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Abstract

The numerical treatment of high-dimensional partial differential equations is among the most compute-hungry prob-
lems and in urgent need for current and future high-performance computing (HPC) systems. It is thus also facing the
grand challenges of exascale computing such as the requirement to reduce global communication. To cope with high
dimensionalities we employ a hierarchical discretization scheme, the sparse grid combination technique. Based on an
extrapolation scheme, the combination technique additionally mitigates the need for global communication: multiple
and much smaller problems can be computed independently for each time step, and the global communication shrinks
to a reduce/broadcast step in between. Here, we focus on this remaining synchronization step of the combination tech-
nique and present two communication schemes designed to either minimize the number of communication rounds or
the total communication volume. Experiments on two different supercomputers show that either of the schemes out-
performs the other depending on the size of the problem. Furthermore, we present a communication model based on
the system’s latency and bandwidth and validate the model with the experiments. The model can be used to predict
the runtime of the reduce/broadcast step for dimensionalities that are yet out of scope on current supercomputers.

Keywords: Global Communication, Sparse Grid Combination Technique, Communication Model, Communication
Performance Analysis, Experimental Evaluation, High-Performance Computing

1. Introduction

In the context of partial differential equations, high-dimensional problems are problems that have more than the
classical four dimensions – space plus time. A prominent example stems from plasma fusion. The simulation of
hot plasmas in fusion reactors of Tokamak or Stellerator type is either based on a gyrokinetic approach or on the
Vlasov-Maxwell equations. Both PDEs have to jointly treat, besides time, three spatial dimensions and two or three,
respectively, velocity dimensions. Employing higher-order time stepping schemes, in each time step a five- or six-
dimensional PDE has to be solved.

Unfortunately, straightforward discretization schemes fully suffer the “curse of dimensionality”, a term going
back to Bellman in the 60s [1]. The curse of dimensionality describes the fact that the number of unknowns grows
exponentially with the dimensionality. Hence, high-dimensional applications are among the compute-hungry drivers
of exascale computing [2]. A discretization with 1024 grid points in one dimension would result in 1024d grid points
in d dimensions. This would be more than 1015 unknowns for d = 5 and would require more than 8 PetaBytes to only
store the values in double precision. Thus, such problems are out of scope for computation. Typical simulations have
to restrict themselves to small subsets of the domain. But for global simulations of the international flagship project
ITER, a Tokamak-style fusion reactor built in Caderache, France, at least 1011 degrees of freedom for about 106 time
steps would be desirable.
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Fortunately, hierarchical discretization schemes are of help: Given certain smoothness conditions, a discretization
based on sparse grids (SG) – a term coined in [3] for the solution of high-dimensional PDEs – can reduce the number
of grid points by 8 orders of magnitude from 1015 to 107 in the example above for only slightly deteriorated accuracy.
Here, we employ the sparse grid combination technique [4]. It lets us solve the original problem formulation for
many, but coarse anisotropic discretizations also called component grids [5]. A suitable linear combination of the
component grid solutions then retrieves a single solution in the hierarchical sparse grid space. For time-dependent
PDEs, these smaller problems can be solved independently for a few time steps and therefore embarrassingly in
parallel. The hierarchical approach thus overcomes a central problem of massively parallel computations: The split-
ting ensures scalability on future high-performance computers by breaking the global communication requirements
of conventional discretization approaches. Furthermore, employing the combination technique there is no need to
change the application code if it can be applied to arbitrary anisotropic and regular grids. In case of plasma physics
simulations, we are employing GENE [6] in a current project [7, 8] within the German priority program “Software for
exascale computing”. Note that the combination technique can additionally be used to ensure further requirements for
next-generation computing such as fault tolerance.

Between the time steps, or at least every few time steps [9], it is, however, necessary to combine the component
grid solutions (reduce), and then to distribute the joint solution back again (broadcast). This introduces a synchro-
nization barrier and requires global communication as illustrated in Figure 1. This exchange is the main remaining
communication/synchronization bottleneck and the focus of this work. The current trend in HPC systems and in
hardware development will widen the gap between floating point performance and communication bandwidth. To
harness future exascale computers, it will be necessary to develop optimized communication schemes. To be able
to theoretically analyze the remaining communication bottleneck of the combination technique, we assume that the
communication is performed in one step, and that one single process is responsible for each component grid. While
these are simplifying assumptions, they are not unrealistic for large-scale simulations where the memory demand of
a single grid exceeds more than half of the available memory on a shared memory compute node. Furthermore, the
analysis will serve as a profound baseline for more complex setups.

In previous work [10] we have studied optimal communication strategies for this remaining communication bot-
tleneck in the 2- and 3-dimensional settings. This includes the two strategies Sparse Grid Reduce and Subspace
Reduce which we also discuss in this paper. Furthermore, we have presented first bounds for general dimensionalities.

Here, we extensively extend the preliminary work shown there. First, we extend the full analysis from the fixed
2- or 3-dimensional setting, which is much simpler and easier to analyze, to the higher-dimensional case. Second, we
enhanced those communication strategies that can be applied to arbitrary dimensionalities. In particular, we extend
the strategies to handle sparse grids with boundary points and/or a minimum level, which is required for real-world
settings. Third, a reordering of the increment spaces is given that allows a parallel execution of Subspace Reduce.
Our analysis shows that Parallel Subspace Reduce achieves asymptotically (ignoring factors depending only on d) the
optimal makespan communication volume. Fourth, we then extend the experiments to higher dimensions and predict
the behavior of the algorithms with the theoretical model. Using the enhanced strategies, we conduct measurements
on high-performance computing (HPC) systems for 3 dimensions, the 5-dimensional setting of GENE described
above, and an extended 10-dimensional setting. Furthermore, we present a communication model which is well-
suited to predict the cost of the communication step. Given performance characteristics of the employed HPC system,
this model estimates lower and upper bounds for the runtime of the communication step. The model can even be
applied to settings that are yet out of scope due to the high computational demand and to predict their communication
feasibility for future HPC platforms.

The rest of the paper is organized as follows: in Section 2 we discuss related work including memory and commu-
nication models, in particular for parallel computations, sparse grids and the combination technique. Section 3 then
covers the necessary background and notation regarding sparse grids. Section 4 introduces the communication model
in detail. The communication algorithms as well as lower bounds are presented in Section 5. The communication
costs of the algorithms are analyzed in detail in Section 6. The experimental setup as well as the employed HPC
systems are described in Section 7. Thereafter, we present estimations based on the communication model as well
as the experimental results in Section 8. Section 9 concludes this work by summarizing the results and pointing out
directions of future research.
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Figure 1: The sparse grid combination technique for a time-dependent problem [9]: For each of the component grids a classical solver is used
to compute the next time steps. In the following reduce step the different solutions are accumulated on a sparse grid. Thereafter, the combined
solution on the sparse grid is projected and distributed back onto the component grids in a broadcast step.

2. Related Work

2.1. Memory and Communication Models

In many situations it is important to focus not on the CPU operations an algorithm executes, but on the way how
data is communicated between different components of the computer. One of the first models to measure the I/O-
complexity of algorithms was the red-blue pebble game of Hong and Kung [11]. Hong and Kung assume that there is
an internal memory of size M in which the data has to reside to compute with it. Single data items (block size B = 1)
can be moved between internal memory and an infinitely large external memory on which everything resides initially
and at the end of an algorithm. The I/O-complexity of the red-blue pebble game is the number of data items that need
to be transferred between internal and external memory. Aggarwal and Vitter generalized the red-blue pebble game
to the external memory model (EM model) [12]. The EM model accounts for spatial locality by transferring data in
blocks of size B≥ 1 between internal and external memory. There are also various approaches [13, 14, 15] to extend
such models to several layers of the memory hierarchy. Arge et al. generalized the EM model to the parallel external
memory model (PEM model) [16] in which p processors each have their own private cache of size M and share an
infinitely large external memory. The processors cannot communicate directly but have to exchange data by writing it
to and reading it from the external memory. One parallel I/O can transfer (read or write) one block of data of size B for
each processor simultaneously. The red-blue pebble game and the EM as well as the PEM model have in common that
they are cache-aware: the parameters M and B are known to the algorithm and can be exploited to select subproblems
that are small enough to be handled efficiently with the given internal memory. In contrast, Frigo et. al. introduced the
cache-oblivious model [17] in which the parameters M and B are not known to the algorithm. The idea is to design
algorithms that work efficiently for any M and B and hence efficiently across different machines.

All of the above models assume that local computations are for free and the parallel PEM model assumes that
communication between processors has to take place using the external memory. Direct communication between
processors is not allowed. The bulk-synchronous parallel model (BSP model) of Valiant [18] takes both into account:
direct communication between processors as well as the cost of local computations. The BSP model is synchronized
as it proceeds in supersteps dividing the algorithm into parts. In each superstep a processor can perform local com-
putations as well as send and receive messages. Only when all processors have finished their tasks for the current
superstep, they advance to the next superstep. Furthermore, communicating a message incurs two kinds of costs: a
latency or startup term independent of the message size and a bandwidth term such that the communication of larger
messages takes longer. The costs of a superstep are therefore made up of three components: the costs of local com-
putations, a latency term and a bandwidth term. The runtime of an algorithm is the sum of the runtimes of all its
supersteps.

The logP model of Culler et al. [19] builds upon the BSP model. Processors communicate by point-to-point
messages and in the simplest form the messages are single or a small number of words. The model is asynchronous
and has four main parameters: P is the number of processors. The overhead o describes the time a processor takes to
send or receive a message and during which no other operation can be carried out. Once a message has been sent, the
upper bound on latency L states how long a message takes at most to arrive at its destination. The destination processor
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then has to receive the message. Hence, sending a message incurs a cost of at most o+L+o. In addition, the model
uses a gap parameter g as the minimum time between two message transmissions or receptions at a processor. The
gap g can be seen as the inverse of the bandwidth. If o ≥ g, the gap can be eliminated from the model. The total
communication cost of an algorithm in the logP model is defined to be the length of the critical path of the transmitted
and received messages.

The recently introduced MapReduce model by Dean and Ghemawat [20] is designed for easy parallelization of
algorithms running on very large data sets. A computation in the MapReduce model proceeds in rounds, alternating
local computations done in parallel with a parallel communication phase. There are several ways to define the com-
plexity of an algorithm in the MapReduce model [21]. The simplest complexity measure is the number of rounds.
The MapReduce model, however, allows sequential, one round algorithms by mapping all inputs to a single key. To
eliminate this possibility, the capacity of the reducers can be limited to O

(
N1−ε

)
for a problem of size N.

All models, (BSP, LogP and MapReduce) have in common that they ignore the topology of the communication
network as well as the routing algorithm used to transmit the messages.

The communication model used in this paper and employed to estimate the runtime of the communication al-
gorithms is described in detail in Section 4. The model draws from all of the presented models as well as models
commonly used to analyze standard message-passing operations [22, 23], is very simple and still captures the aspects
which are most important to us. We assume that the communication is round-based and that processors can commu-
nicate point-to-point by sending messages. In each round, one processor can either send or receive one message. The
time to send a message of size m consists of a latency term and a bandwidth term and is L+ m

B . The time needed for
one round is the time taken to send the largest message of that round. As we focus on communication schemes, local
computations are neglected. Nevertheless, we provide a comparison with actual runtimes at the end of Section 8.3.

2.2. Sparse Grids and the Combination Technique

The term sparse grids was coined by Zenger [3] for the solution of partial differential equations using a hierarchical
function space decomposition. Some of the underlying ideas even date back to Smolyak [24]. Shortly thereafter, the
so-called sparse grid combination technique was proposed by Griebel, Schneider and Zenger [4]. It assembles or
approximates the sparse grid solution as a linear combination of many coarse, anisotropic full grids, called component
grids [5]. Sparse grids and the sparse grid combination technique have been continuously improved ever since. Due
to the underlying hierarchical approach, adaptive refinement is straightforward when discretizing and treating high-
dimensional problems directly in the sparse grid space [25]. The sparse grid combination technique can be refined, too,
but in a slightly more restricted, dimensionally adaptive way by adding complete anisotropic grids [5]. Furthermore,
the combination coefficients of the combination technique can be chosen in a problem-dependent, optimal manner [26,
27]. Sparse grids and the sparse grid combination technique have been used to solve a variety of high-dimensional
numerical problems including PDEs from mechanics, physics and financial mathematics [9, 28, 29, 30], real-time
visualization [31, 32], machine learning problems [33], data mining [34, 35], etc.

Working with the combination technique, instead of directly in the sparse grid’s hierarchical basis, has further
pros and cons: The advantages include the easy parallelization of the combination technique on the coarse component
grid level [36, 37, 9, 38, 39, 40, 41] and the ability to use standard solvers on the component grids. Furthermore, the
redundancy given by the component grids allows one to build algorithm-based fault tolerance [42] into the combina-
tion technique [43, 44, 45]. In particular the additional coarse grain level of parallelism and the ability to incorporate
algorithm-based fault tolerance, make the combination technique suitable for high-performance computing, even on
the exascale level. Drawbacks of the combination technique include the need to assemble the sparse grid solution from
the component grids and hence the need for efficient global communication schemes to do so. For time-dependent
problems, it has been recognized that assembling the sparse grid solution is necessary after few time steps [46, 9].
Also, when the different component grids are distributed over a network of compute nodes, load balancing becomes an
issue. The runtime of solving the problem on one component grid does not only depend on the number of unknowns
of the component grid but also on its degree of anisotropy [41].

Early communication schemes used a farm of slaves to compute the component grid solutions and then assembled
the sparse grid on a master [36, 37, 9]. This imposes a 1 to p bottleneck as all p slaves have to communicate with
the master. For three dimensions, a scheme reducing this bottleneck to O

(√
p
)

by splitting the communication into
1-dimensional communication tasks was also proposed but not implemented [46]. Also, all-to-all communication
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has been used to assemble the sparse grid solution on all component grids [47]. Recently, communication schemes
that take advantage of the hierarchical structure of sparse grids were introduced [10]. This work improves these
communication schemes and examines them in detail.

