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ABSTRACT OF THESIS

Per-Pixel Calibration for RGB-Depth Natural 3D Reconstruction on GPU

Ever since the Kinect brought low-cost depth cameras into consumer market, great interest
has been invigorated into Red-Green-Blue-Depth (RGBD) sensors. Without calibration, a
RGBD camera’s horizontal and vertical field of view (FoV) could help generate 3D recon-
struction in camera space naturally on graphics processing unit (GPU), which however is
badly deformed by the lens distortions and imperfect depth resolution (depth distortion).
The camera’s calibration based on a pinhole-camera model and a high-order distortion re-
moval model requires a lot of calculations in the fragment shader. In order to get rid of
both the lens distortion and the depth distortion while still be able to do simple calcula-
tions in the GPU fragment shader, a novel per-pixel calibration method with look-up table
based 3D reconstruction in real-time is proposed, using a rail calibration system. This rail
calibration system offers possibilities of collecting infinite calibrating points of dense dis-
tributions that can cover all pixels in a sensor, such that not only lens distortions, but depth
distortion can also be handled by a per-pixel D to ZW mapping. Instead of utilizing the
traditional pinhole camera model, two polynomial mapping models are employed. One
is a two-dimensional high-order polynomial mapping from R/C to XW/YW respectively,
which handles lens distortions; and the other one is a per-pixel linear mapping from D to
ZW , which can handle depth distortion. With only six parameters and three linear equa-
tions in the fragment shader, the undistorted 3D world coordinates (XW , YW , ZW ) for every
single pixel could be generated in real-time. The per-pixel calibration method could be
applied universally on any RGBD cameras. With the alignment of RGB values using a
pinhole camera matrix, it could even work on a combination of a random Depth sensor and
a random RGB sensor.
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Chapter 1 Introduction

1.1 RGBD Cameras

A Red-Green-Blue-Depth (RGBD) camera is a sensing system that captures RGB images

along with per-pixel depth information. Usually it is simply a combination of a RGB sensor

and a depth sensor with an alignment algorithm. For instance, the PrimeSense’s technology

had been originally applied to gaming, with user interfaces based on gesture recognition

instead of using a controller (also called Natural User Interface, NUI [8]). PrimeSense was

best known for licensing the hardware design and chip used in Microsoft’s first generation

of Kinect motion-sensing system for the Xbox 360 in 2010 [9]. The PrimeSense sensor

projects an infrared speckle pattern, which will then be captured by an infrared camera in

the sensor. A special microchip is employed to compare the captured speckle pattern part-

by-part to reference patterns stored in the device, which were captured previously at known

depths. The final per-pixel depth will be estimated based on which reference patterns the

captured pattern matches best [10]. Other than the first generation of Kinect camera, Asus

Xtion PRO sensor, another consumer NUI application product, has also applied the Prime-

Sense’s technology [11].

As a competitor [12] of PrimeSense Structured Light technology, time-of-flight tech-

nology had been applied into PMD[Vision] CamCube cameras and 3DV’s ZCam cameras.

Based on known speed of light, Time-of-Flight (ToF) camera resolves distance by mea-

suring the “time cost” of a special light signal traveling between the camera and target for

every single point. The “time cost” variable that ToF camera measures is the phase shift

between the illumination and reflection, which will be translated to distance [13]. To detect

the phase shifts, a light source is pulsed or modulated by a continuous wave, typically a

sinusoid or square wave. The ToF camera illumination is typically from a LED or a solid-

state laser operating in the near-infrared range invisible to human eyes. Fabrizio et al.
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[14] compared the time-of-flight (PMD[Vision] CamCube) camera and PrimeSense (first

generation Kinect) camera in 2011. He showed that the time-of-flight technology is more

accurate and claimed that the time-of-flight technology will not only be extended to support

colours and higher frame sizes, but also rapidly drop in price. In 2010, it was announced

that Microsoft would acquire Canesta for an undisclosed amount [15]. And in 2013, Mi-

crosoft released the Xbox One, whose NUI sensor KinectV2 features a wide-angle Canesta

ToF camera.

Unlike the PrimeSense’s speckle pattern or KinectV2’s ToF, Intel RealSense camera

utilizes stereo vision [16]. Its sensor actually has three cameras: two infrared (IR) cameras

(left and right), and one RGB camera. Additionally, RealSense camera also has an IR laser

projector to help the stereo vision recognize depth at unstructured surfaces. Compared with

KinectV2 camera, RealSense camera is more like a desktop usage to capture faces or even

finger gestures, whereas the KinectV2 could do better to capture the full body actions with

all joints [17]. The effective distances of KinectV2 and RealSense hardwares are different.

The KinectV2 is optimized to 0.5m ~4.5m, while RealSense are designed for 0.2m ~1.2m

depends on different devices.

1.2 Human Computer Interface

Gesture recognition is one of the hottest sustained research activities in the area of HCI [2].

It has a wide area of application including human machine interaction, sign language, im-

mersive game technology etc. Being a significant part in non-verbal communication, hand

gestures are playing vital role in our daily life. Hand Gesture recognition system provides

us an innovative, natural, user friendly way of interaction with the computer. By keeping

in mind the similarities of human hand shape with four fingers and one thumb, Meenakshi

[18] presents a real time system for hand gesture recognition on the basis of detection of

some meaningful shape based features like orientation, center of mass (centroid), status of

fingers, thumb in terms of raised or folded fingers of hand and their respective location in

2



Figure 1.1: Calling Gesture Recognition Using Kinect [1]

image. Since gestures based on hand and finger movements can be robustly understood by

computers by using a special 3D IR camera, users are allowed to play games and interact

with computer applications in natural and immersive ways that improve the user experi-

ence.

Kam et al. [19] developed a real-time gesture-driven human computer interface using

the KinectV1 camera and achieved close to 100% practical recognition rates. After Kam,

a Kinect-based calling gesture recognition scenario is proposed by Xinshuang et al. [1] for

taking order service of an elderly care robot. Its proposed scenarios are designed mainly

for helping non expert users like elderly to call service robot for their service request. In

order to facilitate elderly service, natural calling gestures are designed to interact with the

robot. Figure 1.1 shows the evaluation of gesture recognition when sitting on chair. In-

dividual subjects are segmented out from 3D point clouds acquired by Microsoft Kinect,

skeletons are generated for each subject. And face detection is applied to identify whether

the segment is human or not, and specific natural calling gestures are designed based on

skeleton joints.

Dan et al. [2] proposed another smart and real-time depth camera based on a new depth

generation principle. A monotonic increasing and decreasing function is used to control

the frequency and duty-cycle of the NIR illumination pulses. The adjusted light pulses

3



Figure 1.2: Finger Detection using Depth Data [2]

reflect off of the object of interest and are captured as a series of images. A reconfigurable

hardware architecture calculates the depth-map of the visible face of the object in real-time

from a number of images. The final depth map is then used for gesture detection, tracking

and recognition. Figure 1.2 shows an example extraction of hand skeleton. In 2013, Jae-

hong et al. [20] develop and implement a Kinect-based 3D gesture recognition system for

interactive manipulation of 3D objects in educational visualization softwares.

1.3 Robust Vision

RGBD cameras own great credits in mobile robotics, building dense 3D maps of indoor

environments. Such maps have applications in robot navigation, manipulation, semantic

mapping, and telepresence. Peter et al. [21] present a detailed RGBD mapping system that

utilizes a joint optimization algorithm combining visual features and shape-based align-

ment. Building on best practices in Simultaneous Localization And Mapping (SLAM) and

computer graphics makes it possible to build and visualize accurate and extremely rich 3D
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maps with RGBD cameras. Visual and depth information are also combined for view-based

loop closure detection, followed by pose optimization to achieve globally consistent maps.

SLAM is the process of generating a model of the environment around a robot or sensor,

while simultaneously estimating the location of the robot or sensor relative to the envi-

ronment. SLAM has been performed in many ways, which can be categorized generally

by their focus on localization or environment mapping [22]. SLAM systems focused on

localizing the sensor accurately, relative to the immediate environment, make use of sparse

sensor data to locate the sensor. Using range sensors such as scanning laser range-finders

[23], LiDAR and SONAR [24], many robot applications use SLAM systems only to com-

pute the distance from the sensor to the environment. SLAM systems focused on mapping

use dense sensor output to create a high-fidelity 3D map of the environment, while using

those data to also compute relative location of the sensor [25, 26]. Many modern SLAM

algorithms combine both approaches, usually by extracting sparse features from the sensor

and using these for efficiently computing the location of the sensor. This position is then

used to construct a map from dense sensor data.

