174 research outputs found

    Automatic Detection of Cortical Arousals in Sleep and their Contribution to Daytime Sleepiness

    Full text link
    Cortical arousals are transient events of disturbed sleep that occur spontaneously or in response to stimuli such as apneic events. The gold standard for arousal detection in human polysomnographic recordings (PSGs) is manual annotation by expert human scorers, a method with significant interscorer variability. In this study, we developed an automated method, the Multimodal Arousal Detector (MAD), to detect arousals using deep learning methods. The MAD was trained on 2,889 PSGs to detect both cortical arousals and wakefulness in 1 second intervals. Furthermore, the relationship between MAD-predicted labels on PSGs and next day mean sleep latency (MSL) on a multiple sleep latency test (MSLT), a reflection of daytime sleepiness, was analyzed in 1447 MSLT instances in 873 subjects. In a dataset of 1,026 PSGs, the MAD achieved a F1 score of 0.76 for arousal detection, while wakefulness was predicted with an accuracy of 0.95. In 60 PSGs scored by multiple human expert technicians, the MAD significantly outperformed the average human scorer for arousal detection with a difference in F1 score of 0.09. After controlling for other known covariates, a doubling of the arousal index was associated with an average decrease in MSL of 40 seconds (β\beta = -0.67, p = 0.0075). The MAD outperformed the average human expert and the MAD-predicted arousals were shown to be significant predictors of MSL, which demonstrate clinical validity the MAD.Comment: 40 pages, 13 figures, 9 table

    Reconnaissance de l'émotion thermique

    Full text link
    Pour améliorer les interactions homme-ordinateur dans les domaines de la santé, de l'e-learning et des jeux vidéos, de nombreux chercheurs ont étudié la reconnaissance des émotions à partir des signaux de texte, de parole, d'expression faciale, de détection d'émotion ou d'électroencéphalographie (EEG). Parmi eux, la reconnaissance d'émotion à l'aide d'EEG a permis une précision satisfaisante. Cependant, le fait d'utiliser des dispositifs d'électroencéphalographie limite la gamme des mouvements de l'utilisateur. Une méthode non envahissante est donc nécessaire pour faciliter la détection des émotions et ses applications. C'est pourquoi nous avons proposé d'utiliser une caméra thermique pour capturer les changements de température de la peau, puis appliquer des algorithmes d'apprentissage machine pour classer les changements d'émotion en conséquence. Cette thèse contient deux études sur la détection d'émotion thermique avec la comparaison de la détection d'émotion basée sur EEG. L'un était de découvrir les profils de détection émotionnelle thermique en comparaison avec la technologie de détection d'émotion basée sur EEG; L'autre était de construire une application avec des algorithmes d'apprentissage en machine profonds pour visualiser la précision et la performance de la détection d'émotion thermique et basée sur EEG. Dans la première recherche, nous avons appliqué HMM dans la reconnaissance de l'émotion thermique, et après avoir comparé à la détection de l'émotion basée sur EEG, nous avons identifié les caractéristiques liées à l'émotion de la température de la peau en termes d'intensité et de rapidité. Dans la deuxième recherche, nous avons mis en place une application de détection d'émotion qui supporte à la fois la détection d'émotion thermique et la détection d'émotion basée sur EEG en appliquant les méthodes d'apprentissage par machine profondes - Réseau Neuronal Convolutif (CNN) et Mémoire à long court-terme (LSTM). La précision de la détection d'émotion basée sur l'image thermique a atteint 52,59% et la précision de la détection basée sur l'EEG a atteint 67,05%. Dans une autre étude, nous allons faire plus de recherches sur l'ajustement des algorithmes d'apprentissage machine pour améliorer la précision de détection d'émotion thermique.To improve computer-human interactions in the areas of healthcare, e-learning and video games, many researchers have studied on recognizing emotions from text, speech, facial expressions, emotion detection, or electroencephalography (EEG) signals. Among them, emotion recognition using EEG has achieved satisfying accuracy. However, wearing electroencephalography devices limits the range of user movement, thus a noninvasive method is required to facilitate the emotion detection and its applications. That’s why we proposed using thermal camera to capture the skin temperature changes and then applying machine learning algorithms to classify emotion changes accordingly. This thesis contains two studies on thermal emotion detection with the comparison of EEG-base emotion detection. One was to find out the thermal emotional detection profiles comparing with EEG-based emotion detection technology; the other was to implement an application with deep machine learning algorithms to visually display both thermal and EEG based emotion detection accuracy and performance. In the first research, we applied HMM in thermal emotion recognition, and after comparing with EEG-base emotion detection, we identified skin temperature emotion-related features in terms of intensity and rapidity. In the second research, we implemented an emotion detection application supporting both thermal emotion detection and EEG-based emotion detection with applying the deep machine learning methods – Convolutional Neutral Network (CNN) and LSTM (Long- Short Term Memory). The accuracy of thermal image based emotion detection achieved 52.59% and the accuracy of EEG based detection achieved 67.05%. In further study, we will do more research on adjusting machine learning algorithms to improve the thermal emotion detection precision

    Machine learning approaches for predicting sleep arousal response based on heart rate variability, oxygen saturation, and body profiles.

