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Abstract 
 

The Generic Runtime Infrastructure for Distributed 
Simulation (GRIDS) has been developed to investigate 
modularity issues in distributed simulation.  It could be 
argued that although the HLA RTI is a widespread 
solution to distributed simulation, it cannot include all 
possible services. This paper investigates an approach to 
extending the distributed simulation services available in 
the HLA RTI.  One example of this is bridging support 
for HLA/DIS legacy integration.  This paper therefore 
presents GRIDS, how GRIDS can be used to provide 
modular service support for the HLA RTI, and a case 
study on legacy integration to demonstrate our 
approach. 
 
1. Introduction 
 

The standardization of the HLA [1,2,3] has been an 
important step for the distributed simulation community. 
This has brought about a level of stability with regards to 
the API [2] as described by the interface specification and 
allowed developers to build federations with a degree of 
certainty regarding interoperability. Additionally, this 
has stimulated continued development in RTI to support 
distributed simulation. 

 
Generally, current implementations of the HLA RTI 

do not support the integration of extra services.  These 
new services could be driven through changing 
requirements or the need for a feature not directly 
supported by the RTI.  Currently this is dealt with by 
provision of bespoke changes to the RTI middleware or to 
the federates. The work presented in this paper 
investigates an approach to an RTI based on modularity. 
The implementation is known as the Generic Runtime 
Infrastructure for Distributed Simulation (GRIDS). The 
feature which distinguishes GRIDS from other RTI is its 
support of modularity through its extensibility 

mechanism. This mechanism provides the facility to add 
additional services within the middleware that (for 
largely historical reasons) we call thin agents. Thin 
agents are service components used to realize new 
services. To demonstrate the feature of extensibility 
within an RTI, a legacy integration service in GRIDS is 
developed to show how our infrastructure could provide a 
standard “bridge” between HLA and legacy DIS 
federations. 

  
This paper is structured as follows. In section 2 we 

briefly discuss the functionality provided by current RTIs 
and suggest possible benefits accrued from a modular 
RTI. GRIDS, our approach to this type of RTI is 
presented in section 3. Section 4 presents our case study. 
The paper ends with some conclusions in section 5. 
 
2. Current RTI Functionality 
 

The services described within the HLA address a 
range of simulation requirements. Examples of these 
include the integration of simulations based on different 
time schemes by the time management service group and 
relevance filtering as provided in part by the data 
distribution management group. The RTI 
implementations such as the pRTI 1516 [4] from Pitch 
AB or the DMSO RTI represent fully compliant 
middleware. However, their implementations do not 
provide the facility to add additional functionality by 
federation developers as it is not a requirement of the 
HLA standard or (at the time of the RTI development) 
not an end user requirement. 

  
As a standard it is accepted that a HLA compliant 

RTI need only implement required services. The HLA 
API has been carefully designed to provide simulation 
specific functionality for distributed simulation. 
Furthermore, the HLA is seen as a generalized 
architecture to facilitate reuse and interoperability for a 
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variety of simulations. Generally, the “variety” is seen to 
come from the defense community but the hope has been 
to encourage HLA technology into non-defense 
applications. A greater acceptance of the HLA by all 
communities creates experiences in best practice and an 
increase in exposure and familiarity to the HLA approach 
to distributed simulation. 

 
The greatest barrier to using an architecture such as 

the HLA and the RTI is its complexity [5]. There has 
certainly been increased interest in non-defense related 
uses of HLA alongside the required uptake from the 
defense communities. However, the lack of flexibility 
within the RTI to support additional or alternative 
services is seen as further barrier to particular types of 
applications. A modular RTI could provide the following 
benefits: 
 

• Vendors could develop RTI components to 
deliver the services provided by the six service 
groups. A federation developer could mix and 
match service components from various vendors 
providing a compliant yet optimized RTI. The 
developers could choose from components 
implementing superior algorithms for example. 

• RTI developers could incrementally upgrade 
their software through releases of components 
while maintaining a stable and core basic RTI. 

• Fundamental changes to the HLA standard will 
impact heavily on the RTI. However, through a 
component enabled RTI, new service 
components will replace the older ones. 
Furthermore, the new compliant RTI can be 
assembled very quickly from the components. 

 
Leading on from this discussion, our approach to a 

modular, component-based RTI is now examined. 
 