For the communication schemes to exploit the hierarchical structure of sparse grids, it is necessary that the com-
ponent grids solutions are represented in the hierarchical basis. Hence, hierarchization and dehierarchization, the
transformation from the full grid basis into the hierarchical basis and vice versa, are essential pre- and postprocessing
steps for the presented communication schemes. Many implementations of the hierarchization and dehierarchization
algorithms exist [33, 48, 49, 32, 50, 51], including versions that are tuned for GPUs [48, 32]. All these implementa-
tions take advantage of the so-called unidirectional principle which decomposes d-dimensional operators into multiple
applications of 1-dimensional operators. Recently, the unidirectional hierarchization algorithm has been implemented
for component grids such that it is within a factor of 1.5x of the lower bound imposed by the unidirectional princi-
ple [51]. Furthermore, for component grids, a hierarchization algorithm avoiding the unidirectional principle globally
has been designed [52]. This algorithm reduces the leading term of the number of cache misses by a factor of d
compared to the unidirectional lower bound.

3. Sparse Grids and Notation

As sparse grids [3, 24] and the combination technique [4] are not the main focus of this work, we refer to the
survey [53] for details. The derivation of optimal communication algorithms does, however, require us to represent
functions both with respect to anisotropic full grid spaces V`̀̀ and hierarchical increment spaces W`̀̀ . Thus, we briefly
introduce the required notation and sketch some important ideas. For simplicity, we only discuss sparse grids without
boundary points. In Section 5.7.1 we modify the communication schemes such that they also work when boundary
points are included. We also restrict the discussion to piecewise d-linear basis functions, but the observations can be
extended to various kinds of standard basis functions.

The representation of a high-dimensional function can be based on a sparse grid discretization either in the hi-
erarchical sparse grid basis or via a linear combination of partial solutions based on anisotropic full grids called
component grids. We use the combination technique approach to decompose the whole problem into several prob-
lems on the component grids, which we compute independently. Every few time-steps, we synchronize those solutions
in a reduce/broadcast step such that each grid point of each component grid reflects the current value of the global
function. This global function is a linear combination of the functions represented by the component grids, see Fig-
ure 1 once more. One possibility to realize this reduce/broadcast step is to evaluate (interpolate) the function of each
component grid at all sparse grid points and to collect those values to a vector. Then all these vectors are weighted
and added componentwise. From the resulting sum we extract, for each component grid, the values at the points of
the corresponding component grid. In this scheme many non-zero values are communicated, for each component grid
many more than the number of its grid points. This can be avoided if the problem formulation is considered in the
hierarchical basis. In this representation, values corresponding to sparse grid points missing from the component grid
are zero, and need not to be communicated.

To this end, consider a conventional discretization of the d-dimensional space Ω := [0,1]d on an anisotropic grid C`̀̀

with mesh-width h`k := 2−`k and discretization level `k in dimension k ∈ {1, . . . ,d}. A conventional anisotropic tensor
product space V`̀̀ is then spanned by d-dimensional local tensor product basis functions ϕ`̀̀,i(x) := ∏

d
k=1 ϕ`k,ik(xk)

associated to the corresponding grid points x`̀̀,i, x`k,ik = ikh`k . For simplicity, think of piecewise d-linear functions and
the classical full grid nodal basis as sketched in the left part of Figure 2. The same holds for other function spaces
such as piecewise polynomial ones.

Alternatively, we can represent V`̀̀ by a unique decomposition into hierarchical increment spaces W`̀̀′ as V`̀̀ =
⊕`̀̀′≤`̀̀W`̀̀′ . (Relations and functions on vectors are used component-wise, e.g. `̀̀ ≤ `̀̀′⇔ `i ≤ `′i ∀i and (min{`̀̀,k})i =
min{`i,ki}.) This formulation can be used as definition for the hierarchical increment spaces. The W`̀̀ are spanned by
hierarchical basis functions, and we denote the coefficients for a certain w`̀̀ ∈W`̀̀ as (hierarchical) surpluses. Thus,
we can represent each f`̀̀ ∈ V`̀̀ uniquely as f`̀̀(x) = ∑`̀̀′≤`̀̀ w`̀̀′(x) with w`̀̀′ ∈W`̀̀′ . Figure 2 (right) shows grids and
hierarchical piecewise linear basis functions corresponding to the hierarchical decomposition.

We would be interested in the full grid solution u`̀̀ ∈ V`̀̀ with `1 = · · · = `d = n for some uniform discretization
level n, which we cannot afford. But for sufficiently smooth functions, the sparse grid function fn ∈ V SG

n , V SG
n :=
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Figure 2: For different refinement level: Component grids (2D) with the respective 1-dimensional piecewise linear full grid nodal basis functions
(left) and hierarchical increment grids with the respective hierarchical basis functions (right).
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Figure 3: Sparse Grid Reduce and Subspace Reduce. The highlighted (orange) component grid can be uniquely decomposed into the 6 marked
hierarchical increment grids. The hatched increment grid is part of the hatched component grids. The sparse grid solution can be assembled by a
linear combination of the component grid solutions.

⊕‖`̀̀‖1≤n+d−1W`̀̀ , yields an accurate approximation with orders of magnitudes less degrees of freedom by a careful a
priori selection of hierarchical increment spaces.

The combination technique is based on full, but anisotropic and coarse grids C`̀̀ , called component grids, for
`̀̀ ∈ {`̀̀′ ∈ Nd : n ≤

∥∥`̀̀′∥∥1 ≤ n+ d− 1}. The combination technique solution f CT
n ∈ V SG

n can be obtained by a linear
combination of the solutions on the component grids,

f CT
n =

d−1

∑
j=0

(−1) j
(

d−1
j

)
∑

‖`̀̀‖1=n+d−1− j
f`̀̀ , f`̀̀ ∈V`̀̀ . (1)

The union of all corresponding grids C`̀̀ employed in this combination results in the respective sparse grid, see the ex-
ample in Figure 3. For the communication task discussed in this paper, we can assume that the coefficients (−1) j

(d−1
j

)
are already multiplied to the respective functions f`̀̀ and that thus the combination task is a summation.

We finally formulate two observations that we require later on for the derivation and analysis of the communication
schemes. It is essential for both observations that we are working in the hierarchical and not in the nodal full grid
basis.

Observation 1. Let f`̀̀ ∈V`̀̀ ⊂V SG
n be represented in the hierarchical sparse grid space V SG

n =
⊕
‖`̀̀′‖1≤n+d−1 W`̀̀′ as

f`̀̀(x) = ∑‖`̀̀′‖1≤n+d−1 w`̀̀′(x) with w`̀̀′ ∈W`̀̀′ . For all `̀̀′ � `̀̀ it holds that w`̀̀′(x)≡ 0, i. e., all coefficients of f`̀̀ relating
to the basis functions spanning

⊕
`̀̀′�`̀̀W`̀̀′ are 0.

For a V`̀̀ and a function f define the projection f |V`̀̀ by f |V`̀̀ ∈V`̀̀ and f |V`̀̀ (x) = f (x) ∀x ∈C`̀̀ .
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Observation 2. For f = ∑`̀̀′≤`̀̀ w`̀̀′ ∈V`̀̀ and a Vk it holds that f |Vk = ∑ `̀̀′≤k ∧ `̀̀′≤`̀̀ w`̀̀′ .

By Observation 1, representing a function f`̀̀ ∈ V`̀̀ (which is given in the hierarchical basis) in the sparse grid space
V SG

n is achieved by filling in zeros.
Projecting f`̀̀ ∈ V`̀̀ from one anisotropic space to another one, Vk, is done by sampling the hierarchical surpluses

of f`̀̀ at the grid points common to V`̀̀ and Vk according to Observation 2. All grid points that are in Vk but not in V`̀̀

again have a 0 coefficient. In the nodal grid basis, both operations, i. e., representing f`̀̀ in the sparse grid space V SG
n

and projecting f`̀̀ onto Vk, are more complicated and require interpolation.
Any function f`̀̀ ∈ V`̀̀ is uniquely represented by its full grid or hierarchical coefficients. All we require for com-

munication are the vectors of their coefficients. We assume that we can hierarchize and dehierarchize (transform from
the full grid basis to the hierarchical basis and vice versa) for free, as node-local computations do not require commu-
nication. To describe and analyze the communication for the combination technique, we therefore define the notion of
grids. We use the terms “grid points” and “coefficient vectors” equivalently as each grid point corresponds to exactly
one basis function and thus to one coefficient. If we refer to communicating a set of grid points the corresponding
coefficients are meant. We summarize and define:

C`̀̀ : the (component) grid corresponding to the anisotropic full grid space V`̀̀ ,
H`̀̀ : the grid corresponding to the hierarchical increment space W`̀̀ ,
SGd

n : the grid corresponding to the sparse grid space V SG
n in d dimensions,

C d
n : the set of all component grids in Equation (1) for a sparse grid of level n in d dimensions,

C d
n := {C`̀̀ : n≤ ‖`̀̀‖1 ≤ n+d−1}, and

H d
n : the set of all hierarchical grids for V SG

n in d dimensions, H d
n := {H`̀̀ : ‖`̀̀‖1 ≤ n+d−1}.

|C`̀̀| denotes the number of grid points while
∣∣C d

n
∣∣ counts the number of component grids. In the analysis of the com-

munication schemes and lower bounds, the set of component grids CG(H`̀̀) that contributes to a particular hierarchical
increment space H`̀̀ ∈H d

n , i. e., that contain the grid points of H`̀̀ , is important:

CG(H`̀̀) = {C`̀̀′ ∈ C d
n : H`̀̀ ⊆C`̀̀′}= {C`̀̀′ ∈ C d

n : `̀̀′ ≥ `̀̀} .

For a set A⊂ C d
n of component grids we furthermore define the set of grid points shared with the component grids in

C d
n \A:

sharedG(A) =
⋃

C`̀̀∈A

C`̀̀ ∩
⋃

C`̀̀∈(C d
n \A)

C`̀̀ =
⋃

H`̀̀∈H d
n :

CG(H`̀̀)∩A,∅, CG(H`̀̀)*A

H`̀̀ .

If the component grids of A are stored on one set of nodes while all other component grids C d
n \A reside on a different

set of nodes, these are the grid points that are contained on both sets of nodes and hence need to be exchanged.

4. Model, Task and Cost Measures

We work with a standard simple communication model similar to the BSP and the logP model. It is equivalent
to the models typically used to analyze message passing operations [22, 23]. The model is designed to capture the
trade-off between sending many small messages versus sending few big messages. The details and assumptions of
the model are: the communication nodes (in the following only nodes) are uniformly connected in a fully connected
network topology, as for the BSP and logP model. The communication is synchronous and round-based as in the
PEM, BSP and MapReduce model. Per round, every node can either send or receive a single message of arbitrary
size per round. At the beginning of the round the communication pairs are fixed and then one message is transmitted
from sender to receiver (in the BSP model this is called 1-relation). The time to communicate a message of size m
is determined by two parameters, the latency L and the bandwidth B, and given by L+ m

B similarly to the BSP and
logP model. The time needed for one round is the time taken to send the largest message of that round. We assume
that the nodes need to buffer incoming and outgoing messages and the node size includes this buffer besides the data
already stored at the node. As the focus is on the pure communication task and the communication schemes differ by
the messages that are sent, we disregard local computations as in the I/O, EM and PEM model.
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We assume that exactly one node per component grid is responsible for the communication. This work focuses on
basic communication patterns and does neither address load balancing nor the cases that several component grids are
computed on one node or that a component grid is distributed onto several nodes. As we only study communication
patterns, the computations on a node, e. g., summation, copying, or pre- and postprocessing steps like hierarchization
and dehierarchization, are not considered.

We study the following communication task:

Input: A set of nodes N`̀̀ (`̀̀ such that C`̀̀ ∈ C d
n ). Each node N`̀̀ stores the values of f`̀̀ (e.g. the solution of a PDE) at

the grid points of component grid C`̀̀ .

Output: For all N`̀̀: Node N`̀̀ stores f CT
n
∣∣
V`̀̀

, i.e. the values of the combination technique solution f CT
n (see (1)) at the

grid points of component grid C`̀̀ .

The presented algorithms are analyzed with respect to the following cost measures:

• total number of messages sent,

• number of rounds performed,

• total communication volume,

• makespan communication volume (MkVol)
(maximum communication volume per round summed over all rounds),

• maximum node size,

• total number of communication nodes.

The overall communication time is given by the number of rounds times the latency L plus the makespan communi-
cation volume divided by the bandwidth B,

L · (number of rounds)+
1
B
· (makespan volume) . (2)

5. Algorithms and Lower Bounds

This section describes two general algorithmic approaches, Sparse Grid Reduce and Subspace Reduce, as well as
lower bounds for the communication task of the combination technique for a regular sparse grid of dimension d and
level n without boundary. For the analysis carried out in this paper, we assume that the communication task is split
into two distinct phases, reduce and broadcast. The reduce step assembles the values of the combination technique
solution f CT

n , as in (1), for all grid points x ∈ SGd
n . For Subspace Reduce the combination solution is not necessarily

gathered on exactly one node, but is distributed over several nodes. The broadcast phases distributes the combination
technique solution f CT

n to all compute nodes. Splitting the communication task into two distinct phases allows to
proof that each phase is solved optimally with respect to the total number of rounds, the number of messages sent and
the total communication volume.

The only communication operations that the communication schemes perform are AllReduce-operations. Thus,
their implementation has a significant impact on the overall performance of our algorithms. We will discuss different
implementations of AllReduce and their effects on the presented communication schemes in Section 5.1.

The two presented communication schemes are depicted in Figure 3. Sparse Grid Reduce expands each component
grid to the whole sparse grid and then on all compute nodes performs a single AllReduce on the whole sparse grid.
Sparse Grid Reduce minimizes the number of messages sent and the number of rounds at the expense of a larger
communication volume.

Subspace Reduce takes advantage of the decomposition of a sparse grid into its hierarchical increment spaces.
Only component grids that share a certain increment space reduce the values of this increment space using AllReduce.
For Subspace Reduce the values of the component grids have to be hierarchized, i.e. they have to represented in the
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Table 1: Complexity bounds for the communication task of the sparse grid combination technique for dimensions d and level n . Ceiling functions
are omitted for a simpler presentation. For the upper bounds we assume that an AllReduce-operation is split into a reduce and a broadcast step,
each implemented using binomial trees.

