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Abstract

Due to the emerging interest in virtual reality applications, as well as the existing

interest in improving the means of human-computer interaction, understanding

actions performed by human hands is a very important problem. One way to

approach this challenge is through continuous hand pose estimation. Thanks to

the recent developments in time-of-flight imaging, the general problem of hand

pose recognition became much more tractable in a single-camera setting.

The classical approach to pose recognition is based on fitting a simplified non-rigid

model, parametrized by a set of pose parameters, to the observation (generative

approach). However, due to being only locally optimal, the found pose param-

eters heavily depend on the initialization. Therefore, it is common to rely on

the temporal information, i.e. the assumption, that the pose parameters change

continuously from one frame to another. Unfortunately, this assumption is fragile;

therefore, it is desirable to estimate hand pose from a single frame, without relying

on the temporal information, which is the topic of this thesis.

In the first part of the thesis, we describe the properties of the time-of-flight sensors

and develop a calibration algorithm, specifically targeting the problem of time-of-

flight sensor calibration. In the second part of the thesis we develop a generative

pose estimation approach, based on the non-rigid iterative closest point (ICP)

algorithm, that is adapted specifically to the problem of hand pose estimation

from a single frame. Motivated by the problem of finding a good initialization,

as well as to address the problem of gesture recognition itself, in the third part

we investigate the performance of one hand pose classification approach, based on

random forests (discriminative approach). Finally, we propose a way to combine

both approaches to compensate for the susceptibility of the generative approach to

the bad initialization and the inability of the discriminative approach to provide

continuous pose estimates. We show in several experiments on the public datasets,

that such a combination is beneficial and allows to obtain significant improvement

in hand pose estimation performance.

Keywords: model-based pose estimation, gesture recognition, time-of-flight imag-

ing
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Zusammenfassung

Aufgrund neuester industrieller Entwicklungen in Virtual Reality Anwendungen

und vielfältigen Möglichkeiten zur Verbesserung von Mensch-Maschine-Schnitt-

stellen ist die Erkennung und Interpretation von Gesten menschlicher Hände ein

sehr relevantes Problem. Eine mögliche Herangehensweise an diese Herausforderung

ist die kontinuierliche Handposeschätzung in Bilddaten. Aufgrund der hohen Zahl

der Freiheitsgrade und der homogenen Hautfarbe ist eine rein bildgetriebene Hand-

poseschätzung bis heute nicht stabil in Echtzeit möglich. Dank neuester Entwick-

lungen in der Time-of-Flight (ToF) Bildgebung wird das Problem der Handpos-

eschätzung jedoch handhabbar.

Der klassische Ansatz für die Handposeschätzung basiert auf der Anpassung von

nicht-starren vereinfachten Handmodellen mit der Beobachtung (generativer An-

satz). Das Modell wird durch eine Menge von Pose-Parametern parametrisiert,

die durch die Lösung eines nicht-konvexen Optimierungsproblems geschätzt wer-

den. Dadurch, dass nur lokale Minima gefunden werden, hängt die Qualität der

Lösung von der Initialisierung des Verfahrens ab. Daher ist eine übliche An-

nahme, dass sich die Pose-Parameter kontinuierlich über die Zeit ändern. Diese

Annahme ist nicht immer gegeben; daher ist es wünschenswert, die Handpose aus

nur einem Frame zu schätzen, ohne die Zeitinformation mit einzubeziehen. Dieser

Lösungsansatz ist das Thema der vorliegenden Arbeit.

Im ersten Teil der Arbeit werden die Eigenschaften der ToF Sensoren untersucht.

Auf Basis dieser Untersuchungen wird ein Kamerakalibrierungsalgorithmus en-

twickelt, der für den Fall der ToF Sensorkalibrierung geeignet ist. Im zweiten Teil

der Arbeit wird ein generativer Ansatz vorgeschlagen, der auf dem Iterative Clos-

est Point (ICP) Algorithmus für nicht-starre Objekte basiert und speziell für die

Handposeschätzung aus einem ToF Frame adaptiert wurde. Motiviert durch das

Problem, eine gute Initialisierung für den generativen Ansatz zu finden, sowie auch

durch das allgemeine Problem der Gestenerkennung, wird im dritten Teil der Ar-

beit ein Einsatz für die Handposeklassifikation mittels Random Forests dargestellt

(diskriminativer Ansatz). Schließlich werden beide Ansätze kombiniert, um die

Anfälligkeit des generativen Ansatzes für eine schlechte Initialisierung zu kom-

pensieren sowie das Problem, dass der diskriminative Ansatz keine kontinuierliche

Poseschätzung ermöglicht, zu beheben. Wir zeigen in mehreren Experimenten
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auf etablierten Datensätzen, dass durch die Kombination der beiden Ansätze die

Handposeschätzung signifikant verbessert werden kann.

Stichworte: modelbasierte Poseschätzung, Gestenerkennung, Time-of-Flight Bildge-

bung
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Chapter 1

Introduction

1.1 Motivation

Hand pose recognition is a very interesting and challenging problem. It has many

applications in different areas, such as human-computer interaction, robotics, med-

ical research, etc. One distinctive feature of all these tasks is that having a multi-

camera setup is undesirable, while having a single sensor is the most reasonable

set-up.

Hand pose estimation is often compared to full body pose estimation; however, it

is a much harder problem, since unlike in the case of full body pose estimation,

there is no large rigid part, such as human torso, about which certain assumptions

can be made. Additionally, human hand has large number of degrees of freedom

(26) and is prone to severe self-occlusion. Therefore, robust hand pose estimation

from a single image for a long time remained unsolved, although some advances

have been made in case of a multi-camera setup [10].

With the recent developments in the depth sensing technologies, new interest

emerged to this problem, since the presence of depth data made the problem of

hand pose estimation much more feasible.

1.2 The hand pose estimation problem

The main problems to deal with when solving the hand pose estimation task are

the following:

1



2 Chapter 1 Introduction

• A human hand is very flexible and has many degrees of freedom.

• As mentioned previously, here is no large rigid part about which non-restrictive

assumptions can be made.

• A hand is prone to severe self-occlusions.

• Its is not textured, therefore it is hard to find features to distinguish different

hand parts, as well as robust edges.

• Hands vary in size and shape, and a suitable hand model is required.

Hand pose estimation has been studied for some years already. In early works,

normal color sensors were used to estimate hand pose [118]. However, due to

the complexity of the task only a partial hand pose recovery was done, or strong

assumptions were made about the hand pose in the image. Later, different multi-

camera set-ups were proposed to address the problem of self-occlusion and am-

biguities, that occur when only RGB image data is available. To further reduce

the complexity of the problem, tracking over several frames can be used instead

of per-frame pose estimation, as shown by the authors of [10]. The proposed ap-

proach uses images collected by 8 synchronized and calibrated cameras to achieve

robustness. Finally, great progress in this area happened after the appearance of

depth sensors, such as Microsoft Kinect [3, 4] or Intel Creative Gesture Camera

[2]. The additional depth data, delivered by the sensors mentioned above, allows

to greatly reduce observation ambiguity. This, in its turn, permits a single-camera

set-up, which is very desirable.

In general, the approaches for hand pose estimation (as well as human pose es-

timation in general) can be divided into two groups: generative [10, 94, 114]

and discriminative approaches [59, 100]. Generative approaches usually solve the

general hand pose estimation task, where the goal is to distinguish between all

possible hand configurations, i.e., to determine hand pose parameters in the con-

tinuous space, while discriminative approaches are applied to various problems,

for example sign language recognition, where a finite number of poses should be

discriminated. However, pose parameters from the continuous pose space can be

also estimated by firstly classifying hand parts and then fitting a full DoF model

using obtained hand part correspondences.

Generative approaches The idea behind generative approaches is to find

the parameters, that explain the observation in the best way, given a predefined
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model. Firstly, a set of hypotheses is generated for different model parameters.

The agreement between each hypothesis and the observation is then evaluated

using an objective function. The goal is to find the parameters that correspond

to the best value of the objective function.

Of course, the task of modeling the whole observation (an image of a hand in this

case) with a high level of details is very complex and time consuming, and mainly

addressed by photo-realistic rendering. Therefore, it is common to pick the most

significant features of the image and model only these features, comparing them

to the observation. For example, in case of human pose estimation, it can be

silhouettes [97, 98], and in hand pose estimation silhouettes and edges [25, 118].

Furthermore, one can use different methods to sample candidate parameters from

the parameter space in an efficient way. A conventional method is to use gradi-

ent descend and its modifications to directly optimize a given objective function.

However, this approach tends to get caught in local minima, when the initial pa-

rameters are not properly selected. The parameters can also be sampled from a

distribution, that reflects the prior knowledge about the observation, as in case of

tracking, when the estimated pose in the previous frame is assumed to be close

enough to the pose of the hand in the current frame. The sampling approach, such

as particle filtering [40], simulated annealing [63] or particle swarm optimization

[58], is usually used, when the cost function is hard to optimize using gradient-

based methods (e.g. it does not have analytical expression, is not smooth or even

not continuous) or when the prior knowledge is unreliable. Various ICP-based

algorithms [14] are as well representatives of the group of generative approaches.

For hand pose estimation, the generative approach is the traditional one: firstly, a

simplified geometrical hand model is created, parametrized by a set of parameters;

it is then projected into the image and compared to the observation.

Discriminative approaches Discriminative approaches are targeted to dis-

tinguish different observations, instead of trying to model them. To discriminate

between the observation, a classifier or a regressor is trained using training data,

which is assumed to have the same feature distribution as the test data.

There are numerous methods in machine learning that were developed to solve

both classification and regression tasks, such as linear models, kernel methods,

random forests, etc. The size of the necessary training set and the performance of

the algorithm largely depends on the chosen method.
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In the recent works it has been shown, that random forests deliver particularly

good results on hand pose estimation problem [59, 119], in case of hand pose

estimation of a single non-interacting hand.

In general, each group of methods has its own strengths and weaknesses. We

will discuss both in relation to hand pose estimation problem in the subsequent

chapters.

Publicly available datasets In the past couple of years, several public

datasets appeared to provide the ground for comparison of different hand pose

estimation methods. Before that, however, there were no real-world datasets col-

lected and annotated, for the reasons discussed below. It was common to evaluate

the performance of the hand tracking methods in synthetic data, as done, for

example, in [94].

Obtaining ground truth datasets for hand pose estimation is a difficult problem.

The traditional way to obtain ground truth for human pose estimation is recording

the data in marker-based Motion Capture Studio, such as Vicon Motion Capture

System [5]. However, for hand tracking this approach is difficult to implement

technically, since markers placed on a hand get occluded very often due to the

high agility of a human hand. The other approach is to use a sensorized glove —

however, it is quite expensive and was reported to be imprecise.

Nevertheless, recently several manually annotated datasets appeared: [116] presents

a completely manually annotated dataset (called Dexter dataset), collected using

both the Intel Creative Gesture Camera [2], multiple color cameras and the Mi-

crosoft Kinect [3]. Only finger tips and palm center are annotated in this case.

We use this dataset for evaluation in the subsequent chapters.

Another dataset [119] is collected using the Intel Creative Gesture Camera and an-

notated using the hand pose estimation implementation, provided in Intel SDK [2];

since the resulting annotations are not always correct, the authors then manually

corrected obtained tracks and used the resulting data for evaluation.

The third dataset [133] is collected using the Intel Creative Depth sensor and the

ground truth joint angle annotations are obtained using a sensorized glove. The

authors as well report their studies on the precision of the sensorized glove for

different joints.
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1.3 Contributions of the thesis

With the appearance of consumer depth cameras, the problem of hand pose esti-

mation became much more tractable. However, it appears to be hard to solve it

using just a discriminative or just a generative approach. We therefore propose to

combine both approaches to achieve more robust and stable performance of the

method.

In general, hand pose estimation starts with detecting and segmenting the hand

in the image. In this work, we do not discuss the hand detection problem, since

several very good algorithms exist to tackle it [88]. Provided a depth image, the

hand segmentation task can be solved using, for example, simple region growing

or depth thresholding; a more advanced algorithm is described in the Appendix.

Since in our work we work with a 3D point cloud and not a 2D depth image, the

depth image should be converted into 3D using camera calibration parameters.

When multiple cameras are used, for example, both a depth and a color sensor,

it is also necessary to obtain the relative position of the sensors. Our first contri-

bution solves this preliminary task: we develop a calibration algorithm to recover

calibration parameters for the case of a time-of-flight depth camera (please see

Chapter 1 for more details).

In this work, we firstly present a generative method for hand pose estimation,

which is based on a traditional non-rigid iterative closest point (ICP) algorithm

[43]. Due to its weaknesses which we discuss in the following chapters we then

develop a discriminative approach. It turns out, however, that combining both

methods can be beneficial, so that the combination compensates weaknesses of

each approach.

1.4 Structure of the thesis

The overview of the thesis is presented in Figure 1.1.

Chapter 2 We discuss different types of depth sensors, the basics of their function-

ing and the challenges of depth imaging. Then an overview of the basic calibration

approaches is given and finally a novel adaptation of the approach for calibration

of a time-of-flight (ToF) depth sensor is presented. The proposed approach is eval-

uated using two recently appeared time-of-flight sensors: Intel Creative Gesture
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Figure 1.1: The full pipeline of the hand pose estimation algorithm.
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Camera and Kinect2.

Chapter 3 We firstly give a theoretical introduction into generative approaches

to pose estimation, and describe the hand model and its parametrization using

exponential mapping, as well as the non-rigid iterative closest point (ICP) algo-

rithm. An overview of generative approaches to hand pose estimation is presented,

together with their advantages and the common drawbacks. We finally describe

our approach, based on non-rigid ICP, evaluate it on the synthetic dataset and

on Dexter dataset [116] and conclude the section with the discussion of the weak

points of this approach.

Chapter 4 We give a theoretical introduction to random forests for classification

and introduce a global point cloud descriptor. Afterwords, we present a discrimina-

tive approach for hand pose classification, based on a random forest. We evaluate

this approach on the task of classification of the static signs of the ASL alphabet

both on the publicly available dataset [100], collected using a Kinect, and on the

new more challenging dataset, collected using an Intel Creative Depth Camera.

Chapter 5 Based on the discussion in the previous chapters, we combine the

proposed discriminative and generative approaches into a single pipeline to com-

pensate for the drawbacks of both of them. We evaluate this new approach on the

synthetic database and on the Dexter dataset [116].

Chapter 6 We conclude the thesis with possible future work and open directions

in the area of hand pose estimation.

1.5 Papers of the author

Below are the papers of the author and their abstracts. The papers relevant to

the main contributions of the dissertation, are listed first:

[71] Alina Kuznetsova and Bodo Rosenhahn, Hand pose estimation from a

single RGB-D image, 9th International Symposium on Visual Computing

(ISVC), 2013

Hand pose estimation is an important task in areas such as human computer

interaction (HCI), sign language recognition and robotics. Due to the high

variability in hand appearance and many degrees of freedom (DoFs) of the

hand, hand pose estimation and tracking is very challenging, and different

sources of data and methods are used to solve this problem. In the paper,
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we propose a method for model-based full DoF hand pose estimation from a

single RGB-D image. The main advantage of the proposed method is that

no prior manual initialization is required and only very general assumptions

about the hand pose are made. Therefore, this method can be used for hand

pose estimation from a single RGB-D image, as an initialization step for

subsequent tracking, or for tracking recovery.

[69] Alina Kuznetsova and Laura Leal-Taixé and Bodo Rosenhahn, Real-time

sign language recognition using a consumer depth camera, IEEE International

Conference on Computer Vision Workshops (ICCVW), 3rd Workshop on

Consumer Depth Cameras for Computer Vision (CDC4CV), 2013

Gesture recognition remains a very challenging task in the field of computer

vision and human computer interaction (HCI). A decade ago the task seemed

to be almost unsolvable with the data provided by a single RGB camera.

Due to recent advances in sensing technologies, such as time-of-flight and

structured light cameras, there are new data sources available, which make

hand gesture recognition more feasible. In this work, we propose a highly

precise method to recognize static gestures from a depth data, provided from

one of the above mentioned devices. The depth images are used to derive

rotation-, translation- and scale- invariant features. A multi-layered random

forest (MLRF) is then trained to classify the feature vectors, which yields to

the recognition of the hand signs. The training time and memory required by

MLRF are much smaller, compared to a simple random forest with equivalent

precision. This allows to repeat the training procedure of MLRF without

significant effort. To show the advantages of our technique, we evaluate our

algorithm on synthetic data, on publicly available dataset, containing 24

signs from American Sign Language(ASL) and on a new dataset, collected

using recently appeared Intel Creative Gesture Camera.

[72] Alina Kuznetsova and Bodo Rosenhahn, On calibration of a low-cost time-

of-flight camera, IEEE European Conference on Computer Vision Workshops

(ECCVW), 2014

Time-of-flight (ToF) cameras are becoming more and more popular in com-

puter vision. In many applications 3D information delivered by a ToF cam-

era is used, and it is very important to know the camera’s extrinsic and

intrinsic parameters, as well as precise depth information. A straightforward

algorithm to calibrate a ToF camera is to use a standard color camera cal-

ibration procedure, on the amplitude images. However, depth information
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delivered by ToF cameras is known to contain complex bias due to several

error sources. Additionally, it is desirable in many cases to determine the

pose of the ToF camera relative to the other sensors used. In this work,

we propose a method for joint color and ToF camera calibration, that de-

termines extrinsic and intrinsic camera parameters and corrects depth bias.

The calibration procedure requires a standard calibration board and around

20-30 images, as in case of a single color camera calibration. We evaluate

the calibration quality in several experiments. The code for the calibration

toolbox is made available online.

The papers of the author as a result of side research projects are listed below:

[93] Joachim Ohser, Claudio Ferrero, Oliver Wirjadi, Alina Kuznetsova and

Jochen Düll and Alexander Rack, Estimation of the probability of finite per-

colation in porous microstructures from tomographic images, International

Journal of Materials Research, 2012

Percolation is an important property of porous media, as it describes the

connectivity of pores. We propose a novel, direction-dependent percolation

probability which can efficiently be estimated from three-dimensional images

obtained by microtomography. Furthermore, in order to describe the pen-

etrability of the pore space by particles of a given diameter or a fluid of a

given surface tension, we introduce a percolation probability depending on

the width of the pores, from which we may also derive a measure of the mean

pore channel width. As application examples, we consider the penetrability

of porous berillium pebbles, the connectivity of pores in arctic firn, the per-

colation of the pore space of aluminium foams and the mean width of the

percolating space between the fibers in a laminate’s percolating pore space.

[70] Alina Kuznetsova, Gerard Pons-Moll and Bodo Rosenhahn, PCA-enhanced

stochastic optimization methods, 34th Annual Symposium of the German As-

sociation for Pattern Recognition (DAGM), 2012

In this paper, we propose to enhance particle-based stochastic optimization

methods (SO) by using Principal Component Analysis (PCA) to build an

approximation of the cost function in a neighborhood of particles during op-

timization. Then we use it to shift the samples in the direction of maximum

cost change. We provide theoretical basis and experimental results showing

that such enhancement improves the performance of existing SO methods

significantly. In particular, we demonstrate the usefulness of our method
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when combined with standard Random Sampling, Simulated Annealing and

Particle Filter.

[73] Alina Kuznetsova, Nikolaus F. Troje and Bodo Rosenhahn, A statistical

model for coupled human shape and motion synthesis, 8th International Con-

ference on Computer Graphics Theory and Applications (GRAPP), 2013

Due to rapid development of virtual reality industry, realistic modeling and

animation is becoming more and more important. In the paper, we propose

a method to synthesize both human appearance and motion given semantic

parameters, as well as to create realistic animation of still meshes and to syn-

thesize appearance based on a given motion. Our approach is data-driven

and allows to correlate two databases containing shape and motion data.

The synthetic output of the model is evaluated quantitatively and in terms

of visual plausibility.

[49] Helga Henseler, Alina Kuznetsova, Peter Vogt and Bodo Rosenhahn, Val-

idation of the Kinect Device as a New Portable Imaging System for Three-

Dimensional Breast Assessment, Journal of Plastic, Reconstructive & Aes-

thetic Surgery, 2014

The aim of this study was the evaluation of a new, simple, touchless, low-

cost and portable three-dimensional (3D) measurement system for objective

breast assessment. The Kinect Recording System by Microsoft was used.

RGB and depth images were captured of nine silicone breast implants of

known volumes. The data were processed using MATLAB R© software. Vol-

ume measurements were obtained in a blinded calculation on the 3D images.

For further comparison, implant volumes were assessed with the Arthur Mor-

ris device, a manual measurement tool. Four tests revealed that the true

breast implant volumes were calculated within an error margin of 10%. Re-

producibility of measurements was satisfactory. Overall, the accuracy and

reproducibility of the measurements of the Kinect System were better than

those of the Arthur Morris device. Accuracy of volume assessments with the

Kinect System was satisfactory for clinical application. Our new portable

3D imaging system was successfully validated. The results obtained with

the Kinect System were sufficiently accurate and reproducible for applica-

tion in 3D breast capture. We successfully validated the portable 3D imaging

system for the first ever use in 3D breast assessment.



Chapter 1 Introduction 11

[77] Laura Leal-Taixé, Michele Fenzi, Alina Kuznetsova, Bodo Rosenhahn and

Silvio Savarese, Learning an Image-based Motion Context for Multiple Peo-

ple Tracking, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2014

We present a novel method for multiple people tracking that leverages a

generalized model for capturing interactions among individuals. At the core

of our model lies a learned dictionary of interaction feature strings which

capture relationships between the motions of targets. These feature strings,

created from low-level image features, lead to a much richer representation of

the physical interactions between targets compared to hand-specified social

force models that previous works have introduced for tracking. One disad-

vantage of using social forces is that all pedestrians must be detected in order

for the forces to be applied, while our method is able to encode the effect

of undetected targets, making the tracker more robust to partial occlusions.

The interaction feature strings are used in a Random Forest framework to

track targets according to the features surrounding them. Results on six pub-

licly available sequences show that our method outperforms state-of-the-art

approaches in multiple people tracking.

[76] Aron Larsson, Alina Kuznetsova, Ola Caster and Love Ekenberg, Imple-

menting Second-Order Decision Analysis: Concepts, Algorithms, and Tool,

Advances in Decision Sciences, 2014

We present implemented concepts and algorithms for a simulation approach

to decision evaluation with second-order belief distributions in a common

framework for interval decision analysis. The rationale behind this work is

that decision analysis with interval-valued probabilities and utilities may lead

to overlapping expected utility intervals yielding difficulties in discriminat-

ing between alternatives. By allowing for second-order belief distributions

over interval-valued utility and probability statements these difficulties may

not only be remedied but will also allow for decision evaluation concepts

and techniques providing additional insight into a decision problem. The

approach is based upon sets of linear constraints together with generation

of random probability distributions and utility values from implicitly stated

uniform second-order belief distributions over the polytopes given from the

constraints. The result is an interactive method for decision evaluation with

second-order belief distributions, complementing earlier methods for decision

evaluation with interval-valued probabilities and utilities. The method has

been implemented for trial use in a user oriented decision analysis software.
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[67] Alina Kuznetsova, Sung Ju Hwang, Bodo Rosenhahn and Leonid Sigal,

Expanding Object Detector’s Horizon: Incremental Learning Framework for

Object Detection in Videos, IEEE Conference on Computer Vision and Pat-

tern Recognition, 2015

Over the last several years it has been shown that image-based object detec-

tors are sensitive to the training data and often fail to generalize to examples

that fall outside the original training sample domain (e.g., videos). A number

of domain adaptation (DA) techniques have been proposed to address this

problem. DA approaches are designed to adapt a fixed complexity model to

the new (e.g., video) domain. We posit that unlabeled data should not only

allow adaptation, but also improve (or at least maintain) performance on the

original and other domains by dynamically adjusting model complexity and

parameters. We call this notion domain expansion. To this end, we develop a

new scalable and accurate incremental object detection algorithm, based on

several extensions of large-margin embedding (LME). Our detection model

consists of an embedding space and multiple class prototypes in that embed-

ding space, that represent object classes; distance to those prototypes allows

us to reason about multi-class detection. By incrementally detecting object

instances in video and adding confident detections into the model, we are

able to dynamically adjust the complexity of the detector over time by in-

stantiating new prototypes to span all domains the model has seen. We test

performance of our approach by expanding an object detector trained on Im-

ageNet to detect objects in egocentric videos of Activity Daily Living (ADL)

dataset and challenging videos from YouTube Objects (YTO) dataset.