3. The Generic Runtime Infrastructure for 
Distributed Simulation 
 

The Generic Runtime Infrastructure for Distributed 
Simulation is an extensible middleware created by staff at 
the Centre for Applied Simulation Modelling, Brunel 
University, for research into distributed simulation tools 
and techniques. Instead of the fixed functionality of the 
HLA RTI, GRIDS provides basic functionality for the 
interoperation of federates within a federation 
(interaction of models in a distributed simulation) and a 
mechanism to add extra functions where appropriate. 

 

This extensibility is provided by Thin Agents that 
encapsulate additional services as and when required 
(dead reckoning [6], different time synchronization 
management algorithms [7,8,9], message filtering, 
security, translation, etc.). The basic functionality is a 
subset of the HLA RTI functionality. The extensibility is 
the principal difference between GRIDS and other 
approaches to distributed simulation.  We address the 
integration of GRIDS and the HLA RTI in [10]. 
 
3.1 Basic architecture 
 

GRIDS is based on message-oriented middleware. 
The middleware is composed of the following major 
elements: 
 

• Boot Server The boot server is a single process 
used to coordinate the initialization, execution 
and termination of a distributed simulation. The 
boot server is started and serves as a central 
location for all the participants of the simulation 
to connect to. The boot server is also loaded with 
any configuration information required to be 
passed to the connecting simulations. It is 
equivalent to the Central Runtime Component 
(CRC). 

• Client The GRIDS client is used by the federate 
to interact with the rest of the federation. The 
client initially is used to contact the GRIDS 
server and register its intention to participate in 
a simulation exercise. The client is loaded with 
configuration data where it is able to 
communicate directly with other clients during 
the execution of the federation. It is equivalent 
to the Local Runtime Component (LRC). 

• Thin Agent A thin agent is the GRIDS term for 
a component service. Thin agents are coded to 
provide a service or range of services. Their 
specific function is entirely dependent on the 
requirements of the application and therefore 
can be application specific services or more 
general. The thin agents are loaded by the boot 
server and distributed to connecting clients prior 
to the execution of the simulation. The thin 
agents are then integrated into the client 
augmenting its deployed services. 

• Metadatabase The metadatabase is the general 
data structure in GRIDS used to store 
information. The data stored commonly includes 
both infrastructural and application data but is 
capable of storing any conceivable data 
structure. 
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Figure 1 illustrates a typical GRIDS federation. 

Simulation objects/federates are connected to a GRIDS 
client via an interface. Thin agents are distributed to 
participating clients and instantiated to provide the extra 
services. 
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Figure 1. Typical GRIDS federation 

 
A GRIDS session has five distinct stages of execution: 

Initialization, Register, Broadcast, Runtime and 
Terminate. Based on the stages, GRIDS can 
communicate in two modes, client-server (between the 
boot server and the client) and peer-to-peer (client to 
client). These stages of execution based on a typical 
GRIDS execution session are described.  
 
• Stage 1: Initialization 
Initialization involves the starting of a GRIDS boot 
server. The server is loaded with thin agents that are to 
be used to support the simulation exercise. 
• Stage 2: Register 
Registering involves individual simulation nodes making 
their presence known to the GRIDS boot server and 
publishing the initial state variables of that node. 
Additionally, the boot server builds up the namespace of 
all the clients registering, and builds a central entity list 
of all entities in the simulation. Once all clients are 
registered the server closes all incoming connections for 
registration. 
• Stage 3: Broadcast 
Upon a simulation “Start” event, the boot server 
broadcasts to all registered clients the entire entity list 

built up during registration. The entity list is stored in the 
internal database on each GRIDS client. In addition to 
broadcasting the entity list, the server broadcasts the 
namespace for all participating clients to be stored 
internally within each GRIDS client. 
• Stage 4: Run 
Once all entity lists and namespaces are broadcast to the 
individual clients, the server issues a “go” command to 
all the clients, signaling the start of the simulation. At 
this point, the server ceases its interactions with the 
clients. The clients now communicate directly as 
necessary in a peer to peer fashion to other nodes in the 
simulation. The GRIDS client is responsible for 
synchronizing entity attributes between the local and 
remote nodes. 
• Stage 5: Terminate 
Once the simulations have completed executing, the 
clients register back with the boot server signaling that 
they are exiting gracefully from the federation. 
 