    Get PDF
    OBJECTIVE: Obstructive sleep apnea is a global health concern, and several tools have been developed to screen its severity. However, most tools focus on respiratory events instead of sleep arousal, which can also affect sleep efficiency. This study employed easy-to-measure parameters-namely heart rate variability, oxygen saturation, and body profiles-to predict arousal occurrence. METHODS: Body profiles and polysomnography recordings were collected from 659 patients. Continuous heart rate variability and oximetry measurements were performed and then labeled based on the presence of sleep arousal. The dataset, comprising five body profiles, mean heart rate, six heart rate variability, and five oximetry variables, was then split into 80% training/validation and 20% testing datasets. Eight machine learning approaches were employed. The model with the highest accuracy, area under the receiver operating characteristic curve, and area under the precision recall curve values in the training/validation dataset was applied to the testing dataset and to determine feature importance. RESULTS: InceptionTime, which exhibited superior performance in predicting sleep arousal in the training dataset, was used to classify the testing dataset and explore feature importance. In the testing dataset, InceptionTime achieved an accuracy of 76.21%, an area under the receiver operating characteristic curve of 84.33%, and an area under the precision recall curve of 86.28%. The standard deviations of time intervals between successive normal heartbeats and the square roots of the means of the squares of successive differences between normal heartbeats were predominant predictors of arousal occurrence. CONCLUSIONS: The established models can be considered for screening sleep arousal occurrence or integrated in wearable devices for home-based sleep examination

    Diagnosis of the sleep apnea-hypopnea syndrome : a comprehensive approach through an intelligent system to support medical decision

    Get PDF
    [Abstract] This doctoral thesis carries out the development of an intelligent system to support medical decision in the diagnosis of the Sleep Apnea-Hypopnea Syndrome (SAHS). SAHS is the most common disorder within those affecting sleep. The estimates of the disease prevalence range from 3% to 7%. Diagnosis of SAHS requires of a polysomnographic test (PSG) to be done in the Sleep Unit of a medical center. Manual scoring of the resulting recording entails too much effort and time to the medical specialists and as a consequence it implies a high economic cost. In the developed system, automatic analysis of the PSG is accomplished which follows a comprehensive perspective. Firstly an analysis of the neurophysiological signals related to the sleep function is carried out in order to obtain the hypnogram. Then, an analysis is performed over the respiratory signals which have to be subsequently interpreted in the context of the remaining signals included in the PSG. In order to carry out such a task, the developed system is supported by the use of artificial intelligence techniques, specially focusing on the use of reasoning mechanisms capable of handling data imprecision. Ultimately, it is the aim of the proposed system to improve the diagnostic procedure and help physicians in the diagnosis of SAHS.[Resumen] Esta tesis aborda el desarrollo de un sistema inteligente de apoyo a la decisión clínica para el diagnóstico del Síndrome de Apneas-Hipopneas del Sueño (SAHS). El SAHS es el trastorno más común de aquellos que afectan al sueño. Afecta a un rango del 3% al 7% de la población con consecuencias severas sobre la salud. El diagnóstico requiere la realización de un análisis polisomnográfico (PSG) en una Unidad del Sueño de un centro hospitalario. El análisis manual de dicha prueba resulta muy costoso en tiempo y esfuerzo para el médico especialista, y como consecuencia en un elevado coste económico. El sistema desarrollado lleva a cabo el análisis automático del PSG desde una perspectiva integral. A tal efecto, primero se realiza un análisis de las señales neurofisiológicas vinculadas al sueño para obtener el hipnograma, y seguidamente, se lleva a cabo un análisis neumológico de las señales respiratorias interpretándolas en el contexto que marcan las demás señales del PSG. Para lleva a cabo dicha tarea el sistema se apoya en el uso de distintas técnicas de inteligencia artificial, con especial atención al uso mecanismos de razonamiento con soporte a la imprecisión. El principal objetivo del sistema propuesto es la mejora del procedimiento diagnóstico y ayudar a los médicos en diagnóstico del SAHS.[Resumo] Esta tese aborda o desenvolvemento dun sistema intelixente de apoio á decisión clínica para o diagnóstico do Síndrome de Apneas-Hipopneas do Sono (SAHS). O SAHS é o trastorno máis común daqueles que afectan ao sono. Afecta a un rango do 3% ao 7% da poboación con consecuencias severas sobre a saúde. O diagnóstico pasa pola realización dunha análise polisomnográfica (PSG) nunha Unidade do Sono dun centro hospitalario. A análise manual da devandita proba resulta moi custosa en tempo e esforzo para o médico especialista, e como consecuencia nun elevado custo económico. O sistema desenvolvido leva a cabo a análise automática do PSG dende unha perspectiva integral. A tal efecto, primeiro realizase unha análise dos sinais neurofisiolóxicos vinculados ao sono para obter o hipnograma, e seguidamente, lévase a cabo unha análise neumolóxica dos sinais respiratorios interpretándoos no contexto que marcan os demais sinais do PSG. Para leva a cabo esta tarefa o sistema apoiarase no uso de distintas técnicas de intelixencia artificial, con especial atención a mecanismos de razoamento con soporte para a imprecisión. O principal obxectivo do sistema proposto é a mellora do procedemento diagnóstico e axudar aos médicos no diagnóstico do SAHS

