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Abstract

Sleep scoring has been of great interest since the invention of the polysomnography method,

which enabled the recording of physiological signals overnight. With the surge in wearable

devices in recent years, the topic of what is high-quality sleep, how can it be determined

and how can it be achieved attracted increasing interest. In the last two decades, cyclic

alternating pattern (CAP) was introduced as a scoring alternative to traditional sleep stag-

ing. CAP is known as a synonym for sleep microstructure and describes sleep instability.

Manual CAP scoring performed by sleep experts is a very exhausting and time-consuming

task. Hence, an automatic method would facilitate the processing of sleep data and provide

a valuable tool to enhance the understanding of the role of CAP.

This thesis aims to expand the knowledge about CAP by developing a high-performance

automated CAP scoring system that can reliably detect and classify CAP events in sleep

recordings. The automated system is equipped with state-of-the-art signal processing

methods and exploits the dynamic, temporal information in brain activity using deep learn-

ing. The automated scoring system is validated using large community-based cohort stud-

ies and comparing the output to verified values in the literature. Our findings present novel

clinical results on the relationship between CAP and age, gender, subjective sleep qual-

ity, and sleep disorders demonstrating that automated CAP analysis of large population

based studies can lead to new findings on CAP and its subcomponents. Next, we study

the relationship between CAP and behavioural, cognitive, and quality-of-life measures and

the effect of adenotonsillectomy on CAP in children with obstructive sleep apnoea as the

link between CAP and cognitive functioning in children is largely unknown. Finally, we

investigate cortical-cardiovascular interactions during CAP to gain novel insights into the

causal relationships between cortical and cardiovascular activity that are underpinning the

microstructure of sleep.

In summary, the research outcomes in this thesis outline the importance of a fully automated

end-to-end CAP scoring solution for future studies on sleep microstructure. Furthermore,

we present novel critical information for a better understanding of CAP and obtain first

evidence on physiological network dynamics between the central nervous system and the

cardiovascular system during CAP.
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1
Introduction

ALTHOUGH sleep is commonly considered as the rest state of the human

body, the brain is highly active during this restorative phase. Transient,

intermittent perturbations representing sudden bursts of brain activity can be in-

spected in the electroencephalography (EEG) as part of the polysomnography

method. The common approach to analyse an overnight screening is to visually

score the recorded signals. However, a robust automatic software for sleep data

classification that can be applied on large-scale, population-level databases of

sleep studies would enhance the understanding of sleep. This chapter presents

the objectives and motivations behind the research presented in this thesis on

innovative sleep data processing. Furthermore, this chapter highlights the orig-

inal contributions to existing knowledge obtained by the studies in this thesis.
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1.1 Introduction

1.1 Introduction

During treatment of his rare form of pancreatic cancer, Steve Jobs, the co-founder of Ap-

ple Inc., came across the fascinating intersection of biology and technology. Watching his

son Reed pushing the boundaries of cancer research using cancer genome sequencing,

Steve Jobs, who undoubtedly shaped the information age like no one else, predicted that

the twenty-first century will be the era of biotechnology (Isaacson, 2011). His prediction

also applies to technological advances in the medical field as the term biotechnology en-

compasses a wide field and not only technologies using biological systems and organisms.

In this context, it is inevitable to mention the impact of artificial intelligence (AI) on the future

of medical research and diagnostics. The application of AI has been a key focus in various

medical areas and will present one of the greatest challenges in the upcoming decades.

One very popular sector for the usage of AI in medical research is sleep stage scoring

due to its unambiguous rules and the large volume of datasets. The rules for sleep scor-

ing are based on the scoring guide by Rechtschaffen and Kales (1968) and were later

redefined in the current consensus published by the American Academy of Sleep Medicine

(AASM) (Iber et al., 2007). According to the consensus, sleep can be divided into 30-second

epochs of wakefulness, states of high neuronal activity (rapid eye movement (REM)), and

states of quiescence (non-rapid eye-movement (NREM)). As short-lasting events and tran-

sient power alterations in frequency sub-bands are neglected in the rules of sleep scoring,

additional sleep parameters were defined to characterise sleep events such as arousals,

K-complexes, or cyclic alternating pattern (CAP). This thesis focuses on enhancing the un-

derstanding of the role of CAP which can be described as a marker of sleep instability. It

comprises oscillating brain waves defined as short EEG amplitude increases (<60 s) during

NREM stages that are in tune with the rest of the body (Parrino, 2021). It is known as

a synonym for the microstructure of sleep. Also, CAP has been linked to a large number

sleep disorders in various studies but the role of CAP is not entirely understood yet. Its

relationship to cognitive functioning and brain connectivity remains largely unknown and

needs to be explored further. Moreover, CAP needs to be investigated in studies with larger

samples as the tedious and time-consuming manual scoring impedes the analysis of large

sleep cohorts.

Hence, automated scoring systems using AI may provide a solution to overcome the limi-

tations of manual scoring. The greater goal of automated systems is to reduce the work-

load for sleep clinicians as manual scoring is often tedious and time-consuming and to
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provide repeatable diagnostic outcomes. However, most of the automated scoring sys-

tems share common drawbacks such as the arduous search for the best architecture and

parameters, database variability (Alvarez-Estevez and Fernández-Varela, 2020), data in-

efficiency (Phan et al., 2020), the computational limits of deep learning (Thompson et al.,

2020), and the lack of practical viability (He et al., 2019). In detail, the lack of transparency

with regard to model interpretability, accountability in terms of patient safety, and data man-

agement issues increase the doubt in many clinicians to integrate AI-based technology in

their environment (He et al., 2019). In this thesis, an automated CAP detection system is

proposed that was developed closely with leading sleep experts in this field to overcome

aforementioned issues and to provide the opportunity to analyse CAP in large sleep co-

horts. It is demonstrated that a big data approach can provide new insights into the role of

CAP.

The following sections provide an overview over the research questions that are addressed

in this thesis and present the contribution of the work completed in this thesis to existing

knowledge in the field of sleep and sleep data processing.

1.2 Contextual statement

Sleep was regarded for a long time as a biological phenomenon with greatly reduced neu-

ronal activity (Hobson et al., 1978). The discovery of REM and NREM sleep phases in the

1950s and 60s reversed this assumption. In 1969, Rechtschaffen and Kales (1968) pub-

lished the first guideline to score sleep in human subjects in order to enhance the under-

standing of sleep. Later, the rules by Rechtschaffen and Kales were replaced by the current

consensus detailed in the AASM scoring manual (Iber et al., 2007). However, short-lasting

events such as K-complexes and transient power alterations in frequency bands are not

included in the current AASM framework. Hence, further guidelines were released to score

sleep events such as CAP. Commonly known as a synonym for sleep microstructure (Par-

rino, 2021), CAP describes periodically recurring short-lasting brain activations that are in

tune with the rest of the body. However, the manual inspection of sleep signals in terms

of CAP scoring causes some key issues. A human scorer is limited to visually prominent

indicators in the signals. Hence, finding hidden relationships and correlations between the

signals can be very time-consuming or even not feasible. Consequently, studies on CAP

were limited to a small number of samples that can be scored manually. This opened the
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research field to algorithms that can automatically evaluate sleep recordings. In this the-

sis, a fully automated CAP scoring system, including comprehensive pre-processing and

artefact removal stages, is proposed.

Published work on automatically classifying CAP events in EEG is limited. First systems

using polygraphic features (Rosa et al., 1999) were introduced shortly before the turn of

the millennium. Later, thresholding algorithms in combination with distinct feature selection

(Navona et al., 2002; Ferri et al., 2012), or competitive machine learning algorithms (Mari-

ani et al., 2013; Mendonça et al., 2018a) were applied to accurately detect CAP sequences.

However, the majority of the systems fail to represent end-to-end solutions including pre-

processing, artefact removal, multi-class classification, and post-processing and fail to deal

with the bias introduced by imbalanced datasets. Here, a comprehensive end-to-end so-

lution using long-short term memory (LSTM) network as representative for the recurrent

neural network (RNN) class is developed. The proposed model demonstrates a signifi-

cant improvement in accuracy and sensitivity when using information from the past through

RNN as compared to previously proposed systems. Also, the feedback loop in the training

process was optimised to be able to deal with imbalanced data as training set.

CAP has been characterised in small population samples in numerous previous studies.

Large studies on CAP with more than 100 subjects are rare exceptions due to the immense

workload associated with manual scoring. Although semi-automated scoring systems have

been available lately to facilitate the scoring process by providing an initial scoring output

which is then reviewed by a manual scorer, big data analysis has not been applied on large

population-based cohort studies to expand the knowledge about the role of CAP. Hence,

the studies presented in this thesis use the fully automated end-to-end CAP scoring system

to analyse on large sleep cohorts. Firstly, the automated CAP scoring system is validated

by characterising CAP in a large population based cohort and comparing the output to

values from the literature. Moreover, we demonstrate that automated CAP analysis of large

population based studies can lead to new findings on CAP and its subcomponents. Next,

CAP is analysed in a large paediatric sleep studies to investigate the relationship between

CAP and cognitive functioning in children as well as the effect of early adenotonsillectomy

(eAT) on CAP in children with obstructive sleep apnea (OSA). The relation between CAP

and cognitive functioning is a research field that has not been widely investigated yet.

Besides the characterisation of CAP in the general population and in pathologies, the inter-

play between cortical and cardiovascular activity during CAP has not yet been elucidated.

Several studies have previously reported the activating effect of CAP on the autonomous
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nervous system (ANS) such as heart rate and blood pressure (Kondo et al., 2014; Ferini-

Strambi et al., 2000; Dorantes-Méndez et al., 2018) as compared to the sustained stabil-

ity between cortical activity and ANS during non-CAP periods (Parrino et al., 2016). The

discovered correlations in those studies display the significance of analysing the sympa-

thetic activity alterations underpinning the microstructure of sleep. Thus, the final chap-

ter of this thesis focuses on causal relationships between cortical events defined by CAP

and autonomic cardiovascular control using Wiener-Granger causality (GC). Differences in

cortical-cardiovascular interactions during CAP sequences with predominantly A1, A2, or

A3-phases as compared to non-CAP sequences reveal novel cues about the underlying

cortical-cardiovascular dynamics.

In summary, the rationale behind the studies conducted in this thesis was to expand the

understanding of CAP by developing a high-performance end-to-end CAP scoring system

and applying it on large sleep cohorts. This way, novel insights into the role of CAP as

marker of sleep instability may be identified.

1.3 Overview of thesis

This thesis encompasses seven main chapters including the introduction, the literature re-

view, four main parts containing original contribution, and the conclusion. The outline of

each chapter is described as follows:

Chapter 1 comprises the current introductory chapter which serves as an introduction into

the foci and key questions of this thesis.

Chapter 2 represents the literature review of the research field in this thesis. The literature

review provides physiological background about sleep and introduces well-known guide-

lines to analyse sleep recordings. Moreover, it explains the fundamental concept of su-

pervised classification and discusses previously reported models for automatic sleep stage

classification and CAP detection.

Chapter 3 presents the high-performance A-phase detection algorithm that was developed

within this thesis. The chapter describes the methodological concepts in detail and it pro-

vides an in-depth evaluation of the performance of the developed system.

Chapter 4 and Chapter 5 summarize the outcomes obtained by applying the previously

developed CAP scoring algorithm on two large population studies. Chapter 4 assesses CAP

in relation to age, gender, self-reported sleep quality, and the degree of sleep disruption in
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large community-based cohort studies of older people. Chapter 5 explores in children with

OSA the effect of adenotonsillectomy (AT) on CAP and the relationship between CAP and

behavioural, cognitive, and quality-of-life measures.

Chapter 6 investigates the causal relationships between cortical and cardiovascular activity

during CAP in NREM sleep using GC.

Chapter 7 summarizes the findings and contributions of this thesis and provides a short

overview over future research directions and potentially succeeding work that builds on the

achieved results in this thesis.

Appendix section contains additional information about the developed scoring algorithm

(Appendix A) and the outcomes of automated CAP analysis on a sample of children with

restless sleep disorder (Appendix B). Furthermore, the Appendix section includes a study

(Appendix C) to quantify the arousal burden across large cohort studies and determine its

association with long-term cardiovascular and overall mortality in men and women.

1.4 Statement of original contribution

Four peer-reviewed first-author journal articles which are presented in Chapters 3–6 re-

sulted from the studies conducted towards this thesis. Additionally, Appendices A–C contain

one conference paper and two peer-reviewed co-author journal articles. The methodology

and the engineering framework in this thesis were developed solely by the author using

MATLAB® and Python. The framework for statistical analysis in each study was generated

solely by the author using the statistical computing software R. The original contributions

of the author in each study comprised formulating the hypothesis, developing appropriate

research methodology and testing the hypothesis using statistical analysis.

1.5 Data

A publicly available dataset on PhysioNet (CAP Sleep Database) and various sleep stud-

ies available online at the National Sleep Research Resource (NSRR) were used in this

thesis. Furthermore, samples from a sleep study conducted at the Seattle Children’s Hos-

pital, Seattle, WA, USA, were part of this thesis. Following paragraphs explain in detail the

datasets used in this thesis.
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The publicly available CAP Sleep Database (Terzano et al., 2001) on PhysioNet (Gold-

berger et al., 2000), an open-source repository for physiological signal recordings, was

used in Chapter 3 to train the developed detection system and in Chapter 6 to investigate

cortical-cardiovascular interactions during CAP. The dataset comprises 108 polysomno-

graphic recordings conducted at the Sleep Disorders Center of the Ospedale Maggiore of

Parma, Italy. The recordings include 16 healthy subjects and 92 patients including 40 sub-

jects with nocturnal frontal lobe epilepsy (NFLE), 22 with REM behaviour disorder, 10 with

periodic leg movement, 9 with insomnia, 5 with narcolepsy, 4 with sleep-disordered breath-

ing, and 2 with bruxism. Each recording contains sleep stage scoring according to the rules

of Rechtschaffen & Kales (Rechtschaffen and Kales, 1968) and CAP scoring according to

the atlas of CAP (Terzano et al., 2001). The sampling rate for EEG signals in this dataset

ranges from 100 Hz to 512 Hz. The REMlogicTM software Embla® was used to visualize

and score the signals. No further information is available on technical specifications.

In Chapter 4, two multi-center sleep cohorts (Osteoporotic Fractures of Men (MrOS) and the

Study of Osteoporotic Fractures (SOF)) provided by the NSRR were used to characterise

CAP in large population-base cohorts (available online at the National Sleep Research Re-

source; sleepdata.org) (Zhang et al., 2018). The long-standing cohort study MrOS aimed to

investigate fracture risk in relation to bone mass, bone geometry, lifestyle, anthropometric

and neuromuscular measures, and fall propensity from 2000 to 2005 (Orwoll et al., 2005).

3,135 of the 5,994 participants were recruited for an ancillary sleep study (MrOS Sleep

Study) to expand the understanding on the relationship between sleep architecture, sleep-

disordered breathing, and cognition in men aged 65 or older (Blackwell et al., 2011). Sub-

jects who used mechanical devices or oxygen therapy during sleep were generally excluded

from the study. Of the 3,135 men, 2,909 completed in-home overnight polysomnography

(PSG) using unattended, portable devices (Blackwell et al., 2011). On the other hand, 461

of the 4,727 women that participated in the latest visit cycle of the SOF study between 2002

and 2004 completed an unattended overnight 12-channel in-home PSG to investigate the

association between sleep disturbances and cognitive impairment in community-dwelling

older women (Spira et al., 2008). Originally, SOF was designed to find new knowledge

on the osteoporosis and ageing in women aged 65 or older (Cummings et al., 1990). In

MrOS, the Compumedics® Safiro Sleep Monitoring System was used to record in-home

PSG whereas the Compumedics® Siesta Unit was used in SOF for in-home PSG. In both

studies, set up of in-home PSG was performed by trained experts that followed standard-

ized procedure manuals (available online at the National Sleep Research Resource; sleep-

data.org). In MrOS, EEG was recorded using a sampling rate of 256 Hz and a high pass
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hardware filter at 0.15 Hz. The sampling rate in SOF was set at 128 Hz and a high pass

hardware filter with a cut-off frequency at 0.15 Hz was applied. In both studies, gold cup

electrodes were deployed as sensors to record left and right central EEG (C3 and C4), and

left and right mastoid EEG (A1 and A2).

The Childhood Adenotonsillectomy Trial (CHAT) (Marcus et al., 2013) was part of the CAP

analysis in Chapter 5 (available online at the National Sleep Research Resource; sleep-

data.org) (Zhang et al., 2018). The multi-center, single-blind, randomized, controlled trial

was designed to determine whether eAT in children with mild to moderate obstructive

sleep apnoea demonstrates greater improvement in cognitive, behavioral, quality-of-life,

and sleep measures as compared to watchful waiting with supportive care (WWSC) (Mar-

cus et al., 2013). The recruited cohort of children between 5.0 and 9.99 years of age were

randomly assigned to one of treatment strategies and underwent standardized full PSG

with scoring at baseline and after a 7-month observation period. Certified sleep technicians

trained in pediatric PSG performed PSG during overnight visits at one of the eligible clini-

cal sites. Each clinical site used a standardized approach that was established at training.

Each PSG unit was certified prior to the study commencement based on signal quality,

sensor interface, de-identification and the ability to follow the CHAT PSG Standardizations.

Hence, a various number of different equipments was deployed across testing sites ranging

from Natus® units such as the Embla® N7000 and the Xltek® to Compumedics® units such

as the E-series. Data was standardised by following regulated rules for the same montage,

comparable sensors and sampling rates and filters across sites that were outlined in the

PSG Manual of Procedures (available online at the National Sleep Research Resource;

sleepdata.org). During each PSG, the left and right central EEG (C3 and C4) as well as the

left and right mastoid EEG (M1 and M2) were recorded using a sampling rate of 200 Hz.

For the study on the association of sleep arousal burden with long-term cardiovascular and

overall mortality in Appendix C, 4,795 subjects in the Sleep Heart Health Study (SHHS)

were analysed in addition to 2,782 male participants of the MrOS sleep study and 424

female participants of the SOF study. The SHHS is a multi-center study to analyse the car-

diovascular consequences of sleep-disordered breathing (Redline et al., 1998). Altogether,

6,441 men and women aged 40 years and older were recruited for the first visit SHHS

Visit 1 which took place between November 1, 1995 and January 31, 1998. In-home data

collection was standardized using clear protocols and rigorous training resulting in good-

quality multichannel PSG data (Redline et al., 1998). In the SHHS, the portable sleep unit
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Compumedics® SleepWatch PS was used for unattended in-home PSG. Two EEG chan-

nels (EEG and EEGsec) were recorded using a sampling rate of 125 Hz and a high pass

hardware filter at 0.15 Hz.

Additionally, thirty-eight children who fulfilled restless sleep disorder (RSD) diagnostic cri-

teria (DelRosso et al., 2019) (23 boys and 15 girls, age range 5–17 years), 23 children with

restless limb syndrome (RLS) (18 boys and 5 girls, age range 4–17 years) and 19 con-

trols (10 boys and 9 girls, age range 5–18 years) from a local sleep study at the Seattle

Children’s Hospital, Seattle, WA, USA were analysed in regard to the sleep microstructure

during NREM sleep in Appendix B. The study was approved by the local institutional review

board. Children who were younger than 4 years, or use medications that alter sleep param-

eters, or shown signs of co-morbid sleep disorder, or have medical or psychiatric conditions

known to affect sleep, or use caffeine were generally excluded. Left and right central EEG

referenced to left and right mastoid EEG (C4M1 and C3M2) were recorded using a sam-

pling rate of 128 Hz. No information on applied PSG equipment is available.
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2

Literature review

SLEEP is nowadays considered as a common habitus among living organ-

isms including humans. The physiological role of sleep for humans can

be briefly summarized as the reorganization of neuronal activity. Furthermore,

sleep deprivation or fragmentation increase the risk of cardiovascular diseases

highlighting its overall recuperative role. This chapter provides a brief overview

on sleep and the gold standard for sleep monitoring—the PSG method. Further-

more, the conceptual frameworks of classification algorithms are briefly summa-

rized. With the aid of classification algorithms, recurring patterns in time signals

evoked by sleep specific events can be detected and categorised.
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2.1 Physiological background

Sleep is a recurring, biological pattern that is essential for human beings. Scientists have

conducted numerous studies in the past with the aim to enhance our understanding of

sleep. This thesis concentrates on extracting crucial information from sleep recordings.

Hence, the following sections provide background information on sleep and how it can be

measured. Moreover, different sleep scoring methods are presented including CAP, which

is the main focus of this thesis.

2.1.1 Sleep

For decades, sleep has been considered as a period of greatly reduced cortical activ-

ity (Hobson et al., 1978). It was regarded as a state of inactivity—the opposite state of

wakefulness. However, sleep is not only a state of reduced activity but rather a process

that consists of a specific architecture and initializes dramatic changes in brain electro-

physiology, neurochemistry, and functional anatomy (Brand and Kirov, 2011). Moreover,

its reversibility distinguishes sleep from other inactive states like hibernation, coma, or

death (Deboer, 2015). Studies on sleep in animals have shown that typical signs of sleep,

i.e. quiescence and an increased arousal threshold, are common among mammals and

birds (Cirelli and Tononi, 2008). It can be identified that all animal species display sleep-like

behaviour, i.e. a transition into a resting state (Deboer, 2015). However, more research

needs to be conducted to be able to state that sleep is universal.

The primary function of human sleep still remains an unresolved question but extensive

research in the last decades has shed more light on our understanding of sleep. It is known

that the physiological role of sleep includes memory consolidation and re-consolidation fa-

cilitating the recapturing in waking state (Stickgold and Walker, 2005). Moreover, a recent

study discovered that waste products of neural metabolism accumulated during the day are

removed while sleeping (Xie et al., 2013). It is understood that sleep is regulated by circa-

dian and homoeostatic processes. The circadian oscillation generated by the suprachias-

matic nucleus of the hypothalamus is responsible for the distribution of sleep over the 24-h

day ensuring a proper adjustment of internal rhythms to the daily light-dark cycle (Franken

and Dijk, 2009). On the other hand, the result of sleep loss in an increased propensity to

sleep and a compensation of the lost hours with a longer sleep period imply the existence

of a homoeostatic control system (Benington, 2000).
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The quality of sleep is primarily defined by three pillars: duration, continuity, and depth. Pre-

vious studies have shown that different forms of sleep deprivation have severe, negative im-

pacts on the neurobehavioural functions of humans during wakefulness (Van Dongen et al.,

2003). Especially partial sleep deprivation defined as a diurnal sleep period less than five

hours can result in a significantly diminished cognitive and motor performance (Pilcher and

Huffcutt, 1996). Sleep disorders such as sleep apnoea or periodic limb movements have a

negative effect on sleep continuity causing fragmented sleep. Increased objective and sub-

jective sleepiness as well as decreased psychomotor performance can be found in subjects

with a severely disturbed sleep (Bonnet and Arand, 2003). Furthermore, sleep continuity

is a major contributor to daytime well being in older people (Carskadon et al., 1982). Fi-

nally, slow wave sleep (SWS) as a marker for deep sleep appears to play an important

role in cerebral recovery (Horne, 1992). During SWS, total brain connectivity decreases

but functional clustering increases resulting in a higher neuronal synchrony (Boly et al.,

2012). Furthermore, SWS is an instrumental factor in the maintenance and consolidation

of sleep (Dijk, 2009).

Sleep can be assessed using a variety of methods. The gold standard for sleep monitor-

ing is the PSG method, which is explained in detail in the following section. Alternative

monitoring methods include actigraphy, video-PSG, or sleep surveys. Actigraphy and sleep

surveys are popular in settings where standard PSG is limited such as intensive care units

or long-term assessment. A wireless solution is the actigraphy method which describes the

body activity during sleep using accelerometers. Sleep questionnaires or diaries represent

a non-invasive alternative as a simple quantitative measure of the subjective sleep quality.

Finally, video-PSG is already an integral part of PSG studies in sleep centres or hospi-

tals and is particularly useful in paediatric sleep studies to visually investigate the sleep

behaviour post recording.

2.1.2 Polysomnography (PSG)

The origin of physiological recordings can be dated back to 1875, when the Scottish physi-

ologist Richard Caton recorded the first time electrical activity in brains of rabbits and mon-

keys (Deak and Epstein, 2009). In 1924, Hans Berger recorded the first time electrical

activity of the human brain using a string galvanometer (Hirshkowitz, 2015). Berger named

his new method of monitoring electrical activity of the human brain "electroencephalogram

(EEG)". Additionally, Berger was able to demonstrate that a distinct waveform in the range

of 8–13 Hz, so called alpha waves, diminish at sleep onset (Hirshkowitz, 2002). These
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first findings on physiological recordings would later evolve into the PSG method with the

recording of multichannel electro-physiological signals of EEG, electrooculogram (EOG),

and electromyography (EMG). Nowadays, PSG involves a wide range of physiological sig-

nals. The following paragraphs introduce commonly measured channels during PSG in a

brief manner.

Electroencephalography (EEG)

EEG is a non-intracranial method to capture the cerebral activity. Shortly, EEG measures

the electric field that is caused by transmembrane ion movements in neurons (Proekt,

2018). To determine the strength of the electrical field extracellularly, two electrodes are

required. The voltage between the electrode at the point of interest and the reference elec-

trode displays the potential difference. Importantly, EEG is only capable of capturing the

combined contributions from myriad neuronal and glial sources but not the voltage state

of a single neuron (Proekt, 2018). Hence, EEG provides no information about the activity

of individual neurons but the activity of cortical pyramid cells that share the same spatial

orientation. Therefore, high voltage is a sign for synchronous activity of a vast number of

such cells.
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Figure 2.1. Illustration of the international 10–20 system. Display of the EEG electrode positions
in the international 10–20 system. The channels for the central cortex area C4-A1 and
C3-A2 are highlighted in green and blue, respectively.

Most commonly the reference electrode is placed on the subject to avoid long wires acting

as antennas. Preferred choices are the mastoid or the ear. However, points on the body

Page 14



Chapter 2

Table 2.1. List of EEG frequency bands.

Band Frequency (Hz) Location Characteristics

Delta 0.5–4
Frontal in adults,

occipital in children
Slow-wave sleep (Stage 3 & 4), deep sleep

Theta 4–8 Fronto-central
Can be found in stage 1 and 2, drowsiness, associated

with dreaming and meditative states

Alpha 8–12 Occipital
Typical for stage 1, posterior basic rhythm, associated

with relaxed and calm states, eyes closed

Sigma 12–16 Fronto-central Typical for stage 2, sleep spindle activity

Beta 16–32
Frontal and central,

attenuated posteriorly
Associated with alert stage, eyes open

Detailed list of the five most common EEG frequency bands, their spectral range, their location, and their
characteristics.

have the disadvantage that they rarely have a true zero potential. Other options include

ground or a second electrode on the scalp as reference. The latter can only provide in-

formation about the difference in potential between two locations on the scalp. Moreover,

the spatial placement of the electrodes plays an important role as the electrodes should

cover the maximal possible area but also as many important underlying areas of the brain

as possible. Thus, an international standard called the 10–20 system for electrode place-

ment during EEG was developed. Figure 2.1 illustrates the electrode locations of the 10–20

system for EEG.

The traditional way of analysing EEG waveforms is the decomposition into spectral bands.

Table 2.1 lists five of the most common frequency bands that are used to classify EEG

waveforms. In general, EEG activity can be found in the bandwidth ranging from 0.5 Hz to

70 Hz. Gamma activity in the range of >32 Hz is only from interest in the relation to epilepsy

but portrays low information in the context of sleep EEG (Worrell and Gotman, 2011).

Electrooculography (EOG) and electromyography (EMG)

EOG measures eye movement during sleep. An electrode is placed below and above the

outer canthus of the right and left eye, respectively, and both electrodes are connected to

a single reference electrode. This arrangement ensures the monitoring of horizontal and

vertical eye movements. At a person’s perceived sleep onset, EOG shows a change to

slow eye movements (Carskadon and Dement, 2005). Moreover, EOG is an important

source to classify REM phases. On the other hand, EMG records the electrical activity of

skeletal muscles. In the context of PSG, EMG usually refers to chin muscle activity and
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limb movement. To capture the activity of chin muscles, one electrode is placed above the

jawline and one below. Two electrodes are placed over the anterior tibialis on the legs to

monitor leg activity. Overal, EMG is important to determine the onset of REM sleep, to

identify tooth clenching, and to detect sleep disorders such as periodic limb movement.

Cardio-respiratory signals

A typical PSG often measures various additional signals such as airflow, snoring, or tho-

racic and abdominal movement using respiratory inductance plethysmography (RIP). Here,

we focus on the signals recording cardio-respiratory activity such as electrocardiography

(ECG), photoplethysmogram (PPG) and RIP. The ECG represents the cardiac electrical

activity. It projects the rhythmic contraction of the heart onto a time-voltage space. Be-

fore cardiac contraction, synchronized electrical current is spread through the heart muscle

which is concurrently captured by electrodes placed on the body (Goldberger et al., 2017).

Pacemaker cells, specialized conduction tissue within the heart, and the heart muscle it-

self generate these electrical currents (Goldberger et al., 2017). In detail, the cardiac cell

membranes are negatively charged in their resting state but depolarize during cardiac stim-

ulation (Becker, 2006). The return to the polarized resting membrane potential is called

repolarization. Depolarization, the spread of a stimulus through the heart muscle, and re-

polarization result in five basic ECG waveforms (P, QRS, ST, T, and U) which combined

represent the typical heartbeat seen in ECG. The P wave represents the depolarization of

the atrial muscle, the QRS complex displays the ventricular depolarization, and ST, T, and

U wave describe the ventricular repolarization (Goldberger et al., 2017).

On the other hand, PPG is a non-invasive method to trace the blood circulation. Devices

measuring PPG are equipped with a light source and a light detector that is placed either

along the light source (reflectance mode) or at the contrary side of the light radiation sepa-

rated by the tissue (transmission mode) (Castaneda et al., 2018). The detected signal con-

sists of a continuous proportion comprising emitted light that is partly absorbed by the tis-

sue, partly reflected by the skin, and partly back-scattered by the underlying blood vessels

as well as of a pulsating fraction as a result of changes in the blood flow volume (Roberts,

1982). The alternations in blood volume during the systolic and diastolic phase of the car-

diac cycle produce alternations in detected light intensity enabling to monitor the pulse rate

non-invasive (Tamura et al., 2014). Normal PPG devices capture the blood flow using one

single light source whereas pulse oximeters are able to additionally determine the blood

oxygen level fusing the information from a red and a infra-red light source.
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ECG and PPG are commonly used to determine variables to describe the autonomous

nervous system. Common measures extracted from ECG are the heart rate (HR) and heart

rate variability (HRV) which describe the time interval between R peaks and its variations. A

direct quantity that can be derived from PPG is the pulse wave amplitude (PWA) describing

vasoconstriction at the measurement site. Information about the wave propagation can be

obtained from simultaneously collected ECG and PPG signals. The indirect measure pulse

transit time (PTT), pulse arrival time (PAT), and pulse wave velocity (PWV) provide important

information about the cardiovascular function status such as blood pressure and arterial

stiffness (Liang et al., 2019). The two measures describing the pulse wave propagation, PAT

and PTT, differ in the end point of the wave propagation period. In detail, PAT describes the

period from the R peak to a distal arterial site such as the fingertip whereas PTT is defined

as the period from one arterial site such as the upper arm to another arterial site such as

the fingertip (Mukkamala et al., 2015).

RIP is a method to assess lung volume changes non-invasively (Wolf and Arnold, 2005). It

can provide thoracic and abdomen cross sectional area changes using two elastic bands

around the chest and the abdomen (Eberhard et al., 2001) and is utilized to measure

breathing during sleep as invasive methods may perturb the sleep process. In compari-

son to traditional breathing estimation techniques using thermal sensors or nasal pressure

transducers, RIP demonstrates a reasonable alternative to estimate ventilatory parame-

ters (Eberhard et al., 2001). Thermistors exploit the change in temperature between ex-

haled and ambient air to estimate airflow whereas pressure transducers convert the nasal

airflow pressure into an electrical signal using a nasal cannula (Redline et al., 2007). Ther-

mistors, which were the most common sensor to quantify airflow limitation in patients un-

til recently, show a high accuracy in detecting complete cessations of airflow (apnoeas)

but inaccuracies in estimating reduction of airflow (hypopnoeas) whereas nasal pressure

transducers and RIP appear to be superior for hypopnoea detection (Redline et al., 2007).

Hence, a combination of multiple sensors provides the best information for apnoea and

hypopnoea scoring in PSG in order to diagnose sleep related breathing disorders such as

OSA.

2.1.3 Sleep scoring

In 1953, first observations of fast, jerky, and binocularly symmetrical eye movements during

sleep were propagated (Aserinsky and Kleitman, 1953). Later, this work paved the ground

for the first classification guideline of 30-second sleep epochs into phases with REM and
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NREM published by Rechtschaffen and Kales (1968). The latter, in turn, was initially subdi-

vided into four stages but was later modified to three distinct stages in the current consensus

released by the AASM (Iber et al., 2007).
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Figure 2.2. Sleep hypnogram as graphical representation of the sleep cycle. Example of a
sleep hypnogram identifying the different stages of sleep: body movement (M), wake
stage (W), rapid eye movement (REM) stage, stage N1 non-rapid eye movement
(NREM) sleep, stage N2 NREM sleep, and stage N3 NREM sleep.

Stage N1 NREM sleep represents the transition into sleep following a wake stage (W) high-

lighted by a substantial decrease in alpha activity. It is commonly referred to as light sleep.

Stage N2 NREM is characterized by sleep spindles and high activity in the theta EEG fre-

quency band (Malhotra and Avidan, 2013). It can be regarded as an intermediate stage

of sleep. Stage N3 NREM, also termed SWS, is described by high-amplitude slow waves.

It symbolizes the deepest and most restorative sleep stage. In Rechtschaffen and Kales

(1968), SWS was subdivided into stages N3 and N4 NREM sleep which were merged into

one stage in the current consensus. The graphical representation of the sleep cycle as a

function of time is called an hypnogram. Figure 2.2 displays an example of an hypnogram

showing the nightly shifts between sleep stages.

One drawback of the traditional sleep scoring is the neglect of critically important short-

lasting events and the dismissal of short stage shifts as each epoch is assigned one single

label. Other scoring methods such as the arousal definition (ASDA, 1992) implement a

more dynamic approach capturing short bursts in cortical activity. In the consensus-based

rules published by ASDA (1992), the minimum duration criterion for arousals was estab-

lished at three seconds. However, shorter EEG arousals (<3 seconds) commonly observed

in children were not considered in the guideline (Grigg-Damberger et al., 2007). More-

over, the proposed arousal definition fails to take account for slow-wave oscillations such

as K-complexes. A more comprehensive approach to score sleep is defined in the atlas of
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CAP (Terzano et al., 2001). With its ability to capture sleep instability, sleep disturbance, or

both, CAP provides crucial information about a subject’s sleep in addition to the traditional

sleep scoring.

2.1.4 Cyclic alternating pattern (CAP)

In 2001, a new guideline for recurrent observations in the sleep brain signal, the so called

cyclic alternating pattern (CAP), was introduced (Terzano et al., 2001). A CAP sequence is

specified by three or more consecutive activation phases that are represented by transient,

prominent events in the EEG data and only separated by a background phase (Terzano et al.,

2001). A-phases describe transient, phasic events that are distinct from the background,

whereas B-phases portray intervals with lesser arousal level than A-phases but noticeably

greater than the continuous background noise (Terzano and Parrino, 2000). Stereotypical

A-phase patterns are delta bursts, vertex sharp transients, K-complex sequences, K-alpha,

polyphasic bursts, intermittent alpha, and arousals (Terzano et al., 2001). The activation

periods can be solely found in the NREM sleep stage and are characterised by slower

higher-voltage rhythms (A1), faster lower voltage rhythms (A3) or by a combination of both

(A2) (Terzano and Parrino, 2005). Subtype A1 is associated with periods dominated by

high EEG synchrony whereas A2 and A3 subtypes are connected to desynchronized pat-

terns that are commonly found before and after REM sleep. Examples for each subtype are

depict in Figure 2.3.

(a) (b) (c)

Figure 2.3. Typical examples of activation phase subtypes during cyclic alternating pattern
events. (a) Subtype A1 is defined by slow high-voltage waves, (b) subtype A3 displays
fast, low-voltage waves, and (c) subtype A2 is specified as a combination of both.

The incidence of subtypes depends on the time of the sleep cycle and the time within

the sleep cycle. A sleep cycle, hereby defined as the time between sleep onset and the

end of the first REM period and as the time between the ends of successive REM peri-

ods, is composed of a descending branch with progressive EEG synchronisation, a period
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with high EEG synchrony, and an ascending branch with progressive EEG desynchronisa-

tion (Hobson et al., 1978). A study by Terzano et al. (2000) demonstrated that the number

of both subtypes with rapid EEG rhythms (A2 and A3) increased significantly the later the

sleep cycle occurred whereas the amount of A1 subtypes did not alter across sleep cycles.

Furthermore, Terzano et al. (2000) reported a higher incidence of A1 subtypes (90% of all

A-phases) during sleep cycle states of progressive EEG synchronisation and high EEG syn-

chrony whereas A2 and A3 subtypes displayed a higher incidence (64% of all A-phases)

during the ascending branch with progressive EEG desynchronisation. In summary, A1

phases representing EEG synchrony are involved in the build-up and maintenance of deep

sleep, while desynchronised EEG rhythms such as subtypes A2 and A3 are associated with

the breakdown of SWS and the preparation of REM activity (Bruni et al., 2010b).

The main indices to describe the prevalence of CAP in sleep data are the CAP rate and

the subtype rates. The CAP rate defined as the percentage of NREM sleep occupied

with CAP sequences follows a bimodal distribution with two peaks during adolescence and

senescence, respectively (Parrino et al., 2012) (see figure 2.4).

0

25

50

75

100

3−
6 

ye
ar

s

6−
10

 y
ea

rs

8−
12

 y
ea

rs

Ad
ol

es
ce

nt

Ad
ul

t

M
id

dl
e 

ag
e

El
de

rly

C
A

P
 r

at
e,

 %

Figure 2.4. Age-related distribution of CAP rate. Age-related distribution of CAP rate from pre-
school age to senescence indicating the bimodal distribution with two peaks during ado-
lescence and senescence, respectively.
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CAP rate in children starts at 25.9% in pre-school age aged 3–6 years (Bruni et al., 2005)

and increases gradually until a peak at the peripubertal age (33.4% in school children aged

6–10 years (Bruni et al., 2002); 62.1% in peripubertal children aged 8–12 years (Lopes et al.,

2005)). After the first peak during adolescence, CAP rate declines until young adulthood

(43.4% in teenagers; 31.9% in young adults) (Parrino et al., 1998). With increasing age dur-

ing adulthood, CAP rate rises again until senescence (37.5% in middle aged and 55.3% in

elderly) (Parrino et al., 1998). A1 index, the number of A1-phases per hour of NREM sleep,

follows a bell shape along the normal life span with a peak around school and peripubertal

age whereas A2 and A3 indices emulate an inverse bell shape (Parrino et al., 2012). The

high ratio between A1 and A2/A3 subtypes in school-age children supports the idea that

humans experience the highest sleep quality in this age range (6–10 years) as compared

to other life stages (Parrino et al., 2012).

CAP is regarded as a marker of sleep instability (Parrino et al., 2012) and highly corre-

lates with numerous sleep disorders in adults. Previous studies have shown that CAP

rate increases as response to sleep disrupting disorders such as insomnia (Terzano et al.,

2003), upper airway resistance syndrome (Guilleminault et al., 2007), sleep apnoea syn-

drome (Terzano et al., 1996), periodic limb movement (Parrino et al., 1996), and nocturnal

frontal lobe epilepsy (Zucconi et al., 2000; Parrino et al., 2006). Also, pathologies such as

depression (Farina et al., 2003), Prader-Willi syndrome in adults (Priano et al., 2006), and

eating disorders (Della Marca et al., 2004) elevate the amount of CAP during sleep. Sleep-

promoting conditions such as narcolepsy (Terzano et al., 2006; Ferri et al., 2005c), CPAP

treatment in obstructive sleep apnoea (Parrino et al., 2005), and sleep recovery after pro-

longed wakefulness (Parrino et al., 1993) have a lowering effect on the CAP rate. Further

research has shown that CAP is not only influenced by sleep disorders but also operates

as a modulator for sleep-related events (Parrino et al., 1996, 2012).

Although CAP has been the main topic in various studies, further research is still needed

to fill in the gaps of knowledge in certain areas. In terms of CAP in adults, the relationship

between CAP and daytime sleepiness requires further investigations (Parrino et al., 2012).

Moreover, the relation between CAP and brain connectivity is a largely unexplored field that

can provide novel knowledge on the understanding of underlying processes during sleep. In

paediatric research, studies with large sample numbers as well as longitudinal studies that

address CAP changes during development need to analysed in terms of CAP (Bruni et al.,

2010b). Furthermore, CAP needs to be explored in different sleep disorders of childhood

such as insomnia, first-night effect, or hormonal dysfunction (Bruni et al., 2010b). More
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importantly, the relationship between CAP and cognitive functioning needs to be investi-

gated in further studies. It has been the topic in initial studies but more studies need to be

conducted to explore the role of CAP in learning processes and memory consolidation in

children (Parrino et al., 2012).

2.1.5 Physiological interplay during sleep

During sleep, the central nervous system (CNS) and the ANS are closely interrelated

as it can be exemplary seen during sleep state transitions. The sympathetic predomi-

nance reaches relatively normal awake levels during REM sleep whereas it declines dur-

ing NREM sleep and plunges during SWS when the autonomic balance is shifted toward

parasympathetic activity (Baharav et al., 1995; Mancia, 1993). Moreover, several stud-

ies have demonstrated that high-frequency interferences in the cortical system described

as phasic events—synchronized or desynchronized—are correlated to activations in the

ANS (de Zambotti et al., 2018). Also, there is strong evidence that the cortex is stimulated

in response to heartbeats, so called heartbeat-evoked potentials, concluding that the cortex

is activated to process heart-related sensory inputs (Kern et al., 2013; Park et al., 2018).

However, it is still questionable if the detected correlations are an actual response of the

cortical system to changes in the ANS or just projections of the afferent signals from the

brainstem regulating the cardio-respiratory system.

In response to a desynchronized phasic event, which is usually regarded as an arousal,

the cardiac and respiratory activity increases (Trinder et al., 2001b). The response of the

body is mainly considered as a reflex-like reaction to reach quickly the full performance

of the physiological systems in order to establish the opportunity to defend a threatening

cause for the arousal (de Zambotti et al., 2018). Furthermore, an arousal is from tran-

sient nature implying that the cardiovascular response is not dependent on the transition

to wakefulness (Trinder et al., 2003). Hence, the cardiovascular system in subjects, that

suffer from a high occurrence of arousals during sleep, is frequently activated during sleep,

resulting in a potentially higher cardiac mortality risk (Shahrbabaki et al., 2021). Synchro-

nized phasic events consist of spindles, delta bursts or K-complexes and are regarded as an

arousal phenomenon, a sleep-promoting response on a stimulus or just a marker (Colrain,

2005). Recently published results show that K-complexes are associated with clear bipha-

sic patterns in the heart rate reflecting a relationship between the brain and the cardiac

system (de Zambotti et al., 2016).
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CAP as a marker of NREM-sleep instability has drawn increasing attention in recent years

to enhance the understanding of the relationship and the coupling between the CNS and

the ANS during sleep. Sequences of CAP cycles form an oscillating network with blood

pressure, muscle tone, and heart rate whereas non-CAP periods display sustained phys-

iological stability between CNS and ANS as no external or internal events challenge the

sleep process (Parrino et al., 2016). Kondo et al. (2014) have shown in their study that all

A-phase subtypes demonstrate an increase in HR and blood pressure (BP) after onset. A

study by Ferini-Strambi et al. (2000) of ten healthy subjects showed a significantly increased

low-frequency component and a significantly decreased high-frequency component of HRV

during CAP as compared to non-CAP. Ferri et al. (2000) supported those findings in their

study of six normal children and adolescents, respectively. Dorantes-Méndez et al. (2018)

investigated HRV during CAP in healthy subjects and NFLE patients. They detected signif-

icant shifts towards the low-frequency components of HRV in all subtypes but with a more

pronounced shift in A3-phases as compared in A1 and A2. Bosi et al. (2018) reported in

their study on the relation between A-phases and PWA changes after airway obstruction

in patients with OSA a significant correlation between respiratory events combined with

A-phases and respiratory events combined with PWA drops. In summary, the presented lit-

erature shows the importance of including CAP when investigating the relationship between

CNS and ANS during sleep.

Studies on the dynamic interrelationship between CNS and ANS primarily applied bivariate

non-causal methods. Novel theoretical frameworks and the availability of recorded multi-

variate time signals enable the investigation of causal relationships between cortical, car-

diovascular and respiratory variables. Recent studies deploying linear, non-linear, or in-

formation theoretic approaches reveal the beta EEG frequency band as the centre of the

information flow between EEG rhythms and as the central node of information transfer be-

tween brain and cardiovascular system (Faes et al., 2014b, 2015, 2014a). Schiecke et al.

(2019) reported a significant difference in directed interaction from beta and alpha fre-

quency band to HRV as well as from HRV to beta frequency band using non-linear con-

vergent cross mapping. To integrate the complex behaviour and interactions of particular

organs into one system-wide network, the novel emergent field of network physiology was

established (Bartsch et al., 2015). The integrated network seeks to define an individual’s

psychophysiological state by applying a theoretical framework focused on the coordination

and interactions among the different physiological systems (Ivanov et al., 2016). There

have been numerous studies on the link between CAP and sleep disorders but studies on

the causal relationships between cortical, cardiovascular and respiratory variables during
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CAP are limited. These novel methods to describe the dynamic interrelationship between

CNS and ANS may be useful for analysing the level of decoupling during CAP, and con-

sequently may highlight the importance of sleep microstructure when evaluating autonomic

activity alteration during sleep.

