
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Wang, Meng (2011) Bidirectional Programming and its Applications. Doctor of Philosophy
(PhD) thesis, University of Oxford.

DOI

Link to record in KAR

https://kar.kent.ac.uk/55795/

Document Version

Other

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/42412128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bidirectional Programming

and its Applications

�
Meng Wang

Wolfson College

University of Oxford

Submitted for the degree of Doctor of Philosophy

Trinity 2010

Bidirectional Programming

and its Applications

Meng Wang

Wolfson College

University of Oxford

Submitted for the degree of Doctor of Philosophy

Trinity 2010

4

Abstract

Many problems in programming involve pairs of computations that cancel

out each other’s effects; some examples include parsing/printing, embed-

ding/projection, marshalling/unmarshalling, compressing/de-compressing etc.

To avoid duplication of effort, the paradigm of bidirectional programming

aims at to allow the programmer to write a single program that expresses

both computations. Despite being a promising idea, existing studies mainly

focus on the view-update problem in databases and its variants; and the im-

pact of bidirectional programming has not reached the wider community. The

goal of this thesis is to demonstrate, through concrete language designs and

case studies, the relevance of bidirectional programming, in areas of computer

science that have not been previously explored.

In this thesis, we will argue for the importance of bidirectional programming

in programming language design and compiler implementation. As evidence

for this, we will propose a technique for incremental refactoring, which relies

for its correctness on a bidirectional language and its properties, and devise

a framework for implementing program transformations, with bidirectional

properties that allow program analyses to be carried out in the transformed

program, and have the results reported in the source program.

Our applications of bidirectional programming to new areas bring up fresh

challenges. This thesis also reflects on the challenges, and studies their impact

to the design of bidirectional systems. We will review various design goals,

including expressiveness, robustness, updatability, efficiency and easy of use,

and show how certain choices, especially regarding updatability, can have

significant influence on the effectiveness of bidirectional systems.

Statement of Originality

The work contained in this thesis has not been previously submitted for a degree or

diploma at any other higher education institution. To the best of the author’s knowledge

and belief, the thesis contains no material previously published or written by another

person except where due references are made.

Chapter 3 of the thesis has been published [WGMH10]. The author claims originality

of the idea behind the work, and played the leading role in the development of the

paper. Kazutaka Matsuda was involved in the discussion of the language design and

contributed to improving the presentation of the paper. An implementation of the system

(not included as a contribution in this thesis) is due to him. Jeremy Gibbons and Hu

Zhenjiang oversaw the project and provided many suggestions for improvement.

Acknowledgements

I would like to express my deepest gratitude to Jeremy Gibbons, who has

given me the best support I can ever hope for from a supervisor. He has been

constantly inspiring, encouraging and approachable. I benefited tremendously

from his insightful and frank comments; and in him I see a perfect role model

of a good scientist, both in work and in life. I cherish every moment of our

meetings; let it be in the lab, by a barbecue pit, or in the church. If I am in

any way a better researcher today than a few years ago, it is all due to him.

My special thanks also go to Ralf Hinze, who is always exceptionally quick in

thinking, and yet patient in explaining. His passion for research is infectious.

Being able to sit next door to some of the world’s best computer scientists

like him is truly a great privilege.

During my D.Phil study, I had the chance of visiting Japan National Institute

of Informatics and University of Tokyo as an intern, under the supervision

of Hu Zhenjiang. It was an eye opening experience in every aspect. The

effectiveness of the team work, lead by Prof. Hu, and the hospitality of the

group members made my stay very much enjoyable.

A large number of my lunch breaks in Oxford was spent with Bruno Oliveira,

a true friend and a close colleague. It was such a pleasant experience to work

with him. Kazutaka Matsuda and Janis Voigtländer are another two great

researchers, who I had the honour of working and befriending with. The

wonderful memory of the time spend with them will never go away.

The Algebra of Programming group in Oxford have given me the perfect

research support; the lively regular group meetings are definitely a source of

inspiration. Many members in the group, in particular Richard Bird, Geraint

Jones and Nick Wu, have offered much useful advice to my work. I would like

to thank all of them.

Last but not least, I need to thank EPSRC for its generous financial support.

Without it, all this would not have happened.

Contents

1 Introduction 1

1.1 Reversible Programming . 2

1.2 The View-Update Problem . 4

1.3 Bidirectional Programming for the Masses 5

1.3.1 A Motivating Scenario . 5

1.4 Outline of the Thesis . 6

2 Related Work and Preliminaries 9

2.1 Related Work . 10

2.1.1 Bidirectional Languages . 10

2.1.1.1 INV and X . 10

2.1.1.2 Lenses . 11

2.1.1.3 Point-free Lenses . 12

2.1.1.4 Constraint Maintainers 12

2.1.1.5 QVT Relational . 13

2.1.1.6 2LT and Data Refinement 13

2.1.2 Bidirectionalization . 14

2.1.2.1 Syntactic Bidirectionalization 14

2.1.2.2 Semantic Bidirectionalization 15

2.2 Preliminaries . 16

2.2.1 Point-free Programming . 17

2.2.2 Bidirectional Properties . 19

3 Looking from the Right 21

3.1 Introduction . 22

3.1.1 Program Development . 22

3.1.2 Pattern Matching . 22

i

ii CONTENTS

3.2 Data Abstraction . 24

3.2.1 An Example . 25

3.3 The Right-Invertible Language ‘RINV’ 28

3.3.1 The Primitive Functions . 30

3.3.2 The Constructors . 31

3.3.3 The Combinators . 32

3.3.3.1 Composition, Sum and Product 32

3.3.3.2 Recursion . 34

3.3.4 Programming in RINV . 35

3.4 Selective Refactoring . 37

3.4.1 The Computation Law . 38

3.4.2 Refactoring by Translation . 40

3.4.3 Optimization . 41

3.4.4 More Examples . 43

3.4.4.1 Join Lists . 43

3.4.4.2 Binary Numbers . 44

3.4.4.3 Sized Trees . 45

3.5 Discussion . 45

3.5.1 RINV Expressiveness . 45

3.5.2 The Dual Story . 46

3.5.3 Nested and Overlapping Patterns 47

3.5.4 Right-invertible vs. Bidirectional 48

3.6 Further Applications . 49

3.6.1 Pattern Matching for ADTs . 49

3.6.2 Stream Fusion . 50

3.7 Related Work . 51

3.8 Conclusion . 54

4 Looking from the Left 55

4.1 Introduction . 56

4.2 Bidirectionalization Transformation . 58

4.2.1 An Example . 59

4.3 The Algorithm . 62

4.3.1 Constructing the Complement Function 62

4.3.2 Tupling . 65

CONTENTS iii

4.3.3 Inverting the Tupled Function . 66

4.3.3.1 Multiple Use of Variables 66

4.3.4 Properties of Bidirectionalization 67

4.3.5 Projection of Data . 68

4.3.6 The Anatomy of Complements . 69

4.4 Program Analysis Result Reporting . 70

4.4.1 Annotated Expressions . 71

4.4.2 Bidirectionalizing Transformations 71

4.4.2.1 Rearranging expressions 71

4.4.2.2 Removing expressions 74

4.4.2.3 Creating expressions . 76

4.4.2.4 Fresh Variables . 78

4.5 Discussion . 79

4.5.1 Reuse of Existing Code . 80

4.5.2 Syntactic vs. Semantic Bidirectionalization 81

5 Looking from the Top 83

5.1 Introduction . 84

5.1.1 A Small Example . 85

5.2 The Overall Setting . 87

5.2.1 Tree Navigation . 87

5.2.2 Local Editing . 90

5.2.3 Changed-based Bidirectional Systems 91

5.3 Locality Preservation . 92

5.3.1 Alignment . 92

5.3.2 Exploiting Regularity . 95

5.4 Change-Based Putback Functions . 102

5.4.1 Indexing and Reflecting . 102

5.4.2 The Change-Based Putback Function 104

5.5 More Refined Locality . 108

5.6 Discussion . 109

5.6.1 Context-Sensitive Editing . 109

5.6.2 Connection with Other Bidirectional Approaches 110

iv CONTENTS

6 Conclusion 113

6.1 Summary . 114

6.2 Totality of Putback Functions . 116

6.3 Combinator-Based Bidirectional Languages 116

6.4 Bidirectionalization . 117

Bibliography 118

List of Figures

5.1 The Context-Focus Representation . 87

5.2 Source-View Alignment . 93

5.3 Operation-based Putback . 105

v

vi LIST OF FIGURES

Chapter 1

Introduction

Those behind cried “Forward!”

And those before cried “Back!”

(T.B. Macaulay, Lays of Ancient Rome – Horatius (1842))

1

2 CHAPTER 1. INTRODUCTION

At the beginning of the computing era, the forefathers of computer science made the

decision to build machines supporting deterministic uni-directional computation, a legacy

that lingers till today. As a result, computer programs constantly perform operations

that are forgetful about their execution history, leaving the machine in a state whose

immediate predecessor is ambiguous. Nevertheless, the need to reverse a computation

does arise in many contexts – database recovery, undoing edits, debugging, etc.

The exploration of a different design began in hardware, when it was recognized

that all microscopic physical processes are inherently conservative, and the erasure of

information consumes much energy. In response to this finding, reversible Turing ma-

chines were developed [Ben73] and conservative chips that do not erase information were

built [You94].

Yet, even with all hardware circuits re-implemented with conservative logic, we are

still facing problems at the highest level of computer usage where the traditional com-

putation model is information-lossy. At this level, the interest has gone beyond energy

saving to more structured programming practise. For decades, the need for invertible pro-

gramming has been dealt with using brute force. Generations of programmers have writ-

ten parser/printer, embedding/projection, marshalling/unmarshalling, compressing/de-

compressing, etc. as separate programs. This is a significant duplication of work, because

the two programs in a pair are closely related. This close relation introduces a mainte-

nance problem, besides being error-prone; the pair have to be consistent to avoid bugs,

and changes to one entail matching changes to the other.

The way we tackle this problem (along with many others), is by designing languages

that execute bidirectionally. In such languages, any program from type A to type B

(the retrieval function) is always coupled with an automatically generated “backwards”

version (the putback function), whose correctness with regards to certain invertibility

properties is guaranteed. Along with the development of bidirectional languages, new

applications of them emerge, which, in turn, promotes new language designs.

1.1 Reversible Programming

A direct approach to make programs bidirectional is to make every construct of the

language two-way deterministic. Following this principle, the paradigm of reversible

programming is born, with the design of Janus (firstly proposed in [Lut86] but later pub-

lished in [YAG08]) being most notable. Janus is an imperative language with reversible

control structures and assignments. For example, in addition to an entry condition at

1.1. REVERSIBLE PROGRAMMING 3

the beginning of any branch, there is an exit assertion whose value distinguishes the

different branches. The exit assertion will be used as an entry condition in the reverse

direction, and vice versa. An assignment in Janus is tagged with the operation that

updates the value, and only injective operations are allowed. In this way, programmers

always think bidirectionally while programming. Janus is fully symmetric; there is no

distinction between the two directions of execution.

The symmetry of reversible programming allows elegant specification of its properties.

If we use f ::A→ B and f ◦ ::B → A to denoted the retrieval and putback functions, we

have invertibility specified as program inversion: f ◦ f ◦ = idB and f ◦ ◦ f = idA, where

◦ stands for function composition and idX is the identity function over type X. As well

as being elegant, this symmetry also places a cap on the expressiveness of the reversible

approach: f must be bijective. Modulo information encoded in f itself, its input and

output of it necessarily contain exactly the same information, probably with different

presentations. This is certainly inadequate. Quoting from [Ste10], “More generally,

bijective transformations are the exception rather than the rule: the fact that one model

contains information not represented in the other is part of the reason for having separate

models.”

To circumvent this restriction, in a later implementation of a functional reversible

language [MHT04b], the totality requirement of invertibility is given a different inter-

pretation. Instead of having id over all the values of type A or B , the new invertibility

concerns only the exact domain and range of f , which produces

f ◦ f ◦ = idrange(f)

f ◦ ◦ f = iddomain(f)

or

f ◦ ◦ f ◦ f ◦ = f ◦

f ◦ f ◦ ◦ f = f

As a result, the language in [MHT04b] is better-off and handles duplication, which was

previously out of reach. Still, this rules out the majority of functions we would like to

define, due the fact that f has to be injectivity to satisfy either the above sets of law.

4 CHAPTER 1. INTRODUCTION

1.2 The View-Update Problem

Another driving force of bidirectional programming is from the database community,

with the so called view-update problem being a subject of study for decades [DB82,

BS81, GPZ88]. The main goal is to map updates of a view back to the original source

data “properly”. Linguistic solutions to the problem have been a hot research topic re-

cently [FGM+07, MHN+07, BFP+08, FPP08, Voi09, FPZ09]. In this setting, the abstract

nature of views is fundamentally at odds with the injective-then-invertible principle. New

notations are invented and different sets of rules are proposed. Notably, a framework for

bidirectional systems where (all or part of) the original source is copied and is used in

the putback computation has been developed. As a result, the symmetry between the

two directions of computation is broken: a retrieval function (also known as get) has

type S → V from source to view, while a putback function (also known as put) has

type (V , S) → S . Effectively, the retrieval function is “injectivized” by the copying of

the input, intended for a deterministic putback execution. Accordingly, the invertibil-

ity property in reversible programming is transformed into the following two definitional

properties [CFH+09, Ste07]:

Consistency get (put (v , s)) = v

Acceptability put (get s , s) = s

Consistency (also known as the PutGet law) roughly corresponds to right-invertibility,

which basically ensures that all updates on a view are captured by the updated source,

and acceptability (also known as the GetPut law) roughly corresponds to left-invertibility,

prohibiting changes to the source if no update has been done to the view. Bidirectional

systems satisfying the above two laws are sometimes called well-behaved [FGM+07]. There

is an optional undoability property (also known as the PutPut law) : put (v ′, put (v , s)) =

put v ′ s . Additional quality properties such as incrementality, minimality of changes, and

preservation of recent changes are desirable, but are not well understood formally [CFH+09].

Despite the fact that with the copied source injectivity is assured, it is never trivial to

merge the changes in the view into the source in a law-abiding way, a situation made worse

by the popular assumption that updates are arbitrary and only the resulting updated

view, not the process by which this is obtained, is known. Consider a simple example of

concatenating two lists. If the updated view is one element short, it is not clear whether

an element shall be removed from the first or the second list, or one of many other possible

arrangements.

1.3. BIDIRECTIONAL PROGRAMMING FOR THE MASSES 5

Another self-limiting trend in the development of bidirectional languages is that the

application has been more or less restricted to a small number of areas, in particular to

the view-update of XML structures. Its relevance to a wider community has not been

fully explored.

1.3 Bidirectional Programming for the Masses

We think the applicability of bidirectional programming is underestimated. There are

many high-level programming problems other than database updates that require some

sort of invertibility. As an example, let us consider type checking and error reporting.

1.3.1 A Motivating Scenario

Anyone who had the experience of writing research papers about type systems and im-

plementing the ideas into real languages knows well that the two are very different things,

even with a functional implementation where the structure of the program is very similar

to the typing rules. The real problem is the explosion of the number of cases to cover

all features of a realistic language. Since all the syntactic sugar is translated into a small

core language anyway, why can’t we just type check the core?

It is done the hard way for a very good reason: type error reporting. We have to

report any error in the “language” of the source code, including the exact location and

context, not in the “language” of some unrecognisable internal code. This need basically

fixes type checking to the first stage of compilation, before any desugaring or program

transformation comes into the picture – unless the transformations are bidirectional! It is

probably difficult to persuade compiler writers to implement a “sugar” or a “deoptimize”

function for every transformation they write. A bidirectional language is a better bet.

However, if we shop around, it is likely that the existing systems are not expressive

enough: either because over-demanding bidirectional rules need to be satisfied, or because

the updates are assumed to be arbitrary, which both necessarily limit the expressiveness

of the language. In our case here, neither assumption is true: for type error reporting,

only acceptability is needed (because users will not inspect the AST), and type checking

will only indicate errors but not alter the program structure. At the same time, language

expressiveness and user friendliness are crucial here; it will be very difficult, if not outright

impossible, to implement a desugar or optimization procedure in a stylized combinator

library, restricting oneself to injective operations.

6 CHAPTER 1. INTRODUCTION

Similar mismatches are common when we step out of the traditional comfort zone of

database view updates. This thesis is dedicated to extending bidirectional programming

to a broader frontier. It turns out that there is no golden law that applies to all domains in

this field. Quoting from [FGM+07] on how bidirectional languages shall be designed, “To

reconcile this tension [between language expressiveness and robustness], any approach to

the ... problem must be carefully designed with a particular application domain in mind.”.

In this thesis, as expected, new solutions have to be developed and new languages are

designed. Like many others, we hope to see further by standing on the shoulders of

giants. As a result, though with very different styles, the languages proposed in this

thesis are never too exotic for ordinary programmers, and at the same time well fitted for

the intended applications. The main technical contributions of this thesis cover a rather

large spectrum, but all centre around a common theme: Bidirectional techniques are

widely applicable and the update information shall be a primary consideration in design.

1.4 Outline of the Thesis

We have set ourselves the challenge of looking at bidirectional programming from a non-

conventional perspective. Before setting out to tackle it, we will firstly discuss the state of

the art in Chapter 2, by reviewing existing work in the field of bidirectional programming.

There is no advanced prerequisite for this thesis, other than some familiarity with the

programming language Haskell. Nevertheless, we include a short preliminary section in

Chapter 2 for the purpose of standardising the terminologies that is going to be used

throughout the thesis.

The main technical chapters include Chapter 3, 4 and 5. In Chapter 3, we start

with a small point-free combinator library, which is right-invertible, for the purpose of

supporting incremental refactoring of programs written with pattern matching. Based

on the library, we will design a translation mechanism for program refactoring. The

resulting system supports proper abstraction (as found in smooth refactoring), as well

as sound and elegant equational reasoning (a main thrust of pattern matching). We will

also demonstrate additional use scenarios of our proposal, involving pattern matching for

selected abstract datatypes and fusion for streams.

Chapter 4 follows the same development style by designing a bidirectional system for

a specific type of applications. However, the similarity between the two chapters does

not go beyond the organization level. The bidirectional technique used in Chapter 4

syntactically rewrites a uni-directional program, in a Haskell-like language, by generating

1.4. OUTLINE OF THE THESIS 7

its “backwards” counterpart; the language is pointwise in style and is very expressive, a

design that is dictated by the intended application. The idea is to be able to “bidirection-

alize” program transformations, so that program analyses performed on the transformed

program can have their results mapped back to the source program, which is recognizable

to the user. We will showcase the effectiveness of the proposal by studying common pro-

gram transformation scenarios as examples. In this chapter, we will solve the motivating

problem described earlier on.

Chapter 5 departs from the development pattern of the previous two chapters, by

looking at a general mechanism for improving run-time performance of bidirectional sys-

tems. The idea is that a putback function will reconstruct only the part of the source

that is affected by a change in the view, not the whole of it. Motivated by improving

efficiency, we will resort to a design that demands more information about a change to

a view, in addition to the result of such a change, which saves the effort of performing

a difference analysis on the two view values, and allows us to work only on the affected

part; this will improve the performance of the putback function if a small change in the

view corresponds to a small change to the source, a property that clearly does not hold for

arbitrary retrieval functions. We will identify some sufficient semantic conditions, which

can be used to select retrieval functions that could benefit from this optimization, and

prove the correctness of our approach with respect to the standard bidirectional laws.

We then summarize in Chapter 6 and discuss future directions.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work and Preliminaries

9

10 CHAPTER 2. RELATED WORK AND PRELIMINARIES

2.1 Related Work

The need of functionalities that has the ability to “cancel” the effect of certain operations

is common in hard-/soft-ware systems, ranging from hardware design to model-driven

software architecture, and from database updates to program analysis. Due to this diver-

sity, solutions developed in different disciplines are largely incomparable under different

settings. For the purpose of this thesis, which approaches the problem from a “pro-

gramming” perspective, we will survey the bidirectional systems that has some flavour of

programming languages in them. Related work that concerns only specific chapters will

be discussed in the respective chapters.

2.1.1 Bidirectional Languages

2.1.1.1 INV and X

The obvious bidirectional languages are the ones with injective computations, whose in-

verses are readily available. Notably in INV [MHT04b], which is a combinator library,

only injective functions are syntactically allowed. The most novel operator of INV is

dup f , which duplicates the input and applies f to one copy. In the inverse direction, the

two copies of the duplicated input are checked for consistency before being restored. The

language INV has all properties that one expects from a refined invertible language: ele-

gant invertibility and limited expressiveness. The authors went on to extend the language

with non-injective operations, giving rise to X [MHT04a, HMT04]. Given information

losses, the operations in X must copy the original input and use them on the way back.

The ingenuity of X is that all the messy bookkeeping of discarded information is handled

in the background instead of being visible to the programmers, particularly through an

embedding process into INV. Effectively, programs inX enjoy the same kind of invertibil-

ity property, but with extended expressiveness. To deal with non-surjectivity, especially

non-surjectivity introduced by the dup operation, an alternative semantics is introduced,

which tags views to include information such as active editing and insertion/deletion of

elements in a structure. When two values come to an inverted dup operation, the edited

one takes precedence; and knowing whether certain elements are newly inserted or deleted

helps to align two duplicated structures that do not agree.

2.1. RELATED WORK 11

2.1.1.2 Lenses

The lens family of languages [FGM+07, BFP+08, FPP08, FPZ09, BCF+10a, BCF+10b]

is designed originally for view-update of XML data, and is extended to handle various

kinds of ad-hoc data as well. The putback function (known as put) takes both an updated

view and the original source as inputs. Thus, lenses are not limited by the injective

requirement. Yet, invertibility has to be specified with the less elegant PutGet and

GetPut laws. Being a combinator-based language, user-defined lenses can be constructed

by lens combinators from primitive lenses, and are guaranteed to be well behaved. One

important primitive lens is const , where the copied original source is actually used by

the putback function put : in the retrieval direction const maps any source to a constant

value and in the putback direction the input view is ignored and the original source

is restored. When combined with conditional and fixed-point combinators, non-trivial

data projections, such as a filtering function, which selectively removes elements from a

structure, can be expressed. In contrast to X, lenses do not attempt to hide the original

source as an input of the putback function. On the contrary, there are combinators

that require programmers to think bidirectionally and make explicit use of the additional

input. For example, some of the conditional combinators branch in the putback direction

not only based on the view input, but also the source input.

Instead of remaining partial, the lens framework supplements the partial put with

a function create of type V → S that executes at the points where put fails, which

effectively serves as a catch-all case. The function create is the right-inverse of get : it

satisfies get (create v) = v , known as the CreateGet law. Though not unique, total create

functions (right-inverses) always exist for surjective gets, and combining them with partial

puts deliver total putback functions.

The surjectivity of gets is guaranteed by the use of semantic types [FCB08] to give

precise bounds to the ranges. As a result, the types are very often complicated and do

not respect phase distinction. For example, consider the function const v that maps any

input to a constant v ; its type is written as A→ {v }, where the value v is lifted to the

type level. (This example is slightly simplified from [FGM+07], but the same principle

applies.)

The framework has subsequently been extended with more fine grained indexing of

data components (namely chunks) to properly deal with ordered string data [BFP+08].

A concept of dictionary lenses is introduced to maintain associations between unique

indexes with individual chunks, which are not vulnerable to reordering and preserve

alignments [BCF+10b]. The semantic foundation of lenses can be adapted by replacing

12 CHAPTER 2. RELATED WORK AND PRELIMINARIES

the strict equality in the laws to either user-defined quotient equivalence [FPP08] or

endorsed equivalence [FPZ09] that ignores non-essential differences or only enforcing the

part with high integrity respectively.

2.1.1.3 Point-free Lenses

Lenses are rather stylized, in a sense that programming using them is different from

using mainstream general-purpose languages. In [PC10], the standard combinators of

point-free programming are “lensified” to produce a bidirectional language that has a

familiar feel. The design follows the bidirectional requirement of lenses faithfully. Though

less expressive, the language is expected to be friendlier to program and calculate with.

Coincidentally, point-free lenses are very similar in spirit to the right-invertible language

we use in Chapter 3.

2.1.1.4 Constraint Maintainers

Tracing back to the more distant past, constraint maintainers [Mee98] closely resemble a

bidirectional system for view updates. Given two objects of type A and B , a maintainer,

as a pair of functions ◃ :: (A,B) → B and ▹ :: (A,B) → A, keeps some relation between

them intact. In a sense, maintainers, being symmetric, are more general than lenses, by

permitting changes in either party of two connected by a relation R, and coevolving the

other party. The correctness of a maintainer is specified with respect to the relation.

Establish-L (x ▹ y) R y

Establish-R x R (x ◃ y)

Skip-L (x ▹ y) = x ⇐= x R y

Skip-R (x ◃ y) = y ⇐= x R y

The establishment rules ensure consistency of the relation after executing the maintainer;

the skip rules avoid unnecessary changes if the two sides are already correctly related.

Maintainers are used for a wide range of relations including those for sets and numbers,

which are not commonly touched by other bidirectional system. Given the multi-valued

nature of relations, correct maintainers with respect to a relation are usually not unique.

If orders are given to the effects of the maintainers, for example minimality of changes,

selectors can be used to choose an optimal one.

2.1. RELATED WORK 13

When applied to structured data such as lists, the result of a change is not sufficient

to establish the path of the change. In contrast to most other systems, maintainers

express updates in term of editing scripts instead of the resulting value, which allows a

more precise account of the updates. For example, on deleting an element from a list,

the maintainer can be fed with information on the exact location of the deleted element,

rather than simply a new list that is one element short. It is no surprise that the more

that is known about an update, the better it can be mapped back to the source. A less

explored, but a very important, advantage of looking into edit scripts is the potential

of scalability: putback functions now process an edit operation in time proportional to

the size of the change, not to the size of the structure. We will see development in this

direction in Chapter 5.

2.1.1.5 QVT Relational

The value of bidirectional transformation is also recognized in the area of Model-Driven

Development [Gro05], as “in practice it will be necessary for developers to modify both

the source and the target models of a transformation and propagate changes in both di-

rections.” [Ste10]. The Object Management Group (OMG) responded to this need by

including a bidirectional language in the Query View Transformation (QVT) standard,

namely QVT Relational [Gro05]. The language allows the specification of relations with

enabling expressions (when clauses) and enforced expressions (where clauses). When the

enabling expressions evaluate to true, the enforced expressions must also be true.

The semantics of QVT Relational is further specified with a “check then enforce”

principle, which basically forbids the running of a transformation to change models that

are already consistent. This semantics closely resembles the skip rules of maintainers we

have seen above.

