
Modular HLA RTI Services: The GRIDS Approach

Simon J.E. Taylor
Rajeev Sudra

Centre for Applied Simulation Modelling
Department of Information Systems and Computing

Brunel University, Uxbridge UB8 3PH
UNITED KINGDOM

{simon.taylor, rajeev.sudra}@brunel.ac.uk

Abstract

The Generic Runtime Infrastructure for Distributed
Simulation (GRIDS) has been developed to investigate
modularity issues in distributed simulation. It could be
argued that although the HLA RTI is a widespread
solution to distributed simulation, it cannot include all
possible services. This paper investigates an approach to
extending the distributed simulation services available in
the HLA RTI. One example of this is bridging support
for HLA/DIS legacy integration. This paper therefore
presents GRIDS, how GRIDS can be used to provide
modular service support for the HLA RTI, and a case
study on legacy integration to demonstrate our
approach.

1. Introduction

The standardization of the HLA [1,2,3] has been an
important step for the distributed simulation community.
This has brought about a level of stability with regards to
the API [2] as described by the interface specification and
allowed developers to build federations with a degree of
certainty regarding interoperability. Additionally, this
has stimulated continued development in RTI to support
distributed simulation.

Generally, current implementations of the HLA RTI

do not support the integration of extra services. These
new services could be driven through changing
requirements or the need for a feature not directly
supported by the RTI. Currently this is dealt with by
provision of bespoke changes to the RTI middleware or to
the federates. The work presented in this paper
investigates an approach to an RTI based on modularity.
The implementation is known as the Generic Runtime
Infrastructure for Distributed Simulation (GRIDS). The
feature which distinguishes GRIDS from other RTI is its
support of modularity through its extensibility

mechanism. This mechanism provides the facility to add
additional services within the middleware that (for
largely historical reasons) we call thin agents. Thin
agents are service components used to realize new
services. To demonstrate the feature of extensibility
within an RTI, a legacy integration service in GRIDS is
developed to show how our infrastructure could provide a
standard “bridge” between HLA and legacy DIS
federations.

This paper is structured as follows. In section 2 we

briefly discuss the functionality provided by current RTIs
and suggest possible benefits accrued from a modular
RTI. GRIDS, our approach to this type of RTI is
presented in section 3. Section 4 presents our case study.
The paper ends with some conclusions in section 5.

2. Current RTI Functionality

The services described within the HLA address a
range of simulation requirements. Examples of these
include the integration of simulations based on different
time schemes by the time management service group and
relevance filtering as provided in part by the data
distribution management group. The RTI
implementations such as the pRTI 1516 [4] from Pitch
AB or the DMSO RTI represent fully compliant
middleware. However, their implementations do not
provide the facility to add additional functionality by
federation developers as it is not a requirement of the
HLA standard or (at the time of the RTI development)
not an end user requirement.

As a standard it is accepted that a HLA compliant

RTI need only implement required services. The HLA
API has been carefully designed to provide simulation
specific functionality for distributed simulation.
Furthermore, the HLA is seen as a generalized
architecture to facilitate reuse and interoperability for a

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

variety of simulations. Generally, the “variety” is seen to
come from the defense community but the hope has been
to encourage HLA technology into non-defense
applications. A greater acceptance of the HLA by all
communities creates experiences in best practice and an
increase in exposure and familiarity to the HLA approach
to distributed simulation.

The greatest barrier to using an architecture such as

the HLA and the RTI is its complexity [5]. There has
certainly been increased interest in non-defense related
uses of HLA alongside the required uptake from the
defense communities. However, the lack of flexibility
within the RTI to support additional or alternative
services is seen as further barrier to particular types of
applications. A modular RTI could provide the following
benefits:

• Vendors could develop RTI components to
deliver the services provided by the six service
groups. A federation developer could mix and
match service components from various vendors
providing a compliant yet optimized RTI. The
developers could choose from components
implementing superior algorithms for example.

• RTI developers could incrementally upgrade
their software through releases of components
while maintaining a stable and core basic RTI.

• Fundamental changes to the HLA standard will
impact heavily on the RTI. However, through a
component enabled RTI, new service
components will replace the older ones.
Furthermore, the new compliant RTI can be
assembled very quickly from the components.