Arbitrary Dimension Lower Bound Sparse Grid Reduce Subspace Reduce Parallel Subspace Reduce

Messages sent: 2 ·
(∣∣C d

n

∣∣−1
)

2 ·
(∣∣C d

n

∣∣−1
)

2 · ∑

H∈H d
n−1

(CG(H)−1) 2 · ∑

H∈H d
n−1

(CG(H)−1)

Number of rounds: 2 · log2

∣∣C d
n

∣∣ 2 · log2

∣∣C d
n

∣∣ 2 · ∑

H∈H d
n−1

log2 (CG(H)) 2 ·
n−1

∑
`=1

max
H∈H d

`

(n− `)d−1 · log2(CG(H))

Total volume: 2 · ∑

H∈H d
n−1

|H|(CG(H)−1) 2 ·
((∣∣C d

n

∣∣−1
)∣∣SGd

n−1

∣∣) 2 · ∑

H∈H d
n−1

|H| · (CG(H)−1) 2 · ∑

H∈H d
n−1

|H| · (CG(H)−1)

Makespan volume: 2 · max
C⊂C d

n

sharedG(C) 2 ·
∣∣SGd

n−1

∣∣ · log2
(∣∣C d

n

∣∣) 2 · ∑

H∈H d
n−1

|H| · log2 (CG(H)) 2 ·
n−1

∑
`=1

max
H∈H d

`

|H| · (n− `)d−1 · log2(CG(H))

Maximum node size: max
C∈C d

n

|C|
∣∣SGd

n−1

∣∣+ max
C∈C d

n

|C| max
C∈C d

n

|C|+ max
H∈H d

n−1

|H| max
C∈C d

n

|C|+ max
H∈H d

n−1

|H|

Communication nodes:
∣∣C d

n

∣∣ ∣∣C d
n

∣∣ ∣∣C d
n

∣∣ ∣∣C d
n

∣∣

hierarchical basis instead of the full grid basis. Subspace Reduce minimizes the total communication volume while the
number of messages and rounds increases. We also present Parallel Subspace Reduce, a parallel version of Subspace
Reduce. It additionally achieves an asymptotically optimal makespan volume.

Table 1 presents the lower bounds and the complexities of the approaches for the different cost measures, as
derived later in this section and in Section 6.

We generalize the approaches to sparse grids with boundary points and to sparse grids that have a minimum level.
Generalizations to other types of sparse grids are straightforward as long as the adaptivity always includes whole
increment spaces.

5.1. Analysis and Discussion of AllReduce

The building block of our algorithms is AllReduce that solves the following task: assume m communication nodes
want to reduce a vector v. Initially, each node i holds its version vi of the vector. After the execution of AllReduce each
node has the sum vres := ∑

m
i=1 vi.

We split this task into a reduce phase that creates vres, and a broadcast phase that distributes it. We claim that each
of the two phases can be solved optimally with respect to the number of rounds, the number of messages and the total
communication volume by binomial trees in the following way: The communication nodes are arranged in a binomial
tree of height h = dlog2 me. During each round of the reduce phase, every leaf sends its vector vi of partial sums to
its parent node, who adds it to its own vector. For m < 2h the binomial tree may be incomplete. In that case, one leaf
delays its message until the next round. After dlog2 me rounds, the root node has vres. The makespan volume of the
reduce phase is |v| · dlog2 me.

In the broadcast phase the messages are sent in reverse order, copying the combined vector vres to all nodes
in dlog2 me rounds. For both phases together the number of rounds is 2 · dlog2 me and the makespan volume is
2 · |v| · dlog2 me. Note that the reduce and broadcast phase are time inverse to each other.

In order to see that binomial trees optimally solve both, the reduce and the broadcast step, note that: at least m−1
messages, one less than the number of participating nodes, need to be sent in each of the two steps. Also, each entry
of v must be sent at least (m−1) times. Hence, the total volume for each phase is |v| · (m−1). As the number of
nodes which have yet provided their information in the reduce step (received their information in the broadcast step)
can at most be doubled per round, a lower bound for the number of rounds for either step is dlog2 me.

Throughout this paper we assume that AllReduce is split into these two distinct phases, reduce and broadcast.
Furthermore, we assume, that AllReduce is implemented using binomial trees. In fact many common implementations
of AllReduce use binomial trees. However, in practice, also implementations of AllReduce are employed that merge
both phases and do not use binomial trees. Furthermore, there are implementations that switch between different
algorithms depending on the size of v and the number of communication partners. Taking this into account for our
analysis, the complexity of the model would increase without bringing any further insights. The model [22, 23] used
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to analyze message-passing operations like AllReduce assumes that communication links are bidirectional, i.e. a node
can send and receive a message simultaneously. Hence, this model differs from the model of Section 4.

Given bidirectional communication links, AllReduce can merge the reduce and the broadcast phase by means of a
recursive-doubling approach [22]. Such an algorithm reduces the number of rounds as well as the makespan volume
to that of a single phase, i. e. the number of rounds is dlog2 me and the makespan volume is |v| · dlog2 me. As the lower
bound of log2 m rounds for one phase, either reduce or broadcast, carries over to the AllReduce-task, an implementation
of AllReduce based on a recursive doubling approach works in the minimum number of rounds. However, the total
communication volume and the total number of messages increases, because each node communicates the whole
vector in each round.

Furthermore, AllReduce implementations that reduce the makespan volume below the makespan volume com-
municated by binomial trees exist and are used in practice if the set to be reduced is large. The combination of a
reduce-scatter with an allgather operation yields such an algorithm [22]. Both operations can be implemented by
passing chunks of size |v|

/
m between the processors in a round-robin fashion in m−1 rounds. Such an implementa-

tion of AllReduce communicates the minimum total volume [23]. The optimal makespan volume comes at the price
of an increased number of rounds and messages sent.1

As the only communication operations performed by the communication schemes are AllReduce-operations, the
optimality of the communication schemes does not rely on the assumption of separate reduce and broadcast or that
binomial trees are used for each phase. In contrast, the communication schemes inherit optimality with respect to
a certain cost measure from the AllReduce-operation, if they were optimal with respect to that cost measure for
separate reduce and broadcast and using binomial trees for both phases. In detail: if AllReduce is implemented
such that it minimizes the number of rounds for the AllReduce-task, then Sparse Grid Reduce is also executed in
the minimum number of rounds with respect to the communication task of the combination technique. Similarly,
if AllReduce is implemented such that it minimizes the total communication volume, then also Subspace Reduce is
executed communicating the minimum total volume.

5.2. Algorithmic Notation

For the brief algorithmic description of the algorithms, we need the following functions:

• Buffer S: copy the values of the set S of coefficients into the send buffer.

• AllReduce(S, C ): perform an AllReduce operation for the set S using the communication nodes C . In more
detail: if S j is the copy of S stored initially on C j ∈ C and the values in S j can be indexed by s j,i, i ∈ I, then
each value of S is reduced in the sense that sres,i = ∑ j,C j∈C s j,i and the resulting set Sres =

⋃
i∈I sres,i is stored at

all nodes C j ∈ C .

• Extract S from Buffer: Copy the values of the set S from the buffer to the corresponding positions of the local
copy of S.

5.3. Lower Bounds

The lower bounds for the different cost measures are summarized in Table 1. For a sparse grid of level n and
dimension d the communication task consists of

∣∣C d
n
∣∣ component grids and hence this is the minimum number of

communication nodes required. Also, the main memory of the communication nodes has to be large enough to store
at least the largest component grid, maxC`̀̀∈C d

n
|C`̀̀|. For all other cost measures we only analyze the reduce phase as

the communication requirements of the broadcast phase are identical. As the root increment space H1 is part of all
C`̀̀ ∈ C d

n we need at least
∣∣C d

n
∣∣−1 messages to calculate the combination technique solution at the grid point of this

increment space. Furthermore, since the number of nodes over which the overall sum for H1 is currently still split can
at best be halved in each round, there are at least

⌈
log2

∣∣C d
n
∣∣⌉ communication rounds. To give a lower bound of the

1The reduce-scatter and the allgather operation can also be implemented by recursive halving or recursive doubling [22] but because of the two
distinct phases the number of rounds is still twice that of the lower bound.
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Algorithm 1: Sparse Grid Reduce for component grid C`̀̀ .

foreach Hk ⊂ SGd
n−1 do

if Hk ⊆C`̀̀ then
Buffer Hk ⊆C`̀̀

else
Buffer Hk ≡ 0

AllReduce (SGd
n−1, C d

n )
foreach Hk ⊆C`̀̀ do

Extract Hk from Buffer

total communication volume, note that each point of the sparse grid needs to be communicated at least one time less
than it is element of a component grid, namely,

∑
H`̀̀∈H d

n

|H`̀̀| · (CG(H`̀̀)−1) =

 ∑
C`̀̀∈C d

n

|C`̀̀|

− ∣∣∣SGd
n

∣∣∣ . (3)

A trivial lower bound for the makespan communication volume is maxC`̀̀⊂C d
n
|sharedG(C`̀̀)|.

5.4. Sparse Grid Reduce (Algorithm 1) – Assembling the Sparse Grid
Sparse Grid Reduce is a structural simple approach serving as baseline. Fix an order of the hierarchical increment

spaces of the sparse grid, e.g. the lexicographic order of the level vectors. Each component grid then creates a copy
of the sparse grid SGd

n−1 in the send buffer by copying the hierarchical increment spaces contained in the component
grid and filling in zeros for the hierarchical increment spaces not present in the component grid but in the sparse
grid SGd

n−1. Now, the communication task is a single AllReduce on all hierarchical increment spaces that are part of
SGd

n−1. See Algorithm 1 for the algorithmic description. Expanding the component grids to the sparse grid of level
n− 1 (and not n) is enough as increment spaces of level sum n are only part of a single component grid and do not
need to be communicated.

The complexities of Sparse Grid Reduce with respect to the different cost measures are summarized in Table 1.
Sparse Grid Reduce sends the minimum number of messages and uses the minimum number of rounds and computa-
tion nodes. The total, as well as the makespan communication volume, however, increase significantly. Furthermore,
every node has to be large enough to store a sparse grid of level n−1 (and additionally a single, local component grid
of level sum n) which may not be possible for large levels and dimensions.

Sparse Grid Reduce does not rely on communicating the hierarchical surpluses but could also send the function
values sampled at the sparse grid points. This changes the preprocessing phase from hierarchization to interpolation
to all points in SGd

n−1 which are not in the component grid of the respective node.

5.5. Subspace Reduce (Algorithm 2) – Communicating Each Hierarchical Increment Space Separately
Subspace Reduce is the other extreme. Here, we split the communication task into subtasks determined by the

hierarchical increment spaces as suggested by Observation 2. First, fix an order of the hierarchical increment spaces.
Then, for all hierarchical increment spaces H`̀̀ ∈H d

n−1 perform an AllReduce employing all component grids con-
taining H`̀̀ , i.e. the nodes CG(H`̀̀). Reducing hierarchical increment spaces of level sum n is not necessary as those
belong only to a single component grid. The algorithmic description of Subspace Reduce is given by Algorithm 2.

The complexities of Subspace Reduce with respect to the different cost measures are summarized in Table 1.
As only nodes that require a particular H`̀̀ are participating in the communication subtasks, this approach achieves
minimum total volume. As a drawback, splitting the communication according to hierarchical increment spaces
significantly increases the number of messages sent. The makespan communication volume highly depends on the
possibility to reduce different hierarchical increment spaces in parallel. For the analysis of (the original version
of) Subspace Reduce we make the pessimistic assumption that all increment spaces are reduced in serial. In fact,
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Algorithm 2: SubSpace Reduce for component grid C`̀̀ .

foreach Hk ∈H d
n−1 do

if Hk ⊆C`̀̀ then
Buffer Hk

AllReduce(Hk, CG(Hk))

Extract Hk from Buffer

when the increment spaces are arranged in the naïve lexicographic order of their level vector, they almost need to
be reduced in serial. In the lexicographic order, the set of component grids for increment spaces that are reduced
in successions almost always overlap (except when the maximum level is reached in one dimension and there is a
jump in the lexicographic order), and hence Subspace Reduce has to reduce the increment spaces almost in serial.
Section 5.6 introduces a simple order of the hierarchical increment spaces that allows for the parallel execution of the
AllReduce-operations.

Subspace Reduce relies on working on the hierarchical surpluses. By Observation 1, the hierarchical surplus of a
grid point not in a certain component grid C`̀̀ is 0 for this component grid. This allows us to limit the reduce procedure
for an increment space H`̀̀ to the subset CG(H`̀̀) of component grids. While the hierarchical surpluses are 0, the
function values at grid points not in the component grid may be arbitrary and hence working in the nodal basis is not
possible when employing Subspace Reduce.

5.6. Enabling Parallelism: the Order of Increment Spaces for Parallel Subspace Reduce
Subspace Reduce (Algorithm 2) does not specify the order in which the increment spaces are reduced and the

analysis of the original Subspace Reduce method assumes that all increment spaces are reduced in serial. When
increment spaces belong to disjoint sets of component grids, however, they can be reduced in parallel. This section
gives a simple order of the increment spaces that enables parallelism of the AllReduce-operations.

Denote by a ∈ {0, . . . ,n− 1} the distance from the sparse grid level n and look at all increment spaces of fixed
level sum (n+d−1)−a. For a fixed level sum, the increment spaces of this level sum have d−1 degrees of freedom
remaining. We can project the level vector `̀̀ of all increment spaces of fixed level sum into a d− 1 dimensional
space by projecting along dimension d, i.e. by ignoring the dth component of the level vector. As we have fixed the
level sum, the level vector of the increment spaces has to differ in the first d−1 components and hence all increment
spaces of a fixed level sum are projected to different positions. Also, for a fixed level sum, there is a 1–1 (bijection)
correspondence between the projected level vector `̀̀(d−1) and the original level vector `̀̀. The projection to d− 1
degrees of freedom has the purpose to navigate easily on all component grids of a fixed level sum as we are going to
handle only increment spaces of the same level sum in parallel. Denote by ei the unit vector in dimension i. Any pair
of increment spaces of level sum (n+d−1)−a whose level vector is at stride (a+1) ·ei for some i∈ {1, . . . ,d−1} is
not contained in the same component grid and can be reduced in parallel (see also Figure 4). Alternatively to an access
at a certain stride, one can also think of partitioning the increment spaces of a fixed level-sum into d−1 dimensional
hypercubes of side length a. All increment spaces at the same relative position within their hypercube can be reduced
in parallel.

