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Abstract
A bidirectional transformation is a pair of mappings between source
and view data objects, one in each direction. When the view is
modified, the source is updated accordingly with respect to some
laws. One way to reduce the development and maintenance effort
of bidirectional transformations is to have specialized languages
in which the resulting programs are bidirectional by construction—
giving rise to the paradigm of bidirectional programming.

In this paper, we develop a framework for applicative-style
and higher-order bidirectional programming, in which we can
write bidirectional transformations as unidirectional programs in
standard functional languages, opening up access to the bundle
of language features previously only available to conventional
unidirectional languages. Our framework essentially bridges two
very different approaches of bidirectional programming, namely
the lens framework and Voigtländer’s semantic bidirectionalization,
creating a new programming style that is able to bag benefits from
both.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Language]: Languages Constructs and Features—Data types
and structures, Polymorphism

General Terms Languages

Keywords Bidirectional Programming, Lens, Bidirectionalization,
Free Theorem, Functional Programming, Haskell

1. Introduction
Bidirectionality is a reoccurring aspect of computing: transforming
data from one format to another, and requiring a transformation in
the opposite direction that is in some sense an inverse. The most
well-known instance is the view-update problem [1, 6, 8, 13] from
database design: a “view” represents a database computed from
a source by a query, and the problem comes when translating an
update of the view back to a “corresponding” update on the source.

But the problem is much more widely applicable than just to
databases. It is central in the same way to most interactive programs,
such as desktop and web applications: underlying data, perhaps
represented in XML, is presented to the user in a more accessible
format, edited in that format, and the edits translated back in terms
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of the underlying data [12, 16, 30]. Similarly for model transfor-
mations, playing a substantial role in software evolution: having
transformed a high-level model into a lower-level implementation,
for a variety of reasons one often needs to reverse engineer a revised
high-level model from an updated implementation [42, 43].

Using terminologies originated from the lens framework [4, 9,
10], bidirectional transformations, coined lenses, can be represented
as pairs of functions known as get of type S → V and put of type
S → V → S . Function get extracts a view from a source, and
put takes both an updated view and the original source as inputs to
produce an updated source. An example definition of a bidirectional
transformation in Haskell notations is

data L s v = L {get :: s → v , put :: s → v → s }
fstL :: L (a, b) a
fstL = L (λ(a, )→ a) (λ( , b) a → (a, b))

A value ` of type L s v is a lens that has two function fields
namely get and put , and the record syntax overloads the field names
as access functions: get ` has type s → v and put ` has type
s → v → s . The datatype is used in the definition of fstL where
the first element of a source pair is projected as the view, and may
be updated to a new value.

Not all bidirectional transformations are considered “reason-
able" ones. The following laws are generally required to establish
bidirectionality:

put ` s (get ` s) = s (Acceptability)

get ` s ′ = v if put ` s v = s ′ (Consistency)

for all s , s ′ and v . Note that in this paper, we write e = e′ with
the assumption that neither e nor e′ is undefined. Here Consistency
(also known as the PutGet law [9]) roughly corresponds to right-
invertibility, ensuring that all updates on a view are captured
by the updated source; and Acceptability (also known as the
GetPut law [9]), prohibits changes to the source if no update has
been made on the view. Collectively, the two laws defines well-
behavedness [1, 9, 13]. A bidirectional transformation L get put
is called well-behaved if it satisfies well-behavedness. The above
example fstL is a well-behaved bidirectional transformation.

By dint of hard effort, one can construct separately the forward
transformation get and the corresponding backward transformation
put . However, this is a significant duplication of work, because the
two transformations are closely related. Moreover, it is prone to
error, because they do really have to correspond with each other to
be well-behaved. And, even worse, it introduces a maintenance issue,
because changes to one transformation entail matching changes to
the other. Therefore, a lot of work has gone into ways to reduce this
duplication and the problems it causes; in particular, there has been
a recent rise in linguistic approaches to streamlining bidirectional
transformations [2, 4, 9–11, 14, 16, 20–22, 25, 27, 30, 33, 35, 36, 38–
41].
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Ideally, bidirectional programming should be as easy as usual
unidirectional programming. For this to be possible, techniques of
conventional languages such as applicative-style and higher-order
programming need to be available in the bidirectional languages, so
that existing programming idioms and abstraction methods can be
ported over. It makes sense to at least allow programmers to treat
functions as first-class objects and have them applied explicitly. It
is also beneficial to be able to write bidirectional programs in the
same style of their gets, as cultivated by traditional unidirectional
programming programmers normally start with (at least mentally)
constructing a get before trying to make it bidirectional.

However, existing bidirectional programming frameworks fall
short of this goal by quite a distance. The lens bidirectional pro-
gramming framework [2, 4, 9–11, 16, 25, 27, 30, 38, 39], the most
influential of all, composes small lenses into larger ones by special
lens combinators. The combinators preserve well-behavedness, and
thus produce bidirectional programs that are correct by construction.
Lenses are impressive in many ways: they are highly expressive and
adaptable, and in many implementations a carefully crafted type
system guarantees the totality of the bidirectional transformation.
But at the same time, like many other combinator-based languages,
lenses restrict programming to the point-free style, which may not
be the most appropriate in all cases. We have learned from past
experiences [23, 28] that a more convenient programming style does
profoundly impact on the popularity of a language.

The researches on bidirectionalization [14, 20–22, 33, 35, 36,
38, 39, 41], which mechanically derives a suitable put from an
existing get , share the same spirit with us to some extent. The
gets can be programmed in a unidirectional language and passed
in as objects to the bidirectionalization engine, which performs
program analysis and the generation of puts. However, the existing
bidirectionalization methods are whole program analyses; there is
no better way to compose individually constructed bidirectional
transformations.

In this paper, we develop a novel bidirectional programming
framework:

• As lenses, it supports composition of user-constructed bidirec-
tional transformations, and well-behavedness of the resulting
bidirectional transformations is guaranteed by construction.

• As a bidirectionalization system, it allows users to write bidirec-
tional transformations almost in the same way as that of gets, in
an applicative and higher-order programming style.

The key idea of our proposal is to lift lenses of type L (A1, . . . ,An) B
to lens functions of type

∀s.LT s A1 → · · · → LT s An → . . . → LT s B

where LT is a type-constrained version of L (Sections 2 and 3).
The n-tuple above is then generalized to data structures such as
lists in Section 4. This function representation of lenses is open to
manipulation in an applicative style, and can be passed to higher-
order functions directly. For example, we can write a bidirectional
version of unlines , defined by

unlines :: [String ]→ String
unlines [ ] = ""
unlines (x : xs) = x ++ "\n"++ unlines xs

as below.

unlinesF :: [LT s String ]→ LT s String
unlinesF [ ] = new ""
unlinesF (x : xs) = lift2 catLineL (x , unlinesF xs)

where catLineL is a lens version of λx y → x ++"\n"++y . In the
above, except for the noise of new and lift2 , the definition is faithful
to the original structure of unlines’ definition, in an applicative

style. With the heavy-lifting done in defining the lens function
unlinesF, a corresponding lens unlinesL :: L [String ] String is
readily available through straightforward unlifting: unlinesL =
unliftT unlinesF.

We demonstrate the expressiveness of our system through a
realistic example of a bidirectional evaluator for a higher-order pro-
gramming language (Section 5), followed by discussions of smooth
integration of our framework with both lenses and bidirectional-
ization approaches (Section 6). We discuss related techniques in
Section 7, in particularly making connection to semantic bidirection-
alization [21, 22, 33, 41] and conclude in Section 8. An implemen-
tation of our idea is available from https://hackage.haskell.
org/package/app-lens.

Notes on Proofs and Examples. Due to the space restriction, we
omit many of the proofs in this paper, but note that some of the
proofs are based on free theorems [34, 37]. To simplify the formal
discussion, we assume that all functions except puts are total and
no data structure contains ⊥. To deal with the partiality of puts, we
assume that a put function of type A→ B → A can be represented
as a total function of type A → B → Maybe A, which upon
termination will produce either a value Just a or an error Nothing .

We strive to balance the practicality and clarity of examples.
Very often we deliberately choose small but hopefully still illu-
minating examples aiming at directly demonstrating the and only
the theoretical issue being addressed. In addition, we include in
Section 5 a sizeable application and would like to refer interested
readers to https://bitbucket.org/kztk/app-lens for exam-
ples ranging from some general list functions in Prelude to the
specific problem of XML transformations.

