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Abstract: The ability of computers to recognize hand gestures visually is essential for progress in human–computer interaction.
Gesture recognition has applications ranging from sign language to medical assistance to virtual reality. However, gesture recog-
nition is extremely challenging not only because of its diverse contexts, multiple interpretations, and spatio-temporal variations
but also because of the complex non-rigid properties of the hand. This paper surveys major constraints on vision-based gesture
recognition occurring in detection and pre-processing, representation and feature extraction, and recognition. Current challenges
are explored in detail.

1 Introduction

The use of computers and related devices has become ubiquitous.
Hence, the need has increased for interfaces that support effective
human–computer interaction (HCI). HCI concerns “the design, eval-
uation, and implementation of interactive computing systems for
human use and with the study of major phenomena surrounding
them” [1, 2], especially “in the context of the user’s task and work”
[3]. In striving toward these ends, HCI research builds on progress
in several related fields, as shown in Fig. 1. It is focused not only on
enhancing the usability, reliability, and functionality of present-day
interfaces but also on the development of novel, innovative inter-
faces that can be used in natural, lifelike ways. Such interfaces are
in demand for interacting with virtual environments in computer
games and virtual reality, for teleoperation in robotic surgery, and so
on. Active interfaces, intelligent adaptive interfaces, and multimodal
interfaces are all gaining prominence.

Gesture recognition is an important area for development in HCI
systems. These systems can be broadly classified based on their
number of channels as unimodal or multimodal [4]. Unimodal sys-
tems can be a) vision-based (e.g., body movement tracking [5], facial
expression recognition [6, 7], gaze detection [8], and gesture recog-
nition [9]), b) audio-based (e.g., auditory emotion recognition [10],
speaker recognition [11], and speech recognition [12]), or c) based
on other types of sensors [13]. The most researched unimodal HCI
systems are vision based. People typically use multiple modalities
during human–human communication. Therefore, to assess a user’s
intention or behaviour comprehensively, HCI systems should inte-
grate information from multiple modalities as well [14]. Multimodal
interfaces can be setup using combinations of inputs, such as gesture
and speech [15] or facial pose and speech [16]. Most of the recent
and important applications of VGR include Sign language recogni-
tion [17], Virtual reality [18], Virtual game [19], Augmented reality
[20], Smart video conferencing [21], Smart home and office [22],
Healthcare and Medical assistance (MRI navigation) [23], Robotic
surgery [24], Wheelchair control [25], Driver monitoring [26], Vehi-
cle control [27], Interactive presentation module [28], and Virtual
classroom [29], e-commerce [30], and so on.

In recent years, vision-based gesture recognition (VGR) has
become a key research topic in HCI and there are many real-life
applications of VGR. One of the breakthroughs in VGR is the
introduction of Microsoft Kinect R© as a contact-less interface [31].
The Kinect has significant potential in various applications, such
as healthcare [23], education [32], etc. However, its poor outdoor

Fig. 1: Human-computer interaction and related research fields

performance and depth resolution limit its usability. Recently, Soft-
Kinetic’s Gesture Control Technology is incorporated in BMW cars
to allow drivers to navigate the in-vehicle infotainment system with
ease [33]. However, the VGR module is still in its primitive stage
due to its limited functionality and gesture vocabulary. Although
VGR has been surveyed in several review papers (Table 1), none
specifically addresses problems arising from constraints on existing
VGR methods. The nature and extent of these constraints depends on
the application. Major difficulties associated with image processing
techniques during gesture recognition for the above mentioned VGR
applications are as follows:
• A gesture recognition system generally uses a single colour video
camera to minimize the necessary hardware components and cali-
brations. Using a single colour video camera and consequently the
projection of the 3D scene on a 2D plane results in the loss of depth
information. Therefore, reconstruction of the 3D trajectory of the
hand in space is not possible.
• Illumination change in the testing environment seriously hampers
hand image segmentation.
• For reliable recognition, hand image segmentation via background
motion compensation and accurate motion estimation of the hand is
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Fig. 2: Use of the different body parts or objects for gesturing [45]

an essential requirement. Unfortunately, like other image processing
problems, hand tracking and segmentation in a cluttered background
is a critical problem in hand gesture recognition. In most occasions,
the background is not simple. Also, the background may contain
other body parts captured by the camera. Moreover, the occlusion
due to other body parts or self occlusion may cause problems during
segmentation.
• The processing of a large amount of image data is time consuming
and thus, real- time recognition may be difficult.

However, some of the applications mentioned above require more
attention towards some constraints than others, as highlighted below:

• VGR systems in 3D modelling-based applications such as virtual
and augmented reality require accurate depth estimation with high
depth resolution.
• VGR systems for indoor applications such as sign-language
recognition and virtual reality require uniform ambient illumination.
However, VGR systems for outdoor applications such as driver mon-
itoring, vehicular control, etc. should work in a environment with
a broad range of dynamically changing illuminations and cluttered
backgrounds.
• Applications requiring real-time multiple user interaction such as
smart video conferencing, smart home and office, virtual classrooms,
e-commerce, etc. require a properly synchronized hardware setup for
real-time applications.
• Higher recognition accuracy is a primary criterion for VGR appli-
cations like healthcare and medicine. In addition, portability is
important for some VGR applications, such as vehicles and other
mobile platforms.
Section 2 presents an overview of a basic VGR system. Section 3
examines main constraints on gesture recognition systems for vision-
based HCI modules.

2 Overview of vision-based gesture recognition

Gesture recognition is an important area of research in computer
vision. In the framework of human–computer non-verbal communi-
cation, the visual interface establishes communication channels for
inferring intentions from human behaviour, including facial expres-
sions and hand gestures. Hand gesture recognition from visual
images forms a key part of this interface. It has potential applications
in machine vision, virtual reality, robotic control, and so on.

2.1 Gesture recognition system architecture

A gesture is a pose or physical movement of the hands, arms, face, or
body that is meaningful and informative. According to Karam [45],
the hand is the most widely used body part (Fig. 2). The primary task
of vision-based interfaces (VBI) is to detect and recognize visual
information for communication. A vision-based approach is more
natural and convenient than, for example, a glove-based approach. It
is easy to deploy and can be used anywhere within a camera’s field of
view. However, it is more difficult because of current limitations in

computer vision in processing human hands, which are non-convex
and flexible. The straightforward approach to vision-based gesture
recognition is to acquire visual information about a person in a
certain environment and try to extract the necessary gestures. This
approach must be performed in a sequence, namely, detection and
pre-processing, gesture representation and feature extraction, and
recognition.