With a consumer RGBD camera providing both color images and dense depth maps

at full video frame rate, there appears a novel approach to SLAM that combines the scale

information of 3D depth sensing with the strengths of visual features to create dense 3D

environment representations, which is called RGBD SLAM. Felix et al. [27] gives an open

source approach to visual SLAM from RGBD sensors, which extracts visual keypoints

from the color images and uses the depth images to localize them in 3D. Maohai et al. [3]

builds an efficient SLAM system using three RGBD sensors. As shown in Fig. 1.3, one

Kinect looking up toward the ceiling can track the robot’s trajectory through visual odom-

etry method, which provide more accurate motion estimation compared to wheel motion

measurement without being disturbed under wheel slippage. And the other two contiguous

horizontal Kinects can provide wide range scans, which ensure more robust scan matching

in the RBPF-SLAM framework.
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Figure 1.3: SLAM system with Only RGBD Cameras [3]

Also using RGBD sensor for SLAM, Kathia et al. [28] presents a constraint bundle

adjustment which allows to easily combine depth and visual data in cost function entirely

expressed in pixel. In order to enhance the instantaneity of SLAM for indoor mobile robot,

Guanxi et al. [4] proposed a RGBD SLAM method based on Kinect camera, which com-

bined Oriented FAST and Rotated BRIEF (ORB) algorithm with Progressive Sample Con-

sensus (PROSAC) algorithm to execute feature extracting and matching. ORB algorithm

which has better property than many other feature descriptors was used for extracting fea-

ture. At the same time, ICP algorithm was adopted for coarse registration of the point

clouds, and PROSAC algorithm which is superior than RANSAC in outlier removal was

employed to eliminate incorrect matching. To make the result more accurate, pose-graph

optimization was achieved based on General Graph Optimization (g2o) framework. Fig-

ure 1.4 shows the 3D volumetric map of the lab, which can be directly used to navigate

robots.

RGBD camera is also famous in application of doing visual odometry on autonomous

flight of a micro air vehicle (MAV), helping acquire 3D models of the environment and es-

timate the camera pose with respect to the environment model. Visual odometry generally

has unbounded global drift while estimating local motion. To bound estimation error, it

can be integrated with SLAM algorithms, which employ loop closing techniques to detect
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Figure 1.4: 3D Map of RGBD-SLAM with ORB and PROSAC [4]

when a vehicle revisits a previous location. A computationally inexpensive RGBD-SLAM

solution tailored to the application on autonomous MAVs is discussed by Sebastian and

Andreas [5], which enables our MAV to fly in an unknown environment and create a map

of its surroundings completely autonomously, with all computations running on its on-

board computer. Figure 1.5a shows the MAC with an RGBD sensor (the first generation of

Kinect) mounted. And Fig. 1.5b shows the reconstruction based on the full point clouds,

with the estimated trajectory shown in red dots.

1.4 3D Scanning and Printing

RGBD sensors can be used on a much smaller scale than SLAM to create more detailed,

volumetric reconstructions of objects and smaller environments, which opens a new world

to the fast 3D printing. 3D printing is an additive technology in which 3D objects are

created using layering techniques of different materials, such as plastic, metal, etc. It has

been around for decades, but only recently is available and famous among the general

public. The first 3D printing technology developed in the 1980’s was stereolithography

(SLA) [29]. This technique uses an ultraviolet (UV) curable polymer resin and an UV
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(a) RGBD UAV (b) Reconstruction and Estimated Trajectory

Figure 1.5: RGBD-SLAM for Autonomous MAVs [5]

laser to build each layer one by one. Since then other 3D printing technologies have been

introduced. Nowadays, some companies like iMaterialise or Shapeways offer 3D printing

services where you can simply upload your CAD model on-line, choose a material and in

a few weeks your 3D printed object will be delivered to your address. This procedure is

quite straight-forward when you got your CAD model. However, 3D shape design tends

to be a long and tedious process, with the design of a detailed 3D part usually requiring

multiple revisions. Fabricating physical prototypes using low cost 3D fabrication technolo-

gies at intermediate stages of the design process is now a common practice, which helps

the designer discover errors, and to incrementally refine the design [30]. Most often, im-

plementing the required changes directly in the computer model, within the 3D modeling

software, is more difficult and time consuming than modifying the physical model directly

using hand cutting, caving and sculpting tools, power tools, or machine tools. When one

of the two models is modified, the changes need to be transferred to the other model, a

process we refer to as synchronization.

KinectFusion [6], a framework that allows a user to create a detailed 3D reconstruction

of an object or a small environment in real-time using Microsoft Kinect sensor, has gar-

nered a lot of attention in the reconstruction and modeling field. It enables a user holding

8



Figure 1.6: Object Segmentation in KinectFusion [6]

and moving a standard Kinect camera to rapidly create detailed 3D reconstructions of an

indoor scene. Not only an entire scene, a specific smaller physical object could also be

cleanly segmented from the background model simply by moving the object directly. Fig-

ure 1.6 shows how the interested object (a teapot) is accurately segmented from the back-

ground by physically removed. The sub-figure (A) shows surface normals, and sub-figure

(B) is the texture mapped model. Nadia et al. [31] proposed and introduced a from-Sense-

to-Print system that can automatically generate ready-to-print 3D CAD models of objects

or humans from 3D reconstructions using the low-cost Kinect sensor. Further, Ammar and

Gabriel [30] addresses the problem of synchronizing the computer model to changes made

in the physical model by 3D scanning the modified physical model, automatically detecting

the changes, and updating the computer model. A new method is proposed that allows the

designer to move fluidly from the physical model (for example his 3D printed object, or his

carved object) to the computer model. In the proposed process the physical modification

applied by the designer to the physical model are detected by 3D scanning the physical

model and comparing the scan to the computer model. Then the changes are reflected in

the computer model. The designer can apply further changes either to the computer model

9



or to the physical model. Changes made to the computer model can be synchronized to the

physical model by 3D printing a new physical model.

1.5 RGBD Cameras’ Calibration and 3D Reconstruction on GPU

As discussed above, applications like RGBD-SLAM and KinectFusion apply 3D recon-

struction techniques using an RGBD camera, in which an RGB sensor offers color values

and a depth sensor measures objects’ distances (D or ZC). RGBD cameras, e.g. KinectV2,

offer the horizontal and vertical field of view (FoV)s of the sensors based on a pinhole

camera model, from which a proportional per-pixel beam equation (from ZC to XC/YC)

could be derived. It is not hard to do 3D reconstruction in camera space naturally on GPU

with the help of the proportional per-pixel beam equations; however, the 3D reconstructed

image in that case will be deformed a lot by distortions. Figure 1.7 shows the KinectV2

NearIR 3D reconstruction in camera space, when observing a canvas hung on a flat wall

printed with uniform grid ground-dots pattern. In the front view, a blue rectangle is drawn

based on four corner dot-clusters, which reflects lens distortions (the uniformed distribution

of the captured dot-clusters). While in the side view, a blue straight line added on the side

(a) Front View (b) Side View

Figure 1.7: KinectV2 NearIR 3D Reconstruction in Camera Space
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of 3D reconstruction, which shows the unflatness of captured “flat wall”. The deformation

in the side view is probably caused by the various resolutions of depth sensor on per-pixel

basis, which we will call as depth distortion in this thesis. In order to get undistorted 3D

images, camera calibration is necessary before a camera being employed.

Camera calibrations usually use calibration objects, which could be assigned world

space coordinates (XW/YW/ZW ) to help remove distortions. For decades, much work on

camera calibration has been done, starting from the photogrammetry community [32, 33],

to computer vision [34, 35, 36]. And the combination of a pinhole-camera matrix with

a distortion removal vector (which contains five high-order polynomial parameters) are

widely known as important tools in camera calibration; however, there need to be a lot

calculations in the GPU fragment shader based on those parameters from both pinhole-

camera matrix and distortion removal vector. And we would like to find a simple method

with fewer calculations when generating the 3D coordinates. Similar with the per-pixel

proportional beam equations in camera space reconstruction on GPU, Kai [37] derived

more common linear beam equations (from XW to YW/ZW ) directly from the pinhole-

camera matrix, on the basis of per-pixel. That linear beam equations make it possible to

show world space 3D reconstruction naturally on GPU, but it did not contains infos about

lens distortion correction.

Our goal is to draw undistorted 3D reconstruction on GPU with the fewest calculations.

Inspired by Kai, we are going to build up a rail calibration system to support the per-pixel D

to ZW mapping, such that Kai’s per-pixel XW to YW/ZW linear mappings could be applied

during the 3D reconstruction on GPU. We will call this new method per-pixel calibration.

As shown in Fig. 1.8, the camera observing the uniform grid dots pattern is mounted on a

rail, which is perpendicular to pattern on the wall. A laser distance measurer will be used

to supply accurate per-frame ZW , so that the per-pixel D to ZW mapping could handle depth

distortion. As long as the undistorted dense XW/YW could be acquired, we will be able

determine the parameters of per-pixel linear beam equations.
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Figure 1.8: KinectV2 Calibration System

Undistorted world space coordinates XW/YW/ZW with D together will be collected and

saved onto local drives, during which lens distortions will be removed. Instead of using the

combination of pinhole-camera matrix and distortion removal vector, we will determine a

best-fit, two–dimensional, high-order polynomial mapping that can directly map from Row

(R) and Column (C) in image space to XW and YW , and the high-order polynomial map-

ping will handle the lens distortions. Digital Image Processing (DIP) techniques, including

gray-scaling, histogram equalization, adaptive thresholding, etc., are applied as GPU fil-

ters to extract calibration points; and the live undistorted binary 3D reconstruction shows

up before data collection, making sure that the dense world space coordinates, which will

be used to generate the LUT, are undistorted. After the data collection, we will determine

a best-fit mapping model between per-pixel D and ZW , and then process the collected data,

and finally generate per-pixel mapping parameters, which make up a LUT that will help

12



draw undistorted 3D reconstruction on GPU in real-time.