2.1.1.6 2LT and Data Refinement

Not all bidirectional languages have their design centred around handling updates on

the value level. One that is not is the 2LT (Two-Level-Transformation) system [BCF+],

which has a bidirectional combinator library as the core. Instead of addressing changes to

individual values, the update is expressed as a format (type) evolution, which migrates a

whole database to one in a new format. A typical usage of the system involves retrieving

relational data into one in a hierarchical format, updating by enriching the hierarchical

format, and putting back the updated data into a new relational format reflecting the

14 CHAPTER 2. RELATED WORK AND PRELIMINARIES

enrichment. The whole process is specified in terms of formats; and the corresponding

value-level transformations are induced. The 2LT system can be implemented in a type

preserving way [COV06], thanks to the rich type system of Haskell.

The 2LT system is an instance of the more general calculational data refinement [MG90,

Oli08], where inequalities between two datatypes are witnessed by a pair of conversion

functions α and γ. In contrast to isomorphism, the inequalities only requires γ ◦ α = id ,

but not the other way round. This is the dual of most other bidirectional systems, which

usually go from a data-rich source to a data-poor view.

2.1.2 Bidirectionalization

Another solution other than outright implementations of bidirectional language is to

bidirectionalize existing uni-directional programs. Such a process is termed bidirection-

alization [MHN+07]. Basically there are two different approaches to the problem in the

literature, that either syntactically rewrite a given program or semantically wrap it up

without inspecting its code. We discuss both in detail in the following.

2.1.2.1 Syntactic Bidirectionalization

One way to bidirectionalize a uni-directional program is to make it injective. One can

assume that the source s can be factored into the view v and its (fairly orthogonal)

complement c in such a way that the pair (v , c) uniquely determines s . When v is

updated, the complement c stays constant; if the updated result (v′, c) remains in the

range of the retrieval transformation, then the putback transformation can be constructed

through program inversion. The constant nature of the complement gives rise to the name

constant complement approach. It was firstly proposed in database research [BS81] and

is later used in bidirectional programming [MHN+07].

As a very simple example, consider the natural number addition function add (a, b) =

a + b; a complement value such as the first element a of the source together with the

view a+b is sufficient to recover the complete source. Putback transformations generated

this way are always very well behaved, assuming successful execution. The challenge is

to avoid potential conflicts between changeable views and constant complements. For

example, updating the value of a + b to one that is smaller than a conflicts with the

complement value. Note that this does not mean that the updated view is not producible

from any source, but the updated view is not producible from any source with the given

complement. In this case, it is no longer straightforward to reflect the updates into the

2.1. RELATED WORK 15

source properly. Consequently, the putback functions produced are generally not total (in

the sense that a putback function is case-exhaustive over the actual range of the retrieval

function [FGM+07]); not all updated views that in theory have corresponding sources

can be mapped back.

Since the complement value determines the updatability of the view, it is essential to

minimize the overlap between the two. For a given source and retrieval function, the com-

plement value is typically not unique: for example, the value a or the complete input (a, b)

in the above example are both legitimate complements. However, it is obvious that the

latter overlaps more with the view, and therefore is considered bigger, implying reduced

updatability. Much effort has been made [MHN+07] for reducing derived complements.

Despite the effort, it still turns into an update checker that rejects complement-violating

updates to ensure the safety of putback executions. To make the check decidable, the

language is restricted to be affine (no duplication of bound variables), and treeless (no

nested function calls).

2.1.2.2 Semantic Bidirectionalization

A syntactical system needs to access the source code of retrieval functions, which can be

unavailable at times. An alternative is semantic bidirectionalization [Voi09], which does

not inspect the syntactic definitions. The system instead decomposes a source into atomic

elements and their structural container; the elements are indexed into a dictionary and

the structure skeleton decorated by the indices is fed to the retrieval function to produce

a map of the transformation. View updates, expressible in terms of overwriting the

corresponding entries in the dictionary, are eventually incorporated by reconstructing a

source from the skeleton of indices and the updated dictionary. The equivalence of running

retrieval functions on element- and index- decorated skeletons can be guaranteed by free

theorems [Wad89], but only for parametrically polymorphic functions. Nevertheless, the

more notable restriction is the prohibition of any update that alters the structure of the

source, which implicitly serves as the constant complement here.

It is an interesting observation in [VHMW10] that combining the semantic and syn-

tactic approaches actually helps in the task of reducing complements, because the element

part of the complement, handleable by the semantic approach, often gets in the way of

collapsing the structure part of the complement. By specializing the syntactic approach

to structure only and leaving the elements to be dealt with semantically improves updata-

bility of either system, though only in the intersection of their expressiveness domain.

16 CHAPTER 2. RELATED WORK AND PRELIMINARIES

It is also made apparent in the same article that as we go further down the path of

reducing complements, the price for improvement, in term of complexity of the system

and restriction to the retrieval functions, shoots up. The Pareto Principle suggests that

it might be more profitable to look elsewhere.

2.2 Preliminaries

Haskell [PJ03] is the carrier language of this thesis; we assume basic understanding of

Haskell with its standard features such as pattern matching, type classes, list compre-

hensions, etc. Throughout this thesis, we work in the setting of total functions; though

for convenience, we don’t always (in particular in Chapter 4, when we discuss program

transformations) write down all cases of an input in a function definition, with the under-

standing that this practice does not compromise our claim, as “partial” functions of that

sort can be easily turned into total functions by wrapping the outputs in Maybe type.

A similar principle applies to certain putback functions that only construct valid sources

for restricted updates on views; totality of these functions can be recovered by injecting

the output into Maybe as well. However, it is obvious that only the non-Nothing outputs

are interesting. So we refer the domain of a putback function as the set of inputs that

leads to non-Nothing outputs.

In Haskell, there are two basic styles of function definition, namely the pointwise style

and the point-free style. We have already seen examples of both in previous sections. For

example, in the specification of laws for lenses in Section 2.1.1.2

get (put (v , s)) = v

and

put (get s , s) = s ,

we used the pointwise style, where the definitions are described by function application to

arguments. In the point-free style, definitions are described exclusively in terms of higher-

order combinators, like function compositions: for example the definition of invertibility

f ◦ f−1 = id

The pointwise style readily lends itself to induction proofs while the point-free style

is more suitable for purely equational reasoning. Many may also consider the pointwise

2.2. PRELIMINARIES 17

style to be more readable, despite it usually producing considerably longer code. In this

thesis, we continue to use both styles freely, choosing whichever is more suitable. For

completeness, we include a short introduction to the point-free style to standardize the

notations we will use. For more details on this topic, please refer to [BdM97].

2.2.1 Point-free Programming

The point-free style is for programming. Nevertheless, its standard combinators have

deep roots in category theory describing the algebra of datatypes. In this thesis, we do

not go deeply into the algebra of programming. We look at the combinators purely from

a programming language perspective, and try to utilize them as the basis of language

designs.

The most fundamental combinator is functional composition ◦, where two functions

are applied in sequence to yield a combined result. The function id is simply the identity.

id :: A→ A

◦ ::(B → C)→ (A→ B)→ (A→ C)

Products (implemented as pairs) are one of the primitive structures, which represent

parallel existence of two pieces of data. The elements of a pair can be retrieved by

projection functions fst and snd , and the function △ (pronounced split) constructs a pair

by applying two functions separately to a single datum.

fst :: (A,B)→ A

fst (x , y) = x

snd :: (A,B)→ B

snd (x , y) = y

△ ::(A→ B)→ (A→ C)→ (A→ (B ,C))

f △ g = λx → (f x , g x)

Datatypes can be constructed by injecting an alternative into a sum type, represented

by Either in Haskell; and a sum type can be consumed by ▽ (pronounced junc), which

applies either of its two input functions depending on the alternative encapsulated in the

sum.

inl :: A→ Either A B

inl x = Left x

18 CHAPTER 2. RELATED WORK AND PRELIMINARIES

inr :: B → Either A B

inr x = Right x

▽ ::(A→ C)→ (B → C)→ (Either A B → C)

f ▽ g = λx → case x of Left a → f a

Right a → g a

With sums, products and recursion, we are able to express regular datatypes. For exam-

ple, the standard list datatype can be defined as the following.

List a = Either () (a,List a)

The unit type () represents the alternative of an empty list and the pair (a,List a)

represents the alternative of a non-empty list.

There are also some commonly seen derived combinators such as

swap :: (A,B)→ (B ,A)

× :: (A→ B)→ (C → D)→ (A,B)→ (C ,D)

We will introduce them as we go along.

Structural recursion in point-free programming is usually described as a fold , which

traverses a structure and replaces the constructors with applications of its body. As a

result, the signature of a fold depends on the datatype that it deals with. For standard

lists, we have the following.

foldL :: (Either () (a, b)→ b)→ ([a]→ b)

foldL f = λxs → case xs of

[] → f (Left ())

(x : xs)→ f (Right (x , foldL f xs))

As an example, the size function can be defined as a fold .

size = foldL (zero ▽ incr)

where zero () = 0

incr = (1+) ◦ snd

2.2. PRELIMINARIES 19

2.2.2 Bidirectional Properties

Given the different origins from a range of communities, the term “bidirectional” can

mean different things. One well studied kind of bidirectional technique is program inver-

sion. An inverse g of a function f is a function such that when composed with f either

way produces the identity. Inverses are unique and a function with such an inverse is

called invertible.

Being invertible in the above sense is certainly a very strong condition; only bijective

functions are invertible. Instead of going for a full inverse, we can opt for a kind of partial

inverse: a function g is a left-inverse of f if g ◦ f = id and a right-inverse of f if f ◦g = id .

Therefore a full inverse is both a left- and right- inverse. Nevertheless, we may simply

use “inverse” to refer to either left- or right- inverse if it is clear from the context.

Right-inverses exist for any surjective function, but are usually not unique. So there

is the problem of finding a suitable one. On the other hand, left-inverses are unique for

surjective functions, but only exist if injectivity is also present. These obvious limitations

are exactly the reasons why function put in view-update takes an additional argument to

recover injectivity, which gives rise to the acceptability law:

Acceptability put (get s , s) = s

Acceptability is the counterpart of left-invertibility in the view-update setting; this is

made explicit in its point-free version first documented in [PC10].

Acceptability put ◦ (get △ id) = id

The information of the original source made available to the putback function also

plays a part in a deterministic right inversion. The counterpart of right-invertibility in

view update is the consistency law.

Consistency get (put (v , s)) = v

Again, the correspondence is made explicit in the point-free version.

Consistency get ◦ put = fst

It turns out that both the program inversion and view-update settings are useful in

practise; we use bidirectional programming to mean either, and rely on the context to

disambiguate. As a rule of thumb, Chapter 3 is based on the former while Chapter 4 and

Chapter 5 are based on the latter.

20 CHAPTER 2. RELATED WORK AND PRELIMINARIES

In most bidirectional languages, it is the case that the programmer actively writes a

uni-directional function and its “backwards” version is automatically generated. To be

precise at times, we name the actively written function the retrieval function, and its

domain and codomain as source and view. The “backwards” companion of a retrieval

function is called a putback function, denoted with a superscript <. An important mea-

surement on the effectiveness of a bidirectional system is how much of the range of the

retrieval function is covered by the domain of the putback function. We call such a prop-

erty updatability : better updatability implies more changes to the view can be mapped

back to a source safely.

Chapter 3

Looking from the Right

Don’t Fix Your Problems, Make Them Disappear.

(Vishen Lakhiani)

21

22 CHAPTER 3. LOOKING FROM THE RIGHT

3.1 Introduction

3.1.1 Program Development

Suppose that you are developing a program involving some data structure. You don’t yet

know which operations you will need on the data structure, nor what efficiency constraints

you will impose on those operations. Instead, you want to prototype the program, and

conduct some initial experiments on the prototype; on the basis of the results from those

experiments, you will decide whether a naive representation of the data structure suffices,

or whether you need to choose a more sophisticated implementation. In the latter case,

you do not want to have to conduct major surgery on your prototype in order to refactor

it to use a different representation.

The traditional solution to this problem is to use data abstraction: identify (or evolve)

an interface, program to that interface, and allow the implementation to vary without

perturbing the program. However, that requires you to prepare in advance for the possible

change of representation: it doesn’t provide a smooth revision path if you didn’t have the

foresight to introduce the interface in the first place, but used a bare algebraic datatype

as the representation.

Moreover, choosing a naive representation in terms of an algebraic datatype has con-

siderable attractions. Programs that manipulate the data can be defined using pattern

matching over the constructors of the datatype, rather than having to use ‘observer’ op-

erations on a data abstraction. This leads to a concise and elegant programming style,

which being based on equations is especially convenient for reasoning about program

behaviour [Wad87b].

3.1.2 Pattern Matching

As a simple example, consider encoding binary numbers as lists of bits, most significant

first:

data Bin = Zero | One

type Num = [Bin]

The above declarations introduce a new datatype (Bin) for binary bits, and define Num

as a type synonym for lists of bits. Throughout this paper, we will use the syntax and

standard prelude functions of Haskell [PJ03] for illustration; but any language providing

algebraic datatypes would work just as well.

3.1. INTRODUCTION 23

Consider this function for normalizing binary numbers by eliding leading zeroes, de-

fined by pattern matching.

normalize :: Num → Num

normalize [] = [] -- Clause (1)

normalize (One : num) = One : num -- Clause (2)

normalize (Zero : num) = normalize num -- Clause (3)

The definition forms a collection of equations, which give a straightforward explanation

of the operational behaviour of the function:

normalize [Zero,One,Zero]

= {Clause (3) }

normalize [One,Zero]

= {Clause (2) and Clause (1) }

[One,Zero]

They are also convenient for calculation; for example, here is one case of an inductive

proof that normalize is idempotent:

normalize (normalize (Zero : num))

= {Clause (3) }

normalize (normalize num)

= { inductive hypothesis }

normalize num

= {Clause (3) }

normalize (Zero : num)

An equivalent pointwise definition without using pattern matching is harder to read:

normalize :: Num → Num

normalize num = if null num ∨ one (head num) then

num

else

normalize (tail num)

It is also much less convenient for calculating with.1

1Note that we don’t compare with the pointfree programming style, as the discussion here is between

pointwise programming with and without pattern matching.

24 CHAPTER 3. LOOKING FROM THE RIGHT

Pattern matching has accordingly been supported as a standard feature in most mod-

ern functional languages, since its introduction in Hope [BMS80]. More recently, it has

started gaining recognition from the object-oriented community too [EOW07, MRV03,

LM03]. Unfortunately, the appeal of pattern matching wanes when we need to change the

implementation of a data structure: function definitions are tightly coupled to a partic-

ular representation, and a change of representation has a far-reaching effect. As a result,

it has been observed that the wide spread of pattern matching “leads to a discontinuity

in programming: programmers initially use pattern matching heavily, and are then forced

to abandon the technique in order to regain abstraction over representations” [SNM07].

In this stand-off between clarity and abstraction, functional languages usually lean

to the former while object-oriented languages prefer the latter. Can we be a bit more

ambitious, and hope for the best of both worlds? With current technology, encapsulating

datatypes in a functional language excludes pattern matching with sound reasoning im-

mediately. In an object-oriented setting, there is a concept of typical object [LG00], which

is a simple and general data structure (often expressed in a way similar to an algebraic

datatype) used as a model of the underlying more complicated and user-defined structure.

For example, various kinds of linear structure can be modeled as a list datatype. The

user-defined structures are used for execution while the typical object caters for specifi-

cation. The function that maps an underlying structure to its typical object is called an

abstraction function, with which an implementation using the underlying structure can

be proven correct, with respect to its specification using the typical object [Mil71, Hoa72].

We look at the idea in more detail next.

3.2 Data Abstraction

Choosing the right data structure is key to achieving an efficient program; data abstrac-

tion allows us to defer the choice of representation until after the uses of the data are fully

understood. The idea is to firstly program with “abstract” data, which is then replaced

by a more efficient “concrete” representation. Based on the new concrete representation,

operations are implemented with the original abstract program serving as specifications.

It is pointed out by Milner [Mil71] that the above transition step can be proven correct

by showing the following square commutes,

3.2. DATA ABSTRACTION 25

A
f - B

A

αA

6

f
- B

αB

6

a condition also known as the promotion condition [Bir84]

αB ◦ f = f ◦ αA

Here, the αX family of functions are abstraction functions that map the concrete rep-

resentations to the abstract ones; we will simply write α if its type is clear from the

context. We use the naming convention of underlining an abstract program’s name to

denote its concrete implementation. In the sequel, we use the terms “abstract program”

and “specification” interchangeably.

3.2.1 An Example

Consider queue structures with an abstract representation as lists.

type Queue a = [a]

emptyQ = []

first = head

isEmpty = null

enQ a q = q ++ [a]

deQ = tail

For a more efficient definition of enQ , a plausible concrete representation reads:

type Queue a = ([a], [a])

α ::Queue a → Queue a

α (fq , bq) = fq ++ reverse bq

The second list of the pair, representing the latter part of a queue, is reversed, so that

enqueuing simply prefixes an element onto it. The library operations can be implemented

as follows:

26 CHAPTER 3. LOOKING FROM THE RIGHT

emptyQ = ([], [])

first ([], bq) = last bq

first ((a : fq), bq) = a

isEmpty ([], []) = True

isEmpty q = False

enQ a (fq , bq) = (fq , a : bq)

deQ ([], bq)) = deQ (reverse bq , [])

deQ (a : fq , bq) = (fq , bq)

Through standard equational reasoning, we can establish the correctness of the imple-

mentation by proving the promotion condition. For example,

α (deQ (a : fq , bq))

= {Definition of deQ }

α (fq , bq)

= {Definition of deQ }

deQ (a : α (fq , bq))

= {Definition of α }

deQ (a : fq ++ reverse bq)

= {Definition of ++ }

deQ ((a : fq) ++ reverse bq)

= {Definition of α }

deQ (α (a : fq , bq))

Other than the handful of “primitive” operations above, we have other abstract pro-

grams benefitting from the simple list representation. For example, the map function on

queues:

mapQ :: (a → b)→ Queue a → Queue b

mapQ f [] = []

mapQ f (a : q) = f a :mapQ f q

or a prioritisation function, which is essentially a stable sort based on element weight:

prioritise ::Ord a ⇒ Queue a → Queue a

prioritise [] = []

prioritise (a : q) = insert a (prioritise q)

3.2. DATA ABSTRACTION 27

where insert b [] = [b]

insert b (a : q) = if b 6 a then b : (a : q)

else a : (insert b q)

To maintain executability, all uses of the abstract representation have to be changed at

once, even though some of the old definitions may not gain from the refactoring. One has

to (re)implement all the functions either by pattern matching on the new representation

(a time bomb for further refactoring) or by the use of primitive operations (at the cost of

losing convenient reasoning). For example, a definition of map using only the primitive

operations is likely to be more clumsy:

mapQprim :: (a → b)→ Queue a → Queue b

mapQprim f q = accum f q emptyQ

where accum f q aq = if isEmpty q then

aq

else

accum f (deQ q) (enQ (f (first q)) aq)

The purpose of this chapter is to allow incremental refactoring of a program, replacing

a specification by a more sophisticated implementation. We have seen previously that

once an implementation is given, the promotion condition is sufficient to guarantee its

correctness. However, the promotion condition does not suggest a way of integrating the

new definition into its original context, which may still operate on the old representation.

We need a computation law of the form

f = α ◦ f ◦ γ

in order to replace specification f with its implementation α ◦ f ◦ γ.

Here, the function γ does the “opposite” of α, mapping a value in the specification to

one in the implementation. During execution, any value constructed in the specification

is firstly converted to a value in the implementation before being passed to the concrete

program; and the resulting output is converted back to the specification. For example,

given the program deQ [1], what really executes is (α ◦ deQ ◦ γ) [1], where the two

functions γ and α convert a value of type Queue into one of type Queue and back again.

It is obvious that if α and γ are each other’s inverses (also known as strong simulation

in [Mil71]), the computation law is equivalent to the promotion condition. However,

requiring them to be inverses restricts the abstraction function to be bijective, which

28 CHAPTER 3. LOOKING FROM THE RIGHT

is rather a strong condition. In fact, one-sided invertibility is sufficient in this case.

Specifically, the γ function should be a right inverse of α – that is, α ◦ γ = id .

To come out with the α/γ pair is certainly a bidirectional programming problem. In

the next Section, we will sketch a proposal for a right-invertible language, and use it

(Section3.4) in a framework where refactoring can be done selectively; and at any point

in the process, executability and reasoning are fully supported.

3.3 The Right-Invertible Language ‘RINV’

A standard way of defining a bidirectional language is to express it as a combinator library,

where the bidirectional properties of the primitive functions are preserved by the set of

combinators. Instead of proposing some new and stylized combinators, we base our design

on the established Haskell pointfree programming framework [BdM97, Section 2.2.1], and

try to identify the part of the framework that preserves right-invertibility. We work in

the setting of total functions, so that α ◦ γ = id . The syntax of our language rinv is as

below. (Non-terminals are indicated in small capitals.)

Language rinv ::= cstr ||||| prim ||||| comb

Constructors cstr ::= nil ||||| cons ||||| snoc ||||| wrap

Primitives prim ::= app ||||| id ||||| assocr ||||| assocl ||||| swap ||||| fst · g ||||| snd · g

Combinators comb ::= rinv ◦ rinv ||||| foldX rinv ||||| unfoldX rinv |||||

rinv ▽ rinv ||||| rinv× rinv

We purposely keep the language small as a demonstration of idea. In contrast to the

point-free style of programming, rinv has the additional feature that a right inverse is

automatically generated for each function that is constructed. As a result, a definition

f :: s ⇆ t in rinv actually represents a pair of functions (hence the notation ⇆): the

forward function [[f]] :: s → t , and its right inverse [[f]]< :: t → s , which together satisfy

[[f]] ◦ [[f]]< = id . However, for convenience when clear from context, we don’t distinguish

between f and its forward function [[f]].

The generated right inverses are intended to be total, so the forward functions have

to be surjective; this property holds of the primitive functions (except for individual

constructors of a multi-variant algebraic datatype—see below) and is preserved by the

combinators.

There is an extensible set of primitive functions (cf. Section 3.3.1) defining the basic

non-terminal building blocks of the language. Any surjective function could be made a

3.3. THE RIGHT-INVERTIBLE LANGUAGE ‘RINV’ 29

primitive in rinv. All primitive functions are uncurried; this fits better with the invertible

framework, where a clear distinction between input and output is required. For the sake

of demonstration, we present a small but representative collection of primitive functions

above: swap, assocl , and assocr rearrange the components of an input pair; id is the

identity operation; app is the uncurried append function on lists; and fstg and snd g are

projection functions on pairs – discarding an element that can be regenerated by applying

function g to the other one. As we will show, with just these few we can define many

interesting functions.

The set of constructor functions (cf. Section 3.3.2) is also extensible, growing with

the introduction of new datatypes. We use lowercase names for the uncurried versions

of constructors. In addition to the left-biased list constructor cons that comes with the

usual datatype declaration, we also include its right-biased counterpart snoc, which adds

an element at the end; it can be defined in Haskell as

snoc = λ(x , xs)→ xs ++ [x]

Another additional constructor for lists is wrap, which creates a singleton list.

wrap x = [x]

This ability to admit functions that do not directly arise from a datatype declaration as

constructors is crucial for the expressiveness of rinv. Although this might seem ad-hoc,

it is by no means arbitrary. One should only use functions that truly model a different

representation of the datatype. For example, snoc and nil form the familiar backwards

representation of lists, while wrap, nil and the primitive function app correspond to the

join list representation [Bir87].

The reason for keeping constructor functions separated from primitive functions is that

they are non-surjective in nature. We have to relax the surjectivity rule for constructors,

and require that lone constructors must be combined with other functions by the ‘junc’

combinator ▽, which dispatches to one of two functions according to the result of matching

on a sum (cf. Section 3.3.3.1). When one of the operands of ▽ is surjective, or the two

operands cover both constructors of a two-variant datatype, the result is surjective; such

pairs of operands are jointly surjective [MB04]. If we see types as sets of values, two

functions f :: a → c and g :: b → c being jointly surjective is defined as range (f) ∪

range (g) = c. For example, nil ▽ cons and nil ▽ id are both surjective, but

cons ▽ snoc is not. Since ▽ can be nested, this result extends to datatypes with more

than two constructors. Constructor functions can be composed with other functions as

30 CHAPTER 3. LOOKING FROM THE RIGHT

well, using the standard function composition combinator ◦, but only to the left (cf.

Section 3.3.3.1): once a non-surjective function appears in a chain of compositions other

than in the leftmost position, it is difficult to analyse the exact range of the composition.

Both the above requirements can be enforced by a rather straightforward syntactic check,

which we will briefly sketch when discussing the individual combinators later.

Other than the two already mentioned combinators, × is the cartesian product of two

functions (cf. Section 3.3.3.1), and foldX f is the operator for regular structural recursion

(with unfoldX as its dual), which decomposes a structure of type X and replaces the

constructors with its body f (cf. Section 3.3.3.2); very often we omit the subscript X,

when it is understood from context or irrelevant. In combination with swap, assocl and

assocr , × is able to define all functions that rearrange the components of a tuple, while

▽ is useful in constructing the body of a fold . We don’t include △, the dual of ▽, in

rinv, because of surjectivity, as will be explained shortly.

With the language rinv, we can state the following property.

Theorem 3.1 (Right invertibility) Given a function f in rinv, [[f]] ◦ [[f]]<= id.

The correctness of this theorem should become evident by the end of this section, as we

discuss in detail the various constructs of rinv and their properties.