Leading on from this discussion, our approach to a

modular, component-based RTI is now examined.

3. The Generic Runtime Infrastructure for
Distributed Simulation

The Generic Runtime Infrastructure for Distributed
Simulation is an extensible middleware created by staff at
the Centre for Applied Simulation Modelling, Brunel
University, for research into distributed simulation tools
and techniques. Instead of the fixed functionality of the
HLA RTI, GRIDS provides basic functionality for the
interoperation of federates within a federation
(interaction of models in a distributed simulation) and a
mechanism to add extra functions where appropriate.

This extensibility is provided by Thin Agents that
encapsulate additional services as and when required
(dead reckoning [6], different time synchronization
management algorithms [7,8,9], message filtering,
security, translation, etc.). The basic functionality is a
subset of the HLA RTI functionality. The extensibility is
the principal difference between GRIDS and other
approaches to distributed simulation. We address the
integration of GRIDS and the HLA RTI in [10].

3.1 Basic architecture

GRIDS is based on message-oriented middleware.
The middleware is composed of the following major
elements:

• Boot Server The boot server is a single process
used to coordinate the initialization, execution
and termination of a distributed simulation. The
boot server is started and serves as a central
location for all the participants of the simulation
to connect to. The boot server is also loaded with
any configuration information required to be
passed to the connecting simulations. It is
equivalent to the Central Runtime Component
(CRC).

• Client The GRIDS client is used by the federate
to interact with the rest of the federation. The
client initially is used to contact the GRIDS
server and register its intention to participate in
a simulation exercise. The client is loaded with
configuration data where it is able to
communicate directly with other clients during
the execution of the federation. It is equivalent
to the Local Runtime Component (LRC).

• Thin Agent A thin agent is the GRIDS term for
a component service. Thin agents are coded to
provide a service or range of services. Their
specific function is entirely dependent on the
requirements of the application and therefore
can be application specific services or more
general. The thin agents are loaded by the boot
server and distributed to connecting clients prior
to the execution of the simulation. The thin
agents are then integrated into the client
augmenting its deployed services.

• Metadatabase The metadatabase is the general
data structure in GRIDS used to store
information. The data stored commonly includes
both infrastructural and application data but is
capable of storing any conceivable data
structure.

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore. Restrictions apply.

Figure 1 illustrates a typical GRIDS federation.

Simulation objects/federates are connected to a GRIDS
client via an interface. Thin agents are distributed to
participating clients and instantiated to provide the extra
services.

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Boot Server

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

Figure 1. Typical GRIDS federation

A GRIDS session has five distinct stages of execution:

Initialization, Register, Broadcast, Runtime and
Terminate. Based on the stages, GRIDS can
communicate in two modes, client-server (between the
boot server and the client) and peer-to-peer (client to
client). These stages of execution based on a typical
GRIDS execution session are described.

• Stage 1: Initialization
Initialization involves the starting of a GRIDS boot
server. The server is loaded with thin agents that are to
be used to support the simulation exercise.
• Stage 2: Register
Registering involves individual simulation nodes making
their presence known to the GRIDS boot server and
publishing the initial state variables of that node.
Additionally, the boot server builds up the namespace of
all the clients registering, and builds a central entity list
of all entities in the simulation. Once all clients are
registered the server closes all incoming connections for
registration.
• Stage 3: Broadcast
Upon a simulation “Start” event, the boot server
broadcasts to all registered clients the entire entity list

built up during registration. The entity list is stored in the
internal database on each GRIDS client. In addition to
broadcasting the entity list, the server broadcasts the
namespace for all participating clients to be stored
internally within each GRIDS client.
• Stage 4: Run
Once all entity lists and namespaces are broadcast to the
individual clients, the server issues a “go” command to
all the clients, signaling the start of the simulation. At
this point, the server ceases its interactions with the
clients. The clients now communicate directly as
necessary in a peer to peer fashion to other nodes in the
simulation. The GRIDS client is responsible for
synchronizing entity attributes between the local and
remote nodes.
• Stage 5: Terminate
Once the simulations have completed executing, the
clients register back with the boot server signaling that
they are exiting gracefully from the federation.