In Chap. 2, a pinhole-camera-model based calibration method is discussed in detail, in-

cluding the lens distortions analysis and its removal. Chapter 3 will introduce how to draw

the camera space 3D reconstruction on GPU, introduce a rail calibration system’s set-up,

and then talk about the proposed per-pixel calibration method and simple 3D reconstruc-

tion on GPU in detail. Chapter 4 will explain how the two polynomial mapping models in

the proposed calibration method are determined, and then show the calibrated results about

how well the lens distortions and depth distortion are corrected. Chapter 5 will conclude

this thesis and talk about the future work of RGBD cameras calibration.

Copyright© Sen Li, 2016.
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Chapter 2 Traditional RGBD Cameras Calibration

A pinhole-camera model can be used to describe an image sensor’s field of view. When

applying the pinhole camera model in world space, it explains the mapping relationship

from world space to camera space, and then to image space. A 3× 4 pinhole-camera

matrix expresses the mappings mathematically. It consists of an intrinsic matrix mapping

from the 3D camera space to 2D image space, and an extrinsic matrix map from 3D world

space to 3D camera space. Traditionally, lens distortions correction is after, and separated

from the pinhole-camera model calibration. In this chapter, we will introduce the camera

calibration methods based on the pinhole-camera model in detail, and then discuss how to

remove the lens distortions in traditional methods.

2.1 Pinhole Camera

A pinhole camera is a simple optical imaging device in the shape of a closed box or cham-

ber. A pinhole camera is completely dark on all the other sides of the box including the

side where the pin-hole is created. Figure 2.1 shows an inspection of a pinhole camera.

In its front is a pin-hole that help create an image of the outside space on the back side of

the box. When the shutter is opened, the light shines through the pin-hole and imprint an

Figure 2.1: The Pinhole Camera Inspection

14



Figure 2.2: Virtual Focal Plane of a Pinhole Camera

image onto a sensor (or photographic paper, or film) placed at the back side of the box. In

order to analyze parameters like focal distance, field of view, etc., pinhole camera has its

own three dimensional space (noted as XC, YC, and ZC). Note that, according to Cartesian

Coordinates “right hand” principle, the camera is looking down the negative of ZC-axis,

given XCYC directions as shown in the figure. Its focal length of the pinhole camera is the

distance on the Zc-axis, between the pinhole at the front of the camera and the paper or

film at the back of the camera.

Pinhole cameras are characterized by the fact that they do not have a lens. It rely on

the fact that light travels in straight lines, which is a principle called the rectilinear theory

of light. This makes the image appear upside down in the camera, as shown in Fig. 2.2.

Tracing the corners of the camera sensor through the pin hole, those dark green lines show

the limits of the field of view in 3D coordinate space. The back side plane of the pinhole

camera, which is behind the origin at a positive ZC-axis and also where our sensor sits, is

also called the focal plane. It is not intuitive, nor convenient for mathematical analysis that

the images on the focal plane are always upside down. So a virtual focal plane is defined

in front of the pinhole on the negative ZC-axis, which is equal distant from the focal point

(pin hole) as the actual focal plane is behind. Notice that the limits of the field of view
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Figure 2.3: Common Pinhole Camera Model for a 240×320 Pixels Camera Sensor

intersect with the virtual focal plane at the four corners of the up-right image just as they

disseminate from the four corners of the sensor at the real focal plane.

With the virtual focal plane, the camera body with the real focal plane could be re-

moved. And the rest parts in front of the the camera body, the focal point and the virtual

focal plane together, form the most common pinhole camera model. In order to employ this

model to analyze arbitrary 3D object points inside the camera’s field of view in 2D image

space, the prior step is to define the relationship between points in 3D camera space and

the 2D image space (R and C). As shown in Fig. 2.3, The focal point is right at the origin

of the camera 3D space coordinates, from where to the sensor is the vertical distance of f ,

the focal distance. The 2D image coordinates are in dark green, and its origin is sitting at

the up-left corner of the sensor. Only the a virtual sensor (in color red) is visible on the

virtual focal plane, whose size in 2D image space is noted as 240 by 320 (using the size of

PrimeSense camera). As long as both of the camera 3D space coordinates and image 2D

space coordinates are defined, the next job is to build a mapping between them.

Select a random object point PC in the camera space located at camera 3D coordinates

(xc, yc, zc). A line passing both of the point PC and the Focal Point intersects with the

virtual focal plane at PI , with its image 2D coordinates (r, c). To determine the mapping

function, we can start a the proportional relationship. As shown in Fig. 2.4, the center point

in the image coordinates, which is usually called Principle Point, could be determined by
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Figure 2.4: Mapping from Camera Space to Image Space

column of half-width (ch) and row of half-height (rh). Concretely, the Principle Point (rh,

ch) is either (119.5, 159.5) if range is ([0:239], [0:319]), or (120, 320) if range is ([1:240],

[1:320]). So, we could get the relative row and column distance of rr and cr by:

rr = r− rh

cr = c− ch .

(2.1)

Based on by triangulation, it is straight forward to tell the proportional relationship between

f /zc and cr/xc, rr/yc. Thus we get

 cr

rr

= f

 xc/zc

yc/zc

 . (2.2)

And by changing the relative distance rr/cr back to the 2D image coordinates r, c, then

eqn. (2.2) will be written as

 c

r

= f

 xc/zc

yc/zc

+
 ch

rh

 . (2.3)
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If written in homogeneous coordinates, we will get eqn. (2.4):

zc


c

r

1

=


f xc

f yc

zc

+


zcch

zcrh

0

=


f 0 ch

0 f rh

0 0 1




xc

yc

zc

 . (2.4)

Till Now, we haven’t consider the units translation between the camera 3D space the

image 2D space. The random object point PC’s mapping point PI (r, c) on the image

space is expressed in millimeters (or inches). Since it is necessary to express the im-

age space coordinates (r, c) in pixels, we need to find out the resolution of the sensor in

pixels/millimeter. Considering that, the pixels are not necessarily be square-shaped, we

assume they are rectangle-shaped with resolution αc and αr pixels/millimeter in the C and

R direction respectively. Therefore, to express PI in pixels, its c and r coordinates should

be multiplied by αc and αr respectively, to get:


zcc

zcr

zc

=


f αcxc

f αryc

zc

+


zcαcch

zcαrrh

0

=


αc f 0 αcch

0 αr f αrrh

0 0 1




xc

yc

zc

= KPC. (2.5)

Note that K only depends on the intrinsic camera parameters like its focal length, resolution

in pixels, and sensor’s width and height. Thus, the mapping matrix K is also called a cam-

era’s intrinsic matrix. Considering that the pixels might be parallelogram-shaped instead

of rigid rectangle-shaped (when the image coordinate axis R and C are not orthogonal to

each other), usually K has a skew parameter s, given by

K =


fc s tc

0 fr tr

0 0 1

 , (2.6)
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Figure 2.5: Pinhole Camera in World Space

where fc = αc f and fr = αr f are the focal length in pixels on the C and R directions

respectively, tc = αcrh and tr = αrrh are the translation parameters that help move the

origin of image coordinate to the Principle Point.

Now we have K, which helps map between camera 3D space and image 2D space.

But we are still not able to employ it yet. The camera 3D space is with respect to the

camera sensor only. Neither can we directly tell the camera 3D coordinates of an object

point, nor can we assign it. All we can do is to use the camera space as an intermediate

space between the image coordinates and world coordinates, which we could assign by

ourselves. Figure 2.5 shows a pinhole camera observing an arbitrary object point P in the

world space. We assign the world coordinates so that the object point has world space

coordinates PW (xw, yw, zw). Although the world space and camera space are two different

spaces, we could easily transform between each other through rotation and translation, as

long as both of the spaces are using rigid Cartesian Coordinates. With a standard rotation

matrix R3∗3 and a translation matrix T3∗1

R3∗3 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , T3∗1 =


t1

t2

t3

 , (2.7)
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we can get the transformation matrix [R3∗3, T3∗1] from the world space to camera space:


XC

YC

ZC

= R3∗3


XW

YW

ZW

+T3∗1 =

[
R3∗3 T3∗1

]


XW

YW

ZW

1


. (2.8)

The parameters that help map from world space to camera space depend on how we assign

the world coordinates. Since none of them are from the camera even though they are

belongs to an important part of camera calibration, usually the matrix [R3∗3 T3∗1] is called

extrinsic camera matrix. With both of the extrinsic camera matrix (help map from world

space to camera space) and the intrinsic camera matrix (help map from camera space to

image space), we are now able to build the connection between the world space coordinates,

which could be assigned by ourselves, and the image space R and C, which are the streams

we retrieved from the camera.