2.2 Machine learning and deep learning in EEG analysis

Classification can be described as a process that assigns an observation to its related

class from a set of subgroups using predictor features. The classification decision is called

supervised in case a priori knowledge from labelled training data is available. On the con-

trary, unsupervised classification generates clusters without labelled data. Here, the focus

is on supervised learning methods, in particular machine learning methods. With the re-

cent surge in computing power and available data, machine learning algorithms soared

in popularity for classification tasks based on images or time signals. The following sec-

tions provide a short introduction into the classification process and a brief summary of the

most common supervised classification algorithms. Moreover, a comprehensive review of

previously proposed EEG analysis methods in sleep staging, seizure detection, and CAP

detection is conducted.

2.2.1 Classification techniques

The ability to cluster data into subgroups by finding similarities in the observations is es-

sential to data analysis, data mining, and pattern recognition. Figure 2.5 displays the basic

principle of a classification task. Firstly, an input batch of observations is passed into a clas-

sifier. Subsequently, the classifier categorizes the input batch into output classes based on

a measure that was previously trained on labelled data. During training, the classification

measure is optimised minimizing the discrepancy between classified samples and ground

truth, the labelled data. The optimisation process is commonly modelled with a loss func-

tion.

A common problem in pattern recognition in sleep EEG is the imbalance in observations

for each class. Imbalanced datasets (see Figure 2.6) pose a major problem for supervised

learning as they introduce a bias into the decision finding process. A classifier trained on

an imbalanced dataset favours the class of the most prominent label to achieve a high
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Input Output

Classifier

Figure 2.5. Schematic overview of a binary classification process. Simplified schematic of the
information flow in a binary classification process and supervised learning.

accuracy. Standard methods to overcome the problem of imbalanced data are downsam-

pling such as randomized removal of samples, upsampling such as data augmentation, and

adaptation of the training algorithm.

Balanced Imbalanced

Figure 2.6. Balanced training data vs. imbalanced training data. Comparison of data composi-
tion for balanced and imbalanced training sets.

The proposed algorithms for classification tasks in sleep EEG ranges from simple dicrim-

inant analysis to complex deep learning methods. The following paragraphs include short

summaries of available supervised classification algorithms.
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Linear Discrimant Analysis (LDA)

The linear discriminant analysis (LDA) algorithm is a statistical classification method that

exploits the probability functions of all classes to separate unseen data. The probability

density functions are estimated as multivariate normal distribution (Garrett et al., 2003).

The LDA method assumes that the covariance of all classes is the same, only the means

vary between the classes. In the case of the quadratic discriminant analysis method, the

covariances and the means differ. The observations are divided into different classes by

a (D-1)-dimensional hyperplane with D representing the dimension of the input (Bishop,

2006).

k-Nearest Neighbours (kNN)

K-nearest neighbour (kNN) is a simple classification algorithm that classifies new observa-

tions according to the majority class of the surrounding k -nearest neighbours (Keller et al.,

1985). Euclidean distance is often selected as distance measure to obtain the nearest

neighbours for each data point (Lorena et al., 2011). The number of nearest neighbours

k can be considered as a parameter for the degree of smoothing as a greater number of

neighbours will result in fewer larger regions (Bishop, 2006). In case k is an even number,

the distances of the sample to each neighbour are considered as tie-breaker (Keller et al.,

1985).

Support Vector Machine (SVM)

In machine learning, support vector machine (SVM) represents a complex but accurate

algorithm in case the data fails to be linearly separable in base feature space (Singh et al.,

2016). To solve this problem, SVMs deploy kernel functions to transform the data to a space

of higher dimension where the classes become linearly separable (Lorena et al., 2011).

After the transformation, SVMs aim to maximize the margin by minimizing the distance

between the separating hyperplane and the nearest samples (Burges, 1998). The main

limitations of SVMs is that they were originally formulated for two classes (Bishop, 2006).

Several models to extend SVMs to multi-class problems have been proposed but additional

parameters and constraints impose new challenges and can result in a large optimization

problem or overfitting and underfitting, respectively (Aly, 2005).
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Neural Network (NN)

Artificial neural network (ANN) are mapping architectures that assign an input batch of the

dimension n to an output of the dimension m using sequential layers of neurons (Hecht-

Nielsen, 1989). Neurons as single processing units are non-linear functions of a linear

combination of the inputs using adaptive parameters (Bishop, 2006). The parameters for

each neuron, the weights and biases, are updated through a backpropagation algorithm

that aims to minimize the error between the predicted output and the target output. Multi-

layer Perceptron ANNs are ANNs with multiple layers where neurons from neighbour layers

are connected to each other.

Recurrent Neural Network (RNN)

RNNs are a class of ANN designed to learn sequential or time-varying patterns (Medsker

and Jain, 2001). They contain stacked neural networks with a closed feedback loop to ex-

ploit current information as well as information from the past. Consequently, the state of the

current time step referred to as hidden state depends on all previous hidden states (Graves

and Schmidhuber, 2005). In 1997, Hochreiter and Schmidhuber (1997) introduced LSTM

networks to resolve long-term dependencies that occur as a result of multiple stacked neural

networks. With the use of memory cells, LSTMs are capable of deciding which information

is relevant to control the information flow between the stacked neural networks.

Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a subclass of ANN designed to process multidimen-

sional input data such as colour images (LeCun et al., 2015). The architecture of CNNs is

rooted in three main ideas: local receptive fields, shared weights, and spatial or temporal

subsampling (Lecun et al., 1998). A convolutional layer is regarded as a feature map con-

taining units that are connected to a small subregion of the image or to local patches in the

feature maps of the previous layer (LeCun et al., 2015). All units in a feature map share the

same set of weights called filter bank (LeCun et al., 2015). Following a convolution layer is

a pooling layer that performs subsampling on a small receptive field in the preceding con-

volution layer (Bishop, 2006). The advantage of CNNs as compared to ANNs is their ability

of extracting local features of subregions to exploit the key property of images that nearby

pixels share more information with each other than distant pixels (Bishop, 2006).
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2.2.2 Automated EEG analysis applications

CAP scoring is mainly performed on sleep EEG signals as CAP describes periodically re-

curring brain activity rhythms during sleep. Other classification methods that require the

same signal information are sleep staging and seizure detection systems. Hence, the ma-

jority of the systems in these fields share similar signal processing and classification meth-

ods. Here, a short review of automated sleep staging, seizure detection, and CAP detection

methods is presented.

Sleep staging methods

With the introduction of the sleep scoring rules of Rechtschaffen and Kales, first automated

digital sleep scoring methods were developed to reduce the time to score sleep and to

potentially exploit new quantitative measures that are not covered in the Rechtschaffen and

Kales guideline (Penzel and Conradt, 2000). Since then various systems were proposed

differing in dataset, recording setup such as sampling rate, deployed PSG channels, pre-

processing methods such as artefact removal, feature selection, and classification methods.

Here, the focus is on systems utilizing PSG channels (EEG, EOG, and EMG) that are

traditionally used for visual sleep scoring.

First semi-automated classification systems were initially developed on data obtained from

animals such as rats and cats (Lim and Winters, 1980; Witting et al., 1996; Itowi et al.,

1990). Simultaneously, hybrid sleep staging programs tested on human sleep data were

proposed (Gaillard and Tissot, 1973). Later, statistical pattern recognition techniques such

as interval histogram (Kuwahara et al., 1988) or stochastic methods (Stanus et al., 1987)

and expert systems with a set of decision rules defined by sleep experts (Ray et al., 1986)

were deployed for automatic sleep stage scoring. With the surge in machine learning algo-

rithms, first scoring systems based on ANNs were introduced (Schaltenbrand et al., 1993;

Grözinger et al., 1995; Principe and Tome, 1989). Other applications investigated the ability

to score sleep stages using machine learning algorithms such as SVM (Čić et al., 2013),

random forest (Memar and Faradji, 2018), and K-means clustering (Diykh et al., 2016).

State-of-the-art sleep scoring methods exploit the classification power of deep learning

methods such as CNNs and RNNs. Supratak et al. (2017) proposed a highly accurate

model (accuracy of 86%) called DeepSleepNet combining CNNs with bidirectional LSTM

that automatically learns significant features from different raw single-channel EEG without

the aid of handcrafted features. Other proposed methods based on single-channel EEG use
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CNNs in combination with deep ANNs (Tsinalis et al., 2016) or multitaper spectral images

as input (Vilamala et al., 2017) achieving an accuracy of 71–76% and 84–88%, respec-

tively. Chambon et al. (2018b) implemented a sleep stage classification system exploiting

information from multiple EEG, EOG, and EMG channels by extracting spatio-temporal dis-

tributions using a time distributed CNN. In their analysis on automatic sleep stage scoring

based on multivariate PSG data, Stephansen et al. (2018) applied data from approximately

3,000 recordings on LSTMs that were fed with features computed by CNNs from each

EEG, EOG, and EMG. To target the the issues of low data variability and low data effi-

ciency, deep transfer learning approaches such as finetuning (Phan et al., 2020), domain

adaptation (Chambon et al., 2018a), or ensemble-based approaches (Alvarez-Estevez and

Fernández-Varela, 2020) were proposed. Novel developments in automatic sleep stage

scoring involve sequence-to-sequence classification that support the labelling of multiple

epochs at once by sharing information between the epochs (Phan et al., 2019; Seo et al.,

2020).

In summary, the development of automated sleep staging systems has progressed drasti-

cally in recent years. Considering the average sleep stage agreement of human scorers can

range up to 85% (Rosenberg and Van Hout, 2021; Stephansen et al., 2018), some advance-

ments in automated sleep staging are able to outperform human scorers (Stephansen et al.,

2018). Deep learning models such as the models proposed by Supratak et al. (2017), Vila-

mala et al. (2017), Stephansen et al. (2018), and Phan et al. (2019) can achieve an agree-

ment significantly higher than the inter-scorer reliability of human scorers. Also, the ma-

turity of sleep staging systems is reflected in the large number of commercial products

provided by PSG hardware and software producers. However, automated scoring sys-

tems are not yet widely used in clinical settings because of the aversion to technology,

the user-unfriendliness, technical limitations, security and privacy issues, and the diverging

interpretation of scoring rules (Fiorillo et al., 2019).

Seizure detection

Automatic seizure detection is a valuable tool in treatment optimisation of epilepsy pa-

tients. Commonly, seizures are detected and tracked by the patient or the patient’s family

resulting in a lower accuracy due to inaccuracies in identifying or recalling an event (Ulate-

Campos et al., 2016). Seizure detection devices can provide a more accurate seizure

quantification whereas seizure prediction devices can improve the quality-of-life by alerting
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the patient of an upcoming seizure (Ulate-Campos et al., 2016). One type of seizure detec-

tion devices uses information from EEG signals as input, similar to sleep staging and CAP

detection systems. Other sensor types exploit information from surface EMG, electrodermal

activity, ECG, or accelerometry (Ulate-Campos et al., 2016).

An immense part of research on seizure detection in EEG is dedicated to the spatial set-

up of electrodes and the development of wireless EEG measurement tools to enhance

a patient’s comfort and to decrease artefacts based on poor cable management. On

the other hand, a part of research on seizure detection explores the application of ma-

chine learning methods and seeks to optimise feature selection. Recent studies exam-

ined the application of statistical features (Teixeira et al., 2014), spectral features such as

sub-band spectral power (Bandarabadi et al., 2015), spatio-temporal phase correlation fea-

tures (Parvez and Paul, 2016), 2-dimensional representation of short-time Fourier transform

results (Cao et al., 2017), or 2-dimensional images of raw EEG (Wei et al., 2018). More-

over, various deep learning models have been investigated for seizure detection, such as

fully connected neural network (FCNN) (Jang and Cho, 2019), CNN (Wei et al., 2018), and

RNN (Hussein et al., 2019).

CAP detection algorithms

In terms of CAP scoring, the development of automated systems to automatically evaluate

sleep microstructure started early after the release of the guidelines. Scientists at the Uni-

versity of Lisbon and at the University of Parma initiated the pursuit of an automated CAP

scoring methods. First methods focused on finding spectral features to describe the sleep

microstructure (Rosa et al., 1999; Barcaro et al., 1998; Ferri et al., 2005b). Subsequently,

the computed descriptors were passed to threshold detectors that were able to identify

potential A-phases (Rosa et al., 1999; Navona et al., 2002; Barcaro et al., 2004). Other

decision making methods included fuzzy logic (Rosa and Allen, 1996) and maximum likeli-

hood estimation (Lima and Rosa, 1997). A different approach was proposed by Largo et al.

(2005) using wavelet transform for time-frequency analysis and an adaptive reservoir ge-

netic algorithm for decision finding. An optimized version of the wavelet based scoring sys-

tem was later implemented in the Somnologica Science 3.3 program as the product of com-

bined efforts from the bioengineering department at the University of Lisbon (Portugal) and

the Flaga-Embla research and development team (Reykjavik, Iceland) (Guilleminault et al.,

2006a).
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The majority of automated CAP detection systems rely on handcrafted features selected by

experts or validated in previous studies. Among the variety of features are energy features

such as Teager energy operator (Machado et al., 2015) or band power descriptors (Mari-

ani et al., 2011b), statistical features such as skewness or kurtosis (Mendez et al., 2016),

amplitude-based features such as Hjorth activity (Mariani et al., 2011b) or similarity in-

dex (Niknazar et al., 2015), spectral features such as spectral entropy (Karimzadeh et al.,

2015) or discrete Fourier transform (Machado et al., 2018), and information theoretical

features such as Lempel-Ziv complexity or sample entropy (Mendez et al., 2016). Simul-

taneous to the trend in automatic sleep stage scoring, first automated systems to score

CAP using ANNs were implemented shortly after the turn of the millennium (Mariani et al.,

2010). In their study on efficient automatic A-phase classifiers, Mariani et al. (2012) con-

cluded that LDA and ANN are among the better-performing algorithms for CAP classifi-

cation. Later, they showed that the computation of descriptors on variable window length

resulting in signal excerpts with uniform spectral characteristics is a useful tool to increase

CAP classification accuracy (Mariani et al., 2013). Other machine learning algorithms such

as kNN (Mendez et al., 2016), SVM (Mariani et al., 2011a), self-organizing map (Men-

donça et al., 2018a), and classification tree (Mendonça et al., 2018a) were also successfully

applied to identify A-phases.

Additionally, studies were conducted to assess the inter-scorer reliability in scoring CAP

parameters as benchmark for automatic CAP scoring. Ferri et al. (2005b) reported in their

study on four human scorers a Kendall W coefficient of concordance of 0.83 for CAP rate

and 0.68 for the number of CAP sequences. Largo et al. (2019) showed a mutual agreement

of approximately 70% for A-phase scoring. State-of-the-art methods show that they are able

to score CAP events with a similar agreement as visual scorers. Mendonça et al. (2020a)

demonstrated that their probabilistic model using Gaussian Mixture Model and symbolic dy-

namics reached a CAP cycle detection accuracy of 76% in fifteen normal subjects. Another

method proposed by Mendonça et al. (2020b) using Matrix of Lags scored a CAP cycle de-

tection accuracy of 77% in a population of nine healthy subjects and 4 subjects with sleep-

disordered breathing. Using three layers of LSTM, Mendonça et al. (2020c) demonstrated

in their next study on 15 normal subjects an overall average accuracy of 82% using features

and 81% using pre-processed EEG signal for A-phase subtype classification during NREM,

REM, and Wake phases. In their study on A-phase classification, Arce-Santana et al. (2020)

applied a CNN-based classifier on log-spectrograms of single-channel EEG data achieving

an accuracy of 88.1% for binary classification and 77.3% for subtype classification on nine

healthy subjects. Dhok et al. (2020) reported in their study an average accuracy of 87.5%
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on 2-seconds EEG segments from six normal subjects using Wigner-Ville based entropy

features.

Another approach to classify CAP is the cardiopulmonary coupling analysis proposed by

(Thomas et al., 2005). In their first study on CAP estimation using ECG and cardiopul-

monary coupling, Mendonça et al. (2018b) reported an accuracy of 77% using an ANN and

a deep stacked autoencoder. In follow-up studies, the same research group demonstrated

an accuracy of 91% (Mendonça et al., 2021) and 94% (Mendonça et al., 2020d) in relation

to age-related CAP rate percentages using a CNN-based estimator. An additional feature

of the algorithm was it implementation in a home monitoring device composed of a pro-

cessing unit, a sensing module, and a display unit. This approach is similar to a previously

suggested portable solutions for CAP analysis from the same authors (Mendonça et al.,

2019).

Limitations in previous work on automated CAP detection

The presented literature on automated CAP detection algorithms demonstrates several lim-

itations. Firstly, all supervised classifiers were designed to be trained with a balanced

dataset, i.e. a balanced number of representations for each class. However, the amount

of CAP sequences or A-phases in a normal sleep recording is substantially smaller than

the number of periods without CAP. Hence, a large number of background periods or pe-

riods without CAP need to be removed from the training dataset to achieve a balanced

representation. Consequently, important information is lost when using balanced datasets.

Moreover, performance metrics need to be adjusted to account for the bias that is intro-

duced by imbalanced data. In summary, the issue of imbalanced data in CAP scoring has

not yet been satisfactorily addressed.

Although a few deep learning models have been proposed in recent years, the full range of

possibilities using deep learning has not yet been explored. Considering EEG channels are

time signals that represent the brain activity at a certain location at a specific point in time,

classification models that exploit the given information from the past and the present have

access to more relevant information than other classifiers. In theory, this will result in a more

accurate and precise classification decision. One approach to exploit past information in

the classification are RNNs. They have rarely been part of previous CAP detection studies.

Hence, the full capability of deep learning methods for automated CAP detection has not

been exploited yet.
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Various studies on CAP detection decided to score CAP sequences instead of single A-

phases and to include REM epochs into their analysis. Both approaches may limit their

utility in a clinical setting. Although the scoring of CAP sequences features a more inclusive

approach and is preferable in real-time applications, the detection of single A-phases is

more clinically relevant as it offers more information about the characteristics of A-phases,

B-phases, and CAP cycles. The majority of systems developed by or with the support of

leading clinical experts in this field are based on the detection of single A-phases to adhere

to the rules of CAP sequences. This underlines the aspect that single A-phase detection is

preferable in a clinical context. Regarding the inclusion of REM epochs into CAP detection,

the CAP atlas (Terzano et al., 2001) categorically excludes REM epochs from CAP scoring.

Moreover, the lack of CAP scored REM epochs prevents the training of CAP detection

classifier on REM data. Consequently, the scoring of CAP sequences instead of single A-

phases and the inclusion of REM epochs prevent the comparison of performance measures

between studies. Hence, this results in increased complexity when comparing methods for

CAP detection and a more generalised approach is preferable.

2.3 Key Questions

Figure 2.7 summarizes the key questions addressed in this thesis. The agenda of this the-

sis was divided into four main work packages. Firstly, key issues regarding the automated

scoring of CAP sequences were addressed. In this study, we propose a novel, automated

system that addresses two main limitations of previous works - the bias of imbalanced data

and the non-generalised approach. Our end-to-end solution uses a RNN to extract crucial

information in the temporal behaviour of CAP. Also, state-of-the-art signal processing meth-

ods were implemented to reduce the influence of cardiac field artefact (CFA) and the loss

function of the training process was optimised to deal with the biasing issue of imbalanced

datasets.

Following, the proposed automated CAP scoring was validated using a long-standing cohort

study by comparing the scoring output to values from the literature on the relation between

CAP and markers of sleep disturbances. To the best of our knowledge, this is the first time

that such a comparison was performed. It is also the first time that a study of this dimension

(more than 2,000 participants) was analysed in terms of CAP. The study also demonstrates

that automated CAP analysis of large population based cohorts can lead to new findings

on CAP and its subcomponents. Afterwards, a study is presented that addresses the gaps
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Scoring Validation Clinical Network

Automated CAP
scoring

• How can we automate and
optimise CAP scoring?

• How can we deal with im-
balanced data?

• How can we use past infor-
mation for classification?

CAP in population
samples

• Can we see a similar CAP
prevalence as in the liter-
ature using the automated
classifier?

• How does age and gender
affect CAP in large popu-
lations?

• What is the association
between CAP and subjec-
tive sleep quality?

CAP and sleep
diseases

• How is CAP characterized
in children with obstructive
sleep apnea?

• What is the effect of ade-
notonsillectomy on CAP?

• What is the relationship
between CAP and cog-
nitive functioning in chil-
dren?

Interplay between
CNS and ANS
during CAP

• What are the cortical-
cardiovascular
interactions during CAP?

• Do CAP activation phases
influence the autonomic
cardiovascular control?

• Can we determine causal
relationships?

Figure 2.7. Summary of key questions addressed in this thesis. An overview of the key ques-
tions addressed in this thesis depicted as a flow chart.

of knowledge in the relation between CAP and cognitive functioning in children. Using

the validated CAP classification system, the relationship between CAP and behavioural,

cognitive, and quality-of-life measures as well as the effect of eAT on CAP are determined

in children with OSA.

Finally, novel investigations into the interplay between CNS and ANS during CAP are con-

ducted. As mentioned in Section 2.1.4, the relation between CAP and brain connectivity and

the ANS, respectively, is not fully understood yet. In this study, we analyse a tool called GC

based on its utility for probing the level of interplay between CNS and ANS during CAP. Our

analysis provides first evidence on the causal interplay between cortical and cardiovascular

activities during CAP.
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3

Paper I

Automatic A-phase Detection of Cyclic

Alternating Patterns in Sleep Using

Dynamic Temporal Information

The content of this chapter is a modified version of the publication:

Hartmann, S. and Baumert, M. (2019), ‘Automatic A-Phase detection of cyclic alternating

patterns in sleep using dynamic temporal information’, IEEE Transactions on Neural Sys-

tems and Rehabilitation Engineering 27(9), pp. 1695–1703.
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Abstract

The identification of recurrent, transient perturbations in brain activity during

sleep, so called cyclic alternating patterns (CAP), is of significant interest as

they have been linked to neurological pathologies. CAP sequences comprise

multiple, consecutive cycles of phasic activation (A-phases). Here, we propose

a novel, automated system exploiting the dynamical, temporal information in

electroencephalography (EEG) recordings for the classification of A-phases and

their subtypes. Using recurrent neural networks (RNN), crucial information in the

temporal behaviour of the EEG is extracted. The automatic classification sys-

tem is equipped to deal with the biasing issue of imbalanced data sets and uses

state-of-the-art signal processing methods to reduce inter-subject variation. To

evaluate our system, we applied recordings of 16 normal, healthy subjects (aged

32.2 ± 5.4 years) and 30 subjects with nocturnal frontal lobe epilepsy (aged

31.0 ± 11.4 years) from the publicly available CAP Sleep Database on Phy-

sioNet. Our results show that the RNN improved the detection accuracy by

3–5% and the F1-score by approximately 7% on two data sets compared to a

normal feed-forward neural network. Our system achieves a sensitivity of ap-

proximately 76–78% and F1-score between 63–68%, significantly outperform-

ing existing technologies. Moreover, its sensitivity for subtype classification of

60–63% (A1), 42–45% (A2), and 71–74% (A3) indicates superior multi-class

classification performance for CAP detection. In conclusion, we have developed

a fully automated high performance CAP scoring system that includes A-phase

subtype classification. RNN classifiers yield a significant improvement in accu-

racy and sensitivity compared to previously proposed systems.

3.1 Introduction

Sleep is as an essential part of life for many species including humans. It comprises recur-

ring alternating patterns of quiescence followed by high activity (rapid eye movement (REM)

sleep) that appear to serve several vital functions including cellular restoration, memory

consolidation, and brain clearance from metabolites, but the process in its entirety is incom-

pletely understood.
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To discern its macrostructure, sleep is classified in four different stages based on the Amer-

ican Academy of Sleep Medicine consensus guidelines (REM plus three non-REM (NREM)

stages) (Iber et al., 2007), which originated in the rules proposed by Rechtschaffen &

Kales (Rechtschaffen and Kales, 1968). The classification is typically performed on thirty-

seconds windows of the electroencephalography recording. Every window is scored by a

trained expert into one of the four stages based on the prominent EEG pattern.

In 2001, the concept of cyclic alternating pattern (CAP) was introduced as an alternative

way to characterise NREM sleep (Terzano et al., 2001). A CAP sequence is defined as

three or more consecutive activation phases (A-phases) which represent transient, promi-

nent events separated by a B-phase, the so called background phase (see Figure 3.1). The

A-phase is commonly restricted to sleep stages without rapid eye movement and charac-

terised by slower high-voltage rhythms, faster lower-voltage rhythms or by both (Terzano

and Parrino, 2005). Based on the respective proportion of the aforementioned waveforms,

A-phases can be divided into three subtypes. Subtype A1 is dominated by EEG synchrony,

i.e. high-voltage slow waves, whereas faster low-amplitude rhythms are more prevalent

in subtype A3 (Terzano et al., 2001). Subtype A2 contains a mixture of both waveforms.

In general, CAP serves as indicator for sleep instability due to its correlation with sleep

pathologies such as sleep disordered breathing or insomnia (Parrino et al., 2012). A CAP

reflects a stimulating character on physiological functions during the transition from wake-

fulness to sleep or during light sleep (Terzano and Parrino, 2000).

Currently, the scoring of CAP events is performed semi-manually by a trained expert using

a software as visualisation tool to streamline A-phase detection. As this task can be ex-

hausting and time-consuming, a robust, fully automated system for scoring A-phases could

tremendously accelerate research in the field and pave the way towards clinical application.

In the past, a few studies were performed to implement automatic CAP detection, where

the distinctive characteristics between the activation phase and the background phase were

exploited to score CAP sequences (Mendez et al., 2016). In early works, the alteration in

signal amplitude averages between short and long time periods were conducted by var-

ious models mixed with further analysis (Navona et al., 2002). Later, statistical or spec-

tral features were extracted from EEG followed by either thresholding classification algo-

rithms (Niknazar et al., 2015) or competitive machine learning algorithms (Mendez et al.,

2016; Mariani et al., 2012; Largo et al., 2005; Mariani et al., 2013; Mendonça et al., 2018a).

In terms of subtype recognition, research initially focused on the unique attributes of each

subtype (Mendez et al., 2016; Navona et al., 2002). Only a few systems classify subtypes as
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a whole in sleep recordings (Machado et al., 2018). Importantly, all aforementioned classi-

fiers rely solely on the information provided at a single time step, neglecting supplementary

knowledge that may be contained in consecutive time steps.

CAP cycle

F4C4

F3C3

C4A1

C4P4

T3T5

P4O2

A-phase

Time

A-phase

B-phase

CAP sequence

02:29:48 02:30:18 02:30:48 02:31:18 02:31:48 02:32:18 02:32:48

Figure 3.1. Short excerpt of a typical cyclic alternating pattern sequence. Multiple electroen-
cephalography channels illustrating a cyclic alternating pattern (CAP) sequence which
consists per definition of more than two CAP cycles (one CAP cycle is highlighted in the
red square). A CAP cycle is composed of an activation phase (A-phase) and a back-
ground phase (B-phase). The A-phase in the highlighted time period displays a slow
high-voltage rhythm compared to the B-phase which is typical for a certain type of CAP
events.

Here, we propose a fully automated CAP scoring system, including comprehensive pre-

processing and artefact removal stages, as well as feature selection that uses a recurrent

neural network (RNN) classifier exploiting the dynamic temporal information in EEG. We

selected long-short term memory network (LSTM) as representative for the RNN class.

Quantifying the temporal EEG behaviour can yield more precise scoring of conventional

sleep stages, see Dong et al. (2018) and Supratak et al. (2017). Additionally, the scoring

process was expanded to a multi-class classification system determining the subtype of the

detected A-phase. Section 3.2 explains the proposed method, the test environment and the

entire automated system. The results obtained with different classifiers plus the compari-

son of performance measures for general A-phase detection and subtype classification are

presented in Section 3.3. Finally, Section 3.4 discusses the results and limitations of the

system followed by concluding remarks in Section 3.5.
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Table 3.1. Statistics of sleep macrostructure and cyclic alternating pattern occurrence in data
sets (total duration in seconds).

Subject Wake & REM NREM A1 A2 A3
Total sleep

time

16 normal subjects 153,890 328,040 24,027 10,633 16,062 481,930

30 NFLE subjects 270,840 627,631 50,791 27,754 51,397 898,471

REM, rapid eye movement; NREM, non-rapid eye movement; NFLE, nocturnal frontal lobe epilepsy

3.2 Materials and methods

This section explains the data flow from a raw EEG recording as input to the classifica-

tion output. The entire system is divided into four major parts: pre-processing, feature

extraction, classification and post-processing. In the pre-processing step, the raw data are

prepared for the feature extraction stage by removing cardiac field artefacts and eye move-

ment artefacts plus filtering. Based on the processed signal, multiple features in the time

and frequency domain are calculated. The extracted feature set serves as input for the

classifier in the classification stage. Finally, the output of the classifier is modified according

to the CAP scoring rules.

01:39:52 01:40:02 01:40:12 01:40:22
-100

0

100

Original EEG Signal

V

01:39:52 01:40:02 01:40:12 01:40:22
-100

0

100

Recovered EEG signal after ICA

V

01:39:52 01:40:02 01:40:12 01:40:22

0

20

40
Difference between original EEG signal and recovered EEG signal

Time

V

Figure 3.2. Illustration of the input and outcome of the cardiac field artefact removal method.
Depiction of cardiac field artefact removal method in short signal window of subject
n10: a) Contaminated original signal, b) recovered electroencephalography (EEG) sig-
nal from independent sources after independent component analysis, and c) difference
between original and recovered EEG signal (superimposed electrocardiography signal
on EEG channel).
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3.2.1 CAP Sleep Database

We used the publicly available CAP Sleep Database on PhysioNet, an open-source repos-

itory for physiological signal recordings targeting various biomedical research fields (Gold-

berger et al., 2000). The polysomnographic measurements were conducted by the Sleep

Disorders Center of the Ospedale Maggiore of Parma, Italy. In particular, we selected

16 normal, healthy subjects (n1–n16) and 30 subjects with nocturnal frontal lobe epilepsy

(NFLE) to benchmark our results against Mariani et al. (2013) and Machado et al. (2018).

Subject n16 was included although the electrocardiography (ECG) recording is missing,

which is necessary for the cardiac field artefact (CFA) removal explained in section 3.2.2.

Usually the polysomnographic recordings contain at least one EEG channel (C3 or C4),

multiple bipolar EEG channels and other parameter such as ECG or eye movement signals.

For each recording an annotation file is provided containing manual scoring performed by

expert neurologists. The scoring comprises sleep stages and CAP events according to the

Rechtschaffen & Kales rules (Rechtschaffen and Kales, 1968) and the atlas of CAP scor-

ing (Terzano et al., 2001), respectively. The manual scoring serves as ground truth for the

supervised learning of the event classifiers.

For algorithm evaluation, we selected the leave-one-out (LOO) method equivalent to Mari-

ani et al. (2013) and Machado et al. (2018) as cross-validation approach. The LOO method

is a k-fold cross-validation algorithm in which for each fold one subject is determined as

test set and all remaining subjects are merged into the training set. The final performance

measures are computed by summing up each individual validation value and dividing the

sum by the number of instances. Summary statistics of the sleep macrostructure and CAP

occurrence for each data set are listed in Table 3.1. Since CAP events only occur in NREM

stages (Terzano et al., 2001), the wake and REM periods were removed from the data.

Thus, the numbers for NREM seconds in Table 3.1 represent the quantity of used samples

for each data set.

3.2.2 EEG pre-processing

To guarantee a robust and precise classification output, the recordings of each subject have

to be processed in advance to diminish any subject related variations. As signal channel,

we selected a single EEG lead in each subject’s set of recordings, which was either the

C4-A1 or the C3-A2 channel. The sampling frequency varied across recordings between
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100 Hz and 512 Hz, thus the data were resampled at a frequency of 128 Hz. Subsequently,

the recordings were examined for CFA or eye movement artefact.

Cardiac field artefact removal

Typically, the cardiac electric field is superimposed on the cortical electric field resulting

in more or less clearly visible peaks in EEG. To disentangle both sources in EEG, blind

source separation (BSS) methods such as independent component analysis (ICA) can be

applied. Here, we used a modified Wavelet-ICA method presented previously for the source

separation of single-channel recordings (Mijovic et al., 2010). The Wavelet-ICA combines

the discrete wavelet transform, which generates an array of frequency sub-bands out of a

1-D signal, where the ICA method is used to find statistically independent sources in the

wavelet scales. As mother wavelet, the coiflet wavelet was chosen due to its resemblance

of the pulse waveform in ECG. Because of the mutual sampling frequency of 128 Hz, we

selected a 6-level decomposition. To achieve good performance, during ICA, the recorded

ECG is included as an input, adding to the existent cardiac field artefacts. After ICA, each

independent component was recovered with the mixing matrix and correlated with the orig-

inal ECG to identify the independent cardiac field source in the output signals. The CFA

removal procedure was completed by determining the Pearson correlation coefficient be-

tween the ECG and the difference between EEG and the recovered signal of the non-ECG

independent sources. If the coefficient value exceeded 0.75, the EEG was replaced by the

recovered signal. Otherwise the algorithm proceeded without any cardiac field removal. An

example of a contaminated signal and a denoised signal are shown in Figure 3.2.

Eye movement artefacts

The movement of the eyeballs can create additional noise in sleep EEG. Due to proximity,

the electrooculogram (EOG), representing the eye movement, can be often found as an

independent source in the EEG recordings. Thus, the aforementioned method for CFA re-

moval is applied similarly to deal with eye movement artefacts. The EOG signal is added to

the decomposed EEG signal before the ICA step. As a result, a set of independent sources

is obtained containing signals free from any eye movement and a single eye movement

signal.
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Filtering

Before extracting signal features, the EEG was bandpass filtered with a finite impulse re-

sponse (FIR) filter (0.5–30 Hz) and subsequently divided into five frequency bands. Using

a least-squares linear phase FIR filter bank to separate the following EEG rhythms: Delta

(0.5–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Sigma (12–16 Hz) and Beta (16–30 Hz).

3.2.3 Feature extraction

The following features were selected based on their performance reported in previous stud-

ies (Machado et al., 2015; Karimzadeh et al., 2015; Mariani et al., 2011b). Every feature is

calculated on a defined window length with partial overlapping. All features are centred on

the current second resulting in a sample rate of 1 Hz.

Hjorth activity

The Hjorth activity is defined as the variance of the signal amplitude based on the discrete

signal values si (Hjorth, 1970),

m0 =
1
M

M
∑

i=1
(si − �)2 (3.1)

where M is the window length and � = 1
M

M
∑

i=1
si. In this study, m0 was only determined in

the delta band by using 3-s overlapped windows.

Shannon entropy

Given the probability pi with i representing all amplitude values, the Shannon entropy is

defined in this research as (Karimzadeh et al., 2015):

H = −
∑

i
pi log pi. (3.2)

The Shannon entropy was determined on the entire spectrum in 2-s signal windows with

one second overlap.
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Teager Energy Operator

The Teager Energy Operator was introduced for the instantaneous estimation of frequency

and amplitude components (Cho et al., 2014). The discrete version of the TEO, Ψ[x[n]], is

defined as follows, where s[n] corresponds to a discrete sample of a time series:

Ψ[s[n]] = (s[n])2 − s[n− 1]s[n+ 1]. (3.3)

The TEO feature was calculated for every spectral band in 2-s overlapping windows.

Band power descriptor

To evaluate the variation of power in different frequency bands, band descriptors were intro-

duced in previous studies highlighting the transient spectral variations in a temporal range

of 2–60 seconds (Mariani et al., 2011b). At first, the signal in each band was squared and

normalized with respect to the maximum power of the band. Afterwards, the mean power on

windows of 2 seconds and 64 seconds were determined. The descriptor formula is shown

in equation 3.4 (Mariani et al., 2011b),

db(t) =
es(t) − el(t)

el(t)
(3.4)

where es(t) is the mean power of the short 2-s window, el(t) the mean power of the long

64-s window and db(t) the power descriptor for a specific frequency sub-band.

Differential EEG variance

The variance difference of the EEG was determined on 1-s non-overlapping windows cal-

culating the difference between consecutive 1-s windows (Mariani et al., 2011b).

Feature synchronisation

Prior to feature extraction, the raw EEG and the scoring data were synchronised to ensure

perfectly aligned data. The starting time of the manual scoring was used as a reference

for both inputs. In case the EEG recording started earlier than manual scoring, the EEG

data prior to the scoring start was removed. In case the EEG recording started later than

manual scoring, the entire recording was dismissed. After feature extraction, Wake and

REM stages were removed. Hence, the first set of features describes the first second of the

first manually scored NREM stage.
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3.2.4 Classification algorithms

In this study, a RNN was designed to exploit the dynamical temporal information for the

automatic A-phase detection of CAP cycles. We compared its performance to a conven-

tional feed-forward neural network (NN). Before all classifiers were trained, the data were

normalized to zero mean and unit variance. In case of the test sets, the mean and standard

deviation of the training set was employed due to the lack of knowledge of the statistics of

the sample. For A-phase detection, a binary output was used whereas four different output

classes were predicted in the subtype classification case.

Artificial neural network - ANN

A shallow feed-forward NN with one hidden layer was implemented as standard artificial

neural network. A feed-forward NN is based on consecutive functional transformations,

which can exploit non-linearities by applying non-linear activation functions to the weighted

inputs of each neuron (Bishop, 2006). The parameters of each neuron (weights and biases)

are updated through backpropagation after comparing the outcome of the network to the

labelled data with a defined loss function. For this study, the number of neurons of the

single-layer feed-forward NN was fixed to 448 and a rectified linear unit (ReLU) was used

as activation function. Furthermore, the total loss was calculated with the F�-score (see

Section 3.2.4).

Long-short term memory network - LSTM

A RNN is a subclass of NNs and differs from a feed-forward NN by passing the informa-

tion from previous states to the next cell. Therefore, the state of the current time step re-

ferred to as hidden state depends on all previous hidden states (Graves et al., 2013). This

characteristic makes RNNs very useful for time series predictions such as speech recog-

nition (Graves and Schmidhuber, 2005) due to the exploitation of the dynamic temporal

behaviour However, a key problem of initial RNNs is the learning of long-term dependen-

cies, which can lead to an increasingly difficult problem for the gradient based learning

algorithm (Bengio et al., 1994). To resolve long-term dependencies, LSTM RNN were pro-

posed (Hochreiter and Schmidhuber, 1997). Instead of having a chain of feed-forward

networks connected together, the cells of a LSTM provide the ability to decide which infor-

mation is relevant. So called memory cells control and store information, see Figure 3.3.

The memory cell is composed of the input gate, forget gate, output gate, and the cell state.
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Figure 3.3. Schematic of a standard long-short term memory cell. Schematic of a standard
long-short term memory cell highlighting the input gate, the forget gate, the cell state,
and the output gate.

Each gate is controlling the information flow, hence all gates manipulate the current hidden

state. The gates can be calculated by the following numerical calculations,

it = �(Wxixt +Wℎiℎt−1 + bi) (3.5a)

ft = �(Wxfxt +Wℎfℎt−1 + bf ) (3.5b)

ct = ftct−1 + it tanh(Wxcxt +Wℎcℎt−1 + bc) (3.5c)

ot = �(Wxoxt +Wℎoℎt−1 + bo) (3.5d)

ℎt = ot tanh(ct) (3.5e)

where � is the logistic sigmoid function, tanℎ the hyperbolic tangent, xt the cell input, ct the

cell state, ℎt the hidden state, Wyz the weights of gate z corresponding to the gate input

y and bz the bias of the gate z (Gers et al., 2002). In this study, we create deep LSTM

networks by stacking LSTM layers similar to those of feed-forward NNs. This results in con-

nected layers with multiple cells per time step. The number of time steps, i.e. the sequence

length, defines how much of the previous information is entered into the calculation of the
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current state. The output of the last time step in the sequence is passed to a neural network

layer with a ReLU as activation function. Finally, the class probabilities are calculated by

a softmax layer following the fully connected layer. Consequently, the LSTM network and

feed forward NN used in this study differ only in the LSTM layers, allowing us to evaluate

the effect of the information gain of the LSTM memory.

t
x[t-N] x[t-N+1] x[t-2] x[t-1] x[t]

Features

Classification

Raw EEG signal

LSTM

cell

LSTM

cell

LSTM

cell

LSTM

cell

LSTM

cell

h[t]
Fully connected
layer & softmax

//

Variable window length
(1-3 seconds window)

Figure 3.4. Schematic of the information flow in the proposed long-short term memory net-
work architecture. Scheme of the information flow from a single electroencephalog-
raphy trace to the classification outcome using a long-short term memory (LSTM) re-
current network: At first, features are calculated based on the raw data in short sig-
nal windows creating an input array with a feature vector for every second (x[t] with
t ∈ {1, 2, .., L} where L is the length of the recording). For every time step, the LSTM
classifier takes a sequence ofN feature vectors (x[t−N+1], ..., x[t]) centred on the cur-
rent time step where N − 1 is the length of the desired past information. At the end, the
hidden state (ℎ[t]) of the current time step is linked to a fully connected layer followed by
a softmax layer. Thus, for each time step the information from N−1 values of the past
plus the current features are deployed for the classification.

F�-score as cost function

Considering the statistics of the training set (see Table 3.1), the number of A-phases in

each sleep recording is significantly lower than the number of background phases. As

training of machine learning classifiers with common error functions such as the cross-

entropy or means squared error relies on a balanced data set to receive an unbiased output,

an imbalanced data set would result in a trained classifier that most likely chooses the class

of the most prominent label to achieve a high accuracy. To avoid a biased classifier, the

data set can be balanced either by removing samples of the more prominent class or by

upsampling the under-represented class based on the available data. Alternatively, the

training algorithm and the error function in particular could be adapted.
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To train each neural network, we modified the objective error function by implementing the

F�-score as done previously for normal feed-forward NNs (Pastor-Pellicer et al., 2013) and

convolutional neural networks (Scherzinger et al., 2017). The F�-measure relies solely on

the precision and sensitivity of the prediction. Both values are commonly used as objective

quality measures for binary classification problems along with accuracy and specificity (see

Section 3.2.6) (Sokolova and Lapalme, 2009). The positive �-value defines the prioritisation

of precision or sensitivity. A �-value equal to 1 is commonly known as the F1-score or F-

score, determining the harmony of precision and sensitivity. The main requirement for an

objective error function is the ability to calculate its gradient. Hence, equation 3.6 displays

the derivation of the F�-score, where oi represents the output of the classifier, ti describes

the target label, and L the size of the data set (Pastor-Pellicer et al., 2013).

)FM�

)oi
=

(1 + �2) ⋅ ti
L
∑

j=1
(oj + �2 ⋅ tj)

−

(1 + �2) ⋅
L
∑

j=1
(oj ⋅ tj)

[

L
∑

j=1
(oj + �2 ⋅ tj)

]2
(3.6)

3.2.5 Classification post-processing

The outcomes of the classifiers were post-processed in accordance with the atlas for CAP

scoring (Terzano et al., 2001). Since A or B-phases can only occur in time periods longer

than a second, isolated one-seconds prediction were replaced by their neighbouring val-

ues. Moreover, in terms of binary classification, the prediction of an A-phase longer than 60

seconds was reclassified again due to the high probability of containing multiple A-phases.

For reclassification, a self-organising map with 500 epochs and unsupervised learning was

used to cluster the particular time window again. These two steps were performed three

times in a row to check for possible changes after the preceding iteration. This method

proved effective in a previous study (Mariani et al., 2013). Considering subtype classifica-

tion, periods of one subtype longer than 60 seconds were split into shorter intervals. Ad-

ditionally, activation phases with inconsistent labels of subtypes were set to the dominant

subtype in this time period.
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3.2.6 Classification performance measures

To compare the performance of the two A-phase classifiers, a set of performance mea-

sures for binary classification problems was calculated. The efficacy was evaluated based

on the number of correctly identified events (true positives, tp), the number of correctly rec-

ognized background phases (true negatives, tn), and the number of seconds which were

misidentified either as A-phase (false positive, fp) or as background phase (false negative,

fn). Based on these, we quantified accuracy (ACC), sensitivity or true positive rate (TPR),

precision or positive predictive value (PPV), true negative rate or specificity (SPC) and the

F1-score as follows (Sokolova and Lapalme, 2009):

ACC =
tp + tn

tp + fn + fp + tn
(3.7a)

TPR =
tp

tp + fn
(3.7b)

PPV =
tp

tp + fp
(3.7c)

F1 =
2 ⋅ TPR ∗ PPV
TPR+ PPV

(3.7d)

SPC =
tn

fp + tn
. (3.7e)

In the case of multi-class classification, the equivalent measures were computed using

following formula where i represents the current class and l the total number of classes

(Sokolova and Lapalme, 2009):

ACC =

∑l
i=1

tip+t
i
n

tip+f in+f ip+tin

l
(3.8a)

TPRi =
tip

tip + f in
(3.8b)

PPVi =
tip

tip + f ip
(3.8c)

F1
i = 2 ⋅ TPRi ∗ PPV i

TPRi + PPV i . (3.8d)
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Table 3.2. List of long-short term memory network algorithm parameters.

Parameter Value Parameter Value

Cell input (number of features) 13 Output classes 2

Epochs 100 Batch size 256

Learning rate 0.001 Learning rate drop period 20

Learning rate drop factor 0.1 � value 3

Dropout No L2 Regularization No

Sequence length 14 Layer shape [128, 64, 32]

3.2.7 Setup of test environment

Prior to the supervised training of the classifiers, the parameters for the LSTM algorithm

were set. Table 3.2 displays the various parameters used in this study. For each NREM

second a 14-seconds vector with 13 features each was generated resulting in a pool of

two-dimensional arrays (see Figure 3.4). Subsequently, the pool of vectors for training was

shuffled erasing any subject information. During training and testing, the cell state and

hidden state of the LSTM cells were reset for each sequence to ensure that no previous

information is carried on. Prior to evaluation, the vectors were not shuffled but fed sequen-

tially to the trained system enabling to reconstruct the temporal structure of the classification

output afterwards.

After training, each classifying technique was separately evaluated on both data sets and

compared to the particular reference. In case of the subtype classification, only the LSTM

method was validated. We also ratified the performance gain of using an imbalanced data

set in combination with F�-function instead of a balanced data set with a common error

function. Moreover, the effects of removing CFA and eye movement artefact respectively

were investigated.

The entire algorithm was implemented and executed in MATLAB® using the deep learning

toolbox and the built-in NVIDIA GPU support. Training was performed on a NVIDIA GPU at

the Phoenix High Performance Computing (HPC) service of the University of Adelaide. The

NN and LSTM training took approximately 11 minutes and 4 hours, respectively. Subse-

quently, the classification of one entire overnight recording was performed in 5–10 seconds

on a Intel Core i7 processor with 3.60 GHz.
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Table 3.3. Comparison of performance measures for A-phase detection evaluated on CAP
Sleep Database.