[68] Alina Kuznetsova, Sung Ju Hwang, Bodo Rosenhahn and Leonid Sigal,

Exploiting View-Specific Appearance Similarities Across Classes for Zero-

shot Pose Prediction: A Metric Learning Approach, Conference on Artificial

Intelligence (AAAI), 2016

Viewpoint estimation, especially in case of multiple object classes, remains an

important and very challenging problem. First, objects under different views

undergo extreme appearance variations, often making within-class variance

larger than between-class variance. Second, obtaining precise ground truth

for real-world images, necessary for training supervised viewpoint estimation

models, is extremely difficult and time consuming. As a result, annotated

data is often available only for a limited number of classes. Hence it is

desirable to share viewpoint information across classes. To address these

problems, we propose a metric learning approach for joint class prediction
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and pose estimation. Our metric learning approach allows us to circumvent

the problem of viewpoint alignment across multiple classes, and does not re-

quire precise or dense viewpoint labels. Moreover, we show, that the learned

metric generalizes to new classes, for which the pose labels are not available,

and therefore makes it possible to use only partially annotated training sets,

relying on the intrinsic similarities in the viewpoint manifolds. We evalu-

ate our approach on two challenging multi-class datasets, 3DObjects and

PASCAL3D+.





Chapter 2

Calibration of depth cameras

The major part of this thesis is devoted to computer vision algorithms, that take

advantage of depth data, that is transformed into point clouds. Consequently, ad-

ditional knowledge about properties of the depth sensors, such as their calibration

parameters and typical artifacts, is required.

Therefore, in this chapter, we firstly introduce physical and algorithmic principles

of functioning for different types of depth sensors; we then give the basics of a

general camera calibration algorithm of a color sensor and finally present a new

calibration algorithm for a subclass of depth sensors, the time-of-flight sensors.

Additionally, we introduce an artifact correction algorithm for the case of continu-

ous wave (CW) modulation technology [45]. We evaluate the proposed calibration

algorithm on the two time-of-flight sensors, Intel Creative Gesture Camera· [2] and

Microsoft Kinect2 [4].

2.1 Physical basics of depth sensors

Most of the depth sensors available on the market are based on two types of

technology: time-of-flight technology [45] and structured light technology [134];

the latter is based on the principles of stereo vision [47]. Note that although both

types represent active sensing technology (in contrast to other depth recovery

approaches, such as passive stereo vision [47] or depth reconstruction [105]), the

principles behind them are fundamentally different.

15
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projector

camera

camera plane

known relative pose

projected point in 3D

Figure 2.1: Principle of functioning of a structured light system: a pattern is
projected by a projector and recorded by a camera; relative pose of the projector
and the camera is known; the pattern seen on the image is matched to the known
pattern; this information is used to determine the depth at the projected points.

Structured light technology The main idea behind that technology is es-

sentially the same as in stereo vision [47, 92]. A structured light system typically

consists of a projector and a camera [89]. The projector projects a known pat-

tern on a scene, and the camera captures the pattern, that is then matched and

compared with the known projected pattern, which allows to determine distances

to the points on the image, where the infrared pattern was projected to (see Fig-

ure 2.1). Both colored light or infrared light can be used, but since the infrared

pattern is not visible by a human eye and thus less disturbing, it is normally used

for commercial products.

The main difficulty in structured light technology, as in stereo vision, is to recognize

the pattern seen in the image by matching it to the known pattern. For that

purpose, different pattern codes are used: temporal codes, spatial codes, etc [134,

135]. Microsoft Kinect [3] is reported to be based on spatial codes technology,

although the exact details of implementation are unknown.

Since the internal parameters of a depth sensor are effectively the parameters of

the imaging sensor, which is in case of Kinect an infrared camera, a standard

pinhole camera model is adopted to model physical properties of the depth sensor.

Time-of-flight technology The basic idea behind time-of-flight technologies

is to measure the time required for the emitted light to travel from the sensor to

the object and back; then, the distance is calculated as:

d = 0.5cτ, (2.1)

where c ≈ 3e8 m/s and τ is the measured time for the light to come back. The

main difficulty is to measure precisely the value of τ .
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To measure the value of τ , either pulse modulation or continuous wave modu-

lation is applied.

During pulse modulation, a pulse of light with known duration is emitted by

the projector, and then consumed by the receiver, which allows to estimate the

traveling time. The advantage of this approach is that potentially high amounts of

energy can be transferred as a pulse, allowing to detect objects that are far away.

As a downside, this is not a safe method for the human eye [75]. Additionally,

the equipment needed to produce very short strong pulses of light, as well as

a fast shutter, is expensive, which makes the sensors based on continuous wave

modulation more attractive for many applications.

Continuous wave modulation, on the contrary, does not require strong fast pulses

of light, since the light traveling time is detected in the frequency domain instead

of the amplitude domain by determining the phase shift of the reflected light.

Phase shift is detected as a peak of the auto-correlation function; in the simplest

case, the algorithm is the following: firstly, the sinusoidal signal of the known

modulation frequency is emitted: s(t) = cos(ft); the received signal is then de-

scribed by r(t) = B +A cos(ft+ φ), where φ is the desired phase shift, while f is

the modulation frequency. The cross correlation is computed as

c (∆t) =

∫ 2π/f

0

s(t)r(t+ ∆t)dt =
A

2
cos(fτ + φ) +B (2.2)

The reflected signal is measured several times, i.e. with different phase offsets ∆t,

such that Ci = c
(
iπ

2

)
, i = 1, . . . , 3 and by solving the system of four equations,

it can be found that

φ = arctan 2(A3 − A1, A0 − A2) (2.3)

A =
1

2

√
(A3 − A1)2 + (A0 − A2)2 (2.4)

Then, from known φ, the time-of-flight is derived as following:

φ = 2πfτ (2.5)

Since φ can be measured unambiguously in the interval [0, 2π] only, this constraints

the distance range that can be measured by the sensor: dmax = c
2f

[45].

In practice, both modulation approaches can be combined to increase the robust-

ness of the system and provide better characteristics, such as safety for human eye

and less strict requirements on the light receivers.
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Additionally, the system provides not only depth estimates, but also light ampli-

tude measurements, which correspond to the objects’ reflectivity. These measure-

ments can be used as a confidence of the depth estimates (amplitude equal to zero

assumes that the phase shift, and consequently, depth, are undefined).

In our experiments, we use the Intel Creative Depth Camera [2] and the Microsoft

Kinect2 [4] camera, that both use time-of-flight technology. The implementation

details for either camera are not publicly available.

Sources of errors in time-of-flight camera measurements Time-of-flight

cameras are subject to both systematic and non-systematic errors. Systematic er-

rors are related to various simplifications in the design of the time-of-flight cameras:

error in depth measurements due to ambiguity in the signal amplitude, simplifi-

cations of demodulation, temperature of the sensor, difference in integration time

(in case of pulse modulation), etc. [45].

To the non-systematic errors one relates multi-path problem (reflections of the

infra-red light return to the sensor together with the original signal), illumination

conditions, imprecise object boundary measurements. These errors are in general

environment-dependent and cannot be corrected if the environment is unknown

[45].

2.2 Projective geometry and homogeneous coor-

dinates

In this section, we review the basics of projective geometry, which we extensively

use as the tools for developing a calibration algorithm. We present the notion

of homogeneous coordinates and homography [47], which we extensively use in

subsequent chapters as well.

Projective geometry provides a mathematical formalism for description of cameras

and associated transformations, and generalizes special cases, arising in Eucledian

geometry, allowing their uniform handling within the projective geometry frame-

work.

Projective geometry is defined by a set of axioms, which in fact define a projective

space [47].
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Definition 2.1. A point in a real projective space Pn is represented by a vector

of real coordinates X = (x0, . . . , xn)T , at least one of which is non-zero; {xi} are

called projective or homogeneous coordinates, and two vectors X and Y represent

the same point of the projective space Pn, iff.:

∃k ∈ R\ {0} : xi = kyi, ∀i (2.6)

From the definition of the projective space it can be seen, that there is a one-to-

one correspondence between a point in X ∈ Pn, such that xn 6= 0, and a point in

vector space v ∈ Rn:

v ↔ X =

(
x0

xn
,
x1

xn
, . . . ,

xn−1

xn

)
(2.7)

We therefore can represent points in Rn in homogeneous coordinates as v =

(v1, . . . , vn, 1)T .

Additionally, all points in Pn , such that xn = 0, belong to a hyperplane at infinity

and constitute Pn\ Rn; each point X = (x0, . . . , xn−1, 0) is called a point at infinity

In the projective space, a projective transformation is defined:

Definition 2.2. A matrix H of dimensions (n+ 1)× (n+ 1), such that detH 6= 0,

defines a liner transformation from Pn to itself, that is called a homography, or a

projective transformation.

We further introduce the notion of cross-ratio, which is central in projective ge-

ometry. Cross-ratio is defined in the following way: given four points A,B,C,D on

the projective line, the cross-ratio is defined as:

(A,B;C,D) =
|AC||BD|
|AD||BC|

(2.8)

Any homography transforms points and lines in a way, that cross-ratio is preserved.

2.3 Pinhole camera model

Camera calibration, i.e. finding extrinsic and intrinsic parameters of a camera,

is an important problem in vision and photometry. Intrinsic parameters of the

camera are determined by lenses and physical principles of functioning of a camera.

Extrinsic parameters of the camera determine its position and orientation in space

in relation to other objects.
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A simplified camera model, called pinhole camera model, was proposed to model

the physical properties of the camera. Based on this model, one of the first cali-

bration algorithms was proposed in [136].

The basic idea behind the model is that a scene is projected to a camera plane

through an infinitely small hole (see Figure 2.2) instead of aperture. Therefore,

no lenses are used to focus the light. Each camera also has its coordinate system,

where Z axis is aligned with the optical axis of the camera and the coordinates

origin is defined as an intersection of the camera optical axis with the camera

plane.

Furthermore, the distance from the camera plane to the projective plane is defined

as focal length, which we denote by f . Therefore, a point in 3D space with the

coordinates Pc =
(
Xc Yc Zc

)T
in camera coordinate system is projected as

(
x

y

)
=

(
f 0 0

0 f 0

)xnyn
1

 =
1

Z c
Pc (2.9)

In reality, lens systems introduces different kinds of non-linear distortions to the

projected image, such as radial and tangential distortion, or their combination. A

common distortion model assumes that radial and tangential distortion and can

be modeled as following:

r2 = x2
n + y2

n (2.10)

xdn = (1 + k1r
2 + k2r

4 + k5r
6)xn + 2k3xnyn + k4(r2 + 2x2

n) (2.11)

ydn = (1 + k1r
2 + k2r

4 + k5r
6)yn + k3(r2 + 2y2

n) + 2k4xnyn, (2.12)

where k =
(
k1, k2, . . . , k5

)T
are the distortion coefficients [50] and

(
xdn ydn

)T
denotes the distorted coordinates.

If the pixels of the camera matrix are not squared, it is reflected by introducing

fx and fy, fx = fsx, fy = fsy, where (sx, sy) denote pixel size in vertical and

horizontal directions.

To convert 2D coordinates on the projection plane to image coordinates, two

more parameters, cx and cy, are introduced, that represent the coordinates of the

intersection of the optical axis of the camera with the projection plane in image

coordinates.

Finally, a point’s position is usually known in world coordinates P =
(
X Y Z 1

)T
rather then in camera coordinates, so it should be firstly transformed to the camera
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camera plane

Z

f

optical axes

projected 

object

'lens'

Figure 2.2: Pinhole camera model.

coordinates by

Pc =
(
R | t

)
P (2.13)

where R, t are called extrinsic parameters. The final model therefore is expressed

by:

s

xnyn
1

 =
(
R | t

)
P (2.14)

(
x

y

)
= K

(
xdn

ydn

)
=

(
fx 0 cx

0 fy cy

)x
d
n

ydn

1

 , (2.15)

The parameters fx, fy, cx, cy, together with distortion coefficients k, are called

camera intrinsic parameters.

The pinhole camera model in general does not make any assumption about the

light processing after it passed through the lenses, and therefore it can be adopted

for depth cameras calibration.

2.4 Standard color camera calibration algorithm

using checkerboard pattern

The most well known camera calibration algorithm was initially developed in [136].

The algorithms estimates extrinsic and intrinsic parameters of the camera (or

multiple cameras) as specified by the pinhole camera model.

To calibrate a camera, several images of a checkerboard with the known size of

checkers are firstly collected (see Figure 2.3). The checkerboard corners are then

detected at each image, using, for example, the Harris corner detector [46]. Based
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Figure 2.3: Examples of the checkerboard images; the detected corners are
shown with red crosses.

on the detected corners, the initial estimation of the extrinsic and intrinsic pa-

rameters of the camera is done using homographies. Finally, bundle adjustment

is used to refine the estimation.

2.4.1 Initial parameter estimation using homographies

A homography defines a transformation from one projective plane to another.

Homographies are used in calibration to obtain initial guess for the extrinsic and

intrinsic parameters.

During homography estimation, lens distortion is not taken into account, i.e.,

in the (2.14)-(2.15)
(
xdn ydn 1

)T
=
(
xn yn 1

)T
; let

(
x y 1

)T
denote the

homogeneous image coordinates and
(
X Y Z 1

)T
denote homogeneous model

plane coordinates; without loss of generality it can be further assumed Z = 0,

since it is always possible to find a coordinate system, in which the checkerboard

model plane lies in the XY plane. Then, (2.14)-(2.15) without lens distortion can

be written as:

s

xy
1

 = K
(
r1 r2 r3 t

)

X

Y

0

1

 = K
(
r1 r2 t

)
︸ ︷︷ ︸

H

XY
1

 (2.16)

H =

H11 H12 H13

H21 H22 H23

H31 H32 H33

 (2.17)

where H is the homography matrix and R =
(
r1 r2 r3

)
. From the equations

it is easy to see that the homography is defined up to a scaling factor.
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Given a set of points on the plane in the world coordinates

{(
Xl Yl 1

)T}L
l=1

and the corresponding points on the image

{(
xl yl 1

)T}L
l=1

, the homography

estimation problem can be transformed into a system of homogeneous linear equa-

tions in the form of:

Ah = 0, (2.18)

where h =
(
H11 H12 H13 H21 H22 H23 H31 H32 H33

)T
and the matrix A

has the following form:

A =



−X1 −Y1 −1 0 0 0 x1X1 x1Y1 x1

... . . . . . . . . . . . . . . . . . . . . .
...

−XL −YL −1 0 0 0 xLXL xLYL xL

0 0 0 −X1 −Y1 −1 y1X1 y1Y1 y1

... . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 −XL −YL −1 yLXL yLYL yL


(2.19)

The non-trivial solution of the homogeneous system of linear equations h∗ is found

by using the SVD decomposition of the matrix AT [47]:

AT = UΣV T , V =
(
u1 . . . u9

)
∈ R9×9, UUT = I, (2.20)

⇒ h∗ = u9, (2.21)

i.e. the non-trivial solution is given by the eigenvector of the matrix ATA, corre-

sponding to its smallest eigenvalue.

As can be seen from Equation (2.16), homographies combine information from

both extrinsic and intrinsic parameters. Given {Hi}Ii=1 homography matrices es-

timated from the set of images i = 1, · · · , I, the goal now is to separate extrinsics

from intrinsics by estimating the common matrix K, along with the extrinsic pa-

rameters for each image {Ri, ti}.

Using that by definition Hi = s
(
hi1 hi2 hi3

)
= K

(
ri1 ri2 ti

)
, the system of

linear equations can be formed, taking into account that ri1 ⊥ ri2 ⇒ (ri1)Tri2 =

0 and ‖rij‖ = 1⇒ (rij)
Trij = 1, j = 1, 2:

(hi1)T (K−1)TK−1hi2 = 0, (2.22)

(hi1)T (K−1)TK−1hi1 = (hi2)T (K−1)TK−1hi2, (2.23)

i = 1, · · · , I (2.24)
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The solution K of the system of equations (2.22) − (2.24) is found in the closed

form, as described in [136]. Afterwards, the extrinsic parameters are estimated as:

ri1 = sK−1hi1, ri2 = sK−1hi2, ri3 = ri1 × ri2, ti = sK−1hi3, (2.25)

s =
1

‖K−1hi1‖
=

1

‖K−1hi1‖
(2.26)

2.4.2 Parameter refinement

After the initial parameter estimates are obtained using homographies, it is used

as a starting point to solve a non-convex optimization problem, that refines the

estimation and includes lens distortion into the computations.

We now denote the corner l extracted from an image i as pil =
(
xil yil

)T
. Then,

the estimate of the corresponding corner p̂il based on calibration parameters is

obtained using (2.14) - (2.15) and (2.10) -(2.12).

The maximum likelihood estimate of the parameters K,k, {Ri, ti}Ii=1 is found by

solving the following non-linear minimization problem:

min
K,k,{Ri,ti}Ii=1

I∑
i=1

L∑
l=1

‖pil − p̂il(K,k, Ri, ti)‖2 (2.27)

using the Levenberg-Marquardt algorithm [80]. This procedure is called bundle

adjustment in the literature.

2.4.3 Problems of standard camera calibration approaches

The standard procedure for time-of-flight (ToF) camera calibration is to use the

amplitude image of the IR sensor and apply a color camera calibration algorithm

described in previous the sections (see also [136]), since certain color variations are

visible on the amplitude image. However, time-of-flight (ToF) cameras often have

low resolution, which influences the precision of any corner detector, and conse-

quently the accuracy of the calibration. Additionally, the calibration procedure

itself does not take into account depth measurements of the camera, which could

potentially improve the calibration results.

An example of this is presented in Figure 2.4. Here, the calibration algorithm

from [136] is used to determine the camera extrinsics and intrinsics, and then the

determined extrinsics are employed to predict the 3D position of the checkerboard
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Figure 2.4: Mismatch between the predicted positions of the checkers from the
calibration and the depth, measures at these points by a time-of-flight sensor.

plane. However, when depth measurements of the same plane are transformed

in the three-dimensional space, there is a mismatch between the depth, predicted

from the camera calibration, and the depth measurements. Such effects are un-

desirable in various applications, for example, when collecting ground truth data

- therefore, integrating available depth information into the calibration procedure

is desirable. One additional problem arises from the physical properties of the

time-of-flight sensors: as reported in [62, 74, 82, 83], the depth measurements

themselves are often inaccurate due to both systematic and non-systematic errors

(see Section 2.1 for details). Therefore, simply including depth measurements into

the calibration procedure might have negative effect on the calibration quality.

We therefore propose two main enhancements into the calibration algorithm:

• Correct for the inaccuracies in depth measurements.

• Include the corrected depth measurements into the calibration procedure.

2.5 Related work

As mentioned previously, initially ToF cameras were calibrated using amplitude

images, acquired by a ToF camera, using color camera calibration procedure [136].

However, the resolution of ToF cameras is usually small (320 × 240 for the Intel

Creative Depth sensor [2]), therefore the obtained calibration is not very precise,

and additionally, systematic biases of the depth estimation are not taken into

account.

In [62, 82, 83] it is shown that the bias is non-constant and shows high dependency

on the distance to the camera. In the first work it is proposed to obtain ground
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truth distance measurements to estimate the distance error and subsequently fit-

ting a B-spline to correct it during test phase [82]; in the second work, instead of

fitting a B-spline, a look-up-table based on depth is created [83]. Unfortunately,

both methods rely on the ground truth data, which is hard to obtain without a

special setup. In [62], the bias is computed by fitting a 6-degree polynomial to the

difference between the depth values, obtained through checkerboard-based calibra-

tion, and the measured depth values. However, the fact that the amplitude-based

calibration is not itself accurate due to low resolution of the amplitude images, is

not accounted for.

Joint calibration of a system of several ToF and RGB cameras was proposed in [44].

There, projective alignment is used to find the mapping between different sensors.

However, this method does not account for systematic depth errors and can only

be used if at least one color camera is present.

A joint depth and color calibration method was proposed in [50] for structured

light sensors. In this method, 3D planes are used instead of checkerboard corners

to find the parameters of the depth sensor, since structured light sensors do not

provide amplitude information. The depth measurement bias, called depth dis-

tortion, is corrected on the basis of several images of a planar surface. However,

in our experiments with the Intel Creative Gesture Camera [2], this method was

inapplicable due to the imprecision and greater amount of noise in depth data,

provided by time-of-flight cameras.

Finally, in some applications depth inaccuracies are compensated after the calibra-

tion during the actual processing of 3D data, as in [22]. Firstly, a standard camera

calibration algorithm is used to estimate camera calibration parameters, then the

3D point cloud is reconstructed from the depth images using these parameters,

and the bias is taken into account during 3D object reconstruction. However, this

approach adds complexity in the data processing method and cannot be directly

transferred to the problems other then 3D reconstruction.

We address the disadvantages of the approaches mentioned above by combining

plane-based calibration [50] with the standard calibration procedure for the ampli-

tude image, therefore compensating for the low resolution of the ToF images and

depth inaccuracies. We also model depth systematic error, using a non-parametric

kernel regression approach [91]. The error is obtained by comparing the depth

values measured by the ToF camera and the values obtained by the calibration

procedure.
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Figure 2.5: Overview of the calibration procedure.

2.6 ToF camera calibration algorithm

The basis of our algorithm is the standard color camera calibration algorithm,

described in Section 2.4.

Initially 20 to 30 images of a calibration board should be recorded. The calibration

board differs from the one used in [136]: it should consist of a black-and-white

pattern and sufficient space on the same board without any pattern, that would be

visible on the amplitude images (see Figure 2.6(a) for examples and Section 2.6.3

for further explanation). Similar to the standard camera calibration algorithm,

there are two stages of the calibration process (see Figure 2.5). In the first stage,

we obtain the first estimate of the parameters of the ToF camera using corner-

based calibration on the amplitude image (Section 2.4,2.6.1). In case there are

color cameras present in the system, we also obtain the parameters for each of

them independently using the algorithm described in Section 2.4. Finally, the

relative pose of all cameras are obtained using a closed-form solution for the pose

estimation problem (Section 2.6.2). In this work we constrain the number of color

cameras to be no more then one, but the algorithm is easy to extend to the case

of multiple cameras.

In the second stage, we iteratively refine the initial guess by re-estimating the

cameras’ instrinsic parameters, their relative poses (if applicable) and the depth

bias:

1. Re-estimate the parameters of the cameras using joint optimization (Section

2.6.4).

2. Depth bias is estimated as described in Section 2.6.3.
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2.6.1 Corner-based calibration

As a pre-processing step, checkerboard corners pik =
(
xik yik

)T
, k = 1 . . . K

are extracted from each image with index i = 1 . . . I. The initial guess for the

parameters is obtained using homographies as described in Section 2.4.1; the initial

guess is then refined using an optimization procedure as explained in Section 2.4.2.

After this step, the independent estimations for the ToF camera parameters Ktof ,

ktof , {Ri
tof , t

i
tof}i and color camera parameters Krgb, krgb, {Ri

rgb, t
i
rgb}i are ob-

tained. Here, {Ri
tof , t

i
tof}i and {Ri

rgb, t
i
rgb}i correspond to the transformation from

the checkerboard local coordinate system in each frame i to the camera coordinate

system, as described by Equation (2.14).

2.6.2 ToF and RGB relative pose estimation

In the applications where the color information is used on a par with depth in-

formation knowing the relative transformation between color and ToF camera

coordinate systems is required. We search for the transformation in the form of

P rgb = R∆P tof + t∆ (2.28)

where P rgb — 3-dimensional point coordinates in the coordinate system, associated

with the color camera, and P tof — point coordinates in the system associated with

the ToF camera.

The relative pose is estimated using the relative transformations between the

camera coordinate system and the local calibration board coordinate system,

{Ri
tof , t

i
tof}i and {Ri

rgb, t
i
rgb}i, computed in the previous step.