2. Bidirectional Transformations as Functions
Conventionally, bidirectional transformations are represented di-
rectly as pairs of functions [9, 13, 14, 16, 20–22, 25, 33, 35, 36, 38–
41] (see the datatype L defined in Section 1). In this paper, we
use lenses to refer specifically bidirectional transformations in this
representation.

Lenses can be constructed and reasoned compositionally. For
example, with the composition operator “◦̂”

(◦̂) :: L b c → L a b → L a c
(L get2 put2) ◦̂ (L get1 put1) =

L (get2 ◦ get1) (λs v → put1 s (put2 (get1 s) v))

we can compose fstL to itself to obtain a lens that operates on nested
pairs, as below.

fstTriL :: L ((a, b), c) a
fstTriL = fstL ◦̂ fstL

Well-behavedness is preserved by such compositions: fstTriL is
well-behaved by construction assuming well-behaved fstL.

The composition operator “◦̂” has the identity lens idL as its
unit.

idL :: L a a
idL = L id (λ v → v)

2.1 Basic Idea: A Functional Representation Inspired by
Yoneda

Our goal is to develop a representation of bidirectional transfor-
mations such that we can apply them, pass them to higher-order
functions and reason about well-behavedness compositionally.

Inspired by the Yoneda embedding in category theory [19], we
lift lenses of type L a b to polymorphic functions of type

∀s.L s a → L s b
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by lens composition

lift :: L a b → (∀s.L s a → L s b)
lift ` = λx → ` ◦̂ x

Intuitively, a lens of type L s A with the universally quantified type
variable s can be seen as an updatable datum of type A, and a lens
of type L A B as a transformation of type ∀s.L s A→ L s B on
updatable data. We call such lifted lenses lens functions.

The lifting function lift is injective, and has the following left
inverse.

unlift :: (∀s.L s a → L s b)→ L a b
unlift f = f idL

Since lens functions are normal functions, they can be composed
and passed to higher-order functions in the usual way. For example,
fstTriL can now be defined with the usual function composition.

fstTriL :: L ((a, b), c) a
fstTriL = unlift (lift fstL ◦ lift fstL)

Alternatively in a more applicative style, we can use a higher-order
function twice :: (a → a)→ a → a as below.

fstTriL = unlift (λx → twice (lift fstL) x )
where twice f x = f (f x )

Like many category-theory inspired isomorphisms, this func-
tional representation of bidirectional transformations is not un-
known [7]; but its formal properties and applications in practical
programming have not been investigated before.

2.2 Formal Properties of Lens Functions
We reconfirm that lift is injective with unlift as its left inverse.

Proposition 1. unlift (lift `) = ` for all lenses ` :: L A B .

We say that a function f preserves well-behavedness, if f ` is
well-behaved for any well-behaved lens `. Functions lift and unlift
have the following desirable properties.

Proposition 2. lift ` preserves well-behavedness if ` is well-
behaved.

Proposition 3. unlift f is well-behaved if f preserves well-
behavedness.

As it stands, the type L is open and it is possible to define lens
functions through pattern-matching on the constructor. For example

f :: Eq a ⇒ L s (Maybe a)→ L s (Maybe a)
f (L g p) = L g (λs v → if v g s then s

else p (p s Nothing) v)

Here the input lens is pattern matched and the get /put components
are used directly in constructing the output lens, which breaks
encapsulation and blocks compositional reasoning of behaviors.

In our framework the intention is that all lens functions are
constructed through lifting, which sees bidirectional transformations
as atomic objects. Thus, we require that L is used as an “abstract
type” in defining lens functions of type ∀s.L s A→ L s B . That
is, we require the following conditions.

• L values must be constructed by lifting.
• L values must not be destructed.

This requirement is formally written as follows.

Definition 1 (Abstract Nature of L). We say L is abstract in f :: τ
if there is a polymorphic function h of type

∀`. (∀a b.L a b → (∀s. ` s a → ` s b))
→ (∀a b. (∀s. ` s a → ` s b)→ L a b)→ τ ′

where τ ′ = τ [`/L] and f = h lift unlift .

Essentially, the polymorphic ` in h’s type prevents us from using
the constructor L directly, while the first functional argument of h
(which is lift) provides the means to create L values.

Now the compositional reasoning of well-behavedness extends to
lens functions; we can use a logical relation [31] to characterize well-
behavedness for higher-order functions. As an instance, we can state
that functions of type ∀s.L s A → L s B are well-behavedness
preserving as follows.

Theorem 1. Let f :: ∀s.L s A→ L s B be a function in which L
is abstract. Suppose that all applications of lift in the definition of
f are to well-behaved lenses. Then, f preserves well-behavedness,
and thus unlift f is well-behaved.

2.3 Guaranteeing Abstraction
Theorem 1 requires the condition that L is abstract in f , which can
be enforced by using abstract types through module systems. For
example, in Haskell, we can define the following module to abstract
L.

module AbstractLens (Labs, liftabs, unliftabs) where

newtype Labs a b = Labs {unLabs :: L a b}
liftabs :: L a b → (∀s.Labs s a → Labs s b)
unliftabs :: (∀s.Labs s a → Labs s b)→ L a b

Outside the module AbstractLens , we can use liftabs, unliftabs
and type Labs itself, but not the constructor of Labs. Thus the only
way to access data of type L is through liftabs and unliftabs.

A consequence of having abstract L is that lift is now surjective
(and unlift is now injective). We can prove the following property
using the free theorems [34, 37].

Lemma 1. Let f be a function of type ∀s.L s A→ L s B in which
L is abstract. Then f ` = f idL ◦̂ ` holds for all ` :: L S A.

Correspondingly, we also have that unlift is injective on lens
functions.

Theorem 2. For any f ::∀s.L s A→ L s B in which L is abstract,
lift (unlift f ) = f holds.

In the rest of this paper, we always assume abstract L unless
specially mentioned otherwise.

2.4 Categorical Notes
As mentioned earlier, our idea of mapping L A B to ∀s.L s A→
L s B is based on the Yoneda lemma in category theory (Section
III.2 in [19]). Since our purpose of this paper is not categorical
formalization, we briefly introduce an analogue of the Yoneda
lemma that is enough for our discussion.

Theorem 3 (An Analogue of the Yoneda Lemma (Section III.2 in
[19])). A pair of functions (lift , unlift) is a bijection between

• {` :: L A B}, and
• {f :: ∀s.L s A→ L s B | f x ◦̂ y = f (x ◦̂ y)}.

The condition f x ◦̂y = f (x ◦̂y) is required to make f a natural
transformation between functors L (−) A and L (−) B ; here, the
contravariant functor L (−) A maps a lens ` of type L Y X to
a function (λy → y ◦̂ `) of type L X A → L Y A. Note that
f x ◦̂ y = f (x ◦̂ y) is equivalent to f x = f idL ◦̂ x . Thus the
naturality conditions imply Theorem 2.

In the above, we have implicitly considered the category of
(possibly non-well-behaved) lenses, in which objects are types
(sets in our setting) and morphisms from A to B are lenses of
type L A B . This category of lenses is monoidal [15] but not
closed [30], and thus has no higher-order functions. That is, there is
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no type X B C such that there is a bijection between L (A,B) C
and L A (X B C ), which can be easily checked by comparing
cardinalities. Our discussion does not conflict with this fact. What
we state is that, for any s, (L s A,L s B)→ L s C is isomorphic
to L s A → (L s B → L s C ) via standard curry and uncurry ;
note that s is quantified globally.

Also note that L s (−) is a functor that maps a lens ` to a
function lift `. It is not difficult to check that lift x ◦ lift y =
lift (x ◦̂ y) and lift (idL :: L A A) = (id :: L s A→ L s A).

3. Lifting n-ary Lenses and Flexible Duplication
So far we have presented a system that lifts lenses to functions,
manipulates the functions, and then “unlifts” the results to con-
struct composite lenses. One example is fstTriL from Section 2
reproduced below.

fstTriL :: L ((a, b), c) a
fstTriL = unlift (lift fstL ◦ lift fstL)

Astute readers may have already noticed the type L ((a, b), c) a
which is subtly distinct from L (a, b, c) a . One reason for this is
with the definition of fstTriL, which consists of the composition of
lifted fstLs. But more fundamentally it is the type of lift (L x y →
(∀s.L s x → L s y)), which treats x as a black box, that has
prevented us from rearranging the tuple components.