TPR SPC ACC F1-score

16 normal subjects

Mariani et al. (2013) 67.03 ± 4.56 89.63 ± 3.55 86.09 ± 3.14 -
Feed-forward ANN 73.04 ± 11.23 84.61 ± 7.28 82.66 ± 5.50 56.56 ± 6.82
LSTM 76.10 ± 14.47 88.49 ± 6.09 86.43 ± 4.62 63.46 ± 8.22

30 NFLE subjects

Machado et al. (2018) - LDA 79.00 ± - 74.00 ± - 73.00 ± - -
Machado et al. (2018) - k-NN 82.00 ± - 69.00 ± - 75.00 ± - -
Machado et al. (2018) - SVM 79.00 ± - 76.00 ± - 76.00 ± - -
Feed-forward ANN 73.42 ± 7.84 82.41 ± 7.08 80.40 ± 4.69 60.57 ± 7.13
LSTM 78.48 ± 8.66 86.50 ± 6.23 85.09 ± 4.54 67.66 ± 7.03

TPR, true positive rate; SPC, specificity; ACC, accuracy; ANN, neural network; LSTM, long-short term mem-
ory network; NFLE, nocturnal frontal lobe epilepsy; LDA, linear discriminant analysis; k-NN, k-nearest neigh-
bor; SVM, support vector machine

3.3 Results

3.3.1 A-phase detection

Table 3.3 lists the performance measures of the two classifiers and the results of Mari-

ani et al. (2013) as well as Machado et al. (2018) using the LOO method. The values

represent the means plus the standard deviation of the five subjects. In case of Mari-

ani et al. (2013) and Machado et al. (2018), no F1 measure was specified. The results

show that the sensitivity and precision of the RNN classifier is greater than the values of the

feed-forward NN (TPR: 3–5%, F1: 7%). Moreover, the overall accuracy of the RNN is in-

creased compared to the feed-forward NN (ACC: 4%). Compared to the system presented

in Mariani et al. (2013), the LSTM classifier a better for every objective measure (TPR: 9%,

ACC: 0.5%) except the sensitivity (SPC: -1%). Considering the data set with NFLE sub-

jects, RNN achieves a lower sensitivity (TPR: -0.5%) but higher specificity and accuracy

(SPC: 10.5%, ACC: 9%) as compared to the SVM method in Machado et al. (2018). The

values for the feed-forward NN are in turn decreased for every objective measure (TPR:

-5%, SPC: -4%, ACC: -4.5%, F1: -7%). Table 3.4 compares the results of the imbalanced

data set to the results of a balanced data set. For training with a balanced data set, the

crossentropy function was applied as cost function. The LSTM algorithm achieved higher

sensitivity and precision when an imbalanced data set was applied (TPR: 1%, F1: 6%). In

case of the NN algorithm, the sensitivity is decreased using an imbalanced data set but the

F1-score indicates a significantly higher precision (TPR: -5%, F1: 2%). Table 3.5 compares
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Table 3.4. Comparison of performance measures for 16 normal subjects using imbalanced
and balanced data sets.

TPR SPC ACC F1-score

Imbalanced

Feed-forward ANN 73.04 ± 11.23 84.61 ± 7.28 82.66 ± 5.50 56.56 ± 6.82
LSTM 76.10 ± 14.47 88.49 ± 6.09 86.43 ± 4.62 63.46 ± 8.22

Balanced

Feed-forward ANN 78.32 ± 10.73 80.21 ± 8.61 79.77 ± 6.59 54.67 ± 7.23
LSTM 75.28 ± 12.00 83.90 ± 8.95 82.42 ± 7.09 57.41 ± 9.64

TPR, true positive rate; SPC, specificity; ACC, accuracy; ANN, neural network; LSTM, long-short term mem-
ory network

Table 3.5. Detailed list for performance measures of 10 normal subjects with and without
artefact removal.

Subject
CFA removal EOG removal No artefact removal

TPR (%) SPC (%) ACC (%) TPR (%) SPC (%) ACC (%) TPR (%) SPC (%) ACC (%)

n1 70.17 94.51 90.69 55.98 95.62 89.39 63.04 95.25 90.19

n2 76.16 80.80 80.12 61.04 89.17 85.04 68.53 86.69 84.02

n4 88.71 86.50 86.78 87.37 87.20 87.22 86.61 87.47 87.36

n5 70.94 93.33 89.46 67.56 93.26 84.32 68.67 93.65 89.33

n7 95.56 79.08 81.26 90.97 84.32 85.20 94.17 80.63 82.42

n8 87.16 88.96 88.67 90.70 84.03 85.11 86.97 88.00 87.83

n10 60.92 79.88 76.95 55.32 85.56 80.89 61.29 81.78 78.61

n11 56.24 90.42 84.69 57.85 90.03 84.63 57.75 91.55 85.88

n13 78.37 87.42 85.54 82.60 84.13 83.81 86.30 82.49 83.28

n14 64.58 94.98 89.52 68.40 93.11 88.67 71.02 93.16 89.18

Mean ± std 74.88 ± 12.78 87.56 ± 6.00 85.37 ± 4.61 71.78 ± 14.70 88.64 ± 4.27 85.88 ± 2.65 74.44 ± 12.89 88.07 ± 5.26 85.81 ± 3.69

CFA, cardiac field artefact; EOG, electrooculography; TPR, true positive rate; SPC, specificity; ACC, accuracy

the results of ten normal subjects obtained with and without artefact removal. In all three

cases, the LOO method was applied to the data set. Although statistics slightly varied for

each subject there was no significant overall effect.

3.3.2 Subtype classification

Table 3.6 displays the multi-class performance measures of subtype classification with the

LSTM method and the results of Machado et al. (2018). In Machado et al. (2018), no F1

measure and no standard deviation were specified. Compared to the SVM method used

in Machado et al. (2018), the LSTM classifier achieves a higher sensitivity for each class

(background: 6%, A1: 1.5%, A2: 1.5%, A3: 50%). Considering the average accuracy, the
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Table 3.6. Results for subtype classification performed on different data sets.

Background A1 A2 A3
Accuracy (%)

TPR (%) F1-score (%) TPR (%) F1-score (%) TPR (%) F1-score (%) TPR (%) F1-score (%)

16 normal subjects

LSTM 85.51 ± 7.68 90.23 ± 4.61 63.14 ± 12.46 46.61 ± 9.01 42.31 ± 15.88 32.96 ± 10.46 70.62 ± 17.95 60.32 ± 7.83 81.89 ± 6.84

30 NFLE subjects

Machado et al. (2018) - LDA 73.00 ± - - 66.00 ± - - 37.00 ± - - 18.00 ± - - 68.00 ± -

Machado et al. (2018) - k-NN 71.00 ± - - 59.00 ± - - 31.00 ± - - 16.00 ± - - 70.00 ± -

Machado et al. (2018) - SVM 76.00 ± - - 58.00 ± - - 44.00 ± - - 24.00 ± - - 71.00 ± -

LSTM 82.30 ± 6.77 88.09 ± 3.62 59.54 ± 15.80 45.42 ± 10.05 45.40 ± 12.99 33.74 ± 7.82 74.25 ± 12.24 62.25 ± 9.50 78.27 ± 4.95

TPR, true positive rate; LSTM, long-short term memory network; NFLE, nocturnal frontal lobe epilepsy; LDA,
linear discriminant analysis; k-NN, k-nearest neighbor; SVM, support vector machine

LSTM system outperforms the method in Machado et al. (2018) by 6%. The confusion

matrices of both data sets for subtype classification are listed in Table 3.7.

3.4 Discussion

In this paper we describe an automated CAP classification system that exploits the dy-

namical temporal characteristics of the EEG signal using deep LSTM RNN. The classifiers

were equipped with the F�-score as objective error function to address the dilemma of

using only a small percentage of the recordings due to the rare occurrence of A-phases.

Consequently, a greater data set and the focus on the sensitivity and precision of the classi-

fication increased the number of correctly detected A-phases. Our comprehensive system

consists of state-of-the-art signal processing methods to minimize the inter-subject varia-

tion. Furthermore, the detection system can be extended to a high-performance multi-class

classification system labelling the detected A-phases with the predicted subtype.

As the results in Table 3.3 indicate, a RNN improves the sensitivity and precision of the clas-

sification compared to a conventional feed-forward NN. The NN and the LSTM only differ in

the sequence of LSTM cells before the neural network layer. Thus, a LSTM can determine

crucial information in a time sequence, resulting in a significantly improved detection of

A-phases. Our overall comparison demonstrates that the LSTM classifier outperforms the

system presented in Mariani et al. (2013). The numbers for the second data set indicate a

more accurate and precise scoring than those achieved previously in Machado et al. (2018)

although the sensitivity is marginally decreased. Note that no other previous studies were

considered in our comparison, due to the difference in data sets. In summary, our scoring

system using a LSTM classifier improves the performance of A-phase classification.
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Table 3.7. Confusion matrix of subtype classification for a) 16 normal subjects and b) 30 NFLE
subjects.

a)
Target Total

B A1 A2 A3 (PPV)

O
ut

pu
t

B
237,550 5,456 2,243 2,398 247,647

72.5% 1.7% 0.7% 0.7% (95.9%)

A1
22,561 15,086 2,104 294 40,045

6.9% 4.6% 0.6% 0.1% (37.7%)

A2
6,234 2,992 4,764 1,707 15,697

1.9% 0.9% 1.5% 0.5% (30.3%)

A3
10,770 493 1,522 11,658 24,443

3.3% 0.2% 0.5% 3.6% (47.7%)

Total 277,115 24,027 10,633 16,057

(TPR) (85.7%) (62.8%) (44.8%) (72.6%)

b)
Target Total

B A1 A2 A3 (PPV)

O
ut

pu
t

B
408,938 9,334 4,992 6,535 429,799

65.2% 1.5% 0.8% 1.0% (95.1%)

A1
42,684 31,082 6,289 965 81,020

6.8% 5.0% 1.0% 0.2% (38.4%)

A2
16,755 8,974 12,362 5,546 43,637

2.7% 1.4% 2.0% 0.9% (28.3%)

A3
28,941 1,401 4,111 38,332 72,785

4.6% 0.2% 0.7% 6.1% (52.7%)

Total 497,318 50,791 27,754 51,378

(TPR) (82.2%) (61.2%) (44.5%) (74.6%)

TPR, true positive rate; PPV, positive predictive value; NFLE, nocturnal frontal lobe epilepsy

The performance measures for subtype classification show promising results for LSTM to

distinguish different activation phases of CAP. The multi-class system achieves a low sen-

sitivity for subtype A2, presumably because of its nature of two mixed waveforms and ex-

tremely low prevalence in the training set. The sensitivity and F1-score values for sub-

type A1 and A3 suggest a highly precise scoring for EEG rhythms with predominantly

EEG synchrony or EEG desynchrony in comparison to Machado et al. (2018). However,

Machado et al. (2018) applied full sleep recordings without removing REM or wake periods.

As the CAP Sleep Database provides only CAP scoring annotations for NREM stages,

it was presumed that during wake and REM periods no A-phases occur. Hence, wake

and REM seconds were labelled as non-CAP phases, whereas according to the CAP at-

las (Terzano et al., 2001) A-phase features of desynchronisation can be seen during REM

but are not part of a CAP sequence by definition. Consequently, this approach may have

lead to a lower sensitivity for A3 phases, which resemble wake and REM phases. In this

study, wake and REM periods were neglected due to the missing annotation information.

Evaluating the effect of the F�-score as cost function, Table 3.4 shows a pivotal perfor-

mance increase for the RNN algorithm regarding the sensitivity and precision. In case of

the NN algorithm, the results display lower sensitivity but greater precision. In general, the

numbers demonstrate that the usage of the F�-score improves the accuracy of the A-phase

classification by enabling the application of a greater data set and focusing on the sensitivity

and precision of the scoring. The main issue when optimizing directly for the F�-score itself

is the shape of the cost function. Due to its non-convex shape, optimization algorithms can

not consistently locate the global minimum of the error function. Approximation methods

can help to erase this problem (Nan et al., 2012).
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Finally, the comparison between a data set with particular artefact removal and without

artefact removal displays no significant overall difference. However, each subject shows

different results for all three methods, implying that the effect of the classification process

is small. CFA removal shows an increase in sensitivity for the majority (60%) of the sub-

jects whereas the removal of eye movements indicates a decrease in correctly detected

A-phases. However, artefact removal methods still appear to be favourable as they de-

crease the noise in the EEG signal.

One major limitation of the system is the reliance on recordings from the same data set. Our

classifiers are trained on recordings performed by the same laboratory with the same setup.

A dissimilar measurement setup may affect the classification results. Furthermore, the al-

gorithm depends on a previously performed sleep stage scoring performed either manually

by a sleep expert or automated by a classification algorithm. In case of the latter, a com-

bined system could be developed to decrease the computing costs. Finally, the presented

algorithm can not be deployed as a real-time application in its current implementation since

the entire recording is required during the artefact removal step and future information is

used for feature extraction. Both steps can be simply modified to make the system real-time

applicable.

3.5 Conclusion

We developed a stand-alone, fully automated sleep scoring system to detect the A-phases

of CAP events by exploiting the dynamical temporal behaviour of the EEG. The system is

equipped with a deep LSTM network network, respectively. The usage of a time sequence

and its dynamics improves the classification of A-phases. The system can also be applied

to classify the different subtypes of activation phases.
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Paper II

Characterization of cyclic alternating

pattern during sleep in older men and

women using large population studies

The content of this chapter is a modified version of the publication:

Hartmann, S., Bruni, O., Ferri, R., Redline, S. and Baumert, M. (2020), ‘Characterization

of cyclic alternating pattern during sleep in older men and women using large population
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4.1 Statement of Significance

Abstract

Study Objectives: To assess the microstructural architecture of non-rapid eye

movement (NREM) sleep known as cyclic alternating pattern (CAP) in relation

to the age, gender, self-reported sleep quality, and the degree of sleep disrup-

tion in large community-based cohort studies of older people.

Methods: We applied a high-performance automated CAP detection system to

characterize CAP in 2,811 men from the Osteoporotic Fractures in Men Sleep

Study (MrOS) and 426 women from the Study of Osteoporotic Fractures (SOF).

CAP was assessed with respect to age and gender and correlated to obstructive

apnoea-hypopnoea index, arousal index (AI-NREM), and periodic limb move-

ments in sleep index. Further, we evaluated CAP across levels of self-reported

sleep quality measures using analysis of covariance.

Results: Age was significantly associated with the number of CAP sequences

during NREM sleep (MrOS: p = 0.013, SOF: p = 0.051). CAP correlated signifi-

cantly with AI-NREM (MrOS: � = 0.30, SOF: � = 0.29). CAP rate, especially the

A2+A3 index, was inversely related to self-reported quality of sleep, indepen-

dent of age and sleep disturbance measures. Women experienced significantly

fewer A1-phases compared to men, in particular, in slow-wave sleep (N3).

Conclusions: We demonstrate that automated CAP analysis of large-scale data-

bases can lead to new findings on CAP and its subcomponents. We show

that sleep disturbance indices are associated with the CAP rate. Further, the

CAP rate is significantly linked to subjectively reported sleep quality, indepen-

dent from traditionally scored markers of sleep fragmentation. Finally, men and

women show differences in the microarchitecture of sleep as identified by CAP,

despite similar macro-architecture.

4.1 Statement of Significance

We report the prevalence of periodically occurring cortical activation phases in large pop-

ulation samples of older men and women. To the best of our knowledge, this effort rep-

resents the first time that cyclic alternating pattern (CAP) was scored and analysed with

a high-performance automated detection system in large community-based cohort studies.
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We ascertain the relationship with gender, age, self-reported sleep quality measures, and

traditional polysomnographic indices of disordered sleep. Individuals experiencing a higher

CAP rate, in particular, A2+A3-phases, report a lower sleep quality independent of apnoea-

hypopnoea index, arousal index, and periodic limb movement index. In older populations,

age is a significant predictor for non-rapid eye movement sleep fragmentation. We also re-

veal gender differences in the microarchitecture of sleep despite similar macro-architecture.

4.2 Introduction

Since Rechtschaffen and Kales (1968) published their scoring guide in 1968, sleep has

been traditionally divided into states of high neuronal activity and quiescence, typically

known as rapid eye movement (REM) and non-REM (NREM). The latter, in turn, is par-

titioned into three distinct stages according to the current consensus detailed in the Amer-

ican Academy of Sleep Medicine scoring manual (Iber et al., 2007). One major drawback

of these scoring rules is the neglect of short-lasting events such as K-complexes and tran-

sient power alterations in frequency bands (Terzano and Parrino, 2000). In the AASM

framework, short periods of changes in cortical activation are only captured by the arousal

definition (Iber et al., 2007). Phasic events like K-complexes and delta bursts show arousal-

like characteristics but they are not regarded as arousals when not related to short-term fre-

quency increases in an electroencephalogram (EEG) (Terzano and Parrino, 2000). Hence,

an additional sleep scoring atlas was devised including such recurring phasic events in

brain activity under the name of cyclic alternating pattern (CAP) (Terzano et al., 2001).

CAP analysis seeks to capture the microstructure of sleep. It focuses on short EEG am-

plitude increases (<60 s) that reappear periodically in NREM stages, separated by equally

long time spans of lower-amplitude background activity (Terzano and Parrino, 2000). Such

short events are called activation phases because of their high neural excitability and au-

tonomic correlates. It is believed that recurring periods of activation during sleep represent

time windows that facilitate sensory input for the brain and synchronize with physiological

and pathological events (Terzano and Parrino, 2005). Hence, an increased CAP rate may

occur in sleep disorders such as periodic limb movement disorder, sleep apnoea syndrome,

or insomnia (Terzano and Parrino, 1993). In recent years, the role of CAP has been receiv-

ing enlarged clinical interest, but current evidence is limited to small studies focusing on

particular disorders. The role and prevalence of CAP during sleep on the broader popula-

tion remain still largely unknown.
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In this study, we characterize for the first time CAP across large population samples. We de-

scribe the prevalence of CAP in older populations in relation to age and gender. Moreover,

we explore the relationship between CAP and common disorders that have been associated

with sleep fragmentation as well as self-reported sleep quality measures.

4.3 Methods

4.3.1 Definition of CAP

We defined CAP in agreement with Terzano et al. (2001) as sequences of at least two

consecutive cycles that consist of an activation phase (A-phase) followed by the period

between two repetitive A-phases, called B-phase (background). A-phases represent tran-

sient, phasic events that stand out from the background, whereas B-phases are thought to

embody rebound deactivation reflecting active inhibition rather than passive recovery of the

stationary baseline during NREM sleep (Terzano and Parrino, 2000). We defined A-phases

or B-phases to last 2–60 s but did not limit the number of cycles per CAP sequence. In ac-

cordance with the CAP atlas, the time period between two CAP sequences was considered

as non-CAP. The last A-phase prior to a non-CAP period was also defined as non-CAP as

it does not form a cycle.

Typical patterns for A-phases include delta bursts, vertex sharp transients, K-complex se-

quences, K-alpha, polyphasic bursts, intermittent alpha, and arousals (Terzano et al., 2001).

Thus, A-phases consist of either high-voltage, slow waves or low-voltage, fast waves or a

combination of both. High-voltage slow waves portray synchronized EEG patterns and low-

amplitude fast rhythms represent desynchrony (Terzano and Parrino, 2000). Based on the

content of these two frequency components, we subdivided A-phases into three subtypes.

Subtype A1 is associated with periods where high EEG synchrony is prevalent, i.e. slow

rhythms with high amplitudes. Desynchronized patterns are classified as A2 and A3 sub-

types mostly occurring in time periods before and after REM sleep. They represent high-

frequency rhythms with low amplitudes. As REM sleep includes mainly desynchronized

A-phases located further apart than 60 s, we restricted CAP to NREM sleep in agreement

with Terzano et al. (2001).
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4.3.2 Automated A-phase detection and CAP quantification

We deployed our previously developed, highly precise automated system for CAP analy-

sis, which is described in detail in the work of Hartmann and Baumert (2019). At the core

of the system is a deep learning recurrent neural network (RNN) that was trained specif-

ically to recognize A-phases in EEG recordings. The entire system is divided into four

major parts: preprocessing, feature extraction, classification, and post-processing. In the

preprocessing step, the raw signal of one central EEG channel is prepared to reduce in-

tersubject variation by removing the cardiac field and eye movement artefacts. Based on

the processed signal, multiple features in the time and frequency domain are calculated

such as Hjorth activity, Shannon entropy, Teager Energy Operator, band power descrip-

tor, and differential EEG variance. The extracted feature set serves as input for the RNN

classifier in the classification stage. The classifier was trained with the F�-score as loss

function to increase the quantity of correctly detected A-phases and reduce the number of

incorrectly classified periods. Finally, we post-processed the output of the A-phase detec-

tion system applying the aforementioned rules for CAP sequences. Isolated A-phases that

did not form a sequence were removed from the scoring outcome. The training comprised

15 healthy participants and 24 participants with sleep disorders from a publicly available

database (Goldberger et al., 2000). The polysomnographic measurements in the training

set including visual CAP scoring were conducted by the Sleep Disorders Center of the

Ospedale Maggiore of Parma, Italy. The second-by-second A-phase inter-rater reliability

between visual scoring and our system, quantified by the Cohen’s kappa coefficient, was

0.53 on a set of 16 healthy participants and 0.56 on a set of 30 participants with nocturnal

frontal lobe epilepsy. The event-based inter-rater reliability between human scorers ranges

between 0.42 and 0.75 (Ferri et al., 2005b).

Measurements recorded with a low bit rate or a low physical range were excluded because

they often contain severe clipping leading to false classification results. In this study, we

computed the CAP rate and subtype rate based on the following equations:

CAP rate = total CAP time (in seconds)
total NREM sleep (in seconds)

× 100 (4.1a)

A1 index =
number of A1-phases

total NREM sleep (in seconds)
× 3,600 (4.1b)

A2+A3 index =
number of A2+A3-phases

total NREM sleep (in seconds)
× 3,600 (4.1c)

Subtypes A2 and A3 were merged into a single parameter due to their congruent nature.
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We defined four consecutive sleep periods of 90-min duration each to investigate the rela-

tionship between CAP and sleep intervals during 6 h of sleep. Sleep stage scoring manually

performed by trained sleep technicians during the implementation of the studies was used

to identify NREM sleep. As both studies were conducted before the release of the AASM

scoring manual, sleep stage scoring was performed in accordance to the criteria in the

work of Rechtschaffen and Kales (1968). Sleep stages 3 and 4 were merged to a single

stage (called here SWS) and sleep stage 1 was excluded due to the low occurrence in the

majority of the participants.

4.3.3 Study samples: MrOS and SOF

For our analysis, we utilized data from two multi-center sleep cohorts: Osteoporotic Frac-

tures in Men (MrOS) Study and Study of Osteoporotic Fractures (SOF). Both data sets were

provided by the National Sleep Research Resource (available online at the National Sleep

Research Resource; sleepdata.org) (Dean II et al., 2016).

MrOS is a long-term cohort study designed to determine fracture risk in relation to multi-

ple factors such as bone characteristics, lifestyle, anthropometric and neuromuscular mea-

sures, and fall propensity. In total, 5,995 men aged 65 or older were examined during a 25-

month period from 2000 to 2002 followed by a second visit in 2005 (Orwoll et al., 2005). The

study was conducted at six clinical sites with the requirement that all participants needed to

be able to walk without assistance and must not have had a bilateral hip replacement. As

part of the MrOS cohort, 3,115 men were recruited for an ancillary sleep study (MrOS Sleep

Study) including comprehensive overnight polysomnography (PSG), designed to identify

the cardiovascular and health consequences of sleep disturbances (Blackwell et al., 2011).

Men who used mechanical devices or oxygen during sleep were excluded from the study.

The baseline sleep exam (Visit 1) was conducted between 2003 and 2005 and a follow-up

exam (Visit 2) was conducted between 2009 and 2012. We removed recordings with tech-

nically inadequate PSG or fewer than 3 h of good EEG quality resulting in 2,811 participants

for Visit 1 and 933 participants for Visit 2.

SOF was designed to investigate the risk factor for hip fractures among older women (Cum-

mings et al., 1990). Women who were community-dwelling, 65 years or older, able to walk

unassisted, and had no previous bilateral hip replacement were recruited during September

1986 and October 1988 in four metropolitan areas (Claman et al., 2006). Within the latest

visit cycle between 2002 and 2004, a subset of 461 women underwent an unattended
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overnight 12-channel in-home PSG to evaluate the relationship of sleep disturbances to a

number of health outcomes (Spira et al., 2008). After discarding recordings with inadequate

EEG quality by applying the same approach as for MrOS, 426 recordings from SOF were

available for analysis.

4.3.4 Statistical methods

Statistical analysis was conducted using non-parametric tests based on the assumption that

the CAP rate and subtype indices do not follow a normal distribution. For each statistical

test, the significance level was adjusted to the number of variables under consideration

using Bonferroni correction. All values are presented as median ± interquartile range (IQR).

We subdivided CAP rate data across both cohorts into quartiles to evaluate the association

of CAP with the obstructive apnoea-hypopnoea index at 4% oxygen desaturation (OAHI),

the arousal index (AI-NREM), and the periodic limb movement in sleep index (PLMSI) as

clinical indicators of sleep fragmentation. The Jonckheere–Terpstra test was applied to

identify a statistically significant trend between quartiles of CAP parameters and indices

of disordered sleep. Spearman correlation coefficients were determined to examine the

relationship between the aforementioned indices and CAP parameters.

Participants in MrOS were asked to score the quality of their sleep following PSG on a

Likert scale of five items from light to deep, from short to long, and from restless to restful.

In SOF, self-reported sleep quality after PSG was not measured. To investigate the effect of

these measures on CAP, we applied the analysis of covariance (ANCOVA) with CAP rate,

A1 index, and A2+A3 index as dependent variables, the three self-reported sleep quality

measures as independent variables, and age, OAHI, AI-NREM, and PLMSI as covariates.

To explore the effect of age on CAP, multivariable regression was conducted with age, OAHI,

AI-NREM, and PLMSI as independent predictors for CAP rate, A1 index, and A2+A3 index.

Each multivariable regression was carried out separately in MrOS and SOF. To analyse

the effect of gender on CAP, two normalized, age-matched subsets were sampled from the

MrOS and SOF cohorts, respectively, comprising 220 men and women. Both subsets were

restricted to participants with AHI less than 15, AI-NREM less than 25, and PLMSI less

than 15. We selected the Mann–Whitney–Wilcoxon test for comparing the independent

gender groups and sleep stages within both genders. To determine differences between

sleep intervals within both genders, we used the Kruskal–Wallis test by ranks. Finally,
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the reproducibility of the applied system was tested comparing matching participants from

MrOS Sleep Visit 1 and Visit 2.

4.4 Results

The median age of participants was 76 years in MrOS (baseline exam) and 82 years in

SOF. Participants in MrOS had a median BMI of 26.7 kg/m2; women in SOF demonstrated

a median BMI of 27.1 kg/m2. MrOS participants experienced a median OAHI of 8.1/h as

well as a median AI-NREM of 22.3/h. In SOF, the median OAHI was 6.7/h, and the median

AI-NREM was 19.8/h. Both cohorts show a median duration of total NREM sleep of about

5 h (MrOS: 288 min [IQR: ±69.0], SOF: 286 min [IQR: ±78.0]). The total scored sleeping

time in MrOS was 357.5 min (±83.8) and in SOF was 353 min (±95.0), which results in an

NREM sleep percentage of 80.5% (±8.9) in MrOS and 81.7% (±9.8) in SOF.

4.4.1 CAP and sleep fragmentation

In terms of CAP, the male cohort (MrOS) displayed an overall large amount of 57.0% (±21.5)

NREM sleep occupied by periodically occurring phasic events. The even older female co-

hort (SOF) demonstrated similar values of CAP accounting for 54.1% (±26.1) of NREM

sleep. Indices of disordered sleep (OAHI, PLMSI, and AI-NREM) increased significantly

with increasing CAP in MrOS (Figure 4.1). SOF participants showed a similar relationship,

except for PLMSI, which was slightly reduced in the last quartile compared to the previous

quartile but followed a similar trend overall.

On average, 15.2 (±20.7) A1-phases occurred per hour of NREM sleep in MrOS and 13.1

(±18.5) in SOF. The A2+A3 index was substantially higher in both cohorts (46.6 [±31.1] in

MrOS and 44.5 [±33.2] in SOF). The statistics on the relationship between indices of dis-

ordered sleep and A-phase subtypes are summarized in Figures 4.2 and 4.3, respectively.

In MrOS, increasing A1 was associated with decreasing OAHI, AI-NREM, and PLMSI. In

SOF, the same effect could be observed for AI-NREM. Conversely, in both cohorts, increas-

ing A2+A3 was associated with higher OAHI, AI-NREM, and PLMSI.

4.4.2 CAP and self-reported sleep quality measures

Supplementary Figure 4.5 illustrates the results of the ANCOVA for all three self-reported

sleep quality measures reported in MrOS with CAP rate, A1 index, and A2+A3 index as
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Figure 4.1. Indices of disordered sleep for CAP rate quartiles in MrOS and SOF. The relation-
ship between indices of disordered sleep (OAHI, AI-NREM, and PLMSI) and CAP quar-
tiles in Osteoporotic Fractures in Men (MrOS) Study and Study of Osteoporotic Frac-
tures (SOF). Significance level (*p < 0.017) was adjusted according to the number of
variables under consideration. OAHI, obstructive apnoea–hypopnoea index; AI-NREM,
arousal index; PLMSI, periodic limb movement in sleep index.

dependent variables and age, AI-NREM, OAHI, and PLMSI as covariates. CAP rate de-

creased significantly with increasing quality of sleep for all three self-reported measures

(light vs. deep: 58.8 ± 22.3% vs. 54.6 ± 20.5%, p < 0.001; short vs. long: 58.4 ± 21.4%

vs. 55.1 ± 20.5%, p < 0.001; restless vs. restful: 59.4 ± 20.8% vs. 55.6 ± 21.0%, p =

0.002). The A1 index did not vary significantly across all three sleep quality parameters

(light vs. deep: 12.9 ± 20.2 no./h vs. 17.7 ± 21.8 no./h, p = 0.19; short vs. long: 15.8 ±
20.4 no./h vs. 16.4 ± 17.6 no./h, p = 0.76; restless vs. restful: 15.1 ± 20.1 no./h vs. 15.8 ±
21.1 no./h, p = 0.94). Similar to the CAP rate, the A2+A3 index decreased with increasing

values for each self-reported measure (light vs. deep: 49.0 ± 32.0 no./h vs. 41.3 ± 29.0

no./h, p < 0.001; short vs. long: 47.5 ± 28.2 no./h vs. 44.9 ± 30.3 no./h, p < 0.001; restless

vs. restful: 48.8 ± 31.4 no./h vs. 42.9 ± 30.0 no./h, p < 0.001). Detailed ANCOVA results in-

cluding all three self-reported sleep quality measures with AI-NREM as dependent variable

are listed in Supplementary Tables 4.3, 4.4, 4.5, and 4.6.
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Figure 4.2. Indices of disordered sleep for A1 index quartiles in MrOS and SOF. The rela-
tionship between indices of disordered sleep (OAHI, AI-NREM, and PLMSI) and A1
index quartiles in Osteoporotic Fractures in Men (MrOS) Study and Study of Osteo-
porotic Fractures (SOF). Significance level (* = p < 0.017) was adjusted according to the
number of variables under consideration. OAHI, obstructive apnoea–hypopnoea index;
AI-NREM, arousal index; PLMSI, periodic limb movement in sleep index.

4.4.3 CAP and age

Several multivariable regression models were evaluated to investigate the effect of age on

CAP rate, A1 index, and A2+A3 index in MrOS and SOF, respectively (Table 4.1).

Age and AI-NREM were significantly associated with CAP rate in MrOS (age: B = 0.13, p =

0.013; AI-NREM: B = 0.36, p < 0.001), whereas only AI-NREM was significantly associated

with CAP rate in SOF (age: B = -0.50, p = 0.051; AI-NREM: B = 0.40, p < 0.001). Neither

OAHI or PLMSI was associated with CAP in either cohort. The overall model fit for CAP

rate was R2= 0.10 for both cohorts.

Neither age nor OAHI was significantly associated with the A1 index in MrOS or SOF. In

MrOS, AI-NREM and PLMSI were significantly negatively associated with the A1 index

(PLMSI: B = -0.03, p < 0.001; AI-NREM: B = -0.23, p < 0.001), whereas in SOF the only
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Figure 4.3. Indices of disordered sleep for A2+A3 index quartiles in MrOS and SOF. The rela-
tionship between indices of disordered sleep (OAHI, AI-NREM, and PLMSI) and A2+A3
index quartiles in Osteoporotic Fractures in Men (MrOS) Study and Study of Osteo-
porotic Fractures (SOF). Significance level (*p < 0.017) was adjusted according to the
number of variables under consideration. OAHI, obstructive apnoea–hypopnoea index;
AI-NREM, arousal index; PLMSI, periodic limb movement in sleep index.

significant association was for AI-NREM (AI-NREM: B = -0.20, p < 0.01). The overall model

fit for the A1 index prediction was R2 = 0.05 in MrOS and R2 = 0.02 in SOF.

Finally, AI-NREM and PLMSI were significantly negatively associated with the frequency of

A2+A3-phases in MrOS (PLMSI: B = -0.07, p < 0.001; AI-NREM: B = -0.70, p < 0.001) and

SOF (PLMSI: B = -0.07, p = 0.014; AI-NREM: B = -0.72, p < 0.001). Age and OAHI were

not associated with A2+A3 in either cohort. The overall model fit for A2+A3 index prediction

was R2 = 0.16 in MrOS and R2 = 0.17 in SOF.

4.4.4 CAP and gender

A subset of 110 participants with identical age distribution and no severe sleep disorders

(AHI <15, AI-NREM <25, and PLMSI <15) was sampled from the MrOS cohort and the

SOF cohort to compare both sexes while eliminating the age influence. The statistics for
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Table 4.1. Multivariable Regression Results Predicting CAP Rate, A1 Index, and A2+A3 Index
in MrOS and SOF.

MrOS

CAP rate, % A1 index, no./h A2+A3 index, no./h

Variables B SE t p B SE t p B SE t

Age, years 0.13 0.05 2.48 0.013* -0.05 0.05 -0.92 0.36 0.18 0.08 2.36
AI-NREM, no./h 0.36 0.03 14.05 <0.001* -0.23 0.03 -8.81 <0.001* 0.70 0.04 18.77
OAHI, no./h 0.02 0.02 0.69 0.49 -0.02 0.03 -0.81 0.42 -0.07 0.04 -1.86
PLMSI, no./h 0.01 0.01 1.47 0.14 -0.03 0.01 -3.90 <0.001* 0.07 0.01 6.01
Constant 37.02 3.90 9.49 <0.001* 29.79 4.03 7.39 <0.001* 17.57 5.70 3.08
R2 0.10 0.05 0.16
Adj. R2 0.10 0.05 0.16

F(4,2806) = 75.60 p <0.001 F(4,2806) = 36.17 p <0.001 F(4,2806) = 131.90 p <0.001

SOF

CAP rate, % A1 index, no./h A2+A3 index, no./h

Variables B SE t p B SE t p B SE t

Age, years -0.52 0.26 -1.96 0.051 0.12 0.25 0.49 0.62 -0.77 0.35 -2.21
AI-NREM, no./h 0.40 0.07 5.88 <0.001* -0.20 0.06 -3.06 <0.01* 0.72 0.09 7.91
OAHI, no./h 0.07 0.08 0.95 0.34 -0.04 0.07 -0.60 0.62 0.06 0.10 0.59
PLMSI, no./h 0.031 0.02 1.19 0.23 -0.02 0.02 -0.81 0.42 0.07 0.03 2.46
Constant 85.35 21.62 3.95 <0.001* 12.74 20.56 0.62 0.54 94.33 28.73 3.28
R2 0.11 0.03 0.18
Adj. R2 0.10 0.02 0.17

F(4,421) = 12.98 p <0.001 F(4,421) = 3.62 p <0.01 F(4,421) = 23.33 p <0.001

Results of each multivariable regression predicting cyclic alternating pattern (CAP) rate, A1 index, and A2+A3
index in Osteoporotic Fractures in Men (MrOS) Study and women in Study of Osteoporotic Fractures (SOF)
with age as independent variable and the obstructive apnoea–hypopnoea index (OAHI) at 4% oxygen desat-
uration, the arousal index (AI-NREM) in NREM sleep, and the periodic limb movement in sleep index (PLMSI)
as additional independent variables. B, an estimate of beta coefficient; SE, standard error of beta coefficient.
Significance level: p < 0.017 (adjusted to the number of variables under consideration).

each subset on sleep parameters and indices of sleep disturbance are listed in Table 4.2.

Mann–Wilcoxon U-test shows a significantly lower A1 index in women compared to men (A1

index: p = 0.036). Men had a significantly higher percentage of stage 2 sleep compared to

women, but a lower percentage of SWS (S2: p = 0.002, SWS: p < 0.001).

Figure 4.4 displays A1 and A2+A3 indices for gender groups across sleep intervals and

NREM stages. Both men and women display a decrease in A1-phases throughout the

night (sleep interval: p < 0.001), whereas men experienced more A1-phases compared

to women (gender: p < 0.001). The A2+A3 index did not show any variations between

men and women and remained constant throughout the night, (gender: p = 0.95, sleep

interval:p = 0.11). Regarding sleep stages, the A1 index was significantly higher in men

in both stages. The number of A1-phases increased from S2 to SWS (gender: p < 0.001,

sleep stage: p < 0.001). On the contrary, both genders experienced less A2+A3-phases in

SWS compared to S2 (gender: p = 0.42, sleep stage: p < 0.001).
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Table 4.2. MrOS vs. SOF with identical age distribution.

Age,
years

AI-NREM,
no./h

OAHI,
no./h

PLMSI,
no./h

CAP rate,
%

A1 index,
no./h

A2+A3 index,
no./h

Scored sleep
time, min

Percentage
of sleep in
stage 2, %

Percentage
of sleep in
stage 3/4, %

Median (IQR)
Men in MrOS 82.0 (±4.0) 15.4 (±5.9) 4.5 (±6.9) 1.2 (±4.9) 51.3 (±18.9) 17.3 (±21.6) 37.8 (±21.5) 369.0 (±83.8) 58.4 (±14.0) 13.9 (±14.3)
Women in SOF 82.0 (±4.0) 14.2 (±9.3) 4.6 (±6.3) 1.1 (±7.4) 48.9 (±27.1) 13.7* (±18.8) 38.6 (±25.0) 356.4* (±90.0) 52.5* (±18.6) 20.8* (±19.0)

Comparison between men in Osteoporotic Fractures in Men (MrOS) Study and women in the Study of
Osteoporotic Fractures (SOF) using a subsample with identical age distribution. OAHI, obstructive ap-
noea–hypopnoea index; AI-NREM, arousal index; PLMSI, periodic limb movement in sleep index.
Significance level: p < 0.05.

4.4.5 Reproducibility test

The histograms of the CAP rate for MrOS Visit 1 and Visit 2 (mean difference: 6 years)

illustrate the reproducibility of the automated system for CAP detection (Supplementary

Figure 4.6). Both histograms demonstrate an identical distribution with a minor shift for Visit

2 (Mann–Wilcoxon U-test: p = 0.091; Spearman correlation: � = 0.38, p < 0.001). Detailed

values for CAP parameters and traditional polysomnographic indices of sleep disturbance

for matched participants in the baseline and follow-up study are tabulated in Supplementary

Table 4.7.

4.5 Discussion

Our analysis showed that age is independently associated with the CAP rate in older pop-

ulations. Multivariable regression analysis, adjusting for sleep disturbance indices such as

AI-NREM, OAHI, and PLMSI, showed that CAP rate in MrOS and SOF indicated a signif-

icant or close to significant association with age. Although all participants were within a

narrow age range (68–90 years), our findings are consistent with previous studies that have

shown that across the entire age spectrum CAP rate follows generally a U-shaped function

of age (Parrino et al., 1998) and thus continuously increases with age in older populations.

On the contrary, the frequency of A1-phases decreases linearly with age. The negative

beta coefficients in the multivariable regression analysis for A1-phases in this study confirm

this behaviour. Interestingly, multivariable regression in SOF demonstrated also a negative

association between CAP rate and age, while this association was positive in MrOS. This

could be caused by the higher age in SOF, considering that the CAP rate diminishes at very

high ages (Parrino et al., 2012), or reflect gender differences in CAP rates with advanced

ageing.
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Figure 4.4. Analysis of A-phase subtypes during sleep intervals and non-rapid eye movement
stages based on gender. Average number of A-phase subtypes per hour of none-
rapid eye movement (NREM) sleep across consecutive 90-min intervals (top), as well
as NREM sleep stages (bottom) for men (left) and women (right) with identical age
distribution in Osteoporotic Fractures in Men (MrOS), Study and Study of Osteoporotic
Fractures (SOF), respectively.

Further, women appeared to experience fewer A1-phases per hour throughout the night.

CAP rate and A2+A3 index were comparable throughout the night for both men and women,

resulting in a higher A1-to-A2+A3 ratio for men. Women did not show any significant varia-

tions in indices for sleep disturbance (AI-NREM, OAHI, and PLMSI) with CAP compared to

men. In S2 and SWS, men exhibited a higher number of A1-phases compared to women,

whereas the A2+A3 remained approximately identical to women. Although women demon-

strated a higher percentage of SWS (which is characterized by a higher A1 index), men

still experienced a higher number of A1-phases throughout the night. One can speculate

that older women show less periodic activity in lower EEG frequency bands than older men

due to more isolated or monomorphic events. This gender difference may provide clinical

insight into the contradictory observations that compared to men, women have more SWS

but report more frequent concerns over sleep quality (Redline et al., 2004; Bixler et al.,
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2009). Our data suggest that the microarchitecture of SWS in men and women may dif-

fer. Future research is needed to examine whether differences in the A1 index may explain

gender differences in sleep quality.

Considering the number of A-phase subtypes per hour reported in this study, the A1 index

tends to be lower than reported in the works of Parrino et al. (2012) and Maestri et al.

(2015), whereas the A2+A3 indices are comparable. One reason for the lower frequency

of A1-phases could be the higher age of the participants in MrOS and SOF compared to a

previous study (Maestri et al., 2015) as the frequency of A1-phases steadily declines with

age. Another reason could be the low representation of older people in the data set used

to train our automated CAP detection system.

Our data confirm the link between CAP and markers of sleep disturbances, suggesting

that respiratory and leg movement events and increased arousals fragment the sleep mi-

crostructure. Across the large population samples, we observed a significant correlation

between CAP and AI-NREM. Arousals have by definition a broad overlap with the charac-

ters of subtypes A2 and A3 and thereby CAP. Previous studies have shown that the majority

of arousals (87%) appear within a CAP sequence (Terzano et al., 2002). Moreover, 95%

of subtypes A3 and 62% of subtypes A2 meet the scoring requirements for arousals (Par-

rino et al., 2001). We observed only a moderate relationship between the A2+A3 index and

AI-NREM, possibly because arousals were scored manually while CAP events were de-

tected automatically using our system. Due to possibly low representations of arousals in

general and overlaps with A-phases in the training set of our detection system, high varia-

tions in correlations with the consistent automated scoring of CAP events can be expected.

Furthermore, our study confirms the connection between CAP and sleep pathologies such

as sleep-disordered breathing or PLMS disorder, respectively. Our analysis depicts an

inverse linear association between OAHI and the A1 subtype and, conversely, a positive

association between OAHI for A2+A3-phases, analogous to results found in children with

OSAS (Kheirandish-Gozal et al., 2007). This shift in the subtype ratio raises sleep instability

and has a severe negative impact on the NREM sleep microstructure (Parrino et al., 2012).

Data from middle-aged persons with OSAS also support our findings (Terzano et al., 1996).

According to Terzano et al. (1996), B-phases appear to be connected to episodes of breath-

ing cessations, whereas A-phases seem to be linked to the recovery of effective breathing.

Regarding PLMS, the majority of limb movements was reported to occur with the onset of

A-phases and follow the periodicity of CAP (Parrino et al., 1996). Our results demonstrate
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a significant increase of PLMS in people with higher CAP rates. Thus, individuals with a

high CAP occurrence are more likely to experience disruptive sleep.

An additional finding of our study is the inverse relationship between CAP rate, in particular,

the frequency of fast low-amplitude EEG rhythms (A2+A3), and self-reported sleep quality

that is independent of clinical markers of sleep disturbances. Our results show that the CAP

rate, mainly the frequency of A2+A3-phases, is reduced in older men who report good sleep

quality. ANCOVA of the A1 index did not show any significant relationship with self-reported

sleep quality measures, possibly due to the low occurrence of A1-phases. Our results are

in line with previously reported outcomes on correlations between CAP and self-reported

sleep quality, mostly quantified by means of visual analogue scales (VAS). Terzano et al.

(1990) suggested the first time a possible relation between CAP and self-reported sleep

quality in their study on the influence of increasing levels of acoustic perturbation on sleep

structure. Such a negative correlation between CAP rate and self-reported sleep quality has

been confirmed by larger studies in subsequent years (Svetnik et al., 2010; Ozone et al.,

2008; Terzano et al., 2003). We show in our analysis that a negative correlation between

CAP and self-reported sleep quality is independent of age and sleep disturbance reflected

in OAHI, AI-NREM, and PLMSI. Our results also show a strong relationship between AI-

NREM and self-reported sleep measures although objective sleep quality measures de-

rived from PSG have shown not to be suitable predictors for individually reported quality of

sleep especially in older adults (Kaplan et al., 2017; Buysse et al., 1991). Our data are in

agreement with the correlation between AI and VAS reported by Terzano et al. (2003).

To the best of our knowledge, this effort represents the first time that CAP was scored and

analysed in large community-based cohort studies. Commonly, the scoring of CAP is per-

formed manually, which is a tedious and time-consuming task for the scorer, considering

that one recording consists of multiple hours of sleep. The low number of sleep technicians

trained in CAP scoring and the immense volume of work required have likely been barri-

ers that prevented CAP studies with large numbers of participants in the past. Previous

studies on CAP were limited to 10–50 recordings with rare exceptions such as the work

of Terzano and Parrino (1993) that included 400–500 persons. Here, we evaluated in total

3,237 participants (MrOS: 2,811, SOF: 426) using a high-performance automated detection

algorithm that enabled in an unprecedented examination of CAP in elderly male and female

populations.