The structure of a GRIDS node is summarized in
Figure 2. Network access is controlled by the network
interface manager. This is composed of several services
that manage the distribution for the rest of the client. The
thin agent manager is used to delegate jobs to thin
agents. These are based on requests originating both from
the network and the federate. Service conducted by the
thin agent is specific to its implementation. The
metadatabase is a general storage facility used by both
managers to store relevant information. Finally, the thin
agent manager is connected to the federate via an
interface (described in the next section). Data is
transmitted and received by the federate through this
interface using the GRIDS middleware.

GRIDS Client
Simulation

Environment

Federate

Thin
Agent

Manager

Metadatabase Manager

Thin
Agent

Thin
Agent

Network
Interface
Manager

N
et

w
or

k

Figure 2. Composition of a GRIDS Client and

Federate

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore. Restrictions apply.

3.2 Extensibility mechanism

The key feature that distinguishes GRIDS from other
RTI is that it supports extensibility. This property allows
the functionality of the infrastructure to be augmented.
Extensibility is provided within GRIDS at several levels:

1. User-defined message types to transport data
and for general communication.

2. API extensions via subclassing of the GRIDS
interface.

3. Functionality extensions via thin agent
components.

4. Internal data storage extensions via the MDB
interface.

5. Modular internal structure based on runtime
bindings.

Of the items above, those of interest are the first three

in the context of this paper. As a message-oriented
middleware, GRIDS relies heavily on message types to
communicate. Messages represent a low level interaction
primitive and therefore provide scope to abstract more
complex forms of communication upon this foundation.
GRIDS contains a series of internal message types.
However, developers are able to add user-defined
message types for their own applications.

The application interface within GRIDS is in the form

of two basic object-oriented interfaces that must be
implemented during an applications development. The
SimInterface is equivalent to the federate ambassador. It
defines a single method which is used to transfer data
into the federate such as a callback. The GridsInterface is
equivalent to the RTI ambassador. It defines a single
method again used to transfer data into the middleware.
A developer is expected to implement the SimInterface
and provide all packing and unpacking of GRIDS
messages. It must also provide an equivalent interface to
match the calls made by the federate. This could be as
simple as implementing just the single defined method or
require a series of methods dealing with individual
message types allowing a high degree of customization of
the API presented by the middleware.

Thin agents encapsulate specific behavior and control

providing each federation with a set of precise services
(as defined by the component developer) during
execution. As dynamically distributed and instantiated
entities, thin agents provide a versatile and standard way
for developers to provide specific services, without
having to rewrite any code within the GRIDS RTI.

Developing a user-defined thin agent follows the

process illustrated in Figure 3. Creation of every thin
agent begins with an abstract service. This service is
defined by the thin agent superclass interface. The thin
agent is written as a service program based on the
abstract service. This involves the implementation of the
thin agent interface and superclass by a service program
as source code. The service program is then compiled
into a machine independent executable format known as
Java bytecode. The service bytecode is ready to be
distributed from the central GRIDS boot server to clients
during an execution of a federation. The GRIDS clients
receive the bytecode and instantiate it into a live service.
The instantiation process may involve providing the
service component with its own thread of execution,
where it will have its own program loop. At this stage,
the installed thin agent can be queried via invoking calls
through its interface from the thin agent manager or
through message interceptions as is now described.

GRIDS Client

Thin Agent
Bytecode

Thin Agent

Abstract Thin
Agent

Thin Agent
Bytecode

Subclass

Compile Thin
Agent

Instantiate

1 Java abstract
 service is
 subclassed

2 Service is
 compiled to
 produce Java
 bytecode

3 Service is
 distributed
to
 all GRIDS
 clients

4 Service is
 instantiated on
 demand, to
 produce live
 object

5 Service can
 now be queried
 or addressed

Figure 3. Thin agent development lifecycle

Thin agents primarily perform their functions through
the message interception approach. When a thin agent is
installed into a GRIDS client, it first registers itself to
receive particular message types. During execution the
thin agent requires the GRIDS client to receive messages
as illustrated in Figure 4. The TAM is used to route
messages between the federate, the thin agents and the
network. The TAM uses two queues to manage inbound
and outbound messages. The TAM’s thread of execution
is used to check the inbound and outbound queues to
direct messages through the GRIDS client. The TAM’s
circle in the figure represents the routing decision point.
If the message type compares with a registered handling
thin agent, the intercepted message is passed directly to

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore. Restrictions apply.

the thin agent where it is processed. Otherwise the
message continues either inbound or outbound according
to its original path.