3.3.1 The Primitive Functions

The function id is the identity function; functions assocr , assocl and swap manipulate

pairs.

assocr :: ((a, b), c)⇆ (a, (b, c))

[[assocr]] = λ((a, b), c)→ (a, (b, c))

[[assocr]]<= [[assocl]]

assocl :: (a, (b, c))⇆ ((a, b), c)

[[assocl]] = λ(a, (b, c))→ ((a, b), c)

[[assocl]]< = [[assocr]]

swap :: (a, b)⇆ (b, a)

[[swap]] = λ(a, b)→ (b, a)

[[swap]]<= [[swap]]

Together with the combinators × and ◦, these are sufficient to define many functions on

pairs. For example,

3.3. THE RIGHT-INVERTIBLE LANGUAGE ‘RINV’ 31

subr :: (b, (a, c))⇆ (a, (b, c))

subr = assocr ◦ (swap × id) ◦ assocl

trans :: ((a, b1), (b2, c))⇆ ((a, b2), (b1, c))

trans = assocl ◦ (id × subr) ◦ assocr

Function app is the uncurried append function, which is not injective. The admission

of non-injective functions is one of the most important distinctions between rinv and

other invertible languages [MHT04a], allowing us to break away from the isomorphism

restriction. There are many possible right inverses for app, of which we pick one:

[[app]]<= λxs → splitAt ((length xs + 1) ‘div ‘ 2) xs

For data projection functions such as fst and snd , a legitimate way of inverting them

is by filling the discarded element with an arbitrary value. Though satisfying right invert-

ibility, pairs created this way have little practical value for obvious reasons. Therefore,

we restrict the use of projection functions to the cases where the discarded values are

recoverable, which gives rise to the following.

fstg :: (a → b)→ (a, b)⇆ a

[[fstg]]
<= λx → (x , g x)

and

snd g :: (b → a)→ (a, b)⇆ b

[[snd g]]
<= λy → (g y , y)

It is made clear that fstg and snd g remove duplications from a pair and reintroduce them

in the other direction. Note that the function g itself is not necessarily in rinv; it just

needs to be definable in the host language (in our case, Haskell).

3.3.2 The Constructors

The semantics of the constructor functions are simple: they follow directly from the cor-

responding constructors introduced by datatype declarations, except for being uncurried.

For example,

[[nil]] = λ()→ []

[[cons]] = λ(x , xs)→ x : xs

32 CHAPTER 3. LOOKING FROM THE RIGHT

Constructors snoc and wrap are not primitive on left-biased lists, but can be encoded:

[[snoc]] = λ(xs , x)→ xs ++ [x]

[[wrap]] = λx → [x]

Inverses of the primitive constructor functions are obtained simply by swapping the right-

and left-hand sides of the definitions. For example, we have

[[nil]]< = λ[] → ()

[[cons]]<= λ(x : xs)→ (x , xs)

The right inverses of snoc and wrap are

[[snoc]]< [x] = ([], x)

[[snoc]]< (x : xs) = let (ys , y) = [[snoc]]< xs in (x : ys , y)

[[wrap]]< [x] = x

3.3.3 The Combinators

The combinators in rinv are mostly standard.

3.3.3.1 Composition, Sum and Product

Combinator ◦ sequentially composes two functions:

[[f ◦ g]] = [[f]] ◦ [[g]]

[[f ◦ g]]<= [[g]]<◦ [[f]]<

Its inverse is the reverse composition of the inverses of the two arguments.

Combinators × and ▽ compose functions in parallel. The former applies a pair of

functions component-wise to its input:

(×) :: (a ⇆ b)→ (c ⇆ d)→ ((a, c)⇆ (b, d))

[[f × g]] = λ(w , x)→ ([[f]] w , [[g]] x)

[[f × g]]<= λ(y , z)→ ([[f]]< y , [[g]]< z)

Note that we have chosen not to define × in terms of a more primitive combinator △,

which executes both of its input functions on a single datum:

3.3. THE RIGHT-INVERTIBLE LANGUAGE ‘RINV’ 33

(△) :: (a ⇆ b)→ (a ⇆ c)→ (a ⇆ (b, c))

[[f △ g]] = λx → ([[f]] x , [[g]] x)

However, in the inverse direction, [[f]]< x and [[g]]< y would have to converge, which is

difficult to enforce statically. Indeed, functions constructed with △ are generally not

surjective, and so do not have total right inverses; for this reason, we exclude △ from

rinv.

The combinator ▽ consumes an element of a sum type (‘Either ’ in Haskell).

(▽) :: (a ⇆ c)→ (b ⇆ c)→ (Either a b ⇆ c)

[[f ▽ g]] = λx → case x of {Left a → [[f]] a ; Right b → [[g]] b}

In the inverse direction, if both f and g are surjective, it doesn’t matter which branch is

chosen. However, the use of constructor functions deserves some attention, since they are

not surjective in isolation. In contrast to the case of △, here the totality in the inverse

direction can be recovered by choosing a non-failing branch. As a result, in the event that

[[f]]< fails on certain inputs, [[g]]< should be applied. To model this failure handling, we

lift functions in rinv into the Maybe monad (allowing an extra possibility for the return

value), and handle a failure in the first function by invoking the second.

[[f ▽ g]]<= λx → ([[f]]< x) ‘choice‘ ([[g]]< x)

choice ::Maybe a → Maybe a → Maybe a

choice (Just x) = x

choice (Just y) = y

This shallow backtracking is sufficient because the guards of conditionals are only pattern

matching outcomes, which are completely decided at each level. Note that for the sake

of presentation, in the sequel of the chapter, we still use the non-monadic types for f ▽ g ,

with the understanding that all functions in rinv are lifted to the Maybe monad in an

implementation.

In general, it is not an easy task to check surjectivity of functions. However, in rinv,

this test is made relatively straightforward, since the only possible cause for f ▽ g not to

be surjective is that both f and g use constructor functions; in this case, it is clear that

we need the complete set of constructors to satisfy the condition of surjectivity.

The more intricate part is to analyse the surjectivity of the composition (and hence

the totality of its inverse). It is clear that if one of the functions in a chain of compositions

is not surjective, the composed function may also be non-surjective. However, there is no

34 CHAPTER 3. LOOKING FROM THE RIGHT

easy way of determining the range of such a composition if the non-surjective function

is not the leftmost one in the chain, which makes it unsuitable for constructing jointly

surjective functions through the ▽ combinator as discussed above. Therefore, in rinv,

we disallow compositions involving constructor functions on the right of a composition.

3.3.3.2 Recursion

With the ground prepared, we are now ready to discuss recursive combinators. We define

[[foldX f]]<= unfoldX [[f]]<

[[unfoldX f]]<= foldX [[f]]<

The forward semantics of foldX f is the standard fold for a datatype X; its inverse

semantics is defined by a corresponding unfoldX , and vice versa. In this paper, we may

overload fold and unfold when the datatype is understood or irrelevant. Intuitively, fold

disassembles a structure and replaces the constructors with applications of the body.

Function unfold , on the other hand, takes a seed, splitting it with the body into building

blocks of a structure and new seeds, which are themselves recursively unfolded. In short,

fold collapses a structure, whereas unfold grows one.

When an algebraic datatype X is given, Haskell definitions of foldX and unfoldX can

be generated. For example, consider the datatype of lists:

foldList :: (Either () (a, b)→ b)→ (List a → b)

foldList f = λxs → case xs of

[] → f (Left ())

(x : xs)→ f (Right (x , (foldList f xs)))

unfoldList :: (b → Either () (a, b))→ (b → List a)

unfoldList f = λb → case f b of Left () → []

Right (a, b)→ a : (unfoldList f b)

Another example is leaf-labeled binary trees. Note that the constructor Fork is un-

curried to fit better into the rinv framework.

data LTree a = Leaf a | Fork (LTree a,LTree a)

foldLTree :: (Either a (b, b)→ b)→ LTree a → b

foldLTree f = λt → case t of

Leaf a → f (Left a)

Fork (t1, t2)→ f (Right (foldLTree f t1, foldLTree f t2))

3.3. THE RIGHT-INVERTIBLE LANGUAGE ‘RINV’ 35

unfoldLTree :: (a → Either a (b, b))→ b → LTree a

unfoldLTree f = λb → case f b of

Left a → Leaf a

Right (b1, b2)→ Fork (unfoldLTree f b1, unfoldLTree f b2)

We use fold and unfold to construct the right inverses of each other. A subtlety here is

that in the setting of Set and total functions, which this thesis is based on, the initial alge-

bra does not coincide with the final coalgebra, resulting in incompatible folds and unfolds.

A standard fix to this problem is to restrict the coalgebras to recursive ones [CUV06],

which allows folds and unfolds to compose [HHJ11]. With recursive coalgebras, we have

the following results [PC10]:

Fact 3.2 unfold [[f]] ◦ fold [[f]]< = id.

Fact 3.3 fold [[f]] ◦ unfold [[f]]< = id.

3.3.4 Programming in RINV

We are now ready to look into a few examples of the kinds of function we can define with

rinv.

To start with, let’s look first at a very useful derived combinator map that can be

defined in term of fold . For example, map on lists, mapList, is defined as follows.

mapList :: (a ⇆ b)→ (List a ⇆ List b)

mapList f = foldList (nil ▽ (cons ◦ (f × id)))

Function mapList f applies argument f uniformly to all the elements of a list, without

modifying the list structure. Since nil and cons form a complete set of constructors for

lists, we know they are jointly surjective.

Similarly, map on leaf-labeled trees, mapLTree, is defined as follows.

mapLTree :: (a ⇆ b)→ (Tree a ⇆ Tree b)

mapLTree f = foldLTree ((leaf ◦ f) ▽ fork)

The function reverse on lists can be defined as a fold:

reverse = foldList (nil ▽ snoc)

[[reverse]]<= unfoldList [[nil ▽ snoc]]<

36 CHAPTER 3. LOOKING FROM THE RIGHT

In the forward direction, a list is taken apart and the first element is appended to the

rear of the output list by snoc. This process terminates on reaching an empty list, when

an empty list is returned as the result. Function [[snoc]]< extracts the last element in a

list and adds it to the front of the result list by unfold , which terminates when [[nil]]< can

be successfully applied (i.e when the input is the empty list). Since nil and snoc form a

complete set of constructors for lists, they are jointly surjective.

Function reverse is also used to construct the apprev function that reverses a list and

appends it.

apprev :: ([a], [a])→ [a]

apprev = app ◦ (id × reverse)

Function apprev reverses the second list before concatenating the two. For example, we

have:

apprev ([1, 2], [3, 4, 5, 6, 7]) = [1, 2, 7, 6, 5, 4, 3]

The companion apprev ◦ function is

[[apprev]]< :: [a]→ ([a], [a])

[[apprev]]<= [[app ◦ (id × reverse)]]<

In the inverse direction, a list is split into two, and functions [[id]]< and [[reverse]]< are

applied to the two parts. For example, we have

apprev ([[apprev]]< ([1, 2, 7, 6, 5, 4, 3])) = apprev ([1, 2, 7, 6], [3, 4, 5])

= [1, 2, 7, 6, 5, 4, 3]

On the other hand,

[[apprev]]< (apprev ([1, 2], [3, 4, 5, 6, 7])) = [[apprev]]< ([1, 2, 7, 6, 5, 4, 3])

= ([1, 2, 7, 6], [3, 4, 5])

It is clear from above that [[apprev]]< is not a left inverse of apprev , and it is not intended

to be.

Our last example is the traversal of node-labelled binary trees.

data BinTree a = BLeaf | BNode a (BinTree a,BinTree a)

The fold and unfold functions for binary trees are as follows.

3.4. SELECTIVE REFACTORING 37

foldB :: (Either () (a, (b, b))→ b)→ (BinTree b → b)

foldB f = λx → case x of

BLeaf → f (Left ())

BNode a (l , r)→ f (Right (a, (foldB f l , foldB f r)))

unfoldB :: (b → Either () (a, (b, b)))→ (b → BinTree b)

unfoldB f =

λx → case f x of

Left () → BLeaf

Right (a, (l , r))→ BNode a (unfoldB f l , unfoldB f r)

Using the foldB combinator, pre- and post-order traversal of a binary tree can be defined

as follows.

preOrd = foldB (nil ▽ (cons ◦ (id × app)))

postOrd = foldB (nil ▽ (snoc ◦ swap ◦ (id × app)))

In the forward direction, foldB adds the node value at one end of the concatenation of

the two subtrees’ traversals. In the inverse direction, a node value is extracted from the

input list, and the rest of the list is divided and grown into individual trees. Since our

choice of [[app]]< splits a list in the middle, the trees constructed by the above functions

will be balanced.

As a remark, the primitive function app can be defined in Haskell with foldr :: (a →

b → b)→ b → [a]→ b as:

app = uncurry (flip (foldr (:)))

which effectively partially applies foldr and awaits an input as the base case. This idiom

of taking an extra argument to form the base case is difficult to realize when the fold

body is constructed independently, as it is in rinv.

3.4 Selective Refactoring

We are now ready to employ rinv in our goal of performing selective refactoring of

functions defined with pattern matching. The queue example introduced in Section 3.2.1,

will be used as the running example.

38 CHAPTER 3. LOOKING FROM THE RIGHT

3.4.1 The Computation Law

Before going into the details of our results, we firstly generalise the notation used. The

operations f in the promotion condition will not always have types as simple as A→ A,

like deQ does. Suppose we have datatypes A and A, and conversion functions α ::A→ A

and γ ::A→ A. In the general case, an abstract operation will take not just a single value

in the abstract representation (of type A), but some combination of abstract values and

other arguments. We capture this in terms of an operation F on datatypes A. Similarly,

the operation will return a different combination G of abstract values and other results.

The operations F and G are functors, they lift the conversion functions in the obvious

way to F γ :: F A → F A and G α :: G A → G A, respecting identity and composition.

Then an abstract operation f will have type F A→ G A, and the corresponding concrete

operation f :: F A → G A should satisfy the computation law f = G α ◦ f ◦ F γ, as

shown in the following commuting diagram.

F A
f - G A

F A

F γ

?

f
- G A

G α

6

The above notation generalises to polymorphic datatypes in the standard way, by seeing

F ,G as functors on the functor category (what Martin et al. [MGB04] call ‘higher-order

functors’, or ‘hofunctors’ for short).

For example, for the operation first :: Queue a → a, the input context F is the

identity hofunctor, matching the source type Queue a, and the output context G is the

constantly-identity hofunctor (G F = Id), matching the target type a. The operation

must satisfy the following promotion condition:

first = first ◦ α

The promotion equations for the rest of the operations are listed below.

isEmpty = isEmpty ◦ α

α emptyQ = emptyQ

α ◦ enQ a = enQ a ◦ α

α ◦ deQ = deQ ◦ α

3.4. SELECTIVE REFACTORING 39

Given the right-invertibility property of α and γ, we can derive the computation law

f = G α ◦ f ◦ F γ

from the promotion condition

G α ◦ f = f ◦ F α

which does not involve the function γ, as the following lemma demonstrates.

Lemma 3.4 (Computation) Given the promotion condition G α ◦ f = f ◦ F α, we

can deduce the computation law f = G α ◦ f ◦ F γ.

Proof.

G α ◦ f ◦ F γ

= {G α ◦ f = f ◦ F α }

f ◦ F α ◦ F γ

= {F respects composition }

f ◦ F (α ◦ γ)

= {α ◦ γ = id }

f ◦ F id

= {F respects identity }

f

2

The computation law requires additional infrastructure (the right inverse γ) on top of the

data abstraction framework based on the promotion condition. In our design, the γs will

be provided by rinv. That is to say, the programmer carrying out a refactoring writes

only α, in rinv, and the corresponding γ is automatically generated. In the case of the

queue example presented above, a possible definition in rinv reads:

α = app ◦ (id × reverse)

40 CHAPTER 3. LOOKING FROM THE RIGHT

3.4.2 Refactoring by Translation

In our proposal, a programmer wishing to migrate to the concrete representation has

the choice of keeping the original abstract definitions, or of refactoring them into the

style using only the primitive operations, or of having a mixture of the two. For example,

consider a circular queue that is read for a certain amount of time, say repeatedly playing

a piece of music.

play :: Time → Queue (IO ())→ IO ()

play 0 (a:) = a

play (n + 1) (a : q) = do a

play n (q ++ [a])

Refactoring it using the primitive operations allows us to take advantage of enQ ’s constant

time performance.

playprim :: Time → Queue (IO ())→ IO ()

playprim 0 q = first q

playprim (n + 1) q = do hd

playprim n (enQ hd tl)

where hd = first q

tl = deQ q

The standard data abstraction framework is able to verify the above implementation as

correct by proving the promotion condition. Note that playprim has a slightly different

type from that of play as it operates on the concrete representation. To perform selective

refactoring, and have playprim to do the job of play in the original abstract context, we

need to bridge this gap. For example, we may want to use playprim together with mapQ

(defined in Section 5.1.1); or mix pattern matching with primitive operations:

playmix 0 (a :) = a

playmix (n + 1) (a : q) = do a

playmix n (enQ a q)

In these cases, the semantics of refactored functions can be elaborated by a mechanical

translation, following a rather straightforward scheme: each use of a primitive function is

replaced with its implementation precomposed with α and postcomposed with γ (subject

to the appropriate (ho)functors).

3.4. SELECTIVE REFACTORING 41

The primitive operations that are defined on the concrete implementation require

their inputs to be converted from the abstract representation before consumption, and

the outputs converted back to the abstract representation. Effectively, all the refactored

functions have the abstract representation as input and output types; the concrete repre-

sentation remains only for intermediate structures. As an example, playmix is translated

into the following.

play′mix 0 (a : q) = a

play′mix (n + 1) (a : q) = do a

play′mix n ((α ◦ enQ a ◦ γ) q)

Given the computation law, it is easy to conclude that play′mix is equivalent to playmix,

in the sense that exactly the same output is produced for each input.

Theorem 3.5 The translation is semantics-preserving.

Proof. Follows directly from Lemma 3.4. 2

The original abstract program such as the definition of play is turned into a spec-

ification and can be used for equational reasoning. For example, one can continue to

reason

mapQ f ◦ play n = play n ◦mapQ f

on the abstract level, without worrying about the refactoring of play .

3.4.3 Optimization

Up to now, we have achieved incremental refactoring with little additional burden for

the programmer. As a result, program construction can benefit from pattern matching

and straightforward proofs of correctness. The run-time performance of non-primitive

functions making use only of pattern matching can be understood by standard reasoning;

however, when primitive operations are called, additional conversion overhead will occur.

This performance loss is to be expected for definitions such as playmix, where an obvious

switch from pattern matching to primitive operations is inevitable. However, it may

be surprising that playprim, which only involves primitive operations, is not faster. The

translated code is the following.

play′prim 0 q = (α ◦ first ◦ γ) q

play′prim (n + 1) q = do hd

42 CHAPTER 3. LOOKING FROM THE RIGHT

play′prim n ((α ◦ enQ hd ◦ γ) tl)

where hd = (α ◦ first ◦ γ) q

tl = (α ◦ deQ ◦ γ) q

There are conversions everywhere in the program. It will be disastrous if all of them

have to be executed. Since there is no pattern matching involved, we can try to remove

the conversions through fusion. Indeed, the correctness of such fusion follows from the

promotion condition. Let’s take an expression fragment from the above definition for

demonstration. Consider

(α ◦ enQ hd ◦ γ) ((α ◦ deQ ◦ γ) q)

Our target is to fuse the intermediate conversions to produce

(α ◦ enQ hd ◦ deQ ◦ γ) q

This would clearly follow from γ ◦α = id , but this is not a property that we guarantee—

for good reason, since requiring it in addition to the existing right inverse property α◦γ =

id demands isomorphic abstract and concrete representation, which is too restrictive to

be practically useful. Instead, using the promotion condition, we can prove a weaker

property that is sufficient for fusion.

Theorem 3.6 (Fusion Soundness) H α ◦ g ◦ G γ ◦ G α ◦ f ◦ F γ = H α ◦ g ◦ f ◦ F γ.

Proof.

H α ◦ g ◦ G γ ◦ G α ◦ f ◦ F γ

= {promotion: H α ◦ g = g ◦ G α }

g ◦ G α ◦ G γ ◦ G α ◦ f ◦ F γ

= {G is a (ho)functor; α ◦ γ = id }

g ◦ G α ◦ f ◦ F γ

= {promotion: H α ◦ g = g ◦ G α }

H α ◦ g ◦ f ◦ F γ

2

Basically, this theorem states that although the input to g may differ from the output

of f , due to the γ ◦ α conversions, nevertheless the post-conversion of g ’s output brings

possibly different results into the same value in the abstract representation.

3.4. SELECTIVE REFACTORING 43

In theory the above fusion result can be applied across steps of recursion, where the

pipelining of conversion is not made explicit in the syntax. However, in practice for

functions defined with explicit recursions, as the ones found in this section, it is rather

difficult for a compiler to detect all the fusion opportunities. We leave it as future work

to experiment with GHC to see how much speed up can be gained.

3.4.4 More Examples

We now look at a few additional examples making use of the refactoring framework

developed in this section.

3.4.4.1 Join Lists

As an alternative to the biased linear list structure, the join representation of lists has

been proposed for program elegance [Mee86, Bir87], efficiency [SH82], and more recently,

parallelism [Ste09]. It can be defined as:

data List a = Empty | Unit a | Join (List a) (List a)

As a simple example, a constant-time append function (in contrast to the linear-time

left-biased-list counterpart) can be defined with this representation.

append l1 l2 = Join l1 l2

At the same time, we don’t want to give up on the familiar notions of [] and (:). Instead,

they can serve as a specification of the join representation.

type List a = [a]

append [] y = ys

append (x : xs) ys = x : append xs ys

A rinv definition of α is:

α = fold ((nil ▽ wrap) ▽ app)

Now suppose a programmer would like to refactor certain list functions to make use

of the constant-time append function; she will need to define an abstraction function

α :: List a → List a, and verify its correctness by proving the promotion condition. The

translation outlined in Section 3.4.2 will complete the refactoring, by redirecting calls

44 CHAPTER 3. LOOKING FROM THE RIGHT

from append to append . At the same time, many other list functions, including some

that are yet to be defined, may still use pattern matching on, and be manipulated using,

the original List representation. For example, retrieving the head of a list can be defined

as:

head (x : xs) = x

and calculated in the following manner, oblivious to the refactoring:

head (append (x : xs) ys) = head (x : append xs ys) = x

3.4.4.2 Binary Numbers

In the introduction, we showed a representation of binary numbers as lists of digits

with the most significant bit first (MSB). This representation is intuitive, and offers

good support for most operations; however, for incrementing a number, having the least

significant bit (LSB) first is better.

type Num = [Bin]

incr :: Num → Num

incr [] = [One]

incr (Zero : num) = One : num

incr (One : num) = Zero : (incr num)

Effectively, in order to use the above definition with any other operations, we only need

to reverse the MSB representation, and a type synonym for Num can be used as doc-

umentation of this intention. However, the use of synonyms is potentially risky, as any

incorrect usage won’t be picked up by a compiler, because Num and Num are simply two

different names for the same type. At the same time, defining the two representations

as completely different types is very cumbersome. With our proposal, we program with

only one representation (Num) and selectively refactor certain operations (such as incr),

which effectively eliminates any possibility of misuse.

incr = α ◦ incr ◦ γ

The α and γ are both the reverse function on lists. As a result, only one representation is

exposed to the programmer, and all the conversions between representations are handled

implicitly by the refactoring translation.

A rinv definition that reverses a list reads:

α = fold (nil ▽ snoc)

3.5. DISCUSSION 45

3.4.4.3 Sized Trees

A sized annotated binary tree is suitable for fast indexing, as we can traverse it quickly

by not entering any left subtree that has a smaller size than the index.

data STree a = Empty

| SLeaf a

| SFork (Int , (STree a, STree a))

index :: Int → STree a → a

index 1 (SLeaf a) = a

index n (SFork (s , (lt , rt))) | n > ls = index (n − ls) rt

| otherwise = index n lt

where ls = getSize lt

rs = getSize rt

getSize Empty = 0

getSize (SLeaf) = 1

getSize (SFork (s ,)) = s

This feature of fast indexing makes sized trees an attractive alternative to lists, when

access to elements in the middle is required, with the following specification.

index 1 [x] = x

index n (: xs) = index (n − 1) xs

Again, once an abstraction function is defined and verified, we can enjoy smooth transi-

tions between the two representations, and reap the benefit of having both.

α = fold (leaf ▽ (fork ◦ sndλ(x ,y)→size x+size y))

3.5 Discussion

3.5.1 RINV Expressiveness

The most general constraint on α functions is surjectivity, in order to ensure the existence

of the right inverses: valid abstract values are bounded by the actual range of the user-

defined α function; invertibility is not guaranteed for abstract values outside this range.

In the current proposal, rinv faithfully enforces surjectivity, which explains its restricted

46 CHAPTER 3. LOOKING FROM THE RIGHT

expressiveness compared to the standard pointfree programming framework. An already-

mentioned example that shows this difference is the combinator △, which executes both

of its input functions, and is defined as

(△) :: (a → b)→ (a → c)→ a → (b, c)

(f △ g) = λx → (f x , g x)

Since f △ g is generally not surjective, it doesn’t have a right inverse, despite the fact

that we can easily guard against inconsistent input in the reverse direction as follows.

[[f △ g]]<= λ(a, b)→ if x == y then x else error "violation"

where x = [[f]]< a ; y = [[g]]< b

Definitions like the one above are known as weak right inverses [MMM+07].

Another useful function is unzip, which can be defined as a fold.

unzip = foldList ((nil △ nil) ▽ ((cons × cons) ◦ trans))

This definition will be rejected in rinv, since cons × cons and nil △ nil are not jointly

surjective. Indeed, unzip only produces pairs of lists of equal length.

If a value outside the range is constructed, the integrity of specification level equa-

tional reasoning may be corrupted. On the other hand, it is valid to argue that the

same invariant assumed for the original datatype prior to the refactoring applies to the

specification too. For example, consider a program that requires balanced binary trees.

An abstraction function that only produces balanced binary trees is safe if the invariant

is correctly preserved in the original program. It remains an open question whether we

should allow programmers to take some reasonable responsibilities, or should insist on

enforcing control through the language.

We have included unfold as a combinator in rinv as the dual of fold . Nevertheless, we

recognise the fact that there is no combinator in rinv that creates values of a sum type:

the choice operator introduced for the right-inverse of ▽ does not preserve surjectivity .

An option is to define the bodies of unfolds as primitive functions; but this does require

the programmers to deal with Either types explicitly, something we have tried to avoid.

3.5.2 The Dual Story

In this paper, we have picked the α function to be user-provided; the design of rinv and

the subsequent discussion of refactoring is based on this decision. However, this choice is

3.5. DISCUSSION 47

by no means absolute. One can well imagine a programmer coming up with γ functions

first, and a left-invertible language generating the corresponding α functions; this would

give the same invertibility property α◦γ = id . The promotion condition can be adapted

to involve only γ, as in f ◦F γ = G γ ◦ f . Nevertheless, the crucial computation law and

fusion law that form the foundation of the translation and optimization are still derivable;

for computation, we have

G α ◦ f ◦ F γ

= { f ◦ F γ ≡ G γ ◦ f }

G α ◦ G γ ◦ f

= {G respects composition and identity; α ◦ γ ≡ id }

f

and for fusion:

H α ◦ g ◦ G γ ◦ G α ◦ f ◦ F γ

= { f ◦ F γ ≡ G γ ◦ f }

H α ◦ g ◦ G γ ◦ G α ◦ G γ ◦ f

= {G respects composition and identity; α ◦ γ ≡ id }

H α ◦ g ◦ G γ ◦ f

= { f ◦ F γ ≡ G γ ◦ f }

H α ◦ g ◦ f ◦ F γ

If one were to develop a left-invertible language in a similar style to rinv’s, we expect

that many problems will dualize. A notable difference is that users of the language

will have to use unfold (as ▽ does not preserve injectivity), with destruction functions

combined together by the backtracking operator choice, resulting in a rather unusual

programming style. On the other hand, this explicitness, though inconvenient, does offer

more control. For example, the programmer is able to determine how a list shall be split

in a right-inverse of app.