A limitation of this study is the older age of the participants, precluding assessment across

the full age range. Nonetheless, sleep disorders and quality are of particular relevance in

Page 70



Chapter 4

older populations. Previous studies have shown that sleep fragmentation is highly prevalent

among older people (Carskadon et al., 1982; Bonnet and Arand, 2007). Another limitation

pertains to the accuracy of our developed automated detection system. Although the sys-

tem has demonstrated outstanding performance in comparison to manual scoring as the

gold standard (Hartmann and Baumert, 2019), the results depend on the training data set,

i.e. it may be biased to the human expert who scored the training data. Visual scoring

may allow a human scorer to consider subject-specific variations, whereas our system will

strictly score events based on the representations of events in the training set. On the other

hand, the inter-rater concordance for manual CAP scoring is approximately 83% (Ferri et al.,

2005b), reflecting some inconsistency even between human scorers. Hence, imperfections

in our automated detection system can also been observed in scoring results from multiple

human experts. The high reproducibility of our system is evident when comparing repeated

measurements between MrOS Sleep Visit 1 and Visit 2. The statistics demonstrate an

identical CAP rate distribution for Visit 1 and Visit 2 with a non-significant shift in Visit 2 due

to the time gap of 6 years. Also, the automated scoring results are easily reproducible as

the automated analysis of one recording takes only a few seconds, unlike manual scoring

results. Furthermore, the method was implemented in MATLAB, a numerical computing

environment, mostly using a built-in function that makes it easy to reproduce.

In sum, these findings confirm in large community-based cohort studies that CAP scoring

serves as an important indicator for sleep quality and sleep fragmentation in older popu-

lations. Moreover, the results provide fundamental data on the variation of CAP in older

adults, providing the bases for future studies of the relationship of CAP with health out-

comes. Finally, automated scoring systems such as the algorithm employed in this study

can assist in analysing CAP in large populations.
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Figure 4.5. CAP parameters in relation to subjective sleep quality measures in MrOS. The
relationship between cyclic alternating pattern (CAP) rate, A1 index, and A2+A3 index
and subjective sleep quality measures in Osteoporotic Fractures in Men Sleep Study
(MrOS). Significance level (* = p < 0.017) was adjusted according to the number of
variables under consideration.
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Table 4.3. Analysis of covariance (ANCOVA) for effect of different levels from light to deep
sleep on CAP rate, A1 index, and A2+A3 index in MrOS.

CAP rate, % A1 index, no./h A2+A3 index, no./h

Df F p Df F p Df F p

Independent

light . . . deep 4 5.9 <0.001* 4 1.5 0.19 4 10.2 <0.001*

Covariate

Age, years 1 22.2 <0.001* 1 7.1 <0.01* 1 33.8 <0.001*
AI-NREM, no./h 1 264.7 <0.001* 1 116.8 <0.001* 1 429.3 <0.001*
OAHI, no./h 1 0.3 0.60 1 0.2 0.70 1 6.2 0.01*
PLMSI, no./h 1 2.3 0.13 1 15.1 <0.001* 1 35.6 <0.001*

Results of analysis of covariance (ANCOVA) in Osteoporotic Fractures in Men (MrOS) Study with cyclic al-
ternating pattern (CAP) rate, A1 index, and A2+A3 index as dependent variables, the subjective sleep quality
measure light to deep sleep as independent variable and age, the obstructive apnoea–hypopnoea index at 4%
oxygen desaturation (OAHI), the arousal index (AI-NREM) in NREM sleep and the periodic limb movement
in sleep index (PLMSI) as covariates. MrOS, Osteoporotic Fractures in Men; B, estimate of beta coefficient;
SE, standard error of beta coefficient; OAHI, obstructive apnoea–hypopnoea index; AI-NREM, arousal index;
PLMSI, periodic limb movement in sleep index.
significance level: p < 0.017 (adjusted to the number of variables under consideration)

Table 4.4. Analysis of covariance (ANCOVA) for effect of different levels from short to long
sleep on CAP rate, A1 index, and A2+A3 index in MrOS.

CAP rate, % A1 index, no./h A2+A3 index, no./h

Df F p Df F p Df F p

Independent

short . . . long 4 4.9 <0.001* 4 0.2 0.94 4 6.8 <0.001*

Covariate

Age, years 1 22.5 <0.001* 1 7.3 <0.01* 1 33.0 <0.001*
AI-NREM, no./h 1 264.4 <0.001* 1 122.7 <0.001* 1 434.7 <0.001*
OAHI, no./h 1 0.2 0.62 1 0.2 0.65 1 6.4 0.01*
PLMSI, no./h 1 2.0 0.16 1 15.2 <0.001* 1 35.2 <0.001*

Results of analysis of covariance (ANCOVA) in Osteoporotic Fractures in Men (MrOS) Study with cyclic al-
ternating pattern (CAP) rate, A1 index, and A2+A3 index as dependent variables, the subjective sleep quality
measure short to long sleep as independent variable and age, the obstructive apnoea–hypopnoea index at
4% oxygen desaturation (OAHI), the arousal index (AI-NREM) in NREM sleep and the periodic limb movement
in sleep index (PLMSI) as covariates. MrOS, Osteoporotic Fractures in Men; B, estimate of beta coefficient;
SE, standard error of beta coefficient; OAHI, obstructive apnoea–hypopnoea index; AI-NREM, arousal index;
PLMSI, periodic limb movement in sleep index.
significance level: p < 0.017 (adjusted to the number of variables under consideration)
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Table 4.5. Analysis of covariance (ANCOVA) for effect of different levels from restless to rest-
ful sleep on CAP rate, A1 index, and A2+A3 index in MrOS.

CAP rate, % A1 index, no./h A2+A3 index, no./h

Df F p Df F p Df F p

Independent

restless . . . restful 4 4.4 0.002* 4 0.5 0.94 4 5.9 <0.001*

Covariate

Age, years 1 23.2 <0.001* 1 7.0 <0.01* 1 33.8 <0.001*
AI-NREM, no./h 1 261.6 <0.001* 1 124.5 <0.001* 1 429.3 <0.001*
OAHI, no./h 1 0.3 0.59 1 0.2 0.70 1 6.2 0.01*
PLMSI, no./h 1 2.1 0.15 1 15.8 <0.001* 1 35.6 <0.001*

Results of analysis of covariance (ANCOVA) in Osteoporotic Fractures in Men (MrOS) Study with cyclic al-
ternating pattern (CAP) rate, A1 index, and A2+A3 index as dependent variables, the subjective sleep quality
measure restless to restful sleep as independent variable and age, the obstructive apnoea–hypopnoea in-
dex at 4% oxygen desaturation (OAHI), the arousal index (AI-NREM) in NREM sleep and the periodic limb
movement in sleep index (PLMSI) as covariates. MrOS, Osteoporotic Fractures in Men; B, estimate of beta
coefficient; SE, standard error of beta coefficient; OAHI, obstructive apnoea–hypopnoea index; AI-NREM,
arousal index; PLMSI, periodic limb movement in sleep index.
significance level: p < 0.017 (adjusted to the number of variables under consideration)

Table 4.6. Analysis of covariance (ANCOVA) for effect of subjective sleep quality measures
on AI-NREM in MrOS.

AI-NREM, no./h
Df F p Df F p Df F p

Dependent

light . . . deep 4 37.8 <0.001* short . . . long 4 32.3 <0.001* restless . . . restful 4 37.7 <0.001*

Covariate

Age, years 1 50.7 <0.001* Age, years 1 54.6 <0.001* Age, years 1 56.2 <0.001*
CAP rate, % 1 339.4 <0.001* CAP rate, % 1 338.4 <0.001* CAP rate, % 1 335.9 <0.001*
OAHI, no./h 1 724.9 <0.001* OAHI, no./h 1 718.9 <0.001* OAHI, no./h 1 721.1 <0.001*
PLMSI, no./h 1 55.2 <0.001* PLMSI, no./h 1 55.3 <0.001* PLMSI, no./h 1 54.0 <0.001*

Results of analysis of covariance (ANCOVA) in Osteoporotic Fractures in Men (MrOS) Study with the arousal
index (AI-NREM) in NREM sleep as dependent variable, the three subjective sleep quality measures as in-
dependent variables and age, cyclic alternating pattern (CAP) rate, the obstructive apnoea–hypopnoea index
at 4% oxygen desaturation (OAHI), and the periodic limb movement in sleep index (PLMSI) as covariates.
MrOS, Osteoporotic Fractures in Men; B, estimate of beta coefficient; SE, standard error of beta coefficient;
OAHI, obstructive apnoea–hypopnoea index; AI-NREM, arousal index; PLMSI, periodic limb movement in
sleep index.
significance level: p < 0.017 (adjusted to the number of variables under consideration)
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Figure 4.6. Histograms of CAP rate for MrOS Visit 1 and Visit 2. Histograms of cyclic alternating
pattern (CAP) rate for identical subjects in Osteoporotic Fractures in Men (MrOS) Study
Visit 1 and Visit 2. The median value for each distribution is illustrated by the dotted
lines.

Table 4.7. MrOS Visit 1 and Visit 2 with identical subjects.

Age,
years

AI-NREM,
no./h

OAHI,
no./h

CAP rate,
%

A1 index,
no./h

A2+A3 index,
no./h

Median (IQR)

MrOS Visit 1 74.0 (±7.0) 21.9 (±16.0) 8.0 (±13.1) 56.6 (±19.6) 16.0 (±20.3) 45.9 (±29.5)
MrOS Visit 2 80.0* (±7.0) 22.7 (±18.5) 7.9 (±15.4) 58.0 (±24.2) 16.9 (±22.9) 44.6 (±38.3)

Comparison of clinical markers of sleep disturbance between identical subjects in Osteoporotic Fractures
in Men (MrOS) Study Visit 1 and Visit 2. MrOS, Osteoporotic Fractures in Men; OAHI, obstructive ap-
noea–hypopnoea index; AI-NREM, arousal index.
* significance level: p < 0.05
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Paper III

Cyclic alternating pattern in children

with obstructive sleep apnoea and its

relationship with adenotonsillectomy,

behaviour, cognition, and quality of life

The content of this chapter is a modified version of the publication:

Hartmann, S., Bruni, O., Ferri, R., Redline, S. and Baumert, M. (2020), ‘Cyclic alternating

pattern (CAP) in children with obstructive sleep apnea and its relationship with adenoton-

sillectomy, behavior, cognition, and quality-of-life’, Sleep 44(1), zsaa145.
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5.1 Statement of Significance

Abstract

Study Objectives: To determine in children with obstructive sleep apnoea (OSA)

the effect of adenotonsillectomy (AT) on the cyclic alternating pattern (CAP)

and the relationship between CAP and behavioural, cognitive, and quality-of-life

measures.

Methods: CAP parameters were analysed in 365 overnight polysomnographic

recordings of children with mild-to-moderate OSA enrolled in the Childhood Ade-

notonsillectomy Trial (CHAT), randomized to either early AT (eAT) or watchful

waiting with supportive care (WWSC). We also analysed CAP in a subgroup of

72 children with moderate OSA (apnoea-hypopnoea index > 10) that were part

of the CHAT sample. Causal mediation analysis was performed to determine

the independent effect of changes in CAP on selected outcome measures.

Results: At baseline, a higher number of A1 phases per hour of sleep was sig-

nificantly associated with worse behavioural functioning (caregiver Behaviour

Rating Inventory of Executive Function (BRIEF) Global Executive Composite

(GEC): � = 0.24, p = 0.042; caregiver Conners’ Rating Scale Global Index: � =

0.25, p = 0.036) and lower quality of life (OSA-18: � = 0.27, p = 0.022; PedsQL:

� = -0.29, p = 0.015) in the subgroup of children with moderate OSA, but not

across the entire sample. At 7-months follow-up, changes in CAP parameters

were comparable between the eAT and WWSC arms. CAP changes did not

account for significant proportions of variations in behavioural, cognitive, and

quality-of-life performance measures at follow-up.

Conclusions: We show a significant association between the frequency of slow,

high-amplitude waves with behavioural functioning, as well as the quality of life

in children with moderate OSA. Early AT in children with mild-to-moderate OSA

does not alter the microstructure of non-rapid eye movement sleep compared

with watchful waiting after an approximately 7-month period of follow-up.

5.1 Statement of Significance

Obstructive sleep apnoea (OSA) in children severely affects their behaviour and most likely

increases the risk of developing cardiovascular disease. The adverse effect of OSA on
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the sleep macrostructure of children has been extensively investigated, but its impact on

non-rapid eye movement (NREM) sleep microstructure remains unclear. To ascertain the

relationship between cyclic alternating pattern (CAP), characterizing sleep microstructure,

and adenotonsillectomy (AT), behaviour, cognition, and quality of life, we investigated 365

overnight polysomnographic recordings of children with mild-to-moderate OSA enrolled in

the Childhood Adenotonsillectomy Trial (CHAT). Children with moderate OSA who experi-

ence a high frequency of slow, high-amplitude waves (A1 phases) display worse behavioural

functioning and score lower in caregiver-rated quality of life. At 7-months follow-up, children

who underwent AT showed no differences in CAP measures compared with children in the

watchful waiting group, indicating that early AT does not yield an additional benefit in terms

of NREM sleep instability; in both treatment arms, CAP rate, especially the A1 index, was

increased at follow-up.

5.2 Introduction

Obstructive sleep apnoea (OSA) is the most severe form of upper airway disease during

sleep and found among 1% to 4% of children (Lumeng and Chervin, 2008). Compared

with unaffected children, those with OSA are more likely to present with behavioural prob-

lems (Ali et al., 1993) and are at increased risk for developing cardiovascular and metabolic

risk factors such as systemic hypertension (Marcus et al., 1998) and higher levels of C-

reactive protein (CRP) (Larkin et al., 2005). First-line treatment for childhood OSA is com-

monly adenotonsillectomy (AT) as enlarged tonsils and adenoids often result in narrowing

the upper airway structure or pharyngeal collapse, leading to snoring and periods of ap-

noea and hypopnoea Typically, apnoeas and hypopnoeas affect the quality and quantity of

restorative sleep due to subsequent sleep stage transitions to lighter sleep, arousals, or

periods of wakefulness.

By convention, sleep is scored by the rules of Rechtschaffen and Kales (1968) adopted and

modified by the American Academy of Sleep Medicine (AASM) scoring manual (Iber et al.,

2007). In the AASM scoring, electroencephalography (EEG) arousals are defined as abrupt

changes in EEG of a minimum duration of 3 seconds and do not consider 1 to 2-second

activities observed in children (Grigg-Damberger et al., 2007), which consequently may

limit the clinical utility of the conventional assessment of macrostructure in children. Cyclic

alternating pattern (CAP) analysis is a method to assess the microstructure of sleep. It

captures dynamic changes in EEG amplitude and frequency that recur periodically in non-

rapid eye movement (NREM) stages (Terzano et al., 2001). Such sequences of recurring
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activation phases represent periods of high neural excitability with an intermittent back-

ground period in between (Terzano and Parrino, 2000). As they coincide with physiological

and pathological events, CAP provides insights into the fragmentation of NREM sleep not

possible with traditional sleep staging. Previous studies on the relationship between CAP

and pathologies such as sleep disordered breathing (SDB), narcolepsy, and neuropsycho-

logical disabilities in paediatric populations concluded that children with these pathologies

almost always show less synchronized slow-wave activity than healthy children (Bruni et al.,

2010b).

The aim of this study was to investigate the relationship between NREM sleep microar-

chitecture and behavioural, cognitive, and quality-of-life measures in children with mild-to-

moderate OSA and the effect of AT on these measures. We report data from the ran-

domized controlled Childhood Adenotonsillectomy Trial (CHAT; ClinicalTrials.gov identifier:

NCT00560859). Previous analysis on the CHAT study has shown a larger decrease in

arousals, a larger decrease in the percentage of N1 sleep, and a greater increase in the

percentage of N2 sleep but no change in N3 or rapid eye movement (REM) sleep following

surgery compared with watchful waiting and supportive care (Marcus et al., 2013). Further

studies reported a similar reduction in the number of arousals post-surgery (Suen et al.,

1995; Frank et al., 1983; Brouillette et al., 1982). However, it is currently unclear whether

AT improves the NREM microstructure represented by CAP in children with OSA. To com-

prehensively probe NREM microstructure, we determined CAP in this sample. We also

analysed a subgroup of children enrolled in CHAT who presented with moderate OSA

(apnoea-hypopnoea index [AHI] > 10) to test whether treatment results in a greater im-

provement in polysomnographic (PSG) findings and CAP parameters.

5.3 Methods

5.3.1 Definition and detection of CAP

In agreement with the atlas and rules for scoring CAP published by Terzano et al. (2001), we

defined CAP as sequences of at least two consecutive CAP cycles. A CAP cycle consists of

one activation phase (A phase) that represents transient, phasic events and an intervening

background phase (B phase) that separates two successive A phases. Stereotypical A-

phase patterns are delta bursts, vertex sharp transients, K-complex sequences, K-alpha,

polyphasic bursts, intermittent alpha, and arousals (Terzano et al., 2001). We subdivided
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A phases into periods of slow high-amplitude waves (A1), fast low-amplitude EEG rhythms

(A3), or a mixture of both (A2). A1 phases portray synchronized EEG patterns, while A3

phases represent desynchrony (Terzano and Parrino, 2000). We defined A phases or B

phases to last 2–60 seconds and restricted their occurrence to only NREM periods. Thus,

REM periods and the periods between two CAP sequences were considered non-CAP. In

this study, each CAP sequence was terminated by an A phase that was assigned to the

following non-CAP period.

We analysed CAP in overnight EEG recordings utilizing our previously developed, highly

precise automated system for CAP analysis (Hartmann and Baumert, 2019). Our CAP

detection system is a deep learning recurrent neural network that was trained with manually

scored recordings from children. In the first step, the EEG channel is filtered and processed

to remove powerline interference, noise, and cardiac field artefacts. Time and spectral

features (Hjorth activity, Shannon entropy, Teager energy operator, band power descriptor,

and differential EEG variance) were extracted from the processed signal and passed into

the classifier as input values. The extracted features were sampled at 1 Hz, yielding a

classification output that indicates whether the current second is part of an A phase or not

and if so, what kind of A phase. We selected the F�-score as loss function for training to deal

with the imbalanced dataset and increase the sensitivity and precision of the classification.

Per the previously defined rules for CAP sequences, we post-processed the output of the

A-phases detection system, i.e. isolated A phases and B phases, less than two CAP cycles,

and the terminating A phases were removed.

We used 19 recordings of healthy children, 15 recordings of healthy adults, and 24 record-

ings of adults with sleep disorders as training set to cope with the inhomogeneous EEG

characteristics of children and adults. Our system has previously demonstrated a second-

by-second A-phase inter-rater reliability, quantified by the Cohen’s kappa coefficient, of 0.53

on a set of 16 healthy participants and 0.56 on a set of 30 participants with nocturnal frontal

lobe epilepsy (Hartmann et al., 2020). On the contrary, the event-based inter-rater reli-

ability between human scorers ranges between 0.42 and 0.75 (Ferri et al., 2005b). The

specifics of the training data and additional information on the performance of the deployed

automated scoring system are provided in supplementary section 5.7.1.

Here, we used the left and the right central EEG channels, re-referenced to the mastoid

channels, in each PSG recording only counting overlapping A phases to increase the sen-

sitivity of the classification. We defined the CAP rate as the percentage of NREM sleep that

is covered by CAP sequences. Subtype indices represent the number of A1 and A2 + A3,
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respectively, per hour of NREM sleep. Subtypes A2 and A3 were merged into a single pa-

rameter due to their congruent nature. Additionally, the number, duration, and percentage

of A1 and A2 + A3 phases were measured as well as the duration of B phases, CAP cycles,

and CAP sequences.

5.3.2 Childhood Adenotonsillectomy Trial

We used overnight PSG from the CHAT, a multi-center, single-blind, randomized, controlled

trial designed to analyse the efficacy of early AT (eAT) on children with mild-to-moderate

OSA. The study tested whether children with mild-to-moderate OSA, randomized to eAT,

demonstrate greater improvement in cognitive, behavioural, quality-of-life, and sleep mea-

sures at 7-months follow-up than children who were randomly assigned to watchful waiting

with supportive care (WWSC) (Marcus et al., 2013). Children between 5.0 and 9.99 years

of age diagnosed with OSA (OAI, number of obstructive apnoeas per hour of sleep, ≥1,

or AHI ≥ 2), tonsillar hypertrophy ≥ 1, and cleared for surgery by an otolaryngologist were

recruited in six clinical sites in the United States (Redline et al., 2011).

We removed recordings with fewer than 3 hours of good EEG quality and those from one

specific clinical site (clusterid 13) due to equipment-related issues (n = 23). In consequence,

365 overnight recordings were evaluated (179 eAT and 186 WWSC). Also, we evaluated a

subgroup of 72 children (38 eAT and 34 WWSC) with moderate SDB (AHI > 10) out of the

365 recordings as those children are likely to show a greater improvement in PSG find-

ings (Marcus et al., 2013) and CAP parameters. The dataset is available at the National

Sleep Research Resource (NSRR) (available online at the National Sleep Research Re-

source; sleepdata.org) (Zhang et al., 2018).

5.3.3 Outcome measures

The primary outcome measure of CHAT was the Attention/ Executive (A/E) Functioning Do-

main Index from the Developmental Neuropsychological Assessment (NEPSY). Secondary

outcome measures include indices of behaviour, sleep symptoms, generic and disease-

specific quality of life, PSG measures of sleep apnoea, anthropometric measures, and blood

pressure.

As the relationship between CAP and the child’s behaviour and cognitive performance is of

great interest (Bruni et al., 2012; Bruni and Ferri, 2009), we analysed the causal mediation

Page 82



Chapter 5

of changes in the A/E Functioning Domain Index and secondary cognitive and behavioural

outcomes (Behaviour Rating Inventory of Executive Function [BRIEF] Global Executive

Composite [GEC] T score, and Conners’ Rating Scale Global Index T score) by variations in

CAP parameters (Redline et al., 2011). We also included the key quality-of-life measure in

CHAT, the caregiver-rated total score from the Paediatric Quality of Life Inventory (PedsQL),

as well as the disease-specific quality-of-life total score on the 18-item OSA-18 assessment

tool. To assess symptoms of the OSA syndrome, we added the Paediatric Sleep Question-

naire sleep-related breathing disorder scale (PSQ-SRBD) to the list of outcome measures.

Higher scores on the BRIEF GEC T score, Conners’ Rating Scale Global Index T score,

OSA-18 score, and PSQ-SRBD scale indicate worse functioning, worse quality of life, or

greater severity, respectively. On the contrary, higher scores on NEPSY A/E Functioning

score and PedsQL caregiver-rated score represent better functioning and better quality of

life, respectively. Finally, we included in the causal mediation analysis the change in AHI

defined as the number of all obstructive and mixed apnoeas, plus hypopnoeas associated

with either a ≥ 3% desaturation or electroencephalographic arousal, per hour of sleep, and

the periodic limb movement sleep index (PLMSI) defined as the number of periodic limb

movement (PLM) per hour of NREM.

5.3.4 Statistical methods

Statistical analysis was conducted using non-parametric tests assuming that CAP rate and

subtype indices do not follow a normal distribution. The relationship between baseline

measurements of CAP parameters and age, arousal index during NREM (AI-NREM), AHI,

PLMSI, behavioural, cognitive, as well as quality-of-life performance measures was exam-

ined using the Spearman correlation coefficient. For each statistical test, the significance

level was p < 0.05.

For the evaluation of treatment-specific changes in CAP parameters, including CAP rate,

subtype indices, total number of subtypes, subtype percentages, mean duration of subtype

phases, the average duration of B phases, the average duration of CAP cycles, and the

average duration of CAP sequences, we applied two-factor repeated-measures analysis

of variance (ANOVA) with time and treatment as factors and adjusting for the stratification

factors of age, race, weight status, and study site.

We used the causal mediation analysis described by Imai et al. (2010), to identify the inde-

pendent effect of CAP changes on outcome measures (Figure 5.1). The model describes
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the total effect of treatment as a sum of the mediated effect using an independent mediator

and the direct effect. Here, we analysed three mediation models with CAP rate, A1 index,

and A2 + A3 index, respectively, as mediators. We used a linear regression model where

the pretreatment covariates were identical to those used in the repeated-measures ANOVA.

We log-transformed the change of AHI due to its non-normal distribution. We applied the

mediation package for R with 1,000 non-parametric bootstrap resamples (Tingley et al.,

2014). Results include the estimates of average causal mediation effects, the average di-

rect effects, the total effects, and the proportion of the mediated effects with 95% confidence

intervals and the associated p values.

5.4 Results

Table 5.1 details the baseline characteristics for each outcome measure and their respective

Spearman correlation value with CAP rate, A1 index, and A2 + A3 index for children with

mild-to-moderate OSA (Table 5.1a) and the subgroup of children with moderate OSA (Table

5.1b).

In children with mild-to-moderate OSA at baseline, AI-NREM significantly correlated with

the A2 + A3 index (� = 0.33, p = <0.001). PLMSI showed significant negative correlations

with the A1 index and positive correlation with the A2 + A3 index (A1 index: � = -0.14,

p = 0.009; A2 + A3 index: � = 0.15, p = 0.003). Other outcome measures did not show any

significant correlations with CAP rate and subtype indices, respectively.

In the baseline subgroup of children with AHI > 10, age was significantly correlated with

the CAP rate and the A1 index (CAP rate: � = 0.24, p = 0.047; A1 index: � = 0.28, p =

0.018) and significantly inversely correlated with the A2 + A3 index (� = -0.29, p = 0.014).

AI-NREM showed significant correlations with the A2 + A3 index (� = 0.35, p = <0.001).

On the contrary, A1 index demonstrated significant correlations with AHI (� = 0.24, p =

0.040) and significant inverse correlations with PLMSI (� = -0.27, p = 0.021). Regarding

cognitive, behavioural, and quality-of-life measures, the A1 index demonstrated significant

correlations with the caregiver BRIEF GEC T score (� = 0.24, p = 0.042), the caregiver

Conners’ Rating Scale Global Index T score (� = 0.25, p = 0.036), and the OSA-18 score

(� = 0.27, p = 0.022). Finally, the PedsQL caregiver-rated score was significantly inversely

correlated with the CAP rate and the A1 index (CAP rate: � = -0.25, p = 0.036; A1 index: �
= -0.29, p = 0.015).
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Table 5.1. Distributions and Spearman’s correlation between CAP parameters and age, PSG
sleep disturbance indices, and behavioural, cognitive, and quality-of-life measures
at baseline in (a) children with mild-to-moderate OSA and (b) children with moder-
ate OSA (AHI > 10).

a) Children with mild-to-moderate OSA (n = 365, 190 boys and 175 girls)

Spearman correlation

Baseline CAP rate A1 index A2+A3 index

Median ± IQR � p � p � P

Age, years 6.0 ± 3.0 0.09 0.08 0.10 0.059 -0.02 0.69
BMI, kg/m2 17.2 ± 6.5 0.06 0.26 0.10 0.06 -0.14 <0.01*
AI-NREM, no./h 7.8 ± 4.4 0.00 0.99 -0.07 0.20 0.33 <0.001*
AHI, no./h 4.6 ± 6.2 0.03 0.54 0.01 0.79 0.04 0.42
PLMSI, no./h 0.6 ± 2.4 -0.09 0.082 -0.14 0.009* 0.15 0.003*
NEPSY Attention/Executive Functioning Scaled Score 102.0 ± 3.0 -0.06 0.27 -0.09 0.099 0.05 0.33
BRIEF Global Executive Composite Total T Score
Caregiver rating 49.0 ± 2.5 -0.04 0.39 -0.02 0.69 -0.05 0.31
Teacher rating 56.0 ± 17.0 -0.03 0.60 -0.02 0.70 -0.01 0.82
Conners’ Rating Scale Global Index Total T Score
Caregiver rating 50.0 ± 14.0 -0.04 0.49 -0.03 0.59 -0.03 0.61
Teacher rating 51.0 ± 17.0 -0.07 0.25 -0.04 0.53 -0.11 0.077
PedsQL caregiver-rated total score 81.7 ± 23.8 0.01 0.92 -0.01 0.86 0.06 0.22
PSQ-SRBD score 0.5 ± 0.26 -0.05 0.35 -0.03 0.54 -0.05 0.37
OSA-18 total score 51.0 ± 24.5 -0.01 0.82 -0.01 0.90 -0.01 0.78

b) Children with moderate OSA (AHI >10) (n = 72, 40 girls and 32 boys)

Spearman correlation

Baseline CAP rate A1 index A2+A3 index

Median ± IQR � p � p � P

Age, years 6.0 ± 2.0 0.24 0.047* 0.28 0.018* -0.29 0.014*
BMI, kg/m2 17.6 ± 6.9 0.22 0.06 0.26 0.03* -0.18 0.14
AI-NREM, no./h 9.6 ± 5.6 0.04 0.74 0.00 0.97 0.35 <0.01*
AHI, no./h 15.0 ± 7.8 0.22 0.065 0.24 0.040* -0.18 0.13
PLMSI, no./h 0.8 ± 2.9 -0.22 0.064 -0.27 0.021* 0.14 0.25
NEPSY Attention/Executive Functioning Scaled Score 98.0 ± 22.8 -0.17 0.14 -0.20 0.093 0.10 0.39
BRIEF Global Executive Composite Total T Score
Caregiver rating 47.0 ± 12.5 0.21 0.071 0.24 0.042* -0.06 0.59
Teacher rating 57.5 ± 22.8 0.00 0.99 0.00 0.99 -0.10 0.47
Conners’ Rating Scale Global Index Total T Score
Caregiver rating 49.0 ± 16.0 0.23 0.051 0.25 0.036* 0.00 0.99
Teacher rating 52.0 ± 21.0 0.09 0.53 0.12 0.39 -0.15 0.28
PedsQL caregiver-rated total score 82.4 ± 29.4 -0.25 0.036* -0.29 0.015* 0.11 0.34
PSQ-SRBD score 0.5 ± 0.3 0.07 0.56 0.12 0.32 -0.11 0.35
OSA-18 total score 56.0 ± 28.5 0.22 0.06 0.27 0.022* -0.10 0.38

AI-NREM, Non-rapid eye movement sleep (NREM) Arousal Index; AHI, Obstructive Apnoea-Hypopnoea Index
(AHI) >= 3% - number of [obstructive apnoeas] and [hypopnoeas with >=3% oxygen desaturation or arousal]
per hour of sleep; PLMSI, Number of Periodic limb movement (PLM) per hour of non-rapid eye movement
sleep (NREM); NEPSY, Developmental Neuropsychological Assessment (NEPSY); BRIEF, Behaviour Rating
Inventory of Executive Function; PedsQL, Paediatric Quality of Life Inventory; PSQ-SRBD, Paediatric Sleep
Questionnaire sleep-related breathing disorder scale, OSA-18, Obstructive Sleep Apnoea-18 assessment
tool.
*significance level: p < 0.05
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eAT

WWSC

∆CAP

∆CHAT outcome

a

c’

b

Figure 5.1. Causal mediation model to identify the independent effect of CAP changes on
CHAT outcome measures.. Causal mediation diagram illustrating the direct effect of
treatment on the CHAT outcome (c′), the effect of treatment on ∆CAP as mediator (a),
and the effect of the ∆CAP as mediator on the CHAT outcome (b). The product of the
paths (a) and (b) equals the indirect effect on the CHAT outcome.

5.4.1 The effect of AT on CAP

Table 5.2 details the change of CAP parameters from baseline to follow-up for children in the

eAT and WWSC arms for the entire CHAT sample. The median CAP rate increased in both

treatment groups by 1%–4%. The eAT group demonstrated a marginally higher increase but

the interaction between treatment and time was not significant (p = 0.37). Similar outcomes

were observed for both subtype indices. The A1 index increased by 3.8% from baseline to

follow-up PSG for children undergoing eAT, whereas children in the WWSC arm displayed

an increase of 1.1%. Both groups showed a similar trend for the A2 + A3 index with an

overall lower increase (eAT: 1.3%, WWSC: 0.1%). However, repeated-measures ANOVA

indicated no significant interaction between treatment and time for either subtype index (A1

index: p = 0.58, A2 + A3 index: p = 0.24). In line with the results for CAP rate and subtype

indices, other CAP parameters did not show any significant interactions between treatment

and time either.

Table 5.3 lists the change of CAP parameters from baseline to follow-up PSG for children

in the eAT and WWSC arms in the subgroup of children with AHI > 10. CAP rate was

increased in both treatment groups by 1%–2% with no significant interaction between treat-

ment and time (p = 0.84). The A1 index showed only for the WWSC group an increase

of 1%. On the contrary, the A2 + A3 index was only in the eAT group decreased by 1%.

Repeated measures ANOVA of both subtype indices demonstrated no significant interac-

tion between treatment and time (A1 index: p = 0.94, A2 + A3 index: p = 0.31). In line
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Figure 5.2. Significant Spearman’s correlation in children with moderate OSA (AHI > 10).
Scatter plots with linear regression line to highlight significant Spearman’s correlation
between the A1 index and the caregiver BRIEF GEC T score, the caregiver Conners’
Rating Scale Global Index T score, the OSA-18 score, and the PedsQL caregiver-rated
score as well as between the CAP rate and the the PedsQL caregiver-rated score at
baseline in children with moderate OSA (AHI > 10).

with the results for CAP rate and subtype indices, other CAP parameters did not show any

significant interaction between treatment and time either.

5.4.2 The effect of CAP changes on behaviour, cognitive performance,

and quality of life

Supplementary Table 5.6 displays the results of the mediation analysis with CAP rate as

the mediator in the entire study sample. The total effects of treatment were significant for

Conners’ Rating Scale Global Index scores, the caregiver BRIEF GEC score, the PedsQL

caregiver-rated total score, the PSQ-SRBD scale, the OSA-18 score, and the AHI. No sig-

nificant average mediation effects were identified for CAP rate. Similarly, neither A1 index

nor A2 + A3 index showed a significant average mediation effect (Supplementary Tables 5.7

and 5.8). We obtained identical outcomes in the subgroup of children with moderate OSA.
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Table 5.2. Comparison of CAP parameters between both randomized arms (eAT and WWS) at
follow-up for children with mild-to-moderate OSA.

Early Adenotonsillectomy
(n = 179)

Watchful Waiting
(n = 186)

p†

CAP measures Baseline
Change from
Baseline to
7 months

Baseline
Change from
Baseline to
7 months

Treatment‡ Time§ Treatment
*Time||

CAP rate, % 38.8 (±18.1) 3.5 (±19.7) 37.8 (±22.3) 1.2 (±16.9) 0.12 <0.01* 0.37
A1, no. 243.0 (±143.5) 21.0 (±148.5) 237.0 (±197.5) 11.0 (±130.8) 0.31 <0.01* 0.53
A2+A3, no. 41.0 (±36.0) 7.0 (±35.5) 33.0 (±36.0) 0.5 (±30.5) 0.045* 0.068 0.28
A1, % 84.5 (±11.1) -0.7 (±9.2) 86.2 (±12.4) 0.7 (±11.8) 0.22 0.69 0.31
A2+A3, % 15.5 (±11.1) 0.0 (±0.1) 13.8 (±12.4) 0.0 (±0.1) 0.22 0.69 0.31
A1 mean duration, s 4.0 (±0.4) 0.0 (±0.5) 4.1 (±0.5) 0.0 (±0.5) 0.84 0.39 0.60
A2 + A3 mean duration, s 12.5 (±2.5) 0.2 (±3.1) 12.4 (±2.7) 0.1 (±3.3) 0.78 0.018* 0.52
A1 index, no./h 38.7 (±22.7) 3.8 (±23.0) 37.7 (±30.3) 1.1 (±19.8) 0.35 <0.01* 0.58
A2 + A3 index, no./h 6.4 (±5.6) 1.3 (±5.6) 5.3 (±6.2) 0.1 (±5.4) 0.036* 0.093 0.24
B duration, s 27.4 (±2.5) -0.5 (±3.4) 27.3 (±3.4) -0.5 (±3.4) 0.41 <0.01* 0.85
CAP cycle duration, s 30.8 (±2.4) -0.4 (±3.3) 30.8 (±3.2) -0.5 (±3.0) 0.40 <0.01* 0.79
CAP sequence duration, s 184.6 (±59.5) 13.9 (±73.5) 181.9 (±79.2) 3.8 (±66.8) 0.25 0.044* 0.19

†Repeated measures analysis of variance (ANOVA) adjusting for the stratification factors of age (5–7 vs. 8–9
years old), race (African American vs. other), weight status (overweight/obese vs. non-overweight), and study
site.
‡Effect of treatment (eAT vs. watchful waiting) on CAP measures after controlling for the effect of time (base-
line vs. follow-up).
§Effect of time (baseline vs. follow-up) on CAP measures after controlling for the effect of treatment (eAT vs.
watchful waiting).
||Effect of the treatment * time interaction on CAP measures.
*Significance level: p < 0.05.

The results of the mediation analysis with CAP rate and subtype indices as the mediator for

children with AHI > 10 are presented in Supplementary Tables 5.9, 5.10, and 5.11.

5.5 Discussion

We show that children with moderate OSA (AHI > 10) demonstrate a significant association

between a higher frequency of slow high-amplitude rhythms, the so-called A1 phases, and

worse behavioural functioning and lower quality of life rated by their caregivers at baseline.

However, CAP rate and both subtype indices did not account for significant proportions of

changes in behavioural, cognitive, and quality-of-life performance measures plus changes

in AHI and PLMSI at follow-up. This outcome may be explained by the negligible changes

in CAP parameters at follow-up within children with moderate OSA. Considering the entire

CHAT sample, we demonstrate that children with mild-to-moderate OSA display elevated

CAP rates, specifically more frequent A1 phases, at 7-months follow-up. However, this
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Table 5.3. Comparison of CAP parameters between both randomized arms (eAT and WWS) at
follow-up for children with moderate OSA (AHI > 10).

Early Adenotonsillectomy
(n = 38)

Watchful Waiting
(n = 34)

p†

CAP measures Baseline
Change from
Baseline to
7 months

Baseline
Change from
Baseline to
7 months

Treatment‡ Time§ Treatment
*Time||

CAP rate, % 38.7 (±17.0) 1.3 (±17.8) 37.9 (±15.3) 1.8 (±22.5) 0.77 0.30 0.84
A1, no. 262.0 (±155.0) -2.0 (±180.8) 240.5 (±152.0) 5.0 (±179.3) 0.79 0.25 0.95
A2+A3, no. 44.5 (±41.3) -4.0 (±43.0) 37.0 (±23.8) -0.5 (±25.5) 0.96 0.99 0.29
A1, % 83.9 (±13.0) 0.2 (±10.9) 85.2 (±15.7) 1.8 (±12.4) 0.86 0.27 0.94
A2+A3, % 16.1 (±13.0) -0.2 (±10.9) 14.8 (±15.7) -1.8 (±12.4) 0.86 0.27 0.94
A1 mean duration, s 4.1 (±0.3) 0.1 (±0.4) 4.1 (±0.6) 0.0 (±0.4) 0.73 0.48 0.67
A2 + A3 mean duration, s 12.5 (±3.0) 0.6 (±3.2) 12.4 (±2.4) 0.5 (±2.4) 0.083 0.068 0.48
A1 index, no./h 40.7 (±25.5) -0.1 (±26.1) 36.8 (±23.4) 0.8 (±23.9) 0.83 0.23 0.94
A2 + A3 index, no./h 7.0 (±6.3) -0.7 (±6.7) 5.9 (±4.1) -0.2 (±4.5) 0.95 0.87 0.31
B duration, s 26.7 (±2.2) -0.1 (±2.7) 27.7 (±3.1) -0.5 (±3.9) 0.88 0.51 0.37
CAP cycle duration, s 30.3 (±2.0) -0.1 (±2.9) 30.8 (±3.0) -0.5 (±3.5) 0.81 0.49 0.33
CAP sequence duration, s 195.4 (±64.4) 0.3 (±70.7) 180.4 (±69.4) 8.3 (±57.5) 0.62 0.50 0.72

†Repeated measures analysis of variance (ANOVA) adjusting for the stratification factors of age (5–7 vs. 8–9
years old), race (African American vs. other), weight status (overweight/obese vs. non-overweight), and study
site.
‡Effect of treatment (eAT vs. watchful waiting) on CAP measures after controlling for the effect of time (base-
line vs. follow-up).
§Effect of time (baseline vs. follow-up) on CAP measures after controlling for the effect of treatment (eAT vs.
watchful waiting).
||Effect of the treatment * time interaction on CAP measures.
*Significance level: p < 0.05.

increase is independent of the treatment as no significant interaction between treatment

and time was found.

At baseline, children with moderate OSA demonstrated a positive correlation between A1

index and AHI. Previous studies in children with SDB have shown opposing findings, i.e.

a decrease of A1 subtypes, mainly during N3 sleep compared with children without SDB

(Kheirandish-Gozal et al., 2007; Lopes and Guilleminault, 2006). However, both studies

investigate the changes in CAP between children with OSA and controls or children with

mild SDB (AHI of ≥ 1 but < 5/hr) whereas our analysis was performed within children with

AHI > 10. Additionally, our results may reflect the fact that children often do not respond to

apnoeas with a noticeable EEG arousal (McNamara et al., 1996) but instead with a short 1

to 3-second burst primarily in the theta band (Scholle and Zwacka, 2001). This is in contrast

to adults who terminate obstructive apnoeas regularly with an arousal stimulus (Berry and

Gleeson, 1997). In a previous study, children with SDB demonstrated a positive correlation

between the intelligence quotient and the percentage of A2, and the A2 index, respec-

tively, suggesting that respiratory events in children with SDB elicit arousal-like protective
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Figure 5.3. Comparison of major CAP parameters between both randomized arms (eAT and
WWS) at follow-up. CAP parameters (CAP rate, A1 index, and A2+3 index) in (A)
children with mild-to-moderate OSA and (B) children with moderate OSA (AHI > 10) who
underwent early adenotonsillectomy (eAT) versus watchful waiting (WWS) at baseline
and follow-up polysomnography grouped by treatment arm. Data are presented as mean
± sd.

responses to preserve neurodevelopment to the detriment of NREM sleep instability (Mi-

ano et al., 2011). The higher age of children in that study (9.1 ± 2.3 years) may explain

the shift from an increase in A1 phases to more arousal-like A2 phases. The authors also

reported a positive correlation between the A1 index during N3 and mean overnight oxy-

gen saturation, indicating an increased occurrence of A1 phases in response to respiratory

events. In summary, children tend to react to internal or external disturbing stimuli with a

protective mechanism that minimizes the negative effects on neurodevelopment (Lopes and

Marcus, 2007), which may potentially explain the increase in slow high-amplitude rhythms

defined as A1 phases in our study.

Children with moderate OSA also demonstrated a significant association between the A1

index and the caregiver BRIEF GEC T score, the caregiver Conners’ Rating Scale Global In-

dex T score, the OSA-18 score, and the caregiver-rated PedsQL. The correlation between

the number of A1 phases per hour of sleep and the disease-specific quality-of-life OSA-

18 score is most likely a result of the significant association between A1 index and AHI.
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Bruni et al. (2007) have previously reported that a high frequency of A1 phases is signifi-

cantly associated with poor behaviour in children with Asperger syndrome. Our results cor-

roborate these findings by revealing a significant association between poorer behavioural

functioning, i.e. higher scores in the caregiver BRIEF GEC T score and the caregiver Con-

ners’ Rating Scale Global Index T score and more frequent A1 phases. Furthermore, we

demonstrate a significant association between lower children’s quality of life rated by their

caregivers and a higher A1 index. Potentially, these results may reflect an indirect effect

of the significant correlations between the A1 index and AHI and PLMSI, respectively, in

children with moderate OSA. One can only speculate what the likely causality is in this con-

text as CAP describes external and internal factors that interfere with the sleep process but

does not reveal the source of perturbation (Parrino et al., 2012). A very likely scenario is

that a higher degree of sleep disturbance indicated by the A1 index and CAP rate result in

poor behaviour during the day because of drowsiness and attention deficits.

The CAP rate results obtained with our automated system are in line with previously re-

ported values scored manually in children with SDB. Both treatment arms demonstrated a

median CAP rate of 38%–39% during the baseline visit, congruent to the values of children

with disordered sleep breathing of the same age range reported by Kheirandish-Gozal et al.

(2007). The increase in CAP rate and A1 phases observed in the CHAT sample at 7-months

follow-up agrees with the previously described pattern of A-phase occurrence during child-

hood development. The CAP rate increases from preschool age (3–6 years) to school age

(6–10 years), peaking during peripubertal age at a previously reported value of around 60%

and subsequently decreases during young adulthood (Bruni et al., 2005, 2002; Lopes et al.,

2005; Parrino et al., 1998). The subgroup of children with moderate OSA did not show

such an increase in CAP rate, especially the number of A1 phases did not change. One

can speculate that an increase in CAP sequences due to maturation compensated the ex-

pected decrease in the number of CAP sequences due to AHI normalization.

The comparison between treatment arms did not show any significant difference in CAP rate

between children undergoing surgery and watchful waiting. A previous study on the treat-

ment of OSA in children with rapid maxillary expansion indicated an increase in CAP rate

during slow-wave sleep that was associated with a rise in A1 phases per hour of sleep (Mi-

ano et al., 2009). However, follow-up PSG were only recorded for children in the treatment

group, preventing the assessment of the time effect and developmental changes in CAP in

children without intervention. Hence, those results may reflect the overall increase of CAP

sequences and A1 phases with age rather than the effect of treatment, which is in line with
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our findings. In CHAT, normalization in PSG findings (defined as AHI < 2 or an obstructive

apnoea index score of <1 event per hour) was found not only in 79% of the children after

AT but also in 46% of the children randomized to WWSC (Marcus et al., 2013). Moreover,

the CHAT study reported no significant improvement in cognitive functioning for children

after AT compared with children after WWSC. This result is in agreement with other stud-

ies that reported no significant improvement in cognitive functioning after AT (Kohler et al.,

2009; Montgomery-Downs et al., 2005) as neurocognition in children is strongly linked to

other biomarkers such as the level of CRP (Gozal et al., 2007) or urinary neurotransmit-

ters (Kheirandish-Gozal et al., 2013). The marginal difference in AHI normalization between

treatment arms and the lack of improvement in cognitive functioning most likely explains the

lack of improvement in CAP parameters after AT compared with watchful waiting.