Since the relative transformation for a frame i is equivalent to the position of the

calibration plane relative to the camera, equivalently plane parametrization can

be converted to the normal ni and offset θi representation instead:

ni = ri3, θi = 〈ri3, ti〉 (2.29)

The parameters of the planes in the ToF coordinate system are denoted {nitof , θitof}i
and the parameters in the color camera coordinate system — by {nirgb, θirgb}i. The
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normal vectors and the offsets are stacked together to form the matrices:

Ntof =
(
n1
tof n2

tof . . . nItof

)
(2.30)

Nrgb =
(
n1
rgb n2

rgb . . . nIrgb

)
(2.31)

Dtof =
(
θ1
tof θ2

tof . . . θItof

)T
(2.32)

Drgb =
(
θ1
rgb θ2

rgb . . . θIrgb

)T
(2.33)

The problem of finding the relative rotation R∆ is then re-formulated as:

min
R∆

‖R∆Ntof −Nrgb‖F , subject to RT
∆R∆ = I (2.34)

The above minimization problem is known as Procrustes problem [41] and has

the closed form solution, that can be obtained using SVD decomposition of N∆ =

NtofN
T
rgb:

N∆ = UΣV T (2.35)

R∆ = V UT (2.36)

The translation is determined from the planes equation: given that 〈nirgb,P rgb〉 =

θirgb, and (2.28), by substituting P rgb with R∆P tof + t∆, it can be shown that:

〈nirgb, R∆P tof + t∆〉 = θirgb (2.37)

〈RT
∆n

i
rgb︸ ︷︷ ︸

nitof

,P tof〉+ 〈nirgb, t∆〉 = θirgb (2.38)

〈nirgb, t∆〉 = θirgb − θitof (2.39)

Consequently, finding t∆ for all images is formulated as following minimization

problem:

min
t∆
‖(Drgb −Dtof )−NT

rgbt∆‖F (2.40)

having the following closed-form solution:

t∆ = (NrgbN
T
rgb)

−1Nrgb(Drgb −Dtof ) (2.41)

Consequently, the relative transformation between the extrinsic parameters of the

color and Tof cameras is given as:

Ri
rgb = R∆R

i
tof (2.42)

tirgb = R∆t
i
tof + t∆ (2.43)

The initial guess R∆, t∆ is later refined during joint optimization, as described in

Section 2.6.4.
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2.6.3 Depth correction

(a) (b) (c)

Figure 2.6: 2.6(a) Three-color calibration pattern; 2.6(b) amplitude image:
the black pattern is visible, while the color pattern is not; 2.6(c) depth image:

the areas with black squares have invalid depth values.

As discussed in Section 2.4.3, ToF cameras tend to have a systematic bias in

depth estimates, which leads to the mismatch between expected and estimated

depth measurements (see Figure 2.4). We propose to model the systematic error

as an additive component that is dependent on the multiple parameters, such

as real distance to the camera or position of the projected point on the camera

matrix:

dr = dm + e+ ξ, (2.44)

Here, dr corresponds to the real distance to the object, dm is the depth measured

by the camera, e is the systematic component of the error, and ξ ∼ N (0, σ)

represents Gaussian noise.

In our experiments, we observed that e depends on three parameters: the real

distance to the object dr at a pixel (x, y), as well as pixel coordinates on the

camera matrix, i.e. e = e(dr, x, y).

Given that ground truth measurements are available, the dependence can be mod-

eled by fitting a regression function to e(dr, x, y) = dr(x, y) − dm(x, y). We use a

non-parametric kernel regression with Gaussian kernel [91], as it is a fairly simple

and fast approach.
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In this case, ê(dr, x, y) is computed as follows given the points with known error

measurements {qj, ej}j:

ê(dr, x, y) =

∑
jK(q, qj)ej∑
jK(q, qj)

, (2.45)

q =
(
dr x y

)T
, K(q, qj) = e−

1
2h2 ‖q−qj‖2

Here h is the bandwidth parameter that is optimized using grid search.

However, obtaining ground truth measurements for each pixel is not a trivial task,

which cannot be performed outside of a lab setup. We propose to avoid it by

firstly calibrating extrinsic and intrinsic parameters of the camera without taking

into account the depth bias and then using depth, predicted from the calibration,

to determine ê(dr, x, y). Since dr is not available at run-time, we estimate the bias

as ê(dm, x, y), using ej = d̂il − dil, i.e. the difference between depth measurement

dil at pixel pil = (xil, yil)T and the estimated depth d̂il and qj = (d̂il, xil, yil)T . An

example of the fitted systematic error surface is given in Figure 2.7(a). At the test

time, the correction is applied to depth as follows:

dr(x, y) = dm(x, y) + ê(dm(x, y), x, y) (2.46)

To predict the expected depth value at a given pixel, we use the current estimates

of the ToF camera parameters and the plane pose, and render the plane i onto

each image. From the plane pose relative to the camera Ri
tof , t

i
tof , the plane

parametrization with normal nitof and offset θitof can be computed using Equation

2.29. Then, the predicted depth value at pixel l, pil, is computed as:

d̂il =
θitof

nitof,1x
il
n + nitof,1y

il
n + nitof,3

, (2.47)

where xiln, y
il
n are computed from pil by first inverting (2.15) and undistorting

the normalized coordinates, which in general case can be solved using a gradient

descend algorithm.

Unfortunately, the calibration pattern itself cannot be used to produce reliable

error estimation: one would be only able to detect checkers in the image, if the

corresponding amplitude value is low (i.e., the checkers have black color), which

would indicate unreliable depth estimates. Therefore, the checkerboard for the

calibration contains a part without a pattern on it, since the black-and-white

pattern would influence reliability of depth estimation (see Figure 2.6(b) and Fig-

ure 2.6(c)). In our case, this part contains a pattern of blue-and-white checkers,
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used to determine re-projection error from ToF image to color camera, for example,

for calibration evaluation.

2.6.4 Joint optimization

After the initial guess for the parameters is obtained, an iterative process is per-

formed:

1. The parameters of the cameras Ktof ,ktof , {Ri
tof , t

i
tof}i (Krgb,krgb,

{Ri
rgb, t

i
rgb}i, R∆, t∆ in case of presence of a color camera) are jointly opti-

mized.

2. Systematic error is estimated, as described in Section 2.6.3.

Figure 2.7: 2.7(a)Depth error e measured relative to dm and the x coordinate
of the image (grey dots); fitted regression surface e(dm, x). 2.7(b) Decrease of
Efull depending on the iteration, as well as decrease in each of the sums of the
error of Efull: depth-to-plane error (red), corner error for the amplitude images
(green) and corner error on the RGB images (azure); as can be seen, 5 iterations

are enough so that the algorithm converges.

The idea behind joint optimization of the parameters is the following: as mentioned

above, corner-based calibration suffers from the low resolution of the ToF images

and plane-based calibration from [50] gets confused by the systematic error and

noise in depth measurements. We therefore fuse both approaches to compensate

for their drawbacks.

Joint optimization of the parameters is performed by minimizing a corner-based

error term and a plane-based error term together: joint parameter refinement
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Table 2.1: Estimated calibration parameters for
Intel Creative Gesture Camera.

MFR CAL CAL-D CAL-DC

Krgb : fx, fy 583.08, 596.20 595.71, 595.06 595.71, 595.06 595.71, 595.06
cx, cy 320, 240 310.80, 221.63 310.80, 221.63 310.80, 221.63

Ktof : fx, fy 224.5, 230 230.37, 230.46 234.38, 234.80 230.78, 230.72
cx, cy 160, 120 159.50, 118, 67 164.52, 113.36 166.0.3, 119.29

CAL CAL-D CAL-DC

krgb : k1, k2 0.01,−0.06 −0, 01,−0.06 −0, 01,−0.06
k3, k4, k5 −0.0, 0.0, 0 −0, 0, 0.0, 0.0 −0, 0, 0.0, 0.0

ktof : k1, k2 −0.18, 0.13 −0.15, 0.14 −0.18,−0.14
k3, k4, k5 −0.00, 0.00,−0.03 −0.01, 0.00,−0.08 0.00, 0.01,−0.07

t∆ 24.93, 0.09, 0.85 25.26,−1.57,−9.98 25.16, 0.09, 0

R∆

1.00 0.00 0.00
0.00 1 0.00
0.00 0.00 1

  0.99 0.00 0.02
0.00 0.99 −0.02
−0.02 0.02 0.99

  0, 99 0.00 0.03
0.00 1 0.00
−0.03 0.0 0.99



is essentially done by minimizing the following functional Ea, using Levenberg-

Marquardt method:

etof =
1

IK

∑
i

∑
k

‖pika − p̂
ik
a ‖2 (2.48)

ed =
1

IL

∑
i

∑
l

(dil − d̂il)2 (2.49)

Ea =
etof
σ2
a

+
ed
σ2
d

=
∑
i

(∑
k

‖pika − p̂
ik
a ‖2

σ2
a︸ ︷︷ ︸

corner error ToF

+
∑
l

(dilr − d̂il)2

σ2
d︸ ︷︷ ︸

plane-to-depth error

)
(2.50)

Here, pika is the k-th checkerboard corner detected on image i, and p̂ika is the

projection of the model’s k-th corner using ToF camera distortion parameters

and its projection matrix, d̂il is depth prediction computed using (2.47) and dilr is

the depth measurement, corrected with the already estimated systematic error as

specified in the Equation (2.46). Each error term is normalized by the variance in

the corresponding error: σ2
a and σ2

d, computed directly after the initialization step.

Note that the variance is kept fixed during the whole optimization procedure.

Plane-to-depth error estimation follows the idea described in [50]. Unlike [50]

though, we use the same distortion model for the ToF camera as for the color

camera, and not the reverse one. In case of presence of a color camera, a new term
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is added to Ea:

ergb =
1

IK

∑
i

∑
k

‖pikrgb − p̂
ik
rgb‖2 (2.51)

Efull =
etof
σ2
a

+
ergb
σ2
rgb

+
ed
σ2
d

= (2.52)

=
∑
i

(∑
k

‖pika − p̂
ik
a ‖2

σ2
a

+
∑
k

‖pikrgb − p̂
ik
rgb‖2

σ2
rgb︸ ︷︷ ︸

corner error RGB

+
∑
l

(dil − d̂il)2

σ2
d

)
, (2.53)

where pikrgb is the k-th checkerboard corner detected in the corresponding color

image i and p̂ikrgb is the projection of the k-th corner into the color image using the

relative checkerboard position from equations (2.42)-(2.43).

As shown in Figure 2.7(b), the error decreases when iterating between joint opti-

mization and error regression, and in our experiments became stable after ca. 5

iterations.

2.7 Evaluation

We perform several experiments to evaluate different aspects of the proposed cal-

ibration method. Firstly, following the literature, we report the value of the min-

imized function (2.53) as a measure of the model fit to the calibration data. Fur-

thermore, we evaluate the reprojection error from the depth image to the color

image. This experiment shows the accuracy of the acquired relative pose estimate

between ToF camera and color camera, as well as allows to evaluate the influ-

ence of the depth correction. Following [50], we evaluate the depth calibration by

estimating the angle between two perpendicular planes. Finally, to evaluate the

influence of the depth correction directly, we evaluate the distance between two

rigidly connected parallel planes, and compare it with the ground truth. We show,

that this error depends on the distance to the depth sensor.

We compare three obtained calibrations: firstly, we provide the evaluation of the

manufacturer calibration (MFR); secondly, we show the calibration result for the

baseline [136](CAL), for our method without depth correction (CAL-D) and,

finally, the method with depth correction (CAL-DC).

To show, that our method is independent of the concrete depth sensor, we per-

form the evaluation with two cameras produced by different manufacturers: Intel

Creative Gesture Camera [2] and Microsoft Kinect 2 [4].
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2.7.1 Intel Creative Gesture Camera

Intel Creative Gesture Camera [2] is a low-cost time-of-flight sensor. It has a

separate color camera of resolution 640 × 480 and a time-of-flight sensor with

resolution of 320× 240. The acceptable distance range is from 10cm to 1m. The

manufacturer provides the intrinsic parameters for both sensors, as well as mapping

from the depth image to the color image in the form of pixel correspondences.

Firstly, we compute the calibration results using 38 images. The estimated pa-

rameters are given in Table 2.1.

Table 2.2: Model fit measurements for Intel Creative Gesture Camera; ergb
stands for the corner error on color images, etof stands for the corner error on

the confidence images, and ed stands for the depth errors.

ergb etof ed
CAL 0.234 2.463 3.744
CAL-D 0.578 2.830 1.123
CAL-DC 0.578 2.830 0.653

Model fit: In Table 2.2 the results for model fitting are given in terms of the

final values of the cost function after joint optimization. There ergb is defined as

in (2.51), etof as in (2.48) and ed as in (2.49).

Reprojection error from the depth to the color image: In this exper-

iment, we evaluate the relative pose estimation between depth and RGB camera.

In Table 2.3, the quantitative evaluation results are presented — we collect a

Table 2.3: Comparison between depth-color image alignment provided by
manufacturer, our calibration without depth correction and with depth correc-

tion; the results are reported in pixels.

md σd mconf σconf
MFR 2.70 1.49 − −
CAL 1.78 0.77 1.97 0.73
CAL-D 1.56 0.96 1.88 0.78
CAL-DC 1.45 0.93 1.88 0.78

disjoint set of checkerboard images, estimate the plane pose on the depth images

and reproject the corners from each depth image to the corresponding color im-

age, using depth measurements in the respective points of the depth image, and
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Figure 2.8: Examples of the alignment between depth and RGB data for
Intel Creative Gesture Camera, obtained using our calibration (top row) and
the manufacturer calibration (bottom row); manufacturer calibration often does

not give a perfect alignment between depth and RGB image.

estimate mean error and standard deviation — md, σd. Since the plane pose is

evaluated, we provide the results for the case when the pose is used instead of

depth measurements to estimate the reprojection error in mconf , σconf . It can be

seen that the reprojection error is reduced by using depth data in the calibration

procedure, and further reduced by introducing depth correction.

The better reprojection quality of the CAL-DC is also visually recognizable.

In Figure 2.8 the alignment achieved by our calibration is compared with the

manufacturer-provided mapping. It is easy to notice that in case of manually

performed calibration the borders are preserved much better than in the case of

manufacturer mapping.

Angle evaluation based on depth measurements: In this experiment, we

collect a set of images of two perpendicular planes, in different positions relative

to the camera. We manually select plane regions on each image. After selecting

the regions, a plane is fitted to each region, by firstly computing the 3D point

cloud, and then using SVD decomposition of the stacked 3D points to compute

the plane normal as the vector corresponding to the smallest singular value. Then,

the angle between two estimated normals is computed. The results are presented

in Table 2.4.



Chapter 2 Calibration of depth cameras 37

Table 2.4: Angle (mangle, σangle) and relative distance (mrdist, σrdist) esti-
mated error (mean and standard deviation of angle error given in degrees, for

distance error — in mm).

mangle σangle mrdist σrdist
MFR 5.32 3.45 17.49 10.89
CAL 4.88 3.22 15.72 10.74
CAL-D 4.10 2.89 14.50 10.89
CAL-DC 3.35 2.50 13.69 10.42

Figure 2.9: Error in relative distance measurements and angle measurements
depending on the distance to the parallel planes.

Relative depth evaluation: It is impossible to obtain ground truth dis-

tance between the sensor and an object (since the exact position of the sensor is

unknown). Therefore, we estimate the relative distance between the parallel planes

in 3D and compare it to the ground truth distance. The results are reported in

Table 2.4.

The structure of the error before the calibration procedure is clear to see in Figure

2.9. Unfortunately, as can be seen from the results, it was impossible to com-

pletely remove the depth bias, however, it was reduced by 21% in comparison

with manufacturer calibration for the distance measurements and by 37% for the

angle measurements.

2.7.2 Microsoft Kinect 2

The Microsoft Kinect2 [4] sensor appeared recently and employs time-of-flight tech-

nology as well. It has the resolution of the time-of-flight sensor of 512×424 and of

the color sensor of 1920×1080; the admissible depth range is between 500mm and

4500mm. Firstly, we will investigate the properties of the depth sensor and then

we compare factory calibration, standard camera calibration and the proposed en-

hancements to the calibration algorithm, that includes depth information into the

calibration procedure.
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Table 2.5: Estimated calibration parameters for Kinect2 Camera.

MFR CAL CAL-D CAL-DC

Krgb : fx, fy − 1053.7, 1059.26 1053.7, 1059.26 1053.7, 1059.26
cx, cy − 991.57, 526.45 991.57, 526.45 991.57, 526.45

Ktof : fx, fy 366.81, 366.81 368.93, 369.51 366.12, 366.66 369.11, 369.74
cx, cy 259.19, 207.73 266.58, 200.38 267.89, 203.77 264.88, 200.11

ktof : k1, k2 0.084,−0.268 0.121,−0402 0.106,−0.374 0.121,−0.395
k3, k4, k5 0, 0, 0.103 0, 0, 0.245 0, 0, 0.23 0, 0, 0.22

CAL CAL-D CAL-DC

krgb : k1, k2 0.067,−0.063 0, 067,−0.064 0, 067,−0.064
k3, k4, k5 −0.005,−0.004, 0 −0, 005, 0.004, 0.00 −0, 005, 0.004, 0.00

t∆ 51.14,−0.36,−4.53 51.06,−0.25, 4.53 51.11,−0.30,−4.52

R∆

1.00 0.00 0.00
0.00 1 0.00
0.00 0.00 1

  0.99 0.00 0.01
0.00 0.99 0.01
−0.01 −0.01 0.99

 1.00 0.00 0.00
0.00 1 0.00
0.00 0.00 1



The estimated parameters of the Microsoft Kinect 2 are presented in the Table

2.5; Kinect2 SDK allows to access the ToF sensor intrinsic parameters only.

Angle evaluation based on depth measurements: Depth sensor param-

eters, provided by the manufacturer for the Kinect2, give quite good results on the

angle evaluation test, while standard calibration is not able to achieve the same

results; however, adding depth into the calibration improves the angle estimation

(see Table 2.6). As can be seen, in this experiment the manufacturer’s calibration

delivers the best results, although including depth information into calibration

improves the estimate. We assume that better results of the manufacturer cal-

ibration, can be the result of better knowledge of the sensor properties. It is a

question for further studies whether using more data for the calibration allows to

improve the results of our method.

Table 2.6: Angle (mangle, σangle) estimated error (mean and standard devia-
tion, for angle the results are given in degrees, for distance error — in mm).

mangle σangle
MFR 0.42 0.30
CAL 0.63 0.69
CAL-D 0.56 0.73
CAL-DC 0.96 0.97



Chapter 2 Calibration of depth cameras 39

Table 2.7: Comparison between depth-color image alignment provided by
manufacturer, our calibration without depth correction and with depth correc-

tion; the results are reported in pixels.

md σd mconf σconf
MFR 3.80 1.85 − −
CAL 3.28 1.25 3.04 1.18
CAL-D 3.35 1.23 3.18 1.18
CAL-DC 3.23 1.22 3.04 1.21

Figure 2.10: Examples of the alignment between depth and RGB data for
Kinect2, obtained using our calibration (top row) and the manufacturer calibra-
tion (bottom row); here is it hard to see the difference between two calibrations;
note, that the amount of flying pixels is greater for our calibration, since we do
not filter them out explicitly, which is partially done during mapping; however,

this effect is not related to the calibration quality itself.

Reprojection error from the depth to the color image: Kinect2 SDK

provides a look up table-based mapping between a depth and a color image. In

this experiment, the CAL-DC method outperforms the manufacturer-provided

calibration, as seen in the Table 2.7. Some examples of image alignment achieved

by using the manufacturer-provided calibration and the calibration algorithm are

given in Figure 2.10. It can be seen, that both manufacturer calibration and

our calibration algorithm allows to provide almost perfect alignment between the

depth and the RGB data.
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To conclude, for Kinect2 camera our calibration produces the results, roughly

equivalent to manufacturer calibration, however, we provide the full set of param-

eters of both sensors.

2.8 Conclusions and discussion

Due to recent developments in time-of-flight imaging, many affordable time-of-

flight sensors appeared in the market recently. Depth estimates provide great

hints for various applications in computer vision, and therefore knowledge about

the sensor properties is often required.

In this work, we in fact rely more on the depth data then on the color data for

tackling the challenging problem of hand pose estimation from a single frame. To

obtain the 3D information from the depth images, as well as to obtain the mapping

between a color image and a depth image, knowledge of the sensor’s calibration

parameters is required.

Therefore, as a first step, we presented a method for time-of-flight sensor calibra-

tion, that accounts for the systematic bias in sensor’s depth estimates and allows

to partially correct them. We evaluated the proposed method using two popular

low cost time-of-flight sensors, namely, the Intel Creative Gesture Camera [2] and

the Microsoft Kinect2 [4], and showed, that for the first sensor we are able to ob-

tain better calibration quality than the manufacturer and the full set of calibration

parameters, and for the second sensor the quality of the calibration is compara-

ble to manufacturer calibration, while we find the corresponding transformations

instead of using a look-up table, provided by the Kinect2 SDK.



Chapter 3

Model-based hand pose

estimation

3.1 Introduction

Often rigid and articulated object pose estimation and tracking problems are tack-

led using model-based (generative) approaches [18, 37, 94, 118]. These approaches

aim at modeling (generating) the observation, usually by using a prior knowledge,

such as the geometry of the object in question, and its parametrization.

The best parameter values are then found in terms of the fit between the generated

prediction and the observation, usually by searching the parameter space using an

optimization method. The quality of the fit between the generated prediction

and the observation is measured in terms of some energy function. Depending on

the model representation and the observation structure, either local optimization

methods (such as gradient descend, as well as more advanced methods [80, 86])

or sampling-based methods [58, 63] are used to optimize the energy, depending on

the parameters.

In general, model-based approaches are shown to obtain highly precise results,

given that there is enough information about the object available and the energy

models fit well enough. One of the properties of the pose estimation is that

the energy function is usually non-convex, which makes is harder to optimize.

The problem of rigid object pose estimation is considered to be easier, since the

pose of an object is represented by 6 degrees of freedom (DoF) only. In case

of articulated object pose estimation, the parameter space dimensionality can be

41
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arbitrarily high, depending on the model used, and the energy function is much

more complex with many local minima. Consequently, the optimization result in

case of a local optimization method in general depends on the starting point of the

optimization, while sampling-based methods require a lot of computational power

as the dimensionality of the search space grows.

In general, for a generative approach, it is required, firstly, to define a suitable

model with its parametrization; secondly, depending on the model and the energy

function structure, a suitable optimization method is selected. In case of human

or hand pose estimation, the model often consists of a set of connected locally

rigid parts or a surface mesh, attached to a deformable skeleton. Depending on

the concrete applications, rigid parts can be, for example, defined as cylinders or

other geometric shapes [118, 127]. In case of a human hand, it is more convenient

and intuitive to model it using a surface mesh, connected with a skeleton, that

defines the pose. To represent the pose, different parametrizations, such as Euler

angles, quaternions or exponential mapping can be used. In the next sections we

will describe the model as well as the parametrization properties in detail.

3.2 Related work

Pose estimation of a human hand, although it has less DoFs then the full human

body, represents a big challenge for pose estimation algorithms, especially in the

case of a single camera setting. This happens due to several factors: while the

human body is usually assumed to be approximately vertical, the hand can be

seen in almost any position and orientation in an image, making even global pose

estimation a tough problem. Additionally, the rigid part of the hand (palm) is rel-

atively small in comparison with other parts (fingers) and often gets fully occluded,

while the torso of a human body is large in comparison to other body parts and is

normally at least partially visible in the image. The latter also causes difficulties

for hand detection, since the unconstrained space of pose parameters significantly

increases the appearance variation. Furthermore, fingers of a hand have almost

identical appearance, while human upper and lower limbs are distinguishable.

There exists extensive literature on hand pose estimation; in general, all ap-

proaches can be divided into discriminative and generative approaches; the latter

group can be further divided into the subgroup that uses sample-based optimiza-

tions methods and variations of the non-rigid iterative closest point (ICP) algo-

rithm [14, 136]. Discriminative approaches often transform an image into a more
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convenient representation and learn a classifier to differentiate between a discrete

set of poses. In general, discriminative approaches have a set of limitations: firstly,

they can only be used to distinguish between a limited number of poses; more-

over, discrimination power of these methods decreases with an increasing number

of poses, since the poses become more similar to one another; secondly, they re-

quire creation of a training set (or a template database) that strongly depends on

the experimental setup.

Yet another type of approaches is based on template-matching, where an obser-

vation is matched against a predefined set of templates. The approaches, based

on template matching, work as follows: firstly, a database of possible hand poses

is created and each input image is matched against each image in the database

using some image similarity measure [117]. This method was recently extended to

incorporate depth data in [29].

Recently, more works appeared concentrating on a generative approach for hand

pose estimation and tracking. In case of a single image, one often constrains the

number of parameters to a subset of the 26 full DoF [118], or strong assumptions

about the image are made [16, 25]. Several types of cues are used to evaluate the

model, such as edges, optical flow [10], silhouettes, shading [26], color gloves [128],

etc.