To combine the intrinsic camera matrix and extrinsic camera matrix (combine eqn. (2.5)

and eqn.( 2.8)), we get

ZC


C

R

1

= K


XC

YC

ZC

= K
[

R3∗3 T3∗1

]


XW

YW

ZW

1


= M



XW

YW

ZW

1


, (2.9)

where:

M = K
[

R3∗3 T3∗1

]
=


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 . (2.10)

Note that, although ZC values can be retrieved from the depth sensor streams, they will

be employed during the calculation of M, because they will be expressed by the third row
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parameters in matrix M. ZC will only be used in the step of 3D reconstruction after the

pinhole camera matrix M is determined, as will be discussed in details in Section 2.2.

Thus, ZC in eqn. (2.9) is commonly substituted as an intermediate parameter k. We did

not change ZC for the consistency of derivations. To inspect the pinhole camera matrix

M, it is composed of rotation/translation matrix for 3D space transforming and intrinsic

perspective matrix for handling both of perspective view mapping and shape-skewing, all

of which belong to linear processing. In other words, this 3× 4 transformation matrix

is specially for handling perspective view, or perspective distortion. The pinhole camera

model is based on the homogeneous coordinates, which means its matrix M is also limited

by linear processing.

2.2 3D Camera Calibration

The calibration of a 3D camera aims to be able to generate the world coordinates (XW ,YW ,ZW )

and corresponding RGB values for every single pixel, given the depth steams and RGB

streams retrieved from the 3D camera. From Section 2.1, we know that the pinhole camera

matrix M (eqn. (2.10)) could help map from the world space to image space; however not

able to directly transform image space data to world space coordinates. In order to deter-

mine XW/YW/ZW (based on eqn.( 2.5) and eqn.( 2.8)), both of the intrinsic camera matrix

and extrinsic camera matrix are needed, both of which are intermediate parameters and

practically can only be determined through matrix M. Thus, the first job for 3D camera

calibration is to solve the pinhole camera matrix M.

To solve the pinhole camera matrix, we can use least squares fit with known 3D points

(XW , YW , ZW ) and their corresponding image points (R,C). With one point, based on

eqn. (2.10) and (2.9), we can get two equations.

m11XW +m12YW +m13ZW +m14−m31XWC−m32YWC−m33ZWC−m34C = 0

m21XW +m22YW +m23ZW +m24−m31XW R−m32YW R−m33ZW R−m34R = 0
(2.11)
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There are totally 12 unknowns to solve, thus we need at least six points to solve the 3×4

pinhole camera matrix M. Using n-points least squares to solve the best fit, we can build a

2n equations matrix, given by eqn. (2.12).



XW
1 YW

1 ZW
1 1 0 0 0 0 −XW

1C1 −YW
1C1 −ZW

1C1 −C1

0 0 0 0 XW
1 YW

1 ZW
1 1 −XW

1R1 −YW
1R1 −ZW

1R1 −R1

XW
2 YW

2 ZW
2 1 0 0 0 0 −XW

2C2 −YW
2C2 −ZW

2C2 −C2

0 0 0 0 XW
2 YW

2 ZW
2 1 −XW

2R2 −YW
2R2 −ZW

2R2 −R2

...

XW
n YW

n Zn
2 1 0 0 0 0 −XW

nCn −YW
nCn −ZW

nCn −Cn

0 0 0 0 XW
n YW

n ZW
n 1 −XW

nRn −YW
nRn −ZW

nRn −Rn





m11

m12

m13

m14

...

m33

m34



=



0

0

0

0
...

0

0


(2.12)

Considering that this matrix is build on homogeneous system, there is no unique solution.

There can always be a total-zeros solution.

To make the solution unique, we select m34 = 1, so that the homogeneous eqn. (2.12)

could be changed into an inhomogeneous format like AX = B, where the known matrix A

is a 2n×11 matrix and known matrix B is a 2n vector:



XW
1 YW

1 ZW
1 1 0 0 0 0 −XW

1C1 −YW
1C1 −ZW

1C1

0 0 0 0 XW
1 YW

1 ZW
1 1 −XW

1R1 −YW
1R1 −ZW

1R1

XW
2 YW

2 ZW
2 1 0 0 0 0 −XW

2C2 −YW
2C2 −ZW

2C2

0 0 0 0 XW
2 YW

2 ZW
2 1 −XW

2R2 −YW
2R2 −ZW

2R2

...

XW
n YW

n Zn
2 1 0 0 0 0 −XW

nCn −YW
nCn −ZW

nCn

0 0 0 0 XW
n YW

n ZW
n 1 −XW

nRn −YW
nRn −ZW

nRn





m11

m12

m13

m14

...

m32

m33



=



C1

R1

C2

R2

...

Cn

Rn



.

(2.13)

Using pseudo inverse, eqn. (2.13) can be solved by X = (AT A)−1AT B, where X is an 11-
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elements vector and X(1) ~ X(11) correspond to m11 ~ m33. And the 3×4 pinhole camera

matrix (eqn. (2.10)) will be solved as:

M =


X(1) X(2) X(3) X(4)

X(5) X(6) X(7) X(8)

X(9) X(10) X(11) 1

 (2.14)

After we get the perspective projection matrix M, the next step is to recover the intrinsic

and extrinsic camera matrix K and [R3∗3, T3∗1], with which we could generate the world

coordinates XW/YW/ZW .

Starting from the decomposition of eqn. (2.10) step by step:

M =


m11 m12 m13

m21 m22 m23 O3∗1

m31 m32 m33

+


m14

O3∗3 m24

m34

 , (2.15)

K[R3∗3 T3∗1] =

[
KR3∗3 O3∗1

]
+

[
O3∗3 KT3∗1

]
, (2.16)

and

M3∗3 =


m11 m12 m13

m21 m22 m23

m31 m32 m33

= KR3∗3, (2.17)

where O denotes zero matrices with their sizes noted by subscripts. From eqn. (2.7), we

know that R3∗3 is a standard rotation matrix, which has its property of orthogonal. Also

from eqn. (2.6), we know that K is an upper triangular matrix. Thus, all of the above fit in

the prerequisites of RQ decomposition, which is a technique that could help us decompose

the M3∗3 into the upper triangular intrinsic matrix K and rotation matrix R3∗3. After we got

R3∗3, the translation matrix T3∗1 could be determined with eqn. (2.16).
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Now we find the way to determine both of the intrinsic camera matrix and the extrinsic

camera matrix. With depth streams measuring ZC, we are able to transform the 2D im-

age data retrieved from the camera into 3D camera space point cloud by eqn. (2.5), and

then generate the world space point cloud by eqn. (2.8). The basic pinhole camera model

calculation is widely used in various camera calibration techniques. Based on different

calibration systems, Zhengyou [36] classified those calibration techniques into four cate-

gories: unknown scene points in the environment (self-calibration), 1D objects (wand with

dots), 2D objects (planar patterns undergoing unknown motions) and 3D apparatus (two or

three planes orthogonal to each other).

Self-calibration technique do not use any calibration object, and can be considered as

zero-dimension approach because only image point correspondences are required. Just by

moving a camera in a static scene, the rigidity of the scene provides in general two con-

straints [38] on the cameras’ internal parameters from one camera displacement by using

image information alone. Therefore, if images are taken by the same camera with fixed

internal parameters, correspondences between three images are sufficient to recover both

the internal and external parameters which allow us to reconstruct 3D structure up to a

similarity [39, 40].

One-Dimension, points-line calibration employs one dimension objects composed of a

set of collinear points. With much lower cost than two dimensional or even three dimen-

sional calibration system, using one dimension objects in camera calibration is not only a

theoretical aspect, but is also very important in practice especially when multi-cameras are

involved in the environment. To calibrate the relative geometry between multiple cameras,

it is necessary for all involving cameras to simultaneously observe a number of points.

It is hardly possible to achieve this with 3D or 2D calibration apparatus if one camera is

mounted in the front of a room while another in the back. This is not a problem for 1D ob-

jects. Xiangjian [41] shows how to estimate the internal and external parameters using one

dimensional pattern in the camera calibration. And Zijian [42] employed one dimensional
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Figure 2.6: Building 3D Calibration Object [7]

objects as virtual environments in practical multiple cameras calibration.

Two and three dimensional object calibration systems usually give better calibrations.

Sturm et al. [43] presented a general algorithm for plane-based calibration that can deal

with arbitrary numbers of views that observe a planar pattern shown at different orienta-

tions, so that almost anyone can make such a calibration pattern by him/her-self, and the

setup is very easy. Both of Matlab and OpenCV have applied this two dimension plane cal-

ibration method in their applications. Zhengdong [44] compared this two dimension plane

camera calibration method and self-calibration method. Hamid [45] applied this method

into practical calibration and employed the calibrated camera into camera pose estimation

and distance estimation application.

In three-dimensional object calibration technique, camera calibration is performed by

observing a calibration object whose geometry in 3D space is known for very good preci-

sion. Calibration can be done very efficiently [35]. The calibration objects usually consist

of two or three planes orthogonal to each other. Paul [46] applied the three dimension ob-

ject calibration in his PHD project. Mattia [7] wrote a detailed tutorial from building the

3D object (Fig. 2.6) for calibration, to scanning using the calibrated camera. Figure 2.7a

shows how six points are selected for calibration and Fig. 2.7b shows the 3D reconstruction

after calibration.

