31 research outputs found

    Combining Syntactic and Semantic Bidirectionalization

    Get PDF
    Matsuda et al. [2007, ICFP] and Voigtlander [2009, POPL] introduced two techniques that given a source-to-view function provide an update propagation function mapping an original source and an updated view back to an updated source, subject to standard consistency conditions. Being fundamentally different in approach, both techniques have their respective strengths and weaknesses. Here we develop a synthesis of the two techniques to good effect. On the intersection of their applicability domains we achieve more than what a simple union of applying the techniques side by side deliver

    Enhancing Semantic Bidirectionalization via Shape Bidirectionalizer Plug-ins

    Get PDF
    Matsuda et al. (2007) and Voigtlander (2009) have introduced two techniques that given a source-to-view function provide an update propagation function mapping an original source and an updated view back to an updated source, subject to standard consistency conditions. Previously, we developed a synthesis of the two techniques, based on a separation of shape and content aspects (Voigtlander et al. 2010). Here, we carry that idea further, reworking the technique of Voigtlander such that any shape bidirectionalizer (based on the work of Matsuda et al. or not) can be used as a plug-in, to good effect. We also provide a data-type-generic account, enabling wider reuse, including the use of pluggable bidirectionalization itself as a plug-in

    Semantic Bidirectionalization Revisited

    Get PDF
    A bidirectional transformation is a pair of mappings between source and view data objects, one in each direction. When the view is modified, the source is updated accordingly with respect to some laws. Over the years, a lot of effort has been made to offer better language support for programming such transformations, essentially allowing the programmers to construct one mapping of the pair and have the other automatically generated. As an alternative to creating specialized new languages, one can try to analyse and transform programs written in general purpose languages, and "bidirectionalize" them. Among others, a technique termed as semantic bidirectionalization stands out in term of user-friendliness. The unidirectional program can be written using arbitrary language constructs, as long as the function is polymorphic and the language constructs respect parametricity. The free theorem that follows from the polymorphic type of the program allows a kind of forensic examination of the transformation, determining its effect without examining its implementation. This is convenient, in the sense that the programmer is not restricted to using a particular syntax; but it does require the transformation to be polymorphic. In this paper, we revisit the idea of semantic bidirectionalization and reveal the elegant principles behind the current state-of-the-art techniques. Guided by the findings, we derive much simpler implementations that scale easily

    Bidirectionalization for Free with Runtime Recording: Or, a Light-Weight Approach to the View-Update Problem

    Get PDF
    A bidirectional transformation is a pair of mappings between source and view data objects, one in each direction. When the view is modified, the source is updated accordingly with respect to some laws. Over the years, a lot of effort has been made to offer better language support for programming such transformations. In particular, a technique known as bidirectionalization is able to analyze and transform unidirectional programs written in general purpose languages, and "bidirectionalize" them. Among others, a technique termed as semantic bidirectionalization proposed by Voigtländer stands out in term of user-friendliness. The unidirectional program can be written using arbitrary language constructs, as long as the function is polymorphic and the language constructs respect parametricity. The free theorems that follow from the polymorphic type of the program allow a kind of forensic examination of the transformation, determining its effect without examining its implementation. This is convenient, in the sense that the programmer is not restricted to using a particular syntax; but it does require the transformation to be polymorphic. In this paper, we lift this polymorphism requirement to improve the applicability of semantic bidirectionalization. Concretely, we provide a type class PackM γ α μ, which intuitively reads "a concrete datatype γ is abstracted to a type α, and the 'observations' made by a transformation on values of type γ are recorded by a monad μ". With PackM, we turn monomorphic transformations into polymorphic ones, that are ready to be bidirectionalized. We demonstrate our technique with a case study of standard XML queries, which were considered beyond semantic bidirectionalization because of their monomorphic nature