After the appearance of consumer depth cameras, such as the Kinect [3], the

estimation of the full DoF hand pose became much more feasible, especially in the

tracking scenario; in [94], particle swarm optimization was used to track a hand by

generating a set of pose proposals, rendering the hand model in the corresponding

pose and comparing it with the observation. Furthermore, since depth images can

be transformed into 3D point clouds, they provide much more information than,

for example, edges, and ICP-based approaches produce much more reliable results.

Unlike the discriminative approaches, generative approaches allow estimation of

an infinite set of poses. However, model-based methods are usually computation-

ally intensive and usually require an initial assumption about the hand pose for

initialization. We address the latter problem by using several cues for pose initial-

ization, such as fingertips and palm detections; we then use a top-down approach

for pose refinement, firstly fitting global position and rotation, and then fitting

the correct finger positions.

In Section 3.3 we describe the full DoF hand model, consisting of the mesh, at-

tached to the skeleton, which is parametrized using exponential mapping, and



44 Chapter 3 Model-based hand pose estimation

connected to the mesh using linear blend skinning. In subsequent sections we give

a detailed description of our modification of a non-rigid ICP algorithm for hand

pose estimation. In the last Section of this chapter, we evaluate the proposed

method quantitatively on synthetic data and on the real-world Dexter dataset

[116], collected using the Intel Creative depth sensor [2].

3.3 Hand model

The hand model consists of the polygonal meshM = {V ,F}, where V = {vi}V1 is

the set of all vertices of the mesh, F is the set of all faces and the skeleton S =

{Bi}Ni=1, consisting of the bones Bi, connected by a parent-child relationship into

kinematic chains. The pose of the skeleton is determined by a set of joint angles

θ, that influence the bones positions, while the global hand pose is determined by

6-dimensional parameter vector ξ0, the meaning of which will be explained later.

3.3.1 Exponential mapping

Firstly, we formally define the notion of a rigid body: a rigid body is an object such

that the distance between any two points of the object remains fixed, regardless

of any motions of the object or forces exerted on the object. Rigid motion of the

object is a continuous movement such that the distance between any two points

of the object remains fixed and the cross product is preserved [90]. Rigid motion

can be represented as rotation and translation, applied on all points of the rigid

body simultaneously.

Rigid rotation: One can think about rotation as a change of orientation

between the fixed (world) coordinate system and the coordinate system, attached

to the rigid body. Every rotation in R3 can be represented using a rotation matrix

R ∈ SO(3) where SO(3) is the space defined as: SO(3) = {R ∈ R3×3 : RRT =

I, detR = 1}. Every rotation further can be represented as a turn around an

axis ω ∈ R3 by an angle θ, which is called axis-angle representation. It can be

shown, that these two representations are equivalent and can be converted to one

another.

We further introduce additional notation to neatly describe exponential mapping

in the subsequent sections. The cross product between two vectors a, b ∈ R3
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can be as well expressed through matrix multiplication by replacing a by the

corresponding matrix â as follows:

a× b = âb, â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (3.1)

A matrix in the form of â is called skew-symmetric; the space of all such matrices

is denoted as so(3) = {S ∈ R3×3 : S = −ST}. In case a is represented in

homogeneous coordinates, Equation 3.1 still holds and the forth coordinate is not

used. Then the rotation matrix R(ω, θ) ∈ SO(3), representing rotation around

axis ω by an angle θ can be expressed as matrix exponential:

R(ω, θ) = eω̂θ = I + ω̂θ +
(ω̂θ)2

2!
+

(ω̂θ)3

3!
+ . . . (3.2)

Furthermore, closed-form formula exists for eω̂θ ∈ R3×3, called Rodrigues’ for-

mula:

eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ) (3.3)

Equation (3.2) provides mapping so(3) → SO(3). The inverse transformation

exists as well, however, it is not single-valued.

General rigid motion: A general rigid motion can be decomposed into

rotation and translation. It can be also thought of as relative position and orien-

tation change between the world coordinate frame and the body coordinate frame

and can be represented by a transformation matrix T ∈ R4×4, that is applied

to a point by matrix multiplication of the transformation matrix to the point in

homogeneous coordinates. The transformation matrix has the following form:

T =

(
R t

0 1

)
(3.4)

where R ∈ SO(3) and t ∈ R3; we denote the space of all rigid transformations in

the form (3.4) by SE(3). Next, we introduce the notion of twist ξ̂ ∈ R4×4:

ξ̂ =

(
ω̂ v

0 0

)
(3.5)

A twist as well allows to parametrize general rigid body motion and analogous to

so(3) the set of all matrices in the form (3.5) is denoted by se(3). The first type

of motion a twist describes is the rotation of a point p around the axes ω, where

ω might not pass through the origin of the coordinate system and its position
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is characterized by a point q on the axes. Note, that now we use homogeneous

coordinates, i.e. p, q ∈ R4. In this case, v in Equation (3.5) is defined as v =

−ω×q. The second type of motion is pure translation along v. Since no rotation

takes place, ω = 0.

Two operators are defined for twists: the operator ∨ converts the twist representa-

tion to the twist coordinates, while the operator ∧ denotes the inverse conversion:

ξ̂∨ =

(
ω̂ v

0 0

)∨
=

(
v

w

)
∈ R6, ξ∧ =

(
v

w

)∧
=

(
ω̂ v

0 0

)
(3.6)

The exponential mapping of a twist represents a transformation matrix T ∈ SE(3),

in the same way as rotation matrix is represented by exponential mapping of the

axis-angle representation:

T = eξ̂θ = I + ξ̂θ +
(ξ̂θ)2

2!
+

(ξ̂θ)3

3!
+ · · · (3.7)

Here θ denotes the rotation angle (as in case of pure rotation) and the amount

of translation. The closed form expression for the matrix exponential eξ̂θ can be

derived. In case ω 6= 0

eξ̂θ =

(
eω̂θ (I − eω̂θ)(ω × v) + ωωTvθ

0 1

)
(3.8)

Otherwise, if ω = 0, which corresponds to the case of pure translation:

eξ̂θ =

(
I vθ

0 1

)
(3.9)

The Equations (3.8),(3.9) define a map se(3) → SE(3); as in case of so(3) →
SO(3), the inverse mapping exists as well, but is not single-valued.

Consequently, given a point p(0) ∈ R4 on a rigid body, that is rotated around an

axes ω, which passes through the point q, the new position of the point p(θ) is

then defined as:

p(θ) = eξ̂θp(0), ξ =

(
−ω × q
ω

)
(3.10)

Kinematic chains In the previous paragraphs we defined the parametrization

of a general rigid motion of a single rigid body. We now extend it to the case, when

several rigid bodies are attached to each other with revolute joints. Consequently,

each rigid body has its own coordinate frame. Given, that all the rigid bodies in

the chain are connected, the movement of the body that is closer to the root affects
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(a) (b)

Figure 3.1: (a) Hand mesh model; color shows different hand parts; the parts
correspond to the rigid structures of the hand and are attached to the corre-
sponding bones (except palm region, that is completely rigid). (b) The rigged

skeleton with the joints’ rotation axis.

all the subsequent rigid bodies. Knowing the motion of each part of the chain,

we are interested in the positions of each joint in the world coordinate system, or

equivalently in the final transformation between the world coordinate system and

the coordinate system, attached to the i-th rigid body in the chain.

Let the kinematic chain consist of n rigid bodies; the joints are parametrized by the

rotation angles θi, i = 1 . . . n. Then it can be shown, that individual joint motions

can be combined into the forward kinematic map, that depends on the parameters

of the kinematic chain θ1, . . . , θn; the forward kinematic map transforms a point

p(0) to point p(θ), θ =
(
θ1 θ2 . . . θn

)T
as follows:

p(θ) = eξ̂1θ1 . . . eξ̂nθnp(0) (3.11)

3.3.2 Hand deformation parametrization

Our hand model consists of a hand meshM and a 26 DoF skeleton S rigged into

the mesh (see Figure 3.1), using [11].

Skeleton The skeleton consists of N bones Bi connected by a parent-child

relation with joints. Each bone, except the root bone, has a single parent bone.

Since some of the hand joints can have multiple degrees of freedom (Figure 3.1),

to achieve uniform representation we augment joints having two or more degrees

of freedom by the corresponding number of bones, each having exactly one DoF.
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Figure 3.2: Kinematic chain.

That is, the hand skeleton is constructed in a way that each joint except the

root joint has exactly one degree of freedom. The root joint has 6 DoF (3 DoFs

representing translation and 3 of them representing rotation), while the pose of

the hand is parametrized by 20 joint angles.

Let psi and pei be the beginning and the end of the bone Bi respectively. We denote

the rotation axes, corresponding to the bone Bi and located at the start of the

bone psi , by ωi. This way, each bone has its own coordinate system, formed by

(pei − psi ,ωi,ωi × (pei − psi )).

To represent the transformation of the skeleton, we use the exponential mapping

parametrization of kinematic chains (see Section 3.3.1 for details). Exponential

mapping parametrization allows to neatly express the Jacobian of the mesh vertices

with respect to the skeleton parametrization, which is a very useful property for the

estimation of pose parameters θ using gradient-based local optimization methods,

such as Levenberg-Marquardt algorithm [80].

Firstly, the transformation of the point pei by angle θi around the rotation axes

ωi, placed at psi , is described by Ti = eξ̂iθi , where ξi =

(
−ωi × psi
ωi

)
.

Consequently, given a kinematic chain (Figure 3.2) , consisting of B0, . . . , Bn, the

transformation of the bones in this kinematic chain with angles θi =
(
θ0, . . . , θn

)T
is described as following:

psi (θ) = eξ̂0θ0 . . . eξ̂i−1θi−1psi (0) =

(
i−1∏
l=0

Tl

)
psi (0) = T ji−1p

s
i (0) (3.12)

pei (θ) = eξ̂0θ0 . . . eξ̂i−1θi−1eξ̂iθipei (0) =

(
i∏
l=0

Tl

)
pei (0) = T ji p

e
i (0) (3.13)

The transformation of the rotation axis, associated with each bone, is described

by: (
ωi(θ)

0

)
= eξ̂0θ0 . . . eξ̂i−1θi−1

(
ωi(0)

0

)
= T ji−1

(
ωi(0)

0

)
(3.14)



Chapter 3 Model-based hand pose estimation 49

We further denote by Θ the set of all physically acceptable joint angles θ; in

practice, Θ set is defined as a 20-dimensional hyperrectangle Θ = {θ : liθ ≥ θi ≤
uiθ}.

Mesh and linear blend skinning: The hand model is represented using

3D triangulated mesh of a hand, consisting of V = {v}Vj=1 vertices. The mesh

vertices are posed by transferring the pose from the skeleton using linear blend

skinning [81]. That is, for each mesh vertex vj ∈ R4, represented in homogeneous

coordinates, a set of weights wji is computed, that links its transformation to the

transformation of the skeleton bones Bi:

ṽj =
∑
i

wjiT
j
i vj,

∑
j

wji = 1 (3.15)

where T ji is the bone transformation relative to the rigging hand configuration.

The weights matrix W = (wji) ∈ RV×N can be computed, using for example [11].

Provided that a skeleton is transformed using global pose ξ0 and joint angles θ,

we further denote the position of a vertex i of the mesh influenced by the skeleton,

by vi(ξ0,θ); we omit the parameters to denote the vertex vi of the mesh in its

zero-pose θini.

Vertex Jacobian: It can be shown, that given the transformation Tn in

the twist coordinates, that affects the bone Bn, and depends on the bones that

constitute a kinematic chain with indices 0, . . . , n, its Jacobian matrix J(Tn) ∈
R6×n+1 can be expressed as following:

J(T jn) =
(
ξ0 ξ′1 . . . ξ′n

)
(3.16)

Here xi′i is ith joint twist ξi, transformed by the adjoint transformation:

ξ′i = Ad
eξ̂0 ...eξ̂i−1θi−1

ξi (3.17)

Adjoint transformation AdT ∈ R6×6 is the transformation to map a twist from one

coordinate system to another and is defined as:

AdT =

(
R t̂R

0 R

)
, T =

(
R t

0 1

)
(3.18)
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Given linear skinning Equation 3.15, the Jacobian matrix J(ṽj) can be expressed

by:

J(ṽj) =
∂
∑

iwjiT
j
i vj

∂θ
=
∑
i

wji
∂T ji
∂θ
vj =

∑
i

wjiJ(T ji )∧vj (3.19)

where J(T ji )∧vj is interpreted as:

J(T ji )∧vj =
(
ξ∧0vj ξ′∧1 vj . . . ξ′∧i vj

)
(3.20)

Note, that the total displacement of the point ṽj is then given by the expression:

∆ṽj = J(ṽj)∆θ (3.21)

The root joint of the skeleton is in fact not parametrized by joint angles and

its parameters can change arbitrary; therefore, the increment in point position

depending on ∆ξ by definition is:

∆p = ∆ξ∧0p = ∆v0 + ∆ω0 × p = ∆v0 − p̂∆ω =
(
I3×3 −p̂

)
∆ξ0 (3.22)

Consequently, the expression J(T ji )∧vj can be re-written as

J(T ji )∧vj =
(
I3×3 −v̂j ξ′∧1vj . . . ξ′∧nvj

)
(3.23)

Note, that the result of multiplication ξ′∧i vj is 4×1 vector, but the 4th coordinate

always equals zero and we omit it for convenience; J(Ti)
∧vj is then a 3 × (i + 6)

matrix. The final increment ∆ṽj is then expressed as

∆ṽj = J(ṽj)

(
∆ξ0

∆θ

)
(3.24)

Equation (3.24) gives the expression for the increment of each point vj of the

mesh with respect to the skeleton parametrization, while Equation (3.23) defines

the Jacobian matrix.

The Jacobian matrix, defined in Equation (3.23), is then used in a local optimiza-

tion method to find the pose parameters. As will be shown in the subsequent

Sections, the energy defining the quality of fit between the model and the observa-

tion can be expressed as the sum of the least squares; to find the pose parameters,

Levenberg-Marquardt [80] optimization method is used as the method of choice

for the non-linear unconstrained least square problems.



Chapter 3 Model-based hand pose estimation 51

Figure 3.3: The work-flow of the algorithm.

3.4 Hand pose estimation algorithm

We formulate the problem of hand pose estimation from a single frame as a problem

of finding the correct global pose, hand size and joint angles of the hand model,

described in the previous section.

We constraint ourselves in this work to hand size estimation, but personalized

hand model could potentially improve the pose estimation results. For obtaining

a personalized hand pose, approaches presented in [9, 42] could be potentially

used.

In general case, a cost function is defined describing how well the given parameters

describe an observation. The cost function is optimized (minimized) to find the

optimal parameters.

The cost function describing how well the model fits the observation given the pa-

rameters is usually non-convex. Although employing global optimization methods

is possible, it is usually not feasible, given the dimensionality of the parameter

space (as we explained earlier, a hand has 26 DoF plus the parameter describing

scale). Therefore, local gradient-based optimization methods, such as Levenberg-

Marquardt algorithm [80], are often used to minimize the cost function. However,

found solution is only locally optimal and heavilty depends on the initialization.

Therefore, to minimize the susceptibility of the algorithm to local minimas, we

separate hand size and global pose estimation from the full-DoF pose estimation,

since a very good initialization for global pose and hand size is essential for obtain-

ing correct estimation of the full-DoF pose. The algorithm consists of a number of

steps (see Figure 3.3). At the first step, the initial position of a hand, as well as the

approximate orientation is obtained using a number of heuristics, as described in

Section 3.4.1; afterwards, the obtained pose and the hand size is refined by fitting a
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(a) (b) (c)

Figure 3.4: Fingertips detection pipeline: (a) the point cloud is over-
segmented using region growing algorithm; (b) for each sufficiently big region,
fingertips candidates and their orientations are extracted, using geodesic dis-
tance extremas, combined with inner edges extraction; (c) geodesic extremas
are filtered, using the fingertip shape prior and ensuring, that the fitted shape

coincides with the extremas orientations, determined on the previous step.

hand palm region to the point cloud and the silhouette, using a local optimization

algorithm (Section 3.4.2). Finally, the full-DoF hand pose is determined during

the final optimization step using non-rigid modification of ICP algorithm (Section

3.4.3).

For hand pose estimation, we propose to use both the depth image Id and the color

image Irgb. From the color image, the hand silhouette Is (such as Is(x, y) = 1 if

a pixel (x, y) corresponds to a silhouette and Is(x, y) = 0 otherwise) is extracted,

using, for example, a skin color segmentation algorithm [126]; in case color image

is not provided, the silhouettes can be extracted from depth images as well); we

denote by Ω = {(x, y) ∈ R2 : Is(x, y) = 1} the set of all pixels, constituting the

silhouette. The corresponding hand region of the depth image is transformed into

a point cloud P = {pi ∈ R3}i using camera’s intrinsic parameters by inverting

Equations (2.14)-(2.15) (Chapter 2).

3.4.1 Initialization step

For initialization, we first detect a number of hand features, specifically fingertips

and the palm center. We firstly give an overview of the full algorithm for obtaining

initial pose guess, and then discuss its parts in more details in Section 3.4.1.2 and

3.4.1.3.
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Algorithm 1 Fingertips detection

Input: Id
Output: {d̃k}k

while ∃ foreground pixels do
Ωnew ← RegionGrowing(Id) . See Section 3.4.1.2
{oi,di}i ← GeodesicExtremas(Ωnew) . see [96] for details
{d̃k}k ← {d̃k}k ∪ FilterCandidates({oi,di}i, Id,Ωnew)

end while

function GeodesicExtremas(Ωnew, N)
for n← 1 . . . N do . N is the number of extremas we expect

D ← Dijkstra(Ωnew)
dn ← argmax(i,j) D
on ← Backtrack(D,dn)

end for
return {(dn,on)}

end function

function FilterCandidates({oi,di}i, Id,Ωnew)
C ← Contour(Ωnew, Id) . get edge points C = {cj} in Ωnew

for (oi,di) ∈ {oi,di}i do
(r, d̃)← FitCircle(di, C) . fit a circle, as described in Section 3.4.1.3
l← 1

N(C)

∑
j |r2 − ‖d̃− cj‖2| . compute goodness-of-fit

a← 〈oi,di−d̃〉
‖oi‖‖di−d̃‖

. angle between two vectors

if l < τloss & a > 0.5 & |r −R| < ε then
{d̃k}k = {d̃k}k ∪ d̃ . add a new detection to the detections set

end if
end for
return {d̃k}k

end function

3.4.1.1 Hand global pose initialization: overview

To detect fingertips, we first segment a point cloud using a modification of region

growing algorithm to obtain initial hand regions (Section 3.4.1.2); we then find

finger tips candidates and their orientations {(di,oi) ∈ R2}i by finding geodesic

extremas [96] for each region. Finally, we filter them and refine the positions of the

detections (Section 3.4.1.3), therefore obtaining the final set of detections {dk}k
(see the outcome of each step in Figure 3.4). The step-by-step description of the

algorithm is provided in Algorithm 1.

We find the palm center using distance transform on the hand silhouette, as pro-

posed in [64].
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fingertips
palm

(a) (b) (c) (d)

fingertips
palm

(e) (f) (g) (h)

Figure 3.5: Initializations from matching detection to the finger tips; the
leftmost image is the input image, while the other images are the proposed

initializations with increasing cost.

As a next step, we use the fingertips and palm detections to determine approximate

position and rotation of the hand. Since we do not know correspondences between

the detected finger tips and those of the model fingers, we sub-sample possible

matches. Each match j is a permutation of a subset of all detections, described

as i → πj(i), where i is the index of a detection and πj(i) ∈ {1 . . . 5} denotes a

fingertip of the model. After fixing a match j we first find the global rotation

and translation of the model. To evaluate each match, we check if the full DoF

pose implied by the match is physically possible (i.e., does not violate the physical

constraints on the hand’s joint angles) by computing the cost of the pose:

Ej
match(ξ0,θ) = min

ξ0,θ∈Θ

∑
i

‖d̃i − peπj(i)(ξ0,θ)‖2, (3.25)

where ξ0 denotes the global pose of the hand and θ are the joint angles, defining

the pose. We then select the match j that delivers the smallest cost Ej
match and

use the corresponding global pose parameters ξini0 = argminξ0,θ E
j
match(ξ0,θ) as an

initialization for the subsequent optimization.

In practice, the number of matches can be reduced by making use of the fact that

the fingertips can be ordered around the palm, assuming that the palm is facing

the camera.

The resulting initializations obtained from different matches are shown in Figure

3.5. The proposed algorithm allows to determine hand orientation and position,
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however, recently more advanced methods to obtain initial hand orientation were

proposed, for example, based on random forests [133]. Another enhancement that

can be potentially beneficial is to use a better cost function (3.25) to evaluate

initial hand pose proposals.

3.4.1.2 Point cloud segmentation with region growing

Prior to obtaining the fingertips candidates, we segment the point cloud to obtain a

set of point cloud regions, that correspond to continuous surfaces, since to correctly

extract the geodesic extremas, a continuous surface is required.

We use a region growing-based segmentation algorithm on the depth images: a

pixel is included into a current region if the two distance measures, (3.26) and

(3.27), are smaller than the corresponding thresholds. We define empirical thresh-

olds of 10mm for the Euclidean distance (3.26) and 30◦ for the angle (3.27) between

normals.

d(pi,pj) = ‖pi − pj‖, pi,pj ∈ R3 , (3.26)

dn(pi,pj) = ∠(n(pi),n(pj)) = arccos〈n(pi),n(pj)〉 (3.27)

Here n(pi) and n(pj) are the normals to the point cloud at the corresponding

points pi and pj. To compute the normals we use principal component analysis

(PCA) on the neighborhood of each point as in [103].

After initial segmentation, we divide large regions (which usually correspond to

the palm with multiple fingers) into smaller ones to separate the palm and the

fingers. To do so, we employ morphological opening with a circle of a radius

roughly corresponding to the radius of the fingers. The resulting segmentations

are presented in Figure 3.6.

After the segmentation, we determine the palm as the largest region in the vicinity

of the palm detection, and the rest of the points belong to the fingers. The point

indices of the point cloud, corresponding to the palm, are denoted by Ipalm, whereas

the indices, corresponding to the i-th region, are denoted by I ifinger; the union of

all non-palm points is denoted by Ifingers =
⋃
i I

i
finger.

Consequently, the silhouette can also be segmented into palm and fingers region.

Let Ωpalm denote the set of all pixels, corresponding to the palm region, and

Ωfingers — the set of all pixels, corresponding to the finger region; consequently,

Ω = Ωpalm

⋃
Ωfingers.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Top row: segmentation results for the real data produced by
Kinect ((a) and (b)) and the artificial dataset ((c) and (d)); Bottom row: seg-
mentation results for the real data produced by Intel Creative camera from MSR

dataset and for Dexter dataset; (g) and (h) show failure cases.

Additionally, we define the corresponding segmentation for the vertex indices of

the mesh Im = {1, . . . , V }: Imfingers =
⋃
i I

m,i
finger, I

m
palm

⋃
Imfingers = Im.

3.4.1.3 Fingertips filtering

Initially we obtain many fingertips detections, as shown on Figure 3.4(b). However,

some of them do not correspond to the real fingertips, and therefore we filter them

during an additional step, described in this subsection. We observed that the

most of these false detection can be removed by estimating local hand contour

curvature near the detection candidate and removing the candidates with small

curvature. For each candidate fingertip detection di ∈ R2 we extract the nearby

contour Ci = {cj ∈ R2 : ‖cj − di‖ < τr} of the finger and determine its local

curvature by least square fitting of a circle with parameters (ri, d̃i):

(ri, d̃i) = argmin
r,d̃

∑
cj∈Ci

(
‖cj − d̃‖2 − r2

)2

(3.28)

If the radius ri of the fitted circle corresponds to the expected finger radius, as

well as if the fitting cost is sufficiently low, the fingertip candidate is classified as

detection and we use d̃i as a corrected fingertip location. Additionally we compute
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the angle between vectors di − d̃i and oi and filter out the detection, for which

the angle is greater then 45◦.

In general, we are only required to obtain some fingertip detections, since together

with palm detection it allows to determine initial hand pose, as discussed in Section

3.4.1.