We also investigated the contribution of changes in CAP to changes in neurocognitive, be-

havioural, and quality-of-life measures. Although we observed a significant association be-

tween the A1 index and behavioural and quality-of-life measures in children with moderate

OSA, mediation analysis does not suggest that the changes in cognitive, behavioural, and

quality-of-life performance scores due to treatment are attributable to changes in CAP. This

observation is supported by the negligible changes in CAP parameters between baseline

and follow-up in children with moderate OSA. When considering the entire CHAT sample,

mediation analysis yielded an identical outcome, probably due to the predominance of mild

cases.

Our study is limited by the original CHAT study design that constraints enrolment to children

with an OAI ≥ 1 or AHI ≥ 2. A control group of normal children would enable comparative

analyses and ranking of CAP parameters. Furthermore, the time span of seven months

between baseline and follow-up is relatively short potentially limiting the effect of surgery

on CAP parameters. Sequelae related to hypoxemia may require more time than seven

months to resolve (Marcus et al., 2013). Because of the lack of longitudinal data, the ideal

follow-up period for maximal recovery has not been scientifically determined yet. Another

limitation is the accuracy of our developed automated detection system. Although it has

already shown strong performance (Hartmann and Baumert, 2019) and high reproducibil-

ity (Hartmann et al., 2020), the performance for subtype detection is limited by the low

number of manually scored paediatric PSG available for machine learning.

In conclusion, we show a significant association between the frequency of slow, high-

amplitude waves and the behavioural functioning, as well as the quality of life in children
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with moderate OSA. Early AT in children with mild-to-moderate OSA does not alter the

microstructure of NREM sleep compared with watchful waiting.
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5.7 Supplemental material

5.7.1 Supplemental information on automated scoring system

As mentioned in section 5.3.1, we used 19 recordings of healthy children, 15 recordings of

healthy adults, and 24 recordings of adults with sleep disorders as training set to cope with

the inhomogeneous EEG characteristics of children and adults.

The 19 recordings of healthy children contained 10 normal healthy preschool-aged children

(6 girls and 4 boys, mean age 4.6 years, range 3–6 years) (Bruni et al., 2005) and nine out

of 10 healthy school-aged children (6 boys and 4 girls, mean age 8.3 ± 1.5 years, range

6–10 years) (Bruni et al., 2002). One school-aged subject was deleted from the data set as

the recording contains a large number of artefacts and clipping. Subjects in both children

subsets had normal sleep habits confirmed by parental and child interviews, sleep habits

and sleep disorders questionnaires, sleep diaries obtained for 15 days before the experi-

ment, and a complete physical examination. Also, no children had any serious physical or

neurological or psychiatric disorder nor history of major sleep problems and none was tak-

ing medication at the time of the recording. As recording equipment, a polysomnography

digital system (Embla N7000, Medcare, Iceland) and its related software (Somnologica,

Medcare, Iceland) was used in both studies. More detailed information on the electrode

placement and clinical setup are listed in Bruni et al. (2005) and Bruni et al. (2002). CAP

scoring was performed manually according to the criteria published in Terzano et al. (2001)

using the sleep software Somnologica (Medcare) as aid for visual detection of A-phases.
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Table 5.4. Results for subtype classification performed on paediatric dataset.

Background A1 A2 A3
Accuracy (%)

TPR (%) F1-score (%) TPR (%) F1-score (%) TPR (%) F1-score (%) TPR (%) F1-score (%)

Trained with 29 adults 63.25 ± 10.83 75.45 ± 8.94 76.36 ± 10.62 30.14 ± 8.92 35.37 ± 16.47 10.14 ± 6.15 67.38 ± 15.36 33.68 ± 18.25 63.83 ± 10.36

Trained with 29 adults and 19 kids 85.32 ± 10.99 90.14 ± 7.82 56.00 ± 24.10 38.84 ± 12.98 27.10 ± 14.13 17.90 ± 8.92 69.54 ± 13.55 41.73 ± 13.55 82.62 ± 10.40

TPR, true positive rate; LSTM, long-short term memory network

The 15 recordings of healthy adults and the 24 recordings of adults with sleep disorders are

part of the publicly available CAP Sleep Database on PhysioNet (Terzano et al., 2001; Gold-

berger et al., 2000). The CAP Sleep Database comprises 108 polysomnographic record-

ings conducted at the Sleep Disorders Center of the Ospedale Maggiore of Parma, Italy.

The dataset consists of recordings of 16 healthy subjects and 92 patients, including 40 sub-

jects with NFLE (nfle), 22 with REM behaviour disorder (rbd), 10 with periodic leg movement

(plm), 9 with insomnia (ins), 5 with narcolepsy (narco), 4 with sleep-disordered breathing

(sdb), and 2 with bruxism (brux). Here, 15 healthy subjects (n1–n15), 4 subjects each

with NFLE (nfle1–nfle4), REM behaviour disorder (rbd1–rbd4), PLM (plm1–plm4), insomnia

(ins1–ins4), narcolepsy (narco1–narco4), or SDB (sdb1–sdb4) were included in the training

data set. The included subjects were 45.2 ± 19.2 years old at the time of the recording

with 17 subjects being females and 22 subjects being males. CAP scoring was carried out

according to the atlas of CAP scoring (Terzano et al., 2001).

Prior to this study, we compared our system trained with aforementioned adult recordings to

the entire presented children and adult training data set to analyse the scoring performance

improvement when including paediatric data. We selected the leave-one-out (LOO) method

as cross-validation approach. For each fold one child was determined as test set and all

remaining chidren and all adults were merged into the training set. For training with the

adult subset, each fold contained one child as test set and only all adult recordings as

training data. Table 5.4 lists the multi-class performance measures of our system trained

with the two training sets. Table 5.5 displays the confusion matrices of both training sets

for subtype classification. The results show that the inclusion of paediatric data into the

training set of the classifier improves the average scoring accuracy on paediatric data by

18.8%. Moreover, the average F1-score for each subtype increases by 8–15% (background:

14.7%, A1: 8.7%, A2: 7.8%, A3: 8.1%).
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Table 5.5. Confusion matrix of subtype classification on paediatric dataset using classifier
trained with a) 29 adults and b) 29 adults plus 19 children.

a)
Target Total

B A1 A2 A3 (PPV)

O
ut

pu
t

B
257,993 2,618 824 813 262,248

56.9% 0.6% 0.2% 0.2% (98.4%)

A1
91,452 22,346 2,249 624 116,671

20.2% 4.9% 0.5% 0.1% (19.2%)

A2
37,350 2,985 2,546 857 43,738

8.2% 0.7% 0.6% 0.2% (5.8%)

A3
23,696 1,104 1,281 4,760 30,841

5.2% 0.2% 0.3% 1.0% (15.4%)

Total 410,491 29,053 6,900 7,054

(TPR) (62.8%) (76.9%) (36.9%) (67.5%)

b)
Target Total

B A1 A2 A3 (PPV)

O
ut

pu
t

B
351,177 8,933 2,090 1,612 363,812

77.4% 2.0% 0.5% 0.4% (96.5%)

A1
32,979 17,099 1,524 211 51,813

7.3% 3.8% 0.3% 0.0% (33.0%)

A2
8,509 1,666 1,923 439 12,537

1.9% 0.4% 0.4% 0.1% (15.3%)

A3
17,826 1,355 1,363 4,792 25,336

3.9% 0.3% 0.3% 1.1% (18.9%)

Total 410,491 29,053 6,900 7,054

(TPR) (85.6%) (58.9%) (27.9%) (67.9%)

TPR, true positive rate; PPV, positive predictive value

5.7.2 Supplemental tables and figures

Following pages contain the results of the causal mediation analysis with CAP rate, A1

index, and A2+3 index as mediator for primary and secondary outcomes in children with

mild-to-moderate OSA and in children with moderate OSA (AHI >10).
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Table 5.6. Causal mediation analysis with CAP rate as mediator for primary and secondary
outcomes in children with mild-to-moderate OSA.

ACME ADE Total Effect† Proportion Mediated‡

Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p

NEPSY Attention/Executive
Functioning Scaled Score (n = 365)

0.05 (-0.15 to 0.37) 0.59 -1.74 (-4.40 to 0.85) 0.17 -1.69 (-4.31 to 0.96) 0.19 -0.03 (-0.56 to 0.38) 0.70

BRIEF Global Executive Composite
Total T Score
Caregiver rating (n = 359) 0.04 (-0.11 to 0.26) 0.61 3.50 (1.65 to 5.29) <0.001 3.54 (1.77 to 5.29) <0.001 0.01 (-0.03 to 0.09) 0.61
Teacher rating (n = 192) 0.05 (-0.34 to 0.56) 0.76 2.84 (-0.34 to 6.41) 0.076 2.89 (-0.31 to 6.43) 0.072 0.02 (-0.22 to 0.33) 0.74
Conners’ Rating Scale Global Index
Total T Score
Caregiver rating (n = 360) 0.00 (-0.18 to 0.20) 0.92 2.65 (0.66 to 4.71) 0.008 2.66 (0.72 to 4.71) 0.008 0.00 (-0.09 to 0.09) 0.92
Teacher rating (n = 195) 0.16 (-0.20 to 0.75) 0.43 4.23 (0.94 to 7.80) 0.018 4.39 (1.00 to 7.94) 0.016 0.04 (-0.06 to 0.21) 0.44
PedsQL caregiver-rated total score
(n = 364)

0.07 (-0.15 to 0.43) 0.53 -5.23 (-8.09 to -2.41) <0.001 -5.16 (-7.93 to -2.31) <0.001 -0.01 (-0.10 to 0.03) 0.53

PSQ-SRBD score (n = 362) 0.00 (-0.00 to 0.00) 0.72 0.24 (0.20 to 0.28) <0.001 0.24 (0.20 to 0.28) <0.001 0.00 (-0.01 to 0.02) 0.72
OSA-18 total score (n = 361) 0.01 (-0.28 to 0.34) 0.95 16.68 (13.00 to 20.47) <0.001 16.69 (13.03 to 20.37) <0.001 0.00 (-0.02 to 0.02) 0.95
AHI (n = 365) 0.00 (-0.01 to 0.01) 0.72 0.21 (0.13 to 0.28) <0.001 0.21 (0.14 to 0.28) <0.001 -0.01 (-0.05 to 0.03) 0.72
PLMSI (n = 365) 0.05 (-0.04 to 0.19) 0.30 0.54 (-0.37 to 1.45) 0.20 0.59 (-0.31 to 1.49) 0.17 0.09 (-0.47 to 0.77) 0.42

The casual mediator was CAP rate. ACME, average causal mediation effect; ADE, average direct effect;
NEPSY, Developmental Neuropsychological Assessment (NEPSY); BRIEF, Behaviour Rating Inventory of
Executive Function; PedsQL, Paediatric Quality of Life Inventory; PSQ-SRBD, Paediatric Sleep Question-
naire sleep-related breathing disorder scale, OSA-18, Obstructive Sleep Apnoea-18 assessment tool; AHI,
Obstructive Apnoea-Hypopnoea Index (AHI) >= 3% - number of [obstructive apnoeas] and [hypopnoeas with
>=3% oxygen desaturation or arousal] per hour of sleep; PLMSI, Number of Periodic limb movement (PLM)
per hour of non-rapid eye movement sleep (NREM).
†The total effect is decomposed into the ACME and ADE.
‡The contribution of the mediated effect as a proportion of the total effect is shown.

Table 5.7. Causal mediation analysis with A1 index as mediator for primary and secondary
outcomes in children with mild-to-moderate OSA.

ACME ADE Total Effect† Proportion Mediated‡

Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p

NEPSY Attention/Executive
Functioning Scaled Score (n = 365)

0.01 (-0.16 to 0.28) 0.82 -1.69 (-4.40 to 1.01) 0.20 -1.69 (-4.41 to 1.05) 0.21 0.00 (-0.41 to 0.29) 0.85

BRIEF Global Executive Composite
Total T Score
Caregiver rating(n = 359) 0.02 (-0.08 to 0.21) 0.73 3.52 (1.74 to 5.25) <0.001 3.54 (1.74 to 5.25) <0.001 0.01 (-0.03 to 0.07) 0.73
Teacher rating (n = 192) 0.10 (-0.21 to 0.68) 0.53 2.78 (-0.50 to 6.34) 0.096 2.89 (-0.49 to 6.59) 0.092 0.04 (-0.21 to 0.46) 0.58
Conners’ Rating Scale Global Index
Total T Score
Caregiver rating (n = 360) 0.00 (-0.16 to 0.20) 0.95 2.66 (0.84 to 4.67) 0.008 2.66 (0.82 to 4.69) 0.008 0.00 (-0.07 to 0.08) 0.95
Teacher rating (n = 195) 0.15 (-0.18 to 0.75) 0.43 4.24 (0.84 to 7.53) 0.014 4.39 (0.94 to 7.81) 0.012 0.03 (-0.07 to 0.22) 0.43
PedsQL caregiver-rated total score
(n = 364)

0.06 (-0.16 to 0.38) 0.59 -5.22 (-8.08 to -2.56) <0.001 -5.16 (-7.99 to -2.54) <0.001 -0.01 (-0.09 to 0.04) 0.59

PSQ-SRBD score (n = 362) 0.00 (-0.00 to 0.00) 0.79 0.24 (0.20 to 0.28) <0.001 0.24 (0.20 to 0.28) <0.001 0.00 (-0.01 to 0.02) 0.79
OSA-18 total score (n = 361) 0.01 (-0.23 to 0.31) 0.92 16.67 (12.93 to 20.23) <0.001 16.69 (12.91 to 20.27) <0.001 0.00 (-0.01 to 0.02) 0.92
AHI (n = 365) 0.00 (-0.01 to 0.01) 0.94 0.21 (0.13 to 0.29) <0.001 0.21 (0.14 to 0.29) <0.001 0.00 (-0.03 to 0.03) 0.94
PLMSI (n = 365) 0.07 (-0.07 to 0.20) 0.41 0.55 (-0.40 to 1.53) 0.26 0.59 (-0.36 to 1.56) 0.22 0.07 (-0.77 to 1.00) 0.49

The casual mediator was A1 index. ACME, average causal mediation effect; ADE, average direct effect;
NEPSY, Developmental Neuropsychological Assessment (NEPSY); BRIEF, Behaviour Rating Inventory of
Executive Function; PedsQL, Paediatric Quality of Life Inventory; PSQ-SRBD, Paediatric Sleep Question-
naire sleep-related breathing disorder scale, OSA-18, Obstructive Sleep Apnoea-18 assessment tool; AHI,
Obstructive Apnoea-Hypopnoea Index (AHI) >= 3% - number of [obstructive apnoeas] and [hypopnoeas with
>=3% oxygen desaturation or arousal] per hour of sleep; PLMSI, Number of Periodic limb movement (PLM)
per hour of non-rapid eye movement sleep (NREM).
†The total effect is decomposed into the ACME and ADE.
‡The contribution of the mediated effect as a proportion of the total effect is shown.
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Table 5.8. Causal mediation analysis with A2+A3 index as mediator for primary and sec-
ondary outcomes in children with mild-to-moderate OSA.

ACME ADE Total Effect† Proportion Mediated‡

Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p

NEPSY Attention/Executive
Functioning Scaled Score (n = 365)

0.11 (-0.12 to 0.50) 0.44 -1.79 (-4.34 to 0.87) 0.17 -1.69 (-4.21 to 0.95) 0.22 -0.06 (-0.97 to 0.97) 0.58

BRIEF Global Executive Composite
Total T Score
Caregiver rating (n = 359) 0.07 (-0.07 to 0.33) 0.36 3.47 (1.67 to 5.20) <0.001 3.54 (1.78 to 5.26) <0.001 0.02 (-0.02 to 0.11) 0.36
Teacher rating (n = 192) -0.27 (-0.98 to 0.25) 0.31 3.16 (-0.30 to 6.54) 0.068 2.89 (-0.36 to 6.29) 0.106 -0.09 (-0.93 to 0.68) 0.40
Conners’ Rating Scale Global Index
Total T Score
Caregiver rating (n = 360) 0.02 (-0.15 to 0.28) 0.81 2.64 (0.63 to 4.84) 0.016 2.66 (0.73 to 4.78) 0.008 0.01 (-0.06 to 0.16) 0.81
Teacher rating (n = 195) -0.10 (-0.75 to 0.43) 0.73 4.49 (1.25 to 8.12) 0.010 4.39 (1.07 to 7.88) 0.01 -0.02 (-0.27 to 0.13) 0.73
PedsQL caregiver-rated total score
(n = 364)

-0.18 (-0.55 to 0.09) 0.24 -4.99 (-7.50 to -2.04) <0.001 -5.16 (-7.78 to -2.14) <0.001 0.03 (-0.02 to 0.13) 0.24

PSQ-SRBD score (n = 362) 0.00 (-0.00 to 0.01) 0.47 0.24 (0.20 to 0.28) <0.001 0.24 (0.21 to 0.28) <0.001 0.01 (-0.01 to 0.03) 0.47
OSA-18 total score (n = 361) 0.01 (-0.28 to 0.58) 0.90 16.68 (12.60 to 20.41) <0.001 16.69 (12.65 to 20.51) <0.001 0.00 (-0.02 to 0.04) 0.90
AHI (n = 365) 0.00 (-0.01 to 0.00) 0.21 0.21 (0.14 to 0.29) <0.001 0.21 (0.13 to 0.28) <0.001 -0.02 (-0.07 to 0.01) 0.21
PLMSI (n = 365) -0.07 (-0.21 to 0.03) 0.20 0.66 (-0.29 to 1.57) 0.19 0.59 (-0.37 to 1.54) 0.24 -0.12 (-1.92 to 1.11) 0.40

The casual mediator was A2+A3 index. ACME, average causal mediation effect; ADE, average direct ef-
fect; NEPSY, Developmental Neuropsychological Assessment (NEPSY); BRIEF, Behaviour Rating Inventory
of Executive Function; PedsQL, Paediatric Quality of Life Inventory; PSQ-SRBD, Paediatric Sleep Question-
naire sleep-related breathing disorder scale, OSA-18, Obstructive Sleep Apnoea-18 assessment tool; AHI,
Obstructive Apnoea-Hypopnoea Index (AHI) >= 3% - number of [obstructive apnoeas] and [hypopnoeas with
>=3% oxygen desaturation or arousal] per hour of sleep; PLMSI, Number of Periodic limb movement (PLM)
per hour of non-rapid eye movement sleep (NREM).
†The total effect is decomposed into the ACME and ADE.
‡The contribution of the mediated effect as a proportion of the total effect is shown.

Table 5.9. Causal mediation analysis with CAP rate as mediator for primary and secondary
outcomes in children with moderate OSA (AHI >10).

ACME ADE Total Effect† Proportion Mediated‡

Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p

NEPSY Attention/Executive
Functioning Scaled Score (n = 72)

-0.09 (-1.31 to 1.21) 0.92 -3.70 (-10.53 to 3.24) 0.24 -3.79 (-10.39 to 3.24) 0.22 0.02 (-0.88 to 0.82) 0.97

BRIEF Global Executive Composite
Total T Score
Caregiver rating (n = 71) 0.14 (-0.48 to 1.48) 0.68 1.98 (-2.69 to 6.03) 0.42 2.12 (-2.28 to 6.15) 0.36 0.07 (-1.44 to 1.50) 0.78
Teacher rating (n = 37) -0.21 (-2.60 to 2.04) 0.84 1.94 (-8.10 to 12.96) 0.68 1.73 (-7.31 to 11.80) 0.67 -0.12 (-2.03 to 1.78) 0.80
Conners’ Rating Scale Global Index
Total T Score
Caregiver rating (n = 71) 0.03 (-0.43 to 0.97) 0.75 1.42 (-2.21 to 5.13) 0.42 1.43 (-2.23 to 5.42) 0.39 0.02 (-1.00 to 1.51) 0.76
Teacher rating (n = 37) -0.41 (-3.46 to 1.71) 0.76 4.07 (-5.10 to 14.16) 0.40 3.66 (-4.69 to 12.69) 0.39 -0.11 (-2.08 to 1.45) 0.67
PedsQL caregiver-rated total score
(n = 72)

-0.10 (-1.72 to 1.01) 0.86 -5.97 (-13.66 to 1.53) 0.11 -6.07 (-13.77 to 1.45) 0.10 0.02 (-0.49 to 0.70) 0.85

PSQ-SRBD score (n = 71) 0.00 (-0.01 to 0.02) 0.83 0.24 (0.15 to 0.32) <0.001 0.25 (0.15 to 0.33) <0.001 0.00 (-0.05 to 0.07) 0.83
OSA-18 total score (n = 71) 0.16 (-0.86 to 2.44) 0.72 19.32 (8.64 to 29.12) <0.001 19.48 (9.22 to 29.52) <0.001 0.01 (-0.06 to 0.15) 0.72
AHI (n = 72) 0.00 (-0.05 to 0.05) 0.96 0.53 (0.27 to 0.81) <0.001 0.53 (0.27 to 0.81) <0.001 0.01 (-0.10 to 0.10) 0.96
PLMSI (n = 72) -0.01 (-0.22 to 0.30) 0.97 -0.18 (-2.07 to 1.55) 0.81 -0.19 (-2.02 to 1.50) 0.82 0.06 (-1.11 to 1.38) 0.89

The casual mediator was CAP rate. ACME, average causal mediation effect; ADE, average direct effect;
NEPSY, Developmental Neuropsychological Assessment (NEPSY); BRIEF, Behaviour Rating Inventory of
Executive Function; PedsQL, Paediatric Quality of Life Inventory; PSQ-SRBD, Paediatric Sleep Question-
naire sleep-related breathing disorder scale, OSA-18, Obstructive Sleep Apnoea-18 assessment tool; AHI,
Obstructive Apnoea-Hypopnoea Index (AHI) >= 3% - number of [obstructive apnoeas] and [hypopnoeas with
>=3% oxygen desaturation or arousal] per hour of sleep; PLMSI, Number of Periodic limb movement (PLM)
per hour of non-rapid eye movement sleep (NREM).
†The total effect is decomposed into the ACME and ADE.
‡The contribution of the mediated effect as a proportion of the total effect is shown.
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Table 5.10. Causal mediation analysis with A1 index as mediator for primary and secondary
outcomes in children with moderate OSA (AHI >10).

ACME ADE Total Effect† Proportion Mediated‡

Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p

NEPSY Attention/Executive
Functioning Scaled Score (n = 72)

-0.04 (-1.27 to 0.93) 0.98 -3.75 (-11.12 to 3.05) 0.23 -3.79 (-11.17 to 2.51) 0.21 0.01 (-0.53 to 1.04) 0.97

BRIEF Global Executive Composite
Total T Score
Caregiver rating (n = 71) 0.09 (-0.61 to 1.17) 0.79 2.03 (-2.77 to 6.65) 0.45 2.12 (-2.37 to 6.63) 0.39 0.04 (-1.31 to 1.25) 0.87
Teacher rating (n = 37) -0.54 (-3.59 to 1.52) 0.64 2.27 (-7.65 to 13.41) 0.63 1.73 (-7.56 to 12.12) 0.68 -0.31 (-2.97 to 1.69) 0.73
Conners’ Rating Scale Global Index
Total T Score
Caregiver rating (n = 71) -0.01 (-0.51 to 0.77) 0.83 1.45 (-2.47 to 5.13) 0.45 1.43 (-2.56 to 5.19) 0.44 -0.01 (-1.26 to 1.04) 0.86
Teacher rating (n = 37) 0.58 (-3.90 to 1.53) 0.65 4.24 (-4.26 to 14.15) 0.34 3.66 (-4.11 to 12.56) 0.35 -0.16 (-1.99 to 1.29) 0.62
PedsQL caregiver-rated total score
(n = 72)

-0.05 (-1.54 to 1.12) 0.89 -6.02 (-13.99 to 1.40) 0.11 -6.07 (-13.98 to 1.31) 0.098 0.01 (-0.56 to 0.57) 0.88

PSQ-SRBD score (n = 71) 0.00 (-0.01 to 0.02) 0.96 0.25 (0.17 to 0.33) <0.001 0.25 (0.16 to 0.33) <0.001 0.00 (-0.06 to 0.07) 0.96
OSA-18 total score (n = 71) 0.11 (-1.09 to 2.65) 0.83 19.37 (9.40 to 29.73) <0.001 19.48 (9.72 to 29.90) <0.001 0.01 (-0.07 to 0.16) 0.83
AHI (n = 72) 0.00 (-0.05 to 0.04) 0.96 0.53 (0.27 to 0.80) <0.001 0.53 (0.27 to 0.80) <0.001 0.00 (-0.12 to 0.09) 0.96
PLMSI (n = 72) -0.01 (-0.23 to 0.25) 0.97 -0.18 (-1.88 to 1.47) 0.82 -0.19 (-1.78 to 1.45) 0.82 0.04 (-1.35 to 1.04) 0.94

The casual mediator was A1 index. ACME, average causal mediation effect; ADE, average direct effect;
NEPSY, Developmental Neuropsychological Assessment (NEPSY); BRIEF, Behaviour Rating Inventory of
Executive Function; PedsQL, Paediatric Quality of Life Inventory; PSQ-SRBD, Paediatric Sleep Question-
naire sleep-related breathing disorder scale, OSA-18, Obstructive Sleep Apnoea-18 assessment tool; AHI,
Obstructive Apnoea-Hypopnoea Index (AHI) >= 3% - number of [obstructive apnoeas] and [hypopnoeas with
>=3% oxygen desaturation or arousal] per hour of sleep; PLMSI, Number of Periodic limb movement (PLM)
per hour of non-rapid eye movement sleep (NREM).
†The total effect is decomposed into the ACME and ADE.
‡The contribution of the mediated effect as a proportion of the total effect is shown.

Table 5.11. Causal mediation analysis with A2+A3 index as mediator for primary and sec-
ondary outcomes in children with moderate OSA (AHI >10).

ACME ADE Total Effect† Proportion Mediated‡

Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p Mean Estimate (95% CI) p

NEPSY Attention/Executive
Functioning Scaled Score (n = 72)

0.14 (-1.05 to 1.80) 0.78 -3.93 (-10.72 to 2.80) 0.25 -3.79 (-10.68 to 2.87) 0.28 -0.04 (-1.57 to 1.27) 0.85

BRIEF Global Executive Composite
Total T Score
Caregiver rating (n = 71) 0.14 (-0.66 to 1.41) 0.66 1.98 (-2.66 to 6.18) 0.46 2.12 (-2.24 to 6.59) 0.40 0.07 (-1.27 to 1.94) 0.73
Teacher rating (n = 37) -0.01 (-1.60 to 1.96) 0.99 1.73 (-7.67 to 12.74) 0.67 1.73 (-7.20 to 12.03) 0.67 0.00 (-1.45 to 1.22) 0.95
Conners’ Rating Scale Global Index
Total T Score
Caregiver rating (n = 71) 0.32 (-0.36 to 1.87) 0.47 1.11 (-2.98 to 4.91) 0.61 1.43 (-2.32 to 5.51) 0.49 0.22 (-2.18 to 2.60) 0.67
Teacher rating (n = 37) 0.04 (-2.19 to 2.22) 0.96 3.61 (-5.12 to 12.64) 0.38 3.66 (-4.46 to 12.60) 0.38 0.01 (-1.38 to 2.17) 1.00
PedsQL caregiver-rated total score
(n = 72)

0.28 (-0.90 to 1.96) 0.64 -6.35 (-14.00 to 1.42) 0.11 -6.07 (-13.60 to 1.20) 0.12 -0.05 (-0.73 to 0.50) 0.66

PSQ-SRBD score (n = 71) 0.00 (-0.02 to 0.01) 0.99 0.25 (0.17 to 0.33) <0.001 0.25 (0.17 to 0.33) <0.001 0.00 (-0.06 to 0.07) 0.99
OSA-18 total score (n = 71) -0.15 (-1.80 to 1.90) 0.94 19.63 (9.47 to 30.11) <0.001 19.48 (9.81 to 29.78) <0.001 -0.01 (-0.10 to 0.11) 0.94
AHI (n = 72) 0.00 (-0.05 to 0.08) 0.87 0.53 (0.27 to 0.81) <0.001 0.53 (0.29 to 0.80) <0.001 0.00 (-0.10 to 0.17) 0.87
PLMSI (n = 72) -0.07 (-0.21 to 0.03) 0.20 0.66 (-0.29 to 1.57) 0.19 0.59 (-0.37 to 1.54) 0.24 -0.12 (-1.92 to 1.11) 0.40

The casual mediator was A2+A3 index. ACME, average causal mediation effect; ADE, average direct ef-
fect; NEPSY, Developmental Neuropsychological Assessment (NEPSY); BRIEF, Behaviour Rating Inventory
of Executive Function; PedsQL, Paediatric Quality of Life Inventory; PSQ-SRBD, Paediatric Sleep Question-
naire sleep-related breathing disorder scale, OSA-18, Obstructive Sleep Apnoea-18 assessment tool; AHI,
Obstructive Apnoea-Hypopnoea Index (AHI) >= 3% - number of [obstructive apnoeas] and [hypopnoeas with
>=3% oxygen desaturation or arousal] per hour of sleep; PLMSI, Number of Periodic limb movement (PLM)
per hour of non-rapid eye movement sleep (NREM).
†The total effect is decomposed into the ACME and ADE.
‡The contribution of the mediated effect as a proportion of the total effect is shown.

Page 98



6

Paper IV

Causality of cortical and cardiovascular

activity during cyclic alternating pattern

in non-rapid eye movement sleep

The content of this chapter is a modified version of the publication:

Hartmann, S., Ferri, R., Bruni, O. and Baumert, M. (2021), ‘Causality of cortical and cardio-

vascular activity during cyclic alternating pattern in non-rapid eye movement sleep’, Philo-

sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences 379:20200248.
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6.1 Background

Abstract

The dynamic interplay between central and autonomic nervous system activi-

ties plays a pivotal role in orchestrating sleep. Macrostructural changes such as

sleep stage transitions or phasic, brief cortical events elicit fluctuations in neu-

ral outflow to the cardiovascular system, but the causal relationships between

cortical and cardiovascular activities, underpinning the microstructure of sleep

are largely unknown. Here, we investigate cortical–cardiovascular interactions

during the cyclic alternating pattern (CAP) of non-rapid eye movement sleep in a

diverse set of overnight polysomnograms. We determine the Granger causality

in both 507 CAP and 507 matched non-CAP sequences to assess the causal re-

lationships between electroencephalography (EEG) frequency bands, and res-

piratory, and cardiovascular variables (heart period, respiratory period, pulse

arrival time, and pulse wave amplitude) during CAP. We observe a significantly

stronger influence of delta activity on vascular variables during CAP sequences

where slow, low-amplitude EEG activation phases (A1) dominate than during

non-CAP sequences. We also show that rapid, high-amplitude EEG activation

phases (A3) provoke a more pronounced change in autonomic activity than A1

and A2-phases. Our analysis provides the first evidence on the causal inter-

play between cortical and cardiovascular activities during CAP. Granger causal-

ity analysis may also be useful for probing the level of decoupling in sleep disor-

ders.

6.1 Background

Sleep is a state of reduced consciousness that serves several purposes, including en-

ergy conservation, metabolic brain waste clearance, modulation of immune responses,

memory consolidation and re-consolidation and preservation of mental well-being (Zielin-

ski et al., 2016). During sleep, the body is kept in homeostasis (Benington, 2000); cortical

and subcortical brain structures display rich dynamics orchestrating an array of physiolog-

ical processes that affect the neural outflow to the cardiovascular system, among other

things (de Zambotti et al., 2018). External triggers may perturb the cardiovascular sys-

tem and, along with interoceptive processes, information may be relayed back to the brain,
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forming complex closed-loop control systems (Silvani et al., 2015; Silvani and Dampney,

2013). Traditionally, sleep is primarily scored by evaluating electroencephalography (EEG)

activity, while chin muscle tone and eye movement may be added to distinguish rapid eye

movement (REM) from non-REM (NREM) sleep (Rechtschaffen and Kales, 1968). The

former is characterised by random rapid movements of the eyes while the latter exhibits

three distinct stages that cover the transitions from high neuronal activity during light sleep

to quiescence during deep sleep (Iber et al., 2007). During REM sleep, the sympathetic

activity intensifies but declines again below the level of wakefulness after transitioning to

NREM sleep (Somers et al., 1993; Trinder et al., 2001a), causing hypotension and brady-

cardia (Mancia, 1993). The close relationship between the central nervous system (CNS)

activity and autonomic nervous system (ANS) activity during sleep is also apparent during

phasic, transient events such as arousals or K-complexes (de Zambotti et al., 2018). Both

heart rate and blood pressure are easily accessible markers of ANS activity and rise rapidly

after the onset of sleep arousal, which is defined as the rapid shift from slow EEG waves to

high frequencies in the α or β band (Silvani et al., 2015; Trinder et al., 2003). K-complexes

that are defined as synchronised phasic events principally found in the thalamocortical cir-

cuitry (Amzica and Steriade, 2002) demonstrate a biphasic pattern in the cardiac response

highlighting the association between the CNS and ANS (de Zambotti et al., 2016).

A more comprehensive approach describing transient, phasic perturbations during sleep is

the cyclic alternating pattern (CAP) analysis. CAP consists of periodically recurring arousal-

related phasic events called activation phases (A-phases) that interrupt the slow cortical

activity of NREM sleep. CAP is defined as a sequence of at least two consecutive cycles

of an A-phase and the following background period (B-phase) terminated by an A-phase

that is considered to be non-CAP (Terzano et al., 2001). By definition, A- and B-phases

are restricted to intervals of 2-60 s. Typical patterns of A-phases include δ bursts, vertex

sharp transients, K-complex sequences, K-alpha, polyphasic bursts, intermittent alpha, and

arousals (Terzano et al., 2001). A-phases can be categorised into three subtypes based

on their dominant frequency component and EEG synchrony (Terzano and Parrino, 2000).

Subtype A1 represents high-voltage, slow waves with high EEG synchrony. On the contrary,

A3 subtypes display low-amplitude, fast rhythms with low EEG synchrony. Subtype A2 is

defined as a mixture of both but is often merged with A3 into one subtype (A2+3) because

of their congruent nature (Smerieri et al., 2007).

CAP is an important indicator of NREM-sleep instability (Parrino et al., 2012). CAP com-

bines information on CNS and ANS activity. CAP sequences represent continuing arousal
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Figure 6.1. Schematic illustration of cortical and cardiovascular coupling investigated during
cyclic alternating pattern (CAP) activation phases (A-phase).. Schematic illustra-
tion of cortical and cardiovascular coupling investigated during cyclic alternating pattern
(CAP) activation phases (A-phase). EEG, electroencephalography; ECG, electrocardio-
graphy; PPG, photoplethysmography; EDR, electrocardiogram-derived respiration.

oscillations (Terzano et al., 1988), including the activating effect on the ANS such as heart

rate and blood pressure (Kondo et al., 2014), whereas non-CAP periods display sustained

stability between the CNS and ANS (Parrino et al., 2016). Several studies have assessed

the relationship between CAP and cardiovascular dynamics. Ferini-Strambi et al. (2000) re-

ported a significantly increased low-frequency component and significantly decreased high-

frequency component of heart rate variability (HRV) during CAP compared with non-CAP

in 10 healthy subjects. A study by Ferri et al. (2000) of six normal children and adolescents

supports the findings of altered sympathovagal balance. In their studies on HRV during

CAP in healthy subjects and patients with nocturnal front lobe epilepsy (NFLE), Dorantes-

Méndez et al. (2018) demonstrated a comparable significant shift towards the low-frequency

components of HRV with a more pronounced shift in A3-phases than in A1- and A2-phases.

Furthermore, a study on the relation between EEG changes defined by A-phases and the

pulse wave amplitude (PWA) after airway obstruction in patients with obstructive sleep

apnoea demonstrates a significant correlation between respiratory events combined with
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A-phases and respiratory events combined with PWA drops (Bosi et al., 2018). In sum-

mary, these findings indicate significant sympathetic activity alterations underpinning the

microstructure of sleep.

Physiological signals recorded non-invasive during sleep can be easily exploited to capture

the coupling between cortical and autonomic activations. The signal-processing methods

used to quantify these relationships range from multivariate linear and non-linear techniques

to entropy and information dynamics-based approaches (Pereda et al., 2005). Most stud-

ies investigate either the coupling between variables of autonomic functions such as HRV

and blood pressure (Silvani et al., 2008) or the interactions between the cortical and au-

tonomic variables such as EEG frequency bands and HRV (Jurysta et al., 2003). Faes et

al. used a wide spectrum of methods ranging from Wiener-Granger causality (GC) analy-

sis (Faes et al., 2014b) to linear and non-linear models (Faes et al., 2015) to an information-

theoretic approach (Faes et al., 2014a) to reveal causal interactions between brain–brain

and brain–heart nodes during sleep. Novel methods use non-linear convergent cross map-

ping (Schiecke et al., 2019) or the maximum information coefficient in combination with

synthetic data generation models (Catrambone et al., 2019) to investigate the brain–heart

interplay. Recently, the field of network physiology emerged with the objective of provid-

ing new insights into the dynamic interactions between multiple subsystems of the CNS

and ANS (Ivanov et al., 2016; Bashan et al., 2012). This involves assembling hierarchical

organisations for various physiological states based on the network interactions between

brain waves and organs (Bartsch et al., 2015).

In this work, we report on causal relationships between cortical events defined by CAP

and autonomic cardiovascular control; see Figure 6.1. We determine brain activity using

the energy in five EEG frequency bands and track autonomic activity changes based on

electrocardiogram-derived respiration (EDR), heart period (HP), pulse arrival time (PAT),

and PWA, the last two being closely related to arterial blood pressure changes. We use

GC differences in cortical–cardiovascular interactions during CAP sequences with predom-

inantly A1-, A2- or A3-phases in comparison with non-CAP sequences.
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6.2 Materials and methods

6.2.1 Database

We utilised data from the publicly available CAP Sleep Database on PhysioNet (Terzano et al.,

2001; Goldberger et al., 2000), which comprises 108 polysomnographic recordings con-

ducted at the Sleep Disorders Center of the Ospedale Maggiore of Parma, Italy. Each

recording contains at least three EEG channels, two electromyography (EMG) channels,

respiration signals, and one electrocardiogram (ECG). Annotation files contain the scor-

ing performed by expert neurologists, comprising sleep stages and CAP events according

to the Rechtschaffen & Kales (Rechtschaffen and Kales, 1968) rules and the atlas of CAP

scoring (Terzano et al., 2001), respectively. The dataset consists of recordings of 16 healthy

subjects and 92 patients, including 40 subjects with NFLE (nfle), 22 with REM behaviour

disorder (rbd), 10 with periodic leg movement (plm), 9 with insomnia (ins), 5 with narcolepsy

(narco), 4 with sleep-disordered breathing (sdb), and 2 with bruxism (brux).

For our analysis, we selected recordings containing one central EEG channel (C4-A1), one

ECG channel, and one photoplethysmography (PPG) channel. The signal quality was re-

viewed, and recordings with bad signal quality based on clipping and signal-to-noise ratio

were manually removed to achieve congruent results. As a result, 55 patients were se-

lected for our analysis (3 healthy, 4 ins, 3 narco, 28 nfle, 7 plm, 10 rbd). The included

subjects were 43.3 ± 19.5 years old at the time of the recording with 40% being female.

From each recording, we extracted the first three A-phases of each CAP sequence plus the

preceding 30 seconds and the successive 10 seconds. If the fourth A-phase was located

within the subsequent 10-second period, the sequence was removed. Furthermore, if the

ECG channel or PPG channel segments were corrupted because of motion artefacts, the

sequence was manually removed. For each CAP sequence, a complementary non-CAP

sequence of identical length and in the same sleep stage was extracted. In total, 507 se-

quences were extracted: 350 sequences with predominantly A1-phases, 78 sequences with

predominantly A2-phases, and 79 sequences with predominantly A3-phases. On average,

each subject contributed 9.2 ± 5.4 valid sequences to the analysis. An example of a CAP

sequence is displayed on the left side in Figure 6.2.
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6.2.2 Signal processing

For each CAP and non-CAP sequence, we computed the EDR, HP, PAT, and PWA using

ECG and PPG. Prior to signal extraction, ECG and PPG were bandpass filtered using a

finite impulse response (FIR) with a filter order of 20 and cut-off frequencies at 5–40 Hz and

0.5–20 Hz, respectively. Because of missing thoracic or abdominal signals in the majority

of selected subjects, we derived the respiratory waveform from ECG using the peak-to-

trough QRS amplitude (Babaeizadeh et al., 2011). Subsequently, we removed outliers that

were outside the range of mean value ± 2 SD in a sliding, non-overlapping 30-second

window. The continuous EDR signal was computed using cubic spline interpolation with an

interpolation interval of 0.25 s.

We defined HP as the R–R interval representing the time between two consecutive R peaks.

We used the Pan-Tompkins algorithm for detection of R peaks in the ECG (Pan and Tomp-

kins, 1985). The timing of each R peak and the time gap between R peaks were subse-

quently used to determine the continuous HP signal using cubic spline interpolation with an

interpolation interval of 0.25 s.

PAT quantifies the time a pulse wave takes from the heart to reach a distal site, mostly the

fingertip. Commonly, the R peak in the ECG is selected as an approximation of the start,

and the systolic peak in PPG is chosen as the end of the interval (Elgendi et al., 2019). Here,

we used the R peak and the time the PPG reaches 2/3 of the systolic peak as references

for the calculation of PAT because a fiducial mark closer to half of the systolic upstroke is

clinically more relevant as it portrays the start point of the pulse wave propagation across

the artery (Liang et al., 2019). A continuous PAT signal was created by interpolating the

discrete values of the time period between each R peak and its corresponding reference at

the PPG waveform using cubic splines and an interpolation interval of 0.25 s.

We defined PWA as the amplitude difference between the systolic peak and its diastolic

base in each pulse wave (Liu et al., 2019). The upper envelope representing the systolic

peaks was calculated using peak detection in a time span of 1/16 s and cubic spline interpo-

lation with an interpolation interval of 0.25 s. The same approach was applied to determine

the lower envelope. Consequently, we computed PWA as the difference between the upper

and lower envelope and normalised it.

To capture cortical activity, we computed the energy in five EEG frequency bands: δ (0.5-4

Hz), θ (4-8 Hz), α (8-12 Hz), σ (12-16 Hz), and β (16-25 Hz). Two-way least-squares finite

impulse response (FIR) filtering with a filter order of 3*(sample rate/low cut-off frequency)
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Figure 6.2. Example of a cyclic alternating pattern (CAP) sequence. Example of a cyclic al-
ternating pattern (CAP) sequence in the electroencephalogram (EEG) of subject plm9
including two A2-phases and one A3-phase plus the preceding 30 seconds and the sub-
sequent 10 seconds (left side). The algorithms to determine electrocardiogram-derived
respiration (EDR), heart period (HP), pulse arrival time (PAT), and pulse wave amplitude
(PWA) in electrocardiography (ECG) and photoplethysmography (PPG) are illustrated
on the right-hand side. EDR is determined based on the QRS amplitude, whereas HP
is derived from the R–R interval. PAT 3 is computed as the period from the R peak to
two-thirds 2 of the systolic upstroke 1 . PWA is defined as the amplitude difference
4 between the upper and lower envelope of the PPG and the subsequently normalised

value 5

was used to decompose the EEG into its bands. The band energy for each sequence

was defined as the sum of the squared magnitudes using non-overlapping windows of 0.25

s. All autonomic function and EEG variables were computed using a sample rate of 4Hz.

Furthermore, the autonomic variables were filtered using a bandpass filter with cut-off fre-

quencies at 0.08 Hz and 0.4 Hz. Figure 6.2 illustrates the algorithms used to extract the

aforementioned variables.
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Moreover, we plotted the ten seconds after plus the five seconds before each onset of the

first A-phase in each extracted sequence to analyse the dynamic changes in brain and

cardiovascular activity. For each variable we used the average of a 5-second time window

before the start of the plot as a reference. We selected only the first A-phase of each CAP

sequence to prevent any long-lasting influence of preceding A-phases.

6.2.3 Granger causality

The GC was proposed by N. Wiener in 1956 and later formalised by C. W. J. Granger

(Granger, 1969). It is a very powerful and popular tool to estimate causal relationships

and the directions of information propagation between the time series of a multivariate set.

Over the years GC has been extended to improve the accuracy of the causality prediction,

including information and frequency domain methods (Porta and Faes, 2016). Time series

Xi is called the Granger cause to time seriesXj if the prediction ofXj significantly improves

in case the history of Xi is included (Bressler and Seth, 2011).

Suppose X is a multivariate stochastic process with M scalar time series X1, ..., XM . Tra-

ditional GC analysis uses a vector autoregressive model (VAR) with a time lag of P

X(n) =
P
∑

k=1
A(k)X(n− k) + �(n), (6.1)

where X(n) = [X1(n)...XM (n)]T contains the discrete samples of each time series at the

time instant n, A(k) are M ×M coefficient matrices, and � are the residuals. In the first

step of GC calculation, the VAR model in Equation 6.1 is fitted to Xj including the history

of all time series in X. The representation of the fitted VAR model with a time lag of P is

given by

Xj(n) =
P
∑

k=1
Aj(k)X(n− k) + �j(n), (6.2)

where Aj(k) is the coefficient matrix for time series Xj . In the next step, the VAR model

in Equation 6.1 is fitted to Xj including the history of all time series in X except Xi. The

resulting model estimates the contribution of Xi to the prediction of Xj :

Xj(n) =
P
∑

k=1
A∗j (k)X∕Xi(n− k) + �

∗
j (n), (6.3)
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whereX∕Xi is the vector process without Xi, A∗j contains the model coefficients, and �∗j are

the model residuals. Both A∗j and �∗j are in general different from Aj(k) and �j in Equation

6.2. Hence, the GC from Xi to Xj is defined as

GCXi→Xj = ln
var(�∗j (n))

var(�j(n))
, (6.4)

where �∗j (n) and �j(n) are the prediction errors and the var(⋅) operator is the statistical

variance. GCXi→Xj is always positive and only describes the causal effects Xi → Xj , which

are independent from any other time series and from the reversed relationship Xj → Xi.