Let’s illustrate the issue with an even simpler example that goes
directly to the heart of the problem.

swapL :: L (a, b) (b, a)
swapL = . . .

Following the programming pattern developed so far, we would
like to construct this lens with the familiar unidirectional function
swap::(a, b)→ (b, a). But since lift only produces unary functions
of type ∀s.L s A → L s B , despite the fact that A and B are
actually pair types here, there is no way to compose swap with the
resulting lens function.

In order to construct swapL and many other lenses, including
unlinesL in Section 1, a conversion of values of type ∀s. (L s A1,
. . . ,L s An) to values of type ∀s.L s (A1, . . . ,An) is needed. In
this section we look at how such a conversion can be defined for
binary lenses, which can be easily extended to arbitrary n-ary cases.

3.1 Caveats of the Duplication Lens
To define a function of type ∀s. (L s A,L s B)→ L s (A,B), we
use the duplication lens dupL (also known as copy elsewhere [9])
defined as below. For simplicity, we assume that ( ) represents
observational equivalence.

dupL :: Eq s ⇒ L s (s, s)
dupL = L (λs → (s, s)) (λ (s, t)→ r s t)

where r s t | s t = s -- This will cause a problem.

With the duplication lens, the above-mentioned function can be
defined as

(~) :: Eq s ⇒ L s a → L s b → L s (a, b)
x ~ y = (x ⊗̂ y) ◦̂ dupL

where (⊗̂) is a lens combinator that combines two lenses applying
to each component of a pair [9]:

(⊗̂) :: L a a ′ → L b b′ → L (a, b) (a ′, b′)
(L get1 put1) ⊗̂ (L get2 put2) =

L (λ(a, b)→ (get1 a, get2 b))
(λ(a, b) (a ′, b′)→ (put1 a a ′, put2 b b′))

We call (~) “split” in this paper. With (~) we can support the lifting
of binary lenses as below.

lift2 :: L (a, b) c → (∀s. (L s a,L s b)→ L s c)
lift2 ` (x , y) = lift ` (x ~ y)

It is tempting to have the following as the inverse for lift2 .

unlift2 :: (∀s. (L s a,L s b)→ L s c)→ L (a, b) c
unlift2 f = f (fstL, sndL)

But unlift2 ◦ lift2 does not result in identity:

(unlift2 ◦ lift2 ) `
= { definition unfolding & β-reduction }
` ◦̂ (fstL ~ sndL)

= { unfolding (~) }
` ◦̂ (fstL ⊗̂ sndL) ◦̂ dupL

= { definition unfolding }
` ◦̂ blockL where

blockL = L id (λs v → if s v then v else ⊥)
Lens blockL is not a useful lens because it blocks any update to the
view. Consequently any lenses composed with it become useless
too.

3.2 Flexible and Safe Duplication by Tagging
In the above, the equality comparison s v that makes unlift2 ◦
lift2 useless has its root in dupL. If we look at the lens dupL in
isolation, there seems to be no alternative. The two duplicated values
have to remain equal for the bidirectional laws to hold. However,
if we consider the context in which dupL is applied, there is more
room for maneuver. Let us consider the lifting function lift2 again,
and how put dupL, which rejects the update above, works in the
execution of put (unlift2 (lift2 idL)).

put (unlift2 (lift2 idL)) (1, 2) (3, 4)
= { simplification }

put ((fstL ⊗̂ sndL) ◦̂ dupL) (1, 2) (3, 4)
= { definition unfolding & β-reduction }

put dupL (1, 2) (put fstL (1, 2) 3, put sndL (1, 2) 4)
= { β-reduction }

put dupL (1, 2) ((3, 2), (1, 4))

The last call to put dupL above will fail because (3, 2) 6≡ (1, 4).
But if we look more carefully, there is no reason for this behavior:
lift2 idB should be able to update the two elements of the pair
independently. Indeed in the put execution above, relevant values
to the view change as highlighted by underlining are only compared
for equality with irrelevant values. That is to say, we should be able
to relax the equality check in dupL and update the old source (1, 2)
to (3, 4) without violating bidirectional laws.

To achieve this, we tag the values according to their relevance to
view updates [25].

data Tag a = U {unTag :: a } | O {unTag :: a }
Tag U (representing Updated) means the tagged value may be
relevant to the view update and O (representing Original) means the
tagged value must not be relevant to the view update. The idea is that
O-tagged values can be altered without violating the bidirectional
laws, as the new dupL below.

dupL :: Poset s ⇒ L s (s, s)
dupL = L (λs → (s, s)) (λ (s, t)→ s g t)

Here, Poset is a type class for partially-ordered sets that has a
method (g) (pronounced as “lub") to compute least upper bounds.

class Poset s where (g) :: s → s → s

We require that (g) must be associative, commutative and idempo-
tent; but unlike a semilattice, (g) can be partial. Tagged elements
and their (nested) pairs are ordered as follows.
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instance Eq a ⇒ Poset (Tag a) where
(O s) g (U t) = U t
(U s) g (O t) = U s
(O s) g (O t) | s t = O s
(U s) g (U t) | s t = U s

instance (Poset a,Poset b)⇒ Poset (a, b) where
(a, b) g (a ′, b′) = (a g a ′, b g b′)

We also introduce the following type synonym for brevity.1

type LT s a = Poset s ⇒ L s a

As we will show later, the move from L to LT will have implications
on well-behavedness.

Accordingly, we change the types of (~), lift and lift2 as below.

(~) :: LT s a → LT s b → LT s (a, b)
lift :: L a b → (∀s.LT s a → LT s b)
lift2 :: L (a, b) c → (∀s. (LT s a,LT s b)→ LT s c)

And adapt the definitions of unlift and unlift2 to properly handle
the newly introduced tags.

unlift :: Eq a ⇒ (∀s.LT s a → LT s b)→ L a b
unlift f = f id ′

L ◦̂ tagL

id ′
L :: LT (Tag a) a

id ′
L = L unTag (const U )

tagL :: L a (Tag a)
tagL = L O (const unTag)

unlift2 :: (Eq a,Eq b)⇒
(∀s. (LT s a,LT s b)→ LT s c)→ L (a, b) c

unlift2 f = f (fst ′L, snd ′
L) ◦̂ tag2L

fst ′L :: LT (Tag a,Tag b) a
fst ′L = L (λ(a, )→ unTag a) (λ( , b) a → (U a, b))
snd ′

L :: LT (Tag a,Tag b) b
snd ′

L = L (λ( , b)→ unTag b) (λ(a, ) b → (a,U b))

tag2L :: L (a, b) (Tag a,Tag b)
tag2L = L (λ(a, b)→ (O a,O b))

(λ (a, b)→ (unTag a, unTag b))

We need to change unlift because it may be applied to functions
calling lift2 internally. In what follows, we only focus on lift2 and
unlift2 , and expect the discussion straightforwardly extends to lift
and the new unlift .

We can now show that the new unlift2 is the left-inverse of
lift2 .

Proposition 4. unlift2 (lift2 `) = ` holds for all lenses ` ::
L (A,B) C .