Observation 3. Fix a distance a ∈ {0, . . . , n−1} from the maximum refinement level n+d−1 and one level vector
`̀̀ at that distance a, i.e. ‖`̀̀‖1 = (n+d−1)−a. Out of all increment spaces H`̀̀′ with

∥∥`̀̀′∥∥1 = (n+d−1)−a, those
whose projected level vector `̀̀′(d−1) suffices

`̀̀′(d−1) = `̀̀(d−1)+(a+1) ·
d−1

∑
i=1

ki · ei for ki ∈ Z (4)

can be reduced in parallel.

Proof. All increment spaces for a = 0 can be handled in parallel as each one only concerns a single component grid.
In fact, these increment spaces do not need to be reduced at all as they only belong to a single component grid.
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(`min)1 = 2

(`min)2 = 3

Figure 4: Left: reducing increment spaces in parallel for a = 1. The increment spaces corresponding to the shaded component grids can be reduced
in parallel requiring the framed component grids. In 2 dimensions the d− 1 dimension hypercubes correspond to intervals (dashed). Increment
spaces within the same interval cannot be reduced in parallel as they share component grids. Right: adjusting increment spaces when introducing
a minimum level (here `̀̀min = (2,3)). Increment spaces that are in the same box are merged. Increment spaces which do no longer take part in a
component grid are removed. Increment spaces whose level `̀̀ suffices `̀̀ ≥ `̀̀min +1 remain unchanged.

To reduce increment spaces of level sum n + d − 2, i.e. a = 1, we need the component grid C`̀̀ and also the
component grids that are refined once further than `̀̀ in every dimension. Hence, if we reduce H`̀̀ , then C`̀̀ and all
component grids C`̀̀′ with `̀̀′ = `̀̀+ei for any 1≤ i≤ d are participating in the current reduce. This means, all H`̀̀′ with
`̀̀′(d−1) = `̀̀(d−1)+2∑

d−1
i=1 ki · ei for ki ∈ Z can be reduced in parallel.

To reduce increment spaces of level sum n+ d− 3, i.e. a = 2, we need C`̀̀ and also at most the component grids
that are twice further refined than `̀̀. Hence, if we reduce H`̀̀ then the component grids C`̀̀′ with `̀̀′ = `̀̀+∑

d
i=1 bi · ei

for bi ∈ {0,1,2} are a super set (we are overestimating for a ≥ 2 as not all of these component grids exist) for the
component grids needed for this reduce. Therefore we can reduce all H`̀̀′ for `̀̀′(d−1) = `̀̀(d−1)+3∑

d−1
i=1 ki ·ei for ki ∈ Z

in parallel.
For general a, we need at most the component grids that are a times further refined than `̀̀. Hence, if we reduce

H`̀̀ then the component grids C`̀̀′ with `̀̀′ = `̀̀+∑
d
i=1 bi · ei for bi ∈ {0,1,2, . . . ,a} are a super set for the component

grids needed for this reduce. Therefore we can reduce all H`̀̀′ for `̀̀′(d−1) = `̀̀(d−1)+(a+1) ·∑d−1
i=1 ki · ei for ki ∈ Z in

parallel.

Above, we have assumed that all the component grids of the given level vectors exist. That is usually not the
case as component grids only exist for level sums between n and n+ d− 1. Hence, Observation 3 does not state all
parallelism that can be exploited for the AllReduce-operations as the given superset for the component grids necessary
for a reduce step is slightly pessimistic.

The parallelism described by Observation 3 can be exploited by Subspace Reduce (Algorithm 2) when the hierar-
chical increment spaces H`̀̀ are ordered by:

• level sum ‖`̀̀‖1 increasing from d to n+d−1 (distance a decreasing from n−1 to 0),

• relative position of H`̀̀ within its (d−1)-dimensional hypercube of side length a,

• (d− 1)-dimensional hypercubes of side length a that partition the increment spaces of level sum ‖`̀̀‖1 = (n+
d−1)−a.

The given order of the increment spaces is not an optimal parallelization method but a simple one already allowing
for a lot of parallelism, at least for small a. For small a (for a high level sum) there are a lot of hierarchical increment
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spaces and those increment spaces are large. For these two reasons parallelization is most important for small a. With
increasing a the parallelism introduced by the given order decreases as the tiling hypercubes grow. Also, for larger a
the number of hierarchical increment spaces of level sum (n+ d− 1)− a decreases as well as their size. Hence for
larger a parallelizing should not be as important. In general, the parallelization potential of every order is limited for
larger a as the number of component grids containing an increment space grows as a increases.

The employed access at stride is simple with respect to the index computations needed to select the increment
spaces that can be reduced in parallel. As we have seen that this simple approach already allows for a lot of parallelism
for small a, other parallelization approaches promise only minor improvements and are thus out of the scope of this
work.

5.7. Adapting the Algorithms to Treat Generalizations of Sparse Grids

This section describes the necessary modifications such that the two algorithms Sparse Grid Reduce and Subspace
Reduce can handle sparse grids with boundary, with minimum level or both.

5.7.1. Boundary Treatment
There are three main approaches to equip sparse grids with boundaries. The existing functions can be modified

to extrapolate towards the boundary, new basis functions can be added to existing increment spaces or new increment
spaces can be created to host the new basis functions. See Figure 5 for the respective modified 1-dimensional basis
functions. While the experiments focus on the second case in which boundary functions are added to existing hierar-
chical increment spaces (boundary of level-1 type) this section describes the necessary modifications of the algorithms
for all three types of boundary functions.

The first approach modifies the outermost basis functions of each level of the basic one-dimensional setting of the
tensor product approach such that they extrapolate towards the boundary. For these boundary functions no modifica-
tions to the algorithms are necessary as no new grid points are introduced.

The second approach adds new boundary functions to existing hierarchical increment spaces and hence the struc-
ture of the communication task does not change. In detail, the new boundary basis functions are assigned to level
1. Hence, this kind of boundary is called level-1 type and does not change the set of increment spaces H d

n . The
structure of the communication is not altered, and still the same nodes need to communicate. Only the increment
spaces H`̀̀ ∈H d

n themselves change. For the communication task, their increase in size is relevant as it changes the
size of the messages that are passed. Whenever min(`̀̀) = 1, then the increment space H`̀̀ is affected by the boundary
and has larger size. Similarly, the set of component grids C d

n does not change while the component grids C`̀̀ now all
include boundary vertices and hence have increased size. The size of the sparse grid SGd

n−1 also increases due to the
boundary. As the set of hierarchical increment spaces is not altered for boundary of level-1 type, both algorithms,
Sparse Grid Reduce and Subspace Reduce, work as before in the sense that still the same nodes need to communicate.
Only the size of the messages changes.

In the third approach new hierarchical increment spaces are created for the boundary basis functions. The new
boundary basis functions are added on a new level 0, and hence this boundary is also called of level-0 type. For
both schemes, Sparse Grid Reduce and Subspace Reduce, this approach changes the structure of the communication
scheme as the level-vector `̀̀ of H`̀̀ ∈H d

n−1 and C`̀̀ ∈ C d
n can now also attain the value 0. This means that additional

increment spaces as well as component grids with min(`̀̀) = 0 are added to the scheme. As a result, the size of
SGd

n−1 as well as the size of all component grids changes as they all now include boundary points. The size of the
former increment spaces H`̀̀ ∈H d

n−1 does not change, however. Only new increment spaces are added. Still, with the
modified definitions of H d

n−1, H`̀̀ , C d
n , H`̀̀ and SGd

n−1, Sparse Grid Reduce and Subspace Reduce work as given in
Algorithm 1 and Algorithm 2.

5.7.2. Introducing and Handling a Minimum Level
A minimum level `̀̀min is a threshold for the refinement level of the component grids. It can be used to exclude

component grids from the combination that do not meet this minimum refinement criteria. Although in theory this
will deteriorate the approximation quality of the combination solution, for practical applications it can be necessary
to use a minimum refinement level in some dimensions to represent the underlying physical properties or to avoid
stability problems of the numerical methods. For example, experiments [7] conducted with GENE [6] showed that
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Figure 5: Different kinds of boundary treatment for the one-dimensional basis functions.

highly anisotropic grids should be excluded from the combination as a minimum discretization is required to represent
physical properties.

For our experiments in Section 8 we additionally used the minimum level to restrict the number of component
grids. Increasing the level n of the sparse grid increases the number of component grids

∣∣C d
n
∣∣ in the combination.

Since we assume that each component grid is stored on its own shared memory node, we needed to restrict the number
of grids to be able to run experiments with high discretization levels at all. Note that in real-world settings already
two grids might exceed the memory of one node. To clarify the magnitude: for n = 10 there are 136 component grids
for d = 3, 1876 component grids for d = 5 and 92378 component grids for d = 10 if we assume no boundary or
boundaries of level-1 type. If the level sum of the minimum level ‖`̀̀min‖1 is increased by the same amount as the
refinement level n of the sparse grid, the number of component grids of the combination stays constant. For example,
for d = 5 there are 456 component grids for n = 7 and `̀̀min = (1,1,1,1,1) as well as for n = 8 and `̀̀min = (1,1,1,1,2)
and n = 17 and `̀̀min = (3,3,3,3,3). Although increasing the minimum level when increasing n would be uncommon
for practical application, here it helps us to obtain comparable experiments. Furthermore, increasing the minimum
level by the same amount as the sparse grid level n has the effect that the communication task keeps the same structure:
the same nodes need to exchange messages, only the size of the messages differs. We first introduce the minimum
level for a sparse grid without boundary and then generalize to sparse grids with boundary points.

Formally, let `̀̀min denote the minimum level. Then, the altered set of component grids C d
(n, `̀̀min)

is

C d
(n, `̀̀min)

=
{

C`̀̀ ∈ C d
n : `̀̀ ≥ `̀̀min

}
. (5)

The component grids C`̀̀ themselves remain unchanged. However, for the hierarchical increment spaces, we face two
issues. First, some increment spaces become no longer necessary, because the component grids that contained them
are not in C d

n any more. Second, to reduce the number of messages passed by Subspace Reduce we want to merge
increment spaces H`̀̀ that belong to the same set of component grids CG(H`̀̀) due to the new minimum level restriction.
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Figure 4 (right) depicts both effects.
To reduce the number of messages passed by Subspace Reduce while not increasing the communication volume,

we need to merge those increment spaces that belong to the same set of component grids. Formally, for a level vector
`̀̀ define the set

I(`̀̀, `̀̀min) = {i ∈ {1, . . . ,d} : `i = (`min)i} (6)

stating which dimensions are refined minimally. With that on hand we can create sets K(`̀̀, `̀̀min) of level vectors whose
corresponding increment spaces are going to be merged:

K(`̀̀, `̀̀min) =
{
`̀̀′ :
(
1≤ `′i ≤ `i for i ∈ I(`̀̀, `̀̀min)

)
∧
(
`′j = ` j for j < I

)}
. (7)

The sets K(`̀̀, `̀̀min) can be used to assemble the merged increment spaces H(`̀̀, `̀̀min) which merge the increment spaces
H`̀̀′ with a level `̀̀′ below the minimum level with the increment space H`̀̀ of smallest level `̀̀ which is at the threshold
`min and larger than `̀̀′,

H(`̀̀, `̀̀min) =
⋃

`̀̀′∈K(`̀̀, `̀̀min)

H`̀̀′ . (8)

The hierarchical increment spaces H`̀̀ for which I`̀̀ , ∅ are changed, all others stay as before. Now let us consider
the set of hierarchical increment spaces and exclude those no longer relevant for the combination. The set H d

(n, `̀̀min)

taking the minimum level `̀̀min into account is

H d
(n, `̀̀min)

=
{

H(`̀̀, `̀̀min) : ` such that H`̀̀ ∈H d
n and `̀̀ ≥ `̀̀min

}
. (9)

In contrast to the case without minimum level, certain increment spaces are excluded and grid points are removed
from the sparse grid such that the sparse grid with minimum level `̀̀min is given by

SGd
(n, `̀̀min)

=
⋃

H(`̀̀, `̀̀min)
∈H d

(n, `̀̀min)

H(`̀̀, `̀̀min) . (10)

With the merged increment spaces we can keep the number of messages passed by Subspace Reduce to two (one for
the reduce and one for the broadcast step) for each set of grid points that is contained in a different set of component
grids. For both, Sparse Grid Reduce and Subspace Reduce, simply excluding the hierarchical increment spaces no
longer needed for the combination results in correct algorithms.

Note that the minimum level can be introduced in the same way when the sparse grid contains boundary points.
It does not matter which of the three types of boundaries discussed in Section 5.7.1 is employed. In fact, a minimum
level and boundary basis functions of type 1 affect the communication schemes in a similar manner. For a minimum
level in dimension i we merge all 1-dimensional increment spaces in dimension i up to (`̀̀min)i to one increment space.
The boundary basis functions of type 1 have also been merged with the root basis function on level 1.

6. Runtime Analysis

This section elaborates on the generic runtime formulas for Sparse Grid Reduce and Subspace Reduce given in
Table 1 and derives formulas only involving the dimension d and level n of the sparse grid. We only derive the
formulas for sparse grids without boundary points and no minimum level in this section. Similar formulas can be
derived if boundary points or a minimum level is included. For the experimental part in Section 8, model calculations
are also carried out for sparse grids with boundary and/or minimum level and Parallel Subspace Reduce.

In general we assume that the communication time of an algorithm is given by the model discussed in Section 4:
The number of rounds times the latency of the communication network plus the makespan volume divided by the
bandwidth gives the communication time as in (2). All the formulas build on the assumption (Section 5.1) that the
AllReduce-routine is implemented using two sweeps over a binomial tree which consists of the involved communica-
tion nodes.

In the following, we first give precise but involved formulas for the communication time of Sparse Grid Reduce
and Subspace Reduce in the communication model. We then simplify these bounds and derive upper bounds for the
communication times. Finally, we analyze Parallel Subspace Reduce in the communication model.
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6.1. Precise Communication-Time Formulas for Sparse Grids Without Boundary and Without Minimum Level

Denote by Ad
k the number of component grids or increment spaces of level sum k + d− 1, i.e., the number of

component grids or increment spaces that are in C d
k \C d

k−1 and H d
k \H d

k−1 respectively. Observe that for a certain
level sum there is the same number of component grids as of increment spaces. Using a combinatorial approach Ad

k is
given by

Ad
k =

(
k+d−2

d−1

)
. (11)

The size of a sparse grid without boundary and minimum level is given by [53] as∣∣∣SGd
n

∣∣∣= n−1

∑
i=0

2i ·
(

d−1+ i
d−1

)
= 2n ·

(
nd−1

(d−1)!
+O

(
nd−2

))
. (12)

As standard in the sparse grid literature, we assume that the dimension d is constant and hence omit this constant in
the O-notation. Furthermore, we assume that the latency L is given in seconds per message, the bandwidth B in bytes
per second and double precision (8 bytes per double) is used.