The structure of a GRIDS node is summarized in 
Figure 2. Network access is controlled by the network 
interface manager. This is composed of several services 
that manage the distribution for the rest of the client. The 
thin agent manager is used to delegate jobs to thin 
agents. These are based on requests originating both from 
the network and the federate. Service conducted by the 
thin agent is specific to its implementation. The 
metadatabase is a general storage facility used by both 
managers to store relevant information. Finally, the thin 
agent manager is connected to the federate via an 
interface (described in the next section). Data is 
transmitted and received by the federate through this 
interface using the GRIDS middleware. 
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Figure 2. Composition of a GRIDS Client and 

Federate 
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3.2 Extensibility mechanism 
 

The key feature that distinguishes GRIDS from other 
RTI is that it supports extensibility. This property allows 
the functionality of the infrastructure to be augmented. 
Extensibility is provided within GRIDS at several levels: 
 

1. User-defined message types to transport data 
and for general communication. 

2. API extensions via subclassing of the GRIDS 
interface. 

3. Functionality extensions via thin agent 
components. 

4. Internal data storage extensions via the MDB 
interface. 

5. Modular internal structure based on runtime 
bindings. 

 
Of the items above, those of interest are the first three 

in the context of this paper. As a message-oriented 
middleware, GRIDS relies heavily on message types to 
communicate. Messages represent a low level interaction 
primitive and therefore provide scope to abstract more 
complex forms of communication upon this foundation. 
GRIDS contains a series of internal message types. 
However, developers are able to add user-defined 
message types for their own applications. 

 
The application interface within GRIDS is in the form 

of two basic object-oriented interfaces that must be 
implemented during an applications development. The 
SimInterface is equivalent to the federate ambassador. It 
defines a single method which is used to transfer data 
into the federate such as a callback. The GridsInterface is 
equivalent to the RTI ambassador. It defines a single 
method again used to transfer data into the middleware. 
A developer is expected to implement the SimInterface 
and provide all packing and unpacking of GRIDS 
messages. It must also provide an equivalent interface to 
match the calls made by the federate. This could be as 
simple as implementing just the single defined method or 
require a series of methods dealing with individual 
message types allowing a high degree of customization of 
the API presented by the middleware. 

 
Thin agents encapsulate specific behavior and control 

providing each federation with a set of precise services 
(as defined by the component developer) during 
execution. As dynamically distributed and instantiated 
entities, thin agents provide a versatile and standard way 
for developers to provide specific services, without 
having to rewrite any code within the GRIDS RTI. 

 
Developing a user-defined thin agent follows the 

process illustrated in Figure 3. Creation of every thin 
agent begins with an abstract service. This service is 
defined by the thin agent superclass interface. The thin 
agent is written as a service program based on the 
abstract service. This involves the implementation of the 
thin agent interface and superclass by a service program 
as source code. The service program is then compiled 
into a machine independent executable format known as 
Java bytecode. The service bytecode is ready to be 
distributed from the central GRIDS boot server to clients 
during an execution of a federation. The GRIDS clients 
receive the bytecode and instantiate it into a live service. 
The instantiation process may involve providing the 
service component with its own thread of execution, 
where it will have its own program loop. At this stage, 
the installed thin agent can be queried via invoking calls 
through its interface from the thin agent manager or 
through message interceptions as is now described. 
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Figure 3. Thin agent development lifecycle 
 

Thin agents primarily perform their functions through 
the message interception approach. When a thin agent is 
installed into a GRIDS client, it first registers itself to 
receive particular message types. During execution the 
thin agent requires the GRIDS client to receive messages 
as illustrated in Figure 4. The TAM is used to route 
messages between the federate, the thin agents and the 
network. The TAM uses two queues to manage inbound 
and outbound messages. The TAM’s thread of execution 
is used to check the inbound and outbound queues to 
direct messages through the GRIDS client. The TAM’s 
circle in the figure represents the routing decision point. 
If the message type compares with a registered handling 
thin agent, the intercepted message is passed directly to 
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the thin agent where it is processed. Otherwise the 
message continues either inbound or outbound according 
to its original path. 
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Figure 4. Thin agent message interception 
 
4. Example Two: Legacy Support 
 

The example describes an approach to supporting a 
legacy style simulation (DIS) within a HLA federation. 
The example attempts to interoperate a HLA federate 
(from example one) with a DIS federate as presented in a 
previous paper [6]. 
 