Zhengyou Zhang [47, 48, 36] has deep studies on camera calibration from one-dimension

calibration to tree-dimension calibration. The accuracy of calibration from 1D to 3D is get-
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(a) Six Points to Calibrate (b) Reconstruction After Calibration

Figure 2.7: Three Dimension Object Camera Calibration [7]

ting better, but the calibration system set-up needs more and more work and cost as well.

One dimension object is suitable for calibrating multiple cameras at once. Two dimension

planer pattern approaches seems to be a good compromise, with good accuracy and simple

setup. Also using the three dimension method for calibration, Kai [37] derived the per-pixel

beam equation, the linear relationship that could map to XW/YW from ZW as eqn. (2.18)

shows, directly from pinhole camera matrix M. That is to say, we could easily look up

XW/YW after calibration once found the way to get ZW .

XW [m, n] = a[m, n]ZW [m, n]+d[m, n]

YW [m, n] = c[m, n]ZW [m, n]+d[m, n]
(2.18)

where a/b/c/d are per-pixel coefficients for the linear beam equations, and the subscripts

[m, n] are corresponding pixel address in image space.
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2.3 Lens Distortion

All above in Chapter 2 are talking about the ideal pinhole camera, without lenses. Whereas

in practice, as a result of several types of imperfections in the design and assembly of lenses

composing the camera optical system, there are always lens distortions for a camera, and

the expressions in eqn. (2.2) are not valid any more. Lens distortion could be classified into

two groups [49] : radial distortion and tangential distortion. Imperfect lens shape causes

light rays bending more near the edges of a lens than they do at its optical center. Barrel

distortions happen commonly on wide angle lenses, where the field of view of the lens

is much wider than the size of the image sensor [50]. Improper lens assembly will lead

to tangential distortion, which occurs when the lens and the image plane are not parallel.

Figure 2.8 shows how radial distortion dr and tangential distortion dt affect the object point

position in the image. Note that both of radial distortion and tangential distortion are with

respect to image space row and column, and what we will take later is negative distortion

instead of positive. Distortions are present because the field of view (FoV) in camera

space has been affected by the lens. For most consumer RGBD cameras with cheap lens,

their distortions are usually barrel distortions (negative distortion) resulted by the enlarged

Figure 2.8: Radial and Tangential Distortion Affection In Image Space
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Figure 2.9: From Camera Space to Image Space with Lens Distortions

field of view in the camera space, because the larger view was squeezed into the sensor.

Figure 2.9 intuitively shows how the lens enlarged the field of view of in the camera space

and then generates the barrel distortions.

There are (a)(b)(c) three parts shown in Fig. 2.9. Each part has the pinhole camera only

on the top, in contrast to the camera-with-lens situation at the bottom. To understand how

the barrel distortion happens, we should go through from part (c) to part (a). In part (c),

the gray background uniform grid is the “object” our that the camera is going to observe,

and the blue frames shows the FoV of the camera in the camera space. Due to the fact

that, there will be worse and worse distortions as one pixel goes from the center to the

edge, the enlarged FoV of a camera with lens in the camera space is in pincushion (or

star) shape. With the enlarged FoV is mapped to the “Virtual Focal Plane”, as defined in

Fig. 2.2, the pincushion shape doesn’t change because rays from the camera space have

not gone through the lens yet. Note that we quoted the “Virtual Focal Plane” because the

image on this virtual plane, when considering lens distortion, does not equal to the real

focal plane (where the sensor is) any more. We can tell from part (b) that, even though the
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image space coordinates still are composed of C and R, their ranges have changed from

positive integers only to the whole real integers that include negative ones. But the sensor

never changes, and so the image space in part (a) still has its range of positive integers.

With rays going through the lens, the pincushion-shape FoV (the frame in blue) will be

squeezed into a small rectangle, and thus we get the image in the real focal plane with its

background grid showing a barrel distorted shape. With lens distortions counted, eqn. (2.2)

now needs to be changed into

 c′r

r′r

= f

 xc/zc

yc/zc

 (2.19)

where c′r and r′r denote the relative pixel distance on the undistorted “Virtual Focal Plane”,

whose FoV is pincushion-shape and image coordinates’ ranges include negative integers.

Duane [51] gave the lens distortion equation, and the undistorted C and R (C′/R′ in our

notation) can be expressed as power series in radial distance r =
√

C2 +R2:

C′ =C(1+ k1r2 + k2r4 + k3r6)+ [p1(r2 +2C2)+2p2CR]

R′ = R(1+ k1r2 + k2r4 + k3r6)+ [p2(r2 +2R2)+2p1CR]
(2.20)

where higher order parameters are omitted for being negligible; (C′, R′) denote the undis-

torted pixels in the “Virtual Focal Plane”, (C, R) denote the distorted pixel in real sensor

image, kis are coefficients of radial distortion, and p js are coefficients of tangential distor-

tion. The five parameters k1/k2/k3/p1/p2 are usually called distortion parameters. With

the distortion parameters calculated, the distorted (C, R) could be undistorted into (C′, R′),

and then (C′, R′) could be used to generate the world space XW/YW/ZW with intrinsic and

extrinsic parameters.

Considering the lens distortion correction, Fig. 2.10 shows the flow chart of the whole

traditional camera calibration method based on the pinhole camera model. Considering
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Figure 2.10: Traditional Camera Calibration Flow Chart

the lens distortions, both of the pinhole camera model (matrix M) and the lens distortions

model (five parameters for undistortion) need to be determined. The pinhole camera model

can help map from the world space (XW , YW , ZW ) to the undistorted image space (C′, R′),

which are on the “Virtual Focal Plane” as noted in Fig. 2.9. And the lens distortion model

help remove the lens distortions by mapping from (C′, R′) to (C, R). The pinhole camera

model can be determined by eqn. (2.14), and the lens distortion model could be determined

by eqn. (2.20).

Copyright© Sen Li, 2016.
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Chapter 3 Per-Pixel Calibration and 3D Reconstruction on GPU

RGBD cameras are famous for their 3D reconstruction application. In this chapter, we will

show how to reconstruct 3D image naturally on GPU in camera space based on raw data

without calibration. Considering the deformation of raw data resulted from lens distor-

tions and depth distortion, we propose a per-pixel calibration method based on a rail cal-

ibration system. Instead of using a pinhole-camera model, a two-dimensional high-order

polynomial mapping model is determined and employed for lens distortions removal. Cor-

responding data collection procedures and look-up table based undistorted real-time world

space 3D reconstruction on GPU are discussed in detail. Color values alignment is also

discussed at last.

3.1 RGBD to XCYCZCRGB

As described in Chap.1, there are applications like SLAM and KinectFusion that require D

to be converted into XCYCZC coordinates on a per-pixel basis. From Chap.2, we know that

the depth sensor measures ZC, and a pinhole camera model (more specifically the intrinsic

matrix) in homogeneous coordinates offers the relationship between ZC and XC/YC respec-

tively. In this section, we will introduce how to generate the camera space 3D coordinates

without calibration, and draw a camera space 3D reconstruction on GPU using a KinectV2

camera.

The KinectV2 depth sensor measures ZC in millimeter and supports its positive data

in unsigned-short data-type. Those data will be automatically converted into FLOAT type

with its range from 0.0f to +1.0f when uploaded onto GPU. Considering that in practice Ds

from KinectV2 are always positive whereas ZCs should be always negative, we will add a
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negative sign in the un-scaling step to recover the ZC in metric on GPU:

ZC[m,n] =−βD[m,n] , (3.1)

where β constantly equals to 65535.0 (range of unsigned short in FLOAT) for all pixels.

Besides the depth stream, KinectV2 supports both of the horizontal and vertical field of

view (FoV) that can help generate per-pixel XC and YC, which share the same credits with

the intrinsic parameters in a pinhole camera model. Figure 3.1 shows an intuitive view of

the horizontal and vertical FoVs (θh, θv) in a pinhole camera model, based on which we can

derive the XC and YC values given a random ZC value on the per-pixels basis. Assuming

the depth sensor, with its size M by N, is observing right perpendicularly to a wall where all

pixels share the same |ZC
0| from the sensor to the wall. Talking about the horizontal FoV

θh only, it is easy to get the range of the camera space FoV along XC-axis from −|XC
MAX|

to |XC
MAX|, as shown in Fig. 3.2. The horizontal range value |XC

MAX| depends on |ZC
0|

and θh, given by:

|XC
MAX|= |ZC

0| · tan(θh/2) (3.2)

where the pixel observing on XC = |XC
MAX| has its column address of N. Similarly, given

a random pixel of column address n0, its horizontal view XC
0 could be expressed based on

Figure 3.1: Field of View in Pinhole-Camera Model
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Figure 3.2: map C to XC via horizontal FoV

its own horizontal view angle α0:

|XC
0|= |ZC

0| · tan(α0). (3.3)

To combine eqn. (3.2) and eqn. (3.4), we get

XC
0

|XC
MAX|

=
tan(α0)

tan(θh/2)
=

n0

N/2
−1 , (3.4)

which shows how to get the per-pixel XC
0 from |XC

MAX| based on its column address,

while |XC
MAX| depends on the depth sensor’s horizontal filed of view. It is intuitively

better to change eqn. (3.4) a little by substituting |XC
MAX| with eqn. (3.2) such that we can

get eqn. (3.5), a proportional per-pixel mapping based on the column addresses from ZC to

XC.