3.5.3 Nested and Overlapping Patterns

Two well-regarded features of pattern matching are the scalability with respect to nesting

and the sharing between overlapping patterns. For example, consider a function that sums

elements of a list pair-wise:

48 CHAPTER 3. LOOKING FROM THE RIGHT

pairSum Nil = Nil

pairSum (Cons x Nil) = Cons x Nil

pairSum (Cons x (Cons y ys)) = Cons (x + y) (pairSum ys)

Nested patterns allow simultaneous matching and variable binding to patterns below top

level (such as y above), in contrast to the sequential checking of expressions as guards.

There is often a degree of sharing between patterns; for example, an input to pairSum

that, when evaluated, fails to match the first pattern does not need to be evaluated again

for subsequent clauses. This is even more important for pattern matching on abstract

representations where non-constant computation (i.e., the α function) may be needed.

Our proposal supports both features nicely: nested patterns are written exactly the same

way as with datatypes; and execution of α functions is done prior to pattern matching

and is shared among all the patterns.

3.5.4 Right-invertible vs. Bidirectional

Our system is based on the right-invertibility provided by rinv. Despite the many

interesting examples we have seen, there are limitations. Notably, rinv does not keep

the source stable: retrieving a value and putting it back without modification may induce

changes at source. This has not been a problem with our design, but rules out the

possibility of having multiple abstract representations for a single implementation. For

example, as shown in [Wad87a], it can be useful to have both cons-lists and snoc-lists

representations available for pattern matching at the same time.

Another omission of rinv is general data-projection functions. We can only discard

information that is re-constructible, in another words redundant. At a glance, it may

appear that both the above “flaws” will be fixed if a language framework similar to

lenses is used; we could use put to support stability of source, and recover projected

values by extracting them from the copied source. However, in our case the update

operations, which are basically arbitrary functions on abstract representations, are far

more complicated than those in the view-update problem, which assumes a single type

for the view. As a result, an update from type (List a,List a) to type List a would not

be allowed as a database update, but is perfectly sensible in programming with abstract

representations. If we use put on the resulting list, it is never clear what the source input

is.

3.6. FURTHER APPLICATIONS 49

3.6 Further Applications

3.6.1 Pattern Matching for ADTs

The refactoring technique proposed in this paper rewrites selected definitions using pat-

tern matching into ones using primitive operations; the concrete implementations of the

primitive operations are not used in reasoning, and thus are not exposed. In this case,

a more structured way of organizing the refactored program is with abstract datatypes

(ADTs) [LZ74],

As a matter of fact, the data abstraction framework developed in this paper can be

used as a way of introducing pattern matching to certain ADTs. For example, we can

construct an ADT for queues:

adt Queue a = [a]

emptyQ ::Queue a

enQ :: a → Queue a → Queue a

deQ ::Queue a → Queue a

first ::Queue a → a

isEmpty ::Queue a → Bool

with the following abstract program as specifications

emptyQ = []

first = head

isEmpty = null

enQ a q = q ++ [a]

deQ = tail

This approach is known as constructive specification [Hoa72], which explicitly defines the

semantics of operations by expressing them in terms of a model. For example, the queue

ADT is related to the list model. It is worth emphasising that the list datatype acts only

as a model of the ADT: it may suggest but it does not imply a particular implementation.

We also note that this constructive approach does not cover all ADTs: for example, sets

cannot be fully modeled by an algebraic datatype.

Once an implementation of the ADT is shown correct (by proving the promotion

condition), users of the ADT can pattern match on the model when defining non-primitive

functions, and reason about them on the level of models. A translation based on the

computation law, similar to the one in Section 3.4.2, elaborates the semantics of programs

using the ADT.

50 CHAPTER 3. LOOKING FROM THE RIGHT

3.6.2 Stream Fusion

Streams can used as an alternative implementation of lists. Instead of being built as

data structures, streams encapsulate operations that can be unfolded to produce stream

elements. In [CLS07], Coutts et al. introduce an ADT of streams in their work on fusion

optimizations:

data Stream a = ∀s .Stream (s → Step a s) s

data Step a s = Done

| Yield a s

| Skip s

To use the stream ADT as an implementation of lists, they have functions stream and

unstream for converting lists to and from streams.

unstream :: Stream a → [a]

unstream (Stream next s) = unfold s

where unfold s = case next s of

Done → []

Skip s ′ → unfold s ′

Yield x s ′ → x : unfold s ′

stream :: [a]→ Stream a

stream xs = Stream next xs

where next [] = Done

next (x : xs) = Yield x xs

The stream function is non-recursive, corresponding to the non-recursive definition of

Stream. The unstream function repeatedly calls the access operation of the stream, and

produces a list by accumulating the elements this yields. The step Skip is unproductive,

and therefore does not contribute to expressive power; however, it is crucial for their

implementation.

For efficiency, any intermediate stream/unstream conversions must be fused. For

example, they want to reduce the expression

unstream ◦maps f ◦ stream ◦ unstream ◦maps g ◦ stream

to

unstream ◦maps f ◦maps g ◦ stream

3.7. RELATED WORK 51

This would follow from stream ◦ unstream = id ; but this property is not satisfied by

their conversion functions, and so their paper leaves open the question of soundness.

Nevertheless, the result they want still holds; in fact, it is a consequence of our approach

(Theorem 3.6), with unstream the abstraction function and stream its right inverse.

3.7 Related Work

Efforts to combine data abstraction and pattern matching started two decades ago with

Wadler’s views proposal [Wad87a]; and it is still a hot research topic [BC93, Oka98,

Erw96, PGPN96, EP00, Tul00, Jay04, LP07, SNM07, NMN08]. To avoid possible confu-

sion over terminology, we always refer the proposal in [Wad87a] as “Wadler’s views”.

Wadler’s views provide different ways of viewing data than their actual implementa-

tions. With a pair of conversion functions, data can be converted to and from a view.

Consider the forward and backward representations of lists:

data List a = Nil | Cons a (List a)

view List a = Lin | Snoc (List a) a

to Nil = Lin

to (Cons x Nil) = Snoc Nil x

to (Cons x (Snoc xs y)) = Snoc (Cons x xs) y

from Lin = Nil

from (Snoc Nil x) = Cons x Nil

from (Snoc (Cons x xs) y) = Cons x (Snoc xs y)

The view clause introduces two new constructors, namely Lin and Snoc, which may

appear in both terms and patterns. The first argument to the view construction Snoc

refers to the datatype List a, so a snoclist actually has a conslist as its child. The to and

from clauses are similar to function definitions. The to clause converts a conslist value

to a snoclist value, and is used when Lin or Snoc appear as the outermost constructor

in a pattern on the left-hand side of an equation. Conversely, the from clause converts

a snoclist into a conslist, when Lin or Snoc appear in an expression. Note that we are

already making use of views in the definition above; for example, Snoc appears on the left-

hand side of the third to clause; matching against this will trigger a recursive invocation

of to.

Functions can now pattern match on and construct values in either the datatype or

one of its views.

52 CHAPTER 3. LOOKING FROM THE RIGHT

last (Snoc xs x) = x

rotLeft (Cons x xs) = Snoc xs x

rotRight (Snoc xs x) = Cons x xs

rev Nil = Lin

rev (Cons x xs) = Snoc (rev xs) x

Upon invocation, an argument is converted into the view by the to function; after com-

pletion of the computation, the result is converted back to the underlying datatype rep-

resentation.

Just as with our proposal, this semantics can be elaborated by a straightforward

translation into ordinary Haskell. First of all, view declarations are translated into data

declarations.

data Snoc a = Lin | Snoc (List a) a

Note that the child of Snoc refers to the underlying datatype: view data is typically

hybrid (whereas it is homogeneous with our approach). Now the only task is to insert

the conversion functions at appropriate places in the program.

last xs = case to xs of Snoc xs x → x

rotLeft xs = case xs of Cons x xs → from (Snoc xs x)

rotRight xs = case to xs of Snoc xs x → Cons x xs

rev xs = case xs of

Nil → from Lin

(Cons x xs)→ from (Snoc (rev xs) x)

In contrast to our approach, Wadler exposes both a datatype and its views to pro-

grammers. To support reasoning across the different representations, the conversion

clauses are used as axioms. It is expected for a view type to be isomorphic to a subset

of its underlying datatype, and for the pair of conversions between the values of the two

types to be each other’s full inverses. This is certainly restrictive; and Wadler didn’t

suggest any way to enforce such an invertibility condition. As pointed out by Wadler

himself [Wad87a], and followed up by several others [BC93, Oka98], this assumption is

risky, and may lead to nasty surprises that threaten soundness of reasoning.

Inspired by Wadler’s proposal, our work ties up the loose ends of views by hiding the

implementation of selected primitives that are proven correct, and using only the view

3.7. RELATED WORK 53

(our abstract representation) for pattern matching in user-defined functions. The lan-

guage rinv for defining conversions guarantees right invertibility, a weaker condition that

lifts the isomorphism restriction on abstract and concrete representations. In contrast

to Wadler’s views, our system only caters for linear refactoring, without having multiple

views for the same implementation.

‘Safe’ variants of views have been proposed before [BC93, Oka98]. To circumvent the

problem of equational reasoning, one typically restricts the use of view constructors to

patterns, and does not allow them to appear on the right-hand side of a definition. As a

result, expressions like Snoc Lin 1 become syntactically invalid. Instead, values are only

constructed by ‘smart constructors’, as in snoc lin 1. In this setting, equational reasoning

has to be conducted on the source level with explict applications of to. A major motivation

for such a design is to admit views and sources with conversion functions that do not

satisfy the invertibility property. In another words, let Constr and constr be a constructor

and its corresponding smart constructor; in general, we have Constr x ̸≡ constr x . This

appears to hinder program comprehension, since the very purpose of the convention that

the name of a smart constructor differs only by case from its ‘dumb’ analogue is to suggest

the equivalence of the two.

More recently, language designers have started looking into more expressive pattern

mechanisms. Active patterns [Erw96, PGPN96] and many of their variants [EP00, Tul00,

Jay04, LP07, SNM07, PGPN96] go a step further, by embedding computational content

into pattern constructions. All the above proposals either explicitly recognise the benefit

of using constructors in expressions, or use examples that involve construction of view

values on the right-hand sides of function definitions. Nevertheless, none of them are

able to support pattern constructors in expressions, due to the inability to reason safely.

Knowing that there is an absence of good solutions for supporting constructors in ex-

pressions, some work focusses mainly on examples that are primarily data consumers, an

escape that is expected to be limited and short-lived. Another common pitfall of active

patterns is the difficulty in supporting nested and overlapping patterns, as discussed in

Section 3.5.3, because each active pattern is computed and matched independently.

A similar idea that exploits the changing of data representations is the worker/wrapper

transformation [GH09], for the purpose of replacing an operation with a more efficient

one on a different representation. A classic example of it is the transformation of the fac-

torial function on integers (the equivalence of our abstract program) into a more efficient

version on unboxed integers (the equivalence of our concrete program) [PJL91]. In con-

trast to our attempt to systematically guarantee the right-invertibility of the abstraction

54 CHAPTER 3. LOOKING FROM THE RIGHT

functions, the worker/wrapper transformation relies on user-provided proofs. Instead,

they focus on the derivation of the concrete program from the syntactic definition of

the abstract program; while we only attempt to verify the correctness of user-provided

concrete programs with respect to the corresponding abstract programs.

3.8 Conclusion

Algebraic datatypes and pattern matching offer great promise to programmers seeking

simple and elegant programming, but the promise turns sour when modular changes are

demanded. Our work tackles this long-standing problem by proposing a framework for

refactoring programs written with pattern matching into ones with proper encapsulation:

programmers are able to selectively re-implement original function definitions into primi-

tive operations, and either rewrite the rest in terms of the primitive ones, or simply leave

them unchanged. This migration is completely incremental: executability and proofs

through equational reasoning are preserved at all times during the process.

At the heart of our proposal is the framework of data abstraction. When an ab-

straction function is verified by the promotion condition, the computation law is able to

replace abstract function calls with concrete ones. The soundness of such refactoring is

based on the right-inverse property of the conversion pairs that bridge the abstract and

concrete representations.

Some readers may notice how little we have had to mention the problem of invert-

ibility in Section 3.4, when we illustrate our design of selective refactoring; instead we

simply assume it in almost every proof. We think this is a nice showcase for bidirectional

programming. Very often invertibility is not the final goal, but part of a solution; bidi-

rectional programming solves it, and solves it so well that we can put our focus on other

issues.

Chapter 4

Looking from the Left

If you know yourself but not the enemy,

for every victory gained you will also suffer a defeat.

(Sun Tzu, The Art of War (6th century BC))

55

56 CHAPTER 4. LOOKING FROM THE LEFT

4.1 Introduction

Various kinds of program analysis are at the centre of the never-ending quest of detecting

program errors and improving run-time performance. Very often, an analysis involves

reporting the result back to the programmer in a readable format, a typical example

of which is type checking where errors together with their locations and contexts are

reported. Consequently, type checking has to be carried out at the earliest stage of

compilation, before other transformations deface the source code. This is certainly sub-

optimal for compiler writers, where the handful of nice typing rules for a core language

explode to tens, even hundreds, to handle various syntactic sugar and extensions. Being

an inconvenience for serious compiler implementations with ample resources, this cost is

even less acceptable for the very common light-weight approaches such as many domain

specific languages (DSLs), where the very reason for building upon a general purpose

host language is to save the effort of crafting a compiler from scratch. As a direct result,

the quality of analysis feedback suffers, which very often reduces to a result in terms of

the translated internal code, instead of the source code recognizable to the user. In this

case, even the simplest form of error reporting – pointing out the line number in the

source code – greatly enhances the programmer’s diagnostic experience. As an example,

consider an introductory example of Haskell: quicksort .

quicksort [] = []

quicksort (x : xs) = smallerSorted ++ [x] ++ biggerSorted

where smallerSorted = quicksort [[y] | y ← xs , y 6 x]

biggerSorted = quicksort [[y] | y ← xs , y > x]

The list comprehensions are purely syntactic sugar (nothing less than a small scale DSL

for the more maths-minded), and are translated into applications of the higher-order

function concatMap. For example, according to the Haskell report [PJ03] the expression

[[y] | y ← xs , y 6 x] is translated into

let f y = if y 6 x then [[y]] else []

f = []

in concatMap f xs

Astute readers may have already noticed that the program above is actually faulty:

the output ys of the list comprehensions are erroneously written as [y]. Consequently,

the translated program is type-incorrect as well. However, complaining that an infinite

4.1. INTRODUCTION 57

type is being constructed in f ’s definition is not very helpful to a programmer who only

sees the list comprehensions.

The same story goes beyond type checking; other analyses that involve feeding back,

such as reachability and termination checks, suffer the same fate. Moreover, for incom-

plete analyses like the ones just mentioned, it is often profitable to apply them to simpler

core languages for better results [MR09].

The challenge is evident here: on the one hand we desire simple and precise analyses

on transformed code, while on the other hand the practical need for reporting results

fixes the analyses to the source code. We approach this problem with a novel idea:

bidirectionalizing the program transformations.

Before setting out on the task of finding a suitable bidirectional technique, we need

to understand the language requirements of the application. First of all, as program

transformations are very often complicated, language expressiveness is a key requirement

here. Thus, bidirectional laws, which do not impose stringent injective or surjective re-

strictions, are more suitable than invertibility to be the bidirectional property here. We

also notice that the bidirectional transformation here is “one-trip”: once the analysis

result (updated view) is mapped back to the source code (source), the process is fin-

ished. In another words, we have a changeable, but not observable, view, which suggests

that consistency is probably optional since it is for the consistency of the view. To con-

firm this speculation, we further observed that only some “auxiliary” information in the

view (namely the analysis results possibly integrated with the code as annotations), are

changeable; and the putting back of those information depends on the semantics of the

program being handled, and is best left to the programmer. For example, if we discover

an error in the definition of f in the above example, whether to blame the complete list

comprehension in the source or just the output part is rather a subjective choice; and

when fed to the retrieval function again, the different choices may not produce exactly

the same view. In this case, rigidly enforcing consistency may take away much-needed

flexibility without much benefit. We will see more discussion on this in the sequel. On

the other hand, acceptability – which keeps the integrity of the source – is crucially im-

portant, because any interpretation of the auxiliary information is only possible if it is

attached to the correct source.

Last but not least, the language of the bidirectional system needs to support the tools

of the trade. In Haskell, this means that pattern matching, on very often deeply nested

syntax trees, is a must-have.

58 CHAPTER 4. LOOKING FROM THE LEFT

Based on the above requirements, we choose to use the constant complement approach

to tackle the problem, largely following from the technique in [MHN+07, Section 2.1.2.1].

As we will see, the constant complement approach allows us to keep the pointwise style

of programming, commonly used in program transformations, and effectively bidirection-

alize the code. The drawback of the original technique in [MHN+07] is updatability: to

support decidable update checking, the language for retrieval functions is severely re-

stricted. In our case, we take advantage of the update pattern of our application and

extend the system in [MHN+07]. As a result, our proposed language is more practical

and handles the intended update safely.

4.2 Bidirectionalization Transformation

In this section, we present our bidirectionalization technique, centred around the con-

struction of complement values. We assume total retrieval functions, and fully-defined

source values.

A complement keeps as data whatever information was lost during the retrieval pro-

cess, so that when it is combined with the view, the two uniquely determine the source.

In [MHN+07], the concept is extended to functions. Suppose a source type S , view type

V , and complement type C . For a retrieval function f :: S → V , a complement function

f • :: S → C constructs a complement value from a source. Tupling it with the retrieval

function, we obtain an injective function f △f • ::S → (V ,C), which is ready for inversion.

As a simple example, for the retrieval function fst :: (a, b) → a, the function snd ::

(a, b) → b is a complement function, preserving the second element of the input pair.

Another example is a retrieval function that flattens trees into lists; the complement

function will need to preserve the exact shape of the tree, but may leave holes for leaf

values.

The complement functions are usually not unique; for example, in addition to snd ,

both id :: a → a and swap :: (a, b) → (b, a) are complement functions for fst . There are

multiple ways of encoding the shape of a tree as well.

After obtaining the injective tupling of retrieval and complement functions, reversing

it for a putback function becomes straightforward. We illustrate the complete process

through an example before formalizing it. As a notational convention, we superscript

complement functions by ‘•’, tupled functions by ‘⋗’,

4.2. BIDIRECTIONALIZATION TRANSFORMATION 59

4.2.1 An Example

We begin with the familiar binary tree and list datatypes.

data Tree a = Empty

| Leaf a

| Branch (Tree a) (Tree a)

data List a = Nil | Cons a (List a)

Consider the scenario that a binary tree is used to store data, due to its flexibility and

potential support for efficient access; and at the same time, a list-like interface offers

straightforward manipulation and display. We could use the following retrieval function

to transform tree sources into list views.

flatten :: Tree a → List a

flatten Empty = Nil

flatten (Leaf x) = Cons x Nil

flatten (Branch t1 t2) = l

where l1 = flatten t1

l2 = flatten t2

l = append (l1, l2)

The list concatenation function append is defined as follows.

append :: (List a,List a)→ List a

append (Nil , ys) = ys

append (Cons x xs , ys) = Cons x xys

where xys = append (xs , ys)

Note that no leaf labels are lost during this retrieval transformation, only the structure

of the tree. The job of the putback function is to restore the shape of the tree and fill in

possibly modified labels.

The basic idea the approach is to keep a history of the control flow of an execution as

a complement value, which combined with the output of the execution allows us to trace

the execution backwards to reproduce the input. Our bidirectionalization process firstly

generates a complement function.

data FlatCompl = CaseEy

| CaseLf

60 CHAPTER 4. LOOKING FROM THE LEFT

| CaseBr FlatCompl FlatCompl AppCompl

flatten• :: Tree a → FlatCompl

flatten• Empty = CaseEy

flatten• (Leaf x) = CaseLf

flatten• (Branch t1 t2) = CaseBr (flatten• t1) (flatten
• t2) (append

• (l1, l2))

where l1 = flatten t1

l2 = flatten t2

l = append (l1, l2)

We introduce a new complement datatype FlatCompl , with one constructor for each

clause of flatten’s definition; the complement function flatten• maps from clauses to con-

structors. Recursive calls in flatten correspond to recursive substructures in FlatCompl ;

calls to other functions entail additional fields for the corresponding constructors, record-

ing relevant complements. So the first two clauses of flatten (with no function calls on

the right-hand side) correspond to constructors with no arguments; but the third clause

has two recursive calls (hence two substructures) and one nested call to append (hence a

field for append ’s complement type AppCompl).

data AppCompl = CaseNil | CaseCons AppCompl

append• :: (List a,List a)→ AppCompl

append• (Nil , ys) = CaseNil

append• (Cons x xs , ys) = CaseCons (append• (xs , ys))

where xys = append (xs , ys)

Basically, an AppCompl value encodes the length of a list being deconstructed; for exam-

ple, CaseCons (CaseCons (CaseCons CaseNil)) represents a list of length three. Given

that AppCompl is isomorphic to natural numbers, to avoid verbose symbols, we use num-

bers to representAppCompl values; for example, CaseCons (CaseCons (CaseCons CaseNil))

is written as Three.

These complement functions faithfully record the decomposition of the input. For

example, applying flatten• to a tree

Branch (Branch (Leaf ’a’)

(Branch (Leaf ’d’) (Leaf ’b’)))

(Leaf ’c’)

gives the complementary structure

4.2. BIDIRECTIONALIZATION TRANSFORMATION 61

CaseBr (CaseBr CaseLf

(CaseBr CaseLf CaseLf One) One)

CaseLf Three

For each branch, there is an AppCompl value which records the size of the left-subtree.

When tupled with the retrieval functions, we obtain injective functions flatten⋗ and

append⋗: the element list and the shape of the tree uniquely determine the input tree.

flatten⋗ :: Tree a → (List a,FlatCompl)

flatten⋗ Empty = (Nil ,CaseEy)

flatten⋗ (Leaf x) = (Cons x Nil ,CaseLf)

flatten⋗ (Branch t1 t2) = (l ,CaseBr d1 d2 c)

where (l1, d1) = flatten⋗ t1

(l2, d2) = flatten⋗ t2

(l , c) = append⋗ (l1, l2)

append⋗ :: (List a,List a)→ (List a,AppCompl)

append⋗ (Nil , ys) = (ys ,CaseNil)

append⋗ (Cons x xs , ys) = (Cons x xys ,CaseCons c)

where (xys , c) = append⋗ (xs , ys)

Note that complement function calls on the right-hand side are subsumed by tupled

function calls in the where clauses. Now, the task of creating a putback function reduces

to swapping patterns between the two sides of the equations.

flatten< :: (List a,FlatCompl)→ Tree a

flatten< (Nil ,CaseEy) = Empty

flatten< (Cons x Nil ,CaseLf) = (Leaf x)

flatten< (l ,CaseBr d1 d2 c) = (Branch t1 t2)

where t1 = flatten< (l1, d1)

t2 = flatten< (l2, d2)

(l1, l2) = append< (l , c)

append< :: (List a,AppCompl)→ (List a,List a)

append< (ys ,CaseNil) = (Nil , ys)

append< (Cons x xys ,CaseCons c) = (Cons x xs , ys)

where (xs , ys) = append< (xys , c)

The complement information serves as a roadmap for the putback function flatten<: given

a list of appropriate length, flatten< can determine exactly where to split the list to form

62 CHAPTER 4. LOOKING FROM THE LEFT

subtrees and place leaf elements; it constructs a source value identical in structure to the

original.

4.3 The Algorithm

We now proceed to formalise the process illustrated above. To start with, we introduce

the miniature first-order language in which our bidirectional system is defined. The

syntax is presented below.

Prog π ::= d

Decl d ::= f p | f e = e where p = f e

Exp e ::= C e ||||| x

Patt p ::= x ||||| C p

(The | is syntax for a guarded definition; the ||||| is metasyntax for choice in the grammar.)

We write o as an abbreviation for a sequence of objects o1, ..., on (e.g. declarations,

variables, and so on), and fv(o) as the free variables in o. When used together, o and

o denote unrelated objects. As a notational convention, C , f and x range over data

constructors, function names and variables respectively.

A program in the language is a sequence of function declarations. The expressions of

the language include variables and data constructions; function applications only appear

in where clauses and pattern guards; nesting of function calls are expressed through

nesting of where clauses. We also omit conditionals from expressions, encoding them

with pattern guards in function declarations, and assume non-overlapping patterns. The

above choices do not limit expressiveness, but effectively process function definitions into

a canonical form more convenient for manipulation. We do not include types, as our

primary concern is the syntactic transformation of functions, though we may use type

signatures in examples to improve readability.

We omit a fixed operational semantics for the language, since it is standard. The

bidirectionalization process progresses in three steps, and produces a putback function in

the same language. We look into each of the steps in more detail below.

4.3.1 Constructing the Complement Function

Definition 4.1 (Complement Function) A function f • :: S → C is a complement

function to a retrieval function f :: S → V , if the tupling of them f △ f • :: S → (V ,C) is

injective.

4.3. THE ALGORITHM 63

The syntactic translation that generates a complement function, from and for each

retrieval functions, is the following:

z = fv(p, p) \ fv(e, ew) C fresh

f p | g = e where pw = h ew f • p | g = C h• ew z where pw = h ew

C :: τw → τz → τf •

The side conditions are above the line, with the complement function generation beneath

it. We generate complement functions indiscriminately for all top-level declared functions.

The body of a function definition is turned into a complement value expression, which is

constructed by applying a fresh data constructor C to the complement value expressions

resulting from replacing the function calls in the where clauses to their complement

conterparts. Note that each where clause contains exactly one function application,

and produces one complement value. Intuitively, if we consider a complement as the

memoization of a function computation, it needs to record the subcomputations (function

calls) originating from that function and all locally bound term variables that are unused

in the right-hand side of the clause. The where clauses themselves are copied over to

the complement function because variables bound in pw may be used in h• ew (see the

flatten function in the previous section as an example). The fresh constructor C belongs

to the complement datatype τf • , created for each retrieval function. The constructor takes

parameters of types τw and τz , which represents the types of h• ew and z respectively.