Proof. We prove the statement with the following calculation.

unlift2 (lift2 `)
= { definition unfolding & β-reduction }
` ◦̂ fst ′L ~ snd ′

L ◦̂ tag2L

= { unfolding (~) }
` ◦̂ (fst ′L ⊗̂ snd ′

L) ◦̂ dupL ◦̂ tag2L

= { (fst ′L ⊗̂ snd ′
L) ◦̂ dupL ◦̂ tag2L = idL — (*) }

`

We prove the statement (*) by showing get ((fst ′L ⊗̂ snd ′
L) ◦̂

dupL ◦̂ tag2L) (a, b) = (a, b) and put ((fst ′L ⊗̂ snd ′
L) ◦̂ dupL ◦̂

1 Actually, we will have to use newtype for the code in this paper to pass
GHC’s type checking. We take a small deviation from GHC Haskell here in
favor of brevity.

tag2L) (a, b) (a
′, b′) = (a ′, b′). Since the former property is easy

to prove, we only show the latter here.

put ((fst ′L ⊗̂ snd ′
L) ◦̂ dupL ◦̂ tag2L) (a, b) (a

′, b′)
= { definition unfolding & β-reduction }

put tag2L (a, b) $
put ((fst ′L ⊗̂ snd ′

L) ◦̂ dupL) (O a,O b) (a ′, b′)
= { definition unfolding & β-reduction }

put tag2L (a, b) $
put dupL (O a,O b) $
(put fst ′L (O a,O b) a ′, put snd ′

L (O a,O b) b′)
= { definitions of fst ′L and snd ′

L }
put tag2L (a, b) $

put dupL (O a,O b) ((U a ′,O b), (O a,U b′))
= { definition of dupL }

put tag2L (a, b) (U a ′,U b′)
= { definition of tag2L }

(a ′, b′)

Thus, we have proved that lift2 is injective.

We can recreate fstL and sndL with unlift2 , which is rather
reassuring.

Proposition 5. fstL = unlift2 fst and sndL = unlift2 snd .

Note that now unlift and unlift2 are no longer injective (even
with abstract L); there exist functions that are not equivalent but
coincide after unlifting. An example of such is the pair lift2 fstL and
fst : while unlifting both functions result in fstL, they actually differ
as put (lift2 fstL (fst ′L, snd ′

L)) (O a,O b) c = (U c,U b) and
put (fst (fst ′L, snd ′

L)) (O a,O b) c = (U c,O b). Intuitively,
fst knows that the second argument is unused, while lift2 fstL
does not because fstL is treated as a black box by lift2 . In other
words, the relationship between the lifting/unlifting functions and
the Yoneda Lemma discussed in Section 2 ceases to exist in this
new context. Nevertheless, the counter-example scenario described
here is contrived and will not affect practical programming in our
framework.

Another side effect of this new development with tags is that
the original bidirectional laws, i.e., the well-behavedness, are tem-
porarily broken during the execution of lift2 and unlift2 by the new
internal functions fst ′L, snd ′

L, dupL and tag2L. Consequently, we
need a new theoretical development to establish the preservation of
well-behavedness by the lifting/unlifting process.

3.3 Relevance-Aware Well-Behavedness
We have noted that the new internal functions dupL, fst ′L, snd ′

L and
tag2L are not well-behaved, for different reasons. For functions fst ′L
and snd ′

L, the difference from the original versions fstL and sndL is
only in the additional wrapping/unwrapping that is needed to adapt
to the existence of tags. As a result, as long as these functions are
used in an appropriate context, the bidirectional laws are expected
to hold. But for dupL and tag2L, the new definitions are more
defined in the sense that some originally failing executions of put
are now intentionally turned into successful ones. For this change in
semantics, we need to adapt the laws to allow temporary violations
and yet still establish well-behavedness of the resulting bidirectional
transformations in the end. For example, we still want unlift2 f to
be well-behaved for any f :: ∀s. (LT s A,LT s B) → LT s C , as
long as the lifting functions are applied to well-behaved lenses.

3.3.1 Relevance-Ordering and Lawful Duplications
Central to the discussion in this and the previous subsections is the
behavior of dupL. To maintain safety, unequal values as duplications
are only allowed if they have different tags (i,e,. one value must be
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irrelevant to the update and can be discarded). We formalize such
a property with the partial ordering between tagged values. Let us
write (�) for the partial order induced from g: that is, s � t if
s g t is defined and equal to t . One can see that (�) is the reflexive
closure of O s � U t . We write ↑s for a value obtained from s by
replacing all O tags with U tags. Trivially, we have s � ↑s . But
there exists s ′ such that s � s ′ and s ′ 6= ↑s .

Now we can define a variant of well-behavedness local to the
U -tagged elements.

Definition 2 (Local Well-Behavedness). A bidirectional transfor-
mation ` :: LT a b is called locally well-behaved if the following
four conditions hold.

• (Forward Tag-Irrelevance) If v = get ` s , then for all s ′ such
that ↑s ′ = ↑s , v = get ` s ′ holds.

• (Backward Inflation) For all minimal (with respect to �) s , if
put ` s v succeeds as s ′, then s � s ′.

• (Local Acceptability) For all s , s � put ` s (get ` s) � ↑s .
• (Local Consistency) For all s and v , assuming put ` s v

succeeds as s ′, then for all s ′′ with s ′ � s ′′, get ` s ′′ = v
holds.

In the above, tags introduced for the flexible behavior of put
must not affect the behavior of get : ↑s ′ = ↑s means that s and
s ′ are equal if tags are ignored. The property local-acceptability is
similar to acceptability, except that O-tags are allowed to change to
U -tags. The property local consistency is stronger than consistency
in the sense that get must map all values sharing the same U -
tagged elements with s ′ to the same view. The idea is that O-tagged
elements in s ′ are not connected to the view v , and thus changing
them will not affect v . A similar reasoning applies to backward
inflation stating that source elements changed by put will have U -
tags. Note that in this definition of local well-behavedness, tags are
assumed to appear only in the sources. As a matter of fact, only
dupL and tag2L/tagL introduce tagged views; but they are always
precomposed when used, as shown in the following.

We have the following compositional properties for local well-
behavedness.

Lemma 2. The following properties hold for bidirectional transfor-
mations x and y with appropriate types.

• If x is well-behaved and y is locally well-behaved, then lift x y
is locally well-behaved.

• If x and y are locally well-behaved, x ~ y is locally well-
behaved.

• If x and y are locally well-behaved, x ◦̂ tag2L and y ◦̂ tagL are
well-behaved.

Proof. We only prove the second property, which is the most non-
trivial one among the three, although we would like to note that
forward tag-irrelevance is used to prove the third property.

We first show local acceptability.

put ((x ⊗̂ y) ◦̂ dupL) s (get ((x ⊗̂ y) ◦̂ dupL) s)
= { simplification }

put dupL s (put (x ⊗̂ y) (s, s) (get (x ⊗̂ y) (s, s)))
= { by the local acceptability of x ⊗̂ y }

put dupL s (s ′, s ′′) — where s � s ′ � ↑s , s � s ′′ � ↑s
= { by the definition of dupL and that s ′ g s ′′ is defined }

s ′ g s ′′ � ↑s

Note that, since s ′ � ↑s and s ′′ � ↑s , there is s ′ g s ′′ � ↑s .
Then, we prove local consistency. Assume that put ((x ⊗̂ y) ◦̂

dupL) s (v1, v2) succeeds in s ′. Then, by the following calculation,
we have s ′ = put x s v1 g put y s v2.

put ((x ⊗̂ y) ◦̂ dupL) s (v1, v2)
= { simplification }

put dupL s (put x s v1, put y s v2)
= { definition unfolding }

put x s v1 g put y s v2

Let s ′′ be a source such that s ′ � s ′′. Then, we prove get ((x ⊗̂
y)@dupL) s ′′ = (v1, v2) as follows.

get ((x ⊗̂ y) ◦̂ dupL) s ′′ (v1, v2)
= { simplification }

(get x s ′′, get y s ′′)
= { the local consistency of x and y }

(v1, v2)

Note that we have put x s v1 � s ′ � s ′′ and put y s v2 � s ′ �
s ′′ by the definition of g.

Forward tag-irrelevance and backward inflation are straightfor-
ward.

Corollary 1. The following properties hold.

• lift ` ::∀s.LT s A→ LT s B preserves local well-behavedness,
if ` :: LT A B is well-behaved.

• lift2 ` :: ∀s. (LT s A,LT s B) → LT s C preserves local
well-behavedness, if ` :: LT (A,B) C is well-behaved.

Similar to the case in Section 2, compositional reasoning of
well-behavedness requires the lens type LT to be abstract.

Definition 3 (Abstract Nature of LT). We say LT is abstract in f ::τ
if there is a polymorphic function h of type

∀`. (∀a b.LT a b → (∀s. ` s a → ` s b))
→ (∀a b. (∀s. ` s a → ` s b)→ LT a b)
→ (∀s a b. ` s a → ` s b → ` s (a, b))
→ (∀a b c. (∀s. (` s a, ` s b)→ ` x c)→ LT (a, b) c)
→ τ ′

satisfying f = h lift unlift (~) unlift2 and τ ′ = τ [`/LT].