XC[m,n] = tan(θh/2) · ( n
N/2
−1) · |ZC[m,n]| , (3.5)

where [m,n] is the discrete space R and C coordinate of each pixel in the depth sensor.

Similarly, we can also get the proportional per-pixel mapping from ZC to YC, based on the
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Figure 3.3: Diagram for Camera Space 3D Reconstruction without calibration

vertical FoV and row addresses:

YC[m,n] = tan(θv/2) · ( m
M/2

−1) · |ZC[m,n]| . (3.6)

Note that, θh and θv are constant during image processing, such that the mapping functions

from per-pixel ZC to per-pixel XC/YC totally depend on a pixel’s address [m,n]. Therefore

eqn. (3.5) and eqn. (3.6) could be expressed as

XC[m,n] = a[m,n] · |ZC[m,n]|

YC[m,n] = b[m,n] · |ZC[m,n]|
(3.7)

where
a[m,n] = tan(θh/2) · ( n

N/2
−1)

b[m,n] = tan(θv/2) · ( m
M/2

−1) .
(3.8)

Now that we have the per-pixel mapping from ZC to XCYC, it is time to draw the cam-

era space 3D image on GPU. Figure 3.3 shows the streams flow diagram. We will retrieve

depth from the KinectV2 camera, save them into corresponding buffers on CPU and upload

the the streams onto GPU as textures. Then the per-pixel’s camera space 3D coordinates

XCYCZC will be generated during its fragment-shader processing from depth texture based

on eqn. (3.7). The fragment shader is programmed as below.

uniform sampler2D qt_depthTexture;

uniform sampler2D qt_spherTexture;
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(a) Front View (b) Left View

Figure 3.4: Colored Camera Space 3D Reconstruction

layout(location =0,index =0)out vec4 qt_fragColor;

void main()

{

ivec2 CRD=ivec2( gl_FragCoord.x, gl_FragCoord.y);

floatz = texelFetch(qt_depthTexture,CRD,0).r *65535.0;

vec4 a = texelFetch(qt_spherTexture,CRD,0);

qt_fragColor.x = -z*a.r;

qt_fragColor.y = -z*a.g;

qt_fragColor.z = -z;

}

The uniform qt_spherTexture is a ZC to XC/YC proportional mapping texture, which

contains the per-pixel parameters a/b based on eqn. (3.8). Note that we add three nega-

tive signs in front of XCYCZC respectively to account for the pinhole-imaging. Figure 3.4

shows the view of camera space 3D reconstruction when observing uniform grid dots pat-

tern on the flat wall. We can tell from the image that this reconstruction is totally based
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on raw data, without any calibration. Not only the XCYC plane is apparently deformed

(lens distortions) in the front view, but the ZC is also not as flat as it should be, which we

will call depth distortion. The depth distortion comes from the imperfect depth resolutions

among pixels, i.e., ZC[m, n]−D[m, n] 6= EConstant, which lead to bumps and hollows in the

camera space reconstruction when observing a flat wall. Therefore, a per-pixel calibration

is necessary for an undistorted 3D image.

3.2 Rail Calibration System

Talking about camera calibration, the pinhole-camera matrix M will come up in most peo-

ple’s mind. As discussed in Chap. 2, the pinhole-camera matrix M consists of an intrinsic

matrix K and an extrinsic matrix [R3∗3,T3∗1]. The camera space 3D reconstruction method

we discussed in section 3.1 utilizes horizontal and vertical field of views, which work in the

same way with the intrinsic matrix K’s principle. However, a camera’s calibration needs

external help from world space objects, which means neither of the FoVs nor intrinsic ma-

trix K alone is able to do calibration, and extrinsic parameters that can link to world space

are necessary in calibration.

Kai [37] did a good job on structured light 3D scanner parallel calibration on GPU, and

derived the per-pixel beam equation (3.9) directly from a pinhole camera matrix M, which

offers the possibility of natural 3D reconstruction on GPU similar to eqn. (3.7).

XW [m, n] = a[m, n]ZW [m, n]+b[m, n]

YW [m, n] = c[m, n]ZW [m, n]+d[m, n]
, (3.9)

where [m, n] is the discrete space R and C coordinate of each pixel in a M by N sensor.

This per-pixel beam equation shows per-pixel linear mappings from ZW to XW/YW , and

the per-pixel ZW can be mapped from features of structured light. It is not specially pro-

portional like eqn. (3.7), because it contains space translation infos from camera space to

world space. Although it is in world space now and the intrinsic parameters are able to be
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determined, however, lens distortions are still not able to be handled. To make it ideal, we

need to not only remove the lens distortions and depth distortion, but also realize the 3D

reconstruction on GPU in a natural method similar to eqn. (3.9).

In this section, we will find a best-fit calibration system for a KinectV2 camera’s natural

calibration and reconstruction, which is able the handle both of lens distortion and depth

distortion. To easily show 3D reconstruction in a parallel way on the GPU, we would like

our calibration system to be able to offer a per-pixel mapping from D to ZW , which then

could be used to map to XW/YW using eqn. (3.9). In this way, the depth distortion could

also be corrected during the per-pixel D to ZW mapping. Of all different kinds of calibra-

tion systems, a camera on rail system with a planar pattern on wall is finally decided, which

offers a moving plane with respect to the camera when the camera moves along the rail.

As Fig. 3.5 shows, a canvas on which printed an uniform grid dots pattern is hung on

the wall, and the rail is required to be perpendicular to the wall. The RGBD camera wait-

ing to calibrate is mounted on the slider. Note that, in this calibration system, the only unit

that needs to be perpendicular to the wall is the rail, whereas the RGBD camera has no

need to require its observation orientation. Because the per-pixel calibration requires only

accurate world space coordinates which will be decided by the rail and the wall, whereas

the camera’s space is not considered at all. We will assign the pattern plane as the XWYW

plane in world space, and the rail to be along with (not exactly on) ZW -axis. The world

coordinate is static with the camera on the slider.

Figure 3.6 shows one frame of NIR XWYW ZW 3D reconstruction, which can help ex-

plain how the world space origin is assigned. Inside the figure, both of the origin and

Z-axis are high-lighted in blue, and the origin of world space is on the left end of the blue

line. On the pattern plane with dot-clusters marked in circles, we can see one dot-cluster is

high-lighted inside a thick circle, and its center point is where XW/YW = 0. The dot-cluster

which will be sitting on the ZW -axis is the one whose center point is closest to the center

pixel of the sensor. All pixels in this frame share the exact same ZW , which is also why
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Figure 3.5: KinectV2 Calibration System

Figure 3.6: NIR XWYW ZW 3D Reconstruction
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we require the rail to be perpendicular to the pattern. And the value of ZW is measured by

a laser distance measurer mounted on the camera’s carriage. The final origin of the world

space will be decided by both of the camera’s observing orientation and the laser distance

measurer’s position. This kind of world coordinate assignment is totally for simplifying

image processing during calibration. Practically, we do not even care where exactly the

origin is, as long as the rail is perpendicular to the pattern and the distance measurer is

static with the camera.

With this rail calibration system, an infinite number of frames could be utilized for

training a calibration model. With more and more dots walking into the camera’s field

of view under a certain rhythm as the slider moves further from the pattern plane, the dots

(which will be extracted as calibration points) are able to cover all pixels of a sensor. What’s

more, a moving-plane system (multiple frames calibration instead of one frame calibration)

makes it possible to do dense D to ZW mapping, which will handle depth distortion.

3.3 Data Collection

With the calibration system built up and world coordinate assigned, we are now ready to

calibrate. ZW values for all pixels of every frame will be supported from external laser

distance measurer. To simplify potential calculation during image processing, we assign

the world coordinate Unit One based on the uniform grid dots patter, to be same with the

side of pattern’s unit-square. Concretely, the distance between every two adjacent dots’

centers in real-world is 228mm. Therefore, ZW = -Z(mm) / 228(mm), where Z is the

vertical distance to the pattern plane in reality measured by the laser distance measurer.

Note that, ZW values are always negative, based on the assignment of Cartesian world

coordinate. The outline of calibration procedures is listed below.

1. Mount both of the camera and laser distance measurer onto the slider.

2. Move the slider to the nearest position to the pattern plane.
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3. Record one frame of RGB data with one frame of NIR data at this position.

a) measure |ZW | using the laser distance measurer.

b) grab RGB, NIR and Depth streams from KinectV2 camera.

c) extract center points (R/C) of dot-clusters from RGB and NIR streams respec-

tively.

d) assign XW/YW values to the extracted points, RGB and NIR respectively.

e) train and determine the best-fit high order polynomial model that map from RC

to XW/YW , RGB and NIR respectively.

f) generate dense XW/YW for all pixels using the model, for NIR and RGB streams

respectively.

g) save the RGB and NIR images as XWYW ZW RGBD for RGB stream, and XWYW ZW ID

for NIR stream, where the channel I in NIR frame denotes Intensity.