1. Detection and pre-processing: The detection of gesturing body
parts is crucial because the accuracy of the VGR system depends
on it. Detection includes capturing the gestures using imaging
devices. Pre-processing segments the gesturing body parts from
images or videos as accurately as possible given such constraints
as illumination variation, background complexity, and occlusion.
2. Gesture representation and feature extraction: The next stage in
a hand gesture recognition task is to choose a mathematical descrip-
tion or model of the gesture. The scope of a gestural interface is
directly related to the proper modelling of hand gestures. Modelling
depends on the intended application. For some applications, a coarse,
simple model may be sufficient. However, if the purpose is natural
interaction, a model should allow many, if not all, natural gestures to
be interpreted by the computer. Many authors have identified differ-
ent features for representing particular kinds of gestures [46]. Most
of the features can be broadly classified as follows: a) shape, (e.g.,
geometric features or nongeometric features [34]), b) texture or pixel
value, c) 3D model-based features [44], and d) spatial features (e.g.,
position and motion [47–49]).
3. Recognition: The final stage of a gesture recognition system is
classification. A suitable classifier recognizes the incoming gesture
parameters or features and groups them into either predefined classes
(supervised) or by their similarity (unsupervised) [9]. There are
many classifiers used for both static and dynamic gesture recogni-
tion, each with its own limitations.

3 VGR systems and their associated constraints

The ability of computers to recognize hand gestures visually is
essential for the future development of HCI. However, vision-based
recognition of hand gestures, especially dynamic hand gestures,
poses a onerous difficult interdisciplinary challenge for three rea-
sons:

• Hand gestures are diverse, have multiple meanings, and vary
spatio-temporally;
• The human hand is a complex non-rigid object making it difficult
to recognize; and
• Computer vision itself is an ill-posed problem.

A gesture recognition system relies on a series of subsystems, as
explained in the last section. Because the subsystems are connected
in series, the overall accuracy of the system is the product of
the accuracy of each subsystem. Thus, overall performance cannot
exceed that of the subsystem that is the “weakest link”. This section
presents an analysis of the difficulties associated with hand gesture
recognition at each stage (Fig. 3).

3.1 Detection and pre-processing

Gesture detection involves capturing images or videos using imaging
devices and then, in a pre-processing stage, localizing in them the
gesturing body parts.

3.1.1 Gesture acquisition: The acquisition subsystem contains
either a 2D camera (b/w or colour) or a 3D imaging system (e.g.,
a stereo camera pair or a camera with depth sensors). A camera
consists of several subsystems. Berman and Stern [50] reviewed the
effects of camera parameters on VGR system characteristics. VGR
accuracy depends on the following camera specifications:
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Table 1 Some comprehensive surveys on gesture recognition and gesture-based interfaces

Ref. Scope of analysis Contributions

Pavlovic et al. [34]

(1997)

A survey of hand gesture modelling, analy-

sis, and recognition.

3D hand models better describe and discriminate gestures but with higher compu-

tational complexity. Appearance-based models are limited in gesture description

despite being simpler to implement.

Ying et al. [35]

(1999)

A survey of vision-based static hand

posture and temporal gesture recognition

approaches and their applications.

An investigation of feature selection, data collection for visual gesture learning,

various algorithms for static and dynamic gesture recognition, use of HMMs, and

their variants in sign language recognition.

Moeslund et al. [36]

(2001)

A survey of vision-based human motion

capturing methods focusing on initializa-

tion, tracking, pose estimation, and recog-

nition.

Investigation of different problems such as the lack of an alphabet vocabulary of

motion data for training, the large amount of time required to capture and label

human motion data, use of 2D silhouettes to estimate a 3D pose, problem of

incremental updates, motion ambiguity due to movement projection on planes.

Derpanis et al. [37]

(2004)

A review of vision-based hand gestures on

different aspects like the feature set, clas-

sification methods and gesture representa-

tion.

Analysis of gesture-based HCI under ambient lighting conditions and high

contrast stationary backgrounds.

Moeslund et al. [5]

(2006)

A review of advances in video-based human

capture and analysis and open problems

in the automatic visual analysis of human

movement.

Investigated automatic initialization of model shape, appearance, and pose; reli-

able detection and tracking of multiple people in unstructured outdoor scenes

with partial occlusion; human motion reconstruction from multiple views and

from monocular videos.

Erol et al. [38]

(2007)

A review of hand pose estimation methods

and capturing of the real 3D hand motion in

HCI.

Comparison of methods on the effective number of DoF, number and type of

cameras, system’s operation in a cluttered background, use of hand model con-

straints, algorithmic details, execution speed, and observable pose restrictions.

Discussion of problems due to lack of ground-truth data, high-dimensionality,

self-occlusions, uncontrolled environments, and rapid hand motion.

Mitra et al. [9]

(2007)

A survey of hand gesture and facial expres-

sion recognition methods with discussion

on different tools for gesture recognition.

Discussion on HMMs, particle filtering, and condensation algorithm, FSMs,

ANNs, Gabor filtering and optical flow; hybridization of HMMs and FSMs;

different facial expression modelling approaches; use of soft computing tools.

Moni et al. [39]

(2009)

A literature review of different approaches

to vision-based gesture recognition using

HMMs.

Difficulty in achieving a continuous online recognition with minimal time delay

because the starting and ending point of a gesture are not known. Problems due

to assumptions about lighting, background, and signer’s location are discussed.

Wachs et al. [40]

(2011)

A description of the requirements of hand-

gesture based interfaces for various applica-

tion types and associated challenges.

Discussions on gesture recognition methods that depend on the application,

domain, environment, and the user’s cultural background.

Suarez et al. [41]

(2012)

A review of depth image-based hand track-

ing and gesture recognition systems.

Investigation on the use of Kinect for hand segmentation using depth threshold-

ing; hand tracking using Kalman filters and mean shift clustering or using the

NITE body-tracking and hand-tracking module from OpenNI.

Rautaray et al. [42]

(2012)

A comparative survey of hand gesture inter-

faces, focusing on gesture recognition sys-

tems based on detection, tracking, and

recognition, and their applications.

Comparative analysis on gesture taxonomies, gesture representation and recog-

nition techniques, different software platforms. Also, a survey on application

domain of gesture recognition is provided.

Hasan et al. [43]

(2013)

A survey of gesture-based HCI focusing on

different application domains for efficient

interaction.

Analysis focused on different applications of gesture recognition techniques.

Investigation also found appearance-based gesture representations are preferable

than 3D-based gesture representations due the complexity of implementation of

the latter.

Cheng et al. [44]

(2016)

A survey of various 3D hand gesture mod-

elling and recognition techniques.

