424 research outputs found

    Hand pose recognition using a consumer depth camera

    Get PDF
    [no abstract

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Review of constraints on vision-based gesture recognition for human–computer interaction

    Get PDF
    The ability of computers to recognise hand gestures visually is essential for progress in human-computer interaction. Gesture recognition has applications ranging from sign language to medical assistance to virtual reality. However, gesture recognition is extremely challenging not only because of its diverse contexts, multiple interpretations, and spatio-temporal variations but also because of the complex non-rigid properties of the hand. This study surveys major constraints on vision-based gesture recognition occurring in detection and pre-processing, representation and feature extraction, and recognition. Current challenges are explored in detail

    Per-Pixel Calibration for RGB-Depth Natural 3D Reconstruction on GPU

    Get PDF
    Ever since the Kinect brought low-cost depth cameras into consumer market, great interest has been invigorated into Red-Green-Blue-Depth (RGBD) sensors. Without calibration, a RGBD camera’s horizontal and vertical field of view (FoV) could help generate 3D reconstruction in camera space naturally on graphics processing unit (GPU), which however is badly deformed by the lens distortions and imperfect depth resolution (depth distortion). The camera’s calibration based on a pinhole-camera model and a high-order distortion removal model requires a lot of calculations in the fragment shader. In order to get rid of both the lens distortion and the depth distortion while still be able to do simple calculations in the GPU fragment shader, a novel per-pixel calibration method with look-up table based 3D reconstruction in real-time is proposed, using a rail calibration system. This rail calibration system offers possibilities of collecting infinite calibrating points of dense distributions that can cover all pixels in a sensor, such that not only lens distortions, but depth distortion can also be handled by a per-pixel D to ZW mapping. Instead of utilizing the traditional pinhole camera model, two polynomial mapping models are employed. One is a two-dimensional high-order polynomial mapping from R/C to XW=YW respectively, which handles lens distortions; and the other one is a per-pixel linear mapping from D to ZW, which can handle depth distortion. With only six parameters and three linear equations in the fragment shader, the undistorted 3D world coordinates (XW, YW, ZW) for every single pixel could be generated in real-time. The per-pixel calibration method could be applied universally on any RGBD cameras. With the alignment of RGB values using a pinhole camera matrix, it could even work on a combination of a random Depth sensor and a random RGB sensor

    3-D Hand Pose Estimation from Kinect's Point Cloud Using Appearance Matching

    Full text link
    We present a novel appearance-based approach for pose estimation of a human hand using the point clouds provided by the low-cost Microsoft Kinect sensor. Both the free-hand case, in which the hand is isolated from the surrounding environment, and the hand-object case, in which the different types of interactions are classified, have been considered. The hand-object case is clearly the most challenging task having to deal with multiple tracks. The approach proposed here belongs to the class of partial pose estimation where the estimated pose in a frame is used for the initialization of the next one. The pose estimation is obtained by applying a modified version of the Iterative Closest Point (ICP) algorithm to synthetic models to obtain the rigid transformation that aligns each model with respect to the input data. The proposed framework uses a "pure" point cloud as provided by the Kinect sensor without any other information such as RGB values or normal vector components. For this reason, the proposed method can also be applied to data obtained from other types of depth sensor, or RGB-D camera

    Analysis of the hands in egocentric vision: A survey

    Full text link
    Egocentric vision (a.k.a. first-person vision - FPV) applications have thrived over the past few years, thanks to the availability of affordable wearable cameras and large annotated datasets. The position of the wearable camera (usually mounted on the head) allows recording exactly what the camera wearers have in front of them, in particular hands and manipulated objects. This intrinsic advantage enables the study of the hands from multiple perspectives: localizing hands and their parts within the images; understanding what actions and activities the hands are involved in; and developing human-computer interfaces that rely on hand gestures. In this survey, we review the literature that focuses on the hands using egocentric vision, categorizing the existing approaches into: localization (where are the hands or parts of them?); interpretation (what are the hands doing?); and application (e.g., systems that used egocentric hand cues for solving a specific problem). Moreover, a list of the most prominent datasets with hand-based annotations is provided

    Working together: a review on safe human-robot collaboration in industrial environments

    Get PDF
    After many years of rigid conventional procedures of production, industrial manufacturing is going through a process of change toward flexible and intelligent manufacturing, the so-called Industry 4.0. In this paper, human-robot collaboration has an important role in smart factories since it contributes to the achievement of higher productivity and greater efficiency. However, this evolution means breaking with the established safety procedures as the separation of workspaces between robot and human is removed. These changes are reflected in safety standards related to industrial robotics since the last decade, and have led to the development of a wide field of research focusing on the prevention of human-robot impacts and/or the minimization of related risks or their consequences. This paper presents a review of the main safety systems that have been proposed and applied in industrial robotic environments that contribute to the achievement of safe collaborative human-robot work. Additionally, a review is provided of the current regulations along with new concepts that have been introduced in them. The discussion presented in this paper includes multidisciplinary approaches, such as techniques for estimation and the evaluation of injuries in human-robot collisions, mechanical and software devices designed to minimize the consequences of human-robot impact, impact detection systems, and strategies to prevent collisions or minimize their consequences when they occur
    • …
    corecore