GRIDS Client

S
im

u
la

ti
o

n
 /

F
ed

er
at

e

N
et

w
o

rk

Thin Agent

Thin Agent
Manager (TAM)

Network Interface
Manager

Message DirectionInbound Outbound

Figure 4. Thin agent message interception

4. Example Two: Legacy Support

The example describes an approach to supporting a
legacy style simulation (DIS) within a HLA federation.
The example attempts to interoperate a HLA federate
(from example one) with a DIS federate as presented in a
previous paper [6].

5.1 Introducing the DIS federate

The federate originally known as “tanksim” is based
around a series of tanks autonomously moving within a
two-dimensional environment. The environment is a
fixed size with a square boundary. The tanks (each
within its own federate) move within this environment
via simple rules. A tank's movement pattern is broken
into phases. A movement phase begins with the tank
selecting a target waypoint. The tank moves towards the
waypoint at a specified speed until the waypoint is
achieved. Achievement of a waypoint is denoted by
moving within a threshold distance from the waypoint
(e.g. within 25 meters). The tank then selects a new
random waypoint and begins another iteration of the
movement phase.

In a DIS style simulation, each tanksim node is

required to broadcast continuous updates to the rest of the
distributed simulation. The scalability of DIS
applications has always been a limiting factor due to
bandwidth demands. Our previous work uses GRIDS to
connect the tanksim federates together while providing
relevance filtering through a dead reckoning thin agent
(DR-TA) [6].

5.2 The bridging thin agent

This example discusses the key challenges faced in
facilitating the interoperability of a DIS federate as
described and an HLA federate from the first example.
The approach to achieving the successful execution of the
mixed federation using GRIDS is based on reusing as
much of the federates and thin agents as possible. The
use of a bridging thin agent to link the services provided
by the existing DR-TA and the HLA-TA is used to
achieve this. For clarity, the DIS federate is referred to as
DISFed while the federate from example one is referred
to as HLAFed.

The approach to interoperating the mixed mode

federation is to bridge the communication between the
HLA federate (HLAFed) and the DIS federate (DISFed)
as in figure 5. It illustrates the position of the DIS-HLA
Bridge Thin Agent (DHB-TA) when used within the
GRIDS middleware. The new thin agent only resides
within the node containing the DISFed and the DR-TA.

GRIDS Client

H
L

A
F

ed

G
R

ID
S

-R
T

I
In

te
rf

ac
e

E
xt

en
si

on
HLA
Thin

Agent

GRIDS Client

D
IS

F
edDead

Reckoning
Thin Agent

DIS-HLA
Bridge Thin

Agent

Network Connection

Dead
Reckoning
Thin Agent

DIS-HLA
Bridge Thin

Agent

D
IS

F
ed

N
et

w
o

rk

DIS
Messages

HLA
Messages

HLA-DIS
Message

Conversion

Figure 5. DIS-HLA bridge thin agent

The function of the DHB-TA is further illustrated by

the expanded view of the DISFed's GRIDS client in
figure 5. It communicates HLA messages as specified in
Table 1 with the rest of the federation. The DHB-TA
translates any calls required to be sent to the federate into
messages that the DR-TA can understand (entity state
PDU’s) and then passes them on. The DR-TA handles
these messages as if they had been received from the
network and operates accordingly. As the DISFed

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore. Restrictions apply.

generates entity state updates destined for the federation,
the DR-TA intercepts these according to normal
execution. After processing, if the decision by the DR-TA
is such that an update message is required to correct the
low fidelity models of all the federation for the entity
modeled locally, the update message is passed to the
DHB-TA rather than the network. The DHB-TA
translates this into the appropriate RTI call (such as an
update attribute value call) for the rest of the federation
(in this case, the HLAFed).