3.4.2 Hand pose and size refinement

As mentioned in Section 3.4.1, the initial global hand pose estimation, described

in Section 3.4.1, is not accurate. Therefore, we firstly refine the global pose pa-

rameters ξ0 using a technique, similar in spirit to ICP optimization.

Let pi ∈ P denote a point from the hand point cloud, vi ∈ V denote a vertex of the

model in the zero-pose θini, Pr(vi) ∈ R2 denote the projection of a model vertex

onto the silhouette image Is. Furthermore, we denote by µ(·) : i 7→ µ(i, I) ∈ I

the match between the point with index i and the point with index µ(i, I) from

the set of points I. In our case, the mapping is defined by finding the point in

I, closest to the query point i with respect to Euclidean distance. The parameter

vector has seven dimensions: (ξ0, s), where ξ0 define hand position and rotation,

and s defines scaling.

To do so, we minimize the following cost function, starting from initial global pose

parameters ξini0 (obtained in the previous step) and s = 1 as the initial value:

Epart(ξ0, s) = Epalm(ξ0, s) + αEfingers(ξ0, s)+ (3.29)

+ βEbg(ξ0, s) + λRpart(s) (3.30)

Here, the Epalm(ξ0, s) and Efingers(ξ0, s) terms pull the model towards the point

cloud, while Ebg(ξ0, s) term restricts the changes by requiring the position and the

size of the hand to fit inside the silhouette.

In Equation (3.30), Epalm is the error term responsible for the distance between

the point cloud region, identified as palm, and the palm of the model:

Epalm(ξ0, s) =
1

|Ipalm|
∑

i∈Ipalm

‖pi − vµ(i,Ĩmpalm)(ξ0, s)‖2, (3.31)

For each point pi of the point cloud we search for the nearest point vµ(i,Ĩmpalm)(ξ0, s)

on the visible part of the palm of the hand model (the indices of the vertices of

the palm, visible from the camera, are denoted by Ĩmpalm). We use a kd-tree [13]

on the points from P to accelerate point search.
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The Efingers term is responsible for the distance between finger points in the point

cloud and finger points of the model.

Efingers(ξ0, s) =
1

|Ifingers|
∑

i∈Ifingers

‖pi − vµ(i,Ĩmfingers)
(ξ0, s)‖2 (3.32)

Note, that here µ(i, Ĩmfingers) denotes the closest visible vertex of the model on the

fingers. Finally, the Ebg term defines the distance between the 2D silhouette of

the hand, and the projection of the model:

Ebg(ξ0, s) =
1

|Impalm|
∑

i∈Impalm

min
p∈Ωpalm

‖Pr(vi(ξ0, s))− p‖2, (3.33)

where Pr(vi) is the projection of a model vertex vi to the silhouette image.

Finally Rpart(s) = (s− 1)4 defines regularization on the scale parameter.

The cost function in Equation (3.30) is the sum of squared terms. The optimiza-

tion procedure consists of three steps: firstly, the correspondences between model

points and the point cloud are updated; secondly, a new value of the cost func-

tion Epart(ξ0, s) and its Jacobian is computed using the obtained correspondences

(see Section 3.3 and Equation (3.24)); thirdly, a step of Levenbeg-Marquardt is

performed towards the minimum of the cost function.

After the optimization stage, we obtain global hand pose parameters ξ0 and an

estimate of hand scale s (see Figure 3.7), that are used as initial global pose

parameters for the optimization at the final step of the pose estimation algorithm

— full DoF pose estimation.

(a) (b) (c) (d)

Figure 3.7: Hand fitting initialization ((a) and (c)) and refined hand pose and
size ((b) and (d)); notice, that fingers are now better aligned with the point

cloud.
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3.4.3 Final hand pose estimation

On the previous step, we estimated hand pose and size, but the full pose parame-

ters θ are still unknown. In this stage, we find the full pose parameters θ, as well

as further refine the global pose of the hand ξ0, so that the data is explained in

the best way.

3.4.3.1 Pre-matching the fingers

The crucial part of the optimization procedure of full DoF pose estimation, de-

scribed in this section, is finding the correct matches between the hand model and

the point cloud. In a frequent case of an open hand, when more fingers are strait-

ened or half-straitened, the false matches between the point cloud and the model

can lead to a completely incorrect result even for this simple case. Therefore, prior

to optimization, we pre-match extracted point cloud regions to the parts of the

model and retain this match through optimization. For matching each region of

the point cloud to a model part, we define a cost for each match as Euclidean

distance between the centers of two segments. Each model segment can only be

matched to zero or one point cloud segment. The problem can be mathematically

written as follows:

ρ∗ = argmin
ρ

∑
i

‖cpci − cmρi‖
2, ρ denotes a permutation of {1 . . . 5} (3.34)

where cpci is the center of the i-th region of the point cloud and cmρi is the center of

the ρi-th region of the model. ρ∗ is the resulting vector, which defines which region

from a point cloud is matched to which finger; consequently, all coordinates of the

vector are distinct. Note, that palm region is already known, so it is excluded

from the matching procedure. The solution ρ∗ is found using brute force search,

since the number of possible combinations is low.

However, in case of more difficult poses, when not all fingers are visible or seg-

mentable using a simple algorithm described in Section 3.4.1.2, this heuristic is

not robust enough, and therefore we disregard segmentation during final optimiza-

tion. The condition to discard the matching step is that the number of segmented

regions is not equal to 6 (i.e., the number of fingers plus the palm region); in this

case, no pre-matching is used and we rely on distance-based matches between the

point cloud and the model.
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3.4.3.2 Final optimization

The full pose of the hand is parametrized by 26 parameters: (ξ0,θ), where the

initial value of ξ0 is found during the previous step, and θ is a 20-dimensional

vector of joint angles defining fingers’ position.

To find the pose parameters, we optimize the following cost function:

Efull(ξ0,θ) = Epc(ξ0,θ) + ζEbg(ξ0,θ) + λRfull(ξ0,θ) (3.35)

Epc(ξ0,θ) =

 Epalm(ξ0,θ) +
(∑

iE
i
fingers(ξ0,θ)

)
, hand segmented

1
|I|
∑

j∈I ‖pj − vµ(j,Ĩm,i)(ξ0,θ)‖2, otherwise
(3.36)

The initial parameters ξ0 are obtained in the previous (refinement) step, and the

optimization starts with the zero-pose θini. In the equation above, Epc(ξ0,θ)

denotes the cost of the fit between the model and the point cloud. In case point

cloud segmentation was successful, it is then used to reduce the number of false

matches between the point cloud and the data; otherwise, the match is done based

on the Euclidean distance only; Ĩm,i here denotes the set of all visible vertices of

the model. The Epalm(ξ0,θ) is defined in the same way as in Equation (3.31), and

the Ei
fingers(ξ0,θ) term is defined as follows:

Ei
fingers =

1

|I ifinger|
∑

j∈Iifinger

‖pj − vµ(j,Ĩ
m,ρ∗

i
finger)

(ξ0,θ)‖2 (3.37)

Here µ(j, Ĩm,ifinger) is the closest model point to the point j from Ĩ
m,ρ∗i
finger (visible

vertices on the corresponding finger) and |I ifinger| is the number of indices in the

set I ifinger. In this way, smaller finger regions gain more weight and have more

influence in the optimization.

The last term is the background term, having the same meaning as the term

defined in Equation (3.33), except that we observe the full silhouette instead of

taking into account the palm region only:

Ebg(ξ0,θ) =
1

|Im|
∑
i∈Im

min
p∈Ω
‖Pr(vi(ξ0,θ))− p‖2, (3.38)

Finally, we introduce regularization term on the pose parameters θ, that penalizes

physically impossible configurations:

Rfull(ξ0,θ) = ‖(θ − lθ)+‖4 + ‖(uθ − θ)+‖4 (3.39)

where lθ and uθ correspond to the lower and upper bounds on the physically

possible joint angles θ and x+ = (max(x1, 0), . . . ,max(xN , 0)), x ∈ RN .
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(a) (b) (c) (d)

Figure 3.8: The global hand pose after refinement ((a),(c)) and the final hand
pose after the final optimization step ((b),(d)); the first two images correspond
to the synthetic data, while the second two images — to the real data, provided

by Intel Creative Gesture Camera.

The cost function is again represented as a sum of squares of non-linear scalar

functions, and therefore we use the same algorithm for constrained non-linear

optimization, as in the previous section. The solution of the optimization problem

delivers the full-DoF pose estimation of a hand.

Examples of the hand fits after the final optimization step are provided in Figure

3.8 and 3.15.

3.5 Evaluation

3.5.1 Fingertips detection evaluation

Firstly, we evaluate the proposed fingertip detector. We report the results on

synthetic data, as well as on real data from the Dexter [116] dataset, using two

metrics: precision and recall.

The results for fingertip detections are given in Table 3.1. As can be seen, the

precision is very high, which means that the detector rarely makes type one errors.

On the other hand, recall is significantly lower. Note, that recall is a pessimistic

estimate in this case, since the fingertips are often marked, but are in fact not

detectable, since they are occluded.
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Table 3.1: Fingertips detector performance; the fingertip is considered de-
tected, if it is within 7 pixels from the ground truth detection, which roughly

correspond to the fingertip radius in the images.

seq. precision recall
synth. [94] 93.28 65.56

adbaddb [116] 68.23 42.45
fingercount [116] 62.48 36.53
fingerwave [116] 66.89 45.47
flexex1 [116] 71.81 48.66
pinch [116] 69.20 42.29
random [116] 61.28 42.56
tigergrasp [116] 63.43 42.95

3.5.2 Full DoF pose estimation evaluation

We provide the results of each step of the algorithm, and evaluate the performance

gain due to splitting the optimization procedure, as well as using point cloud pre-

segmentation, described earlier.

The baselines are the following:

• INI — initial pose guess, based solely on the detections;

• REF — pose guess after the refinement step, described in Section 3.4.2

• FULL — full pose estimation algorithm, described in Sections 3.4.1-3.4.3.

• FULL-NSEG — full pose estimation algorithm, but without fingers pre-

matching step, described in Section 3.4.3.1.

• FULL-NSEG-NREF — full pose estimation algorithm, without pose re-

finement (Section 3.4.2) and fingers pre-matching steps (Section 3.4.3.1).

We provide the results for the last two baselines, namely FULL-NSEG and

FULL-NSEG-NREF, to show the improvement due to separation of the global

pose refinement and final pose estimation, as well as the gain due to point cloud

pre-segmentation.

We evaluate the fit, using the following metric: average joint error ēf for each

frame f = 1 . . . F , computed as Euclidean distance ∆f
j between the ground truth
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Figure 3.9: The error ef through the entire sequence; note, that we do not use
any temporal information in this case; we show the improvement with respect
to ground truth from the initialization (INI) to the refinement (REF) and to

the final pose estimation FULL.

joints positions pfj and the predicted positions p̂fj for all available joints j = 1 . . . J :

∆f
j = ‖pfj − p̂

f
j ‖ (3.40)

ef =
1

J

J∑
j=1

∆f
j (3.41)

The distance is provided in millimeters.

To be compatible with [94], we employ mf per-frame metric, which corresponds

to the median of the error of all joints:

mf = med{∆f
j , j = 1 . . . J} (3.42)

Furthermore, we provide the proportion ρ(τ) of the frames, where for all joints the

error was less then a certain threshold τ (mm):

ρ(τ) =
#{f : mf < τ}

F
(3.43)

3.5.3 Synthetic sequence

For the evaluation, we use synthetic sequence from [94]. The sequence contains

360 frames. The positions of all hand joints are provided for evaluation.

In the Figure 3.9, the average error, computed for INI,REF and FULL methods

through the sequence is shown. It can be seen, that the error decreases from

the INI method, to the REF and then decreases further to FULL, as expected.

Further, we compare FULL with FULL-NSEG and FULL-NSEG-NREF to

show the advantages of the proposed enhancement. The results are presented in

Figure 3.10. Note, that for all baselines we use the same detections and the same
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Figure 3.10: The error ef through the entire sequence; we do not use any
temporal information; we compare the pose estimation results of FULL with

FULL-NSEG and further with FULL-NSEG-NREF.
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Figure 3.11: The error ρ(τ) through the entire sequence; we compare all
baselines to show the effect of each of the steps.

initialization. Finally, all the baselines are compared using the second metric,

ρ(τ), in Figure 3.11. As can be seen, we outperform the published baseline for this

sequence [94], where 74% of the frames have the estimated pose deviation 40mm

or less from the ground truth, even though the model used in the experiments is

significantly different from the model used to produce synthetic data.

3.5.4 Evaluation on the Dexter dataset

We furthermore evaluate the algorithm on the Dexter dataset [116]. It consists of

seven sequences, recorded using the Intel Creative Depth Sensor, as well as five

RGB cameras and a structured light sensor. Each sequence is around 400 − 500

frames long. In the experiments, we use only the data from the Intel Creative

Depth Sensor. Further, the dataset contains annotations for the fingertip positions,
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Figure 3.12: Comparison of the INI,REF and FULL baselines on the se-
quences of Dexter dataset; top graph shows average of ef for the INI,REF and
FULL parts of the method, while bottom graph reports the median of the ef

across frames.

as well as the palm center positions. The results for each sequence are shown in

Figure 3.12. It can be seen, that the average error is high. However, it is mainly

due to several outlier frames, where initialization is initially computed completely

wrong, which results in high error values — therefore, we as well provide the

median of the ef to show that except these frames, the pose estimation quality is

much better in most of the frames.

Note, that here we as well do not use any temporal consistency assumptions. In

general, in both experiments we observed that the error jumps as soon as the

initialization provided is completely wrong.

As can be seen from the Figure 3.13, the FULL method outperforms both other

methods, namely FULL-NSEG-NREF and FULL-NSEG on the sequences of

[116], or at least performs on par with FULL-NSEG baseline.
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Figure 3.13: Comparison of the FULL-NSEG-NREF,FULL-NSEG and
FULL baselines on Dexter dataset; top graph shows average of ef across all

frames, while bottom graph reports the median of the ef across frames.

Figure 3.15: Examples of the fitted hand model for the frames from DEXTER
dataset; RGB image is overlayed with depth image to show the actual hand pose.
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Figure 3.14: Comparison of all methods on the sequences of Dexter dataset
in terms of ρ(τ)
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Finally, as in the previous section we compare all methods using ρ(τ) metric in

Figure 3.14. As can be seen, FULL method outperforms all other methods for

most of the sequences, except pinch sequence, for which FULL-NSEG performs

slightly better for the low values of τ ; it can be explained by the fact that for

pinch sequence it is hard to obtain the reliable hand fingers segmentation, since

the thumb and the index finger are connected together.

The examples of the estimated pose are presented in Figure 3.15.

Finally, we compare our results on the Dexter dataset with the more recent state-

of-the-art hand pose tracking methods [109, 113, 115] as well as one method for a

single frame hand pose estimation [119].

The approach from [115] is the modification of [116] using a single depth camera.

It is as well model-based tracking approach, however, a user-specific hand model

is used for tracking while we use a general hand model; [113] is an extension of

[115], where a hand parts detector is used to robustify model fitting procedure.

The approach from [109] is as well model-based, however, the hand model is repre-

sented in terms of subdivision surfaces and additional re-initialization step is used

to account for track-lost situation. Finally, [119] is as well a single frame pose

estimation approach; we use the evaluation results reported in [115].

Note, that most of the approaches mentioned make use of time consistency and

therefore it is natural that the result obtained by our method from a single frame

are worse then the results obtained employing time consistency hints. We therefore

provide the results of our method in tracking setting (denoted by FULL + t) for

comparison. As an error measurement, we compute the percentage of total frames

in a sequence that have error ef for fingertips locations less then a threshold, as

well as average error ef over the entire sequence.

The results for each sequence are reported in Table 3.2. Firstly, in case of single

frame pose estimation our approach performs comparable to [119], although we

do not require any training data; secondly, while FULL delivers overall much

worse results than the tracking-based methods for the first five sequences, in the

tracking scenario FULL+t we actually outperform the existing approaches on

some sequences and performs on par on other sequences. However, on the last

two sequences, random and tigergrasp, the tracking approach performes worse

then the single frame pose estimation approach. These two sequences contain fast

movements and the tracker breaks in the beginning of the sequence, which leads

to wrong pose estimates on all subsequent frames.
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The other effect to observe is that employing time consistency allows to increase

the performance by nearly twice, which means that there is a lot of room for

improving the initialization.

3.6 Discussion: strengths and weaknesses of the

proposed generative approach

We presented an approach for model-based hand tracking, based on the classical

non-rigid ICP algorithm for combined RGB-D data. We evaluated our approach

both on the synthetic and the real-world data and showed, that it is capable of

producing plausible hand pose estimations. Our approach can be used both for

one-shot hand pose estimation and extended for tracking and it does not require

use of special hardware, such as GPUs. Furthermore, our unoptimized MATLAB

implementation requires around two minute per frame in a single hand pose esti-

mation scenario and around 30 seconds in the tracking scenario; therefore, there

is a potential to make the approach real-time. Additionally, our approach allows

to partially overcome the problem of missing depth data by additionally relying

on the silhouettes.

In general, we observed in the experiments, that when the initialization is com-

pletely wrong, the algorithm is not able to recover from the local minimum, while

as soon as the initialization is sufficiently close to the correct pose, the optimiza-

tion converges to the right solution. The most critical error that can happen is

the wrong global pose of the hand. Furthermore, in case the finger poses are too

far from the initial pose, the algorithm does not recovered as well.

Therefore, in the subsequent chapters, we focus on providing a more stable initial-

ization for the optimization algorithm, using a machine learning method.
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Table 3.2: Comparison of the proposed approach to the current state-of-
the-art approaches; FULL denotes a single frame hand pose estimation, while

FULL + t denotes the hand pose tracking scenario.

seq. 15mm 20mm 25mm 30mm av.(mm)

adbadd

[115] 79.4 97.7 98.6 99.1 14.0
[113] 56.6 70.6 76.2 84.9 19.0
[109] − − − − 15.0
FULL [71] 31.7 53.0 60.1 65.6 37.5
FULL + t 64.4 73.4 89.8 95.6 14.5

fingercount

[115] 66.0 92.5 95.3 95.7 16.0
[113] 50.0 66.5 77.7 85.8 19.5
[109] − − − − 12.3
FULL [71] 15.7 38.8 55.1 60.6 37.2
FULL + t 41.5 55.1 73.9 79.0 21.6

fingerwave

[115] 56.6 92.0 99.0 100.0 15.0
[113] 56.2 71.2 78.3 85.0 21.0
[109] − − − − 18.2
[119] − − − − 49.1
FULL [71] 19.0 34.4 40.0 48.5 44.2
FULL + t 29.4 39.8 44.3 49.2 36.2

flexex1

[115] 88.5 100.0 100.0 100.0 13.0
[113] 53.7 68.1 76.7 85.5 21.0
[109] − − − − 10.7
FULL [71] 17.6 38.9 55.6 62.9 36.2
FULL + t 55.5 61.9 67.5 71.2 26.3

pinch

[115] 49, 5 89.0 99.5 100.0 16.0
[113] 56.7 83.9 93.1 97.4 21.0
[109] − − − − 12.9
FULL [71] 16.1 33.6 46.3 50.3 42.4
FULL + t [71] 38.5 49.7 61.5 72.1 24.9

random

[115] 29.1 48.8 58.9 70.8 27.1
[113] 19.1 40.7 59.0 70.6 28.5
[109] − − − − 23.3
[119] − − − − 46.1
FULL [71] 15.4 28.9 32.9 38.2 43.6
FULL + t 4.4 6.8 13.1 16.5 57.7

tigergrasp

[115] 36.7 87.2 95.0 98.1 17.0
[113] 62.9 80.6 87.3 91.8 16.5
[109] − − − − 12.9
[119] − − − − 33.1
FULL [71] 19.1 40.4 44.5 47.7 44.1
FULL + t 12.9 17.9 19.5 24.0 53.7



Chapter 4

Sign language letters recognition

As mentioned in the previous chapter, model-based generative approach allows to

achieve good results in the task of full DoF pose estimation, provided, however,

sufficiently good initialization. The initialization can potentially be obtained using

a temporal consistency assumption by transferring the pose estimation result from

the previous frame. However, this approach has several disadvantages: firstly,

since temporal consistency is assumed, the method is non-robust towards frame

loss and fast motions; secondly, in case of track-lost situation, there is no way to re-

initialize the tracker. Additionally, a discriminative approach-based initialization

can be easily combined with temporal priors for the final pose prediction.

We pose the problem of finding a good initialization for the local optimization as

a classification problem, i.e. instead of obtaining the initialization in continuous

joint angles space, we propose to map points in joint angles space to a discrete

number of class labels. The reasoning behind that is the following: from one

side, knowing a discrete class label(and the corresponding initial point) is in many

cases sufficient to converge to the correct solution in the vicinity of this point;

from another side, the classification problem, provided a reasonable number of

visually distinct classes is used (i.e., such that intra-class variance is much less

then inter-class variance), is a much easier problem then the full DoF hand pose

estimation.

Additionally, the general gesture recognition problem, which includes classification

of static hand shapes, for example, American Sign Language signs recognition, is

a separate research problem by itself. Moreover, classifying between a finit set

of gestures seems to be an easier problem then full DoF hand pose estimation

71
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Figure 4.1: The signs of the American Sign Language [1]. Notice the similarity
between groups of signs, for example, between letters ’m’, ’n’ and ’e’, or by ’p’

and ’q’.

and therefore it seems unreasonable to require full DoF hand pose estimation be

performed prior to recognition.

Therefore, in this chapter we concentrate on the problem of static sign letters

recognition using a depth camera. To this end, we propose to firstly represent

point clouds, corresponding to hand poses, using a global point cloud descriptors,

invariant to the scale, translation and rotation, and then distinguish between them

using a well-known classification method — random forests.

We evaluate the proposed approach for static poses classification on the public

dataset, containing signs of American Sign Language Alphabet [100]. Note, that

the substantial difference between the problem of static signs recognition and the

problem of finding good initializations for the model based full DoF hand pose

estimation is that we do not have control of the signs selected in the first case,

while we can select the sufficiently different initializations in the second case, which

makes the latter task easier.

In Section 4.1 we give an overview of the existing approaches for hand gesture

recognition, in Section 4.2 we give a general introduction to the ensamble methods

and in Sections 4.3-4.5 we describe the proposed approach. Finally, in Section 4.6

we provide an extensive evaluation.
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4.1 Related work

The problem of sign language recognition was addressed in literature many times.

Early works used different kind of image convolutions to form feature vectors

based on a single RGB image of a hand. In [54], the authors use wavelet families,

computed on edge images, as features to train a neural network for 24 sign classifi-

cation. Haarlet-like features, computed on a gray-scale images and on silhouettes

were used in [27] for classification of 10 hand shapes. Principal Component Analy-

sis (PCA) was applied directly on images to derive a subspace of hand poses, which

is then used to classify the hand poses (see [23]). In [84], a modification of HOG

descriptors are employed to recognize static signs of the British Sign Language.

A SIFT-feature based description was used to recognize signs of ASL in [61]. All

these methods depend heavily on the lighting conditions, subject’s appearance and

background. Additionally, pose normalization is required before feature compu-

tation, since the features mentioned above are not rotation-, position- and scale-

invariant.

Due to appearance of range sensors there have been several breakthroughs in the

area of recognition using a single camera. The most well-known advances are in

the area of human pose recognition using the Microsoft Kinect sensor [111]. The

authors used a special kind of features, computed directly on depth images, to

classify human body parts. The same features were lately applied for the problem

of hand pose estimation [60] and shape classification [59].

Hand detection and segmentation is a much easier task in case of availability

of the depth data, therefore a number of methods appeared relying solely on

segmentation derived from depth data, such as contour-based method, described

in [101], and rule-based method, presented in [15].

Additionally, since depth data is robust to illumination and subject appearance

changes, a number of methods appeared on calculating image features directly on

depth images [100, 125]. Obviously, these methods still do not account for different

viewpoints.

In our work, we address the problems mentioned above by using a rotation-,

position- and scaling- invariant global descriptor, Ensemble of shape functions

(ESF) [132]. Additionally, in the fashion of [59], we apply a multi-layered random
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forest (MLRF) for classification. This allows us to significantly reduce the train-

ing time for MLRF and the memory consumption to store the trained forest in

memory. Additionally, it allows to use different features in different layers.

In the consecutive sections, we firstly give an introduction to the theory behind

random forests, as well as provide the description of the ESF descriptor. We then

discuss the algorithm for building the multi-layered random forest, and finally

evaluate the proposed approach on the publicly available dataset [100], as well as

our own dataset.