5.1 Introducing the DIS federate 
 

The federate originally known as “tanksim” is based 
around a series of tanks autonomously moving within a 
two-dimensional environment. The environment is a 
fixed size with a square boundary. The tanks (each 
within its own federate) move within this environment 
via simple rules. A tank's movement pattern is broken 
into phases. A movement phase begins with the tank 
selecting a target waypoint. The tank moves towards the 
waypoint at a specified speed until the waypoint is 
achieved. Achievement of a waypoint is denoted by 
moving within a threshold distance from the waypoint 
(e.g. within 25 meters). The tank then selects a new 
random waypoint and begins another iteration of the 
movement phase. 

 
In a DIS style simulation, each tanksim node is 

required to broadcast continuous updates to the rest of the 
distributed simulation. The scalability of DIS 
applications has always been a limiting factor due to 
bandwidth demands. Our previous work uses GRIDS to 
connect the tanksim federates together while providing 
relevance filtering through a dead reckoning thin agent 
(DR-TA) [6]. 
 

5.2 The bridging thin agent 
 

This example discusses the key challenges faced in 
facilitating the interoperability of a DIS federate as 
described and an HLA federate from the first example. 
The approach to achieving the successful execution of the 
mixed federation using GRIDS is based on reusing as 
much of the federates and thin agents as possible. The 
use of a bridging thin agent to link the services provided 
by the existing DR-TA and the HLA-TA is used to 
achieve this. For clarity, the DIS federate is referred to as 
DISFed while the federate from example one is referred 
to as HLAFed. 

 
The approach to interoperating the mixed mode 

federation is to bridge the communication between the 
HLA federate (HLAFed) and the DIS federate (DISFed) 
as in figure 5. It illustrates the position of the DIS-HLA 
Bridge Thin Agent (DHB-TA) when used within the 
GRIDS middleware. The new thin agent only resides 
within the node containing the DISFed and the DR-TA. 
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Figure 5. DIS-HLA bridge thin agent 

 
The function of the DHB-TA is further illustrated by 

the expanded view of the DISFed's GRIDS client in 
figure 5. It communicates HLA messages as specified in 
Table 1 with the rest of the federation. The DHB-TA 
translates any calls required to be sent to the federate into 
messages that the DR-TA can understand (entity state 
PDU’s) and then passes them on. The DR-TA handles 
these messages as if they had been received from the 
network and operates accordingly. As the DISFed 
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generates entity state updates destined for the federation, 
the DR-TA intercepts these according to normal 
execution. After processing, if the decision by the DR-TA 
is such that an update message is required to correct the 
low fidelity models of all the federation for the entity 
modeled locally, the update message is passed to the 
DHB-TA rather than the network. The DHB-TA 
translates this into the appropriate RTI call (such as an 
update attribute value call) for the rest of the federation 
(in this case, the HLAFed). 
 

Table 1. RTI calls used by the federation 

 
The DHB-TA does not need any associations to new 

message types. It is registered to intercept the existing 
DIS and HLA messages and implements the functionality 
to translate between the two federate types. 
Algorithmically, the DHB-TA is very similar to the 
HLA-TA. It must manage the handles for structures such 
as the class types of objects, the objects and the attributes. 
These data types are foreign to a DIS application. The 
following list details how the DHB-TA manages RTI 
calls that are not supported conceptually within a DIS 
application. 
 

• Object Creation When the DHB-TA receives 
its first entity state update message from the DR-
TA, it regards this as the object creation request. 
The object handle is generated and stored locally 
within the DHB-TA. The object discovery 

message is then propagated in the normal 
manner to the rest of the federation. 

• Object Discovery If an object discovery 
message is received, the DHB-TA immediately 
requests an object attribute value update after 
storing the object handle. 

• Attribute Value Update If an entity state 
update message is received by the DHB-TA from 
the DR-TA, the message is translated into an 
attribute value update and broadcast to the 
federation. A copy of the entities state is stored 
within the DHB-TA in case values are requests 
from other federates on demand. 

• Reflect Attribute Value A received reflect 
attribute value message by the DHB-TA is 
translated into an entity state update message 
and passed to the DR-TA to deliver to the 
federate. 

• Request Object Attribute Value Update If an 
object discovery message is received, a request 
object attribute value update message is sent to 
the owning federate of the object. 