Theorem 4.2 Given a function f such that f f •, then f • is a complement function

to f .

Proof. Follows directly from Corollary 4.4. 2

Lemma 4.3 Given a function f such that f f •, for any y and z

y ̸= z ⇒ (f y , f • y) ̸= (f z , f • z)

Proof. Let r and r ′ be the clauses of f that are invoked by applying it to y and z respec-

tively.

64 CHAPTER 4. LOOKING FROM THE LEFT

If r ̸= r ′, the proof is done, we have f • y ̸= f • z because the complement construc-

tor C is different for each clause.

If r = r ′, we prove by induction on the nesting of function-calls on the right-hand

side of r .

Base case: there is no function call on the right-hand of r . Let r and its corresponding

complement-function clause be defined as

f p | g = e

f • p | g = C z

By the translation rule, we have fv(p) = fv((e,C z)). We use the notation [p 7→ x] to

represent the substitution arises from matching pattern p to term x . Given x ̸= y and

injectivity of constructors, we have

(e,C z)[p 7→y] ̸= (e,C z)[p 7→ z]

which is equivalent to (f y , f • y) ̸= (f z , f • z).

Inductive Step: Let r be defined as

f p | g = e where pw = h ew

and is translated to

f • p | g = C h• ew z where pw = h ew

The flattened nested function application is rather awkward for expressing the induction

hypothesis. We invent a couple of auxiliary function to encapsulate the where clauses:

f1 p | g = pw where pw = h ew

f1 • p | g = h• ew where pw = h ew

With f1 , we can rewrite f into

f p | g = D (f1 p) p

4.3. THE ALGORITHM 65

with a constructor D that constructs the expression e from f1 p and p.

Now assuming

y ̸= z ⇒ (f1 y , f1 • y) ̸= (f1 z , f1 • z)

we want to prove

y ̸= z ⇒ (f y , f • y) ̸= (f z , f • z)

Given y ̸= z ,

• f1 • y ̸= f1 • z , we have f • y ̸= f • z due to the injectivity of C .

• f1 y ̸= f1 z , we have f • y ̸= f • z due to the injectivity of D .

As a remark, we don’t need to consider the guards in the above proof because their roles

are completely captured by the choice of clauses.

2

An injectivity property of f △ f • immediately follows from the above lemma.

Corollary 4.4 Given a function f such that f f •, we have that f △ f • is injective.

2

4.3.2 Tupling

The second step of bidirectionalization is to tuple the retrieval function with its comple-

ment to create an injective tupled function. For this purpose, we could simply use the

function f △ f •; but this will take twice as long to execute. As we saw in the previous

section, the generated complement function has a similar syntactical structure congruent

to the retrieval function, so we can straightforwardly combine the right-hand sides of

both functions into a tuple and replace function calls in where clauses with their tupled

version.

f p | g = e where p = h e f • p | g = Cf (h• e) z where p = h e
︸ ︷︷ ︸

f ⋗ p | g = (e,Cf c z) where (p, c) = h⋗ e

The complement function applications h• e on the right-hand side of f • are subsumed by

the tupled function applications h⋗ e in the where clauses on the right-hand side of f ⋗,

the return values of which are bound to the freshly generated variable patterns c. Thus,

we use c as the arguments of constructor Cf in f ⋗. The notation c is overloaded for both

syntactically identical terms and patterns.

66 CHAPTER 4. LOOKING FROM THE LEFT

4.3.3 Inverting the Tupled Function

The putback function can be constructed by directly swapping the pattern and the body

of the tupled function. The function applications in the where clauses are transformed

in a similar way: arguments and results are swapped, and the guard stays, since the

putback function is only defined when the guard condition remains satisfied. The final

product of bidirectionalization is as follows:

f < (e,Cf c z) | g = p where e = h< (p, c)

Again, we overload syntactic notations for both terms and patterns. Note that since there

is exactly one function application in each where clause body, e and e do not contain

any function applications and can be used as patterns syntactically.

4.3.3.1 Multiple Use of Variables

There is a subtlety here concerning the above inverting step (but not the previous two):

if a bound variable is used more than once on the right-hand side of a retrieval function,

the pattern of the inverted function fails to be linear. Consider a simple example,

dup x = (x , x)

Inverting it gives us

dup< (x , x) = x

which is not accepted in Haskell. Various solutions have been proposed for this problem.

An obvious one is to disallow multiple use of variables altogether [MHN+07]; functions

satisfying such a restriction are called affine or linear. In systems where duplication plays

an important role [MHT04b, MHT04a, HMT04], the non-linear pattern is made linear,

and the putback function is only defined if the values of the duplicated variables agree.

dup< (x , y) | x ≡ y = x -- or y

Another possibility is to relax the correctness condition by allowing one value to be chosen

if they don’t all agree. For example, we could ignore one copy.

dup< (x , y) = x

Duplication of variables never invalidates the injectivity property of the tupled func-

tions, which acceptability of our bidirectional system is based on. But the choices of

4.3. THE ALGORITHM 67

dealing with them do affect the consistency property. For example, the last definition

of dup< above is not consistent because the ignored y will never not be recovered by

a retrieval transformation. However, compared to the first two approaches above that

satisfy consistency, the last one allows maximum expressiveness: there is no restriction

on the retrieval function and the putback function is total (perfect updatability). In our

application of type error reporting, expressiveness out weights consistency as a slightly

confusing error report is nevertheless useful, but probably not an over-restrictive language

for writing transformations.

For this reason, in this chapter we will focus only on acceptability and updatability.

This means we won’t be able to formally express how well an error is reported back to

the source. However, as we will see shortly, the required user-input in making sure the

system being useful is minimum.

4.3.4 Properties of Bidirectionalization

Theorem 4.5 (Acceptability) Given a retrieval function f

f < ◦ f ⋗ = id

Proof. Follow directly from Theorem 4.2, stating f △ f • being injective, and the definition

of f <. 2

In addition to the bidirectional property above, updatability is another concern. As

suggested by the name of the technique, complement values must remain constant, which

limits changes to the views. For example, consider the function append in Section 5.1.1,

where the complement records the length of the first source list; if any updates reduce

the view to a shorter list, the putback function append< will fail due to non-exhaustive

patterns.

In this respect, not all complements are equal. For example, a complement that

records the lengths of both source lists for append accommodates fewer view updates

than one that only records the length of the first list. As a result, it is usually considered

desirable to “collapse” a complement, so that the possibility of conflicts between it and

the updated view is reduced. Nevertheless, in general such conflicts cannot be completely

eliminated; it becomes necessary to detect an “invalid” update before the putback func-

tion fails. Achieving this involves in-depth understanding of the complement generation

process, something not expected from users of bidirectional languages. In [MHN+07], the

system performs a range analysis of the tupled function, and automatically rejects any

68 CHAPTER 4. LOOKING FROM THE LEFT

updates that cause the view/complement pair to be outside of the range. However the

analysis is only decidable for a small set of functions, namely treeless functions [Wad88],

and there is no easy way for users to understand the reasons behind a rejection, let alone

to find a remedy.

We look at the issue from a different perspective. Instead of complicated complement

reduction and function range analysis, we lift any restrictions on the bidirectional lan-

guage, and only allow changes to element values of parametric structures. This approach

is similar to the semantic bidirectionalization proposal [Voi09, Section 2.1.2.2]. Before

going into a more detailed discussion, let’s look at another example.

4.3.5 Projection of Data

Consider a filtering function that removes negative numbers from an integer list. The

filtered list can be seen as a view derived from the original source.

filter :: List Int → List Int

filter Nil = Nil

filter (Cons x xs) | x > 0 = Cons x ys

where ys = filter xs

filter (Cons x xs) = ys

where ys = filter xs

This time, the function does discard concrete elements of the source, so these need to be

preserved in the complement. As before, there is one constructor of the complement for

each clause of the transformation; in addition to the fields for recursive calls, there is a

field for the discarded variables x .

data F = F1

| F2 (F Int)

| F3 (F Int) Int

filter • :: List Int → F

filter • Nil = F1

filter • (Cons x xs) | x > 0 = F2 (filter
• xs)

where ys = filter xs

filter • (Cons x xs) = F3 (filter
• xs) x

where ys = filter xs

4.3. THE ALGORITHM 69

Once again, the tupling is straightforward:

filter⋗ :: List a → (List a,F a)

filter⋗ Nil = (Nil ,F1)

filter⋗ (Cons x xs) | x > 0 = (Cons x ys ,F2 f)

where (ys , f) = filter⋗ xs

filter⋗ (Cons x xs) = (ys ,F3 f x)

where (ys , f) = filter⋗ xs

as is the inversion:

filter< :: (List a,F a)→ List a

filter< (Nil ,F1) = Nil

filter< (Cons x ys ,F2 f) | x > 0 = Cons x xs

where xs = filter< (ys , f)

filter< (ys ,F3 f x) = Cons x xs

where xs = filter< (ys , f)

The reconstruction of the source list is again interesting. The complement information

not only records each position from which an element is removed (by differences in con-

structors), but also provides the exact values to be inserted back (by storing those values

as arguments to constructors). If an element in the view is changed to a negative value,

the putback execution will fail, because the complement constructor F2 conflicts with any

element x such that x > 0 is false.

4.3.6 The Anatomy of Complements

In contrast to the flatten example, the complement of filter not only needs to record the

path of execution, but also the dropped elements. We call the part of the complement that

stores dropped values the data complement, separating it form the structure complement

that reflects the execution path. Data complement and structure complement often

mingle together as in the case of filter : the structure part, denoted by the constructors

and the recursive occurrences of type F , encodes the execution path; and the data part,

denoted by the parameters of type Int , stores discarded data.

Since data complements never appear on the right-hand side (including the pattern

guard) of an equation, they can never be violated by an update if its companion structure

complement is not violated. In term of updatability, where the violation of complements

70 CHAPTER 4. LOOKING FROM THE LEFT

is the primary concern, it is the structure complement that matters. In other words, for

values in a source that do not contribute to the structure complement, their appearances

(if they do appear) in the view can be changed without violating the complement. Finding

such values involves non-trivial scrutiny of the semantics of the transformation. But

there are times that we do get things for free! For a retrieval function of parametrically

polymorphic type S a → V a, free theorems [Wad89] guarantee that values corresponding

to the polymorphic type variables a do not affect the execution and, thus, the structure

complement.

Definition 4.6 Two containers x :: S t and y :: S t are structurally equal, denoted by ≃,

if fmap (const ()) x = fmap (const ()) y.

Changes only the elements of a parametric view can always be put back to the source.

Fact 4.7 Given a polymorphic retrieval function f :: S a → V a, the execution of

f < (v , f • s) always succeeds for any v ≃ f s.

Looking back to our examples, for polymorphic function flatten, applying flatten on a

view with different element values is always defined, whereas the same is not true for non-

polymorphic function filter , since the element values decide the structure complement.

This result is backed up by the updatability result of semantic bidirectionalization [Voi09].

One reviewer of our paper that combines syntactic and semantic bidirectionalization for

better updatability [VHMW10] observed from examples that when used independently

the syntactic approach always outperforms the semantic approach in term of updatability.

The development here confirms this observation.

4.4 Program Analysis Result Reporting

We are now ready to apply the above bidirectional system. Given a source program, we

firstly transform it, and then perform an analysis on the translated program. Any results

are put back to appropriate contexts in the source program through putback execution

of the transformation. In the sequel, we look into the details of different types of typical

program transformation with examples, and demonstrate the use of bidirectionalization

for improved result reporting.

4.4. PROGRAM ANALYSIS RESULT REPORTING 71

4.4.1 Annotated Expressions

To store the results of program analysis, we assume annotated ASTs. As a result, every

expression additionally carries a field storing the extra information. For example, consider

a toy expression language.

data Exp = Var String

| INT Int

| Lam String Exp

| App Exp Exp

Annotating it involves building a mutually recursive pair of types.

type ExpA a = (a,Exp ′)

data Exp ′ a = Var String

| INT Int

| Lam String (ExpA a)

| App ExpA (ExpA a)

We deliberately make the type of annotations polymorphic, not only to make them general

holders of any analysis results, but also to high-light the fact that annotations will not

be inspected by the transformations. From the result of the previous section, given a

transformation of type ExpA a → ExpA a, a program analyser can freely update the

annotations without worrying about whether the putback function is sufficiently defined.

4.4.2 Bidirectionalizing Transformations

We assume Haskell syntax with annotated expressions. To clarify presentation, we use

the teletype font for expressions as datatypes to distinguish from the Haskell code that

manipulates them. We also denote annotations as superscripts. From time to time, we

omit irrelevant annotations for brevity.

4.4.2.1 Rearranging expressions

Very often, program transformations involve rearranging expressions. Consider the fol-

lowing implementation that encodes a few humble optimizations (out of many more) used

in the GHC [JS94].

72 CHAPTER 4. LOOKING FROM THE LEFT

optz ((let b in eh)i argj)k = (let b in (eh argj)k)k

optz (let x = (let b in e1h)iin e2j)k = (let b in (let x = e1h in e2j)k)k

optz (let v = e1h in e2i)j = (case e1h of v → e2i)j

Function optz is a Haskell function that manipulates its input, being the language that is

manipulated. Each clause above represents a particular optimization of let. The first one

flows application inwards to the body, which opens up potential possibilities of further

beta reductions. The second clause normalizes a deeply nested let, by moving a let in

the binding out to the top level. Possible name capturing is certainly a concern here;

GHC avoids it by aggressively renaming to fresh variables (a step which is omitted here,

but will be addressed later). The third clause converts a let into a case when the let is

strict, to save some heap allocation for the bound variable. Since most such optimizations

open up opportunities for further transformation, they are likely to be iterated.

The passing of annotations from the left-hand side to the right-hand side is the key

here. Only those annotations that appear on the right-hand side may have analysis

results fed back to them, and the location of each annotation determines the quality of

the feedback. For example, in the first clause of optz , the expressions eh and argj are

treated atomically. As a result, there is no issue of passing their annotations forward.

But the same is not true for (let b in eh)i: the annotation i belongs to a semantic

entity that no longer exists after the transformation. Thus, it is dropped, and there will

not be any result that concerns exactly the expression (let b in e). We annotate the

newly emerging entity (eh argj) with k because it takes the whole source expression to

include both e and arg. As we can see from this example, the manipulation of indices

generally requires human ingenuity, with a deep understanding of the semantics of the

transformed language, something that cannot be reduced to a simple-minded consistency

property. As we will see shortly, the generated putback functions, which we believe to be

perfectly sensible, do not in general obey consistency .

To see how the above transformation works, we consider the following expression.

(let (a,b) = (let y = Trueh

in ((yi1+1i2)i3,yi4)i5)k1

in (aj1 + 1j2)j3)k2

Applying the second clause moves the binding y = True to the top level.

(let y = Trueh

in (let (a,b) = ((yi1+1i2)i3,yi4)i5

in (aj1 + 1j2)j3)k2)k2

4.4. PROGRAM ANALYSIS RESULT REPORTING 73

Applying the third clause replaces the lets with cases.

(case Trueh of y →

(case((yi1+1i2)i3,yi4)i5 of (a,b) → (aj1 + 1j2)j3)k2)k2

To be able to recover the original expression, we need to bidirectionalize optz . In this

case, there are no function calls on the right-hand side, and the complement function

only records which clauses are applied.

optz • ((let b in eh)i argj)k = Optz1 i

optz • (let x = (let b in e1h)i in e2j)k = Optz2 i

optz • (let v = e1h in e2i)j = Optz3

Tupling gives us the following.

optz⋗ ((let b in eh)i argj)k = ((let b in (eh argj)k)k,Optz1 i)

optz⋗ (let x = (let b in e1h)iin e2j)k = ((let b

in (let x = e1h in e2j)k)k,

Optz2 i)

optz⋗ (let v = e1h in e2i)j = ((case e1h of v →e2i)j,Optz3)

The function optz is non-linear because of duplication, which requires a bit of effort in

the inverting step. First of all, we separate non-linearity in expressions and annotations.

For duplicated expression variables, we can safely assume that they always hold the same

value, since an analysis only updates the annotations. For annotation variables, which

are updated individually, we choose one value among many. For example, consider anno-

tations as boolean values representing the presence of type errors; we have the following

put function.

optz< ((let b in (eh argj)k1)k2,Optz1 i)

= ((let b in eh)i argj)choose(k1,k2)

optz< ((let x = (let b in e1h)iin e2j)k,Optz2 i)

= (let x = (let b in e1h)iin e2j)choose(k1,k2)

optz< ((case e1h of v →e2i)j,Optz3)

= (let v = e1h in e2i)j

Here, the function choose is characterized as follows.

74 CHAPTER 4. LOOKING FROM THE LEFT

class T a where

choose :: (a, a)→ a

instance T Bool where

choose (x , y) = x ∥ y

Applying the putback transformation optz< to the type checked expression (we use T for

True and F for False), we get:

(case TrueF of y →

(case ((yF+1F)T,yF)F of (a,b) → (aF + 1F)F)F)F

which, together with the complement, produces

(let (a,b) = (let y = TrueF

in ((yF+1F)T,yF)F)F

in (aF + 1F)F)F

which maps the error to the source location that one expects. As mentioned before, this

treatment of duplication breaks consistency, but is reasonable for the application here.

4.4.2.2 Removing expressions

The most straightforward form of expression removal is dead code elimination. However,

this transformation is of limited interest in our application of mapping analysis results

of the transformed program back to the source, since there won’t be any analysis of

the discarded code. Nevertheless, dead code elimination may still be part of a series of

transformations, and so will need to be bidirectionalized.

A more intricate form of expression removal involves replacing an existing expression

with a new one. Common examples include beta reduction and variable substitution; beta

reduction directly reduces function applications, while substitution of variables is one of

the most effective ways of defacing a program. Since the source expressions are replaced

instead of discarded, it is necessary to map the analysis results of the replacement back

to the original. We demonstrate by adding clauses to the optimizing transformation seen

earlier.

optz (case (C e1h1 ... enhn)i of C x1 ... xn → ej; alts)k = e ′

where e ′ = subst ([(e1h1,x1), ..., (enhn,xn)], ej)

4.4. PROGRAM ANALYSIS RESULT REPORTING 75

optz ((λ x → eh)i argj)k = e ′

where e ′ = subst ((argj,x), eh)

The first clause above eliminates a case scrutiny when the constructor is known and

removes the dead alternatives, while the second clause performs a step of beta reduction.

Both cases rely on the substitution of variables, which is defined below.

subst ([], x) = x

subst ((e, v) : ss , x) | x ≡ v = e

subst ((e, v) : ss , x) = e ′

where e ′ = subst (ss , x)

The function subst takes a substitution (a list of key-value pairs) and replaces variables

in an expression that appear as keys. We use the notation v to denote the type vari-

able constructed from the name v . Note that we omit the boilerplate traversal of other

syntactic constructs of expressions and only highlight the case of variables.

optz • (case (C e1h1 ... enhn)i of C x1 ... xn → ej; alts)k

= Optz4 (subst• ([(e1h1,x1), ..., (enhn,xn)], ej)) alts i k

where e ′ = subst ([(e1h1,x1), ..., (enhn,xn)], ej)

optz • ((λ x → eh)i argj)k

= Optz5 (subst• ((argj,x), eh)) i k

where e ′ = subst ((argj,x), eh)

The complement function for optz records the eliminated dead code, whereas the key to

bidirectionalization lies in the undoing of substitutions.

subst• ([], x) = Subst1

subst• ((e, v) : ss , x) | x ≡ v = Subst2 v ss x

subst• ((e, v) : ss , x) = Subst3 (subst• (ss , x)) e v

where e ′ = subst (ss , x)

Tupling gives us the following.

optz⋗ (case (C e1h1 ... enhn)i of C x1 ... xn → ej; alts)k

= (e ′,Optz4 c alts i k)

where (e ′, c) = subst⋗ ([(e1h1,x1), ..., (enhn,xn)], ej)

optz⋗ ((λ x → eh)i argj)k

76 CHAPTER 4. LOOKING FROM THE LEFT

= (e ′,Optz5 c i k)

where (e ′, c) = subst⋗ ((argj,x), eh)

subst⋗ ([], x) = (x, Subst1)

subst⋗ ((e, v) : ss , x) | x ≡ v = (e, Subst2 v ss x)

subst⋗ ((e, v) : ss , x) = (e ′, Subst3 c e v)

where (e ′, c) = subst⋗ (ss , x)

Since both functions in this section are linear, the inverting step is therefore straightfor-

ward. Consider a variant of the result of previous transformations in the last section.

(case TrueF of y →

(case (yF,yF)F of (a,b) → (aF + 1F)F)F)F

A further step of transformation eliminates the scrutiny of the known constructor, and

type checking the translated code reports an error.

(case TrueF of y →(yF + 1F)T)F

Despite the drastic change in appearance, the putback function easily recovers the original

expression with the correct location of the error.

(case TrueF of y →

(case (yF,yF)F of (a,b) → (aF + 1F)T)F)F

4.4.2.3 Creating expressions

Program transformations very often turn programs into more verbose forms with sim-

pler constructs. A good example of this is desugaring. Consider the translation of list

comprehensions in Haskell seen in Section 4.1.

compr [eh | Truei]j = [eh]j

compr [eh | qi]j = lst

where lst = compr [eh | qi,Truej]j

compr [eh | bi,Q]j = (if bi then lst else []j)j

where lst = compr [eh | Q]j

compr [eh | p←li,Q]j = (let f x = case x of p → lst

→ []j

4.4. PROGRAM ANALYSIS RESULT REPORTING 77

in ((concatMapj fj)j li)j)j

where lst = compr [eh | Q]j

The translated code uses semantically simpler constructs and is necessarily more verbose.

For example, in the last case above, a generator is turned into a function that takes care

of the pattern matching and an invocation of the higher-order function concatMap for

the generation. This kind of creation is generally problematic for analysis result report-

ing, since the expressions involved may not exist in the source, and causes considerable

confusion. And this is the reason for the wild-spread of annotation duplication in the

above program, which signals the absence of clear connections between certain input and

output expressions. The complement function for compr is the following.

compr • [eh | Truei]j = Compr1 i

compr • [eh | qi]j = Compr2 (compr • [eh | qi,Truej]j)

where lst = compr • [eh | qi,Truej]j

compr • [eh | bi,Q]j = Compr3 (compr • [eh | Q]j)

where lst = compr • [eh | Q]j

compr • [eh | p←li,Q]j = Compr4 (compr • [eh | Q]j)

where lst = compr • [eh | Q]j

The tupling step is standard.

compr⋗ [eh | Truei]j = ([eh]j,Compr1 i)

compr⋗ [eh | qi]j = (lst ,Compr2 c)

where (lst , c) = compr⋗ [eh | qi,Truej]j

compr⋗ [eh | bi,Q]j = ((if bi then lst else []j)j,Compr3 c)

where (lst , c) = compr⋗ [eh | Q]j

compr⋗ [eh | p←li,Q]j = ((let f x = case x of p → lst

→ []j

in ((concatMapj fj)j li)j)j,Compr4 c)

where (lst , c) = compr⋗ [eh | Q]j

We deal with the duplications by ignoring the ones that do not have clear source origins.

compr< ([eh]j,Compr1 i) = [eh | Truei]j

compr< (lst ,Compr2 c) = [eh | qi]j

where [eh | qi,True−]j = compr< (lst , c)

78 CHAPTER 4. LOOKING FROM THE LEFT

compr< ([eh | bi,Q]j,Compr3 c) = [eh | bi,Q]j

where [eh | Q]− = compr< (lst , c)

compr< ((let f x = case x of p → lst

→ []−

in ((concatMap− f−)− li)−)j,Compr4 c) = [eh | p←li,Q]j

where [eh | Q]− = compr< (lst , c)

This treatment of duplication means whatever happens to those ignored annotations will

not be reflected in the source. However, we argue that since the transformations are

assumed correct, whatever type errors must arise from the source, and are unlikely to

show up exclusively in the ignored annotations, which represent expressions that do not

have clear source connections. For example, consider the ill typed quicksort given in the

beginning of this chapter. Though the error will involve the generated concatMap and

f whose annotations are ignored by the putback function, it is sufficient to reflect the

annotation h back to the source to get a good hint of the source of the error.

4.4.2.4 Fresh Variables

Up to now, we have only mentioned in passing that GHC avoids name capture by always

inventing fresh variables. As a matter of fact, the newly created function f above is

expected to have a fresh name. The primitive way of achieving this in pure functional

languages (circumventing the need for a global mutable state) is to pass a name generator

as an argument.

compr1 ([eh | Truei]j, n) = ([eh]j, n)

compr1 ([eh | qi]j, n) = (lst , n ′)

where (lst , n ′) = compr1 ([eh | qi,Truej]j, n)

compr1 ([eh | bi,Q]j, n) = ((if bi then lst else []j)j, n ′)

where (lst , n ′) = compr1 ([eh | Q]j, n)

compr1 ([eh | p←li,Q]j, n) = ((let n x = case x of p → lst

→ []j

in ((concatMapj fj)j li)j)j, n ′)

where (lst , n ′) = compr1 ([eh | Q]j, new n)

In this version, the name n is taken from the generator n, and a new generator is used

in the recursive call. A pleasant observation is that adding name generators to program

4.5. DISCUSSION 79

transformations does not complicate the bidirectionalization process, as shown in the

following complement function.

compr1 • ([eh | Truei]j, n) = Compr1 i

compr1 • ([eh | qi]j, n) = Compr2 (comprc1c ([eh | qi,Truej]j, n))

where (lst , n ′) = compr1 ([eh | qi,Truej]j, n)

compr1 • ([eh | bi,Q]j, n) = Compr3 (compr1 • ([eh | Q]j, n))

where (lst , n ′) = compr1 ([eh | Q]j, n)

compr1 • ([eh | p←li,Q]j, n) = Compr4 (compr1 • ([eh | Q]j, n))

where (lst , n ′) = compr1 ([eh | Q]j, new n)

This code is almost identical to the previous version. The name generators do not in-

fluence the structural traversal, and they are always used on the right-hand side. Thus,

adding them has no impact on the construction of complements. Since the generator is

not subject to updating in the view, the tupling and inverting steps are standard.

4.5 Discussion

As we have seen, the use of bidirectional programming for analysis result reporting is a

promising technique. Program analysis can now be performed at any stage of a transfor-

mation process, and the generated putback function is able to map the results back to

the source code. Our examples have demonstrated some of the most interesting kinds of

program transformations that happen in compilers. We are yet to conduct a survey on

DSLs. Nevertheless, we expect many cases to be less intricate than what we have seen.