4.2 Introduction to ensemble methods

The first ensemble-like methods were firstly introduced in 70s [24, 123], and became

popular as the foundation of AdaBoost was laid [106]. The existing methods for

building ensembles can be roughly divided into two groups [102]: in the first group

of methods new classifiers are built based on the output of the previously created

classifiers (dependent framework), while in the second group of methods all the

classifiers are constructed independently (independent framework).

4.2.1 Dependent framework properties

In [106] two concepts are used: weak learnability requires the existence of a poly-

nomial - time classification algorithm (weak classifier) that performs slightly bet-

ter than random with high confidence (i.e., independent of the distribution of

the training set); strong learnability requires the algorithm (strong classifier) to

perform arbitrarily good with high confidence. It is then shown, that weak learn-

ability and strong learnability are equivalent. Furthermore, a recursive algorithm

for building a strong classifier from a set of weak classifiers is explicitly described.

This approach defines dependent framework for building ensembles.

4.2.2 Independent framework properties

In the same time, an independent framework suggest training a set of classifiers

independently from one another. If the classifiers are statistically uncorrelated (or

the correlation is sufficiently low), the performance of the ensemble is much higher

then the performance of each separate classifier and increases with the number of
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Figure 4.2: Random forest framework: sample x is propagated through mul-
tiple trees h(x,θk); at each node, a weak classifier f(x,θIk ) is applied and
depending on its outcome, the sample is passed either to the left or the right
subtree; when the sample reaches the root node, the corresponding predictor
hj(x,θk), stored in this node, forms the resulting prediction of the tree k for

the sample x

classifiers. The intuition behind that assumption is that uncorrelated classifiers

make errors in different, uncorrelated, cases, and therefore the errors are mutually

compensated in case the output of the classifiers is combined.

A well-known example of the independent ensemble is decision forests. For a

subclass of decision forests, the above assumption was proven in [17]. We review

the proof in the following Section.

4.2.2.1 Decision Forests and Random Forests

Firstly, a decision forest classifier consists of a collection of tree-structured classi-

fiers {h(x,θk), k = 1, . . . K}, where x ∈ X ⊂ RD is the input vector, y ∈ Y is the

class label and θk are the parameters of the classifier, and h(x,θk) ∈ Y , where Y
is a discrete set of class labels. We denote the training data (x, y) ∈ T ⊂ X × Y
Here we consider the binary tree structure of the classifiers. Each internal node R
of a tree contains a (very) weak binary classifier f(x,θIk) ∈ {−1, 1} (for example,

a simple threshold rule), parametrized by subset of values θIk from θk. A sample x

is propagated through the tree from the root to one of the leafs, where at each level

the corresponding f(x,θIk) classifier is applied and the sample is propagated down

to either right or left sub-tree, depending on the classifier’s output (see Figure

4.2). In the leaf nodes, the predictors are stored.

Next, we will review the theory behind decision forest and motivation for the

randomization, as well as some properties of the decision forests and their subclass,

random forests.
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Decision forests performance Following [17], we firstly define a classifi-

cation margin of a set of classifiers with fixed Θ = {θk}Kk=1 as:

mg(x, y,Θ) =
1

K

∑
k

I(h(x,θk) = y)−max
j 6=y

1

K

∑
k

I(h(x,θk) = j) (4.1)

where I(·) denotes the indicator function (note, that in [79] classification margin

is defined in a slightly different way, but in fact has the same meaning). For a

sample to be correctly classified, mg(x, y,Θ) ≥ 0.

The generalization error for a fixed set of parameters Θ is then defined as:

e∗ = PT (mg(x, y,Θ) < 0) (4.2)

where PT denotes the probability over a distribution in T space of the incorrect

classification result (mg(x, y) < 0). The following theorem can be proven for the

case when K →∞:

Theorem 4.1. For almost surely all sequences of {θk}Kk=1, generalization error

converges to the following expression:

lim
K→+∞

e∗ = PT

({
PΘ(h(x,θ) = y)−max

j 6=y
PΘ(h(x,θ) = j)

}
< 0

)
(4.3)

We denote the limit of the classification margin for a random forest with infinite

number of trees as margin function:

mr(x, y) = lim
K→+∞

mg(x, y,Θ) = PΘ(h(x,θ) = y)−max
j 6=y

PΘ(h(x,θ) = j) (4.4)

The strength of a classifier {h(x,Θ)}Θ is then defined as:

s = ETmr(x, y) (4.5)

Then, taking into account Theorem 4.1 and Chebychev inequality, and denoting

variance of a random variable by σ2(·):

e∗ ≤ σ2(mr(x, y))

s2
(4.6)

We further introduce the notation of raw margin function as:

rmg(Θ,x, y) = I(h(x,Θ) = y)− I(h(x,Θ) = ĵ(x, y)), (4.7)

where ĵ(x, y) = argmaxj 6=y PΘ(h(x,Θ) = j). It is easy to see that mr(x, y) =

EΘrmg(Θ,x, y).

Theorem 4.2. The upper bound on the generalization error e∗ is given by:

e∗ ≤ ρ̄
(1− s2)

s2
, (4.8)
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where

ρ̄ =
EΘ,Θ′ {ρ(rmg(Θ,x, y), rmg(Θ′,x, y))σ(rmg(Θ,x, y))σ(rmg(Θ′,x, y))}

EΘ,Θ′ {σ(rmg(Θ,x, y))σ(rmg(Θ′,x, y)}
(4.9)

ρ(·, ·) and σ(·) denotes the correlation and the standard deviation on T accordingly.

To get an intuition about the result above, let us consider a binary classification

problem, i.e., Y = {−1,+1}. In this case, raw margin is defined as rmg(Θ,x, y) =

2I(h(x,Θ) = y)− 1.

Consequently, the expression in the Equation (4.9) can be simplified to:

ρ̄ = EΘ,Θ′ρ(h(·,Θ), h(·,Θ′)) (4.10)

It is easy to see, that ρ̄ defines here the correlation between two different members

of the forest.

From the Theorem 4.2 and from the Equation (4.10) it follows, that the general-

ization error decreases with the correlation between different trees.

There are several ways introduced to decrease the correlation of the separate trees:

• In [7], random parameter sampling during training was proposed.

• In [17], bagging was proposed: each tree is trained on a new training set,

formed from the initial training set by drawing random instances from it

with replacement. Thus, each tree is trained on a separate training set.

Random forests are in fact decision forests, that make use of the both proposed

methods [7, 17] to decrease the correlation between individual trees.

There are many adaptations of random forests exist for different tasks [21], such

as classification, regression, semi-supervised learning and clustering, as well as for

object detection and localization [36].

Maximum margin properties of random forests The important result

concerning random forests is its maximum margin properties [79] in classification

task.

Firstly, let us consider training procedure for the random forest. During training,

the parameters of the nodes of each tree, as well as the predictors, are trained. To
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do so, the training set (or its part, in case bagging is used) is propagated down

the tree and recursively split at each internal node, i.e. let the set Si reach the

node Ri — then it gets split into two parts: SLi and SRi , each propagated down

to the corresponding sub-tree. At each internal node, the parameters of a binary

classifier are determined to optimize some goodness of split criterion. As proposed

in [7], parameter vectors are randomly sampled and evaluated against the selected

criterion, which allows to generate uncorrelated trees, provided that the parameter

space is sufficiently large.

Goodness of split criterion is usually defined as a difference between a local score

L(·) computed on the training set in the node R versus the same score computed

on the split set. The score typically measure the purity of a node with respect to

class labels. For the task of classifying the samples with a discrete finite set of

labels, i.e random variable Y ∈ Y = 1 . . . C, entropy is often used:

H(Y ) = −
C∑
i=1

P (Y = i) logP (Y = i) (4.11)

Another common purity index is Gini index:

G(Y ) =
C∑
i=1

P (Y = i)(1− P (Y = i)) (4.12)

Consequently, the goodness of split is defined as

I(S,SL,SR) = L(S)−
∑

i={L,R}

|S i|
|S|
L(S i) (4.13)

where L(·) is either H(·) or G(·).

It is easy to see, that recursively splitting the training set is in fact a greedy

optimization of some (unknown) loss `(·) on the whole training set. The following

theorem provides the connection between the recursively optimized cost and the

general loss being optimized [79]:

Theorem 4.3. Let us define a multi-valued function g(x) =
(
g1(x), . . . , gC(x)

)T
;

the function is called a margin vector if:

∀x :
C∑
i=1

gi(x) = 0

Then, given a margin maximizing loss function `(gy(x)), the local score for a

decision node R is defined as L(R) =
∑C

i=1 pi`(pi −
1
C

)
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The direct consequence of this theorem is that entropy score minimizes negative

log-likelihood of the data, while Gini index is related to the hinge loss function.

Prediction of a random forest and different split functions The

prediction of random forest is formed by the leafs of individual trees. Whenever

a sample reaches a leaf j, the corresponding predictor hj(x,θk), stored at this leaf

(note, that notation hj(x,θk) is used because in practice the predictor depends solely

on the training set, while the leaf index does depend on x). The prediction of a

tree itself then coincides with the leaf prediction: h(x,θk) = hj(x,θk).

For the classification problem, where Y = {1, . . . , C}, the prediction is usually

constructed as a histogram of the training samples’ classes, that are gathered in

each leaf after propagating the training samples through the tree, i.e.

hj(x,θk) =
(
pj(x,θk)(1) . . . pj(x,θk)(C)

)T
(4.14)

h(x,θk) = hj(x,θk) =
(
pk(1|x) . . . pk(C|x)

)T
(4.15)

The prediction of the forest is formed from the predictions of each tree as:

h(x) =
1

K

K∑
k=1

h(x,θk) =
(
p(1|x) . . . p(C|x)

)T
(4.16)

Finally, the predicted class is selected as y∗ = argmaxc p(c|x).

The typical node-level binary classifier is a threshold function, for example, f(x, i, τ) =

xi − τ (therefore, θIk = (i, τ), and the binary decision is defined by the predicate

f(x, i, τ) > 0).

In our work, we use a slightly more advanced function f(x, i1, i2, w1, w2) = xi1w1 +

xi2w2 − 1 (θIk = (i1, i2, w1, w2)).

4.2.2.2 Clustering with random forest

Clustering is directed towards finding structures in data, which is equivalent to

distinguishing between the given data and the data having same marginal dis-

tributions but no correlations between different dimensions [110]. We therefore

create an artificial training dataset, containing the training data, which is ment

for clustering, in one class, and the generated data in another class. The latter

is created from the training data as following: given N samples in the training

dataset T , for each of D dimension of the feature space we randomly sample with
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replacement N samples jd ∈ 1 . . . N, d ∈ 1 . . . D; consequently, the vectors of the

second class are then formed as x =
(
x1
j1

x2
j2

. . . xDjD

)T
.

Afterwards, a random forest with many decision trees (we used 1000 trees in our

experiments) is trained for two-class classification problem.

One of the random forest features is that in some sense similar samples tend to

fall within the same leafs during training. This can be characterized by so-called

proximity matrix P of size N ×N :

Pij = Pji =
|{m|xi,xj ∈ Lmk }|

K
(4.17)

Here Lmk is the set of all samples x, that end up in the leaf k for the decision tree

m.

The proximity matrix P can be regarded as a similarity measurement and therefore

can be used as an input for a clustering algorithm. We transform the proximity

matrix to a distance measure mP (i, j) =
√

1− Pij.

The distance measure proposed above is in fact not a metric, and therefore a

suitable clustering algorithm is required.

We chose to use hierarchical clustering [48] to cluster the data based on the pro-

duced similarity measure. For hierarchical clustering, we use complete linkage to

aggregate data into a cluster tree. We find the level at which the cluster tree

should be cut, by setting the required number of clusters K.

4.3 Proposed approach

We propose to improve sign language classification using two main ideas.

Firstly, since a hand sign can have very different appearance when seen from a

different view (see Fig. 4.3), we propose to use rotation-, translation- and scaling-

invariant image features to reduce intra-class variation. Such features exist for

3D point clouds, which can be derived from the depth data, delivered by a depth

sensor. The overview of the state-of-the-art features for object recognition is pre-

sented, for example, in [6]. We chose to use the ensemble of shape function (ESF)

descriptor [132], since it is translation-, rotation- and scale- invariant, and can be

computed in real time.
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Figure 4.3: Difference in appearance of the sign ’P’ depending on the view
(the new dataset).

Secondly, we propose to use a multi-layered random forest (MLRF) for classifica-

tion (Fig. 4.5). The intuition behind this approach is to firstly discover the groups

of similar feature descriptors using clustering and then for each group train a sep-

arate classifier that can better distinguish the classes withing this group. Ideally,

each group contains less classes then the original set.

There are several advantages of using MLRF:

• Potentially higher accuracy: Due to the usage of two levels of forest,

averaging happens between the trees on the first level, and therefore the

error already made in some trees is not propagated to the second level.

The second-level random forests are trained on clusters containing much

less variation then the initial training set, and therefore a smaller forest is

required to make classification robust.

• Smaller training time and memory consumption: Since random forest

consists of binary trees, for each node the training parameters should be

stored, the memory size to store the forest increases exponentially with the

depth of the forest. Since MLRF contains much less nodes, the memory

consumption is reduced drastically. For example, to store a forest of depth

D = 20 with T = 10 full binary trees, where each node has 5 parameters,

the minimum amount of memory required is 560 Mb, and a forest of depth

D = 25 requires over 18 Gb memory. A MLRF having 10 forests on the

second level, and the depth of the forests on the both level equal to 10,

requires around 6 Mb of memory, and to store a MLRF with depths D1 = 13

and D2 = 12 only 26.5 Mb is needed.
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4.4 Global point cloud descriptor

ESF descriptor consists of ten histograms, concatenated together. To compute

the histograms, three functions are used. The first function D2 is the distances

between two random points in the point cloud. The second function A3 describes

the angles enclosed by two lines created by randomly sampling three points from

a point cloud. The third function D3 is defined as a triangle’s area, where each

triangle is defined by three randomly sampled points.

Additionally, each function’s result is classified into three classes, depending on the

selected random points: if a line (angle, triangle), formed by two (three) points,

is inside the point cloud (a line is consider to be inside the point cloud for 2.5D

data if it is not visible from the camera), the result is classified as the ON class,

if outside — as OFF, and finally if the line (angle, triangle) is both inside and

outside of the model, the result is classified as MIXED. Consequently, depending

on the function type and the class of the function (ON, OFF, MIXED), the results

are aggregated into 9 histograms.

Additionally, for the MIXED lines the ratios between parts of the lines lying inside

the point cloud are computed and used to form the 10 histogram.

To determine if a line lies inside or outside a point cloud, the space is voxelized

into 64× 64 voxel grid and Bresenham algorithm is applied to trace the line and

determine, if it intersects the point cloud (or lies inside or outside of it).

Each histogram has 64 bins, and therefore the whole descriptor, consisting of the

10 histograms, has the length of 640 bins.

This descriptor has the following features:

• given that the whole object is visible, it is rotation- and translation- in-

variant; additionally, the descriptor is also scale invariant, since the range

of possible values of D2, D3 and A3 is normalized before computing the

histograms;

• invariant under mirror transformation;

• it does not require unstable and time consuming normal computation;

• it is reported to be fairly discriminative [6, 132].
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Figure 4.4: ESF descriptors for the letters ’a’ and ’w’.

The hand has fairly different appearances depending on the gesture, so we treat

the sign classification problem as object classification problem. We compute the

ESF descriptor for the segmented hand point cloud. Examples of ESF descriptors

for different classes are given in Fig. 4.4.

4.5 Multi-layered random forest

... ...

class:

1st level

2d level

Figure 4.5: Multi-layered forest structure; on the level one, the forest deter-
mines the cluster of the feature vector x; on the level two, the final class label
is assigned by the forest, corresponding to the cluster label assigned on the first

level.

Clustering the data Recently several works appeared on creating multi-

layered random forest. For example, in [59] the authors use spectral clustering to

pre-cluster data and then use multi-layered random forest to perform hand parts

regression. Intuitively it is easier to distinguish between smaller number of classes,

so we pre-clustered the data to improve classification accuracy. Our goal in this

case is to produce clusters that contain much less classes then the whole training

set. We opted to use RF-based clustering technique, described in Section 4.2.2.2.

In general, we experimented with other types of clustering algorithms, such as
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(a)

(b)

Figure 4.6: (a) Data clustering results for the [100] dataset using hierarchical
clustering with K = 20 clusters. (b) Data clustering results for the synthetic
data using hierarchical clustering with K = 20 clusters. The horizontal axis
show the classes (letters) and the clusters, the vertical axes shows the number

of samples in each cluster, corresponding to the current class.

spectral clustering, applied on the ESF descriptors directly, as well as on the RF-

based proximity matrix P (see Equation (4.17)), and found that the produced

clusters to much less extent fulfil the goal of separating groups of classes.

We use less bins in the ESF descriptor for clustering, because it reduces the noise

in the computed descriptors. According to our experiments, more coarse his-

tograms already contain enough information to find similar signs, in the same

time containing much less noise. We define L as the histogram aggregation level

parameter, where L = 0 defines the full 64-bins histograms, L = 1 reduces the size

of histogram to 32 bins, level L = 2 produces 16 bins, etc.
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(a) (b) (c) (d) (e)

Figure 4.7: The depth images of the signs, forming two different clusters in
the clustering, depicted in Fig. 4.6; images 4.7(a),4.7(b),4.7(c) come from one

cluster, 4.7(d),4.7(e) — from another cluster.

Examples of clustering results are shown in Fig. 4.6(a) and Fig. 4.6(b) for the

real data from the [100] dataset and for synthetic data, containing a hand model

rendered in the poses, corresponding to the ASL signs, respectively. It can be

seen, that the clustering produces the desired result, i.e. similar signs are grouped

together in clusters and only a subset of all 24 classes constitutes each cluster. For

example, for real data the signs ’o’,’p’,’q’ are grouped together in one cluster, and

the signs ’m’ and ’n’ are grouped into another cluster; as shown in Fig. 4.7, the

depth images of these signs are quite similar and so are the descriptors.

Finally, while synthetic data clustering separates the classes almost perfectly, pro-

ducing clusters, containing only one class, real data contains much more noise and

therefore the clusters contain small portions of different classes (Fig. 4.6).

Training The multi-layered random forest (MLRF) is a random forest, con-

sisting of two layers.

To train the MLRF, we first perform clustering of the data. Initially we set the

number of clusters to K = 20. As we showed earlier, the clusters build from the

real data are noisy and contain small portions of data from many classes. Our

goal is to create clusters, containing small number of classes, therefore we prune

clusters by:

• merging small clusters to bigger clusters; we set the minimum cluster size

to 50% of the size of a class in the training data; if a cluster is smaller than

this size, for each element of this cluster we find another cluster, containing

the most elements of the same class, and merge this element to the new

cluster; due to this threshold the number of clusters is in fact determined
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automatically for each dataset. We could observe, that in case of ASL signs

classification problem, 12− 15 big clusters are formed.

• pruning by removing samples from a cluster, if the proportion of samples of

this class in the cluster is less then 10% of the cluster size.

After the data is clustered, we train the first level random forest on the aggre-

gated feature vectors. This forest assigns a cluster label to each incoming vector.

Afterwards, for each of the derived clusters, we train a separate random forest on

the full feature vectors (as oppose to aggregated feature vectors) to distinguish

between similar signs.

We define the cumulative depth of the MLRF as the sum of depths of the RF

on the first and the second layers. We also set the number of trees to be the same

for each forest in the first and the second layers.

It is important to ensure that the feature vectors and the random forest parameters

have the same scale. To do so, we re-normalize feature vectors in each cluster

before training by substructing its mean and dividing by the standard deviation.

Such re-normalization is useful, because similar vectors are clustered together, and

therefore the variance withing each cluster is much lower, then the variance of the

whole sample. The variance is derived by the classes that are contained in this

cluster, and skipping re-normalization can decrease classification performance of

the trained forest. We also exclude the dimensions, in which variance inside the

cluster is insignificant.

Testing During the testing phase, each sample is passed through the first-

level forest to determine, from which cluster the sample comes from. The first-level

forest determines the cluster label of a sample. Afterward, the sample is passed

to the corresponding forest on the second level to determine its class label.

4.6 Evaluation

We evaluate our algorithm in different settings on synthetic data, publicly available

database, containing ASL signs [100] and the depth data collected from the Intel

Creative Depth Camera. We compare the results of our method to the state-

of-the-art methods [100] and [59] in terms of classification error (the number of
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incorrectly classified samples divided by the size of the test set), training time and

memory consumption.

We use an unparallelized MATLAB random forest implementation [57]. The com-

putational times are provided for one core CPU employed in computations.

4.6.1 Synthetic data

In a natural environment, a subject’s hand position performing different signs

relative to a camera can change a lot. Therefore, using the features robust to such

changes increases the performance.

To demonstrate robustness of the ESF features, we generated synthetic data using

the hand model from [10] to create depth images of 24 static letters of ASL. For

the training set, we generated 500 images per letter, in all cases the hand was

parallel to the camera. For the test set, we applied rotations around three main

axis to evaluate the classification error versus the angle of rotation of the hand

model.

We separate rotation around the axis X and Y, forming the camera plain, and

around the camera Z axis. As shown in Fig. 4.8, the latter has no influence on

the entire performance, since the point cloud shape itself stays exactly the same.

Stronger rotation around X and Y axis causes stronger performance decrease,

since it changes point cloud appearance (see Fig. 4.3). This result shows, that

to be able to robustly recognize gestures from a different viewpoint in general the

corresponding training data is still needed. However, the rotation of a hand within

the limits of 10 degrees does not degrade classification performance significantly.

To justify the usage of the multi-layered RF, we evaluated the training time of

a conventional RF vs. the MLRF with the same cumulative depth (see Section

4.5). As can be seen, the multi-layered RF training is around 5 times faster then

a simple RF (Figure 4.9) in case K = 20 clusters are used.

Note, that the classification error for both forests is the same (Fig. 4.10) starting

from the depth D = 20. The classification error for the MLRF is a little higher for

the smaller depth. Our experiments showed that having depth less then 10 makes

the first-level forest too weak to classify the data into the correct cluster.
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Figure 4.8: Train and test error depending on rotation angle limits of the test
sample; the forest used has the number of trees T = 10 with depth D = 20.

Figure 4.9: Training time (s) needed for a simple RF and for the multi-layered
RF with T = 10 depending on the forest depth (for the multi-layered forest,

depth of the first layer is D/2, as well as the depth of the second layer).

Figure 4.10: Classification error depending on the depth of the forests.

We also evaluated the MLRF performance depending on the separation between

two layers. The optimal separation between two layers of forest in depth is ap-

proximately D/2 (Fig. 4.11).

4.6.2 Real data

The public dataset [100] The dataset contains 24 static signs from Amer-

ican sign language (ASL), performed by 5 subjects. There is a high variability in

how the people perform signs and in the relative position to the camera, although

the variability in pose is relatively low for one subject.
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Figure 4.11: Classification error depending on the separation in depth between
the first and the second layers of the forest (T = 10).

Figure 4.12: Training time depending on the depth of the forests.

To evaluate how good our method generalizes, we trained the forests on 4 subjects

and then evaluated the performance on the subject, left out of the training. In

Tab. 4.1 this is denoted as l-o-o experiment. The reported baseline error [100] for

the database is 51% for the depth data. As can be seen, the training error in these

experiments is decreased by almost 8%. Additionally, in case of using half of the

data for testing and half for training (h-h experiment), we were able to decrease

the error to 13%.

To justify the usage of the MLRF, we compare its performance to the performance

of a standard random forest. We vary the depth of the random forest and compare

the classification error of the simple RF with the MLRF and measure the training

time (Fig. 4.12 and Fig. 4.13). Since the database overall size is around 65000

of images, the MLRF achieves even more win in training time — it is around 10

times faster then the simple RF for the depth D = 20.

In [59], the performance of the shape classification for the [100] dataset is pre-

sented. In the l-o-o experiment, the achieved accuracy is 85% vs. 57% of our

method and in the h-h experiment, the reported accuracy is 97.8%. However,

the reported training time is around 4000 s per tree on a quad core PC. For our
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Figure 4.13: Classification error depending on the depth of the forests.