4. Move the slider to the next position, and repeat step 3.

Concretely, we will record RGB and NIR frames every 25mm. During every time, |ZW |

will be measured by the laser measurer and manually input into the shader at the very be-

ginning of streams recording. After RGB, NIR and Depth streams have been retrieved from

KinectV2, we will utilize digital image processing (DIP) techniques to extract the center

points’ image addresses (R/C) of dot-clusters, and then determine a high-order polynomial

model to build a mapping from R/C to XW/YW for dense world coordinates generation.

DIP Techniques on (R,C) Extraction

A robust DIP process on the extraction of a customer’s geometric center pixel coordi-

nate determines the accuracy of calibration. In this project, the extraction steps consist

of gray-scaling, histogram equalization, adaptive thresholding and a little trick on black

pixel counting. OpenGL is selected as the GPU image processing language. The default
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data type of streams saved on GPU during processing is single precision floating point

(FLOAT), with its range being from 0.0 (total balck) to 1.0 (total white). Gray-scaling

is done to unify processing steps of both RGB and NIR streams. For NIR stream, its

data contains only color gray, and data will be saved on GPU as FLOAT automatically.

Whereas for RGB stream, a conversion from RGB to gray value is needed. Typically, there

are three converting methods: lightness, average, and luminosity. The luminosity method,

which uses a weighted average value to account for human perception, is finally chosen as

a human-friendly way for gray-scaling, give by

I0[m, n] = 0.21R[m, n] + 0.72G[m, n] + 0.07B[m, n] , (3.10)

where R/G/B denotes the data of Red/Green/Blue channels from RGB stream, and I0

denotes the intensity value after gray-scaling.

In practice, NIR stream image is always very dark, as shown in Fig. 3.7a (with their in-

tensity values every close to zero). In order to enhance the contrast of NIR image for a bet-

ter binarizing, histogram equalization technique is utilized to maximize the range of valid

pixel intensity distributions. Same process is also compatible on the RGB stream. Com-

monly, Probability Mass Function (PMF) and Cumulative Distributive Function (CDF) will

be calculated to determine the minimum valid intensity value (IMIN) and maximum valid

value (IMAX) for rescaling, whereas tricks could be used by taking advantage of the GPU

drawing properties.

PMF means the frequency of every valid intensity value for all of the pixels in an image.

The calculation of PMF on GPU will be very similar to points’ drawing process, both of

which are on a per-pixel basis. Dividing all of the pixels in terms of their intensity values

into G levels, every pixel belongs to one level of them, which is called Gray Level. With a

proper selection of G (e.g., G=1000) to make sure a good accuracy, the intensity value of a
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pixel could be expressed based on its gray level g

I0[m, n] =
g[m, n]

G
∗ (1.0−0.0)+0.0 =

g[m, n]
G

, (3.11)

where g and G are integers, and 1 6 g 6 G. We will count PMF by drawing all pixels with

“1.0” being their intensity (color) value, zero being y-axis all the time and their original

intensity being their position on x-axis. Thus, PMF value at each gray level could be drawn

into a framebuffer object.

With PMF determined, CDF at gray leverl g could be calculated by

CDF(g) =
∑

g
l=1 PMF [l]

M×N
, (3.12)

where l in the PMF summation calculation denotes integer gray level with its range from 1

to g, and M×N gives how may pixels totally in a sensor. Then, the limit of valid intensities

IMIN and IMAX could be determined by

IMIN =
gmin

G

IMAX =
gmax

G

(3.13)

where gmin and gmax are determined by choosing appropriate CDFs, e.g., CDF(gmin)= 0.01

and CDF(gmax) = 0.99. Finally, a new intensity value of every single pixel in an image

could be rescaled by

I1[m, n] =
I0[m, n]− IMIN

IMAX− IMIN
, (3.14)

and the image will get a better contrast, as compared in Fig. 3.7.

Affected by radial dominated lens distortions, the intensity value tend to decrease as the

position of a pixel moves from the center of an image to the borders, in the case of observing

a singular color view. Therefore, an adaptive thresholding process is needed, whereas using

fixed thresholding will generate too much noise around borders. To segment the black dots
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(a) Raw (b) Histogram Equalized

Figure 3.7: NIR Streams before / after Histogram Equalization

from white background, we could simply subtract an image’s background from an textured

image, where the background comes from a blurring process of that image. There are

three common types of blurring filters: mean filter, weighted average filter, and gaussian

filter. Mean filter is selected for this background-aimed blurring process, because it has the

smallest calculation and also a better effect of averaging than the others. After the blurred

image containing background texture is obtained, the binarizing (subtraction) process for

every single pixel could be written as

I2[m, n] =


1, I1[m, n]− Ib[m, n]−C0 > 0

0, else
, (3.15)

where the per-pixel I1 value comes from the texture after histogram equalization, the per-

pixel Ib comes from the background texture after a mean blurring filter, and C0 is a small

uniform constant offset that could be adjusted depending on various thresholding situa-

tions. In this project, C0 is around 0.1. To sharpen the edge of the binarized image for a

better “circle” shape detection, a median filter could be added as the last step of adaptive

thresholding. As shown in Fig. 3.8, background is removed in the binarized image after

adaptive thresholding.
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(a) Histogram Equalized (b) Binarized

Figure 3.8: NIR Streams before / after Adaptive Thresholding

After the adaptive thresholding, image data saved on GPU is now composed of circle-

shaped “0”s within a background of “1”s. In order to locate the center of those “0”s circle,

which is the center of captured round dot, it is necessary to know the edge of those circles.

A trick is used to turn all of the edge data into markers that could lead a pathfinder to re-

trieve circle information. The idea that helps to mark edge data is to reassign pixels’ values

(intensity values) based on their surroundings. Using letter O to represent one single pixel

in the center of a 3×3 pixels environment, and letters from A~H to represent surroundings,

a mask of 9 cells for pixel value reassignment could be expressed as below.

E A F

B O C

G D H

To turn the surroundings A~H into marks, different weights will be assigned to them. Those

markers with different weights have to be non-zero data, and should be counted as the edge-

part of circles. Therefore, the first step is to inverse the binary image, generating an image

that consists of circle-shaped “1”s distributed in a background of “0”s. After reversing, the

next step is to assign weight to the surroundings.

OpenGL offers convenient automatic data type conversion, which means the intensity

values from “0.0” to “1.0” of FLOAT data type save on GPU could be retrieved to CPU as
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unsigned-byte data type from “0” to “255”. Considering a bitwise employment of markers,

a binary calculation related weight assignment is used in the shader process for pixels. The

reassigned per-pixel intensity could be determined by:

I3[m, n] = I2[m, n]∗ (128IA +64IB +32IC +16ID +8IE +4IF +2IG + IH)

255
, (3.16)

where the per-pixel I3 is calculated based on its surroundings. After this reassignment, the

image is not binary any more. Every non-zero intensity value contains marked information

of its surroundings, and data at the edge of circles are now turned into fractions. In other

words, the image data saved on GPU at the moment is composed of “0”s as background

and “non-zero”s circles, which contains fractions at the edge and “1”s in the center.

Now, it is time to discover dots through an inspection over the whole path-marked

image, row by row and pixel by pixel. Considering that, a process of one single pixel in this

step may affect the processes of the other pixels (which cannot be a parallel processing), it

is necessary to do it on CPU. The FLOAT image data will be retrieved from GPU to a buffer

on CPU as unsigned-byte data, waiting for inspection. And correspondingly the new CPU

image will have its “non-zero”s circles composed of fractions at the edge and “1”s in the

center. Whenever a non-zero value is traced, a dot-circle is discovered and a singular-dot

analysis could start. The first non-zero pixel will be called as an anchor, which means the

beginning of a singular-dot analysis. During the singular-dot analysis beginning from the

anchor, very connected valid (non-zero) pixel will be a stop, and a “stop-address” queue

buffer is used to save addresses of both visited pixels and the following pixels waiting to be

visited. On very visit of a pixel, there is a checking procedure to find out valid (non-zero)

or not. Once valid, the following two steps are waiting to go. The first step is to sniff,

looking for possible non-zero pixels around as the following stops. And the second step

is to colonize this pixel, concretely, changing the non-zero intensity value to zero. Every

non-zero pixel might be checked 1~4 times, but will be used to sniff for only once.
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(a) before Extraction (b) Extracted and Marked

Figure 3.9: Valid Dot-Clusters Extracted in NIR

As for the sniffing step, base on the distribution table of A˜H that has been discussed

above and their corresponding weight given by equation 3.16, the markers A/B/C/D will

be checked if valid or not, using an AND bitwise operation between IO and 0x80 / 0x40 /

0x20 / 0x10 respectively. The the bitwise operation result equals to one, then that marker

is valid. Once a valid marker is found, its address [m, n] will be saved into the “stops-

address” queue. One pixel’s address might be saved for up to 4 times, but “colonizing”

procedure will only happen once at the first time, so that the sniffing will stop once all of

the connected valid pixels in a singular dot-cluster are colonized as zeros.