Investigation on different 3D hand gesture modelling and recognition techniques,

e.g., static hand gesture, trajectory-based hand gesture and continuous hand

gesture. Also, discuss different 3D depth sensors along with some popular dataset.
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Fig. 3: Different stages of a VGR system and their associated
constraints.

1. Colour range: For image acquisition, sensors for the visible light
range (390–750 nm wavelength) are typically used. The main prob-
lem with visible light sensors is that their response depends on the
amount and chromatic nature of an illuminant. Near-infrared (IR)
radiation offers an alternative to visible light [51] that is less sensi-
tive to illumination changes. Human gestures can be captured using
near-IR cameras with subjects wearing near-IR reflectors. However,
the reflectors may impair the user’s natural feeling of gesturing.
By contrast, thermal or infrared (IR) cameras depend solely on the
heat signature generated by the human body. Thus, IR cameras are
superior to visible light cameras under poor or varying illumination
conditions. However, visible cameras are usually preferred because
of their low cost.
2. Resolution and accuracy: The picture quality of a camera
depends on two factors: its resolution and its colour reproduction
accuracy. The resolution of a camera is represented by the number
pixels present in a column (e.g., 720 pixels, 1080 pixels), by both
the column and row (e.g., 640× 480 pixels), or by the total number
pixels (e.g., 0.3 megapixels). Accuracy describes how accurate the

colour reproduction is. So, each pixel value is represented by sev-
eral bits (e.g., 8 bits, 24 bits). Standard RGB cameras have 24-bit
accuracy. According to Zhenyao and Neumann [52], use of low res-
olution cameras may affect the performance of a VGR system in the
following ways:
• The segmentation of the hand may be noisy because of a complex
background or varying illumination conditions.
• For applications like sign language recognition, a full upper-body
image is required, and so hand regions occupy a tiny area in the
image. Hence, it is difficult to extract texture and other geometrical
features from the hand.
• A VGR system may fail to initialize or track gestures at a low
resolution.
Use of high resolution cameras (HD cameras) can resolve the
aforementioned constraints at the expense of processing time.
3. Frame rate: The number of images or frames per second (fps)
a camera can capture. In a VGR system, the frame rate should be
enough to capture body part movements accurately. The most appro-
priate frame rate depends on the hardware configuration of the image
acquisition system and on the speed of gesturing hands or other body
parts. For slowly moving hands, a low frame rate such as 15 fps may
be satisfactory. However, applications such as sign language recog-
nition or virtual reality involve fast moving hands or body parts. In
these cases, a low frame rate camera may not able to capture enough
instances of moving hands for continuous motion. Some of the exist-
ing frame rate standards are 24 fps (standard film), 25 fps (PAL),
29.97 fps (NTSC), and 60 fps (ATSC video).
4. Lens characteristics: The quality and amount of distortion
present in an image are influenced by camera lens characteristics.
A lens is characterized by its focal length (in mm) and aperture (F-
number). The focal length describes the field of view (FoV) of a
camera. The aperture is the amount of opening, which determines
the depth of field, that is, the range of distances at which objects
appear in focus. The depth of field (DoF) reduces with an increasing
aperture for a lens with a fixed focal length. It results in the blurring
of distant objects with an increasing F-number. Most of the image
acquisition systems use cameras having fixed lenses and aperture.
Ideally, the performance of a VGR system should not be affected
by illumination variations and it should have a large DoF. A camera
having a narrow aperture gives a large DoF, but less light enters the
camera. This results in noisy and dark images under low light condi-
tions. Therefore, hand detection and segmentation could be difficult.
By contrast, cameras with a larger aperture provide a better quality
image under low light conditions but with fewer DoF. Therefore, a
trade-off exists between image brightness and DoF.
5. Camera-computer interface: The data transfer speed of the inter-
face between a camera and a computer significantly affects the over-
all speed of a VGR system. For a video of resolution W ×H with
frame rate fr , the required bitrate for transmission in uncompressed
form is given by,

bitrate = 24× fr ×W ×H

So, a 640× 480 (30 fps) video requires ∼ 211 Mb/s data transfer
rate, whereas a high definition video (720p, 30 fps) requires a data
transfer rate ∼ 633 Mb/s. Now, most of the low end cameras use a
USB 2.0 interface with a maximum speed limit of 480 Mb/s. How-
ever, the maximum achievable data transfer rate depends on the total
number of USB peripherals connected to the system. This limits the
data transfer rate to a lower value which restricts the resolution and
frame rate of the video to be transmitted. Also, the computer’s run
time load and capabilities could degrade the resolution and frame
rate supported by the camera. In recent years, some high-end cam-
eras use a USB 3.0 interface (4.8 Gb/s) equipped with built in codecs.
This reduces the bitrate burden to the interface by compressing the
data before transmission.

Although most VGR systems use 2D cameras, the focus of recent
research is shifting towards incorporating depth information. The use
of 3D sensors in a VGR system improves its overall robustness and
flexibility while increasing its cost and computational complexity.
The 3D information can be used either to model a 3D gesture by
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directly using the 3D position vectors or as a frontal plane position
(colour information) plus range (depth information). For the latter,
range information is used mostly to segment the foreground (gestur-
ing body parts) from the background. The colour information is used
for 2D gesture recognition. The different methods of data acquisition
in 3D VGR systems are as follows:

1. Standard stereo cameras: A pair of standard colour video or still
cameras capture two simultaneous images. Disparity is calculated
as a depth measure from the two simultaneous images. Some of the
gesture recognition methods using stereoscopic systems are given
in [53, 54]. A major challenge in stereoscopic vision is the finding
correspondence between a stereo image pair. Difficulties arise for
many reasons:
(a) Camera inconsistency: The geometrical configuration (intrinsic
parameters) of two cameras are not the same, and even the param-
eters of two cameras of same brand are not identical. So, there is
inconsistency between the two captured images. Presence of noise
in any one or both of the images changes the pixel intensity values,
which leads to improper matching.
(b) Unique correspondence: It is very difficult to find correspon-
dence in the textureless image regions. Ambiguity in matching also
occurs when the image regions have a similar or repetitive pattern or
structure in the horizontal direction.
(c) Occlusion: In sign language recognition or two handed gesture
recognition, one hand can occlude the other hand or face. So, find-
ing proper correspondence between two images is difficult in the
presence of occlusion.
Apart from this, accuracy of a disparity map may depend on other
factors:
• The accuracy of disparity-based depth estimation is poor if the
foreground and background are very close to each other. For exam-
ple, a user could be found standing or sitting very near to a wall.
In this case, the difference in disparity values of background and
foreground regions could be small. This will result in a foreground-
background ambiguity in the depth map.
• The disparity calculation is computationally expensive.
• The disparity calculation relies on adequate scene illumination
and surface texturing. Also, the disparity map obtained from the
stereo image pairs may not give information about the specular
surface.
2. Multiple camera-based system: In contrast to the stereo camera-
based acquisition system that gives only a relative depth measure
between different objects and the camera, a multiple camera-based
acquisition system can better capture the 3D structure of an object.
In the last decade, several researchers [55, 56] used multiple camera-
based systems for gesture recognition. Although most of the multiple
camera-based VGR systems used visible light cameras, some of
the researchers used IR cameras. For example, Ogawara et al. fit-
ted a 26-degree of freedom (DoF) kinematic model to a volumetric
model of the hand constructed from images obtained using mul-
tiple infrared cameras arranged orthogonally [57]. However, mul-
tiple camera-based gesture acquisition systems have the following
limitations:
(a) Synchronization: The cameras should be synchronized to cap-
ture multi-view images of an object, which implies simultaneous
capturing all multi-view images. However, all imaging devices have
varying delays. Thus, a dedicated hardware setup is needed to
synchronize all the cameras.
(b) Ruggedness: The system becomes complex and rigid. It is hard
to mount a multiple camera-based system on a portable platform
such as a notebook computer or smart phone. System performance
depends so heavily on the device’s structural configuration that, for
even a small change in configuration, it requires recalibration.
3. Time-of-flight (ToF) system: This method obtains depth informa-
tion by measuring the time delay between the transmissions and
reception of a light pulse. Examples include
- PMD Technologies’ CamCube R©: depth range up to 60 m.
- Mesa Imaging’s SwissRanger SR4000 R©: depth range of 5–10 m
with 176× 144 resolution.
Some recent gesture recognition methods using ToF are given in
[58–60]. Though the inclusion of depth information can significantly

improve the accuracy of gesture recognition, ToF systems face the
following limitations:
• Time must be measured with a high accuracy. For example, an
accuracy of ∼ 1 cm in depth measurement requires an accuracy
of ∼ 66.7 picoseconds in time measurement. However, measure-
ment of returned light pulse may be inexact due to light scattering
near a VGR system. Thus, accurate depth information cannot be
determined.
• It is difficult to generate short light pulses with fast rise and fall
times.
• For a VGR system, the depth resolution should be high. The depth
resolution of a ToF camera is proportional to its signal-to-noise ratio
(SNR). The SNR is inversely proportional to the number of electrons
collected, which depends on the amount of reflected light [61]. A
light source having a low pulse repetition rate (e.g., lasers) produces
low SNR, thus yielding low depth resolution.
• Background light and multiple reflections create interference and
cause ambiguity in time measurement, which results in inaccurate
depth measurement.
According to Basler’s ToF sensor manual [62], the following con-
straints should be imposed on hardware installation to avoid back-
ground light/scatterings:
• the camera should not be exposed to bright sunlight (ambient
illumination < 15 klx)
• the presence of mirrors or any other reflective surfaces/objects
should be avoided in the vicinity of the sensor to reduce scattering.
4. Light coding technology: This method uses an infrared projector
to project a known pattern on the object and a CMOS sensor to cap-
ture deformations in the reflected pattern. Depth information is then
calculated from the amount of deformation. Examples include
- PrimeSense R©: single-chip based, and depth image resolutions up
to 640× 480 pixels (minimum distance ∼ 0.8 m).
- Microsoft Kinect R©: depth range up to 5 m (minimum distance
∼ 1.8 m).
Some recent gesture recognition methods using Microsoft Kinect are
given in [63, 64]. The major limitations of light coding systems are
• Poor performance in outdoor environments.
• The error in depth measurements increases quadratically with
distance from the sensor (about 4 cm at the distance of 5 m).
• Depth resolution decreases quadratically with the distance from
the sensor.
5. Leap motion sensors: The objective is to determine 3D finger-
tip positions instead of whole body depth information as with the
Kinect sensor. The sensor can obtain these positions with high accu-
racy (∼ 0.01 mm) [44]. Leap motion sensors can be used in various
applications, e.g., virtual environments [65] and gesture [66] and
sign language recognition [67]. The major limitations of leap motion
sensors are
• The sensors use specialized hardware and software and, thus, may
be less compatible with other systems.
• The sensor detects only fingertips lying parallel to the sensor
plane. So, it may fail to detect multiple fingertips when fingers
overlap (e.g., sign language). This restricts its applicability in the
recognition of complex gestures.
• The system may lack accuracy in normal lighting conditions or
fail to track hands or fingers during an activity.

3.1.2 Segmentation: Accurate segmentation of hand or body
parts from the captured images remains a challenge in computer
vision for many reasons. Some of the limitations in segmentation
are as follows:

1. Illumination variation: Illumination variation affects the accu-
racy of skin colour segmentation methods. Poor illumination may
change the chrominance properties of the skin colours, and the skin
colour will be different from the image colour as shown in Fig. 4.
Several researchers [68–70] converted from RGB to another colour
space, dropped the luminance component, and used only the chromi-
nance components to compensate for brightness variations in the
image. However, because the skin reflectance locus and the illumi-
nant locus are directly related [71], the perceived colour depends on
scene illumination. Biplab et al. [72, 73] used a fusion-based image
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Fig. 5: Effect of complex background on skin colour segmentation: (a) original images, (b) segmentation results, and (c) ground truth

Low illumination Standard illumination

(a)

(b)

Fig. 4: Effect of illumination variations on perceived skin colour:
(a) Skin colour in low and standard illumination conditions, (b) 2D
colour histogram in YCbCr space

specific model for skin segmentation under varying illumination
conditions.
2. Complex background: A major challenge in gesture recognition
is the proper segmentation of skin coloured objects (e.g., hands, face)
against a complex static background. The accuracy of skin segmen-
tation algorithms is limited because of objects in the background that
are similar in colour to human skin (Fig. 5). Skin colours in the back-
ground increase false positives. This problem can be addressed by
different approaches such as using additional features, e.g.,, texture
features [74, 75]. This assumes that a sharp textural discrimination
exists between skin and non-skin regions. That assumption, however,
may be violated due to the low resolution of images and/or a smooth
background.

3.1.3 Hand articulation and occlusion: The hand is an artic-
ulated object with more than 20 DoF [76]. Many hand parameters
need to be estimated for different hand poses, locations, and ori-
entations. Their, estimation is complicated because of the hand’s
high DoF. For monocular vision, the occlusion of joints and finger
segments can prevent the detection of a hand configuration. Appli-
cations in vision-based interfacing (VBI) need to work around these
limitations by using gestures that do not require full hand pose infor-
mation. So far, articulated hand pose estimation in unconstrained
settings is a largely unsolved problem.