Table 4.1: Performance comparison on the [100] database (in all forests, T =
10) in terms of the error for h-h and l-o-o scenarios; memory consumption is

given in Mb.

method h-h l-o-o time(s) mem
GF + RF [100] 31% 51% — —-
RF (D = 20) 15% 49.1% 4485 560
MLRF (D = 20) 23.4% 50.1% 522 6.05
MLRF (D = 30) 13% 43% 1132.3 192.5

Table 4.2: Performance evaluation (MLRF) for one subject on the data from
[100] and on the data, collected with Intel Gesture Camera.

dataset [100] Intel Camera data
error D = 20 6% 22%
time (s)D = 20 212 68.77
error D = 30 2.45% 15.3%
time (s)D = 30 821 476

method, the training time for an unoptimized MATLAB version of the MLRF is

less then one thousand of seconds on one core. In one-subject experiment (i.e.,

when the classifier is trained on a training set, containing a single subject perform-

ing gestures, and the tested in recognition of the gestures, performed by the same

subject), our method shows the accuracy of 97.4% (see Tab. 4.2). Therefore, in

one-subject experiment our method has the same performance as the method in

[59], while the training times allows to re-calibrate the system for a new subject

very fast.

Evaluation on the new dataset To illustrate applicability of the recogni-

tion method to other sensors, we collected a dataset using Intel Creative Gesture

Camera [2]. The device represents a low-cost time-of-flight camera with the range
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from 10cm to 1m, maximal frame rate of 50fps and the resolution of 240 × 320

pixels (for depth data). High speed and near range make the camera potentially

useful in the field of gesture recognition.

The dataset contains 3 subjects performing 24 signs from the ASL sign language.

For each letter, we collected around 250 data frames. The purpose of this dataset

is to account for natural variation in a hand pose relative to the camera, and

therefore the participants were asked to rotate the hand relative to the camera by

30 degrees in all directions to create more variability (see Fig 4.3 for an example).

Since the data has lower resolution (240×320 vs. 480×640 pixels for the Kinect),

we expect some recognition performance decrease. Indeed, the results show (see

Tab. 4.2) some performance decrease, which we explain by low camera resolution

and high variance in hand pose.

4.7 Discussion: strengths and weaknesses of the

discriminative approach

As evaluation shows, the proposed approach has fairly good discriminative prop-

erties. However, some signs, such as ’m’ and ’n’ are not easy to distinguish. On

the other hand, these signs are fairly similar in joint angles space as well, and

therefore inability to distinguish between them should not present a problem, if

the proposed approach is used as an initialization for the subsequent pose refine-

ment using a model-based approach. The main question to address here is how to

build a representative set of the initial poses (classes).

Therefore, in the next chapter we provide the method and the experimental results

on combining both the discriminative and generative approaches.





Chapter 5

Combining discriminative and

generative approaches

5.1 Introduction

In the previous sections, we discussed two main approaches to hand pose estima-

tion: generative and discriminative. While the discriminative approach performs

well in a controlled setting with a small number of pose classes, its performance

degrades significantly, as soon as the number of classes increases or as soon as

the pose classes become more visually similar. Consequently, it cannot be used

to discriminate between a significant number of poses with the goal of full DoF

hand pose estimation, since there is always a tradeoff between the precision of the

estimated pose and the performance of the classifier. On the other hand, genera-

tive approach performs for the task of continuous full DoF hand pose estimation,

provided, however, a good initialization. We therefore propose to combine both

approaches.

To do so, we cluster the available hand point clouds in appearance space, and

then refine the clusters in joint angles space to obtain easily distinguishable clus-

ters, each cluster containing hands in roughly the same poses. Each cluster has a

corresponding pose in terms of joint angles, associated with it. We then train a

classifier to distinguish between the clusters. Finally, we integrate the classification

into the hand pose estimation pipeline at several stages, by firstly classifying an

input point cloud to one of the earlier found clusters and using the joint angle pa-

rameters, associated with the cluster, as an initialization for the local optimization

algorithm.

93
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5.2 Obtaining the set of initial poses

To obtain a set of initial poses, we use an unsupervised clustering approach. Let

X denote the set of all global point cloud descriptors (ESF [132] descriptors, in

our case), Θ is the set of all poses, parametrized by the joint angles θ. Then, the

training set for obtaining initial poses consists of pairs (xi ∈ X ,θi ∈ Θ)Ni=1. We

Algorithm 2 Extracting pose clusters from the data.

Input: {xi ∈ X, li ∈ {1 . . . L},θi ∈ Θ}Ni=1

Output: {{xi}, l,ml}L̂l=1

. Find cluster centroids in pose space
for l← 1 . . . L do
ml ← med{θi : li = l} . select initial centroid
Il = {i : li ← l & maxk |θki −mk

l | < τ} . we set τ = 45◦

ml ← med{θi : i ∈ Il} . refine centroid
end for

. Unite similar clusters
D ← PoseDistance({ml}Ll=1) . D ∈ RL×L

for (i, j) : Dij < τ do
Ii = Ii ∪ Ij

end for
. The resulting set contains L̂ clusters

function PoseDistance({ml}Ll=1)
for i ∈ 1 . . . L do

for j ∈ 1 . . . L do
Dij ← maxk |mk

i −mk
j |

end for
end for

end function

employ the random forest-based clustering method, described in Section 4.2.2.2,

to obtain the initial cluster label li ∈ {1 . . . L} for each sample xi

We chose to compute the clustering in the appearance space instead of the joint

angles space, as in [59], since by computing clusters in joint angle space we are

risking to create clusters, that are hard to differentiate between, which, in turns,

will lead to the poor initialization during the application phase.

Ideally, we would like to obtain such clusters, that:

• contain samples that are similar in appearance within one cluster and dif-

ferent in appearance within different clusters (i.e., intracluster variation in

appearance is less then intercluster variation);
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Figure 5.1: Hand poses, obtained from clustering the training data from the
synthetic sequence [94].

• the joint angles within one cluster do not contain much variation, i.e. samples

from one cluster correspond to roughly the same pose in joint angles space.

Additionally, clustering rarely provides clean clusters, therefore some post-processing

is needed. The algorithm of obtaining the final clusters is described in Algorithm

2. Since the clusters are merged at the last step of post processing, the initial

number of clusters L set for the clustering algorithm is not important; we set

L = 10 in all experiments, and after the merging step it is reduced to L̂ = 3 or 4

clusters.

Note, that for pose initialization we use global rotation of the hand around X and

Y axis of the camera (i.e., not the camera axes), as well as joint angles, specifying

the pose. The translation is not used. We do not consider the rotation around

the camera axes, since the ESF descriptor is invariant to this type of rotation (see

Section 4.6.1 and Figure 4.8 in particular) and the initialization procedure from

Section 3.4.1 is likely to determine the in-plane rotation correctly.

After obtaining clean clusters from the training data, we use them to train a

discriminate classifier (random forest in our case), to provide a clusters prediction

at run-time. We use the pose centroids, associated with each cluster, to provide

an initialization for the subsequent local optimization.
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Figure 5.2: Comparison between FULL and FULL-ML baselines on the
synthetic sequence [94] in terms of ρ(τ)

5.3 Combining pose prediction with model-based

pose estimation

The initial pose prediction is integrated into the hand pose estimation pipeline,

described in Chapter 3 at several stages. Firstly, the ESF descriptor x is com-

puted for an input point cloud, representing a hand. The cluster label l and the

corresponding pose initialization ml is obtained using the random forest classifier,

trained as described in the previous section. At the initialization stage the posed

hand is used (instead of the default initialization pose) to find the global hand

pose and as an initial pose when evaluating the finger matching cost (3.25) from

Section 3.4.1.

Afterwards, during the refinement step (Section 3.4.2), the posed hand mesh is

used in optimization as opposed to the hand mesh in zero-pose; therefore, the cost

function from Section 3.4.2 is modified such as:

Eml
palm(ξ0, s) =

1

|Ipalm|
∑

i∈Ipalm

‖pi − vµ(i,Ĩmpalm)(ξ0, s,ml)‖2, (5.1)

Eml
fingers(ξ0, s) =

1

|Ifingers|
∑

i∈Ifingers

‖pi − vµ(i,Ĩmfingers)
(ξ0, s,ml)‖2 (5.2)

Eml
bg (ξ0, s) =

1

|Impalm|
∑

i∈Impalm

min
p∈Ωpalm

‖Pr(vi(ξ0, s,ml))− p‖2 (5.3)
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(a) (b) (c) (d)

Figure 5.3: Typical examples from the synthetic sequence, where FULL
method converges to the wrong result ((a),(c)), while FULL-ML converges

to the correct result ((b),(d)).
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Figure 5.4: Pose centroids of the four clusters extracted from the sequences
of the ICL dataset.

Finally, during the final optimization step (Section 3.4.3), the pose initialization

ml is used instead of θini as an initialization for the local optimization of the cost

function in Equation 3.35 (Section 3.4.3).

5.4 Evaluation

We evaluate the proposed approach on the same synthetic sequence [94], as in

Chapter 3, as well as on the public dataset [116]. The [116] dataset contains

annotations for hand fingertips and palm only, and the annotations are quite noisy.

Therefore, we cannot use them to obtain ground truth joint angles describing the

pose of the hand using these annotation. For the purpose of creating pose clusters,

we employ another dataset, namely ICL [119], that provides the annotations for all

hand joints. The usage of a different dataset for training and for testing presents

an additional challenge, since the recording of the datasets were done in different
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settings with different subjects, which introduces a so-called domain shift (see

Appendix for a more detailed explanation).

To obtain the joint angles representation for ground truth annotations, that would

be valid for our hand model, we directly fit the hand skeleton to the ground truth

joints annotations. For the evaluation, we use the same error measurements, as

described in Section 3.5.2. We further denote the combined method by FULL-

ML.

5.4.1 Synthetic sequence

On the synthetic dataset, we compare the initial model-based method FULL

(Section 3.5.2) with its enhancement FULL-ML on the previously introduced

synthetic sequence. For the synthetic sequence we set the number of classes to 4

based on the poses present in the sequence. The obtained initialization poses are

shown in Figure 5.1.

(a) (b) (c)

Figure 5.5: Illustration of the different mf (mm) error values: (a) illustraits
the complete failure (mf = 138.5); (b) illustrates the case, when the global hand
pose is determined correctly, while some fingers are mismatched (mf = 63.5);

(c) illustrates the correctly estimated pose (mf = 6.73)

In Figure 5.2, the results for the ρ(τ) are provided. As can be seen FULL-ML,

outperforms FULL significantly. Furthermore, from Figure 5.3, it is clear, that the

initialization allows to estimate the pose correctly for the cases, when the FULL

approach does not provide a good estimate of the hand pose. This is because

the hand pose on these frames is too far from the initialization pose that we use,

and therefore the optimization converges to the wrong result, while in case of the

correct initialization provided, we are able to recover the true pose.
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Figure 5.6: Comparison of all methods on the sequences of Dexter dataset
in terms of ρ(τ); notice, that for some sequences the RF-based initialization
brings significant gain (tigergrasp, random, adbadd, fingercount), while for other
sequence it is not very clear; it can be explained by the fact that these sequences

contain similar poses to the clusters that we extracted.
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5.4.2 Evaluation on the public dataset

We further evaluate the proposed method on the Dexter dataset [116], that we

already used in Chapter 3.

Dexter dataset provides annotations for the finger tips and the palm center. Unfor-

tunately, the annotations are fairly noisy and in general are not enough to obtain

good pose representation in terms of joint angles. We therefore employ another

dataset for this purpose, namely ICL datatset [119].

We firstly obtain pose representation in terms of joint angles for three sequences

of the ICL dataset by fitting the skeleton model to the hand joints annotations

provided in the dataset. We then obtain the clusters as described in Section 5.2.

Initially we obtain L = 10 clusters, but after pruning only L̂ = 4 clusters are

left. We observed that the resulting pose centroids {ml}L̂l=1 are stable with the

fixed parameters of clustering and do not change after re-running the clustering

algorithm. The obtained poses are shown in Figure 5.4. Note, that using a different

dataset for training of the classifier presents an additional challenge, since the

datasets contain different subjects and different types of motions, although both

datasets are recorded with the same ToF sensor — Intel Creative Gesture Camera

[2].

We then train a pose classifier and apply it for hand pose estimation on the Dexter

dataset, as described in Section 5.3.

The results of the evaluation in terms of ρ(τ) are presented in Figure 5.6. It can

be seen, that for some sequences the initialization brings significant gains, while

for others the gain is smaller. There are two reasons for that: firstly, the clusters

are obtained from different sequences, and consequently obtained poses might not

even occur in the sequences of Dexter dataset. For example, tigergrasp sequence

contains many poses similar to the cluster centroid in Figure 5.4(a), while flexex1

sequence does not contain similar poses, except the one depictured in Figure 5.4(c).

Secondly, for some sequences the other reason for incorrect pose estimation might

prevail, such as completely incorrect initial guess about the global pose of the

hand.

Another important thing to notice is that the improvement is visible for the median

error in the interval of [0, 20]mm for all the sequences; that can be explained by the

fact that the error less then 20mm usually means that single fingers are not fitted

precisely, while the global pose is correctly estimated (see Figure 5.5 for examples).
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This is precisely the case when using the correct initialization for the finger poses

during the final optimization step for full DoF pose estimation (Section 3.4.3)

brings the most significant gain.

Consequently, since the initialization provided by the cluster centroids does not

directly influence the global hand pose, if the global pose was incorrectly estimated

by the model-based algorithm from Chapter 3, the chances that the incorrect

global pose will be corrected through random forest prediction are low. That said,

through indirect influence of the predicted hand pose on the obtained initialization,

still some improvement might be observed (see Section 5.3 for details).

5.5 Conclusions and discussion

In this chapter we combined the generative and the discriminative approach: the

discriminative approach distinguishes between a finit set of poses, therefore pro-

viding a better initialization for the generative approach, that is based on a local

optimization algorithm. The combined approach allows to partially compensate

the weakness of the model-based pose estimation by using a better initialization

of the local optimization, and in the same time allows to determine full DoF hand

pose in the continuous (as opposed to discrete) pose space. We further showed

in multiple experiments, that the proposed approach allows to increase hand pose

estimation performance for a single frame hand pose estimation.





Chapter 6

Conclusions and future work

6.1 Summary

This work addresses the problem of full DoF hand pose estimation using a single

depth sensor. Obtaining the full DoF hand pose is becoming increasingly im-

portant for such applications as human computer interactions and virtual reality.

Furthermore, due to specifics of the problem, extensive use of time consistency for

hand pose prediction is not feasible in many applications.

Therefore, in this work we concentrate on hand pose estimation from a single

image, while many state-of-the-art trackers focus on tracking a hand over time. A

traditional approach to a non-rigid body pose estimation is derived from a non-

rigid ICP algorithm. However, the cost function employed in this approach is

highly non-convex and contains many local minima. We therefore firstly use a

simple fingertips-based heuristic to obtain an initial estimate of the global hand

pose. However, the problem of initial global pose estimate is dependent on the

correct hand pose, which is unknown. Additionally, even provided a correct global

pose, it is not sufficient to recover the full pose using a local optimization approach.

We therefore investigate a discriminative approach for hand poses classification,

which relies on the global point cloud descriptor (ESF) as a hand pose represen-

tation, classified using a multi-layered random forest. The modification allows to

increase the depth of the forest while reducing the number of nodes in each tree and

consequently reducing the training time and the required memory. The discrimi-

native approach, however, has the natural drawback that it can only differentiate
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between a finite number of poses, and its performance in general decreases as the

number of classes to differentiate between grows.

Therefore, we propose to combine both approaches, obtaining a suitable initializa-

tion for the model-based hand pose estimation by categorizing each hand shape at

run-time to one of the automatically found pose clusters. To obtain pose clusters,

we cluster the appearance features of a training dataset containing hands in differ-

ent poses; we argue, that clustering samples in appearance space instead of joint

angles space allows us to avoid deriving clusters, that are far from each other in

the joint angles space, but close to each other in the appearance space, which could

lead to difficulties in their classification at test time. We evaluate the combined

approach on the public dataset and show the improvement due to integration of

the hand pose prediction in the model-based pose estimation pipeline.

The contributions of the thesis were published in international conferences and

workshops, such as ISVC, ICCV and ECCV Workshops. The side project, de-

scribed in the Appendix, is published in CVPR.

6.2 Possible directions of future work

The proposed approach has several drawbacks and although we believe that the

pipeline is reasonable, different parts of the pipeline can be improved.

Firstly, the problem of extracting relevant initial pose clusters is still largely open.

Ideally the clustering should not only take into account the properties of the

data itself, but also the properties of the following model-based local optimization

algorithm. Even doing a joint clustering in pose and appearance space might

potentially further improve the results of both the discriminative classifier and the

final pose estimation.

Secondly, an interesting direction of research is to further specialize the discrim-

inative part to target a specific application, since for both virtual reality and

especially human computer interaction applications certain hand poses are much

more important, while recognizing other poses is mainly required for correct visu-

alization.

Thirdly, although the tracking scenario is in general not desirable, including some

temporal hints, as well as contextual hints (such as surroundings or type of the
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activity performed) is definitely a promising direction of research. Additionally,

testing multiple initial pose hypothesis should definitely improve the final result.

Finally, the question of the effect of personalized hand model used for both dis-

criminative and generative parts is still not investigated, although it is natural to

expect that a precise hand model will improve the performance of the generative

hand fitting substantially.

Additionally, the problem of reliable pose estimation of two interacting hands (or

two hands interacting with an object) remains largely unaddressed, although very

common in many scenarios.





Chapter 7

Appendix

In this thesis we mainly concentrated on the problem of hand pose estimation and

did not consider the applications, for example, understanding egocentric videos.

In this chapter, we propose the first step in this direction by developing an object

detector, which could be one of the building blocks of a video understanding

system. Furthermore, we address an important problem in object detection — the

problem of domain shift.

Essentially domain shift denotes the change in the distribution of features de-

pending on the source of data or external conditions. To be more specific, in

case of computer vision, domain shift usually happens when either the source

of images changes (for example, from a high-resolution professional camera to a

low-resolution mobile camera) or external conditions, such as lighting or weather,

change. In this case, the performance of machine learning models, trained in one

domain and applied in another, degrades significantly.

When considering object detection in egocentric videos, the common problem is

to find well-annotated data to train a reliable object detector. Furthermore, since

egocentric videos can be shot both in indoor and outdoor settings, and different

indoor environments are characterized by different lighting conditions, style, etc,

each egocentric video in fact represents a new domain, that might be slightly

different from the previously seen ones. In this setting, it is desirable to be able

to adapt the machine learning models, trained on one domain, to another domain,

in unsupervised manner.

In the next chapter, we proposed a method, that allows not only to adapt a

model from a source domain to a target domain, but rather to remember all
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previously seen domains and improving its performance gradually as the number

of the domains increases. We denote this procedure by domain expansion.

7.1 Improving an object detector via Domain

Expansion

While most domain adaptation techniques focus on applications where both train-

ing and test instances are images [65, 104], taken with conventional cameras, a

few address the problem in the context of image-to-video object detector adapta-

tion [30, 35, 107, 108, 120]. The image-to-video scenario is both compelling and

challenging. It is highly desirable to utilize image datasets for training detectors

to be used in videos, because images are easier to label and plenty of richly la-

beled datasets already exist. Obtaining a video equivalent of the ImageNet [28],

in terms of scope, would be an insurmountable task. However, there are often

significant appearance differences between images (e.g., obtained on the web) and

videos (e.g., obtained on Youtube or using egocentric cameras). Web images tend

to be of high resolution and are object-centric [28]. Videos, on the other hand,

often come at lower resolution, are not object centric and, at least in egocentric

setting, have a widely different appearance due to the quality of the sensor and

motion artifacts. Hence domain shift between images and videos is often severe

(e.g., see results in [95]).

Nearly all domain adaptation techniques assume that data is separated into well

defined discrete domains, most often a source (training) domain the the target

(test) domain, and the task is to effectively transfer learned information (or la-

beled samples) from source to the target domain. This notion of discrete domains

and focus on performance in only the target domain is somewhat of an oversim-

plification. In practice, as noted in [52], the target domain is often continuously

evolving. Further, one can argue that as object instance, appearance, lighting and

view are changing, the resulting evolution is actually an expansion of the original

domain of this object, not formation of a new or evolution of the old domain.

The difference is subtle. In continuous domain adaptation [52] (and incremental

learning [107, 108]) the goal is to continuously adapt (or learn) a fixed complexity

model to perform as accurately as possible on the arriving target batch of data.

We argue for continuously adapting the complexity of the model itself. This should

allow the adapted model to not only improve with respect to the arriving data,
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but also to at least retain its performance on the prior and future domains. We

also do not assume that data arrives in a continuously evolving stream [52].

Figure 7.1: Incremental Domain Expansion: Illustration of the the overall
proposed learning framework. First a large margin embedding (LME) detector
is built based on labeled static images from ImageNet. As unlabeled videos
arrive, detected objects are ranked based on detection confidence. Top ranked
detections are expanded into tracks and used for new class prototype learning.
Note that while a TV test sample (in red) may be too far in appearance from
the original ImageNet trained model and hence misclassified, new prototypes,
added based on tracks from videos, help to bridge the gap leading to correct

classification.

To this end we propose an incremental, self-paced inspired, approach to expanding

the domain from images to unlabeled videos. We start from a large-margin embed-

ding (LME) model [130], which we adapt to a detection task. Using this detection

model, objects in the arriving unlabeled videos are found, and tracks associated

with most confident instances are extracted (Figure 7.1 (right)). If instances from

these tracks form a cluster, they are further used to adjust the complexity of the
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model by adding new class prototypes (Figure 7.1 (bottom left)). This process of

extracting confident instances and learning expanded domain model, continues as

additional videos arrive.

Our method is inspired by the overarching goals of lifelong learning [20, 112]. We

note that our approach is related to sub-categorization, but unlike sub-categorization,

which assumes fully labeled [51] or weakly-labeled instances [20], we work in an

entirely unsupervised scenario. Further, while sub-categories, in general, do not

form any sort of coherent structure in appearance space, our model ensures that

object class prototypes form a coherent manifold, through regularization, limiting

drift in learning.

Contributions: Our main contribution is the framework for incremental domain

expansion, where complexity of an image-based object detection model is con-

tinuously adjusted to newly arriving unlabeled videos in a way that, over time,

improves the performance on the evolving video domain but at the same time

maintains (or improves) accuracy on the original image domain. Effectively, do-

main expansion, is about building a better overall detector using unsupervised

video data. As part of this larger goal we formulate a new object detection model,

inspired by the large-margin embedding (LME). We show how to extend the LME

from multi-class object categorization to multi-class object detection problem, by

introducing novel detection constraints to deal with the negative instances. We

also propose a probabilistic formulation for LME, which allows the model to per-

form intuitive confidence evaluation for test instances and a novel multi-prototype

LME formulation, that supports incremental learning. We show incremental do-

main expansion is effective in applying object detectors, trained with only Ima-

geNet, to videos, improving performance by 48% (13% through expansion) with

respect to original LME on the ADL dataset[95] and by 15% on the YTO dataset

[99].

7.2 Related Work

Domain adaptation from image to image domain: Our domain expansion

method is closely related to domain adaptation (DA), which is a statistical method

that focuses on the adaptation of an existing model in one domain (source) to a new

data domain (target). The domain adaptation can be categorized into supervised

methods [8, 65, 104], where labels are available for the samples in the target

domain, and unsupervised methods, where no label is provided [33, 38, 39, 53, 120].
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Our method relates to the latter case, as we aim to expand a model learned on

labeled images to encompass unlabeled video data. The main difference between

our method from the existing method is that, while the existing methods assume

that there exist multiple discrete domains, we view all domains as related, as in

[52], which models the source and target data on a single continuous manifold

without clear distinction between the two. Based on this assumption, our model

aims to improve on both source and target domains, while most methods care only

about the performance on a given target domain.

Adapting object detectors trained on images to videos: Among many

DA tasks, the task of adapting detectors trained on images to unlabeled video

data is a topic of particular interest, largely due to the difficulty of video data

annotation. Many models resort to a strategy that selects negative and positive

samples from the test data based on their confidence with respect to the existing

detector [108, 120, 129]. In [129], the baseline detector with low threshold generates

positive/negative samples for the new vocabulary tree-based classifier that then

decides on the label. Our model also leverages an existing model to select test

samples, but in our case, the model is not fixed, but is allowed to expanded in

complexity. We also aim to not only improve on the video domain, but also

maintain, or improve, performance on the image domain. When deciding which

detections to add to the training pool, many works further exploit the temporal

continuity of frames in the video data [30, 108, 120], such as [108] which utilizes

tracks, and leverage the matches between tracks and confident detections from a

baseline detector as additional positive samples.