• Provide Attribute Value Update If the DHB-
TA receives a provide attribute value update, the 
most current stored state values within the DHB-
TA are used to generate an attribute value 
update. 

 

 

Figure 6. DIS and HLA mixed federation using 
GRIDS 

 
Figure 6 is a screenshot of the mixed mode federation 

executing. To recap, the HLA federate from example one 
generates a user interface. This interface is a basic 
window which displays the position of the local tank as a 
solid square and all other tanks (updated from remote 

Service 
Group 

RTI Ambassador Federate 
Ambassador 

Federation 
Management 

Create Federation 
Execution(), 
Join Federation 
Execution() 

 

Declaration 
Management 

Publish Object 
Class(), 
Subscribe Object 
Class 
Attributes() 

 

Object 
Management 

Register Object 
Instance(), 
Update Attribute 
Values(), 
Request Object 
Attribute Value 
Update() 

Discover Object 
Instance(), 
Reflect Attribute 
Values(), 
Provide Attribute 
Value Update() 

RTI Support 
Services 

Get Object Class 
Handle(), 
Get Attribute 
Handle() 

 

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02) 
0-7695-1853-2/02 $17.00 © 2002 IEEE 

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:49 from IEEE Xplore.  Restrictions apply.



sources) as wire frame squares. The DIS federate uses a 
text-based interface directly to the command prompt. The 
solid square in the top left of the federate GUI is the 
HLAFed’s tank. The wire frame square in the bottom 
right is the DISFed’s tank. 
 
6. Conclusions 
 

This paper has demonstrated an approach to the 
implementation of an RTI based on extensibility. The 
paper has suggested that current implementations of the 
RTI do not provide support for the inclusion of additional 
functionality beyond that specified by the HLA standard. 
GRIDS representing an early adopter of the component 
RTI philosophy provides an extensibility mechanism to 
add additional service components in the form of thin 
agents. The paper has presented one example to 
demonstrating our approach to extensibility. The 
example a thin agent service to provide support for a 
legacy DIS federate to interoperate with a HLA federate 
in a mixed federation. 

 
The example demonstrates functionality which exists 

without the need for a modular RTI and can be delivered 
using traditional RTI. However, the examples 
demonstrate the flexibility provided by the extensibility 
mechanism and offer a vehicle to realize services not 
included by the HLA. Current work using the GRIDS 
RTI is continuing based on the following investigations: 
 

• A comparison of implementations of a 
federation using an HLA compliant RTI and 
GRIDS. This work is in conjunction with 
Farshad Moradi from FOI (Swedish Defense 
Research Agency) and attempts to investigate 
the development time, best practice developing 
simulations using GRIDS and the performance 
of both RTIs. 

• Time management to support distributed supply 
chain simulation. This is based on an increased 
interest in using distributed simulation 
technology for non-defense purposes. Work in 
this area has already attempted to use various 
middleware including the HLA [12], CORBA 
[13] and our approach using GRIDS and a thin 
agent implementing a conservative 
synchronization protocol (known as a CPADS-
TA [8,9]). 

• Commercial-of-the-shelf (COTS) simulation 
package integration to facilitate distributed 
simulation development using traditional 
simulation packages [12]. The challenge here is 

to use thin agents to gain access and control of 
the package and to provide mechanisms to relay 
event messages between packages. 

• Full HLA RTI support through thin agents. A 
single component is used to encapsulate each 
service group providing the opportunity to 
upgrade incrementally and to select alternative 
algorithmic approaches to particular services. 

• Thin agents as simulation components. This 
work is founded on the area of component-based 
simulation. The property of mobility of thin 
agents is seen as a method for load-balancing a 
distributed simulation through the transfer of 
entities between federates. Related to this, thin 
agents can also be used for object ownership 
transferal to other federates as with the HLA. 

 
We hope to report on the progress of these research 

interests in future publications and welcome comments 
regarding these and alternative uses of components 
within RTI. 

 
As a concluding remark, it is suggested that a 

modular RTI such as GRIDS may provide a vehicle for 
greater transfer of distributed simulation technology into 
non-defense areas. This is based on the view that GRIDS, 
for a given application is a skeleton infrastructure which 
can be fleshed with required. With the possibility to 
provide HLA support within the middleware, this type of 
functionality may generate interest and the flexibility 
required by a wider community while satisfying 
traditional users. 
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