Then, the runtime for Sparse Grid Reduce, assuming n≥ d, is

SG Reduce(n,d) Table 1
= 2 ·L ·

⌈
log2

∣∣∣C d
n

∣∣∣⌉+2 · 8
B
·
⌈

log2

∣∣∣C d
n

∣∣∣⌉ · ∣∣∣SGd
n−1

∣∣∣=
= 2 ·

⌈
log2

∣∣∣C d
n

∣∣∣⌉(L+
8
B
·
∣∣∣SGd

n−1

∣∣∣)=

= 2 ·
⌈

log2

(
n

∑
i=n−d+1

Ad
i

)⌉
·
(

L+
8
B
·
∣∣∣SGd

n−1

∣∣∣)=

= 2 ·
⌈

log2

(
n

∑
i=n−d+1

(
i+d−2

d−1

))⌉
·
(

L+
8
B
·

n−2

∑
i=0

2i ·
(

d−1+ i
d−1

))
. (13)

For n < d the first sum has to start at i = 1 instead of i = n−d +1.
The runtime for Subspace Reduce is

Subspace Reduce(n,d) Table 1
= 2 ·L · ∑

H∈H d
n−1

dlog2 |CG(H)|e+2 · 8
B
· ∑

H∈H d
n−1

|H| · dlog2 |CG(H)|e=

= 2 · ∑
H∈H d

n−1

[(
L+

8
B
|H|
)
· dlog2 |CG(H)|e

]
=

= 2 ·
n−1

∑
m=1

[(
L+

8
B
|H`̀̀|

)
· ∑
‖`̀̀‖1=m+d−1

dlog2 |CG(H`̀̀)|e
]
=

= 2 ·
n−1

∑
m=1

[(
L+

8
B
·2m−1

)
·Ad

m ·
⌈

log2

(
min(d,n−m+1)

∑
i=1

Ad
n−(m−1)−(i−1)

)⌉]
=

= 2 ·
n−1

∑
m=1

[(
L+

8
B
·2m−1

)
·
(

m+d−2
d−1

)
·
⌈

log2

(
min(d,n−m+1)

∑
i=1

(
n+d−m− i

d−1

))⌉]
. (14)

6.2. Simplifying the Formulas

To get a rough idea of the complexities of Sparse Grid Reduce and Subspace Reduce we now simplify and upper
bound the exact formulas for their communication time. The formulas are going to stay involved but provide a glimpse
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at the complexity of the algorithms. The simplifications are canonical and hence only the most important inequalities
employed and the results are stated. In particular we use the standard estimate for binomial coefficients,(

k
d

)
≤ kd

d!
. (15)

Using (13) as starting point (assuming n≥ d), the runtime of Sparse Grid Reduce is bounded by

SG Reduce(n,d)
(12), (15)
∈ 2 ·d · dlog2 (n+d)e ·

(
L+

8
B
·2n−1 ·

(
nd−1

(d−1)!
+O

(
nd−2

)))
. (16)

To estimate the runtime of Subspace Reduce we need two bounds,
n−1

∑
m=1

(m+d−2)d−1 ≤
∫ n

1
(m+d−2)d−1 dm =

(m+d−2)d

d

∣∣∣∣n
m=1
≤ (n+d−2)d

d
(17)

and
n−1

∑
m=1

(m+d−2)d−1 ·2m−1 ≤
∫ n

1
(m+d−2)d−1 ·2m−1 dm≤ (n+d−2)d−1 ·2n−1 . (18)

The second estimate is very rough and is used in estimating the bandwidth term of Subspace Reduce which is hence
overestimated.

Using (14) as starting point, the runtime of Subspace Reduce can be bounded by

Subspace Reduce(n,d)
(15), (17), (18)
≤ 2 · dlog2 (n+d)e · (n+d)d−1

(d−2)!
·
(

L · n+d
d

+
8
B
·2n−1

)
. (19)

These upper bounds for the runtime of Sparse Grid Reduce and Subspace Reduce can be used to get a rough idea
which algorithm needs more rounds and which one has a larger makespan communication volume. As only upper
bounds have been derived and rough estimates have been used to obtain these bounds, this is only meant as a rough
indication which algorithm performs better with respect to a certain cost measure.

Comparing the number of rounds estimated for Sparse Grid Reduce (16) and Subspace Reduce (19) yields

Number of rounds of Sparse Grid Reduce(n,d)
Number of rounds of Subspace Reduce(n,d)

≈ 2 ·d · dlog2(n+d)e
2 · dlog2(n+d)e · (n+d)d

(d−2)!·d
≈ d!

(n+d)d >
1(n
d

) . (20)

Hence the number of rounds is significantly larger using Subspace Reduce. For the makespan volume, the ratio is
roughly

Makespan volume of Sparse Grid Reduce(n,d)
Makespan volume of Subspace Reduce(n,d)

≈

≈
2 ·8 ·d · dlog2(n+d)e ·2n−1 · nd−1

(d−1)!

2 ·8 · dlog2(n+d)e · (n+d)d−1

(d−2)! ·2n−1
=

d
d−1

· nd−1

(n+d)d−1 ≈
nd−1

(n+d)d−1
n→∞−→ 1 . (21)

This means that the makespan volume for Sparse Grid Reduce and the original version of Subspace Reduce is roughly
identical.

Keep in mind that these findings rely on rough estimates and that we are comparing two upper bounds. In par-
ticular, the bandwidth term for Subspace Reduce was overestimated using (18). The estimate (21) suggests that the
makespan volume of Subspace Reduce is higher than that of Sparse Grid Reduce. As Subspace Reduce is designed
to minimize the total communication volume this is a surprising result. In fact, the ratio of the makespan volumes
of the precise formulas (13) and (14) for fixed level n and dimension d confirms that the makespan volume of Sub-
space Reduce is smaller. Furthermore, with increasing level and dimension this ratio grows slowly indicating that
the makespan volume of Subspace Reduce decreases with respect to that of Sparse Grid Reduce. The ratio, however,
seems to stay bounded by a constant depending only on the dimension d. Subspace Reduce handles increment spaces
(almost) in serial (for the analysis we assumed strict serial reduction of the increment spaces) and hence it cannot take
advantage of the reduced total communication volume.
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6.3. Makespan Volume and Rounds of Parallel Subspace Reduce
A communication-time formula for Parallel Subspace Reduce derives easily from the makespan volume and the

number of rounds. The other considered cost measures are the same as for Subspace Reduce. We formulate this for
the AllReduce-routine implemented using binomial trees, as reflected by a factor of log2(·). If the AllReduce-routine is
implemented with linear makespan volume, these factors just disappear, the analysis gets simpler and the dependence
on d better, but the asymptotic behaviour (ignoring d) is the same.

This analysis is driven by the observation that with decreasing level-sum the subspaces are getting smaller geo-
metrically, but it has to account for that there is less parallelism. The following upper bound on the makespan volume
has as factors the size of the subspace, the necessary serialization, and the cost of the reduce:

Makespan volume of Parallel Subspace Reduce(n,d)≤
n

∑
a=1

2n−a ·ad−1 · log2(a
d) .

This sum is geometrically decreasing for a≥ 3d+3: for a≥ d we have log2(a
d) = d log2 a≤ a2 such that we can

bound ad−1 · log2(a
d)≤ ad+1. Using the well known

(d
i

)
≤ di and the assumed d +1≤ a/3 we get

(a+1)d+1 =
d+1

∑
i=0

(
d +1

i

)
ad+1−i ≤

d+1

∑
i=0

(d +1)iad+1−i ≤ ad+1
d+1

∑
i=0

(1/3)i <
3
2

ad+1 .

Hence for a ≥ 3d + 3, the upper bounding summands sa = 2n−aad+1 fulfill sa+1 ≤ sa · 1
2 · 3

2 = 3
4 sa, and we have

∑
∞
a=3d+3 sa ≤ s3d+3 ·4. It remains to estimate the first 3d +3 summands,

3d+3

∑
a=1

2n−a ·ad−1 · log2(a
d)≤ (3d +3)2n−1(3d +3)d−1d log2(3d +3) ∈ O

(
2n−1) ,

such that we can conclude:

Makespan volume of Parallel Subspace Reduce(n,d) ∈ O
(
2n−1)+4s3d+3 = O

(
2n−1) .

This is clearly asymptotically optimal because at least one subspace of size 2n−1 needs to be communicated (see also
Section 5.3). Note that this is asymptotically less than Sparse Grid Reduce (16) and Subspace Reduce (19) by a factor
of at least nd−1.

To upper bound the number of communication rounds we get the following:

Number of rounds of Parallel Subspace Reduce(n,d)≤
n

∑
a=1

ad−1 · log2(a
d) ∈ O

(
nd log2 n

)
.

This should be compared with the O (log2 n) rounds of Sparse Grid Reduce and is asymptotically the same as that of
Subspace Reduce as in (19).

Because the above are only asymptotic estimates, and as it is easy to compute these communication parameters
as a side product of our implementation (see Section 7.4), we present and compare in Section 8 the number of rounds
and the makespan volume for Sparse Grid Reduce, Subspace Reduce and Parallel Subspace Reduce for specific
dimensions d and sparse grid levels n.

For the cases with boundary points or minimal level we did not see that the explicit formulas give interesting
insights. For high refinement levels and boundary or constant minimal level, the asymptotics remain unchanged.
However, for non-constant minimum level it is unclear how to phrase the asymptotic considerations.

7. Testbed and Experimental Setup

This section introduces the systems used for the experiments and states the latency and bandwidth values for each
of the systems. It describes the implementations of Sparse Grid Reduce, Subspace Reduce and Parallel Subspace
Reduce, as well as the modifications done to Subspace Reduce such that non-blocking MPI routines can be used.
Furthermore, it elaborates on how the communication model is applied to predict the runtime of the communication
algorithms.
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Table 2: Latency and bandwidth values used for the lower and upper bounds in the communication model for Hermit, SuperMUC, Stampede and
JUQUEEN. For Hermit and SuperMUC, they have been measured; for Stampede and JUQUEEN reported data has been used.

Lower Bound Upper Bound

L0 B0 L1 B1

Hermit 1.4 µs 6.0 GByte/s 9 µs 1.0 GByte/s
SuperMUC 2.0 µs 4.7 GByte/s 4 µs 1.0 GByte/s

Lower Bound

L0 B0

Stampede 1.1 µs 6.4 GByte/s
JUQUEEN 1.7 µs 1.8 GByte/s

7.1. Systems used for Measurements

We have performed our experiments on two Tier-0/1 systems, Hermit and SuperMUC. To obtain reliable data
for our communication model, we measured the latency and bandwidth for MPI messages on both systems with the
so-called ping-pong test. This test is performed on two nodes. Node 1 sends an MPI message with a certain size to
node 2. As soon as node 2 has received the message, node 2 sends the message back to node 1. This procedure is
performed for different message sizes and is repeated multiple times to obtain reliable average results. The minimum
latency L0 can be deduced from the time it takes to send an MPI message of minimum size, for example a data payload
of a single byte. The maximum bandwidth B0 can be observed only for large message sizes, messages larger than a
couple of hundred kilobytes. Both values are used to obtain the lower bound in the model and are listed in Table 2.
Furthermore, these values were used for the estimated runtimes presented later in the Tables 4, 5, 6, 7 and 8.

Obtaining upper bounds for the model, it has to be considered that the measured bandwidth typically increases
with growing message size. The effect that only a fraction of the full bandwidth were measured for small messages is
partially captured by the latency term. Regardless of the size of the message, the latency gives a minimum commu-
nication time. To reproduce the dependency of bandwidth on the message size, a larger latency L1 is assumed. This
allows one to set a (larger) minimum bandwidth B1 threshold which is not attained for messages smaller than a couple
of kB. The upper bound pair L1 and B1 is chosen such that all times measured in the ping-pong test stay below the
threshold given by the model and this pair of values. This second pair of latency and bandwidth values is then used to
estimate an upper bound for the runtime of Sparse Grid Reduce and Subspace Reduce.

7.1.1. Hermit
Hermit is a Cray XE6 system located at the High Performance Computing Center Stuttgart (HLRS) with a reported

LINPACK performance of 831.4 TFlops/s. It consists of 3552 nodes connected in a 3-dimensional torus network of
Cray Gemini interconnects. Each node has 32 GByte DDR3 main memory and is equipped with two AMD Inter-
lagos CPUs, which have 16 cores and 16 MByte L3 Cache each. For our experiments we used the Cray MPI in
version 6.2.1 and GCC 4.8.2 for compilation. This version of Cray MPI offers non-blocking collective operations,
like MPI_Iallreduce, according to MPI Standard 3.0. We take advantage of these routines and conduct experiments
with the non-blocking MPI routines on Hermit. Please refer to Section 7.3.2 for details of the implementation.

On Hermit, latency and bandwidth of the MPI messages strongly depend on the position of the nodes in the 3-
dimensional torus network. More hops in the network lead to higher latency and lower bandwidth. We measured a
minimum latency between 1.4 µs and 8 µs and a maximum bandwidth between 1.7 GByte/s and 6 GByte/s depending
on the position of the nodes in the network. This is in agreement with material presented by HLRS [54]. For Hermit we
have chosen the following values for the model: lower bound: L0 = 1.4 µs, B0 = 6 GByte/s; upper bound: L1 = 9 µs,
B1 = 1 GByte/s.

7.1.2. SuperMUC
SuperMUC, which is located at the Leibniz-Rechenzentrum (LRZ), currently is the second fastest system in Ger-

many with a LINPACK performance of 2897.0 TFlops/s. It consists of 9216 thin nodes suited for massively parallel
applications and 205 fat nodes with a large shared memory for data intensive applications. The thin nodes are ar-
ranged in 18 island of 512 nodes each. Within each island the nodes are connected by a fully non-blocking Infiniband
4xFDR10 network. The islands are connected to each other by 126 spine switches. Each thin node has 32 GB DDR3
RAM and two Intel Xeon E5-2680 (Sandy Bridge) CPUs with 8 cores and 20 MB L3 cache each. For our experiments
we used IBM MPI 1.3 and the Intel C++ Compiler 13.1.
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As all nodes within an island on SuperMUC are connected by a fully non-blocking interconnect, each pair of
nodes within an island can simultaneously communicate at the same bandwidth and latency. Therefore, we only used
the nodes within a single island to decrease the variance of our measurements. Sending messages inside an island,
we have measured a minimum latency of 2 µs and a maximum bandwidth of 4.7 GByte/s, which agrees with data
found by other researchers. For SuperMUC we have determined the following values for the model: lower bound:
L0 = 2 µs, B0 = 4.7 GByte/s; upper bound: L1 = 4 µs, B1 = 1 GByte/s.