    Big data analysis of cyclic alternating pattern during sleep using deep learning

    Get PDF
    Sleep scoring has been of great interest since the invention of the polysomnography method, which enabled the recording of physiological signals overnight. With the surge in wearable devices in recent years, the topic of what is high-quality sleep, how can it be determined and how can it be achieved attracted increasing interest. In the last two decades, cyclic alternating pattern (CAP) was introduced as a scoring alternative to traditional sleep staging. CAP is known as a synonym for sleep microstructure and describes sleep instability. Manual CAP scoring performed by sleep experts is a very exhausting and time-consuming task. Hence, an automatic method would facilitate the processing of sleep data and provide a valuable tool to enhance the understanding of the role of CAP. This thesis aims to expand the knowledge about CAP by developing a high-performance automated CAP scoring system that can reliably detect and classify CAP events in sleep recordings. The automated system is equipped with state-of-the-art signal processing methods and exploits the dynamic, temporal information in brain activity using deep learning. The automated scoring system is validated using large community-based cohort studies and comparing the output to verified values in the literature. Our findings present novel clinical results on the relationship between CAP and age, gender, subjective sleep quality, and sleep disorders demonstrating that automated CAP analysis of large population based studies can lead to new findings on CAP and its subcomponents. Next, we study the relationship between CAP and behavioural, cognitive, and quality-of-life measures and the effect of adenotonsillectomy on CAP in children with obstructive sleep apnoea as the link between CAP and cognitive functioning in children is largely unknown. Finally, we investigate cortical-cardiovascular interactions during CAP to gain novel insights into the causal relationships between cortical and cardiovascular activity that are underpinning the microstructure of sleep. In summary, the research outcomes in this thesis outline the importance of a fully automated end-to-end CAP scoring solution for future studies on sleep microstructure. Furthermore, we present novel critical information for a better understanding of CAP and obtain first evidence on physiological network dynamics between the central nervous system and the cardiovascular system during CAP.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 202

    Seizure Classification of EEG based on Wavelet Signal Denoising Using a Novel Channel Selection Algorithm

    Get PDF
    Epilepsy is a disorder of the nervous system that can affect people of any age group. With roughly 50 million people worldwide diagnosed with the disorder, it is one of the most common neurological disorders. The EEG is an indispensable tool for diagnosis of epileptic seizures in an ideal case, as brain waves from an epileptic person will present distinct abnormalities. However, in real world situations there will often be biological and electrical noise interference, as well as the issue of a multichannel signal, which introduce a great challenge for seizure detection. For this study, the Temple University Hospital (TUH) EEG Seizure Corpus dataset was used. This paper proposes a novel channel selection method which isolates different frequency ranges within five channels. This is based upon the frequencies at which normal brain waveforms exhibit. A one second window was selected, with a 0.5 second overlap. Wavelet signal denoising was performed using Daubechies 4 wavelet decomposition, thresholding was applied using minimax soft thresholding criteria. Filter banking was used to localise frequency ranges from five specific channels. Statistical features were then derived from the outputs. After performing bagged tree classification using 500 learners, a test accuracy of 0.82 was achieved.Comment: 8 pages, 6 figures, accepted for publication at the 13th Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC
    corecore