For example, in a related work of handling unit tests specified in a DSL but executed in

a general purpose language (GPL) [WGM09], it is shown that even with a very simple

one-to-many assumption, where a line of DSL code always translates to multiple lines of

GPL code, considerable coverage can be achieved.

There has already been a body of work on improving type error message reporting

or even diagnosis [HHS03, HLvI03, SSW04]. Our proposal is not in competition, but

complements these. We do not study how existing type checking/inference algorithms

can be improved. Instead, we rely on the given results and try to map them to the source.

In particular, the system in [SSW04] is centred around the identification of sets of program

locations contributing to a particular error, and marks the locations by annotating the

AST; our proposal in this chapter applies directly. For example, consider the previously

seen example of reducing the expression

80 CHAPTER 4. LOOKING FROM THE LEFT

(let (a,b) = (let y = True

in (y + 1,y))

in (a + 1))

to

(case True of y → y + 1)

Applying the technique in [SSW04] to the reduced expression above produces

(case TrueT of y →(yF + 1F)T)F

where there are two locations marked as a minimal set that contributes to the error.

Running the program transformation backwards gives us the following.

(let (a,b) = (let y = TrueT

in ((yF+1F)T,yF)F)F

in (aF + 1F)F)F

which is exactly the result we will get by applying the same diagnosis technique directly

to it.

4.5.1 Reuse of Existing Code

Our proposal comes with a small price: the transformations must operate on annotated

ASTs, and so are better suited for fresh developments.

In the case where an unannotated AST and its transformation already exist, it will be

highly desirable to reuse them. The folklore way, consolidated in [vSMJ10], of increasing

genericity of datatypes is through the so-called open recursion form.

data ExpF r = Var String

| INT Int

| Lam String r

| App r r

The above definition is often known as the base functor of the datatype Exp (see Sec-

tion 4.4.1), where a type argument is abstracted and awaits filling in. As a result, the

shape of the datatype is fixed and can be reused for different instantiations. For example,

the original Exp datatype can be constructed through the following fixed-point.

4.5. DISCUSSION 81

newtype Exp = Ex (ExpF Exp)

Annotations can be added at every level of recursion in the type now.

newtype ExpA = ExA (Ann,ExpF ExpA)

The job of adding annotations to the expression type is now a one-liner. However, this

approach does require foresight of the programmer to design for adaptation from the

very beginning. Moreover, the mandatory constructors introduced by using newtype

in Haskell, such as Ex and ExA, are inconvenient to work with. The reuse of function

definitions is restricted to the recursion pattern, say regular structural recursion. This is

not suitable for our application: most transformations’ recursion patterns are not regular,

and even when they are, it is unlikely to be made explicit with a higher order function

fold to enable the technique above.

This discussion is also related to the refactoring framework developed in Chapter 3,

where a program manipulating bare ASTs could be refactored into one handling anno-

tated ASTs. Nevertheless, the programmer must re-implement the functions that per-

forms annotation propagations, such as the program transformations we have seen in this

chapter, but may hope that other functions not concerning the annotations are spared

from the change. If we see the bare ASTs and annotated ASTs as the abstract and

concrete representations respectively, the abstraction is a fold with a projection function

that strips the annotations at all levels; and its right-inverse annotates the structure with

default values. Strictly speaking, this projection function that removes the annotations

cannot be implemented in rinv, because annotations are not “redundant” information

that can be derived from the ASTs. A pragmatic way to get around this problem is to

make sure that any annotation setting operations, such as type checking in our applica-

tion, are invoked towards the end of an execution and finish without converting back to

the abstract representation.

4.5.2 Syntactic vs. Semantic Bidirectionalization

In the previous sections, we have spent much effort extending the original syntactic

bidirectionalization technique and studying its updatability property. The investigation

is certainly interesting on its own, but given that the semantic approach provides sufficient

updatability for our purpose too, there is an alternative.

Generally speaking, the semantic approach [Voi09, Section 2.1.2.2] has the advantage

of not requiring the source code of the transformations, but at the cost of run-time

82 CHAPTER 4. LOOKING FROM THE LEFT

performance: the dictionary look-ups are not expected to be cheap. Assuming linear

time complexity for retrieval functions, the semantic approach produces putback functions

with complexity O (n × lg n), which is significantly worse than the linear time putback

function generated by our approach. In our application, since transformations (retrieval

functions) are expected to be implemented freshly based on the annotated expressions,

the benefit of semantic bidirectionalization does not really apply.

In either case, our use of bidirectional programming suggests a wider applicability

of the techniques, other than the classic view-updates of databases. As a matter of

fact, many of the datatype-based language designs [MHT04b, MHT04a, HMT04, PC10],

including the two that have been mentioned above [MHN+07, Voi09], have already shown

the potential of being more general-purpose. But study of their applications appears to

lag behind. We believe the results in this chapter may help to shape the future direction

of bidirectional language design.

Chapter 5

Looking from the Top

83

84 CHAPTER 5. LOOKING FROM THE TOP

5.1 Introduction

We have seen two examples in the previous chapters where the update requirements play

a central role in the design of bidirectional languages. In particular, for program analysis

result reporting in Chapter 4, a view, being the annotated translated code, is only changed

in a very specific way, whereas for refactoring pattern matching in Chapter 3, program-

ming with abstract representations allows general updates that potentially change the

type of a view. Both of the above are specific problems and demand specific solutions.

In this chapter, we take a different perspective by looking at how update information can

be used to improve bidirectional programming in general.

So far, we have used the word “update” to describe both changes in views and those

in sources. In this chapter, we restrict the use of update to the transformed effect on

a source as a result of an edit to the view. Despite being fundamental to bidirectional

programming, there is no universal agreement on what constitutes an edit. Roughly

speaking, opinions are divided as to whether one should look into the mechanism of an edit

or simply its result. Translated into language design, one can either take an operation-

based approach considering an editing function that changes a view, or a state-based

approach that only sees the unedited and edited views. It happens that the majority

of existing bidirectional systems take the latter, due to its mathematical simplicity and

good compatibility. The bidirectional laws we have discussed at the beginning of the

thesis are specified in a state-based system. Since only the updated view is required for

the putback function, it is easier to design a bidirectional system independently from

any editing system. On the other hand, a state-based approach necessarily discards

information about an edit, and only tries to reverse-engineer it later by performing a kind

of difference analysis on the two view values. Consequently, the run-time performance

of state-based backward functions is bound by the linear barrier: even a small change to

the view implies a complete re-traversal.

Meertens [Mee98, Section 2.1.1.4] observed that to maintain constraints between two

structures, it is useful to know how a view is edited. Consider the scenario that two lists

are connected by a mapping relation (i.e. one is the result of applying function map to

the other, and vice versa); an edit to one list, say deletion at position indexed by n, can

be translated to a deletion at the corresponding position in the other list. In this setting,

a lot more information about the editing is made available to the bidirectional system,

including where (the position index) and what (deletion) has changed. As a result, the

updating process could be more straightforward compared to a state-based approach,

5.1. INTRODUCTION 85

where we only know that one list is changed into another list that is one element short,

which is fairly ambiguous. In addition, having an operation for source update potentially

achieves better-than-linear runtime performance. This is particularly attractive given

that “updates typically change a small part of the document and leave most of the data

fixed” [Che08] and “the time to process an edit operation should be proportional to the

size of the change, and (ideally) independent of the total size of the document” [Ber09].

If run-time performance is the only concern, the “where” part of the knowledge of an

update is the key; once the update-affected fragment is picked out, a state-based approach

could perform the changes as efficient as an operation-based counterpart, without the

undesired complications that the latter brings.

In this chapter, we propose a novel change-based framework for bidirectional program-

ming. Instead of inventing from first principles to add into the already flourishing group

of bidirectional systems, we focus on the preservation and propagation of user-provided

editing information. In a sense, our proposal can be seen as a generic optimiser of some

given state-based bidirectional systems: we exploit any locality in the editing of views,

and try to translate it into incrementality in the updating of sources. Such preservation

of locality obviously does not hold for arbitrary transformations. Identifying the seman-

tic properties required forms one of the major technical contributions of this chapter.

The ultimate goal of our system is to reduce an update of a (large) structure into one

of a (small) delta, and then outsource the hopefully much smaller problem to existing

state-based systems. This step positively impacts the run-time behaviours of putback

functions as well as the quality of updates, both due to the newly gained incrementality:

less “damage” to the source implies less processing and better results.

Our proposal aims at modularity: there is a clearly defined interface that decouples

any editing system from our framework; and different state-based bidirectional systems

can be plugged in as black-boxes, whatever their manifestation as purpose-built bidirec-

tional languages or syntactic/semantic transformations of unidirectional program. As a

result, a change-based bidirectional system arises automatically from a given state-based

one, while preserving the bidirectional properties of the latter.

5.1.1 A Small Example

Suppose we have some source data as a binary tree:

data Tree = Tip

| Node Int Tree Tree

86 CHAPTER 5. LOOKING FROM THE TOP

aTree = Node 100 (Node 36 (Node 7 Tip Tip) Tip)

(Node 58 (Node 40 Tip Tip) (Node 9 Tip Tip))

We may want to view it as a list. It can be done with a retrieval function that performs

an in-order traversal to produce a list view.

Now, suppose the number 40 is deleted from the view. A state-based putback function

will take the edited view [7, 36, 100, 58, 9] and try to construct a tree without the deleted

element; and hopefully the new source remains similar to the original one so that unneces-

sary changes are kept to a minimum. Note that we have deliberately kept all the functions

abstract because our proposal is not dependent on any particular implementation.

The method described above takes effort proportional to the size of the data, not to the

size of the change. Assuming a functional cons-list, the deletion of 40 involves traversing

the view list to the location of the deletion, and changes only the sublist [40, 58, 9]

rooted at that location; a more efficient approach is to update only the source subtree

(Node 58 (Node 40 Tip Tip) (Node 9 Tip Tip)), which is responsible for generating the

view fragment [40, 58, 9]. That is to say, the bidirectional updating should be incremental.

Better still, in the case of lists, where a deletion is local and does not induce subsequent

changes to a substructure, a more refined analysis may discover that only the subtree

(Node 40 Tip Tip) is really affected by the edit, and updating it is sufficient.

In the sequel of the chapter, we will discuss in detail how retrieval functions that

support incremental updates can be identified; and a constructive method for performing

the said update in a change-based framework. Assuming a fairly balanced source tree, the

complexity of our system is O (m × log n + f m) where n is the size of the source tree,

m is the size of the affected source part, and f is the complexity function of a state-based

putback function. The update itself takes time proportional to m; but it takes m × log n

time to locate the target source location.

5.2. THE OVERALL SETTING 87

Figure 5.1: The Context-Focus Representation

5.2 The Overall Setting

We consider typed tree-structured data represented as polynomial datatypes. We assume

all trees are labeled by uniquely identified elements; while the elements are editable, their

identifiers are immutable and non-inventible by retrieval transformations. In this chapter,

the element values in labels are not important, so we will simply say labels when we mean

the unique identifiers of them.

5.2.1 Tree Navigation

To gain access to a subtree of interest, we navigate from the root following a given path;

the path is usually incomplete, in a sense that it runs out before reaching a terminal leaf.

When this happens, the tree that is being travelled is left in a state with two structures

separated by the point where the path finishes: a lower one, being a subtree, is the current

focus ; and an upper one is the context of the focus (see Figure 5.1). For well-typedness,

we only consider valid paths that lead to recursive components. As an example, for the

binary tree datatype above, the focus can only descend to either the left or the right

subtree, but not the label.

We represent a context as a tree with a hole in it, denoting the location of the subtree

that is separated from it. For binary trees, contexts can be defined as the following:

data Ctx = Hole

| LH Int Ctx Tree

| RH Int Tree Ctx

88 CHAPTER 5. LOOKING FROM THE TOP

It is not hard to see that the context type follows directly from the structure of the tree.

As a matter of fact, contexts are type-indexed data types [HJL04] and can be defined

generically [HJ01, McB01].

In general, for any source type s , we can select its subtrees by their locations:

child :: s → Int → s

and a function zoom opens a tree by focusing on a subtree deep inside the source following

a path:

zoom :: s → [Int]→ s

zoom = foldl child

Subtrees of a tree form a subterm ordering; and we are only interested in non-empty

trees (i.e., trees with labels). We use a function label :: t → Labels , where t is the type of

the tree and Labels is the type of label sets, to collect all the unique label identifiers in

a tree; the identifiers could be the elements themselves or some additional indices. Very

often, we use a short hand ⟨x ⟩ to denote label x .

Definition 5.1 (Labeled-Subterm Ordering) Given trees x and y such that ⟨x ⟩ ≠

∅ and ⟨y⟩ ̸= ∅, we say x is a strict subterm of y, written as x ≺ y if

∃i .x = zoom i y ∧ ⟨x ⟩ ⊂ ⟨y⟩

We say x is a subterm of y, written as x 4 y, if x ≺ y ∨ x = y. We say a subterm r

is trivial if ⟨r⟩ = ∅. 2

Throughout this paper, we assume non-trivial subterms unless otherwise stated. Note

that in addition to structural subterm ordering specified by tree opening, we require a

smaller tree to always contain less labels. In another word, we do not consider trees

extended with “junk” structures that are not labeled. As a remark, the situation of

having a bigger tree without supplying new labels will not occur with our representation

of binary trees, but has to be dealt with in general polynomial datatypes.

Fact 5.2 (Distinct Subterms) Because tree nodes are uniquely labelled, when r 4 t

(and r is non-trivial), then r is in fact at the end of a unique path; that is, there is a

(partial) function location :: t a → t a → Path satisfying

location t r = p ⇔ r = zoom t p

We say that “r is at depth n in t” when n = length (location t r). 2

5.2. THE OVERALL SETTING 89

Definition 5.3 (Orderedness) We say x and y are ordered, written as x ∼ y, if

x 4 y ∨ y 4 x . 2

Note that the above definition shall not be confused with a equivalence relation where

a conjunction, instead of a disjunction, is used in the premise. Given orderedness, the

subterm relation is equivalent to the subset relation among label sets.

Fact 5.4 x 4 y ⇔ (⟨x ⟩ ⊆ ⟨y⟩ ∧ x ∼ y)

2

And the label sets of two ordered trees overlap.

Fact 5.5 x ∼ y ⇒ ⟨x ⟩ ∩ ⟨y⟩ ̸= ∅ 2

We use two infix operators to obtain the context that is left out by a tree opening,

and close a context with a focus to recover the source tree. The two operators are of the

same precedence and associate to the right.

(/) :: s → s → Ctx s

(⋖) :: Ctx s → s → s

The closing function (⋖) attaches a tree to the hole in a context. For binary trees, it can

be defined as the following:

(⋖) :: Ctx → Tree → Tree

Hole ⋖ t = t

LH a c rt ⋖ t = Node a (c ⋖ t) rt

RH a lt c ⋖ t = Node a lt (c ⋖ t)

The result of a closing extends the input tree, which is captured by a monotonicity

requirement.

Requirement 5.6 (Monotonicity) y 4 x ⋖ y 2

Interested readers may refer to the discussion of one-hole context in [McB01] for a more

formal treatment of the closing function.

The subtracting function (/) forms a Galois connection with (⋖), with equality as the

orderings:

Requirement 5.7 (Galois Connection) Given that x 4 y, then c⋖x = y ⇔ y/x = c

2

90 CHAPTER 5. LOOKING FROM THE TOP

and can be nested

Requirement 5.8 (Nesting) Given that x 4 y 4 z , then

(z / y)⋖ (y / x)⋖ w = (z / x)⋖ w

2

From the Galois Connection, we can easily derive that (/) and (⋖) cancels each other.

Fact 5.9 (Cancellation) Given that y 4 x , then (x / y)⋖ y = x and (c ⋖ x) / x = c.

2

The above requirements completely specifies the subtracting function (/); for binary trees,

it can be defined as the following:

(/) :: Tree → Tree → Ctx

t / t ′ = case dig t (root t ′) of Just c → c

dig :: Tree → Int → Maybe Ctx

dig (Node a lt rt) b | a ≡ b = Just Hole

| otherwise = case (l , r) of (Just c,)→ Just (LH a c rt)

(, Just c)→ Just (RH a lt c)

(,) → Nothing

where l = dig lt b

r = dig rt b

dig Tip = Nothing

5.2.2 Local Editing

An editing function is a function with the same input and output types edit :: v → v . We

require all editing functions to be total so that they can always be applied to a subterm

of a view. Locality of an editing function is in some sense context-independent, where an

editing function can be promoted up through a tree outside the subterm that is affected

by the edit.

5.2. THE OVERALL SETTING 91

Definition 5.10 (Locality) We say an editing function e on a view v is local to a

subterm u0 of v if

∀u.u0 4 u 4 v ⇒ e v = (v / u)⋖ e u

2

In the above definition, applying the local editing function e to any subterm u of v no

less than the affected subterm u0 has the same effect as applying the function to v .

For example, as we have seen in the binary tree example, deleting 40 from the sublist

[40, 58, 9] and combining the result with the context [7, 36, 100] is the same as deleting

40 from the complete view [7, 36, 100, 40, 58, 9] (and then combining the result with the

trivial context []). There is certainly an ordering among different levels of locality, based

on the ordering of u0 , which falls out from the above definition. In this sense, a context-

sensitive (path-based) editing function, such as deleting the root of the input tree, is

never good, as the u0 will have to be v . We will discuss the option for remedying this in

Section 5.6.1.

In our proposal, the subterm u0 that an editing function is local to is user-provided;

and our technique is based on the assumption that u0 is significantly smaller than v . We

pair the editing function with an additional function that returns the affected subterm.

data Edit v = E {edit :: v → v , affect :: v → v }

such that for a given v , edit is local to affect v .

5.2.3 Changed-based Bidirectional Systems

A change-based bidirectional system consists two total functions: a retrieval function

f :: s → v from source to view, and a putback function f <ch :: Edit v → s → s . We only

consider retrieval functions that are regular structural recursions, because they are more

likely to benefit from our proposed improvement. We will discuss this choice in detail in

Section 5.3.2. We also rule out retrieval functions involving duplication of data, so that

labels’ unique identifications are preserved by the retrieval transformation. The putback

function f <ch is higher-order, in contrast to f <st :: (v , s)→ s in a state-based setting. Thus

f <ch no longer constructs an updated source from an edited view, but from the original

source; any information in the edited view can be derived from the editing function and

the original source. In contrast to an operation-based approach, f <ch is not dependent on

the actual editing functions.

92 CHAPTER 5. LOOKING FROM THE TOP

Bidirectional laws semantically equivalent to those developed for state-based bidirec-

tional systems can be specified in the new setting.

Consistency f (f <ch edt s) = edit edt (f s)

Acceptability f <ch (E {edit = id }) = id

Undoability f <ch (edt {edit = (edit edt)◦}) ◦ f <ch edt = id .

Moving from a state-based system to a change-based system potentially improves run-

time performance as we exploit the locality of updating. We look into the details in the

next section.

5.3 Locality Preservation

Incremental update can be achieved if the locality of an editing function is propagated to

the source level. Specifically, we are looking for a subterm in the source that is used for

generating the affected subterm in the view, which implies matching of the structures of

the source and the view. Figure 5.2 shows the pairing of source/view subterms: the idea

is that subterm v1 of the view depends only on subterm s1 of the source, v2 ⋖ v1 only

on s2 ⋖ s1, and so on, and finally vn ⋖ ...⋖ v2 ⋖ v1 only on sn ⋖ ...⋖ s2 ⋖ s1. This kind

of locality preservation is apparently determined by the retrieval function, which defines

the connection between a view and its source.

5.3.1 Alignment

Definition 5.11 (Alignment) Given a retrieval function f , we say f aligns at subterm

r of s if

∀t .f ((s / r)⋖ t) = (f s / f r)⋖ f t

We call r an alignment position in s with respect to f . 2

Very often, when the retrieval function f and source s are known from the context, we

simply call r an alignment position, and say f aligns at r . The above definition not

only states the matching of source subterms r and view subterm f r , but also a kind of

isolation between them. An alignment position can be seen as a resistive barrier between

5.3. LOCALITY PRESERVATION 93

Figure 5.2: Source-View Alignment

the construction of a subterm and its context, where information does not flow through.

At an alignment position, f r is independent of s / r and f s / f r is independent of t .

The significance of alignment positions is that they capture the mapping between the

locality to f r in the view and the locality to r in the source. As a result, if f r can be

locally edited, then r can be locally updated, as shown in the following definition:

f < ((f s / f r)⋖ v ′, s) = (s / r)⋖ f <st (v ′, r)

The above defines a new putback function based on an existing one. Basically, to putback

an edited view (f s / f r) ⋖ v ′, we only need to putback v ′ (the edited f r), provided f

aligns at r . To show that the above transformation is correct, we prove the consistency

of f <.

f (f < ((f s / f r)⋖ v ′, s))

= {Definition of f < }

f ((s / r)⋖ f <st (v ′, r))

= { f aligns at r }

(f s / f r)⋖ f (f <st (v ′, r))

= {Consistency of f <st }

(f s / f r)⋖ v ′

94 CHAPTER 5. LOOKING FROM THE TOP

Other bidirectional properties hold as well. We postpone proofs of them until Section 5.4,

where the complete solution is presented.

Not all view subterms match exactly with a source subterm. Sometimes, we need to

resort to a looser fit.

Definition 5.12 Given a retrieval function f , we say an alignment position r covers v ′

if v ′ 4 f r .

We now show some example transformations that preserve different degrees of align-

ment. Consider a function that returns the mirror image of a tree.

mirror :: Tree → Tree

mirror Tip = Tip

mirror (Node a l r) = Node a (mirror r) (mirror l)

Every subtree in the source is an alignment position, because the constructions of the

view and of the source coincide. At the other end of the spectrum, consider a function

that prunes a tree based on the parity of the sizes of the subtrees.

trim :: Tree → Tree

trim Tip = Tip

trim (Node a l r)

| even s = Node a (trim l) Tip

| odd s = Node a Tip (trim r)

where s = size l + size r

In this case, no alignment position exists, except the trivial one that takes the complete

source, because changes in subtrees propagate up through the structure and cannot be

localized.

Another example is a function that extracts the spine of a tree.

spine :: Tree → [Int]

spine Tip = []

spine (Node a l r) = a : spine r

In this case, all subterms of the source are alignment positions, though the left-trees,

which always correspond to the empty list in the view, are not very interesting.

5.3. LOCALITY PRESERVATION 95

5.3.2 Exploiting Regularity

It is obvious that change-based putback functions only make sense when there are plenty

of alignment positions to choose from, as alignment positions represent matching of source

and view construction. For a recursive retrieval function, this suggests a kind of structural

recursion pattern. Though not being a sufficient condition, regularity of the recursive

pattern is likely to positively impact the availability of alignment positions; and with more

alignment positions available, the chance of finding a small but sufficient one increases.

Thus, we focus on regular structural recursions – functions that can be implemented as

folds. For a regular structural recursion, a source is deconstructed in a uniform way,

which leaves the fold body to determine whether the construction of a view matches up.

To explain the intuition behind good alignments, let’s revisit the function spine. For

non-empty input tree, the fold deconstructs it into two source subterms l and r and a

single label a, whereas the fold body discards l and adds the label a to spine r . The

recursive calls, such as spine r , always produce a view subcomponent (spine r) from

a source subterm (r); whether the produced view subcomponent is made into a view

subterm by the fold body decides the alignment. For example, subcomponent spine r is

a subterm of a : spine r , which makes r an alignment position. In this case, any edit local

to spine r can be addressed by updating r . In contrast, if we define spine as

spineR (Node a l r) = spineR r ++ [a]

then the view construction is the “opposite” of the source construction, with the parent

label a at the bottom (end) of the list. This misalignment can be picked out by observing

that spine r does not form a subterm in the view. Any edit to the view affects a sublist

including a, which implies an update to the complete source tree.

In general, for a view subterm to be covered by alignment, it must exclusively originate

from a view subcomponent. For example, consider the following variant of mirror

mirror ′ (Node a l r)

| even s = Node a (mirror ′ r) (mirror ′ l)

| odd s = Node a (shuffle (mirror ′ r)) (mirror ′ l)

where s = size l

where shuffle shuffles the labels in a tree. The right subtree of the view is the same as

mirror ′ l while the left one has neither subcomponents as its exclusive origin. Moving up-

wards does not help; at any level, the construction of the left subtree requires information

96 CHAPTER 5. LOOKING FROM THE TOP

external to the subcomponent mirror ′ r . As a result, source subterm l is an alignment

position, but not r ; and editing to the left part of the view tree cannot be addressed by

updating locally in the source.

We formalize the above observation into a condition of fold bodies. We work in the

setting of total functions, and call the initial F -algebra of the source datatype in. It is

known that there is a deconstructor in◦ that is in’s inverse, which allows us to derive the

following evaluation rule from the universal property.

Fact 5.13 (Evaluation Rule) Given a retrieval of function f with body b and the base

functor F of the source type, we have following evaluation rule of f

f = b ◦ F f ◦ in◦

We use a function arity :: F a → Int to compute the arity of a F -structure by counting

the number of recursive components in it. For example, consider a non-empty binary

tree t , we have arity (in◦ t) = 2. We index all the recursive components with unique

integers; and selects them through a projection function select :: F a → Int → a. As a

short-hand, we write xi for select x i . The selection function has a naturality property.

Fact 5.14 (Naturality) Given a retrieval function f , source s and the base functor F

of the source type,

f (in◦ s)i = (F f (in◦ s))i

for any i. 2

We write x[i 7→ t] for substituting xi by t in x , which binds tighter than function

applications. When applied to F -structures, substitution can be related to subtraction

of subterms.

Fact 5.15 Given trees s and t,

in (in◦ s)[i 7→ t] = (s / (in◦ s)i)⋖ t

for any i. 2

The condition that a retrieval function must satisfy is stated below.

5.3. LOCALITY PRESERVATION 97

Definition 5.16 (Well-aligning) We say a retrieval function body b is well-aligning if

∀u 4 b x .∃i .u ∼ xi ∧ ∀w .b x[i 7→w] = b x / xi ⋖ w

for any x such that arity x ̸= 0. 2

We do not worry about the case when there is no subcomponent in x (i.e.,arity x = 0),

as they are terminals in construction, and will not affect alignment. There are two parts

in the condition: the first part (u ∼ xi) enforces the matching of the construction of the

source with the construction of the view, manifested as an ordering relationship between

u and xi ; the second part (∀w .b x[i 7→ w] = b x / xi ⋖ w)) restricts b to be non-strict

in any subcomponents that match view subterms, so that they can be changed without

affecting the execution of b. It is important that the non-strictness requirement only

applies to selected subcomponents; some, that are sufficient to cover all the subterms of

b x , are taken as opaque blocks while leaving the rest to be broken up for gluing the

blocks.