Mitigating the effects of occlusion is a major challenge for ges-
ture recognition. Not only may the hand occlude itself, but one hand
may occlude the other during two-handed gestures. Both kinds of
occlusion affect the appearance of the hand, thus hindering ges-
ture recognition. In monocular vision-based gesture recognition, the
appearance of gesturing hands is viewpoint dependent. As shown
in Fig. 6, different hand poses appear similar from a particular
viewpoint because of self-occlusions.

Fig. 6: Different hand poses and their side views

3.2 Gesture representation and feature extraction

To recognize a gesture, it must be represented using a suitable model.
According to its spatio-temporal properties, gestures are broadly
classified as static or dynamic. Static gestures are defined by the
pose or orientation of a body part in the space (e.g., hand pose),
whereas dynamic gestures are defined by the temporal deformation
of body parts (e.g., shape, position, motion). After gesture mod-
elling, an important step in gesture recognition is the extraction and
selection of suitable features to represent associated gestures. A dis-
cussion follows on different gesture representation techniques and
feature descriptors, and their constraints:

3.2.1 Gesture representation: Static gestures can be repre-
sented using a 2D model or a 3D model as shown in Fig. 7. The
simplest way to represent a static gesture or pose is to use an
appearance-based model, which tries to identify gestures directly
from visual images. The model parameters are not derived from a
3D spatial description but instead by relating the appearance of the
gesture to that of a set of predefined template gestures. Parameters
of such models may be either the images themselves or some fea-
tures derived from the images. Appearance-based models directly
link the appearance of the hand and arm movements in visual images
to specific gestures. The application of 2D modelling of static hand
gestures is limited because it is object view dependent. 2D models
are not sufficient to represent complex static hand gestures (e.g., sign
language) because of the hand’s articulation. Recent work focuses on
the 3D representation of articulated hand gestures and their recog-
nition. 3D static hand gesture recognition methods can be broadly
classified into two model-based approaches: discriminative and gen-
erative. Discriminative approaches do not explicitly generate a 3D
model of hands or other body parts. Instead, the classifiers are
trained with appearance-based hand features to map unknown hand
shape parameters with appearance-based features. This requires a
large set of training data for offline training. In recent years, several
researchers used 3D discriminative models for static hand gesture
recognition. Shotton et al. [77] used skeletal modelling of body parts
using depth data derived from a Kinect sensor. Keskin et al. [78] used
a 3D mesh model to generate synthetic hand pose images to train
randomized decision trees (RDTs). However, depth features are sen-
sitive to background changes. To mitigate this problem, Yao and Fu
[79] fused different features (e.g., shape, surface, and position fea-
tures) to use in a random forest (RF) classifier. The main limitations
of discriminative models are
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• The need for a large amount of data to train the classifiers, and
• A lack of robustness to real-life problems like hand articulation
and self-occlusions due to the absence of kinematic constraints on
hand modelling.

In contrast to discriminative modelling, generative modelling
tries to fit 3D models explicitly to the data obtained from 2D or
3D images. The 3D hand appearance can be approximated using
geometric structures like cylinders, spheres, ellipsoids, and hyper-
rectangles [34]. 3D hand modelling can be performed using a
kinematic model with 28 DoF [80] derived from 2D silhouette
images. Unfortunately, silhouette images are not sufficient to model
real-life challenges like self-occlusion or varying illumination. De
LaGorce and Paragios [81] showed that the use of texture map-
ping and a shading model can mitigate these problems. Researchers
like Oikonomidis et al. used multiple camera-based images [82] or
RGB-D images from a Kinect sensor [83] to match the 26-DoF hand
model. In these methods, the 3D hand surface is represented with
basic 3D shapes like a sphere and multiple truncated cylinders. The
main limitations of generative models are their

• Computational intensiveness, and
• Lack of portability owing to the need for special hardware, like a
multiple camera system.

As compared with static gesture recognition, which only uses fea-
tures like colour, texture, and shape, dynamic gesture recognition
uses motion and/or deformation information like position, skewness,
and velocity. Dynamic gestures can be classified as isolated gestures
or continuous gestures:

1. Isolated gesture: These gestures are temporally discrete. Their
representation can be subdivided into two categories of feature
descriptors: appearance-based and tracking-based. Gesture repre-
sentation with appearance-based features mostly relies on the local
feature descriptor. Dynamic features include the velocity and accel-
eration of a hand. The features can be obtained either from 2D or
3D image sequences (e.g., RGB-D). Bhuyan et al. proposed both
static and the dynamic features for trajectory guided recognition of
hand gestures from the sequence of 2D frames [47–49]. The main
problem with trajectories made of 2D data is their susceptibility to
occlusions. Recent advancements in 3D imagery shifted the focus of
researchers from 2D to 3D trajectories. Wang et al. [53] used rela-
tive depth information, hand displacement, and concatenated body
centroids to model gesture appearance. In another work [84], they
used random occupancy pattern features derived from depth infor-
mation to handle the effects of occlusion. Other researchers [85, 86]
used a concatenated histogram of oriented gradients (HOG) feature
descriptor derived from 3D data to represent the hand gesture.

In contrast to appearance-based features, tracking-based features
need explicit tracking of the skeleton of the gesturing body parts
and corresponding centroids. According to the findings of Sohn et

al. [87], frequently used parameters for hand tracking include hand
centroid position, velocity, acceleration, and chain code. The hand
centroid location can either be obtained by segmentation [88] or 3D
body skeleton [89]. Features like hand orientation can also be used
for 3D trajectories of hands [90].

All the above features are then fed into a tracking algorithm, such
as a Kalman filter [91] or a particle filter [92]. Kalman filtering is
an optimized tracking technique employed to estimate changes over
time. Its limitations include imprecision of the system model and
feature measurements and probability distributions limited mainly
to the Gaussian. Another powerful algorithm, the condensation
algorithm (conditional density propagation), also called particle fil-
ter or Monte-Carlo algorithm, allows general representations of
probability, given that objective states are often non-Gaussian. This
enables the use of nonlinear motion models, such as factored sam-
pling, to approximate arbitrary probability distributions. Though the
condensation algorithm is robust, particularly to background clut-
ter, it has the disadvantage that the object model must be known in
advance. Moreover, the iterative process is still prone to flounder at
some step.
2. Continuous gesture: Applications using the human hand as a
human-computer interface motivate researchers on continuous hand
gesture recognition. For sign language, the recognition engine must
support natural gesturing to enable the user’s unrestricted interaction
with the system. Because non-gestural movements often intersperse
a gesture sequence, these movements should be removed from the
video input before the gesture sequence is identified. Examples of
non-gestural movements include movement epenthesis—the move-
ment that occurs between gestures—and gesture coarticulation—the
effect the end of a sign and the beginning of the next sign have on
each other. In some of the cases, a gesture could be similar to a
sub-part of a longer gesture also referred as the “subgesture prob-
lem” [93]. In natural settings, gestures occur intermittently. Gesture
spotting is used to locate the starting point and the endpoint of a ges-
ture in a continuous stream of motion. Once gesture boundaries have
been determined, the gesture can be extracted and classified. How-
ever, gesture spotting remains challenging for the following reasons:

• Gesture boundaries vary from one signer to another.
• Gesture boundaries are influenced by the surrounding sequence of
gestures; they occur in the context of an unfolding interaction [94],
and are recognized by higher-level cognitive processes.
• Gestures are unconstrained and cannot be enumerated exhaus-
tively. Because the human body can assume virtually an infinite
number of poses during the performance of a gesture, a generic
model-based approach to gesture segmentation is not viable.

Gesture spotting is further complicated by individual differences
among signers in the shape and duration of the same gesture and
variations in how the same signer makes a gesture at different times.
An ideal gesture recognizer should be able to extract gesture seg-
ments from a video stream and match them against reference patterns
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or templates robustly despite high spatio-temporal variability. Lee et
al. addressed this problem by proposing a model to calculate the like-
lihood threshold of an input pattern [95]. Fang et al. proposed a set of
transition movement models (TMMs) for transitions between adja-
cent signs [96]. Song et al. used a latent dynamic conditional random
field (LDCRF) with a temporal sliding window to perform online
labelling and segmentation of the input sequence [97]. Bhuyan et
al. proposed a scheme for recognizing different kinds of continuous
gestures [98].

3.2.2 Feature extraction: After gesture modelling, a set of fea-
tures needs to be extracted for gesture recognition. Features for static
gestures are derived from image information like colour and tex-
ture or pose information like orientation, shape, etc. For dynamic
gestures, features are based on motion and/or deformation informa-
tion like position, skewness, and the velocity of hands. Samples of
dynamic hand gestures are spatio-temporal patterns. A static hand
gesture may be viewed as a special case of a dynamic gesture with
no temporal variation of the hand shape and position. A gesture
model should consider both the spatial and temporal characteristics
of the hand and its movements. No two samples of the same gesture
will result in exactly the same hand and arm motions or the same
set of visual images i.e., gestures suffer from spatio-temporal vari-
ation. There exists spatio-temporal variation when a user performs
the same gesture at different times. Every time the user performs a
gesture the shape and the speed of the gesture generally vary. Even if
the same person tries to perform the same sign twice, small variation
in speed and position of the hands will occur. Therefore, extracted
features should be rotation-scaling-translation (RST) invariant. Var-
ious features or descriptors are used in the state-of-the-art methods
for VGR systems. These features can be broadly classified based
on their method of extraction, such as spatial domain features,
transform domain features, curve fitting-based features, histogram-
based descriptors, and interest point-based descriptors. Moreover,
the classifier can handle spatio-temporal variations. Recently, feature
extraction techniques based on deep learning have often been applied
to gesture recognition. Kong et al. [99] proposed a view-invariant
feature extraction method using deep learning for multiview action
recognition. Table 2 gives a brief survey on the properties of different
features used for both static and dynamic gesture recognition.

3.3 Recognition

The final stage of a VGR system is the recognition stage where
a suitable classifier recognizes the incoming gesture parameters or
features and groups them into predefined classes (supervised) or by
their similarity (unsupervised). There are various classifiers used for
both static and/or dynamic gesture recognition, each with its own
limitations. The most frequently used pattern recognition algorithms
applicable to static and/or dynamic gesture recognition are described
below.

3.3.1 k means: This algorithm [111, 112] is an unsupervised
classifier that determines k centre points to minimize clustering
error, defined as the sum of the distances of all data points to their
respective cluster centres. The classifier randomly locates k clus-
ter centres in the feature space. Each point in the input dataset is
assigned to the nearest cluster centre, and their locations are updated
to the average location value for each cluster. This process is then
repeated until a stopping condition is met. The stopping condition
could be either a user specified maximum number of iterations or a
distance threshold for the movement of cluster centres. Ghosh and
Ari [113] used a k means clustering based radial basis function neu-
ral network (RBFNN) for static hand gesture recognition. In this
work, k means clustering is used to determine the RBFNN centres.

3.3.2 Mean shift clustering: Mean shift is a nonparametric
clustering method that does not require prior knowledge of the
number or distribution of the clusters [114]. The points in the
d-dimensional feature space are treated as an empirical probabil-
ity density function with dense regions at the local maxima or
modes of the underlying distribution. A gradient ascent procedure

is performed on the local estimated density for each point in the
feature space until convergence. The stationary points obtained in
this process serve as the modes of the distribution. The data points
associated with the same stationary point belong to the same clus-
ter. Bradski proposed a modified mean shift algorithm, continuously
adaptive mean shift (CamShift) [115]. CamShift was intended for
head and face tracking but can also be used for hand gesture
recognition [116].

3.3.3 k-nearest neighbor (kNN): kNN is a non-parametric,
supervised learning algorithm. Data in the feature space can be mul-
tidimensional. The training data consists of a set of labelled feature
vectors. The number k determines how many neighbors (nearby fea-
ture vectors) influence the classification [117]. Typically, an odd
value of k is chosen for a 2-class classification. Each neighbour may
be given the same weight or those closer to the input data may be
given more weight (e.g., by applying a Gaussian function). In uni-
form voting a new feature vector is assigned to the class to which the
plurality of its neighbours belong. An alternative method is given in
[118]. Hall et al. assumed two statistical models (Poisson and bino-
mial) for the sample data to obtain the optimum value of k [119].
The kNN can be used in different applications such as hand gesture-
based control media player control [120], sign language recognition
[121], etc.

3.3.4 Support vector machine (SVM): An SVM is a super-
vised classifier for both linearly separable and nonseparable data
[122]. This method non-linearly maps the input data (if not lin-
early separable in current feature space) to some higher dimensional
space, where the data can be linearly separated. This mapping from
lower to higher dimensional spaces makes the classification of the
input data simpler and more accurate. SVMs are often used for hand
gesture recognition [123–126]. SVMs were originally designed for
two-class classification, and an extension for multi-class classifica-
tion is necessary for gesture recognition. Weston and Watkins [127]
proposed an SVM structure to solve multi-class pattern recognition
problem using single optimization stage. Dardas et al. [108] used
this method along with bag-of-features for hand gesture recogni-
tion. However, their single optimization procedure found out to be
very complicated to be implemented for real life pattern classifi-
cation problems [128]. Instead of using single optimization stage,
multiple binary classifiers can be used to solve multi-class classi-
fication problem, such as “one-against-all” and “one-against-one”
methods. Murugeswari and Veluchamy [129] used “one-against-
one” multi-class SVM for gesture recognition. It was found that
“one-against-one” method performs better than rest of the methods
[128].