Table 1. RTI calls used by the federation

The DHB-TA does not need any associations to new

message types. It is registered to intercept the existing
DIS and HLA messages and implements the functionality
to translate between the two federate types.
Algorithmically, the DHB-TA is very similar to the
HLA-TA. It must manage the handles for structures such
as the class types of objects, the objects and the attributes.
These data types are foreign to a DIS application. The
following list details how the DHB-TA manages RTI
calls that are not supported conceptually within a DIS
application.

• Object Creation When the DHB-TA receives
its first entity state update message from the DR-
TA, it regards this as the object creation request.
The object handle is generated and stored locally
within the DHB-TA. The object discovery

message is then propagated in the normal
manner to the rest of the federation.

• Object Discovery If an object discovery
message is received, the DHB-TA immediately
requests an object attribute value update after
storing the object handle.

• Attribute Value Update If an entity state
update message is received by the DHB-TA from
the DR-TA, the message is translated into an
attribute value update and broadcast to the
federation. A copy of the entities state is stored
within the DHB-TA in case values are requests
from other federates on demand.

• Reflect Attribute Value A received reflect
attribute value message by the DHB-TA is
translated into an entity state update message
and passed to the DR-TA to deliver to the
federate.

• Request Object Attribute Value Update If an
object discovery message is received, a request
object attribute value update message is sent to
the owning federate of the object.

• Provide Attribute Value Update If the DHB-
TA receives a provide attribute value update, the
most current stored state values within the DHB-
TA are used to generate an attribute value
update.

Figure 6. DIS and HLA mixed federation using
GRIDS

Figure 6 is a screenshot of the mixed mode federation

executing. To recap, the HLA federate from example one
generates a user interface. This interface is a basic
window which displays the position of the local tank as a
solid square and all other tanks (updated from remote

Service
Group

RTI Ambassador Federate
Ambassador

Federation
Management

Create Federation
Execution(),
Join Federation
Execution()

Declaration
Management

Publish Object
Class(),
Subscribe Object
Class
Attributes()

Object
Management

Register Object
Instance(),
Update Attribute
Values(),
Request Object
Attribute Value
Update()

Discover Object
Instance(),
Reflect Attribute
Values(),
Provide Attribute
Value Update()

RTI Support
Services

Get Object Class
Handle(),
Get Attribute
Handle()

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore. Restrictions apply.

sources) as wire frame squares. The DIS federate uses a
text-based interface directly to the command prompt. The
solid square in the top left of the federate GUI is the
HLAFed’s tank. The wire frame square in the bottom
right is the DISFed’s tank.

6. Conclusions

This paper has demonstrated an approach to the
implementation of an RTI based on extensibility. The
paper has suggested that current implementations of the
RTI do not provide support for the inclusion of additional
functionality beyond that specified by the HLA standard.
GRIDS representing an early adopter of the component
RTI philosophy provides an extensibility mechanism to
add additional service components in the form of thin
agents. The paper has presented one example to
demonstrating our approach to extensibility. The
example a thin agent service to provide support for a
legacy DIS federate to interoperate with a HLA federate
in a mixed federation.

The example demonstrates functionality which exists

without the need for a modular RTI and can be delivered
using traditional RTI. However, the examples
demonstrate the flexibility provided by the extensibility
mechanism and offer a vehicle to realize services not
included by the HLA. Current work using the GRIDS
RTI is continuing based on the following investigations:

• A comparison of implementations of a
federation using an HLA compliant RTI and
GRIDS. This work is in conjunction with
Farshad Moradi from FOI (Swedish Defense
Research Agency) and attempts to investigate
the development time, best practice developing
simulations using GRIDS and the performance
of both RTIs.

• Time management to support distributed supply
chain simulation. This is based on an increased
interest in using distributed simulation
technology for non-defense purposes. Work in
this area has already attempted to use various
middleware including the HLA [12], CORBA
[13] and our approach using GRIDS and a thin
agent implementing a conservative
synchronization protocol (known as a CPADS-
TA [8,9]).

• Commercial-of-the-shelf (COTS) simulation
package integration to facilitate distributed
simulation development using traditional
simulation packages [12]. The challenge here is

to use thin agents to gain access and control of
the package and to provide mechanisms to relay
event messages between packages.

• Full HLA RTI support through thin agents. A
single component is used to encapsulate each
service group providing the opportunity to
upgrade incrementally and to select alternative
algorithmic approaches to particular services.