Let’s look at a few more examples.

g1 (x , xs , ys) = [x] ++ xs ++ ys

g2 (x , xs , ys) = xs ++ [x] ++ ys

g3 (y , xs , ys) = xs ++ ys ++ [y]

These three functions correspond to individual cases of the fold bodies for traversing

binary trees in pre-, in-, and post-order respectively. There are two inputs to the functions

that are view subcomponents, namely xs and ys . Functions g1 and g2 are well-aligning,

ys is ordered with all the view subterms, whereas g3 is not.

Having the view subcomponents and view subterms ordered enforces that the con-

structions of source and view are in the same “direction”, but not the independence of

the subcomponents. Consider the following function that keeps one list of two, based on

the size of one of them.

g4 (x , xs , ys)

| even (length xs) = [x] ++ ys

| otherwise = [x] ++ xs

In this case, though all the view subterms are ordered with some view subcomponent, it

is wrong to conclude that edits to subterms xs and ys can be dealt with locally. If the

size of xs changes, function g4 may behave differently.

98 CHAPTER 5. LOOKING FROM THE TOP

On the other side of the information flow, we do not allow the computation of a

subcomponent to be influenced by its context either. Consider the following example.

g5 (x , xs , ys) = xs ++ [x] ++ reverse ys

The subcomponent ys is changed by the function; and its manifestation in the view

depends on its context, which decides how many times reverse is applied to it. In this

case, though edits remain local to the subcomponent, it is difficult to reconstruct its

source, since we don’t know exactly what transformation the subcomponent has gone

through. For these reasons, both g4 and g5 won’t form well-aligning fold bodies for

binary trees; and the well-aligning condition is designed to rule out both the above

scenarios.

Generalizing the definition to the semantics of transformations, we say that a retrieval

function is well-aligning if all cases of its body are well-aligning: preorder , inorder , unzip,

mirror , spine, filter , map etc. are examples of well-aligning retrieval functions, while

postorder 1 and trim are not.

The well-aligning property guarantees the availibility of alignment positions; and we

can state a declarative result about how they may be found.

Theorem 5.17 Given a well-aligning retrieval function f such that f s = v, we have

that f aligns at subterm r of s if there exists a non-trivial subterm u of v such that

u 4 f r . 2

The well-aligning condition tells us clearly that some selected subcomponents become

subterms in the view; and the source subterms producing the selected subcomponents

are alignment positions. The key to proving Theorem 5.17 is to establish the fact that

subcomponent f r is among those selected due to the premise u 4 f r ; this can be

achieved by connecting the unique labels in u with those in f r . As preparation for

formally proving Theorem 5.17, we state some properties regarding labels of trees under

transformation.

We use Labels as the type of label sets. A function

labF :: F Labels → Labels

unions all label sets in a F -structure. Note that labF forms an algebra, so that the label

extraction function label (also written as ⟨·⟩) can be defined in term of it: labelµF =

1We will discuss how this function can be made well-aligning in Section 5.5.

5.3. LOCALITY PRESERVATION 99

fold labF . We often omit the type subscript when it is clear from the context, and only

use lab and label . The function lab has the following properties (where as a shorthand,

we write ‘⟨x ̸=i⟩’ for ‘lab (F labels x)[i 7→∅]’).

Fact 5.18 (Union) Given x :: F µG, for any i,

⟨x̸=i⟩ ∪ ⟨xi⟩ = ⟨x ⟩

2

Fact 5.19 (Disjoint) Given s :: µF , for any i,

⟨(in◦ s) ̸=i⟩ # ⟨(in
◦ s)i⟩

where x # y denotes that x ∩ y = ∅.

2

(Note that (x ⊆ y) ∧ (y # z) ⇒ (x # z) by monotonicity of intersection, so we allow

ourselves to write derivations of the form “w ⊆ x # y ⊇ z”, with a chain of inclusions,

a disjointness, and a chain of containments, and conclude that w # z .)

As mentioned at the beginning of Section 5.2, one important assumption about re-

trieval functions is that they do not invent labels.

Requirement 5.20 (Non-invention of Labels) Given a retrieval function f with body

b and the base functor F of the source type, we have

∀x .⟨b x ⟩ ⊆ ⟨x ⟩

and

∀s .⟨f s⟩ ⊆ ⟨s⟩

2

An important consequence of the fact that retrieval functions do not invent labels is

that labels cannot reappear after they have been dropped during the construction of a

view. Conversely, if a label set ⟨v⟩ has been generated after processing subterm r of t

by the retrieval function f (that is, r 4 t and ⟨v⟩ ⊆ ⟨f r⟩), and ⟨v⟩ is still present

after processing t itself (that is, ⟨v⟩ ⊆ ⟨f t⟩), then ⟨v⟩ is present at every intermediate

stage too (⟨v⟩ ⊆ ⟨f s⟩ for every s such that r 4 s 4 t . This is a kind of “convexity”

property of label sets.

100 CHAPTER 5. LOOKING FROM THE TOP

More importantly in what follows, a similar result holds for subterms, rather than

their projections to label sets; but for this, we need the additional assumption that the

retrieval function f is well-aligning. The primary result (Corollary 5.22) is a convexity

property for terms: given sources r , t with r 4 t such that v 4 f r and v 4 f t , then

also v 4 f s for any s such that r 4 s 4 t . (In fact, v 4 f t is not strictly required;

⟨v⟩ ⊆ ⟨f t⟩ suffices.) The essential step (Lemma 5.21) is the one from the outermost

term t to one of its immediate children: if view subterm v shows up after processing a

subterm r within the ith child (in◦ t)i of t , and v is still present after processing t , then

v must have come from the ith child: v 4 f (in◦ t)i . Note that, for both these results,

we make use of our implicit assumption that v is non-trivial.

Lemma 5.21 (Maintaining terms) Suppose a well-aligning retrieval function f = fold b.

For source terms r , t with r 4 (in◦ t)i , if v 4 f r and v 4 f t , then also v 4 f (in◦ t)i .

Proof:

Let x = F f (in◦ t), so that f t = b x and f (in◦ t)i = xi . Since b is well-aligning, and

v is a non-trivial subterm of b x , there exists a j such that v ∼ xj = f (in◦ t)j . In fact,

this j must be i :

⟨v⟩

⊆ { labels of subterms (Fact 5.4); v 4 f r , by assumption }

⟨f r⟩

⊆ { f does not invent labels }

⟨r⟩

⊆ { r 4 (in◦ t)i ; Fact 5.4 again }

⟨(in◦ t)i⟩

{disjointness of labels }

⟨(in◦ t) ̸=i⟩

⊇ { f does not invent labels; monotonicity of intersection }

⟨(F f (in◦ t)) ̸=i⟩

= {definition of x }

⟨x ̸=i⟩

and so ⟨v⟩ # ⟨x̸=i⟩, and hence ⟨v⟩ ⊆ ⟨xi⟩ by disjointness of labels. Finally, v ∼ xi and

⟨v⟩ ⊆ ⟨xi⟩ imply v 4 xi , by Fact 5.4. 2

5.3. LOCALITY PRESERVATION 101

Corollary 5.22 (Term convexity) Suppose a well-aligning retrieval function f = fold b.

For source terms r , t with r 4 t , if v 4 f r and v 4 f t , then also v 4 f s for every

s such that r 4 s 4 t .

Proof:

Proof by induction over the length of location t r . The base case is when the path is

empty, so r = t ; then the lemma is trivially true. For the inductive case, assume the

statement is valid for paths of length n. Suppose that r 4 t , and that r is at depth

n + 1 in t (so that r 4 (in◦ t)i for some unique index i , and location (in◦ t)i r has

length n), and that v 4 f r and v 4 f t . By Lemma 5.21, we get v 4 f (in◦ t)i ; then

by induction we get v 4 f s for every s with r 4 s 4 (in◦ t)i too; and the final case

s = t trivially holds. 2

Theorem 5.17 follows directly from the following result: given a well-aligning get

function f , and sources r ,s such that r 4 s , if there exists any view subterm v such that

v 4 f r and v 4 f s , then f aligns at subterm r of s . (Again, we assume that v is

non-trivial.)

Lemma 5.23 (Get alignment) Given a well-aligning retrieval function f , sources r , t

with r 4 t , and view v such that v 4 f r and v 4 f t , then f aligns at subterm r of t.

Proof:

Proof by induction over the length of location t r . The base case is when the path is

empty; then t = r and the theorem is trivially true (since f necessarily aligns at the root

t of source t). For the inductive case, we assume that the statement is valid for paths of

length n; we are given terms r , t with r 4 t and r at depth n + 1 in t , and a term v

with v 4 f r and v 4 f t , and we have to show that f aligns at subterm r of t .

Suppose that r is within the i ’th child of t , that is, r 4 s where s = (in◦ t)i . Then

by Corollary 5.22, we have v 4 f s , and by induction, f aligns at subterm r of s . Let

x = F f (in◦ t), so that f t = b x and f (in◦ t)i = xi . Because b is well-aligning and

v4b x , there exists a j such that v ∼ xj and b x[j 7→w] = b x /xj ⋖w for any w . In fact,

that j must be i , by the same argument as in the proof of Lemma 5.21. In particular,

f s = xi 4 b x , a fact that we shall use below. Finally, we show that f aligns at subterm

r of t . For an arbitrary source term p, we have:

f (t / r ⋖ p)

= { since r 4 s 4 t }

f (t / s ⋖ (s / r ⋖ p))

102 CHAPTER 5. LOOKING FROM THE TOP

= {Fact 5.15—s = (in◦ t)i }

f (in (in◦ t)[i 7→ (s / r ⋖ p)])

= { evaluation rule for f = fold b }

b (F f (in◦ t)[i 7→ (s / r ⋖ p)])

= {naturality of select }

b (F f (in◦ t))[i 7→ (f (s / r ⋖ p))]

= { b is well-aligning; discussion above }

b (F f (in◦ t)) / f (in◦ t)i ⋖ f (s / r ⋖ p)

= { evaluation rule for f again; s = (in◦ t)i }

f t / f s ⋖ f (s / r ⋖ p)

= { induction }

f t / f s ⋖ (f s / f r ⋖ f p)

= {nesting }

f t / f r ⋖ f p

2

So far, we have established well-aligning as a sufficient condition for the availability of

alignment (Definition 5.16), and a declarative result about how alignment positions can

be found (Theorem 5.17). Next, we move on to devise a constructive method of finding

alignment positions, and deriving a change-based putback function based on this method.

5.4 Change-Based Putback Functions

Our derivation of putback functions is divided into three steps: (i) finding an alignment

position covering the edited view subterm; (ii) using a state-based putback function to

map the edited view subterm to a source subterm; (iii) merging the original source context

with the updated source subterm.

Step (i) is the key, while the other two follow straightforwardly. Taking the previous

result, we know a source subterm is an alignment position if there is a corresponding

subterm in the view. A standard way of establishing the source/view correspondence

semantically is to trace the uniquely identified labels.

5.4.1 Indexing and Reflecting

We index source labels using paths from the root to the constructors that the labels are

attached to. As a result, a label is at the root position of the subterm identified by

5.4. CHANGE-BASED PUTBACK FUNCTIONS 103

the path. The indices are not separable from the labels and are moved together by a

retrieval function. As a result, a label in the view originates from a label in the source

with the same index. (It is worth noting that the indices only represent paths in the

source, not those in the view.) The indices of the labels serve as unique identifiers, so ⟨x ⟩

denotes all the indices in x . Given an edit-affected view subterm v , a sensible alignment

position should include all indices in ⟨v⟩; the path leading to such a source subterm is

the maximum common prefix of all the paths, mcp ⟨v⟩. Consider a simple example with

mirror as the retrieval function:

100[]

@
@
@@

�
�

��
68[1] 79[2]

@
@
@@

�
�

��
34[1,1] 9[1,2]

Source Tree

100[]

@
@
@@

�
�

��
79[2] 68[1]

@
@
@@

�
�

��
9[1,2] 34[1,1]

View Tree

Note that the indices in the source – the superscript lists of numbers in the diagram –

are copied over to the view. Suppose we insert a node at the index position [1] in the view,

affecting the element 68 at position [1] and those below it [[1, 1], [1, 2]]. (Note that we

don’t require a concrete index for the newly inserted node since it won’t contribute to the

identification of the affected source.) The maximum common prefix of [[1], [1, 1], [1, 2]]

is [1]. Now taking the path [1] back to the source, we conclude that it is the subtree

with root 68 that needs to be changed.

The key to demonstrating the correctness of the above process is to show that the

subset relation between index sets corresponds to the subterm relation between trees.

Lemma 5.24 Given a well-aligning retrieval function f = fold b, and source terms s , t

with s 4 t , and view term v, if v 4 f t and ⟨v⟩ ⊆ ⟨s⟩ then v 4 f s.

Proof:

Proof by induction over the length of location t s . The base case is when the path is

empty; then s = t , and the result trivially holds. For the inductive case, assume that the

result holds for paths of length n, and that s is at depth n + 1 in t . Let i be such that

104 CHAPTER 5. LOOKING FROM THE TOP

s 4 (in◦ t)i , so that location (in◦ t)i s has length n. We will show that v 4 f (in◦ t)i ;

then we can conclude v 4 f s by appeal to the inductive hypothesis.

Let x = F f (in◦ t), so f t = b x and f (in◦ t)i = xi . Since v is a non-trivial subterm

of b x , and b is well-aligning, there exists a j such that v ∼ xj . By the usual argument,

that j must be i :

⟨v⟩

⊆ { assumption }

⟨s⟩

⊆ {hypothesis, and Fact 5.4 }

⟨(in◦ t)i⟩

{disjointness of labels }

⟨(in◦ t) ̸=i⟩

⊇ { f does not invent labels }

⟨(F f (in◦ t)) ̸=i⟩

= {definition }

⟨x ̸=i⟩

So v ∼ xi . Moreover, ⟨v⟩ ⊆ ⟨xi⟩, by disjointness of labels, since by assumption we

have v 4 f t and hence ⟨v⟩ ⊆ ⟨f t⟩ = ⟨b x ⟩ ⊆ ⟨x ⟩, and we have just shown that

⟨v⟩ # ⟨x ̸=i⟩. Therefore, by Fact 5.4 we conclude v 4 xi = f (in◦ t)i . 2

As a remark, so far we have been oblivious to the fact that the source and view la-

bels are now indexed, and have assumed that the retrieval and putback functions work

uniformly on them. This is certainly true if the retrieval function is a natural transfor-

mation, like most of our examples, which does not scrutiny the labels. For non-natural-

transformations, some adjustments are needed to migrate the state-based bidirectional

system to handle indexed labels. However, we expect such adjustments are minimum.

5.4.2 The Change-Based Putback Function

We are now ready to present the change-based putback function. For any f <st , a generic

f <ch function can be defined as follows.

f <ch :: Edit v → s → s

f <ch edt s = (s / r)⋖ (f <st ◦ ((edit edt ◦ f) △ id)) r

where i = mcp ⟨affect edt (f s)⟩ -- consolidating indices

r = zoom i s -- exposing alignment position

5.4. CHANGE-BASED PUTBACK FUNCTIONS 105

Figure 5.3: Operation-based Putback

Function f <ch maps an operation on views into an operation on sources. There are several

steps in this process, which are extracted into where clauses. A source is firstly retrieved

into a view (via f), with the affected view subterm of the edit extracted (via affect edt).

After that, the indices in the affected view subterm are collected and are used to identify

an alignment position (r), covering the affected view subterm. A view of the alignment

position is then constructed by applying f , and is edited before the state-based putback

function f <st maps it into an updated source subterm. The standard split function △

has type (a → b) → (a → c) → (a → (b, c)). Finally, we combine the newly created

source subterm with the original context that remains unchanged. (Note that we omit

the straightforward re-indexing of the newly generated source subterm with i as the

root index.) This computation flow is illustrated in Figure 5.3, which shows how an

updated source is achieved through an indirect route. There are several passes across

the source/view boundary; but importantly other than the initial retrieval, all of them

concern only the edit-affected subterms. Assuming editing and retrieval have no worse

run-time performance than putting back, the complexity of f <ch is O (m × log n + c m)

where n and m are the size of the source (s) and the change (r) respectively; and c is

the complexity function for f <ch . Note that affect edt (f s) should have been executed

prior to the putback execution, and is not included in the performance analysis. We also

don’t consider the cost of computing s / r because in a real implementation, the context

s / r can be computed together with the focus r when the zooming is performed. The

106 CHAPTER 5. LOOKING FROM THE TOP

m × log n part of the above complexity function comes from the computation of mpc,

where m indices of size log n need to be processed.

Function f <ch is expected to preserve the bidirectional properties of f <st . To establish

this, we need to know that it does operate at alignment positions.

Theorem 5.25 Given a well-aligning get function f such that f s = v, then for all

source subterms r of s and view subterms u of v, zoom (mcp ⟨u⟩) s is the smallest

alignment position covering u.

Proof:

By definition, we have ⟨u⟩ ⊆ ⟨zoom (mcp ⟨u⟩) s⟩.

⟨u⟩ ⊆ ⟨zoom (mcp ⟨u⟩) s⟩ ∧ u 4 f s ∧

(zoom (mcp ⟨u⟩) s) 4 s

⇒ {Lemma 5.24 }

u 4 f (zoom (mcp ⟨u⟩) s) ∧ u 4 f s ∧

⟨zoom (mcp ⟨u⟩) s⟩ 4 s

⇒ {Theorem 5.17 }

f aligns at subterm zoom (mcp ⟨u⟩) s of s

Also from the definition of mcp, there exists no r such that r ≺ zoom (mcp ⟨u⟩) s and

⟨u⟩ ⊆ ⟨r⟩. Thus, zoom (mcp ⟨u⟩) s is the smallest alignment position covering u.

2

We can state the bidirectional properties of f <ch .

Theorem 5.26 (Consistency) f (f <ch edt s) = edit edt (f s)

Proof:

f (f <ch edt s)

= {Definition of f <ch }

f (s / r ⋖ (f <st ◦ ((edit edt ◦ f) △ id)) r))

= { r is an alignment position }

f s / f r ⋖ (f ◦ f <st ◦ ((edit edt ◦ f) △ id)) r)

= {Consistency of f <st }

f s / f r ⋖ (edit edt ◦ f) r

= { r covers affect edt (f s), and locality of edit }

edit edt (f s / f r ⋖ f r)

5.4. CHANGE-BASED PUTBACK FUNCTIONS 107

= { r is an alignment position }

edit edt (f (s / r ⋖ r)))

= {Cancellation }

edit edt (f s)

2

For acceptability, we need an “identity” edit that does not change the view.

Theorem 5.27 (Acceptability) f <ch (E {edit = id }) = id.

Proof:

f <ch (E {edit = id }) s

= {Definition of f <ch }

s / r ⋖ (f <st ◦ ((id ◦ f) △ id)) r

= {Acceptability of f <st }

s / r ⋖ r

= {Cancellation }

s

2

Undoability involves inverting an edit as a function.

Theorem 5.28 (Undoability) f <ch (edt {edit = (edit edt)−1}) ◦ f <ch edt = id.

Proof:

(f <ch (edt {edit = (edit edt)−1}) ◦ f <ch edt) s

= {Definition of f <ch , and constant affect in edt }

s / r ⋖ (f <st ◦ ((edit edt)
−1 ◦ f △ id)) ((f <st ◦ (edit edt ◦ f △ id)) r)

= {Definition of △ }

s / r ⋖ f <st (((edit edt)−1 ◦ f ◦ f <st) ((edit edt ◦ f) r , r),

f <st ((edit edt ◦ f) r , r))

= {Consistency of f <st }

s / r ⋖ f <st (((edit edt)−1 ◦ edit edt ◦ f) r), f <st ((edit edt ◦ f) r , r))

= { (edit edt)−1 ◦ edit edt = id }

s / r ⋖ f <st (f r , f <st ((edit edt ◦ f) r , r))

= {Undoability of f <st }

s / r ⋖ r

108 CHAPTER 5. LOOKING FROM THE TOP

= {Cancellation }

s

2

5.5 More Refined Locality

As we have seen, the performance of our proposal depends on the height of the source

tree and the size of the affected region (i.e., the level of locality of the editing system).

The former is clearly beyond the control of any bidirectional system; while the latter is

again largely decided by the structure of the view. For fairly balanced trees, the majority

of nodes are deep in the structure, so it is reasonable to suppose that the majority of

edits will be too; given structure alignment, this implies a good degree of locality. A

problem arises when the view tree is skewed, say being a list; then the likelihood that a

node appears at any depth is the same. If a node high in the structure is affected by an

edit, say deleted, the affected subtree could be rather large.

This problem has already manifested itself in our binary-tree traversal example (see

Section 5.1.1, where marking the whole sublist [40, 58, 9] as affected is excessive). A

better alternative is to recognize the sublist [58, 9] as unaffected context too.

Another example is post-order tree traversal where any non-empty sublist of the view

contains the head of the source, which results in very poor locality preservation. As a

matter of fact, post-order traversal is excluded through the well-aligning condition.

Yet, being a special kind of tree, lists enjoy a number of unique properties. We

notice that unlike general trees, where a separate datatype is needed for contexts, we

can simply use lists as both contexts and focuses, and use the append function ++ as the

close function. Given the symmetry of ++, either the context or the focus can be edited,

and all the definitions and results dualize. For example, consider the reverse function.

Editing the front of the list view can be localized to a prefix of the view and mapped

back to a suffix of the source.

As a result, it makes sense to try to capture a lower (right) bound of an edit-affected

sublist, in addition to the upper (left) bound. Instead of splitting a list view into a

prefix (context) and a suffix (focus), we can now see it as l1 ++ l2 ++ l3 . To reflect this

specialization, we overload the infix operator ⋖ and define its list version as (l1 , l3)⋖l2 =

l1 ++ l2 ++ l3 . All the other definitions developed for general trees remain valid.

5.6. DISCUSSION 109

Now instead of always picking out a complete suffix or prefix, we can mark a middle

segment as affected by editing, and the same f <ch directly applies. For example, deleting 40

from [7, 36, 100, 40, 58, 9] only affects the middle segment [40] while leaving both contexts

[7, 36, 100] and [58, 9] unaffected. Correspondingly, the alignment positions now match

subterms in the source to segments (rather than tails) in the view.

5.6 Discussion

5.6.1 Context-Sensitive Editing

The editing system we have looked at so far is context-independent, which is particularly

convenient for local editing since the same edit can be applied both to a structure and its

subterms. For tree-structured views, it is sometimes useful to provide a full (or partial)

path to the intended editing location to narrow down the search. In this case, the editing

becomes context sensitive because the starting point of the path matters. Consider a

path-based editing system.

type EditP t = {edit :: Path → t → t , affect :: Path → t → Path }

An edit operation now finds its target in a structure following a path, and produces the

edited structure together with the path leading to the affected subterm. Note that these

paths in the view should not be confused with indices of labels that represent paths in

the source.

The definition of f <ch can be adapted for the new editing system. We separate all

interesting steps into where clauses to facilitate explanation.

f <ch :: Edit v → Path → s → s

f <ch edt p s = (s / r)⋖ f <st (edit edt p3 u ′, r)

where v = f s

p1 = affect edt p v

u = zoom p1 v -- finding affected subterm

i = mcp ⟨u⟩

r = zoom i s

u ′ = f r

p2 = travelUntil (p1 , v) u ′ -- finding path to u ′

Just p3 = stripPrefix p2 p1 -- finding relative editing path

110 CHAPTER 5. LOOKING FROM THE TOP

Note that we keep the path information of the edit explicit so that it can be modified

along with the shifting of focus. Compared with the context-independent version, there

are a few additional steps. As the editing function returns a path locating the affected

subterm, we need to open the view to get to it. A bigger challenge posed by this context-

sensitivity is to find a relative editing path when the starting point is moved to the root

of subterm u ′. We denote the path from the root of a structure x to its subterm y as

x −→ y . Since we know the subterm relations among the affected subterm, retrieval

result of the alignment position and the view u 4 u ′ 4 v , the path u ′ −→ u (p3

above), is the difference between v −→ u (p1 above) and v −→ u ′ (p2 above). We

already know p1 ; traversing p1 until the root of u ′ gives us p2 , before we can perform

path arithmetic to recover the correspondence between the path and structure inputs

of edit edt . Function travelUntil follows a path down a tree until it reaches a given

subtree; the part of the path travelled is returned as the output. Function stripPrefix

is a standard Haskell function of type Eq a ⇒ [a] → [a] → Maybe [a] that strips the

first input from the second one; since we know that p2 is a prefix of p1 , the execution

of stripPrefix p2 p1 is always going to succeed. A concern here is that the additional

computation does place a performance overhead: the path travelling takes time linear in

the height of the view tree. It is obvious that the multiple traversals in the above code

can be combined. Nevertheless, we present them in separate steps for clarity.

5.6.2 Connection with Other Bidirectional Approaches

The framework proposed in this chapter is very general. Most existing systems could

benefit from it, as long as the retrieval function satisfies the well-aligning construction

condition (Definition 5.16). Note that the condition is semantic; there is no restriction

on the language that is used for implementation.

The generality we have achieved reflects the fundamentality of bidirectional program-

ming: it is not so much a business of cleverly inventing the new, but one of retaining

the old. This principle is made explicit by the constant complement approach, which

in essence is a strategy of recovering the original. Prior to this work, a complement is

decided by the source and the retrieval function; and the effect of an edit does not come

into the picture. We make complements in some sense “edit-sensitive”, where the con-

text, being constant, is derived from individual edits. Compared to the original constant

complement approach [MHN+07, Chapter 4], the system in this chapter does not make

the technique more applicable, since the constant context that is preserved can always

5.6. DISCUSSION 111

be regenerated by the putback function constructed using the technique in Chapter 4.

However, it is clear that this regeneration is a wasted effort, given that the context is

a chunk of the source that is not changed. Moreover, by having a separately marked

constant context, we can derive a good estimation of the scale of the change as a result

of an update, something that has never been easy in other approaches.

Incremental updates have been studied in the context of model transformation, for

improving speed [GW09], or for more refined semantics [DXC10]. Similar to our design,

they also require additional specification of the effect of an edit. In contrast to tree like

datatypes, models are loosely-connected untyped graphs, which are more easily divided

into independent fragments to be updated separately; whereas our well-aligning property

of typed and overlapping subtrees is much harder to establish. In [HHI+10], where graph

transformations are defined as structural recursion, a simplified assumption that different

parts of the graph are always independent is used. As a result, the structural recursion is

effectively reduced to a map operation. However, this assumption is not true in general;

and as a result, the acceptability property does not hold in their system.