3.3.5 Dynamic time warping (DTW): DTW can find the opti-
mal alignment of two signals in the time domain. Each element in
a time series is represented by a feature vector. Hence, the DTW
algorithm calculates the distance between each possible pair of
points in two time series in terms of their feature vectors. DTW has
been used for gesture recognition by several authors [130, 131].

3.3.6 Finite state machine (FSM): A gesture can be modelled
as an ordered state sequence in a spatio-temporal domain using an
FSM [132, 133]. The number of states varies by application. The
gesture is represented by the trajectory of the hand in 2D space.
Offline training is performed using a set of training data for each
gesture to derive the FSM parameters for each state. The recognition
of gestures can be performed online using the trained FSM. Based
on the input value, the recognizer determines whether to make a state
transition or to remain in the same state. A gesture has been recog-
nized if the recognizer reaches the final state. More than one model
may reach the final state for the same input data. In that case, winning
criteria can be applied to choose the most probable gesture.

3.3.7 Hidden Markov model (HMM): An HMM is a doubly
stochastic process comprised of 1) an underlying unobservable finite
state Markov process and 2) a set of random functions, each asso-
ciated with a state, that produce an observable output at discrete
intervals [134]. The states in the hidden stochastic layer are governed
by a set of probabilities:
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Table 2 Features used for gesture recognition

Feature type Examples Static Dynamic Advantages Limitations

Spatial domain
(2D)

Fingertips location, finger

direction, and silhouette [100]
X

• Easy to extract

• Rotation invariant.

• Unreliable under occlusion or vary-

ing illumination.

• Object view-dependent.

• Distorted hand trajectory distorts

MCC also.

Motion chain code (MCC)

[95, 101]
X

Spatial domain
(3D)

Joint angles, hand location,

surface texture and surface

illumination [80]

X

• 3D modelling can most accu-

rately represent the state of a hand,

and thus can give higher recogni-

tion accuracy.

• Difficult to accurately estimate 3D

shape information of a hand.

Transform
domain

Fourier descriptor [102], DCT

descriptor [103], Wavelet

descriptor [104]

X X
• RST invariant • Not able to perfectly distinguish

different gestures.

Moments
Geometric moments,

orthogonal moments [105]
X X

• Moments can be used to derive

RST invariant global features.

• Moments are in general global fea-

tures. So, moments cannot effectively

represent an occluded hand.

Curve
fitting-based

Curvature Scale Space [106] X
• RST invariant.

• Resistant to noise.

• Sensitive to distortion in the bound-

ary.

Histogram-based
Histogram of Gradient (HoG)

features [107]
X X

• Invariant to geometry and illu-

mination changes.

• Performance is not so satisfactory

for images with a complex background

and noise.

Interest
point-based

SIFT [108], SURF [109] X • RST and illumination invariant

• They are not the best choice for

real-time applications because they are

computationally expensive.

Mixture of
features

Combined features [110] X X
• Incorporates the advantages of

different types of features.

• Classification performance may

degrade due to curse of dimensionality.

i. The state transition probability distribution A, which gives the
probability of transition from the current state to the next possible
state.
ii. The observation symbol probability distribution B, which gives
the probability of an observation for the present state of the model.
iii. The initial state distribution Π, which gives the probability of a
state being an initial state.

An HMM is expressed as λ =(A,B,Π). HMMs are often used for
dynamic gesture recognition [95, 135–137].

The modelling of a gesture sequence involves two phases - feature
extraction and HMM training. In the first phase, a particular gesture
trajectory is represented by a set of feature vectors. Each of these
feature vectors describes dynamics of a hand corresponding to a par-
ticular state of a gesture. The number of such states depends on the
nature and complexity of a gesture. In the second phase, the vector
set is used as an input to HMM. For a given observation sequence,
the key issues of HMM are,

• Determination of the probability that the model will generate the
observed sequence (forward–backward algorithm).
• Train and adjust the model to maximize the observation sequence
probability (Baum–Welch algorithm).
• Determination of the optimal state sequence that produces the
observation sequence (Viterbi algorithm).

3.3.8 Conditional random field (CRF): A CRF is a type of dis-
criminative undirected probabilistic graphical model, an alternative
to generative HMM model, which predicts a label for each sample of

the object for structure prediction considering the context of neigh-
bouring samples. CRFs can be used to enhance recognition accuracy
by removing the requirement of conditional independence of obser-
vations (as require by generative models like HMM). Bhuyan et al.
proposed a classification technique based on CRFs on a novel set of
motion chain code features [101].

3.3.9 Artificial neural network (ANN): An ANN is a biologi-
cally inspired statistical learning algorithm for functional approxi-
mation, pattern recognition and classification. ANNs can be used as
a supervised classifier for gesture recognition. Training is performed
using a set of labelled input patterns. The ANN classifies new input
patterns within the labelled classes. ANNs can be used to recognize
static [138] and continuous hand gestures and gestures using a 3D
articulated hand model [139]. They have been used with a Kinect
sensor [140]. A limitation of classical ANN architectures is their
inability to handle temporal sequences of features efficiently and
effectively [34]. Mainly, they are unable to compensate for changes
in temporal shifts and scales especially in real-time applications [42].
Out of several modified architectures, multi-state time-delay neu-
ral networks [141] can handle such changes to some extent using
dynamic programming. Fuzzy-based neural networks have also been
used to recognize gestures [142].

3.3.10 Deep networks: Deep networks are capable of finding
salient latent structures within unlabelled and unstructured raw data,
and can be used for both feature extraction and classification [143].
Convolutional Neural Networks (CNN) [144, 145], Recurrent Neu-
ral Networks (RNN) [146, 147] are such type of deep networks
which can be used to handle spatio-temporal variations in gesture
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Table 3 Advantages and limitations of different classifiers used in gesture recognition

Classifier SG1 DG2 Advantages Limitations

k-means
[113]

X

• Ease of implementation and high-speed performance.

• Computationally efficient than hierarchical clustering.

• Compact clustering than hierarchical clustering for

globular clusters.

• Dependent on initial cluster center values.

• Sensitive to outliers.

• Does not perform well in the presence of non-globular

clusters.

• Selecting an appropriate value of k is challenging.