Perhaps the closest works to ours are [120] and [30]. Tang et.al.. [120] proposed

a self-paced method that incrementally adds positive samples, in the order to

increase classification performance. Our self-paced learning algorithm is similar,

but we expand the model instead of retraining it. Donahue et.al.. [30] proposed

a method that incorporates an instance similarity graph to regularize the model,

and applied it to the case of video data, where the distance of the instances

within a track were utilized as the auxiliary instance similarity. Our method also

leverages such similarities between entities, but it models group(video)-to-category

similarity rather than instance-to-instance similarity, and the similarity graph is

not given but is implicitly built from the order the videos arrive. Some works

attempt the opposite of using weakly supervised YouTube videos to train image

object detectors [99].



112 Chapter 7 Appendix

Self-paced learning: Our ranking of the unlabeled video samples based on their

classification confidence, is related to self-paced learning [66], where the data points

are presented in a meaningful order, which is often determined by the difficulty of

classifying a given sample. In the original work of [66], self-paced learning was used

to learn latent variables, and in [78], it was used to discover object categories from

clustered image patches. Self-paced learning was also used in Tang et.al.. [120] to

incrementally add in unlabeled samples into the labeled pool. Our work leverages

a similar selection method, but our model considers the multi-class case while [120]

considers the single-class model.

Lifelong learning: The idea of lifelong learning, which is a continuos learning

that transfers the knowledge learned at earlier learning stages to later stages, was

first conceived in [121], and has become an active topic of research following the

success of Never Ending Language Learner (NELL) [19]. NELL is an incremental

model that learns about new concepts and rules by continuously observing tex-

tual input. Similar work has been proposed for the case of image data in [20].

Our work can be also viewed as an instance of lifelong learning, since the model

is incrementally improved leveraging continuous stream of inputs, and the new

subcategory prototypes are learned in the context of existing category prototypes.

Large-margin manifold embedding models for recognition: Our model

builds on the large-margin (class) embedding (LME) [12, 130, 131], which aims

to learn a low-dimensional space that is optimized for class discrimination. LME

recently gained popularity, largely due to it’s ability to scale to many class labels,

which is becoming increasingly important with image classification becoming more

focused on large-scale datasets. While there are many variants of LME, the one

that is particularly relevant is [87], which presents a probabilistic multi-centroid

model, that bares similarity to ours. However, the k-centroids for each class in [87]

are obtained from k-means clustering on the original labeled samples, while in our

model the multiple centroids are incrementally added as the model expands with

new videos.

7.3 Incremental Learning Framework

We consider the general problem of applying an object detector, trained on images,

for detecting objects in videos in a completely unsupervised manner.
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To formally state the problem, given a training image set DI = {xi, yi}NIi=1, such as

ImageNet [28], that has NI labeled instances, where xi ∈ RD is a D-dimensional

feature descriptor of an image patch containing an object and yi ∈ {1, . . . , C} is

the object label, we propose to first learn a large-margin embedding (LME)-based

object detection model. The choice of proposing an embedding-based detection

paradigm over the more traditional SVMs or latent SVM, stems from flexibility

and scalability of such models, their ability to generalize with little to no data [87],

as well as their state-of-the-art performance on large-scale categorization tasks [34].

Once the initial LME detection model is trained (Sections 7.3.1 and 7.4.1), we

want to utilize unlabeled data from a sequence of arriving videos to incrementally

improve the learned model. We propose an incremental learning framework that

iteratively refines and adds complexity to the model as it is needed and consists

of the following steps:

1. From each video we extract object proposals {bi}Nvi=1, using [124], and corre-

sponding feature vectors {xi}Nvi=1.

2. We evaluate each xi using the proposed probabilistic multi-center LME

model to obtain a set of detections, labels and corresponding confidences

Dv = {xi, ci, p(y = ci, d = 1|xi)}Nvi=1 (see Section 7.4.5)

3. We extend the set of detections by exploiting temporal consistency (see Sec-

tion 7.4.5).

4. Finally, we update the model using selected samples, as described in Section

7.4.4.

This process continues while videos arrive. The framework is illustrated in Fig-

ure 7.1.

7.3.1 Background: Large Margin Embedding

Large-margin embedding [130] is a method for classification that projects samples

into a low-dimensional space in a way that achieves separation among instances

belonging to different classes, with respect to Euclidean metric.

As above, we denote the labeled training data1 as D = {xi, yi}Ni=1. The goal of

LME is to learn a linear low-dimensional embedding defined by a projection matrix

1We drop I subscript to avoid clutter.
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W ∈ Rd×D (d� D), together with class prototypes uc ∈ Rd, c = {1 . . . C}, in the

embedding space, such that a sample projected into this low dimensional space is

closer to the correct class prototype than to all other prototypes.

Let us denote d(zi,uc) as a similarity measure between a projected feature vector

zi = Wxi and a prototype uc. The LME objective described above can be encoded

by a positive margin between similarity of zi and its true prototype and all the

other prototypes:

d(zi,uyi) + ξic ≥ d(zi,uc) + 1, (7.1)

i = {1 . . . N}, c = {1 . . . C}, c 6= yi,

where ξic play the role of slack variables that we want to minimize. The learning

of the optimal W and {u1, . . . ,uc} can be formulated as minimization of:∑
i,c:c 6=yi

ξ+
ic + λ‖W‖2

F + γ‖U‖2
F , (7.2)

where U us the columnwise concatenation of prototypes uc, ξ
+ is defined as

max(ξ, 0) and λ and γ are weights of the regularizers. Here ‖ · ‖F denotes Frobe-

nius norm. The label of a new sample x∗ at the test time can then be determined

by comparing the similarity of this new sample to prototypes in the embedding

space:

y∗ = argmax
c
d(z∗,uc) = argmax

c
d(Wx∗,uc). (7.3)

In the initial formulation [130], L2-based similarity measure was used, however,

we employ the scalar product to measure similarity in the embedding space

d(zi,uc) = dW (xi,uc) = 〈Wxi,uc〉. (7.4)

7.4 Multi-prototype LME for object detection

The initial LME model is designed for the object classification task. We extend the

LME formulation to be applicable for object detection and provide the correspond-

ing probabilistic interpretation. We also derive a multi-prototype formulation and

present an algorithm for incremental learning.
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7.4.1 LME model for object detection

The trivial way to extend the LME model for object detection is to assume exis-

tence of a non-object class. However, this would lead to modeling of this non-object

class in LME using a non-object prototype. Since the variability in the appearance

within the non-object class is much higher then within any other class, this may

not be ideal.

Hence, instead, we define a patch as not containing an object of interest if it is

sufficiently dissimilar to all known object class prototypes. This can be expressed

as a set of additional large-margin constraints in the optimization:

dW (x0
j ,uc) ≤ 1 + ξj0, c = {1, . . . , C}, ξj0 ≥ 0, , (7.5)

that require the similarity to be low (distance to object prototypes high) for the

non-object samples. Here x0
j , j = {1, . . . , N0} are patches, that do not contain

any object of the target classes, and ξj0 are positive slack variables.

We note that for our specific similarity measure this actually pushes negative

samples towards the center of the embedding space and effectively amounts to

feature selection (or suppression) between all positive and a negative class; for

other metrics, e.g., a Euclidian metric, the geometric interpretation would be

different.

The training objective is changed respectively to:∑
i,c:c 6=yi

ξ+
ic +

∑
j

ξ+
j0 + λ‖W‖2

FRO + γ‖U‖2
FRO. (7.6)

The prediction for a new feature vector x∗ is formulated as follows:

y∗ =

 argmaxc dW (x∗,uc), dW (x∗,uc) ≥ τ,

c0, ∀c = 1, . . . , C : dW (x∗,uc) < τ,
(7.7)

where τ is chosen based on the precision-recall trade-off, and c0 denotes a non-

object class.

Numerical optimization: Optimization in Equation (7.6), with the correspond-

ing constraints, is bi-convex in W and U . We optimize Equation (7.6) using al-

ternating optimization, where we alternate between solving for U and W while

keeping the other variable fixed, using stochastic gradient descent. The alterna-

tion process is repeated until the convergence criterion is met2.

2‖U − Uprev‖2 + ‖W −Wprev‖2 ≤ ε
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7.4.2 Probabilistic LME interpretation

Estimation of confidence of the detector will be critical in ordering and selecting

samples for domain expansion. In [120] authors use the value of the loss (or

margin) as confidence. We, however, are dealing with a multi-class problem, so

instead we derived the following probabilistic interpretation of the LME. We define

the posterior probability of a sample that is considered to be a detection to belong

to class c, by mapping the similarity between the projected instance and a class

embedding to the range between 0 and 1 as follows:

p(y = c|d = 1,x) =
edW (x,uc)/2σ2∑C
i=1 e

dW (x,ui)/2σ2
. (7.8)

where d = 1 indicates that a sample is considered to be a detection.

In this setting, the probability of x being a detection can be formulated as follows:

p(d|x) =
1

1 + ead
m
W (x)+b

, (7.9)

where dmW (x) = maxc dW (x,uc), and a, b are parameters, serving the same purpose

as τ in (7.7). Therefore, given a sample x∗, the probability of detection of an

instance of a class c is defined as:

p(y∗ = c, d|x∗) = p(y∗ = c|d,x∗)p(d|x∗), (7.10)

that is interpreted as a detection confidence for a class c.

7.4.3 Multi-prototype LME

Domain shift is accompanied by change in feature distribution in the original space

and consequently, in the low-dimensional embedding space. This shift causes the

performance decrease of a detector and to cope with such domain shift, we need

a more flexible class representation in the embedding space. Following the work

of [87], we learn several, Kc, prototypes for each class c to represent multimodal

feature distribution across domains: Uc = [u1
c , . . . ,u

Kc
c ]. Then, the similarity

score between an instance and a class can be computed using the similarities to

the different prototypes of the same class:

d̃W (xi, Uc) = f(dW (xi,u
1
c), . . . , dW (xi,u

Kc
c )). (7.11)

Different choices exist for the function f(·). However, in spirit of LME, f(·) =

maxk dW (xi,u
k
c ), seems like an appropriate choice.
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We further replace max(·) function by its smooth approximation SαW (xi, Uc) to

simplify the numerical optimization of Equation (7.5)-(7.6):

SαW (xi, Uc) =

∑Kc
k=1 dW (xi,u

k
c )e

αdW (xi,u
k
c )∑Kc

j=1 e
αdW (xi,u

j
c)

, (7.12)

where the greater the parameter α, the better the function approximates max(·).
The optimization problem for multi-prototype model can be formulated in the

same manner as the LME model with detection constraints in Equation(7.5)-(7.6)

by replacing dW (x,uc) with Sα(xi, Uc).

7.4.4 Incremental multi-prototype LME model expansion

The multi-prototype LME model is naturally suitable for domain expansion. As

the model encounters new data, which is not well approximated by the current

prototypes, we can add new prototypes incrementally to more precisely model

the feature distribution in the embedding space. The problem of learning a new

prototype then can be formulated within the LME framework as the following

incremental learning procedure.

Suppose we want to expand the prototype-based representation for the class cn.

When adding a new prototype ucn to the model it should satisfy two properties:

(i) the new prototype should be representative and discriminative for its class; (ii)

it should not cause misclassification of samples from other classes, i.e., it should be

sufficiently far from existing category prototypes for other classes. More formally,

the optimization problem can be formulated as follows:

minimize:∑
i,c:yi=cn,
c 6=cn

ξ+
ic +

∑
i:yi 6=cn

ζ+
i +

∑
j

ξ+
j0 + ν‖ucn − u0‖2+

+ η‖W −W0‖2, (7.13)

subject to:

SαW (xi, Ũcn) + ξic ≥ SαW (xi, Uc) + 1, yi = cn (7.14)

SαW (xi, Uyi) + ζi ≥ SαW (xi, Ũcn) + 1, yi 6= cn (7.15)

SαW (x0
j , Ũcn) ≤ 1 + ξj0, (7.16)

where W is a newly learned data embedding, W0 is the existing data embed-

ding, u0 is the original prototype for the given category, and Ũcn = [Ucn ,ucn ].

Equation (7.14) is a softmax LME constraint between the new category and the
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existing categories, Equation (7.15) is the same constraint between each of the

existing categories to the new category embedding, and Equation (7.16) is the de-

tection constraints. The parameters ν and η are the regularization weights3 which

determine how similar the newly learned embeddings should be to the original

category and data embeddings. The optimization problem in Eq (7.13)-(7.16) is

non-convex, but provided with a good initialization stochastic gradient descent

allows to obtain reasonable local minima.

The incremental update is especially beneficial, when not all data is available and

the newly arriving data has a different, or evolving, feature distribution. However,

to apply the derived model, the remaining core question is how to select the

samples from unlabeled videos for the incremental model update; we address this

in the next section.

7.4.5 Discovering objects from unlabeled video

Initial detection set extraction: Given an unlabeled video, we first extract the

initial set of detections by computing object proposals {bi}Nvi=1 and their features,

using off-the-shelf proposal method [124]. Then we extract visual feature xi for

each object proposal i and evaluate them using the multi-prototype model to

obtain probability score for each proposal. Then a set of detected objects Dv =

{xi, ci, p(y = ci, d = 1|xi)}Dvi=1 could be formed by selecting the object proposal

i, s.t. p(y = ci, d = 1|xi) > ν, where ν is some threshold; ν = 0.6 allowed us

to obtain fairly good results in our experiments. The obtained set of detection

Dv can be then used as new positive training samples to train the new category

prototype.

Tracks formation: To obtain more samples, we further exploit the temporal

consistency, i.e., if object is detected in one frame, it is likely to persist for a

number of frames at relatively similar position and scale.

Specifically, we employ idea proposed in [120] and extract tracks from a video using

the KLT tracker [85, 122]. After computing a set of confident object proposals Dv
with the corresponding bounding boxes {bi}|Dv |i=1 , for each object proposal bounding

box bi, we select the longest track ti that intersects it. We then compute the

relative positions of the object proposals that intersect this track ti across frames,

and at each frame select the proposal that has the highest PASCAL overlap4 with

3In practice, we set η to a high number to prevent model drift.
4overlap(b1, b2) = area(b1∩b2)

area(b1∪b2)
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Table 7.1: Detection performance for each class and all categories averaged
by mAP on the ADL dataset, for the baselines and our method’s variants. We
also report the detection results on the ImageNet subset (ImNet) containing the

8 classes from the ADL dataset.

bottle fridge mwave mug/cup oven/stove

DPM[95] 9.8 0.4 20.2 14.8 0.1
GK [38] 2.11 1.77 41.19 14.70 19.57

LME 0.00 0.28 3.07 0.00 0.52
LME-A 1.93 3.42 40.30 18.34 27.84

LME-D 1.69 1.63 39.87 13.06 19.33
LME-DT 1.85 1.76 52.37 15.91 24.54
IDE-LME 2.04 2.73 56.69 21.86 29.94

soap tap tv av. ImNet

DPM[95] 2.5 0.1 26.9 9.35 −
GK [38] 0.20 1.62 60.67 17.73 −
LME 0.03 0.55 3.73 1.02 −
LME-A 0.37 1.46 53.26 18.36 76.96

LME-D 0.35 1.67 40.64 14.78 78.91
LME-DT 0.42 2.41 56.16 19.43 −
IDE-LME 0.25 2.26 59.53 21.91 79.23

bi swept across the track. In this way we obtain a set of object proposals for each

bi, which constitute a track. To obtain track score, we evaluate them and accept

track if more then half of the detections on the track have p(y∗ = c, d = 1|x) > ν.

If a track is accepted, we add all the samples from the track to Dv.

7.5 Experiments

We validate our method on real-world image and video datasets. For image

dataset, to train the base detector, we use the subsets of the ImageNet [28] dataset

(ca. 600 images per class) with the corresponding classes. We use a disjoint subset

of the ImageNet [28] (ca. 400 images per class) to report detector performance on

images before and after incremental domain expansion where appropriate.

We test our method on the Activities of Daily Living (ADL) [95] and the YouTube

Objects (YTO) [99] datasets5:

ADL Dataset: The ADL [95] dataset contains 20 first-person videos, recorded

by different subjects. This is a challenging dataset and straightforward application

5Note that our domain expansion method is entirely unsupervised and the annotations on
the target datasets are only used for evaluation.
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Figure 7.2: Illustration of data and detection results. Top row: example
of images for ImageNet, used for training of the initial model. Bottom row:
instances of detections that were correctly detected using IDE-LME. Notice the

significant differences in how objects appear in ImageNet and ADL dataset.

of the detector learned on static images does not work well [95], since the objects

suffer from large viewpoint/scale variations and occlusions due to interactions.

Each video in the ADL dataset has bounding box annotations for objects from 48

classes. We select a subset of the 8 most frequently encountered classes, namely

bottle, fridge, microwave, mug, oven, soap liquid, tap, and tv, to test our model.

YTO Dataset: The YTO [99] dataset consists of the collection of internet videos,

each video containing a single object out of 10 classes: aeroplane, bird, boat, car,

cat, cow, dog, horse, motorbike, train. The dataset is divided into train and test

parts, where the test portion contains a single frame with bounding box annotation

of the target object per video. For the evaluation we used the test part of the

dataset only; it contains 15− 60 videos for each class.

We use the following methods as baselines:

DPM: Performance reported in the papers [56, 95] obtained using Deformable

Part Model [32].

GK: An approach of [38] for unsupervised domain adaptation. We first select

samples from Dv and use them for learning feature transformation between the

source and the target domains. We then use the learned mapping to reproject all
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Figure 7.3: mAP as a function of videos seen (x-axis) for subset of classes in
ADL dataset [95]; the mAP is average across videos used for expansion and the
rest of the videos in the ADL dataset; the increase of mAP illustrates, that as
the model gains complexity, the performance improves also on unseen videos.

features from the target (video) domain to the source (image) domain and perform

detection in the source domain.

LME: A baseline LME model that formulates a prediction using Equation (7.7).

LME-A: A baseline doman adaptation (DA) approach that adapts to video do-

main in a batch (without increasing model complexity): we select confident sam-

ples, as described in Section 7.4.5, and re-train our model using baseline LME

detector as initialization.

To show the performance gain obtainable by each step of our algorithm, we im-

plement the following variants:

LME-D: LME with the detection constraints in Equation (7.5).

LME-DT: LME with the detection constraints and exploiting temporal consis-

tency by using tracks.

IDE-LME: Our full probabilistic multi-centroid LME model with detection con-

straints, that is incrementally expanded with the unlabeled data.

We use Caffe features [55], which are deep image representations obtained at layer

fc7 of a convolutional neural network, for all LME baselines and our variants.
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Table 7.2: Detection performance (mAP) for each class and mean mAP across
all classes on the YouTube Objects (YTO) dataset and the performance of the

final model on the ImageNet (ImNet).

aero bird boat car cat cow

DPM[56] 30.79 10.46 0.97 48.62 18.30 33.69
GK[38] 40.05 23.16 24.44 32.62 24.26 38.26

LME 35.00 24.13 16.08 27.41 4.30 31.18
LME-A 39.78 35.18 35.20 48.67 15.02 37.90

LME-D 29.61 22.91 32.39 25.53 18.63 38.94
LME-DT 31.67 21.83 40.13 25.94 17.59 41.44
IDE-LME 33.07 21.40 42.26 34.49 18.33 46.92

dog horse mbike train av. ImNet

DPM[56] 13.67 26.78 35.85 23.98 24.31 −
GK[38] 24.23 17.75 36.27 10.69 27.17 −
LME 2.12 0.23 6.83 10.30 15.75 −

LME-A 30.70 25.86 28.93 10.82 30.80 79.91

LME-D 15.55 9.22 31.47 12.09 23.63 83.16
LME-DT 15.47 11.74 30.56 13.67 25.00 −
IDE-LME 17.24 11.83 34.73 12.50 27.28 83.20

7.5.1 Quantitative Evaluation

We evaluate object detection performance of the baselines and our models us-

ing mean average precision (mAP) [31] on ADL (Table 7.1) and YTO (Table 7.2)

datasets. For both datasets we observe that while the baseline LME model trained

on the images without detection constraints performs very poorly, adding detec-

tion constraints results in performance on par with DPM baselines. Incorporating

temporal consistency using tracks (LME-DT) improves the performance by over

31% with respect to LME-D for ADL dataset (5% for YTO dataset). Incremen-

tally updating the model (IDE-LME) using our approach brings further significant

performance improvement of 13% (9% for YTO dataset) in comparison with LME-

DT, leading to overall 48% and 15% improvement over LME-D on ADL and YTO

dataset respectively. The smaller performance gain on YTO dataset can be at-

tributed to the fact that for YTO dataset, feature distribution is similar to that

of images as each video contains one or few objects in typical viewpoints; another

reason is sparse annotations of the YTO dataset, that limit the ability to estimate

the performance improvement.

Note that the other baseline, GK, outperforms IDE-LME on the classes with

high initial precision (e.g. tv and microwave for ADL dataset), while performs

significantly worse on the other classes. We believe that such classes effectively

determine GK transformation, while the change in the distribution of other classes
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Figure 7.4: Top row: examples of the correctly detected objects. Bottom
row: examples of the incorrect detections (from left to right), due to incorrect

classification, inaccurate bounding boxes, or incorrect labels.

is not taken into account. Another trend seen on both datasets is that the initial

model should have enough precision to be able to select samples from the videos

for the update to work effectively, otherwise a slight performance drop can occur

(soap liquid class in ADL dataset or cat class in YTO dataset).

Above experiments suggest that increased complexity of the model captures pre-

viously unseen variations in the object class appearance. To support this claim

and to show that our model also improve on the original image domain, we report

classification results on the test split of ImageNet dataset. In Table 7.1 and 7.2

we observe small but positive gains on the ImageNet, over LME-D. This suggests

that newly added samples do not only improve the detection performance for the

test video data, but also improve the classification performance on the source im-

age data. Note that our domain adaptation (DA) baseline LME-A improves on

videos but degrades on source image domain (a typical behavior for DA), on both

datasets.

The performance of the model generally increases with more observed videos,

but asymptotes after first 10 iterations for ADL dataset (see Figure 7.3). This

early performance saturation might be due to high appearance similarity among

objects in the target domain (egocentric videos). YTO dataset shows a similar
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Figure 7.5: The visualization of the learned (expanded) multi-center LME, on
the ADL dataset [95], projected into the 3D space; a group of prototypes of the
same color represents a class; the initial prototypes are marked with additional

circle around them.

trend. However, if target domain constantly changes or evolves over time, the

performance might continue to increase.

7.5.2 Qualitative Analysis

Figure 7.2 show examples detections on the ADL dataset. Notice the significant

difference between the source domain and the target domain. Figure 7.5 is the

3D visualization of the learned 8-dimensional embedding, where each category is

represented as a set (manifold) of category prototypes which were expanded over

the learning process. We observe that for some object classes, such as mug, the

later added prototypes are placed far from the original center, that represents

feature distribution change between the mug class in the ImageNet dataset and in

the ADL dataset.

Figure 7.4 shows the detection examples on the YTO dataset, obtained using IDE-

LME. Note that object is often identified correctly, but the bounding box is either

too small or too large. We attribute this to the fact that background comprises

large portion of ImageNet images, which might rank loose detections higher than

tight ones.
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7.6 Conclusion

We have tackled the problem of domain expansion, where the scope of the object

detector learned on the initial image labeled training set is incrementally expanded

to cover incoming unlabeled videos. To this end, we have developed a novel on-

line probabilistic multi-center large margin embedding model with detection con-

straints, where each object category is represented with multiple prototypes, which

incrementally increase in number as self-paced learning algorithm selects confident

samples from the incoming unlabeled data to add. Experimental validations on

the ADL and YTO public datasets shows that the proposed model significantly

improves the detection performance not only on the target unlabeled videos, but

also on the source image domain. Our incremental domain expansion model could

serve as a lifelong learning system for object detection—as the model expands to

encompass continuous stream of unlabeled new video data. One potential problem

that might arise is model drift. We have not seen this in our experiments and our

regularization is designed to prevent this, but it is possible that such drift may

arise with much larger scale datasets. As future work, we plan to explore a human-

in-the loop system with active learning to prevent such drift, such that model can

essentially self-train itself, with infrequent human intervention only triggered by

the model’s request.
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