Despite in a unidirectional setting, the concept of adaptive programming [ABH06]

is closely related to incremental updates. The basic idea of adaptive programming is

to build up a complete input-output dependency graph for a given input, from some

syntactic annotations to the program. Based on the dependency, a corresponding output

change can be derived from an input change, which hopefully has a much better run-time

performance compared to re-executing the program with the new input. However, it is

not obvious how the technique can be applied to a bidirectional setting, where we need

to derive an input change from an output change. Nevertheless, it will be an interesting

future direction to explore.

112 CHAPTER 5. LOOKING FROM THE TOP

Chapter 6

Conclusion

113

114 CHAPTER 6. CONCLUSION

6.1 Summary

Looking back to the challenge laid down at the beginning of this thesis, we have shown

with concrete examples the wider applicability of bidirectional programming, and demon-

strated the important role played by the edit information in the designing of bidirectional

languages. The three cases we have investigated in this thesis are entirely novel: to the

best of our knowledge, no existing work has utilized bidirectional techniques in similar

ways. Yet, the results are promising; the proposed bidirectional systems naturally fit as

solutions to the problems.

In Chapter 3, we tackled the long standing problem of marrying pattern matching

with abstraction. Prior to our work, the correctness of such systems is only attempted

through explicit proofs of program properties, which is laborious and potentially unreli-

able. Our work of reasoning about abstract datatypes though their specifications reveals

that right-invertibility of the conversion functions is the key to soundness and efficiency;

and the use of the right-invertible language rinv discharges any related proof obliga-

tion. This result goes beyond being an effective solution to reasoning with abstraction,

by offering fresh insights to the development of bidirectional programming. Notably, the

“editing” mechanism of views in this application is different from the others’: specifica-

tions (serving as views) are transformed by arbitrary functions, which do not necessarily

output a single “edited” view to be “putback”. In this case, the link between a source and

an edited view is no longer obvious, which requires a different design. We think this is a

good illustration of the motto that having more is not necessarily better. The perceived

advantageous machinery of having more source information available in the putback di-

rection is not applicable; and the presumed definitional two-way bidirectional laws are

unnecessary. Instead, humble right-invertibility gives us great mileage. It will be inter-

esting to see whether other problems that appear to require full invertibility are merely

right-invertible programming in disguise. One well known demand for right-invertibility

is data parallel programming, where the third homomorphism theorem [Gib96, MMHT09]

relies on deterministic right-inversion for generating parallel algorithms. We plan to see

whether some language support will be beneficial. One known barrier that we may need to

overcome is the emphasis on numerical computation in parallel programming [MMM+07],

something that is not available in our current design.

Chapter 4 is another twist on conventional bidirectional programming, where edits to

views are always in a sense “non-interfering”. In our application of reporting the results

of program analyses, the results, as annotations to ASTs, are in no way of controlling the

6.1. SUMMARY 115

retrieval or putback computation; they are simply passengers on the vehicle of program

transformation. In this case, a revival of a previous known technique, namely the constant

complement approach, to its full generality provides us with the right tool. We have

seen that with a small additional effort of maintaining the annotations from program-

transformation implementers, our proposed system is able to translate analysis results in

terms of internal code to ones in terms of source code, resulting in more understandable

messages. The very reason for the success is the consideration of edit information: the

“non-interference” property is crucial to the safety of the putback function. We believe

the applicability of this usage pattern goes beyond the cases that have been discussed.

For another example, consider an integrated development environment that supports

matching highlighting in source code and its abstract syntax tree, based on selection of a

syntax fragment in either. We can encode the text-location information as annotations,

which can be edited by such a selection; and our proposed technique applies directly.

It will be an interesting future direction to see how such systems can benefit from the

optimization technique proposed in Chapter 5 to achieve improved run-time performance.

In Chapter 5, we take a different approach by looking not at specific problems but

general principles for incremental updating of sources. Without exception, the design

is based on the use of edit information; specifically, we derive an operation-based bidi-

rectional framework that identifies the chunk(s) of a source that are not affected by a

particular view editing, and only updates the part that is affected. We specify a semantic

condition under which retrieval functions enjoy good locality preservation; these functions

are likely to map a small edit-affected view subterm to a small update-affected source

subterm. We then devise a constructive algorithm to identify the affected source subterm

through indexing; and perform the update by constructing an updated subterm from the

edited view, through a separate state-based putback function. Effectively, our proposal

derives an operation-based bidirectional system from a state-based system, and reduces

the effort of source updating from one that is proportional to the size of the data into

one that is proportional to the size of the change. The resulting operation-based system

is proven correct with respect to the properties of its state-based counterpart. An in-

teresting observation from our investigation is that linear lists, widely used in functional

programming, perform poorly in term of incremental updating; we had to extend our re-

sults for general trees to treat list views as special cases; and list sources will not benefit

from our proposal at all, because splitting a list is a linear-time operation. This is not

the only time that lists are found undesirable for performance. In parallel programming

research, for exactly the same reason, cons lists are usually ruled out [Ste09, Ble10].

116 CHAPTER 6. CONCLUSION

In the sections to follow, we will revisit some related issues and approaches in bidi-

rectional programming, with comparison to our work in this thesis, and discuss future

directions.

6.2 Totality of Putback Functions

Totality is generally a desirable property of functions, and is particularly important for

bidirectional programming. While the programmer can be blamed for defining a par-

tial function and applying it to an input that is outside of the domain, the automatic

generation of putback functions in bidirectional programming shifts the responsibility of

guaranteeing safety to the language designer. However, totality of putback functions is

only possible with surjective retrieval functions, and is difficult to enforce – we have seen

it in the designing of rinv in Chapter 3. One way to circumvent this problem is to have

restricted edits to views, as we did in Chapter 4. A more general solution is to pin down

the precise range of a retrieval function; and only edits resulting in views in the range are

permitted – the semantic types [FCB08] in lenses are one example of this. As a matter

of fact, there is already a rich body of research that allows non-free datatypes (datatypes

that are constrained by additional specifications) to be expressed either through more

advanced type [XP99, CH03, PJVWW06] or contract [Mey92, FF02, HJL06, XPJC09]

systems; basing our languages on datatypes, a standard data representation, has the ben-

efit of making them directly applicable: the specification of pre- and post- conditions of

a retrieval function, can be straightforwardly reused by swapping them in the putback

direction.

6.3 Combinator-Based Bidirectional Languages

The right-invertible language rinv in Chapter 3 shares a similar spirit with the ap-

proaches in [MHT04b, MHT04a, HMT04, PC10], which are based on a general purpose

language, namely point-free Haskell. In particularly, rinv is very similar to the indepen-

dently developed point-free lenses [PC10]: their creates correspond to the right inverses in

rinv; and they additionally considered puts. Our approach is in a sense more pragmatic,

as we are only interested in the part that fits our intended application, not the entire

lens-framework. As discussed in Section 3.5.4, there are practical difficulties in admitting

puts into pattern matching for ADTs.

6.4. BIDIRECTIONALIZATION 117

Nevertheless, this omission of puts immediately rules out data-lossy retrieval func-

tions, such as the projection functions on pairs, available in point-free lenses. We are

looking at possible extension of rinv for a special kind of projection function, that only

discards recoverable data. For example, consider annotating a tree with its size informa-

tion at all levels in the implementation for fast traversal, and still using the bare tree as

the model; the discarded size information can be regenerated from the model without the

need to resort to a put .

6.4 Bidirectionalization

The constant complement approach used in Chapter 4 can be seen as an extension to the

syntactic bidirectionalization technique in [MHN+07], with the restrictions on retrieval

functions lifted. We think it is a promising direction, not because our system is strictly

more powerful than the one in [MHN+07] (it is not, as we only support limited view

editing), but because we believe that we found the sweet spot of balancing language

expressiveness and updatability, which is made evident in the successful application of

bidirectional programming to practical problems.

Chapter 5 of this thesis is originally inspired by semantic bidirectionalization [Voi09]

to design a bidirectional system that is independent of the retrieval function’s implemen-

tation. The conditions of regular structural recursion and aligning construction imposed

on the retrieval functions for good locality preservation are purely semantic, and do not

restrict the implementation in any way. In addition, our proposal also abstracts over the

implementations of a state-based putback function and a view-editing function, which

are used as blackboxes. This design directly contributes to the generality of our proposal,

and allows most bidirectional systems to benefit from it with little adaptation. The se-

mantic bidirectionalization brands itself as “bidirectionalization for free”; we continued

this trend by offering a free operation-based bidirectionalization for a given state-based

one.

118 CHAPTER 6. CONCLUSION

Bibliography

[ABH06] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional

programming. ACM Trans. Program. Lang. Syst., 28:990–1034, November

2006.

[BC93] F. Warren Burton and Robert D. Cameron. Pattern matching with abstract

data types. Journal of Functional Programming, 3(2):171–190, 1993.

[BCF+] Pablo Berdaguer, Alcino Cunha, Flávio Ferreira, Claudia Necco, José Nuno

Oliveira, Hugo Pacheco, and Joost Visser. 2LT two level transformation.

http://code.google.com/p/2lt/.

[BCF+10a] Davi M.J. Barbosa, Julien Cretin, Nate Foster, Michael Greenberg, and

Benjamin C. Pierce. Matching lenses: alignment and view update. In ICFP

’10: Proceedings of the 15th ACM SIGPLAN international conference on

Functional programming, pages 193–204, New York, NY, USA, 2010. ACM.

[BCF+10b] Davi M.J. Barbosa, Julien Cretin, Nate Foster, Michael Greenberg, and

Benjamin C. Pierce. Matching lenses: alignment and view update. In

Proceedings of the 15th ACM SIGPLAN international conference on Func-

tional programming, ICFP ’10, pages 193–204, New York, NY, USA, 2010.

ACM.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. International Series in

Computer Science. Prentice Hall, 1997.

[Ben73] C. H. Bennett. Logical reversibility of computation. IBM Journal of Re-

search and Development, 1973.

[Ber09] Jean-Philippe Bernardy. Lazy functional incremental parsing. In Haskell

’09: Proceedings of the 2nd ACM SIGPLAN symposium on Haskell, pages

49–60, New York, NY, USA, 2009. ACM.

119

120 BIBLIOGRAPHY

[BFP+08] A. Bohannon, J. Nathan Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.

Boomerang: Resourceful lenses for string data. In Principles of Program-

ming Languages, New York, NY, USA, January 2008. ACM.

[Bir84] R. S. Bird. The promotion and accumulation strategies in transforma-

tional programming. ACM Transactions on Programming Languages and

Systems, 6(4):487–504, 1984.

[Bir87] Richard S. Bird. An introduction to the theory of lists. In M. Broy, ed-

itor, Logic of Programming and Calculi of Discrete Design, pages 3–42.

Springer-Verlag, 1987. NATO ASI Series F Volume 36. Also available as

Technical Monograph PRG-56, from the Programming Research Group,

Oxford University.

[Ble10] Guy E. Blelloch. Functional parallel algorithms. In ICFP ’10: Proceed-

ings of the 15th ACM SIGPLAN international conference on Functional

programming, pages 247–248, New York, NY, USA, 2010. ACM.

[BMS80] Rod Burstall, Dave MacQueen, and Don Sannella. Hope: An experimental

applicative language. In Lisp and Functional Programming, pages 136–143.

ACM, 1980.

[BS81] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM

Transactions on Database Systems., 6(4):557–575, 1981.

[CFH+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy

Schürr, and James F. Terwilliger. Bidirectional transformations: A cross-

discipline perspective. In ICMT ’09: Proceedings of the 2nd International

Conference on Theory and Practice of Model Transformations, pages 260–

283, Berlin, Heidelberg, 2009. Springer-Verlag.

[CH03] James Cheney and Ralf Hinze. First-class phantom types. Technical report,

Cornell University, 2003.

[Che08] James Cheney. Flux: functional updates for XML. In ICFP ’08: Pro-

ceeding of the 13th ACM SIGPLAN international conference on Functional

programming, pages 3–14, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 121

[CLS07] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion:

from lists to streams to nothing at all. ICFP ’07, pages 315–326, New

York, NY, USA, 2007. ACM.

[COV06] Alcino Cunha, José Nuno Oliveira, and Joost Visser. Type-safe two-level

data transformation. In Number 4085 in LNCS, pages 284–289. Springer,

2006.

[CUV06] Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Recursive coalgebras

from comonads. Information and Computation, 204:437–468, April 2006.

[DB82] Umeshwar Dayal and Philip A. Bernstein. On the correct translation of

update operations on relational views. ACM Transactions on Database

Systems., 7(3):381–416, 1982.

[DXC10] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From state- to

delta-based bidirectional model transformations. In Proceedings of the

Third international conference on Theory and practice of model transfor-

mations, ICMT’10, pages 61–76, Berlin, Heidelberg, 2010. Springer-Verlag.

[EOW07] B. Emir, M. Odersky, and J. Williams. Matching objects with patterns. In

European Conference on Object-Oriented Programming. Springer, 2007.

[EP00] M. Erwig and S. Peyton Jones. Pattern guards and transformational pat-

terns. In Haskell Workshop, New York, NY, USA, 2000. ACM.

[Erw96] Martin Erwig. Active patterns. In 8th Int. Workshop on Implementation of

Functional Languages, volume 1268 of Lecture Notes in Computer Science,

pages 21–40. Springer, 1996.

[FCB08] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic sub-

typing: Dealing set-theoretically with function, union, intersection, and

negation types. Journal of the ACM, 55(4), 2008.

[FF02] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order

functions. SIGPLAN Not., 37(9):48–59, 2002.

122 BIBLIOGRAPHY

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.

Pierce, and Alan Schmitt. Combinators for bidirectional tree transforma-

tions: A linguistic approach to the view update problem. ACM Transac-

tions on Programming Languages and Systems, 29(3), May 2007. Prelimi-

nary version in POPL ’05.

[FPP08] J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. Quotient

lenses. In International Conference on Functional Programming, pages 383–

396, New York, NY, USA, 2008. ACM.

[FPZ09] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic. Updatable se-

curity views. In CSF ’09: Proceedings of the 2009 22nd IEEE Computer Se-

curity Foundations Symposium, pages 60–74, Washington, DC, USA, 2009.

IEEE Computer Society.

[GH09] Andy Gill and Graham Hutton. The worker/wrapper transformation. J.

Funct. Program., 19:227–251, March 2009.

[Gib96] Jeremy Gibbons. The third homomorphism theorem. Journal of Functional

Programming, 6(4):657–665, 1996.

[GPZ88] Georg Gottlob, Paolo Paolini, and Roberto Zicari. Properties and update

semantics of consistent views. ACM Transactions on Database Systems.,

13(4):486–524, 1988.

[Gro05] OMG: Object Management Group. MOF2.0 query/view/transformation

(QVT) adopted specification. http://www.omg.org, 2005.

[GW09] Holger Giese and Robert Wagner. From model transformation to incremen-

tal bidirectional model synchronization. Software and Systems Modeling,

8:21–43, 2009. 10.1007/s10270-008-0089-9.

[HHI+10] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazutaka

Matsuda, and Keisuke Nakano. Bidirectionalizing graph transformations.

In Proceedings of the 15th ACM SIGPLAN international conference on

Functional programming, ICFP ’10, pages 205–216, New York, NY, USA,

2010. ACM.

BIBLIOGRAPHY 123

[HHJ11] Ralf Hinze, Thomas Harper, and Daniel W.H. James. Theory and practice

of fusion. Accepted for publication in Post-proceedings of the 22nd Sym-

posium on the Implementation and Application of Functional Languages

(IFL ’10), January 2011.

[HHS03] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the

type inference process. In ICFP ’03: Proceedings of the eighth ACM SIG-

PLAN international conference on Functional programming, pages 3–13,

New York, NY, USA, 2003. ACM.

[HJ01] Ralf Hinze and Johan Jeuring. Functional Pearl: Weaving a web. Journal

of Functional Programming, 11(6):681–689, nov 2001.

[HJL04] Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types.

Science of Computer Programming, 51(1-2):117–151, 2004.

[HJL06] Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional

programming. In In FLOPS 06: Functional and Logic Programming: 8th

International Symposium, pages 208–225. Springer-Verlag, 2006.

[HLvI03] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for

learning haskell. In Haskell ’03: Proceedings of the 2003 ACM SIGPLAN

workshop on Haskell, pages 62–71, New York, NY, USA, 2003. ACM.

[HMT04] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable

editor for developing structured documents based on bidirectional transfor-

mations. In Partial Evaluation and Program Manipulation, pages 178–189,

New York, NY, USA, 2004. ACM.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Infor-

matica, 1:271–281, 1972.

[Jay04] C. Barry Jay. The pattern calculus. ACM Transactions on Programming

Languages and Systems, 26(6), 2004.

[JS94] Simon Peyton Jones and André Santos. Compilation by transformation in

the glasgow haskell compiler, 1994.

124 BIBLIOGRAPHY

[LG00] Barbara Liskov and John Guttag. Program Development in Java: Abstrac-

tion, Specification, and Object-Oriented Design. Addison-Wesley, Boston,

MA, USA, 2000.

[LJBA01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change

principle for program termination. In Principles of Programming Lan-

guages, pages 81–92, New York, NY, USA, 2001. ACM.

[LM03] Jed Liu and Andrew C. Myers. JMatch: Iterable abstract pattern matching

for Java. In PADL ’03: Proceedings of the 5th International Symposium on

Practical Aspects of Declarative Languages, pages 110–127, London, UK,

2003. Springer.

[LP07] D. Licata and S. Peyton Jones. View patterns: lightweight views for Haskell.

http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns, 2007.

[Lut86] C. Lutz. Janus: a time-reversible language, 1986. A letter to Landauer.

[LZ74] B. Liskov and S. Zilles. Programming with abstract data types. In ACM

Symposium on Very High Level Languages, 1974.

[MB04] Shin-Cheng Mu and Richard Bird. Theory and applications of inverting

functions as folds. Science of Computer Programming, 51:87–116, May

2004.

[McB01] Conor McBride. The derivative of a regular type is its type of one-hole

contexts (extended abstract), 2001.

[Mee86] L. G. L. T. Meertens. Algorithmics: Towards programming as a mathemat-

ical activity. In CWI Symposium on Mathematics and Computer Science,

number 1 in CWI-Monographs, pages 289–344. North–Holland, 1986.

[Mee98] Lambert Meertens. Designing constraint maintainers for user interaction.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.3250, 1998.

[Mey92] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1992.

[MG90] Carroll Morgan and P. H. B. Gardiner. Data refinement by calculation.

Acta Informatica, 27(6):481–503, 1990.

BIBLIOGRAPHY 125

[MGB04] Clare Martin, Jeremy Gibbons, and Ian Bayley. Disciplined, efficient, gen-

eralised folds for nested datatypes. Formal Aspects of Computing, 16(1):19–

35, 2004.

[MHN+07] Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana, and

Masato Takeichi. Bidirectionalization transformation based on automatic

derivation of view complement functions. In ICFP ’07: Proceedings of the

12th ACM SIGPLAN international conference on Functional programming,

pages 47–58, New York, NY, USA, 2007. ACM.

[MHT04a] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic ap-

proach to bi-directional updating. In ASIAN Symposium on Programming

Languages and Systems (APLAS), volume 3302 of Lecture Notes in Com-

puter Science, pages 2–18. Springer, 2004.

[MHT04b] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective language

for reversible computation. In Mathematics of Program Construction, vol-

ume 3125 of Lecture Notes in Computer Science, pages 289–313. Springer,

2004.

[Mil71] Robin Milner. An algebraic definition of simulation between programs. In

Proceedings of the 2nd international joint conference on Artificial intelli-

gence, pages 481–489, San Francisco, CA, USA, 1971. Morgan Kaufmann

Publishers Inc.

[MMHT09] Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Take-

ichi. The third homomorphism theorem on trees: downward & upward lead

to divide-and-conquer. In POPL ’09: Proceedings of the 36th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 177–185, New York, NY, USA, 2009. ACM.

[MMM+07] Kazutaka Morita, Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu,

and Masato Takeichi. Automatic inversion generates divide-and-conquer

parallel programs. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

146–155, New York, NY, USA, 2007. ACM.

126 BIBLIOGRAPHY

[MR09] Neil Mitchell and Colin Runciman. Losing functions without gaining data:

another look at defunctionalisation. In Haskell ’09: Proceedings of the 2nd

ACM SIGPLAN symposium on Haskell, pages 13–24, New York, NY, USA,

2009. ACM.

[MRV03] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A pat-

tern matching compiler for multiple target languages. In 12th Conference

on Compiler Construction, Warsaw (Poland), volume 2622 of LNCS, pages

61–76. Springer, 2003.

[NMN08] Pablo Nogueira and Juan José Moreno-Navarro. Bialgebra views: A way

for polytypic programming to cohabit with data abstraction. In Workshop

on Generic Programming, pages 61–73, New York, NY, USA, 2008. ACM.

[Oka98] Chris Okasaki. Views for Standard ML. In ACM Workshop on ML, 1998.

[Oli08] José N. Oliveira. Transforming data by calculation. pages 134–195, 2008.

[PC10] Hugo Pacheco and Alcino Cunha. Generic point-free lenses. In Claude

Bolduc, Jules Desharnais, and Bchir Ktari, editors, Mathematics of Pro-

gram Construction, volume 6120 of Lecture Notes in Computer Science,

pages 331–352. Springer Berlin / Heidelberg, 2010.

[PGPN96] P. Palao Gostanza, R. Peña, and M. Núñez. A new look at pattern matching

in abstract data types. In International Conference on Functional Program-

ming, pages 110–121, New York, NY, USA, 1996. ACM.

[PJ03] S Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003.

[PJL91] Simon L. Peyton Jones and John Launchbury. Unboxed values as first

class citizens in a non-strict functional language. In Proceedings of the

5th ACM conference on Functional programming languages and computer

architecture, pages 636–666, New York, NY, USA, 1991. Springer-Verlag

New York, Inc.

[PJVWW06] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geof-

frey Washburn. Simple unification-based type inference for GADTs. In

International Conference on Functional Programming, 2006.

BIBLIOGRAPHY 127

[Ser07] D. Sereni. Termination analysis and call graph construction for higher-order

functional programs. In Norman Ramsey, editor, International Conference

on Functional Programming, pages 71–84. ACM Press, 2007.

[SH82] M. R. Sleep and S. Holmström. A short note concerning lazy reduction

rules for append. Software: Practice and Experience, 12(11), 1982.

[SNM07] Don Syme, Gregory Neverov, and James Margetson. Extensible pattern

matching via a lightweight language extension. In International Confer-

ence on Functional Programming, pages 29–40, New York, NY, USA, 2007.

ACM.

[SSW04] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. Improving type

error diagnosis. In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN

workshop on Haskell, pages 80–91, New York, NY, USA, 2004. ACM.

[Ste07] Perdita Stevens. Bidirectional model transformations in QVT: Semantic

issues and open questions. Model Driven Engineering Languages and Sys-

tems, pages 1–15, 2007.

[Ste09] Guy L. Steele, Jr. Organizing functional code for parallel execution or,

foldl and foldr considered slightly harmful. In International Conference on

Functional Programming, pages 1–2, New York, NY, USA, 2009. ACM.

[Ste10] Perdita Stevens. Bidirectional model transformations in QVT: semantic

issues and open questions. Software and Systems Modeling, 9:7–20, 2010.

[Tul00] M. Tullsen. First class patterns. In Practical Aspects of Declarative Lan-

guages, volume 1753 of Lecture Notes in Computer Science. Springer, 2000.

[VHMW10] Janis Voigtländer, Zhenjiang Hu, Kazutaka Matsuda, and Meng Wang.

Combining syntactic and semantic bidirectionalization. In ICFP ’10: Pro-

ceedings of the 15th ACM SIGPLAN international conference on Functional

programming, pages 181–192, New York, NY, USA, 2010. ACM.

[Voi09] Janis Voigtländer. Bidirectionalization for free! (Pearl). In POPL ’09:

Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 165–176, New York, NY, USA,

2009. ACM.

128 BIBLIOGRAPHY

[vSMJ10] Martijn van Steenbergen, José Pedro Magalhaes, and Johan Jeuring.

Generic selections of subexpressions. In WGP ’10: Proceedings of the 6th

Workshop on Generic Programming, New York, 2010. ACM.

[Wad87a] P. Wadler. Views: A way for pattern matching to cohabit with data ab-

straction. In Principles of Programming Languages, pages 307–313, New

York, NY, USA, 1987. ACM.

[Wad87b] Philip Wadler. A critique of Abelson and Sussman: Why calculating is

better than scheming. ACM SIGPLAN Notices, 22(3):83–94, 1987.

[Wad88] Philip Wadler. Deforestation: transforming programs to eliminate trees.

In Proceedings of the Second European Symposium on Programming, pages

231–248, Amsterdam, The Netherlands, 1988. North-Holland Publishing

Co.

[Wad89] Philip Wadler. Theorems for free! In FPCA ’89: Proceedings of the fourth

international conference on Functional programming languages and com-

puter architecture, pages 347–359, New York, NY, USA, 1989. ACM.

[WGM09] Hui Wu, Jeff Gray, and Marjan Mernik. Unit testing for domain-specific

languages. In DSL ’09: Proceedings of the IFIP TC 2 Working Conference

on Domain-Specific Languages, pages 125–147, Berlin, Heidelberg, 2009.

Springer-Verlag.

[WGMH10] Meng Wang, Jeremy Gibbons, Kazutaka Matsuda, and Zhenjiang Hu.

Gradual refinement: Blending pattern matching with data abstraction. In

Claude Bolduc, Jules Desharnais, and Bchir Ktari, editors, Mathematics of

Program Construction, volume 6120 of Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, 2010.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical program-

ming. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 214–227, New

York, NY, USA, 1999. ACM.

[XPJC09] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static contract

checking for Haskell. In POPL ’09: Proceedings of the 36th annual ACM

BIBLIOGRAPHY 129

SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 41–52, New York, NY, USA, 2009. ACM.

[YAG08] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Principles

of a reversible programming language. In CF ’08: Proceedings of the 5th

conference on Computing frontiers, pages 43–54, New York, NY, USA,

2008. ACM.

[You94] S. G. Younis. Asymptotically zero energy computing using split-level charge

recovery logic. PhD thesis, Massachusetts Inst. of Tech., Cambridge, MA.,

1994.