Then, we obtain the following properties from the free theo-
rems [34, 37].

Theorem 4. Let f be a function of type ∀s. (LT s A,LT s B) →
LT s C in which LT is abstract. Then, f (x , y) is locally well-
behaved if x and y are also locally well-behaved, assuming that lift
is applied only to well-behaved lenses.

Corollary 2. Let f be a function of type ∀s. (LT s A,LT s B)→
LT s C in which LT is abstract. Then, unlift2 f is well-behaved,
assuming that lift is applied only to well-behaved lenses.

Example 1 (swap). The bidirectional version of swap can be
defined as follows.

swapL :: (Eq a,Eq b)⇒ L (a, b) (b, a)
swapL = unlift2 (lift2 idL ◦ swap)

And it behaves as expected.

put swapL (1, 2) (4, 3)
= { unfold definitions }

put ((snd ′
L ⊗̂ fst ′L) ◦̂ dupL ◦̂ tag2L) (1, 2) (4, 3)

= { simplifications }
put tag2L (1, 2) $

put dupL (O 1,O 2) $
(put snd ′

L (O 1,O 2) 4, put fst ′L (O 1,O 2) 3)
= { definition of fst ′L and snd ′

L }
put tag2L (1, 2) $

put dupL (O 1,O 2) ((O 1,U 4), (U 3,O 2))
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= { definitions of dupL and tag2L }
(3, 4)

It is worth mentioning that (~) is the base for “splitting" and
“lifting" tuples of arbitrary arity. For example, the triple case is as
follows.

split3 :: (LT s a,LT s b,LT s c)→ LT s (a, b, c)
split3 (x , y , z ) = lift flattenLL ((x ~ y)~ z )

where flattenLL :: L ((a, b), c) (a, b, c)
flattenLL = L (λ((x , y), z )→ (x , y , z ))

(λ (x , y , z )→ ((x , y), z ))

lift3 ` t = lift ` (split3 t)

For the family of unlifting functions, we additionally need n-ary ver-
sions of projection and tagging functions, which are straightforward
to define.

In the above definition of split3 , we have decided to nest to the
left in the intermediate step. This choice is not essential.

split3 ′ (x , y , z ) = lift flattenRL (x ~ (y ~ z ))
where flattenRL :: L ((a, b), c) (a, b, c)

flattenRL = L (λ(x , (y , z ))→ (x , y , z ))
(λ (x , y , z )→ (x , (y , z )))

The two definitions split3 and split3 ′ coincide.
To complete the picture, the nullary lens function

unit :: ∀s.LT s ()
unit = L (λ → ()) (λs ()→ s)

is the unit for (~). Theoretically (LT s (−),~, unit) forms a lax
monoidal functor (Section XI.2 in [19]) under certain conditions
(see Section 3.4). Practically, unit enables us to define the following
combinator.

new :: Eq a ⇒ a → ∀s.LT s a
new a = lift (L (const a) (λ a ′ → check a a ′)) unit

where
check a a ′ = if a a ′ then ()

else error "Update on constant"

Function new lifts ordinary values into the bidirectional transfor-
mation system; but since the values are not from any source, they
are not updatable. Nevertheless, this ability to lift constant values
is very useful in practice [21, 22], as we will see in the examples to
come.

3.4 Categorical Notes
Recall that L S (−) is a functor from the category of lenses to the
category of sets and (total) functions, which maps ` :: L A B to
lift ` :: L S A→ L S B for any S . In the case that S is tagged and
thus partially ordered, (LT S (−),~, unit) forms a lax monoidal
functor, under the following conditions.

• (~) must be natural, i.e., (lift f x ) ~ (lift g y) = lift (f ⊗̂
g) (x ~ y) for all f , g , x and y with appropriate types.

• split3 and split3 ′ coincide.
• lift elimUnitLL (unit~x ) = x must hold where elimUnitLL::

L ((), a) a is the bidirectional version of elimination of (), and
so does its symmetric version.

Intuitively, the second and the third conditions state that the mapping
must respect the monoid structure of products, with the former
concerning associativity and the latter concerning the identity
elements. The first and second conditions above hold without any
additional assumptions, whereas the third condition, which reduces
to s g put x s v = put x s v , is not necessarily true if s

is not minimal (if s is minimal, this property holds by backward
inflation). Recall that minimality of s implies that s can only have
O-tags. To get around this restriction, we take LT S A as a quotient
set of L S A by the equivalence relation ≡ defined as x ≡ y if
get x = get y ∧ put x s = put y s for all minimal s . This
equivalence is preserved by manipulations of LT-data; that is, the
following holds for x , y , z and w with appropriate types.

• x ≡ y implies lift ` x ≡ lift ` y for any well-behaved lens `.
• x ≡ y and z ≡ w implies x ~ z ≡ y ~ w .
• x ≡ y implies x ◦̂ tagL = y ◦̂ tagL (or x ◦̂ tag2L = y ◦̂ tag2L).

Note that the above three cases cover the only ways to con-
struct/destruct LT in f when LT is abstract. The third condition
says that this “coarse” equivalence (≡) on LT can be “sharpened”
to the usual extensional equality (=) by tagL and tag2L in the
unlifting functions.

It is known that an Applicative functor in Haskell corresponds to
a monoidal functors [29]. However, we cannot use an Applicative-
like interface because there is no exponentials in lenses [30]. Never-
theless, the same spirit of applicative-style programming centering
around lambda abstractions and function applications is shared in
our framework.

4. Going Generic
In this section, we make the ideas developed in previous sections
practical by extending the technique to lists and other data structures.

4.1 Unlifting Functions on Lists
We have looked at how unlifting works for n-nary tuples in Section 3.
And we now see how the idea can be extended to lists. As a typical
usage scenario, if we apply map to a lens function lift `, we will
obtain a function of type map (lift `) :: [LT s A]→ [LT s B ]. But
what we really would like is a lens of type L [A] [B ]. The way to
achieve this is to internally treat length-n lists as n-ary tuples. This
treatment effectively restricts us to in-place updates of views (i.e.,
no change is allowed to the list structure); we will revisit this issue
in more detail in Section 6.1.

First, we can “split” lists by repeated pair-splitting, as follows.

lsequence list :: [L
T s a ]→ LT s [a ]

lsequence list [ ] = lift nilL unit
lsequence list (x : xs) = lift2 consL (x , lsequence list xs)

nilL = L (λ()→ [ ]) (λ() [ ]→ ())
consL = L (λ(a, as)→ (a : as))

(λ (a ′ : as ′)→ (a ′, as ′))

The name of this function is inspired by sequence in Haskell. Then
the lifting function is defined straightforwardly.

lift list :: L [a ] b → ∀s. [LT s a ]→ LT s b
lift list ` xs = lift ` (lsequence list xs)

Tagged lists form an instance of Poset .

instance Poset a ⇒ Poset [a ] where
xs g ys = if length xs length ys

then zipWith (g) xs ys
else ⊥ -- Unreachable in our framework

Note that the requirement that xs and ys must has the same shape
is made explicit above, though it is automatically enforced by the
abstract use of LT in lifted functions.

The definition of unlift list is a bit more involved. What we need
to do is to turn every element of the source list into a projection lens
and apply the lens function f .
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unlift list :: ∀a b.Eq a ⇒
(∀s. [LT s a ]→ LT s b)→ L [a ] b

unlift list f = L (λs → get (mkLens s) s)
(λs → put (mkLens s) s)

where
mkLens s = f (projs (length s)) ◦̂ tagListL
tagListL = L (map O) (λ ys → map unTag ys)
projs n = map projL [0 . .n − 1]

projL :: Int → LT [Tag a ] a
projL i = L (λxs → unTag (xs !! i))

(λas a → update i (U a) as)

Giving that the need to inspect the length of the source leads to the
separated definitions of get and put in the above, there might be
worry that we may lose the guarantee of well-behaveness of the
resulting lens. But this is not a problem here since the length of
the source list is an invariant of the resulting lens. Similar to lift2 ,
lift list is an injection with unlift list as its left inverse.