Mean-shift
[116]

X

• No model assumptions unlike GMM or k-means.

• Can model non-convex shaped clusters.

• Does not depend on initialization unlike k-means.

• More resistant to outliers than k-means.

• The algorithm is computationally complex.

• Data needs to be sufficiently dense with a discernible gradient

to locate the cluster centres.

• Susceptible to outliers or data points located between natural

clusters.

k-NN
[120, 121]

X

• No assumptions about the characteristics of data.

• Robust to noisy data.

• Ease of implementation.

• Computationally intensive for a large dataset.

• Performance degrades as the dimensionality of the feature

space increases

SVM [123–

126, 129]
X X

• Produces unique solution.

• No local minima trapping due to Quadratic Programming

(QP).

• Presence of regularization reduces over-fitting.

• Kernel trick helps to classify non-linearly separable data.

• Right kernel function selection is challenging.

• Computationally expensive.

• SVM is a binary classifier; and hence, multi-class classifica-

tion requires multiple pairwise classifications.

• Multi-class SVMs based on single optimization [127] are

difficult to implement.

DTW
[130, 131]

X

• Reliable alignment of two temporal patterns of different

lengths.

• No full-model retraining for an inclusion/exclusion of a

training gesture.

• Independent template computation.

• Requires a large number of training sample for the selection

of appropriate templates.

• DTW has to align the test and prototype trajectories dur-

ing each classification. This increases the computational load

of classification for large gesture vocabulary size.

FSM
[132, 133]

X

• Can handle patterns of different lengths and states.

• An FSM can adapt quickly to accommodate spatio-

temporal variability during the training phase, and is there-

fore robust to any variation in length of the input gesture

sequences.

• Gesture model is available immediately in an FSM based

system.

• Large FSM with many states and transitions can be difficult

to manage and maintain.

• The state transition conditions are rigid.

HMM
[95, 135–

137]

X
• Handles spatio-temporal variations of gestures better than

FSM.

• The number of states and the structure of the HMM must be

predefined.

• Statistical nature of an HMM precludes a rapid training phase.

Well-aligned data segments are required to train an HMM.

• The stationarity assumption in HMM may not hold true for a

complete gestural action.

CRF
[101]

X

• No requirement of conditional independence of observa-

tions.

• Handles label bias problem.

• High computational complexity during training makes it dif-

ficult to re-train the model when new training gesture sequences

become available.

• CRFs can not recognize totally unknown gestures, i.e.,

gestures which are not present in the training dataset.

ANN
[141, 142]

X X

• Non-parametric, non-linear model.

• Adaptive to complex/abstract problems.

• Difficult to set parameters (e.g., the optimal number of nodes,

hidden layers, sigmoid function).

• Training is computationally intensive and requires a large set

of training data for obtaining acceptable performance.

• It acts like a “black box,” and hence, it is difficult to identify

errors in a complex network.

Deep
networks
[144–153]

X X
• Significant reduction in feature engineering process.

• Distributed representation of data.

• A potential problem of deep networks is that it is difficult to

get an optimized solution for non-convex and nonlinear systems.

• Require large amount of training data.

1SG = Static gesture; 2DG = Dynamic gesture
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recognition. The convolution and pooling layers in CNN can capture
discriminative features along both spatial and temporal dimensions
to deal with the spatio-temporal variations in gestures. However,
CNN can only exploit limited local temporal information and hence,
the researchers have moved towards RNN, which can process tempo-
ral data using recurrent connections in hidden layers [148]. However,
the main drawback of RNN is its short-term memory, which is insuf-
ficient for real life temporal variations in gestures. To solve this
problem, Long Short-Term Memory (LSTM) [149] was proposed
which can tackle longer-range temporal variations. LSTM-based
deep networks can be used for efficient modelling of gestures [150–
152]. The spatio- temporal graphs are well known for modelling of a
spatio-temporal structure. Hence, a combination of high-level spatio-
temporal graphs and RNN can also be used to solve spatio-temporal
modelling problem of RNN [153]. Deep learning techniques can
give outstanding performance in both feature extraction and recogni-
tion owing to their built-in feature learning capability. The effective
and efficient algorithms of deep networks are capable of solving
complex optimization tasks.

The main advantages and limitations of different classifiers used
for static and/or dynamic gesture recognition are enumerated in
Table 3.

4 Conclusion

Hand gesture recognition is an important research area in com-
puter vision with many applications to human–computer interaction.
Use of gesture-based interface has a great potential in assisting
humans in their day to day problems. In recent years, vision-based
gesture recognition is successfully used in different applications
such as healthcare and medicine, virtual reality, and driver moni-
toring. However, vision-based recognition is extremely challenging
not only because of its diverse contexts, multiple interpretations, and
spatio-temporal variations but, also because of the complex non-
rigid properties of the human hand. The existing classifiers used for
vision-based gesture recognition are not capable of simultaneously
handling all the gesture classification problems. Each has drawbacks
limiting overall performance.

Vision-based gesture recognition typically depends on three
stages: gesture detection and pre-processing; gesture representation
and feature extraction; and recognition. Detection includes various
kind of imaging systems whereas pre-processing includes segmen-
tation of gesturing body parts and occlusion handling. Accurate
detection of gestures is difficult because of varying illumination,
shadows, complex background, and other factors. The complex artic-
ulated shape of the hand makes it harder to model the appearance of
both static and dynamic gestures. Variation of gesture parameters
due to spatio-temporal variance in hand postures makes the recog-
nition process more difficult. A gesture can be represented using
an appropriate model based on the spatio-temporal properties of
the gesture. Each of these models have their own advantages and
disadvantages, which affect the overall performance of a gesture
recognition system. Gesture modelling is followed by the selec-
tion and extraction of appropriate features. Extracted features should
be RST invariant, object view independent, and computationally
inexpensive. Selection of a feature also depends on the nature of
gestures. The third stage of gesture recognition module consists of a
classifier, which classifies the input gesture into an unknown (unsu-
pervised) or a known class (supervised). However, every classifier
has its own limitations. This paper surveyed the major constraints
in the different stages of a VGR system. A vision-based interface
is expected to enable a user to interact with a machine with natu-
ral human-to-human interactions in an unconstrained environment.
Its performance should be accurate irrespective of changes in the
environment. However, most existing VGR systems are only work
in a limited range of indoor applications. Also, the same gesture can
have different meanings in different cultures. Thus, a lack of cross-
cultural conventions limits their global acceptance. Feedback is also
required to indicate the correctness of the input gestures. Feedback

provides the user some means of self-learning of the necessary ges-
tures and the contexts to be used. Present gesture-based interfaces
generally lack required feedback for VGR system validation.
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