• Thin agents as simulation components. This
work is founded on the area of component-based
simulation. The property of mobility of thin
agents is seen as a method for load-balancing a
distributed simulation through the transfer of
entities between federates. Related to this, thin
agents can also be used for object ownership
transferal to other federates as with the HLA.

We hope to report on the progress of these research

interests in future publications and welcome comments
regarding these and alternative uses of components
within RTI.

As a concluding remark, it is suggested that a

modular RTI such as GRIDS may provide a vehicle for
greater transfer of distributed simulation technology into
non-defense areas. This is based on the view that GRIDS,
for a given application is a skeleton infrastructure which
can be fleshed with required. With the possibility to
provide HLA support within the middleware, this type of
functionality may generate interest and the flexibility
required by a wider community while satisfying
traditional users.

7. References

[1] IEEE Standard 1516-2000 IEEE standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) –
Framework and Rules

[2] IEEE Standard 1516.1-2000 IEEE standard for Modeling
and Simulation [M and S] High Level Architecture [HLA] –
Federate Interface Specification

[3] IEEE Standard 1516.2-2000 IEEE standard for Modeling
and Simulation (M&S) High Level Architecture (HLA) –
Object Model Template

[4] M.Karlsson, and L. Olsson: “pRTITM 1516 – Rationale and
Design”. In Proceedings of the Fall 2001 Simulation
Interoperability Workshop. Orlando, Florida. 01F-SIW-038.
2001.

[5] C. McLean, and F. Riddick: “The IMS Mission Architecture
for Distributed Manufacturing Simulation.” In Proceedings of

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore. Restrictions apply.

the 2000 Winter Simulation Conference. J. A. Joines, R. R.
Barton, K. Kang, and P. A. Fishwick, eds, pp 1539-1548.
Orlando, FL. 2000.

[6] S.J.E. Taylor, J. Saville., and R. Sudra: “Developing Interest
Management Techniques in Distributed Interactive Simulation
using JAVA”. In Proceedings of the 1999 Winter Simulation
Conference. Phoenix, Arizona. 1999.

[7] R. Sudra, S.J.E. Taylor and T. Janahan: “Distributed Supply
Chain Management in GRIDS”. In Proceedings of the 2000
Winter Simulation Conference. J. A. Joines, R. R. Barton, K.
Kang, and P. A. Fishwick, eds, Orlando, Florida. 2000.

[8] R. Sudra., S.J.E. Taylor and T. Janahan: “GRIDS: A Novel
Architecture for Distributed Supply Chain Management”. In
Proceedings of the Fall 2000 Simulation Interoperability
Workshop. Orlando, Florida. 00F-SIW-051. 2000.

[9] S.J.E. Taylor, R. Sudra., G. Tan, and J. Ladbrook: “Issues in
Developing Distributed Supply Chain Simulation for the
Automotive Industry” In Proceedings of the 2001 European
Simulation Interoperability Workshop, pp 629-637 London,
UK. 01E-SIW-097. 2001.

[10] R. Sudra and S.J.E. Taylor: “Extensibility: Modular HLA
Services”. In Proceedings of the 2002 European Simulation
Interoperability Workshop, to appear. London, UK.

[11] S.J.E. Taylor, R. Sudra., T. Janahan, G. Tan, and J.
Ladbrook: “Towards COTS Distributed Simulation using
GRIDS”. In Proceedings of the 2001 Winter Simulation
Conference. B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W.
Rohrer, eds, pp 1372-1379. Arlington, Virginia. 2001.

[12] S.J. Turner, W. Cai and B.P. Gan: “Adapting a Supply
Chain Simulation for HLA.” In Proceedings of the 4th
International Workshop on Distributed Simulation and Real
Time Applications, pp 71-78. IEEE Computer Society Press.
San Francisco, California, USA. 2000

[13] B.P. Zeilger, D. Kim, and S.J. Buckley: “Distributed
Supply Chain Simulation in a DEVS/CORBA Execution
Environment.” In Proceedings of the 1999 Winter Simulation
Conference, P.A.. Farrington, H.B. Nembhard, D.T. Sturrock,
and G.W. Evans, eds, pp 1333-1340. Phoenix, AZ. 1999.

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore. Restrictions apply.