7.2. Additional Systems Employed to Predict Runtimes

We extend the predictions of our model to other Top500 systems with a different interconnect in Table 8, namely
JUQUEEN and Stampede. We did not have access to these systems, so we can only rely on data provided by training
material of the compute centers.

7.2.1. Stampede
Stampede has a LINPACK performance of 5168.1 TFlops/s and is installed at the Texas Advanced Computing

Center. The nodes are connected with 56 GBit/s Infiniband FDR in a 2-level fat-tree topology. The reported latency
is between 1.1 µs and 2.54 µs depending on the number of switch hops. The maximum bandwidth peaks below
6.4 GByte/s [55]. The values L0 = 1.1 µs and B0 = 6.4 GByte/s were used for the model.

7.2.2. JUQUEEN
Juqueen is a BlueGene/Q System, and it is the fastest system in Germany with a LINPACK performance of

5008.9 TFlops/s. The nodes are connected in a five-dimensional torus network. For MPI messages the reported
latency to the nearest neighbors is 1.7 µs and the maximum bandwidth is 1.8 GByte/s [56].

7.3. Implementation and Setup of Experiments

For our experiments we assume that each component grid is stored on one node of an HPC system. We further
assume that all communication involved in the global combination step is performed by exactly one MPI process per
node. This process has access to all hierarchical increment spaces H`̀̀′ of the component grid C`̀̀ of its node. The
coefficients of each H`̀̀′ are stored in a distinct array. Whenever experiments are conducted for sparse grids with
boundary, the boundary is of level-1 type (see Section 5.7.1).

In certain experiments the minimum-level is increased proportional to the level. A practical reason is that this
keeps the number of component grids in C d

n below a certain threshold as we only had access to about 500 compute
nodes (with up to 32 processors each) for our experiments. In these cases, we state the number of component grids
used, the dimension d of the sparse grid and the sparse grid level n at which the experiments start as well as the
minimum-level `̀̀min for this n. When increasing the sparse grid level n by one, we increase `̀̀min component-wise
in a round robin fashion. Thus, ‖`̀̀min‖1 is also increased by one. For example: for d = 5, we started with n = 7
and `̀̀min = (1,1,1,1,1). Increasing n means setting `̀̀min = (1,1,1,1,2) for n = 8, `̀̀min = (1,1,1,2,2) for n = 9,
`̀̀min = (2,2,2,2,2) for n = 12, and so on. All those cases result in 456 component grids. This way, the structure
of the communication task stays the same for all levels. I.e., there is a bijective mapping between the nodes of the
communication tasks for the different levels (and corresponding minimum levels) such that the same nodes need to
communicate. Just the communication volumes change.

In order to avoid large variance in our measurements due external influences like the overall load on the system’s
communication network, we report average times for our experiments. Each of the experiments has been repeated
at least three times and until at least 0.1 seconds have elapsed. When repeating an experiment the same set of
communication nodes has been employed. For the experiments with constant `̀̀min, a different set of nodes on the
system has been used for different number of component grids. For the experiments, where the minimum-level has
been increased, and hence the number of component grids and communication nodes remained constant, always the
same set of nodes had been used on SuperMUC. For Hermit, the same set of nodes was used for d = 5, n = 7 and
`̀̀min = (1,1,1,1,1) and when the minimum-level was increased such that the number of communication nodes needed
is always 456. When an increasing minimum-level was used on Hermit for d = 5, n = 5 and `̀̀min = (1,1,1,1,1) (126
nodes) and for d = 10, n = 4 and `̀̀min = (1,1,1,1,1,1,1,1,1,1) (286 nodes), different sets of compute nodes were
used for each communication task as provided by Hermit’s scheduling system.
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7.3.1. Sparse Grid Reduce
Sparse Grid Reduce, as shown in Algorithm 1, is performed in three steps. First, the coefficients of all Hk ⊂ SGd

n−1
are copied into a single buffer. For the Hk which do not exist in the component grid C`̀̀ of a particular process, i.e
Hk *C`̀̀ , the buffer is filled with zeros. Then, the MPI_Allreduce function is executed on all MPI processes in order
to perform the AllReduce on the buffer. As a last step, the (combined) coefficients are copied from the buffer to their
corresponding Hk. For our experiments the runtime of Sparse Grid Reduce includes all three steps.

7.3.2. Subspace Reduce
The implementation of Subspace Reduce (Algorithm 2) requires an initialization phase. In the initialization phase

an MPI Communicator is created for each increment space Hk ∈H d
n−1. The MPI Communicator for the increment

space Hk contains all compute nodes that contain this increment space, i.e. all nodes `̀̀ for which Hk ⊆C`̀̀ holds. Thus,
the size of the communicators ranges from d+1 to

∣∣C d
n
∣∣. We have observed that the creation of MPI Communicators

is an expensive operation, requiring a considerable amount of time. To name an extreme example: creating the
communicators for d = 3,n = 16 took 0.3 s on SuperMUC. For comparison, the actual communication took 0.03 s for
Parallel Subspace Reduce and no boundary values. For practical application, in most cases the communicators need
to be created only once in the beginning and can be reused for many communication steps. In certain circumstances it
might, be necessary change the allocation of component grids to the nodes, for example to deal with load balancing or
resilience issues. However, it is valid to assume that this happens only rarely and so the communicators can be reused
many times. For this reason, we neglected the time for the initialization phase in the measurements.

When performing Subspace Reduce, each process loops over all Hk ∈H d
n−1 in lexicographic ordering. When

there is a jump in the lexicographic order, it can be possible to reduce the increment space before and after the jump
in parallel. Hence, there might be some degree of parallelism, even with the "serial" Subspace Reduce. For Parallel
Subspace Reduce, the increment spaces have been reordered according to Section 5.6 (during the initialization phase)
to allow a parallel execution.

For both versions of Subspace Reduce: If the increment space Hk exists on the process, the coefficients of Hk are
copied to the buffer of the process. Then, MPI_Allreduce is executed on all processes included in the communicator
of Hk in order to perform AllReduce on the buffered coefficients. Afterwards, the (combined) coefficients are copied
back from the buffer to Hk. When an increment space Hk does not exist on a certain process, this process simply skips
these operations for the missing increment space. The experiments measure the time to loop over all increment spaces
Hk ∈H d

n−1 and include the two copy operations.
Since the MPI implementation by Cray available on Hermit offers non-blocking collective operations, we ad-

ditionally use a modified version of Subspace Reduce employing the non-blocking MPI_Iallreduce-routine. Using
the non-blocking routines Subspace Reduce is implemented as follows. First, each process executes a loop over all
Hk ∈H d

n−1. If the increment space Hk exists on that process, the increment space is copied into its private buffer and
the non-blocking MPI_Iallreduce function is called. This function immediately returns. It is crucial that a distinct
buffer is created for each Hk. After the loop, we execute the MPI_Waitall function in order to wait until all reduce
operations have been executed. Afterwards, each process loops over all Hk ∈H d

n−1 and extracts the (combined)
coefficients of increment spaces Hk that are contained in the component grid C`̀̀ of the process.

7.4. Exact Modeling of the Communication Times

In Section 6.1, exact formulas for the number of rounds and the makespan volume of Sparse Grid Reduce (13) and
Subspace Reduce (14) (assuming all increment spaces are reduced strictly in series for the latter) were deduced for the
case of sparse grids without boundary and without minimum-level. As these formulas were already rather involved,
we did not generalize them for sparse grids with boundary, minimum-level or Parallel Subspace Reduce.

To get exact values in these cases, we take advantage of the implementation. Auxiliary files are created containing
all necessary information to calculate the number of rounds and the makespan volume exactly. For Sparse Grid
Reduce we only need to know the size of SGd

n−1 and the number of component grids in C d
n . For Subspace Reduce we

need the level vector of each hierarchical increment space H`̀̀ ∈H d
n−1, the size of the increment space and the number

of component grids containing it. For Parallel Subspace Reduce we also output which increment spaces are on the
same relative position within a hypercube and are hence reduced in parallel. As the number of component grids which
contain an increment space is the same for all increment spaces of a group that is reduced in parallel, the runtime
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Table 3: Number of component grids and hence nodes that would be required to run the communication task for the given dimension d and level n
if no minimum level is used, i.e. `̀̀min = 1.

d = 3 Nbr. of Comp. Grids

n = 5 31
n = 10 136
n = 15 316
n = 20 571

d = 5 Nbr. of Comp. Grids

n = 5 126
n = 10 1,876
n = 15 9,626
n = 20 30,876

d = 10 Nbr. of Comp. Grids

n = 4 286
n = 8 19,448
n = 12 352,705

of a group is determined by reducing the largest increment space of the group. For the original version of Subspace
Reduce we assume in the model that all increment spaces are handled strictly one after another (though there might
be parallelism in the implementation when there is a ”jump” in the level-vector.)

Please recall also the assumption that the AllReduce-routine is implemented by two sweeps through a binomial
tree as discussed in Section 5. Note that some modern MPI implementations do not distinguish between reduce and
broadcast steps and use more sophisticated approaches. This can then lead to an even smaller total number of rounds
and makespan volume.

8. Simulations and Experiments

This section presents the experimental results. First, we compare the number of rounds, the makespan volume and
hence the predicted runtime of the different algorithms to each other. Then we present experiments on Hermit and
SuperMUC which we back up with bounds obtained from the communication model. We conclude with an outlook
on the communication times of problems that would be out of scope for experiments.

In summary, we have observed that Sparse Grid Reduce performs best for small levels and dimensions. Here,
the overhead of communicating the whole sparse grid is small and communicating in few rounds is advantageous. If
either the dimension or the level grows, Subspace Reduce outperforms Sparse Grid Reduce as significantly less data
is communicated. The reordering of the increment spaces enables Parallel Subspace Reduce to further improve com-
munication time when blocking MPI-routines are used. On Hermit, where non-blocking collective communication
was available, the performance of Subspace Reduce and Parallel Subspace Reduce could be further improved. In par-
ticular, with the non-blocking routines the runtime of Subspace Reduce and Parallel Subspace Reduce is very similar.
If the number of increment spaces and component grids grows, the speedup of Parallel Subspace Reduce increases
with increasing level. For a constant number of increment spaces and component grids, the performance benefit of
Parallel Subspace Reduce over Subspace Reduce is limited.

8.1. Predicting Runtimes
This section analyzes the number of rounds and the makespan volume for Sparse Grid Reduce and the original and

parallel version of Subspace Reduce for various settings. In the following tables, we present the volume in terms of the
numbers of grid points. Thus, the value is independent from the actual data representation (in the context of scientific
computing, real-valued or complex numbers with single or double precision would be common) which dictates the
actual storage/message size in terms of bytes. For the runtime predictions and the experiments we used real-valued
floating point numbers with double precision (8 bytes per grid point).

Table 3 shows the number of nodes that would be required to run the communication task for the given dimension d
and level n if no minimum level is used, i.e. `̀̀min = 1. For d = 5 and d = 10 the number of component grids quickly
exceeds the number of nodes available on Hermit or SuperMUC. Here, for moderate to high levels we have to limit
ourselves to theoretical results. For experiments with d = 5 and d = 10 we need to employ an increasing minimum
level to limit the number of required component grids and nodes. Still, we will rediscover the most important trends of
this subsection in the actual experiments. Since the experimental results with constant minimum level (d = 3), as well
as with increasing minimum level (d = 5 and d = 10), will fit very well to the model bounds, we are confident that
the additional predictions are good estimates even for the runtimes of the experiments that are beyond our resource
limitations.

Table 4 shows the number of rounds and the makespan volume for sparse grids without boundary and without
minimum level (i.e. `̀̀min = 1). Furthermore, we depict the ratio between Sparse Grid Reduce and the original and

23



Table 4: Without boundary and without minimum level (i.e. `̀̀min = 1): rounds and makespan volume (MkVol) for different dimensions. The
makespan volume is expressed in the number of grid points (not bytes).

d = 3 Sparse Grid Reduce Subspace Reduce Par. Subspace Reduce Sparse Grid Reduce
Subspace Reduce

Sparse Grid Reduce
Par. Subspace Reduce

Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol

n = 5 10 1110 128 582 104 390 0.078 1.9 0.096 2.8
n = 10 16 303088 1400 111860 880 33908 0.011 2.7 0.018 8.9
n = 15 18 2.71e+07 5588 9.28e+06 3186 1.45e+06 0.0032 2.9 0.0056 19
n = 20 20 1.8e+09 14836 5.67e+08 8016 5.14e+07 0.0013 3.2 0.0025 35

d = 5 Sparse Grid Reduce Subspace Reduce Par. Subspace Reduce Sparse Grid Reduce
Subspace Reduce

Sparse Grid Reduce
Par. Subspace Reduce

Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol

n = 5 14 4914 434 2414 314 1454 0.032 2 0.045 3.4
n = 10 22 4.13e+06 12736 1.42e+06 6586 321234 0.0017 2.9 0.0033 13
n = 15 28 8.77e+08 100284 2.49e+08 45818 2.57e+07 0.00028 3.5 0.00061 34
n = 20 30 9.68e+10 446574 2.63e+10 190776 1.37e+09 6.7e-05 3.7 0.00016 71

d = 10 Sparse Grid Reduce Subspace Reduce Par. Subspace Reduce Sparse Grid Reduce
Subspace Reduce

Sparse Grid Reduce
Par. Subspace Reduce

Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol

n = 4 18 4338 598 2058 526 1770 0.03 2.1 0.034 2.5
n = 8 30 1.19e+07 86948 3.71e+06 43544 1.16e+06 0.00035 3.2 0.00069 10

n = 12 38 4.85e+09 2.29e+06 1.26e+09 907862 2.06e+08 1.7e-05 3.9 4.2e-05 24

parallel versions of Subspace Reduce with respect to the number of rounds and the makespan volume. For Sparse
Grid Reduce, the number of rounds is low for low levels and only increases slowly with increasing level n. In
contrast, both versions of Subspace Reduce need significantly more rounds, and this number explodes with increasing
level. Comparing the two extreme examples d = 3, n = 5 and d = 10, n = 12, the number of rounds increases only
moderately for Sparse Grid Reduce from 10 to 38 while it explodes from 128 to 2.3 · 106 for Subspace Reduce. For
d = 5 and n = 20, Parallel Subspace Reduce needs a factor of about 6000 more rounds than Sparse Grid Reduce.
The reason for this extreme increase in the number of rounds for both versions of Subspace Reduce is the drastically
increasing number of hierarchical increment spaces of the sparse grid. Regarding the makespan volume, the trends are
reversed. The makespan volume of Sparse Grid Reduce is always larger than that of both Subspace Reduce versions.
Furthermore, the makespan volume of Sparse Grid Reduce grows quicker. For d = 5 and n = 20, the communication
volume of Sparse Grid Reduce is 3.7 times higher than the volume of the original Subspace Reduce method. It is
even 71 times higher than the volume of Parallel Subspace Reduce. The parallel version can only reduce the number
of rounds by about a factor of 2 for large levels compared to its original counterpart. However, Parallel Subspace
Reduce decreases the makespan volume significantly by a factor of about 11 for d = 3, n = 20, by a factor of about 19
for d = 5, n = 20 and a factor of about 6 for d = 10, n = 12, compared to Subspace Reduce. The enormous number of
hierarchical increment spaces for large level or dimension enables a high degree of parallelism and thus a significant
reduction in makespan volume for Parallel Subspace Reduce.