In this study, X contained the signals described in section 6.2.2. For each sequence,

the back and forth GC from every EEG frequency band to EDR, HP, PAT, and PWA was

calculated. Also, the GC between EDR, HP, PAT, and PWA was computed.

For our analysis, we used the MATLAB® toolbox developed by Schiatti et al. (2015). We

decided to use the traditional GC method provided in the toolbox instead of the extended

GC method as instantaneous causal relations are not expected in our analysis. The model

order was selected according to the Bayesian information criterion (BIC) within the range

1-20, minimizing the BIC figure of merit.

6.2.4 Statistical methods

We conducted Wilcoxon signed-rank tests to determine significant differences in GC be-

tween CAP and non-CAP segments (significance level: p < 0.01). Moreover, we assessed

statistically significant non-zero GC values by comparing �∗j (n) and �j(n) using the Fisher

F-test (significance level: p < 0.01) (Porta et al., 2012). Prior to the F-test, we verified that

the requirement of a normal distribution is given by conducting the Kolmogorov-Smirnov

test. In case the distribution was non-normal, we transformed the non-normally distributed

data using Box-Cox transformation.
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6.3 Results

6.3.1 A-phase onset analysis

The changes in brain activity and autonomic variables before and after the first A-phase on-

set in each CAP sequence are summarized in Figures 6.3, 6.4, and 6.5, respectively. Fig-

ure 6.3 contains the plots for CAP sequences starting with an A1-phase (350 sequences)

whereas Figure 6.4 and 6.5 illustrate the course of change for CAP sequences starting

with an A2 or A3-phase, respectively (78 and 79 sequences, respectively). For each CAP

sequence we extracted an equivalent non-CAP segment to compare the physiological be-

haviour between CAP and non-CAP periods.

After the onset of the first A1-phase in a CAP sequence, δ energy demonstrates a steep

incline (highest median: 229.5% at 1.25 s after onset) whereas δ activity in non-CAP se-

quences remains stable across the time window. Differences in energy after the onset of

an A1-phase can also be seen in the θ band (highest median: 96.5% at 0.50 s after onset).

PWA indicates a change after the A1-phase onset as compared with non-CAP periods with

a steady decline to -43.1% at 8.00 s. PAT displays a similar behaviour, reaching its valley at

7.25 s (-1.0%), whereas HP appears to start declining before the onset and reaches its min-

imum earlier than PWA and PAT (lowest median: -2.2% at 2.75 s before onset). No changes

in autonomic cardiovascular activation can be seen in non-CAP periods. Respiration does

not display notable changes.

Similar patterns in the EEG frequency bands can be seen after the onset of A2-phases

(highest median for δ: 591.3% at 0.50 s after onset) but with more energy distributed in the

θ and α frequency bands compared with A1-phases (highest median for θ: 177.0% at 0.25

s after onset, the highest median for α: 118.4% at 0.25 s after onset). All cardiovascular

variables declined following the onset of an A2-phase, whereas they remain stable in non-

CAP sequences. HP reaches its valley of -3.2% at 4.25 s after onset whereas PAT and

PWA steadily decline to -1.4% and -112.7%, respectively, at 7.50 s and 8.50 s, respectively.

In line with A1- and A2-phases, δ energy demonstrates the highest increase among the

EEG frequency bands after the onset of the first A3-phase (highest median for δ: 300.9%

at 0.50 s after onset). Among high-frequency bands, the increase in energy is reasonably

evenly distributed (71.9–123.5%), but β energy displays a delayed peak at 1.25 s. No

substantial changes in any frequency band occur during non-CAP sequences across the

time window (-13.9%–15.4%). The three cardiovascular variables have a more pronounced

decline following the onset of an A3-phase as compared to the other two subtypes; in
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Figure 6.3. Summary of relative changes in electroencephalography (EEG) frequency bands
and autonomic functions after the A1-phase onset. Summary of relative changes in
electroencephalography (EEG) frequency bands and autonomic functions (heart period
(HP), pulse arrival time (PAT), pulse wave amplitude (PWA), and electrocardiogram-
derived respiratory (EDR)) after the onset of an A1-phase initiating a cyclic alternating
pattern (CAP) sequence as compared with non-CAP periods. Each plot displays the
median and the 25th and 75th percentiles of 350 A1-phases.

particular, PWA demonstrates a steep decline with a minimum of -190.4% at 8.25 s. Further,

HP and PAT reach their valleys of -3.8% and -2.3%, respectively, at 4.25 s and 7.75 s,

respectively.

6.3.2 Causality analysis

Figures 6.6, 6.7, and 6.8 display the results of the GC analysis for CAP sequences where

A1-phases dominate (350 sequences with at least two A1-phases), sequences where A2-

phases dominate (78 sequences with at least two A2-phases), and sequences where A3-

phases dominate (79 sequences with at least two A3-phases).

During CAP sequences with predominant A1-phases, cortical activity appears to have a

more pronounced causal impact on the autonomic activity than the reverse direction. In
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Figure 6.4. Summary of relative changes in electroencephalography (EEG) frequency bands
and autonomic functions after the A2-phase onset. Summary of relative changes in
electroencephalography (EEG) frequency bands and autonomic functions (heart period
(HP), pulse arrival time (PAT), pulse wave amplitude (PWA), and electrocardiogram-
derived respiratory (EDR)) after the onset of an A2-phase initiating a cyclic alternating
pattern (CAP) sequence as compared with non-CAP periods. Each plot displays the
median and the 25th and 75th percentiles of 78 A2-phases.

particular, δ activity plays a major role in CAP sequences with predominantly A1-phases

as it demonstrates a high GC value throughout all nodes. Figure 6.6 shows a significantly

higher δ → PAT and δ → PWA interaction during CAP periods than during non-CAP

periods (p<0.001). A larger number of δ → PAT and δ → PWA GC connections were

statistically significant in CAP sequences with predominantly A1-phases than in non-CAP

segments (δ → PAT: 27% in CAP vs. 21% in non-CAP, δ → PWA: 41% in CAP vs.

29% in non-CAP). Additionally, PAT appears to be significantly more influenced by θ and

σ during CAP segments than during non-CAP segments (p<0.001), with 29% and 29%,

respectively, of the sequences indicating a significant GC connection (non-CAP: 19% and

23%, respectively).

Figure 6.7 displays the relation between cortical activity and autonomic activity for CAP pe-

riods with predominantly A2-phases. Similar to sequences with predominantly A1-phases,
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Figure 6.5. Summary of relative changes in electroencephalography (EEG) frequency bands
and autonomic functions after the A3-phase onset. Summary of relative changes in
electroencephalography (EEG) frequency bands and autonomic functions (heart period
(HP), pulse arrival time (PAT), pulse wave amplitude (PWA), and electrocardiogram-
derived respiratory (EDR)) after the onset of an A3-phase initiating a cyclic alternating
pattern (CAP) sequence as compared with non-CAP periods. Each plot displays the
median and the 25th and 75th percentiles of 79 A3-phases.

cortical activity appears to have a more substantial impact on autonomic activity than vice

versa. Of note, Figure 6.7 shows a significant difference for the α → PWA interactions dur-

ing CAP periods with predominantly A2-phases than during non-CAP periods (p=0.008),

where approximately one-third of all α → PWA interactions in CAP sequences demon-

strated a significant non-zero GC (non-CAP: 17%). No further significant differences be-

tween CAP periods with predominantly A2-phases and non-CAP were found.

On the contrary, autonomic activity appears to have a stronger causal impact on cortical ac-

tivity during CAP sequences with predominantly A3-phases than vice versa. Figure 6.8 dis-

plays a significantly higher PWA→ β interaction during CAP periods than during non-CAP

periods (p<0.001). Approximately one-quarter of all sequences demonstrated a significant

non-zero GC value for PWA → β connections during CAP sequences with predominantly

A3-phases, as compared with 11% during non-CAP periods.
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Figure 6.6. Graph of Wiener-Granger causality (GC) interactions between cortical–cardio-
vascular and cardiovascular–cardiovascular nodes during A1-phases. Graph
of Wiener-Granger causality (GC) interactions between cortical–cardiovascular and
cardiovascular–cardiovascular nodes. GC values for cyclic alternating pattern (CAP) se-
quences with predominantly A1-phases are shown on the left, GC values for equivalent
non-CAP periods are shown on the right. Each connection displays the GC value aver-
aged across all 350 sequences. Connections in green represent cortical-cardiovascular
coupling and connections in blue describe cardiovascular-cardiovascular coupling. Con-
nections highlighted in red demonstrate a significant difference in GC between CAP and
non-CAP at a significance level of p < 0.01. HP, heart period; PAT, pulse arrival time;
PWA, pulse wave amplitude; EDR, electrocardiogram-derived respiration

6.4 Discussion

In this study, we show that short bursts of cortical δ activity reflected by A1-phases cause

an increase in vascular activity during sleep, which is likely to provoke a surge in arterial

blood pressure. This suggests that A1-phases represent cortical events that, importantly,

are not covered by the conventional American Sleep Disorders Association (ASDA) arousal

definition (ASDA, 1992) but are responsible for arousal-like autonomic activations. Rapid,

low-amplitude events defined as A3-phases appear to be preceded by increased autonomic

activity. Moreover, a more pronounced impact on autonomic functions can be seen during

A3-phases as compared to the other two subtypes.
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Figure 6.7. Graph of Wiener-Granger causality (GC) interactions between cortical–cardio-
vascular and cardiovascular–cardiovascular nodes during A2-phases. Graph
of Wiener-Granger causality (GC) interactions between cortical–cardiovascular and
cardiovascular–cardiovascular nodes. GC values for cyclic alternating pattern (CAP) se-
quences with predominantly A2-phases are shown on the left, GC values for equivalent
non-CAP periods are shown on the right. Each connection displays the GC value aver-
aged across all 78 sequences. Connections in green represent cortical-cardiovascular
coupling and connections in blue describe cardiovascular-cardiovascular coupling. Con-
nections highlighted in red demonstrate a significant difference in GC between CAP and
non-CAP at a significance level of p < 0.01. HP, heart period; PAT, pulse arrival time;
PWA, pulse wave amplitude; EDR, electrocardiogram-derived respiration

Ensemble-average analysis of the onset of the initial A-phase in CAP sequences reveals

a sudden increase in δ and θ activity during A1-phases. At the onset of A3-phases, all

frequency bands display elevated energy levels with δ and θ activity rising prior to the

onset of the A3-phase, whereas β activity peaks later during the A3-phase. This is in

agreement with the CAP atlas (Terzano et al., 2001), which specifies A1-phases as rhythms

with more than 80% slow-wave activity whereas A3-phases contain a higher percentage of

fast rhythms but with 50% of slow-wave activity at the beginning of the A-phase. Also, our

analysis demonstrates a more pronounced effect on autonomic variables after the onset of

A3-phases as compared to A1- and A2-phases. The minimum of HP and PWA after the

onset of an A3-phase is substantially lower than after an A1-phase (HP: -2.2% after A1 vs.

-3.8% after A3, PWA: -43.1% after A1 vs. -190.4% after A3) and PAT displays a slightly
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Figure 6.8. Graph of Wiener-Granger causality (GC) interactions between cortical–cardio-
vascular and cardiovascular–cardiovascular nodes during A3-phases. Graph
of Wiener-Granger causality (GC) interactions between cortical–cardiovascular and
cardiovascular–cardiovascular nodes. GC values for cyclic alternating pattern (CAP) se-
quences with predominantly A3-phases are shown on the left, GC values for equivalent
non-CAP periods are shown on the right. Each connection displays the GC value aver-
aged across all 79 sequences. Connections in green represent cortical-cardiovascular
coupling and connections in blue describe cardiovascular-cardiovascular coupling. Con-
nections highlighted in red demonstrate a significant difference in GC between CAP and
non-CAP at a significance level of p < 0.01. HP, heart period; PAT, pulse arrival time;
PWA, pulse wave amplitude; EDR, electrocardiogram-derived respiration

lower minimum for A3-phases (PAT: -1.0% after A1 vs. -2.3% after A3). This supports the

findings of previous studies (Gonzalez-Salazar et al., 2014; Dorantes-Méndez et al., 2018)

and is in line with the original definition of A-phases.

As A1-phases are defined in the CAP atlas as arousal equivalents and comprise K-complexes

and δ bursts (Terzano et al., 2001), they can be categorised as subcortical or autonomic

arousals. Sforza et al. showed in their study that δ bursts and K-complexes induce similar

arousal responses as microarousals or phases of transitory activation (Sforza et al., 2000).

However, the latter arousal types show an increase in heart rate prior to the arousal onset,

whereas the increase in heart rate for δ bursts and K-complexes appeared with a short

latency. Our results corroborate these findings and demonstrate a clear causal connection

between the δ activity in A1-phases and the preceding sympathetic activation. In 27% and
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41%, respectively, of the 350 CAP sequences with at least two A1-phases, the shift in δ

energy most likely Granger-causes a surge in blood pressure, resulting in a shorter PAT

and a drop in PWA, respectively. Consequently, our findings provide further evidence that

A1-phases are closely linked to an increase in sympathetic activity. However, the impact

on autonomic functioning is less pronounced than for A3-phases, which can be assumed to

represent conventional arousals in this case (Hartmann et al., 2020).

Additionally, our GC analysis reveals a significant difference in the PWA → β interaction

during CAP periods with predominantly A3-phases than during non-CAP periods. This

could potentially be a result of the fact that spontaneous arousals show cardiovascular acti-

vation prior to the first signs of arousal in the EEG (Trinder et al., 2012; Baumert et al., 2010).

Such an increase in cardiovascular activity can be caused by external perturbations as CAP

can be triggered by external conditions (Parrino et al., 2012). On the other hand, as a high

percentage of arousals are preceded by slow waves such as K-complexes (Halász et al.,

2004), ASDA arousals do not take into account the slow element of the double EEG activa-

tion (slow and rapid) that is typical in NREM sleep (Terzano et al., 2002). Thus, autonomous

activations could be erroneously allocated before the onset of cortical activation (Bonnet

and Arand, 1997) by not considering the pre-arousal slow-wave component. In our analy-

sis, 22.8% of the CAP sequences with at least two A3-phases contained an A1-phase prior

to an A3-phase, which is remarkably similar to the number of sequences with significant

non-zero GC values for PWA→ β interactions (24%). Hence, a preceding burst in delta ac-

tivity may be the cause of the activation of the autonomic system, which in turn foreshadows

a shift in energy towards higher frequencies in brain activity.

In our study, we investigated subjects of both genders with different sleep pathologies and

this might influence the results. However, we should consider that the neural mechanisms

that constitute CAP are independent of gender or sleep pathologies since it has been

demonstrated that these factors modulate the quantitative aspects of CAP but not its in-

trinsic generation mechanisms (Ferri et al., 2005a). Studies have demonstrated that the

physiological fluctuations of CAP are accompanied by subtle, but significant, changes in

the balance between the sympathetic and vagal components of the autonomic system in

different age groups (Ferri et al., 2000) and in pathological patients who present similar

changes in the dynamics of the heart rate reflected by the modification of A-phase dynam-

ics (Leon-Lomeli et al., 2014). Another study reported an increase in heart rate with higher

values of low-frequency power in the A-phases with no differences between healthy sub-

jects and patients with epilepsy (Dorantes et al., 2015). All these studies demonstrate that
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the neural mechanisms of CAP related to the heart–brain axis are independent from sleep

pathologies.

One limitation of our study is the assessment of cortical–cardiovascular interactions using

traditional GC analysis. The application of GC requires wide-sense stationary data (Bressler

and Seth, 2011), which are commonly not given in physiological signals such as EEG and

HRV. One suggested approach is to shorten the analysed time segments (Ding et al., 2000).

The analysed sequences in this study represent a short fraction of an overnight recording

and thus can be assumed locally stationary. Additionally, traditional GC analysis as it is

applied in this study is based on linear regression models, which do not capture non-linear

effects. The assessment of non-linear effects can be achieved with non-linear GC meth-

ods such as kernel-based methods (Marinazzo et al., 2008) or with transfer entropy as

an information-theoretic causality measure (Faes et al., 2015). Moreover, previous studies

have shown that linear models work extremely well in neuroscience applications (McIntosh

and Gonzalez-Lima, 1994) and can detect similar brain–heart networks to non-linear mod-

els in normal undisturbed sleep (Faes et al., 2015). Additionally, the modelling of non-linear

systems using linear VAR systems can be sufficiently achieved by increasing the order of

the fitted model adequately (Winterhalder et al., 2005). Finally, it is important to note the

limitations of the GC measure. GC fails to measure an underlying causal mechanism, but

it measures a causal effect, which is the reduction in prediction error (Barrett and Barnett,

2013). Hence, the significant cortical–cardiovascular interactions detected in this study

do not represent underlying anatomical connections, but they reflect the directed influence

from one system to another (Greco et al., 2019). For a more detailed decomposition of

the reduction in prediction error similar to the information-theoretic assessment, extended

frameworks of the predictability framework allow accounting for the influence from the tar-

get process itself, from other processes in the network and from the interaction with other

processes (Faes et al., 2016).

One additional limitation of our study is the small number of recordings available in the

CAP Sleep Database. A larger number of subjects resulting in a greater number of inves-

tigated sequences would enable a more comprehensive analysis of the interplay between

CNS and ANS during CAP. A possible solution is presented by automated CAP scoring

algorithms that are capable of scoring large cohort studies (Hartmann and Baumert, 2019;

Hartmann et al., 2020, 2021). Furthermore, the lack of healthy subjects in our analysis and

the combination of various sleep pathologies is potentially limiting the significance of the
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presented results. However, the limited number of recordings with the required polysomno-

graphic channels of each pathology in the CAP Sleep Database prevented a more in-depth

analysis of the interaction of CNS and ANS for each subcategory. Hence, our study can only

provide a general insight into the dynamic interplay of CNS and ANS during CAP. Finally,

another limitation is the age distribution of the investigated dataset with mostly middle-aged

or older subjects. As the CAP rate follows a U-shaped curve with a high number of A1-

phases in young people and a high number of A2+3-phases in older people (Parrino et al.,

1998), the interplay between CNS and ANS during A-phase subtypes may also change

throughout different age groups. We demonstrated in this study that the delta activity in

A1-phases is the cause for activation of autonomic functions in middle-aged to older sub-

jects. However, the rate of A1 subtypes is low in these age groups compared with younger

subjects. In children, A1-phases are regarded as ’anti-arousals’ (Hirshkowitz, 2002) and

support the homeostatic process to maintain the restorative function of sleep (Bruni et al.,

2010b). Hence, additional studies on the interplay between CNS and ANS during CAP in

children could highlight differences in the autonomic response and the connection between

delta activity and autonomic functions in children.

6.5 Conclusion

GC analysis between cortical and cardiovascular activation during CAP in NREM sleep

demonstrates the important role of CAP in the assessment of physiological states during

sleep. We show that A1-phases in CAP sequences, in particular the burst in delta activity,

are closely linked to an increase in vascular activity during NREM sleep. We also show

that A3-phases have a more pronounced impact on autonomic functions than A1- and A2-

phases. These findings highlight the importance of sleep microstructure when evaluating

autonomic activity alteration during sleep. Furthermore, we demonstrate the potential of

GC analysis for gaining further information on CAP.

6.6 Data Accessibility

All data in this study are available for free download from public repositories. The CAP

Sleep Database can be downloaded from physionet.org.
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7

Conclusion

THIS chapter summarizes the conclusions of this dissertation and highlights

the original contributions of each chapter. Additionally, potential future

directions are discussed.
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7.1 Conclusion and thesis summary

Previously proposed solutions to automatically detect CAP sequences in sleep recordings

have demonstrated promising results in regard to accuracy and sensitivity. However, the

proposed systems fail to consider critical information from the past to classify CAP events

either, nor do they demonstrate clinical relevance as they were not applied on large clini-

cal studies. This thesis has proposed a comprehensive end-to-end CAP detection method

including pre-processing, artefact removal, multi-class classification using LSTM networks,

and post-processing. Moreover, the studies presented in this thesis assess for the first time

sleep microstructure in large population-based cohort studies, and investigate the causal

relationships between cortical events defined by CAP and autonomic cardiovascular con-

trol. This chapter summarizes the key findings described in the thesis and discusses pos-

sible future directions for further research towards enhancing the understanding of sleep

microstructure.

The automatic detection of sleep events such as CAP is of great interest as the manual

inspection of sleep recordings is very tedious and time-consuming. In Chapter 3, a stand-

alone, fully automated scoring system to detect the A-phases of CAP events is presented.

The system is equipped with a deep LSTM network to exploit the dynamical temporal be-

haviour demonstrating the suitability of sequential information to improve the classification

of A-phases (see Appendix A). Moreover, state-of-the-art signal processing methods were

included to eliminate the influence of cardiac and ocular artefact in EEG. Artefact removal

has shown to have a positive effect on scoring accuracy in individual cases although the

overall impact was only marginal according to the results of the test set. Additionally, the

classifier was adapted to the conditions of imbalanced distributions between CAP and non-

CAP events in training data by optimizing the cost function. Thus, the proposed system

presents a fully automated high performance solution to classify A-phases and their sub-

types.

To add evidence towards the understanding that CAP scoring is an important indicator

for sleep quality and sleep fragmentation, we sought to quantify the prevalence of CAP

in large population samples of older men and women. The study presented in Chapter 4

analyses the first time CAP in large community-based cohort studies using the previously

developed automated detection system. The results demonstrate that subjectively reported

sleep quality correlates with the CAP rate, independent from traditionally scored markers

of sleep fragmentation. Moreover, the results provide important insights into the behaviour

of CAP in relation to age and gender. Hence, the article in Chapter 4 demonstrates the
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importance of considering CAP in sleep analysis and the viability of our automated CAP

scoring system to assist in analysing CAP in large populations.

High frequency of sleep disturbances during pre-adolescent age in children can have se-

vere impact on their cognitive development and their behavioral functioning. In this thesis,

the effect of sleep disorders such as OSA and RSD on the sleep microstructure of chil-

dren was investigated. As reported in Chapter 5, children with moderate OSA display a

significant association between the frequency of slow, high-amplitude waves and the be-

havioral functioning, as well as the quality of life. Our results indicate that eAT as first-line

treatment for childhood OSA has no altering effect on sleep microstructure as compared

to watchful waiting. Additionally, the findings reported in Appendix B suggest the presence

of an increased sleep instability in children with RSD due to a higher CAP rate and signifi-

cantly shorter CAP cycles in comparison to normal children. These findings underline the

importance of further studies on the role of CAP during childhood.

To advance the understanding on the underpinning physiological mechanisms of sleep mi-

crostructure, it is important to study the cortical–cardiovascular interactions during CAP

events. The study presented in Chapter 6 aimed at assessing the causal relationships be-

tween EEG frequency bands, respiratory, and cardiovascular variables during CAP using

GC. Our findings show that the onset of A-phase subtypes show an increasing impact on

autonomic functions the higher the percentage of fast, low-amplitude rhythms. Also, we

report a close link between slow, high-amplitude waves and increased vascular activity dur-

ing NREM sleep. This highlights in particular the importance of including CAP in analysing

adverse effects of sleep fragmentation on cardiovascular health. As shown in Appendix C,

nocturnal arousal burden, which is closely related to A3-phases, is associated with long-

term cardiovascular and all-cause mortality in women and to a lesser extent in men. Finally,

the outcomes demonstrate the value of GC analysis in regard to the relationship between

CAP and ANS.

7.2 Future directions

A major limitation of the developed automated CAP scoring system is the high inter-subject

variance of the scoring output. Hence, the main goal of future studies should be the re-

duction of the inter-subject variance with the aid of feature engineering or increased EEG

normalization. The inclusion of a time feature describing the time period between the last

wake or REM phase and the current time could potentially lead to an improved performance
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as sleep experts regularly consider this relationship during scoring. Another idea would be

the analysis of features that are critical during the decision finding process of the classi-

fier using reverse engineering methods such as integrated gradients (Sundararajan et al.,

2017) and feature activation visualisation (Erhan et al., 2009). This could result in a better

understanding of what kind of features encompass relevant information for the classification

process. In Chapter 3, the developed CAP detection system was trained on data from the

CAP Sleep Database. Hence, the trained classifier relies on recordings performed with the

same setup. To address the issue of database variability, a more heterogeneous training

set could result in a more robust classifier in terms of recording set-up and cohort charac-

teristics. As the results in Section 5.7.1 demonstrate, the addition of data from different age

cohorts or sleep clinics increase the accuracy of the automated classifier. One approach

to overcome the problem of database variability is based on an ensemble of local models

which are trained on data with different equipment set-up or with a different age distribu-

tion (Alvarez-Estevez and Fernández-Varela, 2020). Subsequently, the output decision is

based on the majority between models. A clinically more relevant approach could include

output probabilities for each local model providing the possibility to remove models with a

low certainty about the estimated output. Moreover, a collection of diverse datasets enables

the addition of transfer learning techniques such as domain adaptation or ensemble training.

In terms of deep learning techniques, the addition of attention-based recurrent layers (Bah-

danau et al., 2014) for improved feature selection or reinforcement learning (Mnih et al.,

2015) to overcome the need of labelled data may provide methods to improve the clas-

sification performance. Also, an extended pre-processing stage decreasing the variance

between EEG recording from differing sleep centres could improve the robustness of the

classifier.

Chapter 4 assessed CAP the first time in large community-based cohort-studies of older

people. As a result, new insights into the relationship between age and CAP were obtained.

Future studies with community-based cohorts from every age group would supplement ex-

isting knowledge about the influence of age on sleep microstructure. Additionally, it would

establish standards as reference for healthy subjects in future studies as well as popula-

tions with neurological disorders. Future studies on CAP have been planned, including (i) a

study on the influence of CAP on delayed verbal memory and overnight memory retention in

collaboration with the University of Stanford, Stanford, USA, (ii) a study on transcutaneous

vagal nerve stimulation effects on sleep microstructure in veterans in collaboration with the

University of Florida, Gainesville, USA, and the Oasi Research Institute-IRCCS, Troina,

Italy, and (iii) collaborative studies with the Flinders Medical Centre, Adelaide, Australia.
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The interest in collaborations to analyse CAP in large studies demonstrates the demand

for a consumer-friendly roll out of our detection software. A potential solution could be

achieved in cooperation with commercial manufactures of sleep analysis programs. An

integration into commonly used sleep screening diagnostic software would facilitate the ac-

cess to our CAP scoring system. Another future solution could be the integration into a

wearable device. Our system could provide additional information about sleep microstruc-

ture in combination with a home-screening device such as EEG headbands or in-ear EEG.

Finally, Chapter 6 investigates pre-scored data from the CAP Sleep Database to assess

causal relations between cortical and cardiovascular activity. The application of automated

CAP scoring algorithms that are capable of scoring large cohort studies such as the system

presented in Chapter 3 would allow an analysis of a larger number of subjects resulting in

a more detailed picture about the cortical-cardiovascular coupling during CAP sequences.

Moreover, it would eliminate the possible limitations due to subject’s age or health record.

7.3 Closing statement

This chapter summarized the major findings and conclusions of this thesis followed by rec-

ommendations for future work. This thesis has made a number of contributions towards

enhancing the understanding of sleep microstructure by developing a high-performance

end-to-end detection system and applying it on large sleep cohorts. The work herein is

unique and original, laying groundwork for future analyses of sleep microstructure in healthy

populations and cohorts with pathologies.
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A
Appendix

Improved A-phase Detection of Cyclic

Alternating Pattern Using Deep Learning

The content of this chapter is a modified version of the publication:

Hartmann, S. and Baumert, M. (2019), ‘Improved A-phase detection of cyclic alternating

pattern using deep learning’, 2019 41st Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC), pp. 1842–1845.
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Abstract

In recent years, machine learning algorithms have become increasingly popular

for analysing biomedical signals. This includes the detection of cyclic alternating

pattern (CAP) in electroencephalography recordings. Here, we investigate the

performance gain of a recurrent neural network (RNN) for CAP scoring in com-

parison to standard classification methods. We analysed 15 recordings (n1–

n15) from the publicly available CAP Sleep Database on PhysioNet to evaluate

each machine learning method. A long short-term memory (LSTM) network

increases the accuracy and F1-score by 0.5–3.5% and 3.5–8%, respectively,

compared to commonly used classification algorithms such as linear discrimi-

nant analysis, k-nearest neighbour or feed-forward neural network. Our results

show that by using a LSTM classifier the quantity of correctly detected CAP

events can be increased and the number of wrongly classified periods reduced.

RNNs significantly improve the precision in CAP scoring by taking advantage of

available information from the past for deciding current classification.

Introduction

Since the beginning of electronic computers, novel methods have been developed to train

the new artificial workforce aiming to solve the fundamental problem of detecting patterns

in large data (Kononenko, 2001; Bishop, 2006). The ability to learn how to automatically

recognize regularities without being explicitly programmed for it was then subsumed under

the term machine learning (Park et al., 2018). Machine learning methods can be roughly

divided into statistical methods such as k -nearest neighbour (k-NN), discriminant analy-

sis like linear discriminant analysis (LDA), Bayesian classifiers such as decision trees and

artificial neural networks including deep learning methods (Kononenko, 2001).

Besides the typical fields of application in computer vision like object recognition or face

detection, machine learning algorithms were soon transferred to biomedicine due the ex-

istence of large data sets and various imaging systems. One major application field for

machine learning in the area of biomedical research is the decoding of neuronal activ-

ity either to control prosthetic devices or to enhance the understanding of the human

brain (Darvishi et al., 2017; Yarkoni et al., 2011). Considering sleep research, machine
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learning algorithms are used to automatically classify sleep stages or detect neurophysio-

logical patterns. A prominent example for such events are cyclic alternating pattern (CAP).

CAP was introduced in 2001 as alternative concept to characterize non-rapid eye move-

ment (NREM) sleep (Terzano et al., 2001). A CAP sequence is defined by two or more

CAP cycles, which themselves, consist of an activation phase (A-phase) which represents

transient, prominent events and a background phase (B-phase). CAP can by definition only

occur in sleep stages without rapid eye movement (REM). The more relevant activation

phase is characterized by slower high-voltage rhythms, faster lower-voltage rhythms or by

both (Terzano and Parrino, 2005).

The first implemented automated CAP detection systems concentrated on the distinctive

characteristics between the activation phase and the background phase (Mendez et al.,

2016). After the alteration in signal amplitude averages between short and long time pe-

riods was applied as indicator, statistical or spectral features were extracted from elec-

troencephalography (EEG) in combination with either thresholding classification algorithms

(Niknazar et al., 2015) or competitive machine learning algorithms (Mendez et al., 2016;

Mariani et al., 2012). However, previous methods investigated only shallow classifier such

as LDA, k-NN, support vector machines (SVM) or feed-forward neural networks (NN) as

machine learning methods.

Here, we show that a deep learning method such as long short-term memory network

(LSTM) increases the scoring performance of automatic CAP detection methods. The

more sophisticated deep learning algorithms effectively craft new features out of the in-

put resulting in important information for detection. After the method is explained and the

various classification algorithms under test are described in detail, the evaluation results on

a publicly available data set are presented. Finally, the numbers are discussed including

limitations of the proposed method.

Materials and Methods

Database

As data set, we used polysomnographic recordings of 15 normal, healthy subjects (n1–

n15) from the CAP Sleep Database on PhysioNet, which is an open-source repository for

recorded physiologic signals (Goldberger et al., 2000). We selected normal, healthy sub-

jects to exclude additional information from sleep pathologies. The list of physiological
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Table A.1. Statistics of sleep macrostructure and CAP occurrence for subjects n1 - n15 in
seconds.

Subject Wake REM NREM A1 A2 A3
Total sleep

time

n1 1170 7170 25860 2217 747 1135 34410

n2 4290 4530 21150 1188 688 1239 30000

n3 4080 5640 20250 656 631 1043 30030

n4 6690 5940 16740 986 356 893 30330

n5 300 6960 22950 2863 328 784 30240

n6 1740 7920 21240 1871 976 1414 31200

n7 1950 7410 19860 1616 565 480 29550

n8 3780 5910 20070 949 465 1876 30030

n9 3540 6780 20280 1036 377 678 30840

n10 1980 6450 17130 1489 336 922 25800

n11 1680 11400 18450 1724 583 796 31590

n12 930 8910 19680 1064 153 573 29700

n13 5820 5430 17310 1628 1040 1041 29100

n14 4710 4950 19290 1037 1234 1209 29040

n15 1170 5940 22170 1449 1046 1244 29310

Total 43830 101340 302430 21773 9525 15327 451170

REM, rapid eye movement; NREM, non-rapid eye movement

signals comprises generally at least one EEG channel (C3 or C4), multiple bipolar EEG

channels and other parameter such as electrocardiography (ECG) or eye movement sig-

nals. Additionally to each subject’s recordings, an annotation file including sleep staging

and CAP scoring is provided. An expert neurologists performed the manual scoring ac-

cording to the Rechtschaffen & Kales rules (Rechtschaffen and Kales, 1968) and the atlas

of CAP scoring (Terzano et al., 2001). The manual CAP scoring is regarded as ground

truth during the supervised training process of the various classification algorithms. The

data contains a total of 7519.5 minutes of scored sleeping time. Since CAP events only

occur in NREM stages (Terzano et al., 2001), the data set comprises 5040.5 minutes of

scoring-relevant data of which 15.4% are A-phases and 84.6% pertain to background peri-

ods. Summary statistics of the sleep macrostructure and CAP occurrence for each subject

and in total are listed in table A.1.
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Pre-processing

Each polysomnographic recording was processed before extracting features in the signal to

ensure a homogeneous input for the classification step. The existent central EEG record-

ing in each subject’s polysomnogram (either C4-A1 or C3-A2) was used as channel for the

scoring process. The data were resampled at a frequency of 128 Hz due to a sampling fre-

quency range of 100–512 Hz in the data set. Afterwards, a bandpass FIR filter was applied

to reject information outside the common EEG frequency range (0.5–30 Hz). Subsequently,

the filtered data were divided into following EEG rhythms by applying a least-squares linear

phase FIR filter bank: Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Sigma (12–16

Hz) and Beta (16–30 Hz).

Feature extraction

The following features were selected based on their performance reported in previous stud-

ies (Machado et al., 2015; Karimzadeh et al., 2015; Mariani et al., 2011b): Hjorth activity,

Shannon entropy, Teager Energy Operator (TEO), band power descriptor, and differential

EEG variance. All features are computed for each second resulting in a sample rate of 1 Hz.

Firstly, the Hjorth activity was calculated for the delta band using 3s-overlapping windows.

Then, Shannon entropy and Teager Energy Operator were derived from each frequency

band in 2-s signal windows. To extract the temporal power shifts in the frequency bands, a

band power descriptor was computed based on 2–60 second windows. Finally, the variance

difference of the EEG was determined on 1-s non-overlapping windows.

Classifier

Linear Discriminant Analysis

The LDA algorithm separates data by determining the probability function of all classes. In

general, the classifier estimates the probability density functions as a multivariate normal

distribution (Garrett et al., 2003). In the case of linear discriminant analysis, the covariance

of all classes is the same, only the means vary between the classes. The resulting classifier

divides the feature space into different classes by a (D− 1)-dimensional hyperplane with D
representing the dimension of the input (Bishop, 2006). We selected a linear discriminant

analysis classifier with the dimension size equivalent to the number of extracted features.
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k-Nearest Neighbours

The k-nearest neighbours classification rule is based on the simple idea of selecting the

majority class of the surrounding k -nearest neighbours as classification output for an un-

classified input vector (Keller et al., 1985). The greater the number of neighbours are con-

sidered, the fewer larger regions are created forming k into a parameter for the degree

of smoothing (Bishop, 2006). In the binary case, an odd number for k avoids a tie for

classification, otherwise the distances of the sample to each neighbour are considered as

tie-breaker (Keller et al., 1985).

Neural Network

Artificial neural networks comprise a wide field of different variations. Here, we implemented

a shallow feed-forward neural network with one hidden layer. In general, a neural network

can be regarded as a mapping architecture which will assign an input of the dimension n
to an output of the dimension m by using a sequential structure of rows with processing

units (Hecht-Nielsen, 1989). Such a processing unit is called neuron and creates initially a

linear combination of the input variables combined with weights and a bias (Bishop, 2006).

A non-linear activation function is subsequently wrapped around the linear combination to

exploit non-linearities in the data. In a backpropagation neural network, the parameters for

each neuron are updated using the backpropagation algorithm i.e. the error between the

predicted output and the target output is propagated backwards from the last layer to the

first instance modifying the parameters with the objective to minimize the error. The error

is calculated using a loss function like cross-entropy or means squared error. In this study,

the implemented neural network contains a single fully connected layer with 640 neurons,

a rectified linear unit (ReLU) as activation function, cross-entropy as loss function and a

softmax layer as output.

Long Short-term Memory Network

Long Short-term Memory networks are a subclass of recurrent neural networks (RNN)

which exploit information from the past as well as the current input to create a prediction

or classification. A basic RNN contains time-sequentially stacked neural networks which

pass the information from previous states to the current network. Hence, the state of the

last time step relies not only on the current input but also on the information of previous

hidden states (Graves et al., 2013). Importantly, LSTM networks differ from basic RNNs by

Page 132



Appendix A

resolving long-term dependencies which are inevitable in a large chain of feed-forward net-

works (Bengio et al., 1994). A LSTM cell possesses the ability to decide which information

is transferred to the next cell by simply erasing irrelevant data (Graves et al., 2013). The

sequence length of the RNN determines how much of the previous temporal information is

exploited for the computation of the current state. In this study, we used a LSTM network

with two layers of 128 and 64 cells respectively. Following the LSTM layers, a fully con-

nected layer equivalent to the layer used in the neural network and a softmax output layer

are added. The parameters of each layer are updated using the backpropagation algorithm

and cross-entropy as cost function.

Post-processing

To predict activation phases in accordance with the atlas for CAP scoring, the outcomes of

the classifiers were modified as it is described in Mariani et al. (2012). Isolated one-second

classifications were assigned to their neighbour values and predicted A-phases longer than

60 seconds were reclassified with a self-organizing neural network.

Performance measures

The classification performance was quantified based on standard measures for binary clas-

sification: accuracy (ACC), true positive rate or sensitivity (TPR), specificity or true negative

rate (SPC) and the F1-score. Each measure depends on the number of correctly identi-

fied events (true positives, tp), the number of correctly recognized background phases (true

negatives, tn), and the number of seconds which were misidentified either as A-phase (false

positive, fp) or as background phase (false negative, fn). Hence, the objective measures

are computed as follows (Sokolova and Lapalme, 2009):

ACC =
tp + tn

tp + fn + fp + tn
(A.1a)

TPR =
tp

tp + fn
(A.1b)

F1 =
2 ⋅ tp

2 ⋅ tp + fn + fp
(A.1c)

SPC =
tn

fp + tn
. (A.1d)
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Table A.2. Average performance measures of each classification method on data set.

TPR SPC ACC F1-score

LDA 59.01±10.34 86.31±7.16 82.14±5.09 49.99±4.55
k-NN 73.03±6.69 81.35±7.42 80.08±6.02 52.92±6.82
Feed-forward NN 79.28±7.53 79.70±8.78 79.58±7.23 54.65±8.02
LSTM 76.15±10.69 84.20±8.59 82.95±7.40 58.23±10.36

TPR, true positive rate; SPC, specificity; ACC, accuracy; NN, neural network; LSTM, long-short term memory
network; LDA, linear discriminant analysis; k-NN, k-nearest neighbor

Test environment

For training and testing of the classification algorithms, the Leave-one-out (LOO) method

was applied. The LOO method is a k-fold cross-validation algorithm in which for each

fold one subject is determined as test set and all remaining subjects are merged into the

training set. Thus, the classifier is trained k times on dataset D∕Dt and tested on Dt,

where D represents the entire dataset, k is the total number of subjects in the set (here:

12) and t ∈ 1, 2, ..., k (Kohavi, 1995). After looping through every subject, the performance

measures are determined by summing up each individual validation value and divide the

sum by the number of instances. Prior to training, the quantity of training data for each class

was levelled to obtain an unbiased classifier.

Results

In table A.2, the performance measures of all four classification methods are listed. The

values represent the means plus the standard deviation of the 15 subjects. The results

show that the LSTM method achieves the highest accuracy and F1-score (ACC:0.5–3.5%,

F1-score:3.5–8%). Regarding the sensitivity values, the NN outperforms the LSTM method

by 3% and the remaining two algorithms. Especially, the LDA classifier scores a low number

of A-phases correctly resulting in a poor sensitivity of 59%. However, the LDA algorithm

obtains the highest specificity value indicating that predominantly background phases were

classified. Compared to the NN, the k-NN achieves a higher accuracy and specificity but

the sensitivity and F1-score are decreased by ∽6% and ∽2.5%, respectively.

Discussion

In this study, we show that a deep learning LSTM network increases the performance of

automatic CAP classification. Consequently, previous EEG information can be important for
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Figure A.1. Comparison of LDA, k-NN, NN and LSTM based on results from data set. Compar-
ison of LDA, k-NN, NN and LSTM based on results from data set

the scoring of A-phases in sleep recordings. To evaluate the LSTM method, we compared it

to common shallow classification methods used in this field like LDA, k-NN and feed-forward

NN.

As results in table A.2 and A.3 indicate, LSTM networks increase the accuracy and F1-

score by 0.5–3.5% and 3.5–8%, respectively. Especially the high F1-score demonstrates

that the LSTM algorithm detects more precisely A-phases of CAP events than the remaining

classifiers tested. Considering the statistics of the data set (table A.2), the proportion of A-

phases during night is relatively low making a precise scoring substantial for further CAP

analysis. In contrast, the LDA algorithm achieves a comparably good accuracy value but

mostly due to a high specificity value indicating that the classifier predominantly classifies

background phases, which is counteractive in case of CAP scoring.

Furthermore, the feed-forward NN scores a higher quantity of correct activation phases

compared to LSTM but at the expense of precision, indicated by the lower F1-score. Fi-

nally, the performance values for the k-NN algorithm show that it is an efficient alternative

to artificial neural networks for CAP detection. The training process for both neural net-

work algorithms exceeds largely the k-NN method in both time and computing resources.

Especially, the LSTM network demands a large amount of computing resources during the
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Table A.3. Detailed list of performance measures for each classification method.

Subject
LDA k-NN NN LSTM

TPR (%) SPC (%) ACC (%) F1-score (%) TPR (%) SPC (%) ACC (%) F1-score (%) TPR (%) SPC (%) ACC (%) F1-score (%) TPR (%) SPC (%) ACC (%) F1-score (%)

n1 46.63 92.78 85.53 50.31 67.07 86.86 83.75 56.46 76.98 85.28 83.97 60.15 72.73 89.03 86.47 62.82

n2 49.32 86.96 81.44 43.82 63.13 78.14 75.94 43.50 78.15 70.50 71.62 44.70 61.94 78.91 76.42 43.54

n3 64.73 84.69 82.40 45.72 75.40 80.78 80.16 46.53 84.65 79.96 80.50 49.84 82.88 80.32 80.62 49.48

n4 62.29 86.89 83.79 49.22 78.50 82.36 81.87 52.21 87.77 76.66 78.06 50.24 87.06 83.23 83.71 57.44

n5 54.91 89.69 83.67 53.77 75.42 83.43 82.04 59.22 79.39 83.27 82.60 61.21 79.27 85.40 84.34 63.65

n6 48.28 93.39 84.50 55.10 67.37 89.28 84.97 63.84 74.75 87.04 84.62 65.69 72.89 92.27 88.45 71.32

n7 83.72 72.78 74.22 46.10 90.82 68.31 71.27 45.44 94.66 65.02 68.92 44.51 93.19 74.28 76.78 51.39

n8 49.15 91.11 84.34 50.32 72.36 86.99 84.63 60.30 84.73 81.83 82.30 60.71 75.90 89.39 87.21 65.71

n9 65.20 89.86 87.35 51.20 75.35 88.57 87.23 54.57 82.34 87.12 86.63 55.64 83.29 90.46 89.73 62.29

n10 66.97 70.09 69.61 40.46 72.30 65.69 66.71 40.12 71.63 61.13 62.75 37.23 64.32 60.97 61.49 34.01

n11 58.17 86.64 81.87 51.82 70.06 76.78 75.65 49.10 68.68 80.64 78.63 51.87 55.91 88.22 82.80 52.16

n12 50.56 93.92 90.01 47.71 70.22 89.89 88.12 51.59 74.69 91.05 89.58 56.37 68.77 93.27 91.06 58.11

n13 72.16 78.58 77.25 56.85 78.39 74.31 75.16 56.72 83.01 73.59 75.55 58.50 88.43 78.56 80.61 65.46

n14 54.69 88.53 82.46 52.80 65.90 83.97 80.73 55.10 65.93 89.00 84.86 60.98 70.76 91.76 87.99 67.90

n15 58.41 88.79 83.68 54.65 73.20 84.87 82.91 59.06 81.81 83.43 83.16 62.07 84.94 86.98 86.63 68.17

Mean ± std 59.01±10.34 86.31±7.16 82.14±5.09 49.99±4.55 73.03±6.69 81.35±7.42 80.08±6.02 52.92±6.82 79.28±7.53 79.70±8.78 79.58±7.23 54.65±8.02 76.15±10.69 84.20±8.59 82.95±7.40 58.23±10.36

TPR, true positive rate; SPC, specificity; ACC, accuracy; NN, neural network; LSTM, long-short term memory
network; LDA, linear discriminant analysis; k-NN, k-nearest neighbor

training process to calculate each parameter. Nevertheless, the classification process itself

using a trained classifier needs negligibly more amount of time compared to the remaining

classifiers.
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Appendix

Non-REM sleep instability in children

with restless sleep disorder

The content of this chapter is a modified version of the publication:

DelRosso, L. M., Hartmann, S., Baumert, M., Bruni, O., Ruth, C. and Ferri, R. (2020),

‘Non-REM sleep instability in children with restless sleep disorder’, Sleep Medicine 75,

pp. 276–281.
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Abstract

Study objectives: Restless sleep disorder (RSD) is a newly recognized condition

characterized by motor movements involving large muscle groups with frequent

repositioning or bed sheets disruption. We analysed cyclic alternating pattern

(CAP) in these children, a marker of sleep instability that might be associated

with the motor episodes of RSD and may play a role in their daytime symptoms.