Example 2 (Bidirectional tail ). Let us consider the function tail .

tail :: [a ]→ [a ]
tail (x : xs) = xs

A bidirectional version of tail is easily constructed by using
lsequence list and unlift list as follows.

tailL :: Eq a ⇒ L [a ] [a ]
tailL = unlift list (lsequence list ◦ tail)

The obtained lens tailL supports all in-place updates, such as
put tailL ["a", "b", "c"] ["B", "C"] = ["a", "B", "C"]. In
contrast, any change on list length will be rejected; specifically
nilL or consL in lsequence list throws an error.

Example 3 (Bidirectional unlines). Let us consider a bidirec-
tional version of unlines :: [String ] → String that concatenate
lines, after appending a terminating newline to each. For example,
unlines ["ab", "c"] = "ab\nc\n". In conventional unidirectional
programming, one can implement unlines as follows.

unlines [ ] = ""
unlines (x : xs) = catLine x (unlines xs)

catLine x y = x ++ "\n"++ y

To construct a bidirectional version of unlines , we first need a
bidirectional version of catLine .

catLineL :: L (String ,String) String
catLineL =

L (λ(s, t)→ s ++ "\n"++ t)
(λ(s, t) u → let n = length (filter ( ’\n’) s)

i = elemIndices ’\n’ u !! n
(s ′, t ′) = splitAt i u

in (s ′, tail t ′))

Here, elemIndices and splitAt are functions from Data.List:
elemIndices c s returns the indices of all elements that are equal
to c; splitAt i x returns a tuple where the first element is x ’s
prefix of length i and the second element is the remainder of the list.
Intuitively, put catLineL (s, t) u splits u into s ′ and "\n" ++ t ′

so that s ′ contains the same number of newlines as the original
s . For example, put catLineL ("a\nbc", "de") "A\nB\nC" =
("A\nB", "C").

Then, construction of a bidirectional version unlinesL of
unlines is straightforward; we only need to replace "" with new ""
and catLine with lift2 catLineL, and to apply unlift list to obtain
a lens.

unlinesL :: L [String ] String
unlinesL = unlift list unlinesF

unlinesF :: ∀s. [LT s String ]→ LT s String
unlinesF [ ] = new ""
unlinesF (x : xs) = lift2 catLineL (x , unlinesF xs)

As one can see, unlinesF is written in the same applicative style
as unlines . The construction principle is: if the original function
handles data that one would like update bidirectionally (e.g., String
in this case), replace the all manipulations (e.g., catLine and "")
of the data with the corresponding bidirectional versions (e.g.,
lift2 catLineL and new "").

Lens unlinesL accepts updates that do not change the original
formatting of the view (i.e., the same number of lines and an empty
last line). For example, we have put unlinesL ["a", "b", "c"]
"AA\nBB\nCC\n" = ["AA", "BB", "CC"], but put unlinesL

["a", "b", "c"] "AA\nBB\n" = ⊥ and put unlinesL ["a", "b",
"c"] "AA\nBB\nCC\nD" = ⊥.

Example 4 (unlines defined by foldr ). Another common way to
implement unlines is to use foldr , as below.

unlines = foldr catLine ""

The same coding principle for constructing bidirectional versions
applies.

unlinesL :: L [String ] String
unlinesL = unlift list unlinesF

unlinesF :: ∀s. [LT s String ]→ LT s String
unlinesF = foldr (lift2 catLineL) (new "")

The new unlinesF is again in the same applicative style as the
new unlines , where the unidirectional function foldr is applied to
normal functions and lens functions alike.

For readers familiar with the literature of bidirectional transfor-
mation, this restriction to in-place updates is very similar to that
in semantic bidirectionalization [21, 33, 41]. We will discuss the
connection in Section 7.1.

4.2 Datatype-Generic Unlifting Functions
The treatment of lists is an instance of the general case of container-
like datatypes. We can view any container with n elements as an n-
tuple, only to have list length replaced by the more general container
shape. In this section, we define a generic version of our technique
that works for many datatypes.

Specifically, we use the datatype-generic function traverse,
which can be found in Data.Traversable, to give data-type
generic lifting and unlifting functions.

traverse :: (Traversable t ,Applicative f )
⇒ (a → f b)→ t a → f (t b)

We use traverse to define two functions that are able to extract
data from the structure holding them (contents), and redecorate an
“empty” structures with given data (fill ). 2

newtype Const a b = Const {getConst :: a }
contents :: Traversable t ⇒ t a → [a ]
contents t = getConst (traverse (λx → Const [x ]) t)

2 In GHC, the function contents is called toList , which is defined in
Data.Foldable (Every Traversable instance is also an instance of
Foldable). We use the name contents to emphasize the function’s role
of extracting contents from structures [3].
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fill :: Traversable t ⇒ t b → [a ]→ t a
fill t ` = evalState (traverse next t) `

where
next = do (a : x )← Control .Monad .State.get

Control .Monad .State.put x
return a

Here, Const a b is an instance of the Haskell Functor that ignores
its argument b. It becomes an instance of Applicative if a is an
instance of Monoid . We qualified the state monad operations get
and put to distinguish them from the get and put as bidirectional
transformations.

For many datatypes such as lists and trees, instances of
Traversable are straightforward to define to the extend of being
systematically derivable [23]. The instances of Traversable must
satisfy certain laws [3]; and for such lawful instances, we have

fill (fmap f t) (contents t) = t (FillContents)
contents (fill t xs) = xs if length xs = length (contents t)

(ContentsFill)

for any f and t, which are needed to established the correctness of
our generic algorithm. Note that every Traversable instance is also
an instance of Functor .

We can now define a generic lsequence function as follows.

lsequence :: (Eq a,Eq (t ()),Traversable t)⇒
t (LT s a)→ LT s (t a)

lsequence t =
lift (fillL (shape t)) (lsequence list (contents t))
where

fillL s = L (λxs → fill s xs) (λ t → contents ′ s t)
contents ′ s t = if shape t s

then contents t
else error "Shape Mismatch"

Here, shape computes the shape of a structure by replacing elements
with units, i.e., shape t = fmap (λ → ()) t . Also, we can make
a Poset instance as follows.3

instance (Poset a,Eq (t ()),Traversable t)⇒
Poset (t a) where

t1 g t2 = if shape t1 shape t2
then fill t1 (contents t1 g contents t2)
else ⊥ -- Unreachable, in our framework

Following the example of lists, we have a generic unlifting function
with length replaced by shape .

unliftT :: (Eq (t ()),Eq a,Traversable t)⇒
(∀s. t (LT s a)→ LT s b)→ L (t a) b

unliftT f = L (λs → get (mkLens s) s)
(λs → put (mkLens s) s)

where
mkLens s = f (projTs (shape s)) ◦̂ tagTL

tagTL = L (fmap O) (const $ fmap unTag)
projTs sh =

let n = length (contents sh)
in fill sh [projTL i sh | i ← [0 . .n − 1]]

projTL i sh =
L (unTag ◦ (!!i) ◦ contents)
(λs v → fill sh (update i (U v) (contents s)))

3 This definition actually overlaps with that for pairs. So we either need to
have “wrapper” type constructors, or enable OverlappingInstances.

Here, projTL i t is a bidirectional transformation that extracts the
i th element in t with the tag erased. Similarly to unlift list, the shape
of the source is an invariant of the derived lens.

5. An Application: Bidirectional Evaluation
In this section, we demonstrate the expressiveness of our framework
by defining a bidirectional evaluator in it. As we will see in a larger
scale, programming in our framework is very similar to what it is in
conventional unidirectional languages, distinguishing us from the
others.

An evaluator can be seen as a mapping from an environment
to a value of a given expression. A bidirectional evaluator [14]
additionally takes the same expression but maps an updated value of
the expression back to an updated environment, so that evaluating
the expression under the updated environment results in the value.

Consider the following syntax for a higher-order call-by-value
language.

data Exp = ENum Int | EInc Exp
| EVar String | EApp Exp Exp
| EFun String Exp deriving Eq

data Val a = VNum a
| VFun String Exp (Env a) deriving Eq

data Env a = Env [(String ,Val a)] deriving Eq

This definition is standard, except that the type of values is pa-
rameterized to accommodate both Val (LT s Int) and Val Int
for updatable and ordinary integers, and so does the type of en-
vironments. It is not difficult to make Val and Env instances of
Traversable .