Table 5 compares the number of rounds and the makespan volume of sparse grids with boundary points for d = 5.
With boundary points the size of the sparse grid is drastically increased. The number of increment spaces and the
whole structure of the communication task, however, is the same as for sparse grids without boundaries of the same
dimension and level. Thus for all methods, the number of rounds is identical to the case without boundary points.
The makespan volume increases for all methods due to the increased volume of the increment spaces containing
the boundary points. Especially for small levels, the makespan volume increases by several orders of magnitude.
Comparing the ratio of the makespan volume of Sparse Grid Reduce and Subspace Reduce with and without boundary,
it can be seen that the increase in makespan volume is very similar for both methods. In contrast, the makespan volume
of Parallel Subspace Reduce increases faster than the makespan volume of the other two algorithms. For d = 5 the ratio
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Table 5: With boundary and without minimum level (i.e. `̀̀min = 1): rounds and makespan volume (MkVol) for d = 5. The makespan volume is
expressed in the number of grid points (not bytes).

d = 5 Sparse Grid Reduce Subspace Reduce Par. Subspace Reduce Sparse Grid Reduce
Subspace Reduce

Sparse Grid Reduce
Par. Subspace Reduce

Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol

n = 5 14 168462 434 89802 314 63882 0.032 1.9 0.045 2.6
n = 10 22 4.33e+07 12736 1.57e+07 6586 4.61e+06 0.0017 2.8 0.0033 9.4
n = 15 28 5.23e+09 100284 1.53e+09 45818 2.22e+08 0.00028 3.4 0.00061 24
n = 20 30 4.11e+11 446574 1.14e+11 190776 8.61e+09 6.7e-05 3.6 0.00016 48

Table 6: With boundary and with increasing minimum level: rounds and makespan volume (MkVol) for d = 5. Due to the increasing minimum
level 456 component grids are always used. The makespan volume is expressed in the number of grid points (not bytes).

d = 5 Sparse Grid Reduce Subspace Reduce Par. Subspace Reduce Sparse Grid Reduce
Subspace Reduce

Sparse Grid Reduce
Par. Subspace Reduce

456 nodes Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol Rounds MkVol

n = 7 18 1.85e+06 2184 795006 1324 403326 0.0082 2.3 0.014 4.6
n = 10 18 1.08e+07 2184 4.59e+06 1324 2.25e+06 0.0082 2.3 0.014 4.8
n = 15 18 2.32e+08 2184 9.8e+07 1324 4.61e+07 0.0082 2.4 0.014 5
n = 20 18 5.97e+09 2184 2.51e+09 1324 1.15e+09 0.0082 2.4 0.014 5.2

of the makespan volume between Sparse Grid Reduce and Parallel Subspace Reduce grows from 2.6 to 48, whereas it
increases from 3.4 to 71 for sparse grids without boundary (see Table 4). This is due to the fact that increment spaces
with a small level sum contain many boundary points in comparison to interior points and also contribute to many
component grids. For these increment spaces the volume increases most, but they cannot be reduced in parallel or
only to a limited extend. Only the increment spaces with a high level sum can be reduced in parallel. However, they
contain only relatively few boundary points in comparison to interior points.

Table 6 presents the case of increasing minimum-level for d = 5 with boundary points. The minimum-level is
increased as described in Section 7.3 so that a constant number of 456 component grids are used for each level n. We
started with `̀̀min = (1,1,1,1,1) for n = 7. When the minimum level is increased, the structure of the communication
tasks stays the same for all levels n, only the communication volumes change. Therefore, the number of rounds is
constant for different n for all three methods. Like before, the number of rounds for Sparse Grid Reduce is significantly
smaller than for Subspace Reduce and Parallel Subspace Reduce, and Parallel Subspace Reduce decreases the number
of rounds by roughly a factor of 2 compared to the original Subspace Reduce method. The makespan volume is
reduced by Subspace Reduce by roughly a factor of 2 and by Parallel Subspace Reduce by roughly a factor of 5
compared to Sparse Grid Reduce. However, the makespan volume ratio between Sparse Grid Reduce and Subspace
Reduce, and Sparse Grid Reduce and Parallel Subspace Reduce respectively, increases only slightly with increasing
n. This differs from the observations for fixed `̀̀min (see Table 5) where this ratio increases significantly when n grows,
in particular for Parallel Subspace Reduce. When using a minimum level, the communication task is much smaller
than in the case without minimum level. Furthermore, if the minimum level is increased simultaneously with the
level n, the number of hierarchical increment spaces remains constant and the structure of the communication task
remains unchanged. Although the level vectors `̀̀ of the increment spaces increase when n grows, the differences
`̀̀− `̀̀min remain unchanged. This relative level `̀̀− `̀̀min, however, determines which increment spaces can be reduced
in parallel. Thus, the amount of parallelism does not grow with n, as in the case without minimum level. All in
all, with Subspace Reduce and Parallel Subspace Reduce reducing the makespan volume by a small, almost constant
factor compared to Sparse Grid Reduce, we also expect small, nearly constant speedups in the experiments.

8.2. Performance Prediction
In this section we limit the discussion to Sparse Grid Reduce and Parallel Subspace Reduce and disregard Sub-

space Reduce. Table 7 shows the predicted runtime of Sparse Grid Reduce and Parallel Subspace Reduce on Hermit,
using the lower bound values L0 and B0, as well as the fraction of time spent in the latency and bandwidth terms. This
experiment was conducted with boundary points and no minimum-level. For both methods the percentage of time
spent in the bandwidth term grows with increasing level and dimension. However, for Sparse Grid Reduce it starts off
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Table 7: With boundary and without minimum level (i.e. `̀̀min = 1): total predicted runtime split into latency and bandwidth term for Hermit
(L0 = 1.4 µs, B0 = 6 GByte/s) for different dimensions.

d = 3 Sparse Grid Reduce Par. Subspace Reduce Sparse Grid Reduce
Par. Subspace Reduce

Latency Bandwidth Total Latency Bandwidth Total

n = 5 63.9 % 36.1 % 0.0000 s 97.4 % 2.6 % 0.0001 s 0.15
n = 10 2.1 % 97.9 % 0.0011 s 88.0 % 12.0 % 0.0014 s 0.77
n = 15 0.0 % 100.0 % 0.072 s 42.0 % 58.0 % 0.011 s 6.7
n = 20 0.0 % 100.0 % 4.1 s 5.4 % 94.6 % 0.21 s 20

d = 5 Sparse Grid Reduce Par. Subspace Reduce Sparse Grid Reduce
Par. Subspace Reduce

Latency Bandwidth Total Latency Bandwidth Total

n = 5 8.0 % 92.0 % 0.0002 s 83.8 % 16.2 % 0.0005 s 0.47
n = 10 0.1 % 99.9 % 0.058 s 60.0 % 40.0 % 0.015 s 3.8
n = 15 0.0 % 100.0 % 7.0 s 17.8 % 82.2 % 0.36 s 19
n = 20 0.0 % 100.0 % 548 s 2.3 % 97.7 % 12 s 47

d = 10 Sparse Grid Reduce Par. Subspace Reduce Sparse Grid Reduce
Par. Subspace Reduce

Latency Bandwidth Total Latency Bandwidth Total

n = 4 0.0 % 100.0 % 0.058 s 3.2 % 96.8 % 0.023 s 2.5
n = 8 0.0 % 100.0 % 22 s 2.4 % 97.6 % 2.6 s 8.6

n = 12 0.0 % 100.0 % 2745 s 1.0 % 99.0 % 130 s 21

at a larger percentage and grows faster: almost all time is spent in the bandwidth term if either the dimension or the
level is at least moderate. Parallel Subspace Reduce spends a significant amount of time in the latency term due to
the large number of rounds. However, the bandwidth term still dominates for large levels, or medium level and high
dimension. While Sparse Grid Reduce is faster for a small to medium dimension and small level, Parallel Subspace
Reduce outperforms it in all other cases. In the first case, the volume overhead by Sparse Grid Reduce is not too large.
Here, it pays off that Sparse Grid Reduce communicates in the minimal number of rounds. If either the dimension
or the level grows, the size of the sparse grid grows significantly, so that Parallel Subspace Reduce is predicted to
outperform Sparse Grid Reduce by one to two orders of magnitude.

Table 8 compares the predicted runtimes of Sparse Grid Reduce and Parallel Subspace Reduce on the four systems
presented in Section 7 for d = 5 using boundary points, but no minimum level. Furthermore, two artificial systems are
included which are derived from Hermit by either increasing or decreasing Hermit’s latency by a factor of 10. For the
ratio of the expected runtimes of Sparse Grid Reduce and Parallel Subspace Reduce only the ratio between latency
and bandwidth is important, but not the actual values. Hence, increasing the latency by a factor of 10 has the same
effect on this ratio as decreasing the bandwidth by a factor of 10.

For the four real systems the ratio of the runtimes between Sparse Grid Reduce and Parallel Subspace Reduce is
very similar. On all four systems, the table shows that Parallel Subspace Reduce is expected to outperform Sparse
Grid Reduce for n≥ 10. For n= 20, Parallel Subspace Reduce is expected to be about 47 times faster than Sparse Grid
Reduce. Only when level and makespan volume are small (n = 5), Sparse Grid Reduce is expected to perform best.
If the latency of Hermit would be reduced by a factor of 10, Parallel Subspace Reduce would be faster than Sparse
Grid Reduce even for n = 5. For small n, where a large fraction of the total time of Parallel Subspace Reduce is spent
in the latency term (see Table 7), Parallel Subspace Reduce benefits from the reduced latency. In contrast, increasing
the latency by a factor of 10 increases the runtime for Parallel Subspace Reduce for n = 5,10,15. Note that for
n = 10,15,20, changing the latency does not have a visible impact on the runtime of Sparse Grid Reduce. Here, the
fraction of time consumed by the latency term is negligible and only the bandwidth term is relevant for medium to
high dimensions and levels (see Table 7).
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Table 8: With boundary and without minimum level (i.e. `̀̀min = 1): runtime predictions for different systems and d = 5. Model parameters: Hermit
(L0 = 1.4 µs, B0 = 6 GByte/s), SuperMUC (L0 = 2 µs, B0 = 4.7 GByte/s), Stampede (L0 = 1.1 µs, B0 = 6.4 GByte/s), JUQUEEN (L0 = 1.7 µs,
B0 = 1.8 GByte/s).

d = 5
Hermit Hermit Latency decreased Hermit Latency increased

L = L0, B = B0 L = L0/10, B = B0 L = 10 ·L0, B = B0

SG Red. P. Subsp. Red. SG Red.
P. Subsp. Red. SG Red. P. Subsp. Red. SG Red.

P. Subsp. Red. SG Red. P. Subsp. Red. SG Red.
P. Subsp. Red.

n = 5 0.0002 s 0.0005 s 0.47 0.0002 s 0.0001 s 1.8 0.0004 s 0.0045 s 0.094
n = 10 0.058 s 0.015 s 3.8 0.058 s 0.0071 s 8.2 0.058 s 0.098 s 0.59
n = 15 7.0 s 0.36 s 19.4 7.0 s 0.30 s 23.1 7.0 s 0.94 s 7.4
n = 20 548 s 12 s 46.7 548 s 12 s 47.7 548 s 14 s 38.8

d = 5 SuperMUC Stampede JUQUEEN

SG Red. P. Subsp. Red. SG Red.
P. Subsp. Red. SG Red. P. Subsp. Red. SG Red.

P. Subsp. Red. SG Red. P. Subsp. Red. SG Red.
P. Subsp. Red.

n = 5 0.0003 s 0.0007 s 0.43 0.0002 s 0.0004 s 0.53 0.0008 s 0.0008 s 0.94
n = 10 0.074 s 0.021 s 3.5 0.054 s 0.013 s 4.2 0.19 s 0.032 s 6.1
n = 15 8.9 s 0.47 s 19.0 6.5 s 0.33 s 19.9 23 s 1.1 s 21.8
n = 20 700 s 15 s 46.6 514 s 11 s 46.9 1827 s 39 s 47.4

8.3. Results on Hermit

This section discusses the experiments conducted on Hermit. Unless explicitly specified, we always refer to the
blocking implementations of Subspace Reduce and first compare those to Sparse Grid Reduce before also taking the
non-blocking implementations into consideration.