Methods: Polysomnographic recordings from thirty-eight children who fulfilled

RSD diagnostic criteria (23 boys and 15 girls), 23 children with restless legs

syndrome (RLS, 18 boys and 5 girls) and 19 controls (10 boys and 9 girls) were

included. For CAP analysis, a previously developed, highly precise automated

system, based on a deep learning recurrent neural network, was used.

Results: Age and gender were not statistically different between groups. RSD

patients showed a lower percentage of A3 CAP subtypes than controls (median

9.8 vs. 18.2, p = 0.0089), accompanied by shorter duration of the B phase of

the CAP cycle (median 28.2 vs. 29.8 in controls, 30.2 in RLS, p = 0.005) and

shorter CAP cycle duration than both controls and RLS subjects (median 33.8

vs. 35.0 in controls, 35.8 in RLS, p = 0.002). Finally, RSD children also showed

a longer duration of CAP cycle sequences, when compared to controls (median

172.7 vs. 141.9, p = 0.0063).

Conclusions: In conclusion, our study indicates that NREM sleep EEG shows

an increased instability in RSD; these findings add to the current knowledge

on the mechanisms of this newly recognized sleep disorder and suggest that

sleep instability might be a favouring mechanism for the emergence of the motor

episodes characterizing RSD.

Introduction

Restless sleep has been mentioned in the literature in the past few decades in asso-

ciation with overall detrimental effect on wellbeing (Prendergast et al., 2016), cognition

(Qureshi et al., 2014), ADHD (Greenhill et al., 1983), psychiatric conditions (Simonds and

Parraga, 1984), etc. Only recently it has been identified as a disorder in children (Del-

Rosso et al., 2018). Restless sleep disorder (RSD) is a condition characterized by motor
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movements involving large muscle groups often described by parents as frequent reposi-

tioning or disruption of the bed sheets (DelRosso et al., 2018, 2019). The movements are

sleep related, occurring throughout the night and associated with daytime impairment (Del-

Rosso et al., 2018). Despite the increasing knowledge on the clinical and polysomnographic

aspects of RSD in the last couple of years (DelRosso et al., 2019; DelRosso and Ferri,

2019), its mechanisms remain elusive and need clarification. We strongly suspect that

sleep instability associated with the frequent nocturnal movements in children with RSD

may play a role in the daytime symptoms of sleepiness, fatigue or inattention. We decided

to analyse cyclic alternating pattern (CAP) in these children and compare them with con-

trols and children with restless legs syndrome (RLS) to further identify patterns of sleep

instability.

CAP is an endogenous and physiological rhythm occurring in NREM sleep characterized

by a quasi-periodic EEG activity with sequences of transient electro–cortical activations

(phase A of the cycle) that clearly interrupt the background EEG activity (phase B of the

cycle) (Terzano et al., 1985). These sequences are repeated several times during the night

and organized in a recurrent pattern interrupted by the presence of a stable sleep period,

without oscillations, called non-CAP (NCAP), longer than 60 s. Sequences of CAP are

orderly distributed in NREM sleep (Terzano et al., 1988), and the percentage of CAP time

to NREM sleep time (CAP rate) is considered to be a physiologic marker of NREM sleep

instability (Parrino et al., 2012). CAP A phases are subdivided into different subtypes:

A1, A2 and A3, based on their frequency content (Terzano et al., 2001; Parrino et al.,

2001), with the A1 subtype composed prevalently by slow-waves (EEG synchrony), A3 with

prevalence of fast EEG activities (EEG desynchrony), and A2 presenting a combination of

both (Terzano et al., 2001).

The aim of this study was to analyse CAP in a group of children and adolescents with RSD

and to compare it to that of age-matched normal controls and patients with RLS, in order

to test our original hypothesis of the presence of a sleep instability in RSD and to observe

eventual differences and similarities with RLS.

Methods

Subjects

Thirty-eight children who fulfilled RSD diagnostic criteria (DelRosso et al., 2019) (23 boys

and 15 girls, age range 5–17 years), 23 children with RLS (18 boys and 5 girls, age
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range 4–17 years) and 19 controls (10 boys and 9 girls, age range 5–18 years) from our

database were included. Exclusion criteria were: age younger than 4 years, use of med-

ications that altered sleep parameters (i.e. antihistamines, antidepressants, antiepileptics,

etc.), presence of co-morbid sleep disorder (i.e. obstructive sleep apnoea, central sleep

apnoea, parasomnias, behavioural insomnia), medical or psychiatric conditions known to

affect sleep (uncontrolled eczema, asthma, pain, neurodevelopmental disorders, genetic

syndrome, neuromuscular disorders) or use of caffeine.

The sample size, even if not very large, was decided on the basis of practical considerations

on the real possibilities of recruitment of patients and on the availability of PSG recordings

of good general quality and with both signals from the central leads (left and right) without

important interruptions during NREM sleep. All children underwent PSG. The study was

approved by the local institutional review board.

Polysomnography

PSG was recorded following the AASM standards (Berry et al., 2015) and included EEG

(two frontal, two central, and two occipital channels, referred to the contralateral mastoid);

electrooculogram, electromyogram (EMG) of the submentalis muscle, EMG of the right

and left tibialis anterior muscles, respiratory signals, effort signals for thorax and abdomen,

oximetry, capnography, a single lead ECG, video and audio recording. Calibrations were

performed per routine standard by the sleep technician. Epochs and all sleep parameters

were scored by a certified sleep technologist and board certified sleep physician, according

to standard criteria (Berry et al., 2015).

Automated CAP A subtype detection and CAP parameter computation

We deployed a previously developed, highly precise automated system for CAP analysis,

which has been reported in detail elsewhere (Hartmann and Baumert, 2019). The detec-

tion system achieves on average a second-by-second A phase inter-rate reliability of 0.55,

quantified by the Cohen’s kappa coefficient, which is among the event-based inter-rater

reliability between human scorers of 0.42–0.75 (Ferri et al., 2005b). Briefly, the detection

system consists of a deep learning recurrent neural network (RNN) that was trained with

manually scored recordings from children to recognize CAP A subtypes in paediatric EEG

recordings. Measurements with severe clipping, which can be often found in recordings with
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a low bit rate or a low physical range, and unipolar signals do not meet the requirements

of the automated A phase detection system. In the first step, the raw signal of one central

EEG channel is filtered and processed to remove power line interference, high-frequency

noise, and cardiac activity and eye movement artefacts. Multiple features in the time and

frequency domain such as Hjorth activity, Shannon entropy, Teager Energy Operator (TEO),

band power descriptor, and differential EEG variance are subsequently extracted from the

processed signal and passed as input to the RNN classifier. The F�-score was used as

cost function to deal with the biasing issues of a low number of A phase representations in

overnight EEG recordings and to concentrate on the sensitivity and precision of the scoring.

Further, the precision of the detection system was increased by selecting only A phases that

were detected in two central EEG channels. Finally, we post-processed the output of the

A subtype detection system by applying the rules for CAP sequences (Parrino et al., 2012;

Terzano et al., 2001) and computed the following parameters, for each recording:

a) CAP Rate: percentage of non REM sleep time occupied by CAP sequences;

b) A1 subtype: percentage of A1 subtypes among the total A subtypes;

c) A2 subtype: percentage of A2 subtypes among the total A subtypes;

d) A3 subtype: percentage of A3 subtypes among the total A subtypes;

e) A1 subtype mean duration;

f) A2 subtype mean duration;

g) A3 subtype mean duration;

h) B phase mean duration;

i) CAP cycle (A + B phase) mean duration;

j) CAP sequence mean duration.

Statistical analysis

The comparison of the gender composition of the groups of subjects was carried out by

means of the chi-square test. Because of the non-normal distribution of several variables,

non-parametric statistics were used (Siegel, 1956). For the comparison between the three

groups of subjects, the Kruskal-Wallis ANOVA was computed, followed by post-hoc com-

parisons of mean ranks of all pairs of groups and p-values (Mann-Whitney test) associated

with each comparison were obtained. Finally, correlations were analysed by computing the

Spearman rank correlation coefficient
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Table B.1. Comparison of sleep architecture variables obtained in the 3 groups of subjects.

Controls (n=19) RSD (n=38) RLS (n=23) Kruskal-Wallis ANOVA Mann-Whitney post-hoc

Median IQ range Median IQ range Median IQ range H(2,80) p 1 vs. 2 2 vs. 3 1 vs.3

Time in bed, min 513.0 (484.5–537.0) 510.5 (474.0–555.0) 504.0 (482.5–544.0) 0.224 NS
Sleep period time, min 480.0 (445.0–499.5) 470.0 (438.5–507.0) 478.5 (446.5–496.0) 0.070 NS
Total sleep time, min 432.0 (386.0–470.5) 445.5 (413.5–494.5) 452.0 (379.0–484.0) 1.336 NS
Sleep latency, min 23.8 (11.5–42.0) 24.0 (10.0–50.0) 22.0 (13.5–39.0) 0.042 NS
First R latency, min 136.3 (103.0–177.5) 91.5 (67.0–153.5) 161.0 (116.5–232.0) 7.929 0.019 0.036 NS 0.012
Stage shifts/hour 11.5 (8.2–15.4) 10.2 (7.5–11.5) 12.0 (9.1–15.7) 3.120 NS
Awakenings/hour 4.4 (3.3–6.8) 3.6 (1.7–5.2) 4.5 (2.9–6.0) 4.666 NS
Sleep efficiency, % 86.7 (76.6–91.2) 91.3 (81.2–93.2) 89.6 (80.6–93.2) 3.849 NS
Stage W, % 8.1 (4.3–13.0) 4.3 (2.4–7.0) 4.7 (2.7–9.3) 6.269 0.0435 0.012 NS NS
Stage N1, % 5.5 (4.0–8.7) 5.0 (3.3–7.1) 5.7 (3.2–11.2) 0.836 NS
Stage N 2, % 41.9 (37.1–52.8) 46.1 (39.5–49.2) 45.0 (38.4–47.8) 1.122 NS
Stage N3, % 24.0 (20.3–26.2) 22.6 (18.7–26.0) 23.2 (20.4–30.7) 2.031 NS
Stage R, % 15.3 (10.3–19.9) 21.2 (17.2–26.4) 14.7 (9.0–17.3) 15.736 0.0004 0.0008 NS 0.00026

IQ = interquartile range; NS = not significant

Results

The gender composition of the three groups was not statistically different (chi-square =

3.28, NS). The groups did not differ also for age (Kruskal-Wallis ANOVA H(2,80) = 2.814,

NS).

Table B.1 reports the comparison between sleep architecture variables obtained in the 3

groups of subjects. RSD children showed a REM sleep latency significantly shorter and

percentage of REM sleep significantly higher than those of the other two groups; moreover,

they had an amount of wakefulness after sleep onset significantly lower than that of controls.

Regarding CAP variables, reported in Table B.2, RSD patients showed a lower percentage

of A3 subtypes than controls (but not a lower number per hour), accompanied by shorter

duration of the B phase of the CAP cycle and shorter CAP cycle duration than both con-

trols and RLS subjects. Finally, RSD children also showed a longer duration of CAP cycle

sequences, when compared to controls.

As age-related changes of CAP parameters can be expected in children (Parrino et al.,

2012; Bruni et al., 2002, 2005), the correlation between CAP cycle duration and age was

further analysed in the three groups of subjects by drawing scatterplots of these two vari-

ables. Figure B.1 shows such an analysis showing a general decrease with age of this

parameter; in addition, the regression line pertaining to the RSD group is evidently below

the lines obtained in the other two groups at all ages, with a tendency to converge towards

the right side of the graph, because of a steeper decrease in the lines relative to the RLS

and control groups; however, only in controls this correlation reached a statistical signifi-

cance (Spearman rank correlation coefficient � = 0.456, p < 0.05).
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Table B.2. Comparison of CAP variables obtained in the 3 groups of subjects.

Controls (n=19) RSD (n=38) RLS (n=23) Kruskal-Wallis ANOVA Mann-Whitney post-hoc

Median IQ range Median IQ range Median IQ range H(2,80) p 1 vs. 2 2 vs. 3 1 vs.3

CAP Rate, % 24.5 11.3–29.2 33.4 20.2–45.9 25.9 13.3–36.4 5.373 NS
A1 index, n/hour 23.9 14.0–28.5 32.3 19.6–46.6 22.0 10.8–36.9 5.822 NS
A2 index, n/hour 1.6 0.9–4.5 1.2 0.5–2.8 1.2 0.5–1.8 2.164 NS
A3 index, n/hour 3.7 1.9–7.6 3.0 1.8–4.3 2.5 1.6–7.3 0.859 NS
A1 subtype, % 73.9 69.8–82.2 84.5 74.3–88.9 77.3 69.5–82.6 5.720 NS
A2 subtype, % 7.2 3.5–10.5 4.1 1.7–7.7 5.6 2.4–10.4 3.754 NS
A3 subtype, % 18.2 14.3–20.7 9.8 7.3–14.7 15.6 8.0–22.2 7.168 0.028 0.0089 NS NS
A1 duration, s 4.6 4.3–4.8 4.7 4.5–5.0 4.6 4.4–5.0 1.904 NS
A2 duration, s 6.0 5.7–6.3 5.9 5.3–6.8 6.1 5.5–6.7 0.033 NS
A3 duration, s 9.3 8.4–10.3 8.6 7.8–9.7 8.6 8.0–9.7 2.952 NS
B duration, s 29.8 28.6–30.7 28.2 26.2–29.7 30.2 27.6–31.3 10.560 0.005 0.0083 0.0074 NS
CAP cycle duration, s 35.0 34.5–36.2 33.8 31.8–34.9 35.8 33.1–37.3 12.491 0.002 0.0061 0.0026 NS
CAP sequence duration, s 141.9 127.3–151.3 172.7 143.1–211.7 151.2 126.7–178.9 7.844 0.0198 0.0063 NS NS

IQ = interquartile range; NS = not significant

The top panel of Figure B.2 shows the distribution of onset-to-onset intervals between all

consecutive A subtypes during light sleep (N1 and N2), in the three groups of subjects. The

bottom panel of the same figure shows this distribution during sleep stage N3. In both pan-

els it is possible to note the tendency of RSD to show higher values for the shorter intervals

between approximately 15 and 35 s, although statistical significance was not reached for

any of the graph points.

For RSD children only, we tested the correlation between the total number of movements/hour

and some CAP variables by means of the Spearman’s rank correlation coefficient and were

unable to find any significant correlation with very low coefficient values (0.009 for CAP

rate, -0.048 for A1 index, -0.082 for A2 index, and 0.091 for A3 index). Finally, we have

analysed the occurrence of movements during CAP or NCAP periods of NREM sleep in

the RSD group and have found that movements occurred within CAP sequences and as-

sociated with the A phases in 33.4% of cases and during NCAP periods in the remaining

66.6%. When occurring within CAP, movements were associated to A1 subtypes in 31.9%

of cases, to A2 in 10.4% of cases, and to A3 subtypes in 57.8% of cases.

Discussion

Sleep has important restorative functions that include memory, energy saving, hormone

regulation, homeostasis, sympathetic/parasympathetic balance among others. The term

non-restorative sleep has for long time been associated with not feeling rested in the morn-

ing and feeling that sleep was restless or of poor quality (Ohayon, 2005). Children with
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Figure B.1. Age-related changes of CAP cycle duration in the three groups of subjects.. Age-
related changes of CAP cycle duration in the three groups of subjects. Also the linear
regression line is shown for each group, along with the respective data points; however,
the correlation was analysed by means of the Spearman rank correlation coefficient.

RSD, therefore not only show evidence of restless sleep but also evidence of daytime im-

pairment (DelRosso et al., 2018, 2019; DelRosso and Ferri, 2019).

In this study, we have found subtle but important changes in CAP that support our original

hypothesis of the presence of an increased sleep instability in children with RSD. In fact,

along with a tendency in showing increased CAP rate (which did not reach statistical signif-

icance), children with RSD showed clearly shorter CAP cycles, especially because of the

shorter return to the lower-amplitude baseline (phase B), as well as longer sequences of

CAP cycles. In addition, we found a decrease in the percentage of A3 subtypes (arousals)

within these long sequences, as a consequence of the increase in the number/hour of A1

subtypes and not to a real decrease in the number of A3 (Table B.2). This also confirms

that evaluating CAP goes beyond the simpler information that can be obtained by analysing

only arousals; the classification of CAP subtypes encompasses the consideration of both

sleep instability or maintenance (subtypes A1) and sleep fragmentation (subtypes A2 and
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Figure B.2. Time structure of CAP cycles in the three groups of subjects. Data shown as
median (circles and squares) and interquartile range (whiskers).. Time structure
of CAP cycles in the three groups of subjects. Data shown as median (circles and
squares) and interquartile range (whiskers).

A3) (Parrino et al., 2001), with the added value of the consideration of the time structure of

NREM sleep microarchitecture (Ferri et al., 2006), in a comprehensive way.

All data reported above seem to indicate the presence of long periods of NREM sleep

instability in these children, composed essentially by slow-wave containing transients (A1

subtypes represented 84.5% of all CAP A phases, see Table B.2). It is possible to also

speculate that this NREM sleep instability perhaps does not allow them to maintain a long

and stable slow-wave sleep, especially in the first sleep cycle, thus favouring the occurrence

of REM sleep earlier than in the other children (Table B.1).

NREM sleep instability has been found to be associated with the emergence of movement

or behavioural episodes in other sleep disorders in children. In particular, an increased
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presence of instability during slow-wave sleep, characterized by an excessive number of

short returns to the low-amplitude background EEG activity has been found to occur in chil-

dren with sleep terrors (Bruni et al., 2008) and sleep walking (Guilleminault et al., 2006b).

Similarly, an increase in NREM sleep instability has been indicated as a possible trigger for

rhythmic movement disorder in children (Manni et al., 2004).

Thus, the fast oscillatory pattern of EEG potential amplitude picked up by our CAP anal-

ysis seems to be similar to that reported in these studies on parasomnia and movement

disorders; however, it cannot be used to further speculate on the ultimate nature of RSD,

especially if it has to be considered a sleep movement disorder. In this respect, we should

notice here that CAP in RSD was found to be different also from that of RLS children who,

in contrast with the results of adult studies (Ferri et al., 2010; Manconi et al., 2012), did not

seem to show and abnormal amount of CAP in their sleep. This is not surprising because,

while in adult sleep disorders CAP tends to show a general increase (with the exception of

narcolepsy), in children the most common global CAP change found has been its reduction

(or no change) (Parrino et al., 2012). Briefly, decreased CAP rate has been reported in nar-

colepsy (Ferri et al., 2009), benign epilepsy with rolandic spikes (Bruni et al., 2010a), drug-

resistant epilepsy with severe mental retardation (Pereira et al., 2012a), attention-deficit

hyperactivity disorder (Miano et al., 2006), Asperger syndrome (Bruni et al., 2007), Prader-

Willi syndrome (Verrillo et al., 2009), and Fragile-X syndrome (Miano et al., 2008). Con-

versely, increased CAP rate has been found in sleep enuresis (Soster et al., 2017). No clear

global CAP rate changes (but changes in its subtype distribution) have been reported in

autism (Miano et al., 2007), Down syndrome (Miano et al., 2008), different types of lesional

or non-lesional drug-resistant epilepsy (Pereira et al., 2012b), and dyslexia (Bruni et al.,

2009). Unclear results have finally been reported in childhood sleep apnoea (Kheirandish-

Gozal et al., 2007; Miano et al., 2009).

It is particularly interesting to note that movements were not found to be correlated with

CAP in our analysis and tended to occur also during NCAP periods (the percentage of

movements occurring during CAP was strikingly similar to that of CAP rate e the percent-

age of NREM sleep time occupied by CAP sequences). However, when occurring within

CAP sequences they were most often associated with the CAP A2 and A3 subtypes that are

more similar to arousals (if not overlapping with them) (Parrino et al., 2001); this parallels

our previous observation that movements in RSD can be followed by awakenings (Del-

Rosso et al., 2019) and confirms their sleep-disrupting properties which are probably at

the basis of daytime consequences reported in these children. With this new study, we can
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speculate that probably also the NREM instability might play a role in determining the above

mentioned daytime consequences.

Probably, the main limitation of this study is the number of subjects included, especially

in the control group, because practical limitations connected with the cost of PSG and the

fact that this study was not funded did not allow us to recruit more participants. However,

a preliminary power and sample size analysis would have been very difficult to perform

because of the novelty of the condition under analysis (RSD) and, also in children with

RLS, CAP has not been analysed in the past. Notwithstanding this important limitation,

we were able to find statistically significant differences between the groups pointing at the

parameters that were hypothesized to be abnormal in these patients and thus confirming

our original hypothesis.

It should also be mentioned here, briefly, that the results of this study are a further confir-

mation of the validity of the automatic approach used to quantify CAP, previously reported

in detail elsewhere (Hartmann and Baumert, 2019).

In conclusion, our study indicates that NREM sleep EEG shows an increased instability in

RSD, similar to that already reported for other parasomnia or movement disorders of child-

hood and characterized by long runs of fast oscillations between transient activation phases

(A subtypes) and shorter than normal returns to the background low-amplitude EEG activity

(B phase of the CAP cycle). Even if with this study it is not possible to speculate further,

these findings add to the current knowledge on the mechanisms of this newly recognized

sleep disorder and suggest that sleep instability might be a favouring mechanism for the

emergence of the motor episodes characterizing RSD.
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Appendix

Sleep arousal burden is associated with

long-term all-cause and cardiovascular

mortality in 8001 community-dwelling

older men and women

The content of this chapter is a modified version of the publication:

Shahrbabaki, S. S., Linz, D., Hartmann, S., Redline, S., and Baumert, M. (2021), ‘Sleep

arousal burden is associated with long-term all-cause and cardiovascular mortality in 8001

community-dwelling older men and women’, European Heart Journal 42, pp. 2088–2099.
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Abstract

Aims: To quantify the arousal burden (AB) across large cohort studies and de-

termine its association with long-term cardiovascular (CV) and overall mortality

in men and women.

Methods and results: We measured the AB on overnight polysomnograms of

2782 men in the Osteoporotic Fractures in Men Study (MrOS) Sleep study, 424

women in the Study of Osteoporotic Fractures (SOF) and 2221 men and 2574

women in the Sleep Heart Health Study (SHHS). During 11.2 ± 2.1 years of

follow-up in MrOS, 665 men died, including 236 CV deaths. During 6.4 ± 1.6

years of follow-up in SOF, 105 women died, including 47 CV deaths. During

10.7 ± 3.1 years of follow-up in SHHS, 987 participants died, including 344 CV

deaths. In women, multivariable Cox proportional hazard analysis adjusted for

common confounders demonstrated that AB is associated with all-cause mor-

tality [SOF: hazard ratio (HR) 1.58 (1.01–2.42), p = 0.038; SHHS-women: HR

1.21 (1.06–1.42), p = 0.012] and CV mortality [SOF: HR 2.17 (1.04–4.50), p =

0.037; SHHS-women: HR 1.60 (1.12–2.28), p = 0.009]. In men, the association

between AB and all-cause mortality [MrOS: HR 1.11 (0.94–1.32), p = 0.261;

SHHS-men: HR 1.31 (1.06–1.62), p = 0.011] and CV mortality [MrOS: HR 1.35

(1.02–1.79), p = 0.034; SHHS-men: HR 1.24 (0.86–1.79), p = 0.271] was less

clear.

Conclusions: Nocturnal AB is associated with long-term CV and all-cause mor-

tality in women and to a lesser extent in men.
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Graphical Abstract

Figure C.1. Graphical abstract. The burden of cortical arousals on overnight polysomnograms was
quantified across three large cohort studies and its association with long-term mortality
was investigated. An increased cardiovascular and all-cause mortality was observed in
women who experienced a high arousal burden. The association was weaker in men.

Introduction

Insufficient sleep is associated with cardiovascular (CV) disease and fatal CV outcomes

(Fan et al., 2020). A meta-analysis revealed a U-shaped association between self-reported

sleep duration and all-cause and CV mortality; both short (≤6 h/day) and long (>8 h/day)

self-reported sleep duration are associated with mortality risk (Wang et al., 2019). In

heart failure patients, objectively assessed sleep duration using overnight polysomnography

(PSG) shows an inverse linear association with mortality and does not follow the U-shaped

association observed with self-reported sleep (Reinhard et al., 2013). Indeed, the length

of sleep alone does not reflect critical neurophysiological aspects such as sleep quality,

sleep continuity, and sleep depth (Javaheri et al., 2018). For example, sleep irregular-

ity (Huang et al., 2020), difficulties initiating sleep, and non-restorative sleep are associated

with increased risk of mortality, irrespective of sleep duration (Li et al., 2014).
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Brief intrusions of unconscious wakefulness, so-called cortical arousals, are a normal fea-

ture of sleep. They occur spontaneously or are elicited by sleep-disordered breathing

(SDB) and periodic limb movements during sleep, trauma, pain, temperature, light, and

traffic noise (Linz et al., 2018). Arousals, irrespective of the underlying mechanism, impact

heart rate, blood pressure, and cardiac haemodynamics acutely (Nalivaiko et al., 2007),

but, when frequent, may also disrupt the circadian rhythm of the CV system, which is as-

sociated with unfavourable metabolic profiles, such as higher blood pressure, dysregulated

blood lipids, and insulin resistance (Wang et al., 2019). Additionally, traffic noise, particu-

larly when occurring during night, has been shown to be a risk factor of CV disease through

increased levels of stress hormones and vascular oxidative stress (Münzel et al., 2020;

Kröller-Schön et al., 2018).

Clinically, the cause and rate of arousal occurrence are assessed using overnight PSG (Ben-

nett et al., 1998). The arousal index (AI), i.e. the number of arousals per hour of sleep,

is often used to quantify the level of sleep fragmentation (Smurra et al., 2001). High AI

values are associated with daytime sleepiness (Bennett et al., 1998), poor sleep qual-

ity (Smurra et al., 2001), and increased emotional and physical fatigue in patients with SDB.

In addition to the rate of arousals, the duration of individual arousal events may further con-

tribute to the extent of sleep fragmentation (Boselli et al., 1998; Trinder et al., 2003; Nigro

and Rhodius, 2005). The clinical significance of detailed characterization of the arousal

burden (AB) on CV and all-cause mortality remains unknown.

The objective of this study was to determine the nocturnal AB and its association with long-

term CV and all-cause mortality in men and women in the broader population. Using a

simple index that combines arousal frequency, duration, and total sleep time (TST) mea-

sured on home PSG, we ascertained the prognostic value of AB for CV and overall mortality

in 2782 male participants of the Osteoporotic Fractures in Men Study (MrOS) Sleep study,

424 female participants in the Study of Osteoporotic Fractures (SOF), and 4795 individuals

in the Sleep Heart Health Study (SHHS). We hypothesized that a high AB is associated

with long-term mortality.
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Methods

Study populations

The MrOS Sleep study recruited 3135 participants (Baumert et al., 2019), of which 2892

(92.2%) had PSG data available for analysis. The SOF sleep study recruited 461 partic-

ipants (Baumert et al., 2019), 453 (98.3%) with available PSG. The SHHS included 6841

participants (Redline et al., 1998), with 5791 (89.9%) with available PSG. Follow-up in MrOS

was 11.2 ± 2.1 years, 6.4 ± 1.6 years in SOF, and 10.7 ± 3.1 years in SHHS. Cardiovas-

cular and all-cause mortality were assessed in all studies. For recruitment and follow-up

details, see the Supplementary material online and Supplementary material online, Figure

C.6.

In-home overnight polysomnography and sleep scoring

Overnight PSG and sleep scoring were performed using standard methodologies. For de-

tails, see the Supplementary material online.

Characterization of arousal burden

Total sleep time is defined as the duration of scored sleep epochs, expressed in minutes.

We defined the AB as the cumulative duration of all arousal events relative to TST:

AB =
∑N
i=1 di

TST
× 100 (%) (C.1)

where N is the number of arousals, and d is the duration of arousal i, expressed in min-

utes. If arousal terminated in a wake epoch, arousal duration was calculated as the interval

between arousal onset and end of the related sleep epoch. The AI was calculated as:

AI = N
TST

× 60 (h−1) (C.2)

Other measures

All participants were required to attend a clinical interview and complete an enrolment form

that contained a questionnaire on medical history in advance of overnight PSG recordings

(see Supplementary material online). Blood pressure was measured during the clinical visit.
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From overnight PSG, we derived the mean respiratory rate (Baumert et al., 2019), the time

of sleep spent below 90% oxygen saturation (Baumert et al., 2020), average ventricular

rate, the apnoea-hypopnoea index (AHI) and the periodic limb movement index (PLMI).

Statistical analysis

Arousal burden data were divided into quartiles for Kaplan–Meier curve survival analysis

and log-rank testing. Anthropometric data, lifestyle metrics, and medical history were com-

pared using dichotomized AB (Q4 vs. Q1–Q3) and Student’s t-test and �2 test, respec-

tively. Cox proportional hazard models were constructed for continuous and categorical AB

variables. The proportionality of hazard ratio (HR) was tested using cumulative sums of

martingale residuals. Correlations were assessed using Spearman’s rank coefficient. Ex-

posure–response relationships were evaluated separately for men and women. We used

restricted cubic splines with knots at the 5th, 35th, 65th, and 95th percentile to explore

the potential non-linear association of the continuous variables with the outcome. Estima-

tions for the exposure variables were made separately varying over their default range while

adjusting the covariates to their median value. The Wald �2 test determined the effect of ex-

planatory variables in a multivariable model. A p-value of 0.05 was considered statistically

significant.

The associations between AB and mortality and AI with mortality were assessed with Ka-

plan–Meier curves and Cox proportional hazard models. Schenfeld’s global test was ap-

plied to evaluate the proportionality of hazards. Cumulative incidence function and Fine–Gray

subdistribution hazard model were applied to observe associations in the presence of com-

peting risk.

MATLAB (R2019a, MathWorks, Natick, MA, USA) and R statistical software (R Foundation

for Statistical Computing, Vienna, Austria) were used for statistical analysis and computing.

Results

Participant characteristics

At the baseline visit, MrOS cohort participants were 76.6 ± 5.5 years old. Almost half of

them were overweight (Table C.1). Half of the men had a history of hypertension, and

13% had diabetes, while 17.3% reported histories of coronary artery disease/myocardial

infarction (CAD/MI), 3.7% stroke, and 6.1% heart failure.
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Women in the SOF cohort were 82.9 ± 3.2 years old at baseline (Table C.1). Nearly 40%

were overweight, and about 60% had a history of hypertension, and 13.7% had diabetes.

The histories of stroke, CAD/MI, and heart failure were 13.9%, 12.9%, and 8.5%, respec-

tively.

The SHHS cohort included 2574 women and 2221 men (Table C.2). The average age was

64 years. The prevalence of CAD/MI in men was approximately twice that of women (11.1%

vs. 8.4%). About 3.6% of men and 4.2% of women had a history of heart failure, 16.5% of

men and 8.3% of women had a history of stroke.

Systolic and diastolic blood pressure recorded at the sleep visit was greater in women of

SOF than other cohorts, while the mean heart rate of MrOS participants was higher than

SOF and SHHS cohorts.

Polysomnographic assessment

Total sleep time recorded on PSG were 5.9 ± 1.2, 5.8 ± 1.3, 5.9 ± 1.0, and 6.2 ± 1.1 h in

the MrOS, SOF, SHHS-men, and women cohorts; the AHI values were 20 ± 12.9, 27.6 ±
18.3, 12.3 ± 14.1, and 7.2 ± 10.5 h-1, respectively. Periodic limb movement index in MrOS

and SOF cohorts were 10.6 ± 9.9 and 13.3 ± 19 h-1, respectively (not measured in SHHS).

The AB was significantly higher in the MrOS cohort than in the SOF cohort (6.60 ± 3.34%

vs. 5.50 ± 3.05%, p < 0.001), and also higher in SHHS-men than in SHHS-women (7.14 ±
3.72% vs. 5.43 ± 2.62%, p < 0.001).

The AB correlated only weakly with TST (MrOS: � = -0.18, p < 0.001; SOF: � = -0.20, p <

0.001; SHHS: � = -0.20, p < 0.001; Supplementary material online, Figure C.7) and people

with a low AB tended to sleep longer. The AB was also correlated with AHI (> 0.4 in all

cohorts except SHHS-women; Supplementary material online, Figure C.8).

Cardiovascular and all-cause mortality

In the MrOS cohort, mortality data were available for 2782 participants (Supplementary

material online, Figure C.6). During the follow-up period of 11.2 ± 2.1 years, 665 (23.4%)

men died. Causes of deaths included CV disease (n = 236; 35.5%), cancer (n = 146; 22%),

pulmonary disease (n = 55; 8.3%), and others (n = 228; 34.3%).

Page 155



Table C.1. Cohort characteristics of the Osteoporotic Fractures in Men Study and the Study
of Osteoporotic Fractures.

MrOS (Men) SOF (Women)

ABI ABI ≤ 8.5% ABI >8.5% p-value ABI ABI ≤ 6.5% ABI >6.5% p-value

Subjects(n) 2782 2179 603 424 303 121
Anthropometric and Ethnicity Data
Age(years) 76.6 ± 5.5 76.1 ± 5.5 77.4 ± 5.4 <0.001 82.9 ± 3.2 82.8 ± 3.2 83.4 ± 3.3 0.082
White(n) 2526(90.8) 1961(90) 565(93.7) 0.002 397(93.6) 281(92.7) 116(95.9) 0.234
African American(n) 92(3.3) 77 (3.5) 15(2.5) 0.209 27(6.4) 22(7.3) 5(4.1) 0.234
Asian(n) 82(2.9) 68(3.1) 14(2.3) 0.312
Other(n) 82(2.9) 70(3.2) 12(2.0) 0.120
Body weight
BMI(kg/m2) 27.2 ± 3.8 26.9 ± 3.7 27.9 ± 4.1 <0.001 27.7 ± 4.6 27.7 ± 4.6 27.5 ± 4.5 0.596
Overweight(n) 1375(49.4) 1072(49.2) 304(50.4) 0.597 169(39.9) 121(39.9) 48(39.6) 0.951
Obese(n) 557(20.1) 401(18.4) 156(25.9) <0.001 125(29.5) 92(30.4) 33(27.3) 0.529
Cardiac assessment
Ventricular rate(bpm) 80 ± 14.1 79.9 ± 14.1 80.5 ± 14 0.437 65.3 ± 9.7 64.9 ± 9.1 66.1 ± 11 0.278
Afib(%) 295(10.6) 229(10.5) 66(11) 0.407
SBP(mmHg) 126.5 ± 16.5 126.4 ± 16.6 127.2 ± 16.1 0.268 137.9 ± 17.6 137.7 ± 17.4 138.3 ± 18 0.731
DBP(mmHg) 67.5 ± 9.5 67.4 ± 9.5 67.6 ± 9.5 0.690 76.9 ± 8.6 76.9 ± 8.6 76.9 ± 8.6 0.982
Lifestyle
Never-smokers(n) 1107(39.8) 891(40.9) 219(36.3) 0.043 271(63.9) 197(65.0) 74(61.2) 0.455
Ex-smokers(n) 1619(58.2) 1246(57.2) 373(61.9) 0.039 146(34.4) 99(32.7) 47(38.8) 0.227
Current Smokers(n) 56(2.0) 42(1.9) 14(2.3) 0.542 7(1.7) 7(2.31) 0 0.091
Current alcohol consumers(n) 1825(65.6) 1428(65.5) 398(66.0) 0.830 157(37.0) 108(35.6) 49(40.5) 0.350
Medical History
Stroke(n) 102(3.67) 86(3.95) 16(2.7) 0.135 59(13.9) 43(14.2) 16(13.2) 0.794
CAD/MI(n) 481(17.3) 366(16.8) 115(19) 0.191 55(12.9) 33(10.9) 22(18.2) 0.044
CHF(n) 170(6.11) 120(5.55) 50(8.3) 0.013 36(8.5) 25(8.25) 11(9.1) 0.779
Asthma(n) 220(7.91) 178(8.17) 42(6.9) 0.332 53(12.5) 45(14.8) 8(6.6) 0.021
COPD(n) 145(5.21) 105(4.8) 40(6.6) 0.076
HTN(n) 1389(50) 1078(49.5) 311(51.9) 0.361 252(59.4) 181(59.7) 71(58.7) 0.841
Depression(n) 48(11.3) 33(10.9) 15(12.4) 0.659
Parkinson(n) 31(1.11) 27(1.24) 4(0.66) 0.233
Diabetes (n) 363 (13.0) 281 (12.9) 83 (13.8) 0.576 58 (13.7) 35 (11.5) 23 (19.0) 0.043
Overnight polysomnography
WASO(min) 114.9 ± 67 110 ± 64.7 132.8 ± 70 <0.001 103.4 ± 72 91.4 ± 68 133.6 ± 76 <0.001
TST(min) 355 ± 69.4 362.4 ± 65 329.7 ± 78.2 <0.001 348.6 ± 77.5 357.5 ± 74.6 326.2 ± 80.3 <0.001
T90(min) 14.5 ± 33 14.6 ± 34 13.9 ± 32 0.680 12.9 ± 36 14.2 ± 40 9.7 ± 21.6 0.240
RR(min-1) 14.5 ± 1.9 14.6 ± 1.9 14.4 ± 1.9 0.230 15.3 ± 1.8 15.3 ± 1.8 15.4 ± 1.7 0.445
AHI(h-1) 20.1 ± 12.9 17.1 ± 10.30 30.8 ± 15.3 <0.001 27.6 ± 18.3 23.1 ± 14.3 38.7 ± 22.2 <0.001
PLMI(h-1) 10.6 ± 9.9 10.5 ± 9.8 10.9 ± 10.1 0.462 13.3 ± 19 12.7 ± 19.4 14.8 ± 18 0.298

Data are presented as mean ± standard deviation, or n (%).
AB, arousal burden; AF, atrial fibrillation; AHI, apnoea-hypopnoea index; BMI, body mass index; CAD, coro-
nary artery index; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; DBP, diastolic
blood pressure; HTN, hypertension; MI, myocardial infarction; MrOS, Osteoporotic Fractures in Men Study;
PLMI, periodic limb movement index; RR, respiratory rate; SBP, systolic blood pressure; SOF, Study of Os-
teoporotic Fractures; T90, time of sleep spent below 90% oxygen saturation; TST, total sleep time; WASO,
wake after sleep onset.
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Table C.2. Cohort characteristics of the Sleep Heart Health Study.

Men Women

ABI ABI ≤ 8.5 % ABI >8.5 % p-Value ABI ABI ≤ 6.5 % ABI >6.5 % p-Value

Subjects (n) 2221 1643 578 2574 1918 656
Anthropometric and Ethnicity Data
Age(years) 64 ± 10.9 62.9 ± 11.1 66.9 ± 9.8 <0.001 63.7 ± 11.4 62.3 ± 11.3 67.8 ± 10.6 <0.001
White(n) 1956(88) 1444(87.9) 512(88.6) 0.658 2224(86.4) 586(85.4) 586(89.3) 0.011
African- American(n) 128(5.8) 83(5) 45(7.8) 0.015 180(7) 137(7.1) 43(6.6) 0.612
Other(n) 137(6.2) 116(7.1) 21(3.6) 0.003 170(6.6) 143(7.5) 27(4.1) 0.003
Body weight
BMI(kg/m2) 28.5 ± 4.3 28.2 ± 4.1 29.2 ± 4.9 <0.001 28.1 ± 5.6 27.9 ± 5.5 28.4 ± 5.9 0.06
Overweight(n) 1072(48.3) 822(50.0) 250(43.3) 0.005 955(37.1) 725(37.8) 230(35.1) 0.21
Obese(n) 687(30.9) 468(28.5) 219(37.9) <0.001 792(30.8) 574(29.9) 218(33.2) 0.113
Cardiac assessment
Ventricular rate(bpm) 65 ± 10 65 ± 10.1 64.4 ± 9.1 0.369 64.3 ± 9.9 64.2 ± 9.9 65.1 ± 10 0.213
Atrial fibrillation(%) 38(1.7) 25(1.5) 13(2.3) 0.246 24(0.9) 18(0.9) 8(1.2) 0.534
SBP(mmHg) 125.4 ± 18.5 125.1 ± 18.5 127.6 ± 19 0.054 125.9 ± 18.6 125.7 ± 18.4 128 ± 20.5 0.022
DBP(mmHg) 72.5 ± 10.7 72.4 ± 10.7 73.2 ± 10.7 0.276 72.3 ± 11.2 72.4 ± 11.2 71.5 ± 11.2 0.241
Lifestyle
Never- Smokers(n) 768(34.6) 573(34.9) 195(33.7) 0.621 1458(56.6) 1081(56.4) 377(57.5) 0.621
Ex-smokers(n) 1222(55) 892(54.3) 330(57.1) 0.244 882(34.3) 655(34.2) 227(34.6) 0.833
Current Smokers(n) 231(10.4) 178(10.8) 53(9.2) 0.26 234(9.1) 182(9.5) 52(7.9) 0.229
Medical History
Stroke(n) 367(16.5) 259(15.8) 108(18.7) 0.104 213(8.3) 147(7.7) 66(10.1) 0.05
CAD/MI(n) 246(11.1) 163(9.9) 83(14.4) 0.003 217(8.4) 152(7.9) 65(9.9) 0.114
CHF(n) 79(3.56) 54(3.29) 25(4.33) 0.245 109(4.2) 69(3.6) 40(6.1) 0.006
HTN(n) 924(35.9) 629(38.3) 295(51.0) <0.001 1018(39.5) 715(37.3) 303(46.2) <0.001
Diabetes(n) 189(7.3) 129(7.9) 60(10.4) 0.060 159(6.2) 104(5.4) 55(8.4) 0.007
Overnight Polysomnography
WASO(min) 67.4 ± 46 59.7 ± 42 89.3 ± 52 <0.001 57.4 ± 41 50.6 ± 36.6 77.4 ± 45.5 <0.001
TST(min) 354.6 ± 61.1 361 ± 57.4 336 ± 67.4 <0.001 371.6 ± 64.6 379 ± 60.7 349.8 ± 71 <0.001
T90(min) 11.4 ± 35.2 11.5 ± 35.5 10.9 ± 31.9 0.809 13.4 ± 39 13.3 ± 39.4 14.1 ± 35.7 0.748
RR(min-1) 14.7 ± 1.7 14.7 ± 1.7 14.8 ± 1.7 0.924 14.7 ± 1.7 14.7 ± 1.7 14.8 ± 1.7 0.224
AHI(h-1) 12.3 ± 14.1 8.7 ± 9.1 22.9 ± 19.5 <0.001 7.2 ± 10.5 5.3 ± 7.1 12.8 ± 15.7 <0.001

Data are presented as mean ± standard deviation, or n (%).
AB, arousal burden; AF, atrial fibrillation; AHI, apnoea-hypopnoea index; BMI, body mass index; CAD, coro-
nary artery disease; CHF, congestive heart failure; DBP, diastolic blood pressure; HTN, hypertension; MI,
myocardial infarction; SBP, systolic blood pressure; T90, time of sleep spent below 90% oxygen saturation;
TST, total sleep time; RR, respiratory rate; WASO, wake after sleep onset.

In the SOF cohort, mortality data were available for 424 women. During the 6.4 ± 1.6 years

of follow-up, 105 (24.8%) women died, including 47 (44.8%) CV deaths, 17 (16.2%) cancer

deaths, 27 (25.7%) pulmonary deaths, and 14 (13.3%) deaths due to other reasons.

In the SHHS cohort, mortality data were available for 4795 individuals. During the follow-up

period of 10.7 ± 3.1 years, 987 (20.6%) individuals died (525 men, 462 women). Among

those, 344 (34.9%) were CV deaths. Kaplan–Meier survival analysis of AB quartiles demon-

strates the association between AB and all-cause mortality (Figure C.2). When comparing

people in Q4 against all others (men: AB > 8.5%; women: AB > 6.5%), all-cause mortality

was greater in all cohorts (MrOS: 3.2%, p = 0.017; SOF: 8.9%, p = 0.039; SHHS-men:

10.2%, p < 0.001; SHHS-women: 8.4%, p < 0.001; Figure C.3).
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Figure C.2. Arousal burden and all-cause mortality for men and women from MrOS, SOF, and
SHHS sleep studies. Arousal burden and all-cause mortality. Kaplan–Meier curves
indicate arousal burden quartiles for (A) men from the Osteoporotic Fractures in Men
Study (MrOS) Sleep cohort, (B) men from the Sleep Heart Health Study (SHHS), (C)
women from the Study of Osteoporotic Fractures (SOF) cohort, and (D) women from
the Sleep Heart Health Study. The p-values show log-rank test results.Q1–Q4, quartiles
1–4.

When assessing the competing risk of CV vs. non-CV deaths across all four cohorts, the

highest AB quartile was associated with relatively higher CV mortality in the MrOS, SOF,

and SHHS-women cohorts (4.8%, 8%, and 5.5%, respectively; Figure C.4). Q4 was also

associated with a higher probability of non-CV mortality in the SOF and SHHS-men and

SHHS-women cohorts (3.5%, 6.9%, and 7.4%).

Characteristics of participants in the highest AB quartiles are summarized in Tables C.1 and

C.2. In the MrOS cohort, men in Q4 were more likely to be older, obese, ex-smokers, have

a history of heart failure and chronic obstructive pulmonary disease, and have higher AHI

values. In the SOF cohort, women in Q4 were more likely to be diabetic, asthmatic, have

a history of CAD/MI and suffering from severe SDB. There was no significant association

between high AB and history of stroke and prevalence of hypertension either in SOF or

MrOS participants. Neither was there an association with chronic obstructive pulmonary
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Figure C.3. Dichotomised arousal burden and all-cause mortality for men and women from
MrOS, SOF, and SHHS sleep studies. Arousal burden and all-cause mortality. Ka-
plan–Meier curves indicate dichotomised arousal burden data for (A) men from the Os-
teoporotic Fractures in Men Study (MrOS) Sleep cohort, (B) men from the Sleep Heart
Health Study (SHHS), (C) women from the Study of Osteoporotic Fractures (SOF) co-
hort, and (D) women from the Sleep Heart Health Study. The p-values show log-rank
test results. HR, hazard ratio.

disease or depression. In SHHS-men in Q4 were more likely to be older, overweight, or

obese, have a history of congestive heart failure, hypertension, and to have a moderate-to-

severe degree of sleep apnoea. In SHHS-women in Q4 were likely to be older, white, have

a history of CAD/MI, hypertension, diabetes, stroke, and mild-to-moderate sleep apnoea

and higher systolic blood pressure.