We only consider well-typed expressions. Using our framework,
writing a bidirectional evaluator is almost as easy as writing the
usual unidirectional one.

eval :: Env (LT s Int)→ Exp → Val (LT s Int)
eval env (ENum n) = VNum (new n)
eval env (EInc e) = let VNum v = eval env e

in VNum (lift incL v)
eval env (EVar x ) = lkup x env
eval env (EApp e1 e2) = let VFun x e ′ (Env env ′) =

eval env e1
v2 = eval env e2

in eval (Env ((x , v2) : env ′)) e ′

eval env (EFun x e) = VFun x e env

Here, incL :: L Int Int is a bidirectional version of (+1) that can
be defined as follows.

incL = L (+1) (λ x → x − 1)

and lkup :: String → Env a → a is a lookup function.
A lens evalL :: Exp → L (Env Int) (Val Int) naturally arises

from eval .

evalL :: Exp → L (Env Int) (Val Int)
evalL e = unliftT (λenv → liftT idL $ eval env e)

As an example, let’s consider the following expression which
essentially computes x + 65536 by using a higher-order function
twice in the object language.

expr = twice @@ twice @@ twice @@ twice @@ inc @@ x
where

twice = EFun "f" $ EFun "x" $
EVar "f" @@ (EVar "f" @@ EVar "x")

x = EVar "x"
inc = EFun "x" $ EInc (EVar "x")
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infixl 9 @@ -- @@ is left associative
(@@) = EApp

For easy reading, we translate the above expression to Haskell
syntax.

expr = ((((twice twice) twice) twice) inc) x
where twice f x = f (f x ); inc x = x + 1

Now giving an environment that binds the free variables x and y ,
we can run the bidirectional evaluator as follows, with env0 =
Env [("x",VNum 3)].

Main> get (evalL expr) env0

VNum 65539
Main> put (evalL expr) env0 (VNum 65536)
Env [("x",VNum 0)]

As a remark, this seemingly innocent implementation of evalL
is actually highly non-trivial. It essentially defines compositional (or
modular) bidirectionalization [20, 21, 33, 41] of programs that are
monomorphic in type and use higher-order functions in definition—
something that has not been achieved in bidirectional-transformation
research so far.

6. Extensions
In this section, we extend our framework in two dimensions: al-
lowing shape changes via lifting lens combinators, and allowing
(LT s A)-values to be inspected during forward transformations
following our previous work [21, 22].

6.1 Lifting Lens-Combinators
An advantage of the original lens combinators [9] (that operate
directly on the non-functional representation of lenses) over what
we have presented so far is the ability to accept shape changes to
views. We argue that our framework is general enough to easily
incorporate such lens combinators.

Since we already know how to lift/unlift lenses, it only takes
some plumbing to be able to handle lens combinators, which are
simply functions over lenses. For example, for combinators of type
L A B → L C D we have

liftC :: Eq a ⇒ (L a b → L c d)→
(∀s.LT s a → LT s b)→ (∀t .LT t c → LT t d)

liftC c f = lift (c (unlift f ))

To draw an analogy to parametric higher-order abstract syn-
tax [5], the polymorphic arguments of the lifted combinators rep-
resent closed expressions; for example, a program like λx →
. . . c (. . . x . . . ) . . . does not type-check when c is a lifted combi-
nator.

As an example, let us consider the following lens combinator
mapDefaultC.

mapDefaultC :: a → L a b → L [a ] [b ]
mapDefaultC d ` = L (map (get `)) (λs v → go s v)

where go ss [ ] = [ ]
go [ ] (v : vs) = put ` d v : go [ ] vs
go (s : ss) (v : vs) = put ` s v : go ss vs

When given a lens on elements, mapDefaultC d turns it into
a lens on lists. The default value d is used when new elements
are inserted to the view, making the list lengths different. We can
incorporate this behavior into our framework. For example, we can
use mapDefaultC as the following, which in the forward direction
is essentially map (uncurry (+)).

mapAddL :: L [(Int , Int)] [Int ]
mapAddL = unlift mapAddF

mapAddF xs = mapF (0, 0) (lift addL) xs
mapF d = liftC (mapDefaultC d)

addL = L (λ(x , y)→ x + y) (λ(x , ) v → (x , v − x ))

This lens mapAddL constructed in our framework handles shape
changes without any trouble.

Main> put mapAddL [(1, 1), (2, 2)] [3, 5]
[(1, 2), (2, 3)]
Main> put mapAddL [(1, 1), (2, 2)] [3]
[(1, 2)]
Main> put mapAddL [(1, 1), (2, 2)] [3, 5, 7]
[(1, 2), (2, 3), (0, 7)]

The trick is that the expression mapF (0, 0) (lift addL)
has type ∀s.LT s [(Int , Int)] → LT s [Int ], where the
list occurs inside LT s , contrasting to map (lift addL)’s type
∀s. [LT s (Int , Int)]→ [LT s Int ]. Intuitively, the type construc-
tor LT s can be seen as an updatability annotation; LT s [(Int , Int)]
means that the list itself is updatable, whereas [LT s (Int , Int)]
means that only the elements are updatable. Here is the trade-off:
the former has better updatability at the cost of a special lifted lens
combinator; the latter has less updatability but simply uses the usual
map directly. Our framework enables programmers to choose either
style, or anywhere in between freely.

This position-based approach used in mapDefaultC is not
the only way to resolve shape descrepencies. We can also match
elements according to keys [2, 11]. As an example, let us consider a
variant of the map combinator.

mapByKeyC :: Eq k ⇒ a → L a b → L [(k , a)] [(k , b)]
mapByKeyC d ` = L (map (λ(k , s)→ (k , get ` s)))

(λs v → go s v)
where go ss [ ] = [ ]

go ss ((k , v) : vs) =
case lookup k ss of

Nothing → (k , put ` d v) : go ss vs
Just s → (k , put ` s v) : go (del k ss) vs

del k [ ] = [ ]
del k ((k ′, s) : ss) | k k ′ = ss

| otherwise = (k ′, s) : del k ss

Lenses constructed with mapByKeyC match with keys instead
of positions.

mapAddByKeyL :: Eq k ⇒ L [(k , (Int , Int))] [(k , Int)]
mapAddByKeyL = unlift mapAddByKeyF

mapAddByKeyF xs = mapByKeyF (0, 0) (lift addL) xs

mapByKeyF d = liftC (mapByKeyC d)

Let s be [("A", (1, 1)), ("B", (2, 2))]. Then, the obtained lens
works as follows.

Main> put mapAddByKeyL s [("B", 5), ("A", 3)]
[("B", (2, 3)), ("A", (1, 2))]
Main> put mapAddByKeyL s [("A", 3)]
[("A", (1, 2))]
Main> put mapAddByKeyL s [("B", 5), ("C", 7), ("A", 3)]
[("B", (2, 3)), ("C", (0, 7)), ("A", (1, 2))]

6.2 Observations of Lifted Values
So far we have programmed bidirectional transformations ranging
from polymorphic to monomorphic functions. For example, unlines
is monomorphic because its base case returns a String constant,
which is nicely handled in our framework by the function new . At
the same time, it is also obvious that the creation of constant values is
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not the only cause of a transformation being monomorphic [21, 22].
For example, let us consider the following toy program.4

bad (x , y) = if x new 0 then (x , y) else (x ,new 1)

In this program, the behavior of the transformation depends on the
“observation" made to a value that may potentially be updated in the
view. Then the naively obtained lens badL = unlift2 (lift2 idL ◦
bad) would violate well-behavedness, as put badL (0, 2) (1, 2) =
(1, 2) but get badL (1, 2) = (1, 1).

Our previous work [21, 22] tackles this problem by using a
monad to record observations, and to enforce that the recorded
observation results remain unchanged while executing put . The
same technique can be used in our framework, and actually in a
much simpler way due to our new compositional formalization.

newtype R s a = R (Poset s ⇒ s → (a, s → Bool))

We can see that R A B represents gets with restricted source
updates: taking a source s :: A, it returns a view of type B together
with a constraint of type A → Bool which must remain satisfied
amid updates of s . Formally, giving R m :: R A B , for any s , if
( , p) = m s then we have: (1) p s = True; (2) p s ′ = True
implies m s = m s ′ for any s ′. It is not difficult to make R s an
instance of Monad—it is a composition of Reader and Writer
monads. We only show the definition of (>>=).