Figure 6 (left) shows the results for d = 3 without boundary points and a constant minimum level. The number
of nodes ranges from 10 to 460. For n ≤ 11, Sparse Grid Reduce is faster than Subspace Reduce and Parallel
Subspace Reduce. For small n the increment spaces are very small (without boundary they are particularly small)
and so the volume overhead of Sparse Grid Reduce is only low. However, with growing n the runtime of Sparse
Grid Reduce increases faster than for the other methods. For n = 18 the total time of Sparse Grid Reduce was 1.12s
and the total time of Parallel Subspace Reduce was 0.10s, which is a factor of 11. Parallel Subspace Reduce always
performs better than its original counterpart. Furthermore, the difference between Subspace Reduce and Parallel
Subspace Reduce grows with increasing n. The higher n, the higher the degree of parallelism that is possible due
to the larger number of increment spaces. Thus, the difference in makespan volume between Subspace Reduce and
Parallel Subspace Reduce grows with increasing n. This agrees with the predictions from Table 4. The two non-
blocking variants of Subspace Reduce only show a slight improvement over blocking Parallel Subspace Reduce.
From the fact that there is no visible difference between the two non-blocking variants, we conclude that reordering
the communication tasks has no performance benefit in case of the non-blocking implementations. An explanation for
this behavior would be that the MPI system is able to rearrange the communication on a lower level and with a finer
granularity (single messages or even network packets) than we are able to with our algorithms. Later we will also
see that the artificial reordering of the subspaces will even have a slight adverse effect on the performance in some
cases. Figure 6 (right) shows the results with boundary points for d = 3 on 10 to 361 nodes. As in the case without
boundary, Sparse Grid Reduce is faster than the other methods for small n. However, for n≤ 9 the difference between
Sparse Grid Reduce and Parallel Subspace Reduce is considerably smaller than in the case without boundary points.
The crossover point between Sparse Grid Reduce and Parallel Subspace Reduce shifted from n = 12, as in the case
without boundaries, to n = 10. Due to the increased size of the increment spaces containing the boundary points,
the volume overhead of Sparse Grid Reduce increases faster than for the other methods with growing n. For n = 16
the total time of Sparse Grid Reduce was 0.46s and the total time of Parallel Subspace Reduce was 0.059s. Hence,
Parallel Subspace Reduce is about 7.8 times faster than Sparse Grid Reduce. Again, the non-blocking variants show
only a slight improvement over Parallel Subspace Reduce and also there is no noticeable difference between the two
variants.

Figure 7 (left) shows the results for d = 5 and boundary points with a constant number of 126 nodes. We can
observe similar behavior as with d = 3 and fixed minimum level: for small levels Sparse Grid Reduce was slightly
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Figure 6: Results on Hermit for d = 3 without minimum level (i.e. `̀̀min = 1). Hence, the number of nodes increases with n. Left: without boundary,
right: with boundary.
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Figure 7: Results on Hermit for d = 5 with boundary points. Left: `̀̀min increasing from (1,1,1,1,1) for n = 5 to (3,3,3,3,2) for n = 14, i.e. a
constant number of 126 component grids was used. Right: `̀̀min increasing from (1,1,1,1,1) for n = 7 to (3,2,2,2,2) for n = 13, i.e. a constant
number of 456 component grids was used.

faster than Subspace Reduce or Parallel Subspace Reduce, but when n grows, the runtime of Sparse Grid Reduce in-
creases faster than the runtime of the other methods. For n = 14, the runtime of Sparse Grid Reduce was 0.21s,
while Parallel Subspace Reduce executed in 0.026s, which is a factor of about 8.1. The non-blocking variants of
Subspace Reduce show a significant improvement over Parallel Subspace Reduce. For n = 14 the total time of the
non-blocking Subspace Reduce was 0.0073 s, which is 29 times faster than Sparse Grid Reduce. Unlike it was ob-
served for d = 3, even for small n the non-blocking variants of Subspace Reduce clearly outperform Sparse Grid
Reduce. Here, however, reordering the increment spaces has a small negative effect on the performance of non-
blocking Parallel Subspace Reduce for most n. With 456 nodes a very similar behavior can be observed (see Figure 7
(right)). However, the crossover point between Sparse Grid Reduce and Subspace Reduce shifted from n = 11, where
it was for 126 nodes, to n = 9. For the same n, the number of increment spaces, and thus the total size of the sparse
grid, is larger than in the case with 126 nodes, which results in a higher overhead for Sparse Grid Reduce. For n = 13
the total time of Sparse Grid Reduce was 0.34s and the total time of Parallel Subspace Reduce was 0.04s, which is a
factor of 8.5. Comparing Subspace Reduce and Parallel Subspace Reduce, the difference in runtime is considerably
larger than with 126 nodes, since the higher number of increment spaces enables more parallelism. However, unlike
for d = 3 and a growing number of component grids, the difference between Subspace Reduce and Parallel Subspace
Reduce does not increase with n, because the communication task remains the same. Note that this behavior fits
well to the predictions in Table 6, where Parallel Subspace Reduce has roughly half the number of rounds and half
the makespan volume as Subspace Reduce independent of n. For n = 13 the total time of non-blocking Subspace
Reduce was 0.0047s, which is 72 times faster than Sparse Grid Reduce.

Figure 8 (left) shows the results for d = 10 with boundary points on 286 nodes. Unlike observed for d = 3 and
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Figure 8: Left: Results on Hermit for d = 10 with boundary and `̀̀min increasing from (1,1,1,1,1,1,1,1,1,1) for n = 4 to (2,2,2,2,1,1,1,1,1,1)
for n = 8. A constant number of 286 component grids was used. Right: Results on SuperMUC for d = 3 without boundary and without minimum
level (`̀̀min = 1). Thus, the number of nodes increases with n.

d = 5, Subspace Reduce and Parallel Subspace Reduce perform significantly better than Sparse Grid Reduce for all
n, without exception. For d = 10 and boundary points the individual increment spaces are very large which results
in a high volume overhead for Sparse Grid Reduce. For n = 8 the total time of Sparse Grid Reduce was 1.45s and
the total time of Parallel Subspace Reduce was 0.22s, which is a factor of 6.6. As already observed for d = 5, the
speedup of Parallel Subspace Reduce over Subspace Reduce remains nearly constant with increasing n. The non-
blocking variants of Subspace Reduce were considerably faster than Subspace Reduce, although the difference seems
to decrease with growing n. For n = 8 the total time of non-blocking Parallel Subspace Reduce was 0.091s, which is
16 times faster than Sparse Grid Reduce.

Though we focus on the optimization of communication schemes in this work and not on the underlying simula-
tions, we provide details about realistic runtimes here for comparison. The experiment in Fig. 7 is closest to the target
scenarios we aim for. The simulation of the linear ITG instability with GENE is a d = 5 scenario and needs at least
the resolution for n = 12. There, the compute time for 100 time steps on the largest component grids takes in average
0.07s on Hermit on one node. 100 time steps is a realistic simulation time span between the global communication
steps here (which depends on the simulation task). We were able to reduce the communication time from about 0.19s
(Sparse Grid Reduce) to about 0.0034s (non-blocking Parallel Subspace Reduce) for this scenario – a reduction by a
factor of 56. Thus, the global communication takes only about as long as 5 time steps of the simulation, which is an
excellent result. For other and future simulation scenarios with GENE, the compute time per time step will increase,
even with a much higher degree of parallelism per component grid. There, the non-blocking Parallel Subspace Reduce
will quite likely take less than a single time step, and recombination after each time step might even become feasible.

8.4. Results on SuperMUC
In the following, we present the experimental results on SuperMUC. We could not perform experiments with the

non-blocking variants of Subspace Reduce, because an MPI implementation which offered the non-blocking collective
operations of the MPI 3.0 standard was not yet available when we conducted this research.

Figure 8 (right) shows the results for d = 3 without boundary and with constant minimum level on 10 to 409
nodes. We can observe a very similar behavior as on Hermit (see Figure 6). However, the crossover point between
Sparse Grid Reduce and Parallel Subspace Reduce moved from n = 12 to n = 13. For n = 17 the total time of Sparse
Grid Reduce was 0.38 s and of Parallel Subspace Reduce 0.064 s, which is a factor of 5.9. Unlike observed on Hermit,
there is no clear trend of Sparse Grid Reduce becoming slower than Subspace Reduce with increasing n.

Figure 9 (left) shows the results for d = 5 with boundary points and a constant number of 456 nodes. The results
are very similar to those on Hermit, so please refer to the particular paragraph in Section 8.3 for a detailed discussion.
For n = 13 the total time of Sparse Grid Reduce was 0.28s and the total time of Parallel Subspace Reduce was 0.037s,
which is a factor of 7.6. With a factor of 8.5, the gap between the two algorithms is similar on Hermit, but the absolute
runtimes were slightly lower on SuperMUC.

Figure 9 (right) shows the results for d = 10 with boundary points on and a constant number of 286 nodes.
The same trends as on Hermit can be observed. There, we already observed that the runtimes of Parallel Subspace
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Figure 9: Left: Results on SuperMUC for d = 5 with boundary, `̀̀min increasing from (1,1,1,1,1) for n = 7 to (3,2,2,2,2) for n = 13, resulting in
a constant number of 426 component grids. Right: Results on SuperMUC for d = 10 with boundary, `̀̀min increasing from (1,1,1,1,1,1,1,1,1,1)
for n = 4 to (2,2,2,2,1,1,1,1,1,1) for n = 8, resulting in a constant number of 286 component grids.

Reduce come very close to the lower bound of the model. Here, however, they are significantly below. A possible
explanation will be given in the next section. For n = 8, the total time of Sparse Grid Reduce was 1.03s and the total
time of Parallel Subspace Reduce was 0.15s, which is a factor of 6.9. On Hermit the factor was 6.6, but the absolute
runtimes where more than 46% higher than on SuperMUC.

The experimental results on SuperMUC, as well as on Hermit, agree very well with the model. Apart from a
few outliers, the runtimes are inside the prediction intervals and the model reflects the trends of the measurements.
Violations of the lower bound might be due to the fact that MPI_Allreduce does not necessarily employ an algorithm
which uses two phases and binomial trees, as assumed by our model, but instead a more efficient one (see Section 5).
We assume that the outliers violating the upper bound on Hermit for d = 3 are caused by peculiarities of the MPI
implementation or an adverse placement of MPI ranks in the network topology. However, since these cases were so
rare, we did not further investigate this issue.

8.5. Extending the Scope to Future Hardware

In this section we finally extend our predictions to regions which are beyond what can be measured on current
hardware. This is especially interesting to make predictions of the algorithms’ performance on future hardware. We
consider a 5- and a 10-dimensional problem with boundary points and constant minimum level `̀̀min = 1. Note that
for d = 5 and n = 25 we would need 76,251 nodes and for d = 10 and n = 13 we would even need 646,580 nodes.
For comparison, currently none of the world’s largest supercomputers has more than 100,000 nodes.

In Figure 10 (left) we can see the predicted runtimes for d = 5 with boundary and without minimum level (i.e.
`̀̀min = 1) for 7 ≤ n ≤ 25. For n = 7, all algorithms are expected to need roughly the same amount of time. With
increasing n the difference between Sparse Grid Reduce and Parallel Subspace Reduce grows significantly. For n= 25
the predicted runtime of Sparse Grid Reduce is around 100,000s (almost 28 hours) while the predicted runtime of
Parallel Subspace Reduce is only around 1000s (less than 17 minutes). The execution time of Sparse Grid Reduce is
so high that it would just not be reasonable to use this algorithm for actual computations. The difference between
Sparse Grid Reduce and Subspace Reduce also increases with increasing n, but only slightly. For n = 25, Subspace
Reduce would need more than 10,000s and is thus less than a factor of 10 faster than Sparse Grid Reduce.

Figure 10 (right) shows the predicted runtimes for d = 10 with boundary and without minimum level. Here,
it already required a considerable amount of time just to compute the predictions, due to the extreme number of
hierarchical increment spaces. Thus, we limited n to 13. The general trend is very similar to the case of d = 5. While
all algorithms need almost the same time for n = 4, Parallel Subspace Reduce becomes the fastest and Sparse Grid
Reduce the slowest algorithm when the level increases. For n = 13, Sparse Grid Reduce would require more than
10,000s. In the same situation, Parallel Subspace Reduce would only require between 400 and 1100 seconds, and it
would be 10 times faster. We expect that this gap grows further as the level increases. As in the case for d = 5, the
difference between Sparse Grid Reduce and Subspace Reduce grows much slower with increasing n.
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Figure 10: Predictions for SuperMUC with boundary and without minimum level (i.e. `̀̀min = 1). Thus, the number of component grids increases
with n. Left: d = 5. Right: d = 10.

9. Conclusions and Future Work

The sparse grid combination technique provides an hierarchical approach to avoid the need for global synchro-
nization for the numerical treatment of high-dimensional problems, for example PDEs such as they appear in plasma
physics. It retrieves a solution as a suitable combination of several anisotropic, coarse grid solutions which can be
computed independently. After every few time steps of time-dependent problems, the partial solutions have to be
combined in a reduce/broadcast step. In this paper, we have studied this remaining synchronization bottleneck.

Two different algorithms, Sparse Grid Reduce and Subspace Reduce, have been described, and parallel and non-
blocking variants have been discussed. Furthermore, we have given a precise model and cost measures that reasonably
reflect modern architectures, allowing us to analyze the algorithms and to prove lower bounds for the communication
step. The model has been well confirmed using numerical experiments on several HPC systems. The model and
the experiments fit very well, especially on Hermit, despite the simplifying assumption that the AllReduce-operations
work in two phases and that these phases are based on binomial trees for communication. Even more, the model can
provide predictions for HPC systems that do not exist yet and for problem sizes that currently are still out of scope.

For large levels, when the sparse grid is significantly larger than any component grid, Subspace Reduce outper-
forms the naive approach Sparse Grid Reduce. This effect can already be observed if Subspace Reduce reduces the
hierarchical increment spaces in a serial manner. The parallel and non-blocking variants of Subspace Reduce improve
this even further, up to orders of magnitude depending on the problem size. Nevertheless, there could still be room for
improvement in future work. Subspace Reduce can likely be improved by merging small hierarchical increment spaces
and communicating them jointly. Merging small increment spaces would decrease the number of rounds significantly
while only slightly increasing the makespan volume.

For the analysis it was assumed that there is precisely one communication node per component grid. In future work
we want to consider solving one component grid in parallel on many communication nodes, using one communication
node to solve several component grids or a combination of both. Furthermore, the possibility of using additional
communication nodes that do not solve partial solutions could be explored.

For the experiments, we have used a selection of component grids based on a minimum level. This limits the
number of component grids to the available compute resources. For larger numbers of compute nodes, much higher
speedups of Parallel Subspace Reduce are predicted by the communication model, and the use of the new communi-
cation algorithms will pay off even more.
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