In univariate Cox proportional hazard analysis, AB > 8.5% and AB > 6.5% were significantly

associated with all-cause mortality in men [MrOS: HR 1.21, 95% confidence interval (CI)

1.03–1.42, p = 0.02; SHHS-men: HR 1.37 (1.15–1.62), p < 0.001] and women [SOF: HR

1.98 (1.11–3.53), p = 0.02; SHHS-women: HR 1.60 (1.33–1.92), p < 0.001] (Table C.3).

Arousal burden > 6.5% was also associated with CV mortality in women [SOF: HR 2.15

(1.08–4.28), p = 0.031; SHHS-women: HR 1.95 (1.38–2.75), p < 0.001]. In male cohorts,
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Figure C.4. Comparison of competing risk of arousal burden of cardiovascular, non-
cardiovascular and all-cause mortality in older men and women. Commutative in-
cident function curves compare the competing risk of arousal burden of cardiovascular,
non-cardiovascular and all-cause mortality in (A) men from the Osteoporotic Fractures
in Men Study (MrOS) Sleep cohort, (B) men from the Sleep Heart Health Study (SHHS),
(C) women from the Study of Osteoporotic Fractures (SOF) cohort, and (D) women from
the Sleep Heart Health Study. Hazard ratios (HR) and p-values were estimated through
a sub-distributional Fine–Gray hazard model.

AB > 8.5% was associated with CV mortality in MrOS [HR= 1.57 (1.24–2.04), p < 0.001]

but not in SHHS-men (p = 0.131).

After adjusting the regression models for TST, age, average heart rate, respiratory rate,

systolic and diastolic blood pressure, time spent with oxygen desaturation below 90%, his-

tory of hypertension, stroke, MI, congestive heart failure, diabetes and hypertension, body

mass index category, AHI, and smoking habits, AB >8.5% remained associated with CV

mortality in the MrOS cohort [HR 1.35 (1.02–1.79), p = 0.034] but not for all-cause mortal-

ity (Table C.3). After adjusting the SOF cohort model for the same variables, AB > 6.5%

remained associated with all-cause [HR 1.58 (1.01–2.42), p = 0.038] and CV mortality
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Table C.3. Association of arousal burden with cardiovascular and all-cause mortality.

All-cause mortality Cardiovascular mortality Non-cardiovascular Mortality

Univariate analysis Multivariable analysis Univariate analysis Multivariable analysis Univariate analysis Multivariable analysis

HR(95% CI) p HR(95% CI) p HR(95% CI) p HR(95% CI) p HR(95% CI) p HR(95% CI) p

MrOS Sleep
AB(%) 1.03(1.00–1.05) 0.011 1.02(1.00–1.04) 0.049 1.05(1.02–1.09) 0.003 1.04(1.00–1.08) 0.028 1.01(0.99–1.04) 0.301 0.99(0.97–1.02) 0.955
AB>8.5% 1.21(1.03–1.42) 0.020 1.11(0.94–1.32) 0.261 1.57(1.24–2.04) <0.001 1.35(1.02–1.79) 0.034 1.02(0.99–1.25) 0.897 0.95(0.76–1.19) 0.651
SOF
AB(%) 1.11(1.03–1.19) 0.002 1.06(1.00–1.13) 0.050 1.14(1.05–1.23) 0.004 1.14(1.05–1.25) 0.002 1.06(0.97–1.15) 0.201 1.05(0.96–1.15) 0.255
AB>6.5% 1.98(1.11–3.53) 0.020 1.58(1.01–2.42) 0.038 2.15(1.08–4.28) 0.031 2.17(1.04–4.50) 0.037 1.30(0.70–2.41) 0.410 1.31(0.67–2.55) 0.431
SHHS-men
AB(%) 1.04(1.02–1.06) <0.001 1.02(0.98–1.06) 0.199 1.01(0.96–1.06) 0.661 0.96(0.90–1.03) 0.251 1.05(1.01–1.08) 0.004 1.03(0.98–1.07) 0.194
AB>8.5% 1.37(1.15–1.62) <0.001 1.31(1.06–1.62) 0.011 1.29(0.93–1.78) 0.131 1.24(0.86–1.79) 0.271 1.41(1.13–1.76) 0.003 1.34(1.04–1.74) 0.005
SHHS-women
AB(%) 1.10(1.07–1.13) <0.001 1.07(1.03–1.12) 0.003 1.15(1.08–1.22) <0.001 1.12(1.06–1.20) <0.001 1.10(1.06–1.16) <0.001 1.09(1.04–1.15) 0.001
AB>6.5% 1.60(1.33–1.92) <0.001 1.21(1.06–1.42) 0.012 1.95(1.38–2.75) <0.001 1.60(1.12–2.28) 0.009 1.37(1.09–1.74) 0.009 1.28(1.01–1.63) 0.038

HR for AB (%) indicate the risk increment per 1% increase in AB. For categorical risk analysis, AB was
dichotomized on the 4th quartile (men: AB > 8.5; women: AB > 6.5). Multivariable analysis was adjusted
for total sleep duration, age, history of stroke, coronary artery disease/myocardial infarction, congestive heart
failure, diabetes, hypertension, mean heart rate, mean respiratory rate, systolic and diastolic blood pressure,
time of sleep spent below 90% oxygen saturation, total wake after sleep onset, categorized body mass index,
apnoea-hypopnoea index, and smoking habit. AB, arousal burden; CI, confidence interval; HR, hazard ratio;
MrOS, Osteoporotic Fractures in Men Study; SHHS, Sleep Heart Health Study; SOF, Study of Osteoporotic
Fractures.

[HR 2.17 (1.04–4.50), p = 0.037]. In the adjusted model, AB was also associated with

all-cause mortality in SHHS-men [HR 1.31 (1.06–1.62), p = 0.011] and SHHS-women [HR

1.21 (1.06–1.42), p = 0.012] and CV mortality in SHHS-women [HR 1.60 (1.12–2.28), p =

0.009] (Table C.3). Concerning non-CV mortality, the highest AB quartile was associated

with increased risk in both SHHS-men [HR 1.34 (1.04–1.74), p = 0.005] and SHHS-women

[HR 1.28 (1.01–1.63), p < 0.038].

For a detailed mortality analysis of AI, see Supplementary material online. Kaplan–Meier

analysis of AI (Supplementary material online, Figure C.9) as well as competing risk anal-

ysis for CV and non-CV mortality (Supplementary material online, Figure C.10) showed a

somewhat weaker association of AI with mortality, although AI was strongly correlated with

AB (Supplementary material online, Figure C.11). Kaplan–Meier curves of combined AB

and AI did not demonstrate any significant difference between subgroups for all-cause (Sup-

plementary material online, Figure C.12) or CV mortality (Supplementary material online,

Figure C.13).

To further explore the non-linear association between AB and mortality in men and women,

we collated datasets and assessed exposure–response relationships (Figure C.5), adjust-

ing for the same covariates. We observed a significant gender effect on the prognostic value

of AB for mortality (all-cause: p = 0.034; CV: p = 0.030). Overall, the association between

AB and mortality appears to be stronger in women than in men (Graphical abstract). Men

demonstrated an initial decrease in all-cause mortality up to almost AB ≈6% [logHR 0.08
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Figure C.5. Exposure–response relationships of arousal burden and all-cause and cardiovas-
cular mortality for older men and women. The exposure–response relationships of
arousal burden and all-cause and cardiovascular mortality for men and women regard-
less of their cohort, adjusted for total sleep duration, age, systolic and diastolic blood
pressure, average heart rate, mean respiratory rate, time spent below 90% oxygen de-
saturation, history of stroke, myocardial infarction/coronary artery disease, congestive
heart failure, categorized body mass and apnoea/hypopnoea indices, the total duration
of wake after sleep onset, smoking habit, and history of hypertension and diabetes. CI,
confidence interval; HR, hazard ratio. The p-values show Wald �2 test results.

(0.02–0.14)], the cut-off of Q2 in Kaplan–Meier plots for men (Figure C.2), followed by a

gradual increase [AB 10%: logHR 0.13 (0.04–0.21), AB 20%: logHR 0.41 (0.11–0.72)]. In

women, the all-cause mortality risk similarly reached the minimum value at the Q2 cut-off

[AB ≈5%: logHR -0.03 (-0.12–0.07)], while an almost linear increase in all-cause mortality

was observed with increasing AB [AB 10%: logHR 0.26 (0.09–0.43), AB 20%: logHR 1.07

(1.45–1.67)]. The exposure–response relationships for CV mortality were similar.
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Discussion

This study is the first to evaluate the sex-specific association of sleep AB and long-term

CV and all-cause mortality. Data from three large cohort studies, totalling 8001 participants

demonstrate that a high AB is associated with significantly increased CV and all-cause

mortality. While the frequency of arousals was lower in women than in men, the association

with mortality was stronger in women.

We used two metrics to quantify nocturnal AB, AB and AI, quantifying the percentage of

sleep time affected by arousal and the frequency of arousal per hour of sleep, respectively.

Arousal burden correlated only weakly with total sleep duration. People with low AB tend

to sleep longer, presumably due to lower levels of sleep fragmentation. The wake time

after sleep onset was associated with AB in our study, but AB in itself appears to carry

important prognostic information. While AB was more strongly associated with mortality

than AI, both metrics confirm the relationship between AB and longterm mortality as well as

the difference between genders. While the severity of SDB, periodic limb movement disor-

der and other sleep pathologies increase the rate of arousals, mechanisms underlying the

arousal duration are less clear. Boselli et al. (1998) showed that the mean arousal duration

is independent of age or gender. The extent and duration of arousals elicited by apnoeas

are typically greater than that of hypopnoeas. Apnoeas exceeding 20 s accompanied by

a minimum oxygen desaturation of 86% are likelier to be terminated by arousals longer

than 11 s (Nigro and Rhodius, 2005). Generally, arousal duration reflects arousal intensity

and the level of concurrent autonomic activation such as post-arousal heart rate (Java-

heri et al., 2018). Particularly in SDB, reflex control and chemoreceptor sensitivity, which

determine arousal thresholds and contribute to sympathovagal disbalance and haemody-

namic responses, may affect arousal duration (Eckert and Younes, 2013).

Comparing AB between the MrOS and SOF cohorts suggests lower AB in women than in

men, despite their more advanced age and somewhat higher AHI and PLMI. In the SHHS

cohort, AB was greater in men as was AHI, but was not associated with CV mortality, unlike

AB in women. This suggests that women are more prone to arousal-related consequences

than men.

Interestingly, the lowest mortality was observed among people in the 2nd AB quartile,

demonstrating the non-linear relationship between AB and mortality. People experienc-

ing infrequent arousals may suffer from elevated arousal thresholds, which could result in

worse outcomes (Kaur and Saper, 2019).
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Cardiovascular risk factors are more prevalent in participants with high AB; CV disease

and arrhythmias are known to contribute to increased mortality (Cappuccio et al., 2010).

Importantly, AB was associated with mortality when adjusted for concomitant risk factors.

Arousal-related pathological conditions, involving autonomic nervous system activation, cir-

cadian rhythm impairment due to sleep fragmentation (Bonnet, 1989), nocturnal blood pres-

sure and heart rate rises (Bennett et al., 1998; O’Driscoll et al., 2004; Bonnet and Arand,

1997) or concomitant conditions such as SDB have all shown to increase all-cause and

CV mortality (Kaur and Saper, 2019; Linz et al., 2019; Azarbarzin et al., 2019). Moreover,

irregular sleep duration and timing have been recently shown as risk factors of CV disease,

independent of traditional CV disease risk factors and sleep quality and quantity.5 Here,

we observed a significant association between history of heart failure and MI and AB in

some cohorts, linking AB to CV disease. We also report a higher prevalence of diabetes

in women with AB >6.5%, corroborating on the link between short sleep, type 2 diabetes,

and glucose metabolism (Gangwisch et al., 2005; Yaggi et al., 2006). However, we did not

observe this relationship in men.

Strengths

This study had multiple strengths, including the large sample size and hypothesis testing

across three independent cohorts; prospective evaluation of outcomes over significant time

periods; the focus on hard endpoints (which are less sensitive to misclassification and are

most clinically relevant); rigorously collected PSG data scored blinded to other data; and

the ability to adjust for multiple potential confounders.

Limitations

All cohorts comprise predominately white men and women of predominantly middle to older

age. Hence, our findings cannot be extrapolated to other races or younger individuals.

Baseline exposure to various conditions was self-reported rather than systematically ascer-

tained through medical records or direct measurement. We did not consider the possible

confounding effects of medications. We did not distinguish arousal types, assuming that

regardless of the cause, arousals disrupt sleep architecture the same way. In line with the

American Academy of Sleep Medicine (AASM) scoring rules, subcortical arousals were not

considered (Iber et al., 2007). Standard AASM 30 s sleep staging may have resulted in

underestimating AB by cutting short arousals that terminated in ‘wake’ stages. Our findings
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were obtained on single-night in-home overnight PSG; night-to-night variability in AB may

exist and affect the estimated strength of the observed associations (Linz et al., 2018).

Future directions

We demonstrated a clear association between nocturnal AB and long-term CV and all-

cause mortality. Arousal burden may represent a promising marker to identify patients at

risk. We quantified AB using EEG recordings from overnight PSG. The clinical implemen-

tation of AB assessment in routine risk stratification strategies will require easily scalable,

widely accessible, and affordable techniques to estimate the duration and fragmentation of

sleep and to detect arousals (e.g. wrist actigraphy or peripheral arterial tonometry) (Yala-

manchali et al., 2013). To determine whether a more detailed description of the AB, incor-

porating alternative arousal characteristics such as the frequency of wake periods or sleep

stage transitions from deep to light sleep results in a better risk prediction requires further

study. Arousal burden may also represent a modifiable risk factor for CV and all-cause

mortality, which warrants future prospective intervention studies. Possible interventions to

reduce AB require a multi-modal assessment and may involve pharmacological elevation of

the arousal threshold (Eckert and Younes, 2013).

Conclusion

Nocturnal AB is associated with long-term CV and all-cause mortality in women and to a

lesser extent in men.
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Supplementary material

Study Populations

MrOS sleep study

The MrOS cohort observational study enrolled 5995 community-dwelling men older than 65

years between March 2000 and April 2002 at six clinical centres in the United States to in-

vestigate the epidemiology of osteoporosis in older men and identify the risk factors for frac-

ture and bone loss (Orwoll et al., 2005). Enrolled participants had to be able to walk without

any assistance from another person and not have a bilateral hip replacement (Blank et al.,

2005). The Outcomes of Sleep Disorders in Older Men (MrOS Sleep) sub-study recruited

3135 participants from MrOS. All men provided written informed consent, and the Institu-

tional Review Board approved the study at each site. All men completed the clinical visit

and in-home overnight PSG between December 2003, and March 2005 (Baumert et al.,

2019). Of these participants, 2892 (92.2%) had adequate PSG datasets.
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SOF

The SOF observational cohort study enrolled 9704 community-dwelling Caucasian female

participants aged ≤ 65 years who lived in the US between September 1986 and October

1988 (Cummings et al., 1990). Later, 662 African-American women recruited between

February 1997 and 1998 were added to the study. Participants were reassessed biannual

follow-up visits. Four hundred sixty-one participants completed overnight in-home PSG

between January 2002 and February 2004 (Baumert et al., 2019; Spira et al., 2008). Of

these women, 453 had adequate PSG.

SHHS

The SHHS is a prospective multi-centre cohort study implemented by the National Heart

Lung & Blood Institute to investigate OSA and other SDB as risk factors for the development

of CV disease (Haas et al., 2005). Thus, SHHS participants were recruited from ongoing co-

hort studies of CV or respiratory disease with no treatment of SDB with continuous positive

airway pressure (CPAP), no tracheotomy and no current home oxygen therapy (Haas et al.,

2005). Among 11503 eligible individuals in parent cohort studies, 6841 (62%) participants

completed the home overnight PSG sleep study between November 1995 and January

1998 (Haas et al., 2005; Redline et al., 1998). In this study, the PSG of 5791 participants

were available for analysis (89.9%).

Follow-up

MrOS sleep participants were followed up every four months to survey for new symptoms

of CV or clinically relevant arrhythmia by postcards and/or phone with > 99% response

rate. A board-certified cardiologist then verified all relevant medical records and supporting

documents for centralised adjudication using a pre-specified protocol (Koo et al., 2011). The

death certificate and hospital records from the time of death were collected for fatal events.

If a fatal event did not occur at the hospital, a proxy interview with next of kin and the

participant’s most recent hospitalisation documents in the prior 12 months were collected.

Only events confirmed by the adjudicator are included for analysis (Baumert et al., 2019).

Deaths of SOF participants were centrally adjudicated using a state-registered certificate

of death which was submitted to the coordinating centre. The principal investigator at each

of four clinical sites indicated the initial diagnosis for the cause of death. The final classifi-

cation of cause-specific mortality was centrally adjudicated at the coordinating centre by a
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trained physician adjudicator, using the International Classification of Diseases 9th Revision

Clinical Modification (ICD-9-CM) (Baumert et al., 2019).

Deaths in the SHHS cohort from any cause were identified and confirmed using multiple

concurrent approaches including follow-up interviews, written annual questionnaires or tele-

phone contacts with study participants or next-of-kin, surveillance of local hospital records

and community obituaries, and linkage with the Social Security Administration Death Master

File (Punjabi et al., 2009).

In-home overnight polysomnography

Sleep recordings were performed using an unattended, portable in-home PSG over one

night at the participant’s residence using the Compumedics (Abbotsford, Australia) Safiro

sleep monitoring system for MrOS Sleep, the Compumedics Siesta system for SOF3 and

Compumedics p-series for SHHS (Punjabi et al., 2009). Trained staff members visited

the participants to attach the sensors and electrodes and conduct overnight PSG. The

setup included two central electroencephalograms (EEG), bilateral electrooculograms, bi-

lateral chin electromyogram, a bipolar electrocardiogram, nasal-oral thermistor, nasal flow

via pressure transducer and nasal cannula, abdominal and respiratory inductance plethys-

mography, finger pulse oximetry, bilateral leg movements by piezoelectric sensors and body

position (Baumert et al., 2019; Punjabi et al., 2009; Song et al., 2015).

Sleep scoring

Certified sleep technicians scored sleep events according to the standard criteria (Bon-

net et al., 1992; Rechtschaffen and Kales, 1968). The apnoea-hypopnoea index (AHI) was

calculated as the number of apnoea and hypopnoea episodes per hour of sleep. Apnoea

was defined as the complete or near-complete cessation of airflow for more than ten sec-

onds, and hypopnoeas were scored if clear reductions in breathing amplitude (at least 30%

below baseline breathing) occurred and lasted more than 10 seconds. Only apnoea and

hypopnoea events that were associated with a 3% or greater desaturation were included

in the AHI (Song et al., 2015). The severity of sleep apnoea/hypopnoea syndrome can be

determined through the AHI as mild those with 5 ≤ AHI < 15 events per hour, moderate (15

≤ AHI < 30 h-1) and severe (AHI ≥ 30 h-1). Sleep duration or total sleep time (TST) was

obtained from REM and NREM sleep stages after PSG analysis. Sleep arousals were also
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scored according to the American sleep disorders association criteria (Bonnet et al., 1992)

and verified with AASM requirements for arousal scoring (Iber et al., 2007).

Periodic limb movement (PLM) events were scored according to AASM criteria which in-

cludes individual movements with clear amplitude increase from baseline in legs movement

and the duration between 0.5 and 5 seconds. To be considered periodic, at least 4 move-

ments required to occur in succession no less than 5 seconds and no more than 90 seconds

apart excluding PLM after respiratory events. The periodic limb movement index (PLMI)

was the total number of PLM events per hour of sleep (Koo et al., 2011). PLM events were

only scored in MrOS and SOF datasets.

Respiratory rate (RR) during sleep extracted from the thoracic respiratory inductance plethys-

mography belt signal of the PSG data. During pre-processing, signal offsets were removed

and a low-pass forward and reverse Butterworth filter (1 Hz) was applied. Expiratory and

inspiratory onsets were determined from the respiratory signal by identifying the peaks and

valleys using the first-order derivative. The inspiratory onset of artefact-free breaths was

used to compute a breath-by-breath measure of the respiratory interval which were then

averaged within each subject (Baumert et al., 2019).

Additional measures

In the MrOS and SOF cohorts, the participants’ history of physician diagnosis of diabetes,

hypertension (HT), coronary artery disease (CAD), myocardial infarction (MI), congestive

heart failure (CHF), asthma, stroke and Parkinson were surveyed. The SOF question-

naires contained additional items on the history of depression. In contrast, MrOS ques-

tionnaires contained additional questions on the history of chronic obstructive pulmonary

disease (COPD), atrial fibrillation or flutter (Afib), smoking habits and alcohol consumption.

The SHHS questionnaire included items on the history of stroke, CHF, MI, diabetes, HT,

Afib and smoking habits. The ethnicity of all participants in the three cohorts (MrOS, SOF

and SHHS) was also included in the analysis.

Survival analysis using the arousal index

Arousal index data of all cohorts were divided into AI quartiles. To compare participants in

the fourth AI quartile against the participants in the lower three quartiles, we used cut-off

values of 25 h-1 and 30 h-1 for women and men, respectively.
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The AI was significantly higher in the MrOS cohort than in the SOF cohort (25.2 ± 12.6 h-1

vs. 22.1 ± 12.6 h-1, p < 0.001). Within the SHHS cohort, the AI was also significantly higher

in men than in women (25.2 ± 13 h-1 vs. 19.9 ± 10 h-1, p < 0.001).

Kaplan-Meier curves of dichotomised AI data for all-cause mortality is shown in Figure C.9.

The competing risk of CV and non-CV mortality in four cohorts is depicted in Figure C.10.

In SOF cohort, the probability of CV mortality was significantly increased in women with

AI>25 h-1 compared with women with an AI ≤ 25 h-1 (about 10%). Similarly, CV mortality in

SHHS-women with AI > 25 h-1 was nearly 4% greater. In the MrOS cohort, the CV mortality

increased by about 5% in participants with AI > 30 h-1 compared with men with AI < 30

h-1. But no significant association between CV mortality and AI > 30 h-1 was observed in

SHHS-men.

All-cause mortality in SHHS-men with AI > 30 h-1 was nearly 7% higher than men with AI <

30. In SHHS-women, all-cause mortality for AI > 25 h-1 was 11.5% greater. Log-rank tests

showed no significant association between AI distribution and all-cause mortality in MrOS

and SOF cohorts (MrOS: p = 0.131; SOF: p = 0.127).

In Cox proportional hazard analysis of the MrOS cohort, AI > 30 h-1 was associated with CV

mortality (univariate: HR = 1.38 [1.09-1.76], p = 0.009; multivariable: HR = 1.29 [1.01-1.63],

p = 0.048), but not with all-cause mortality (Table C.4).

Similarly, AI > 25 h-1 was significantly associated with CV mortality in SOF (univariate: HR

= 2.57 [1.30-5.11], p = 0.001; multivariable: HR = 2.68 [1.22-5.82], p = 0.013), but not with

all-cause mortality.

In women of the SHHS cohort, AI > 25 h-1 was significantly associated with CV (univariate:

HR = 1.81 [1.27-2.58], p < 0.001; multivariable: HR = 1.53 [1.07-2.22], p = 0.022) and

all-cause mortality (univariate: HR = 1.69 [1.39-2.05], p < 0.001; multivariable: HR = 1.47

[1.21-1.80], p < 0.001). In men, AI > 30 h-1 was only significantly associated with all-cause

mortality in univiariate analysis (HR = 1.24 [1.03-1.49], p = 0.02).

In all datasets, ABI and AI values are highly correlated (Figure C.11: � > 0.9, p < 0.001).

The highest quartile of ABI (ABI > 8.5% in men and ABI > 6.5% in women) may reflect the

highest quartile of AI (AI > 30 h-1 in men and AI > 25 h-1 in women).

To test whether combining AB and AI yields stronger associations with mortality, we di-

chotomised AB and AI values using the cohort medians to low/high AB and low/high AI,

respectively, resulting in subgroups of participants with either low AB & low AI, high AB

& high AI, low AB & high AI or high AB & low AI. We created KM plots for the resultant
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Table C.4. Association of arousal index (AI) with cardiovascular and all-cause mortality.

All-cause mortality Cardiovascular mortality Non-cardiovascular Mortality

Univariate analysis Multivariable analysis Univariate analysis Multivariable analysis Univariate analysis Multivariable analysis

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

MrOS Sleep
AI (h-1) 1.01 (1.00–1.01) 0.05 1.00 (0.99–1.01) 0.312 1.01 (1.00–1.02) 0.013 1.00 (0.99–1.01) 0.092 1.00 (0.99–1.01) 0.5 1.00 (0.99–1.01) 0.944
AI >30 1.12 (0.96–1.31) 0.126 1.07 (0.91–1.26) 0.384 1.38 (1.09–1.76) 0.009 1.29 (1.01–1.63) 0.048 1.00 (0.82–1.20) 0.9 0.97 (0.80–1.19) 0.841
SOF
AI (h-1) 1.03 (1.01 – 1.04) 0.002 1.03 (1.00–1.05) 0.002 1.04 (1.02 – 1.06) 0.001 1.03 (1.01 – 1.06) 0.001 1.01 (0.99–1.03) 0.352 1.01 (0.99–1.04) 0.287
AI >25 1.42 (0.90 – 2.24) 0.1 1.45 (0.87–2.42) 0.149 2.57 (1.30 – 5.11) 0.001 2.68 (1.22 – 5.82) 0.013 0.88 (0.46–1.67) 0.688 0.89 (0.42–1.85) 0.758
SHHS-men
AB (h-1) 1.01 (1.00 – 1.02) 0.01 1.00(0.99–1.02) 0.192 1.00 (0.99 – 1.01) 0.8 1.00 (0.98 – 1.01) 0.247 1.01 (1.00–1.02) 0.003 1.01(1.00–1.02) 0.015
AB >30 1.24 (1.03 – 1.49) 0.02 1.20 (0.97–1.48) 0.094 1.01 (0.99 – 1.42) 0.9 0.94 (0.63 – 1.41) 0.764 1.36 (1.09–1.71) 0.007 1.34 (1.04–1.72) 0.024
SHHS-women
AB (h-1) 1.02 (1.01 – 1.04) <0.001 1.02 (1.01–1.03) <0.001 1.03 (1.02 – 1.04) <0.001 1.03(1.01–1.04) <0.001 1.02 (1.01–1.03) <0.001 1.02 (1.01–1.03) 0.001
AB >25 1.69 (1.39 – 2.05) <0.001 1.47 (1.21–1.80) <0.001 1.81 (1.27 – 2.58) <0.001 1.53 (1.07–2.22) 0.022 1.64 (1.30–2.07) <0.001 1.44 (1.13–1.83) 0.003

Hazard ratios (HR) for ABI (%) indicate the risk increment per 1% increase in ABI. For categorical risk analysis,
ABI was dichotomised on the fourth quartile (men: ABI > 8.5; women: ABI > 6.5). Multivariable analysis
was adjusted for total sleep duration, age, history of stroke, myocardial infarction/coronary artery disease,
congestive heart failure, diabetes, hypertension, mean heart rate, mean respiratory rate, systolic and diastolic
blood pressure, time of sleep spent below 90% oxygen saturation, categorised body mass index, apnoea-
hypopnea index and smoking habit, CI: confidence interval.

composite index. Neither all-cause mortality (Figure C.12) nor CV mortality (Figure C.13)

was significantly different between the composite index subgroups. Owing to the strong the

between AB and AI, the vast majority of participants with a high AB also have a high AI,

and vice versa.
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(a)

(b)

(c)

Figure C.6. Flow charts of recruitment process for MrOS, SOF, and SHHS. Flow charts of par-
ticipants included in the analysis of arousal burden index for a) the Osteoporotic Frac-
tures in Men Study (MrOS), b) the Study of Osteoporotic Fractures (SOF) and c) the
Sleep Heart Health Study (SHHS). PSG: polysomnography, BMI: body mass index,
SDB: sleep-disordered breathing. CPAP: continuous positive airway pressure.
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Appendix C

Figure C.7. Illustration of correlation between ABI and TST. Association between arousal bur-
den index (ABI) and total sleep time (TST) in A) the Osteoporotic Fractures in Men
Study (MrOS), B) the Study of Osteoporotic Fractures (SOF), C) men in the Sleep Heart
Health Study (SHHS) and D) women in SHHS. � – Spearman’s correlation coefficient.
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Figure C.8. Illustration of correlation between ABI and AHI. Association between arousal burden
index (ABI) and apnoea-hypopnoea index (AHI) in A) the Osteoporotic Fractures in Men
Study (MrOS), B) the Study of Osteoporotic Fractures (SOF), C) men in the Sleep Heart
Health Study (SHHS) and D) women in SHHS. � – Spearman’s correlation coefficient.
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Appendix C

Figure C.9. Kaplan-Meier curves for arousal index (AI) and all-cause mortality. Kaplan-Meier
curves for arousal index (AI) and all-cause mortality in (A) the Osteoporotic Fractures
in Men Study (MrOS) Sleep cohort, (B) men in Sleep Heart Health Study (SHHS), (C)
the Study of Osteoporotic (SOF) cohort and (D) women in the SHHS cohort. AI values
were dichotomised at 30 h-1 for men and 25 h-1 for women. p-values refer to log-rank
test results.

Page 175



Figure C.10. Cummulative incident function curves compare the competing risk of arousal
index (AI) of cardiovascular (CV), non-cardiovascular and all-cause mortality.
Cummulative incident function curves compare the competing risk of arousal index (AI)
of cardiovascular (CV), non-cardiovascular and all-cause mortality in (A) men from the
Osteoporotic Fractures in Men Study (MrOS) Sleep cohort, (B) men from the Sleep
Heart Health Study, (C) in women from the Study of Osteoporotic (SOF) cohort and
(D) women from the Sleep Heart Health Study. Hazard ratio (HR) and p-value were
estimated through subdistributional Fine-Gray hazard model.
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Appendix C

Figure C.11. Illustration of correlation between ABI and AI. Association between arousal bur-
den index (ABI) and arousal index (AI) in A) the Osteoporotic Fractures in Men Study
(MrOS), B) the Study of Osteoporotic Fractures (SOF), C) men in the Sleep Heart
Health Study (SHHS) and D) women in SHHS. ∕rℎo – Spearman’s correlation coeffi-
cient.
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Figure C.12. Kaplan-Meier curves of combined arousal burden (AB) and arousal index (AI)
and all-cause mortality in (A). Kaplan-Meier curves of combined arousal burden
(AB) and arousal index (AI) and all-cause mortality in (A) the Osteoporotic Fractures
in Men Study (MrOS) Sleep cohort, (B) men in the Sleep Heart Health Study (SHHS),
(C) the Study of Osteoporotic (SOF) cohort and (D) women in the SHHS cohort. AB
and AI values were dichotomised based on cohort median values.
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Appendix C

Figure C.13. Kaplan-Meier curves of combined arousal burden (AB) and arousal index (AI)
and cardiovascular mortality. Kaplan-Meier curves of combined arousal burden (AB)
and arousal index (AI) and cardiovascular mortality in (A) the Osteoporotic Fractures
in Men Study (MrOS) Sleep cohort, (B) men in the Sleep Heart Health Study (SHHS),
(C) the Study of Osteoporotic (SOF) cohort and (D) women in the SHHS cohort. AB
and AI values were dichotomised based on cohort median values.

Page 179



Page 180



Bibliography

Ali, N. J., Pitson, D. J., and Stradling, J. R. (1993). ‘Snoring, sleep disturbance, and be-

haviour in 4-5 year olds’, Archives of Disease in Childhood, 68(3), pp. 360–366.

Alvarez-Estevez, D., and Fernández-Varela, I. (2020). ‘Addressing database variability in

learning from medical data: An ensemble-based approach using convolutional neural

networks and a case of study applied to automatic sleep scoring’, Computers in Biology

and Medicine, 119, 103697.

Aly, M. (2005). Survey on multiclass classification methods, Technical report, California

Institute of Technology.

Amzica, F., and Steriade, M. (2002). ‘The functional significance of K-complexes’, Sleep

Medicine Reviews, 6(2), pp. 139–149.

Arce-Santana, E. R., Alba, A., Mendez, M. O., and Arce-Guevara, V. (2020). ‘A-phase

classification using convolutional neural networks’, Medical & Biological Engineering &

Computing, 58(5), pp. 1003–1014.

ASDA. (1992). ‘EEG arousals: scoring rules and examples’, Sleep, 15(2), 173.

Aserinsky, E., and Kleitman, N. (1953). ‘Regularly occurring periods of eye motility, and

concomitant phenomena, during sleep’, Science, 118(3062), pp. 273 – 274.

Azarbarzin, A., Sands, S. A., Stone, K. L., Taranto-Montemurro, L., Messineo, L., Terrill,

P. I., Ancoli-Israel, S., Ensrud, K., Purcell, S., White, D. P., Redline, S., and Wellman,

A. (2019). ‘The hypoxic burden of sleep apnoea predicts cardiovascular disease-related

mortality: the Osteoporotic Fractures in Men Study and the Sleep Heart Health Study’,

European Heart Journal, 40(14), pp. 1149–1157.

Babaeizadeh, S., Zhou, S. H., Pittman, S. D., and White, D. P. (2011). ‘Electrocardiogram-

derived respiration in screening of sleep-disordered breathing’, Journal of Electrocardiol-

ogy, 44(6), pp. 700–706.

Baharav, A., Kotagal, S., Gibbons, V., Rubin, B. K., Pratt, G., Karin, J., and Akselrod,

S. (1995). ‘Fluctuations in autonomic nervous activity during sleep displayed by power

spectrum analysis of heart rate variability’, Neurology, 45(6), pp. 1183 – 1187.

Page 181



BIBLIOGRAPHY

Bahdanau, D., Cho, K., and Bengio, Y. (2014). ‘Neural machine translation by jointly learning

to align and translate’, arXiv preprint arXiv:1409.0473, .

Bandarabadi, M., Teixeira, C. A., Rasekhi, J., and Dourado, A. (2015). ‘Epileptic seizure pre-

diction using relative spectral power features’, Clinical Neurophysiology, 126(2), pp. 237–

248.

Barcaro, U., Bonanni, E., Maestri, M., Murri, L., Parrino, L., and Terzano, M. G. (2004).

‘A general automatic method for the analysis of NREM sleep microstructure’, Sleep

Medicine, 5(6), pp. 567–576.

Barcaro, U., Navona, C., Belloli, S., Bonanni, E., Gneri, C., and Murri, L. (1998). ‘A simple

method for the quantitative description of sleep microstructure’, Electroencephalography

and Clinical Neurophysiology, 106(5), pp. 429–432.

Barrett, A., and Barnett, L. (2013). ‘Granger causality is designed to measure effect, not

mechanism’, Frontiers in Neuroinformatics, 7, 6.

Bartsch, R. P., Liu, K. K., Bashan, A., and Ivanov, P. C. (2015). ‘Network physiology: how

organ systems dynamically interact’, PLoS ONE, 10(11), e0142143.

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P. C. (2012). ‘Net-

work physiology reveals relations between network topology and physiological function’,

Nature Communications, 3, 702.

Baumert, M., Immanuel, S. A., Stone, K. L., Litwack Harrison, S., Redline, S., Mariani, S.,

Sanders, P., McEvoy, R. D., and Linz, D. (2020). ‘Composition of nocturnal hypoxaemic

burden and its prognostic value for cardiovascular mortality in older community-dwelling

men’, European Heart Journal, 41(4), pp. 533–541.

Baumert, M., Kohler, M., Kabir, M., Kennedy, D., and Pamula, Y. (2010). ‘Cardiorespiratory

response to spontaneous cortical arousals during stage 2 and rapid eye movement sleep

in healthy children’, Journal of Sleep Research, 19(3), pp. 415–424.

Baumert, M., Linz, D., Stone, K., McEvoy, R. D., Cummings, S., Redline, S., Mehra, R.,

and Immanuel, S. (2019). ‘Mean nocturnal respiratory rate predicts cardiovascular and

all-cause mortality in community-dwelling older men and women’, European Respiratory

Journal, 54(1), 1802175.

Becker, D. E. (2006). ‘Fundamentals of electrocardiography interpretation’, Anesthesia

Progress, 53(2), pp. 53–64.

Page 182



BIBLIOGRAPHY

Bengio, Y., Simard, P., and Frasconi, P. (1994). ‘Learning long-term dependencies with

gradient descent is difficult’, IEEE Transactions on Neural Networks, 5(2), pp. 157–166.

Benington, J. H. (2000). ‘Sleep homeostasis and the function of sleep’, Sleep, 23(7),

pp. 959–966.

Bennett, L. S., Langford, B. A., Stradling, J. R., and Davies, R. J. O. (1998). ‘Sleep frag-

mentation indices as predictors of daytime sleepiness and nCPAP response in obstruc-

tive sleep apnea’, American Journal of Respiratory and Critical Care Medicine, 158(3),

pp. 778–786.

Berry, R. B., and Gleeson, K. (1997). ‘Respiratory arousal from sleep: mechanisms and

significance’, Sleep, 20(8), pp. 654–675.

Berry, R. B., Brooks, R., Gamaldo, C. E., Harding, S. M., Marcus, C., and Vaughn, B. V.

(2015). The AASM manual for the scoring of sleep and associated events: rules, termi-

nology and technical specifications, Version 2.2, American Academy of Sleep Medicine,

Darien, Illinois.

Bishop, C. M. (2006). ‘Pattern recognition and machine learning’, 1 edn, Springer, New

York, NY.

Bixler, E. O., Papaliaga, M. N., Vgontzas, A. N., Lin, H.-M., Pejovic, S., Karataraki, M.,

Vela-Bueno, A., and Chrouso, G. P. (2009). ‘Women sleep objectively better than men

and the sleep of young women is more resilient to external stressors: effects of age and

menopause’, Journal of Sleep Research, 18(2), pp. 221–228.

Blackwell, T., Yaffe, K., Ancoli-Israel, S., Redline, S., Ensrud, K. E., Stefanick, M. L., Laf-

fan, A., and Stone, K. L. (2011). ‘Associations between sleep architecture and sleep-

disordered breathing and cognition in older community-dwelling men: the Osteoporotic

Fractures in Men Sleep Study’, Journal of the American Geriatrics Society, 59(12),

pp. 2217–2225.

Blank, J. B., Cawthon, P. M., Carrion-Petersen, M. L., Harper, L., Johnson, J. P., Mitson, E.,

and Delay, R. R. (2005). ‘Overview of recruitment for the Osteoporotic Fractures in Men

Study (MrOS)’, Contemporary Clinical Trials, 26(5), pp. 557–568.

Page 183



BIBLIOGRAPHY

Boly, M., Perlbarg, V., Marrelec, G., Schabus, M., Laureys, S., Doyon, J., Pélégrini-Issac,

M., Maquet, P., and Benali, H. (2012). ‘Hierarchical clustering of brain activity during hu-

man nonrapid eye movement sleep’, Proceedings of the National Academy of Sciences,

109(15), pp. 5856 – 5861.

Bonnet, M., and Arand, D. (1997). ‘Heart rate variability: sleep stage, time of night,

and arousal influences’, Electroencephalography and Clinical Neurophysiology, 102(5),

pp. 390–396.

Bonnet, M., Carley, D., Carskadon, M., and Easton, P. (1992). ‘EEG arousals: scoring rules

and examples’, Sleep, 15(2), pp. 173–184.

Bonnet, M. H. (1989). ‘The effect of sleep fragmentation on sleep and performance in

younger and older subjects’, Neurobiology of Aging, 10(1), pp. 21–25.

Bonnet, M. H., and Arand, D. L. (2003). ‘Clinical effects of sleep fragmentation versus sleep

deprivation’, Sleep Medicine Reviews, 7(4), pp. 297–310.

Bonnet, M. H., and Arand, D. L. (2007). ‘EEG arousal norms by age’, Journal of Clinical

Sleep Medicine, 3(03), pp. 271–274.

Boselli, M., Parrino, L., Smerieri, A., and Terzano, M. G. (1998). ‘Effect of age on EEG

arousals in normal sleep’, Sleep, 21(4), pp. 361–367.

Bosi, M., Milioli, G., Riccardi, S., Melpignano, A., Vaudano, A. E., Cortelli, P., Poletti, V.,

and Parrino, L. (2018). ‘Arousal responses to respiratory events during sleep: the role of

pulse wave amplitude’, Journal of Sleep Research, 27(2), pp. 261–269.

Brand, S., and Kirov, R. (2011). ‘Sleep and its importance in adolescence and in com-

mon adolescent somatic and psychiatric conditions’, International Journal of General

Medicine, 4, pp. 425–442.

Bressler, S. L., and Seth, A. K. (2011). ‘Wiener–Granger causality: a well established

methodology’, NeuroImage, 58(2), pp. 323–329.

Brouillette, R. T., Fernbach, S. K., and Hunt, C. E. (1982). ‘Obstructive sleep apnea in

infants and children’, The Journal of Pediatrics, 100(1), pp. 31–40.

Bruni, O., and Ferri, R. (2009). ‘Neurocognitive deficits in pediatric obstructive sleep apnea:

a multifaceted pathogenetic model’, Sleep Medicine, 10(2), pp. 161–163.

Page 184



BIBLIOGRAPHY

Bruni, O., Ferri, R., Miano, S., Verrillo, E., Vittori, E., Della Marca, G., Farina, B., and

Mennuni, G. (2002). ‘Sleep cyclic alternating pattern in normal school-age children’,

Clinical Neurophysiology, 113(11), pp. 1806–1814.

Bruni, O., Ferri, R., Miano, S., Verrillo, E., Vittori, E., Farina, B., Smerieri, A., and Terzano,

M. G. (2005). ‘Sleep cyclic alternating pattern in normal preschool-aged children’, Sleep,

28(2), pp. 220–230.

Bruni, O., Ferri, R., Novelli, L., Finotti, E., Miano, S., and Guilleminault, C. (2008). ‘NREM

sleep instability in children with sleep terrors: the role of slow wave activity interruptions’,

Clinical Neurophysiology, 119(5), pp. 985–992.

Bruni, O., Ferri, R., Novelli, L., Finotti, E., Terribili, M., Troianiello, M., Valente, D., Sabatello,

U., and Curatolo, P. (2009). ‘Slow EEG amplitude oscillations during NREM sleep and

reading disabilities in children with dyslexia’, Developmental Neuropsychology, 34(5),

pp. 539–551.

Bruni, O., Ferri, R., Vittori, E., Novelli, L., Vignati, M., Porfirio, M. C., Aricò, D., Bernabei,

P., and Curatolo, P. (2007). ‘Sleep architecture and NREM alterations in children and

adolescents with Asperger syndrome’, Sleep, 30(11), pp. 1577–1585.

Bruni, O., Kohler, M., Novelli, L., Kennedy, D., Lushington, K., Martin, J., and Ferri, R.

(2012). ‘The role of NREM sleep instability in child cognitive performance’, Sleep, 35(5),

pp. 649–656.

Bruni, O., Novelli, L., Luchetti, A., Zarowski, M., Meloni, M., Cecili, M., Villa, M., and Ferri,

R. (2010a). ‘Reduced NREM sleep instability in benign childhood epilepsy with centro-

temporal spikes’, Clinical Neurophysiology, 121(5), pp. 665–671.

Bruni, O., Novelli, L., Miano, S., Parrino, L., Terzano, M. G., and Ferri, R. (2010b). ‘Cyclic

alternating pattern: a window into pediatric sleep’, Sleep Medicine, 11(7), pp. 628–636.

Burges, C. J. C. (1998). ‘A tutorial on support vector machines for pattern recognition’, Data

Mining and Knowledge Discovery, 2(2), pp. 121–167.

Buysse, D. J., Reynolds III, C. F., Monk, T. H., Hoch Carolyn C.., Yeager, A. L., and Kupfer,

D. J. (1991). ‘Quantification of subjective sleep quality in healthy elderly men and women

using the Pittsburgh Sleep Quality Index (PSQI)’, Sleep, 14(4), pp. 331–338.

Page 185



BIBLIOGRAPHY

Cao, Y., Guo, Y., Yu, H., and Yu, X. (2017). ‘Epileptic seizure auto-detection using deep

learning method’, 2017 4th International Conference on Systems and Informatics (ICSAI),

pp. 1076–1081.

Cappuccio, F. P., D’Elia, L., Strazzullo, P., and Miller, M. A. (2010). ‘Sleep duration and all-

cause mortality: a systematic review and meta-analysis of prospective studies’, Sleep,

33(5), pp. 585–592.

Carskadon, M. A., and Dement, W. C. (2005). ‘Normal human sleep: an overview’, Princi-

ples and Practice of Sleep Medicine, 4, pp. 13–23.

Carskadon, M. A., Brown, E. D., and Dement, W. C. (1982). ‘Sleep fragmentation in the

elderly: relationship to daytime sleep tendency’, Neurobiology of Aging, 3(4), pp. 321–

327.

Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., and Nazeran, H. (2018). ‘A re-

view on wearable photoplethysmography sensors and their potential future applications

in health care’, International Journal of Biosensors & Bioelectronics, 4(4), pp. 195–202.

Catrambone, V., Greco, A., Vanello, N., Scilingo, E. P., and Valenza, G. (2019). ‘Time-

resolved directional brain–heart interplay measurement through synthetic data genera-

tion models’, Annals of Biomedical Engineering, 47(6), pp. 1479–1489.

Chambon, S., Galtier, M. N., and Gramfort, A. (2018a). ‘Domain adaptation with optimal

transport improves EEG sleep stage classifiers’, 2018 International Workshop on Pattern

Recognition in Neuroimaging (PRNI), 10.1109/PRNI.2018.8423957.

Chambon, S., Galtier, M. N., Arnal, P. J., Wainrib, G., and Gramfort, A. (2018b). ‘A deep

learning architecture for temporal sleep stage classification using multivariate and multi-

modal time series’, IEEE Transactions on Neural Systems and Rehabilitation Engineer-

ing, 26(4), pp. 758–769.

Cho, S.-H., Hur, J., and Chung, I.-Y. (2014). ‘An applicability of Teager Energy Opera-

tor and energy separation algorithm for waveform distortion analysis : harmonics, inter-

harmonics and frequency variation’, Journal of Electrical Engineering and Technology, 9,

pp. 1210–1216.
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