R m >>= f = R $ λs → let (x , c1) = m s
(y , c2) = let R k = f x in k s

in (y , λs → c1 s ∧ c2 s)

Then, we define a function that produces R values, and a version
of unlifting that enforces the observations gathered.

observe :: Eq w ⇒ LT s w → R s w
observe ` = R (λs → let w = get ` s

in (w , λs ′ → get ` s ′ w))

unliftM2 :: (Eq a,Eq b)⇒
(∀s. (LT s a,LT s b)→ R s (LT s c))
→ L (a, b) c

unliftM2 f = L (λs → get (mkLens f s) s)
(λs → put (mkLens f s) s)

where
mkLens f s =

let (`, p) = let R m = f (fst ′L, snd ′
L)

in m (get tag2L s)
`′ = ` ◦̂ tag2L

put ′ s v = let s ′ = put `′ s v
in if p (get tag2L s ′) then s ′ else ⊥

in L (get `′) put ′

Although we define the get and put components of the resulting
lens separately in unliftM2 , well-behavedness is guaranteed as
long as R and LT are used abstractly in f . Note that, similarly
to unliftM2 , we can define unliftM and unliftMT , as monadic
versions of unlift and unliftT .

We can now sprinkle observe at where observations happens,
and use unliftM to guard against changes to them.

good (x , y) = fmap (lift2 idL) $ do
b ← liftO2 ( ) x (new 0)
return (if b then (x , y) else (x ,new 1))

Here, liftO2 is defined as follows.

4 This code actually does not type check as ( ) on (LT s Int)-values
depends on a source and has to be implemented monadically. But we do not
fix this program as it is meant to be a non-solution that will be discarded.

liftO2 :: Eq w ⇒
(a → b → w)→ LT s a → LT s b → R s w

liftO2 p x y = liftO (uncurry p) (x ~ y)

liftO :: Eq w ⇒ (a → w)→ LT s a → R s w
liftO p x = observe (lift (L p unused) x )

where unused s v | v p s = s

Then the obtained lens goodL = unliftM2 good successfully
rejects illegal updates, as put goodL (0, 2) (1, 2) = ⊥.

One might have noticed that the definition of good is in the
Monadic style—not applicative in the sense of [23]. This is necessary
for handling observations, as the effect of (R s) must depend on the
value in it [18].

Due to space restriction, we refer interested readers to our
previous work [21, 22] for practical examples of bidirectional
transformations with observations.

7. Related Work and Discussions
In this section, we discuss related techniques to our paper, mak-
ing connections to a couple of notable bidirectional program-
ming approaches, namely semantic bidirectionalization and the van
Laarhoven representation of lenses.

7.1 Semantic Bidirectionalization
An alternative way of building bidirectional transformations other
than lenses is to mechanically transform existing unidirectional
programs to obtain a backward counterpart, a technique known as
bidirectionalization [20]. Different flavors of bidirectionalization
have been proposed: syntactic [20], semantic [21, 22, 33, 41], and
a combination of the two [35, 36]. Syntactic bidirectionalization
inspects a forward function definition written in a somehow re-
stricted syntactic representation and synthesizes a definition for the
backward version. Semantic bidirectionalization on the other hand
treats a polymorphic get as a semantic object, applying the function
independently to a collection of unique identifiers, and the free the-
orems arising from parametricity states that whatever happens to
those identifiers happens in the same way to any other inputs—this
information is sufficient to construct the backward transformation.

Our framework can be viewed as a more general form of
semantic bidirectionalization. For example, giving a function of type
∀a. [a ]→ [a ], a bidirectionalization engine in the style of [33] can
be straightforwardly implemented in our framework as follows.

bff :: (∀a. [a ]→ [a ])→ (Eq a ⇒ L [a ] [a ])
bff f = unlift list (lsequence list ◦ f )

Replacing unlift list and lsequence list with unliftT and lsequence ,
we also obtain the datatype generic version [33].

With the addition of observe and the monadic unlifting functions,
we are also able to cover extensions of semantic bidirectionaliza-
tion [21, 22] in a simpler and more fundamental way. For example,
liftO2 (and other n-ary observations-lifting functions) has to be a
primitive previously [21, 22], but can now be derived from observe ,
lift and (~) in our framework.

Our work’s unique ability of combining lenses and semantic
bidirectionalization results in more applicability and control than
those offered by bidirectionalization alone: user-defined lenses on
base types can now be passed to higher-order functions. For example,
Q5 of Use Case “STRING” in XML Query Use Case ( http://www.
w3.org/TR/xquery-use-cases) which involves concatenation
of strings in the transformation, can be handled by our technique,
but not previously with bidirectionalization [21, 22, 33, 41]. We
believe that with the proposal in this paper, all queries in XML
Query Use Case can now be bidirectionalized. In a sense we are
a step forward to the best of both worlds: gaining convenience in
programming without losing expressiveness.
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The handling of observation in this paper follows the idea of our
previous work [21, 22] to record only the observations that actually
happened, not those that may. The latter approach used in [33, 41]
has the advantage of not requiring a monad, but at the same time
not applicable to monomorphic transformations, as the set of the
possible observation results is generally infinite.

7.2 Functional Representation of Bidirectional
Transformations

There exists another functional representation of lenses known as the
van Laarhoven representation [26, 32]. This representation, adopted
by the Haskell library lens, encodes bidirectional transformations
of type L A B as functions of the following type.

∀f .Functor f ⇒ (B → f B)→ (A→ f A)

Intuitively, we can read A → f A as updates on A and a lens
in this representation maps updates on B (view) to updates on A
(source), resulting in a “put-back based” style of programming [27].
The van Laarhoven representation also has its root in the Yoneda
Lemma [17, 24]; unlike ours which applies the Yoneda Lemma to
L (−) V , they apply the Yoneda Lemma to a functor (V ,V →
(−)). Note that the lens type L S V is isomorphic to the type
S → (V ,V → S).

Compared to our approach, the van Laarhoven representation
is rather inconvenient for applicative-style programming. It cannot
be used to derive a put when a get is already given, as in bidirec-
tionalization [20–22, 33, 35, 36, 41] and the classical view update
problem [1, 6, 8, 13], especially in a higher-order setting. In the van
Laarhoven representation, a bidirectional transformation ` :: L A B ,
which has get ` :: A→ B , is represented as a function from some
B structure to some A structure. This difference in direction poses
a significant challenge for higher-order programs, because struc-
tures of abstractions and applications are not preserved by inverting
the direction of→. In contrast, our construction of put from get
is straightforward; replacing base type operations with the lifted
bidirectional versions is suffice as shown in the unlinesL and evalL
examples (monadification is only needed when supporting observa-
tions). Moreover, the van Laarhoven representation does not extend
well to data structures: n-ary functions in the representation do not
correspond to n-ary lenses. As a result, the van Laarhoven repre-
sentation itself is not useful to write bidirectional programs such as
unlinesL and evalL. Actually as far as we are aware, higher-order
programming with the van Laarhoven representation has not been
investigated before.

By using the Yoneda embedding, we can also express L A B as
functions of type ∀v .L B v → L A v . It is worth mentioning
that L (−) V also forms a lax monoidal functor under some
conditions [30]; for example, V must be a monoid. However,
although their requirement fits well for their purpose of constructing
HTML pages with forms, we cannot assume such a suitable monoid
structure for a general V . Moreover, similarly to the van Laarhoven
representation, this representation cannot be used to derive a put
from a get .

8. Conclusion
We have proposed a novel framework of applicative bidirectional
programming, which features the strengths of lens [4, 9, 10] and
semantics bidirectionalization [21, 22, 33, 41]. In our framework,
one can construct bidirectional transformations in an applicative
style, almost in the same way as in a usual functional language.
The well-behavedness of the resulting bidirectional transformations
are guaranteed by construction. As a result, complex bidirectional
programs can be now designed and implemented with reasonable
efforts.

A future step will be to extend the current ability of handling
shape updates. It is important to relax the restriction that only closed
expressions can be unlifted to enable more practical programming.
A possible solution to this problem would be to abstract certain
kind of containers in addition to base-type values, which is likely to
lead to a more fine-grained treatment of lens combinators and shape
updates.
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