    Applicative Bidirectional Programming with Lenses

    Get PDF
    A bidirectional transformation is a pair of mappings between source and view data objects, one in each direction. When the view is modified, the source is updated accordingly with respect to some laws. One way to reduce the development and maintenance effort of bidirectional transformations is to have specialized languages in which the resulting programs are bidirectional by construction---giving rise to the paradigm of bidirectional programming. In this paper, we develop a framework for applicative-style and higher-order bidirectional programming, in which we can write bidirectional transformations as unidirectional programs in standard functional languages, opening up access to the bundle of language features previously only available to conventional unidirectional languages. Our framework essentially bridges two very different approaches of bidirectional programming, namely the lens framework and Voigtlander’s semantic bidirectionalization, creating a new programming style that is able to bag benefits from both

    Bidirectional Programming and its Applications

    Get PDF
    Many problems in programming involve pairs of computations that cancel out each other’s effects; some examples include parsing/printing, embed- ding/projection, marshalling/unmarshalling, compressing/de-compressing etc. To avoid duplication of effort, the paradigm of bidirectional programming aims at to allow the programmer to write a single program that expresses both computations. Despite being a promising idea, existing studies mainly focus on the view-update problem in databases and its variants; and the impact of bidirectional programming has not reached the wider community. The goal of this thesis is to demonstrate, through concrete language designs and case studies, the relevance of bidirectional programming, in areas of computer science that have not been previously explored. In this thesis, we will argue for the importance of bidirectional programming in programming language design and compiler implementation. As evidence for this, we will propose a technique for incremental refactoring, which relies for its correctness on a bidirectional language and its properties, and devise a framework for implementing program transformations, with bidirectional properties that allow program analyses to be carried out in the transformed program, and have the results reported in the source program. Our applications of bidirectional programming to new areas bring up fresh challenges. This thesis also reflects on the challenges, and studies their impact to the design of bidirectional systems. We will review various design goals, including expressiveness, robustness, updatability, efficiency and easy of use, and show how certain choices, especially regarding updatability, can have significant influence on the effectiveness of bidirectional systems

    Programmiersprachen und Rechenkonzepte

    Get PDF
    Seit 1984 veranstaltet die GI-Fachgruppe "Programmiersprachen und Rechenkonzepte" regelmäßig im Frühjahr einen Workshop im Physikzentrum Bad Honnef. Das Treffen dient in erster Linie dem gegenseitigen Kennenlernen, dem Erfahrungsaustausch, der Diskussion und der Vertiefung gegenseitiger Kontakte. In diesem Forum werden Vorträge und Demonstrationen sowohl bereits abgeschlossener als auch noch laufender Arbeiten vorgestellt, unter anderem (aber nicht ausschließlich) zu Themen wie - Sprachen, Sprachparadigmen, - Korrektheit von Entwurf und Implementierung, -Werkzeuge, -Software-/Hardware-Architekturen, -Spezifikation, Entwurf, - Validierung, Verifikation, - Implementierung, Integration, - Sicherheit (Safety und Security), - eingebettete Systeme, - hardware-nahe Programmierung. In diesem Technischen Bericht sind einige der präsentierten Arbeiten zusammen gestellt

    Feature-Based Classification of Bidirectional Transformation Approaches

    Get PDF
    International audienceBidirectional model transformation is a key technology in model-driven engineering (MDE), when two models that can change over time have to be kept constantly consistent with each other. While several model transformation tools include at least a partial support to bidirectionality, it is not clear how these bidirectional capabilities relate to each other and to similar classical problems in computer science, from the view update problem in databases to bidirectional graph transformations. This paper tries to clarify and visualize the space of design choices for bidirectional transformations from an MDE point of view, in the form of a feature model. The selected list of existing approaches are characterized by mapping them to the feature model. Then, the feature model is used to highlight some unexplored research lines in bidirectional transformations

    Applicative bidirectional programming mixing lenses and semantic bidirectionalization

    Get PDF
    corecore