications programming whilst retaining competitive performance

    Building a High-Performance Collective Communication Library

    Get PDF
    We report on a project to develop a unified approach for building a library of collective communication operations that performs well on a cross-section of problems encountered in real applications. The target architecture is a two-dimensional mesh with worm-hole routing, but the techniques are more general. The approach differs from traditional library implementations in that we address the need for implementations that perform well for various sized vectors and grid dimensions, including non-power-of-two grids. We show how a general approach to hybrid algorithms yields performance across the entire range of vector lengths. Moreover, many scalable implementations of application libraries require collective communication within groups of nodes. Our approach yields the same kind of performance for group collective communication. Results from the Intel Paragon system are included

    Building a high-performance collective communication library

    Get PDF
    corecore