In the second step “colonizing”, IO is changed to zero, variable area of this dot-cluster

pluses one, and bounding data RowMax / RoxMin / ColumnMax / ColumnMin are also

updated. Finally, the Round Dot Centers could be determined as the center of bounding

boxes with their borders RowMax / RoxMin / ColumnMax / ColumnMin. After potential

noises being removed based on their corresponding area and shape (ratio of width and

height), the data left are taken as valid dot-clusters. As shown in Fig. 3.9b, the centers of

valid dot-clusters are marked within their corresponding homocentric circles.
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(XW , YW ) Fitting based on Uniform Grid

With a list of image space points (R,C)s extracted, the following is to assign those points

with their corresponding world coordinates (XW , YW )s, so that we can get coordinate-pairs

to train a mapping model for dense XWYW generation. The world coordinates are based

on the uniform grid. Taking the side of unit-square (distance between two adjacent dots)

as “Unit One” in the world coordinates and one dot as the origin of plan XWYW , all fitted

XW /YW values will be integers.

Ideally, a 3× 3 perspective transformation matrix could help set a linear mapping be-

tween two different 2D coordinates, and 3 dot centers with known coordinates pair of (R,C)

and (XW , YW ) are enough to determine the transformation matrix. Once four points with

a squared-shape R/C distribution is found, a 3× 3 perspective transformation matrix A0

could be determined by solving


zXW

zYW

z

= A0


C

R

1

=


a11 a12 a13

a21 a22 a23

a31 a32 a33




C

R

1

 , (3.17)

where C and R are vectors consist of four squared-shape distributed points’ addresses; XW

and YW are vectors consist of four points (0,0), (0,1), (1,1), and (1,0); z denotes the third

axis in the homogenous system connecting two coordinates.

Deformed by lens distortions, the cluster centers in image plane are not uniformly dis-

tributed, and this 3× 3 transformation matrix can only generate corresponding decimal

XW /YW values that are close integers. But in practice, the correct integer values XW /YW

could still be located through rounding. Considering that a list of cluster centers’ image co-

ordinate (R,C)s will give many groups of four squared-shape distributed points, and each

of them gives a different image coordinate distance will be mapped to the “Unit One” in

world coordinates, we will traverse all of the possible groups of four squared-shape dis-
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tributed points and pick out the group whose mapping matrix A0 generates the most points

that are close to integers. In this way, we find the transformation matrix A0 can give the

best “Unit One” distance in world coordinates; however, its generated point XW/YW = 0

is usually not at the dot-cluster that is closest to the center of cameras’ FoV. A translation

matrix T could be used to refine the transformation matrix A0 and help to translate the

origin point to be at the dot cluster we want:

A1 = T ·A0 =


1 0 −xh

0 1 −yh

0 0 1

 ·A0 , (3.18)

where (xh, yh) is the integer world space address rounded after the transformation from

image space center point: 
zxh

zyh

z

= A0 ·


ch

rh

1

 . (3.19)

where (ch, rh) denotes the center point of FoV in image space. Eventually, the refined

transformation matrix A1 can help assign world coordinates to the extracted image space

coordinates, with the point XW/YW = 0 at the dot-cluster nearest to the image center, as

shown in Fig. 3.10b.

Dense XW/YW Generation

The generation of undistorted dense XWYW needs to consider lens distortion removal. In

the traditional calibration method, world space XW/YW/ZW are mapped to undistorted

(R′,C′) by linear pinhole camera matrix M. And then the undistortion step from undistorted

(R′,C′) to distorted (R,C) is done by eqn. (2.20), which uses a high order (higher than

2nd order) polynomial equation. Assuming that there is a high order mapping relationship

directly from the distorted image space (R,C) to world space (XW , YW ), we will do different
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(a) ImagePlane Coordinate (b) World Coordinate

Figure 3.10: Coordinates-Pairs: (R,C)s and (XW , YW )s

orders of two-dimensional polynomial prototypes in Matlab using its application of “Curve

Fitting Toolbox”, and then decide a best-fit mapping model with a high accuracy and a

relative small number of parameters.

A two-dimensional polynomial model means surface mapping between two different

spaces. Equation. (3.17) (perspective correction) as 1st order polynomial mapping is not

able to handle lens distortions. The second order polynomial mapping has 2× 6 = 12

parameters, written as

XW = a11C2 +a12CR+a13R2 +a14C+a15R+a16

YW = a21C2 +a22CR+a23R2 +a24C+a25R+a26 ,

(3.20)
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and similarly, the fourth order polynomial mapping has 2×15 = 30 parameters, given by

XW = a11C4 +a12C3R+a13C2R2 +a14CR3 +a15R4 +a16C3 +a17C2R ...

+a18CR2 +a19R3 +a110C2 +a111CR+a112R2 +a113C+a114R+a115

YW = a21C4 +a22C3R+a23C2R2 +a24CR3 +a25R4 +a26C3 +a27C2R ...

+a28CR2 +a29R3 +a210C2 +a211CR+a212R2 +a213C+a214R+a215 .

(3.21)

To prototype equation 3.20 and 3.21 in Matlab, “Curve Fitting Toolbox” is used to ob-

tain the 2× 6 and 2× 15 parameters, using 107 points’ coordinates pairs of image space

R/C and world coordinates XW/YW . Based on the “Goodness of fit” of transformation

parameters from Matlab, the Root-Mean-Square Error (RMSE) of (XW , YW ) is (0.06796,

0.05638) for the 2nd order polynomial, and (0.02854, 0.02343) for the 4th order polyno-

mial. As the order of polynomial goes higher, the RMSE gets smaller, and the cost of

parameters’ calculation gets much higher as well. After the prototyping in Matlab, the dif-

ferent orders of polynomial models will be applied into real-time streams transformation

to get live transformed world space reconstruction. Eventually, the 4th order polynomial

transformation model is selected as the distortion removal mapping model, which can give

an intuitive undistorted world space image while costing relative less calculations. This

mapping model will be trained by coordinate-pairs of the extracted points, and then be

applied to image space addresses to generate dense XW/YW for all pixels.

3.4 Data Process and LUT Generation

Till now, we have collected frames of XWYW ZW RGBD data from RGB streams and XWYW ZW ID

from NIR stream. The XWYW ZW RGBD data from RGB streams can be used for color val-

ues’ alignment after the 3D reconstruction based on depth stream. Since the NIR stream

has same pixel distribution with depth stream, we will process the XWYW ZW ID data and
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generate per-pixel mapping parameters, which can be saved as LUT for undistorted 3D

reconstruction. From section 3.2, we know that our whole idea of a calibrated natural 3D

reconstruction on GPU is to make use of per-pixel eqn. (3.9), which requires undistorted

XWYW ZW data and a per-pixel mapping from D to ZW . With enough XWYW ZW ID data

already been collected, we will determine a per-pixel D to ZW mapping, and then generate

LUT for calibrated 3D reconstruction.

Both of D and ZW are continuous data, so that their function could written as a polyno-

mial expression, based on Taylor series. We will determine a best-fit mapping model from

D to ZW using Matlab. Figure 3.11 shows the polynomial fitting result in Matlab “Curve

Fitting Tool” toolbox, with 32 points of DZW values (at pixel C=256 and R=212) from 32

frames. It is apparent that ZW is linear with D. Therefore, for every single pixel, ZW could

be mapped from D through

ZW [m, n] = e[m,n]D[m, n]+ f [m,n], (3.22)

where [m, n] denotes the image address R and C of a pixel, e/ f are the corresponding linear

coefficients that help map from D to ZW . With eqn. (3.22) supporting the per-pixel ZW

values and eqn. (3.9) help generating the per-pixel XWYW values, we found all of the six

Figure 3.11: Polynomial Fitting between D and ZW
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(a) Staggered (b) Unified

Figure 3.12: World Space Unification of Collected Data

per-pixel parameters (a/b/c/d/e/ f ) we need. We are now ready to process the collected

data off-line and generate a M by N by 6 LUT.

The collected data cannot be used directly for LUT generation, because XW/YW may

not be well aligned and pre-processes of data are needed. Our calibration system did not

require the camera’s observing orientation to be along with ZW -axis, which results to the

fact that, the collected frames might be staggered when the centered dot-cluster in camera’s

FoV moves. Figure 3.12a shows the raw collected data before world space unification,

which has a staggered piles of frames. In order to make the data available for generating

valid per-pixel 3D reconstruction parameters, we need to unify their world space by adding

or subtracting a corresponding integer to all pixels in every staggered frame, making sure

the point XWYW = 0 is at the same dot-cluster for all frames. After the data unification of

world space, as shown in Fig. 3.12b, we are all ready to determine the per-pixel mapping

parameters a/b/c/d/e/ f and generate the LUT.
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3.5 Alignment of RGB Pixel to Depth Pixel

Now an undistorted 3D reconstruction could be displayed with the help of the calibrated

LUT. However, we have not figured out yet what the color of each pixel is. To generate

a colored 3D reconstruction with a combination of a random depth sensor and a random

RGB sensor, we need to align the RGB pixels to depth pixels. The intermediate between

the depth sensor image space and RGB sensor image space is the world space. As long

as we figure out the mapping from world space to RGB sensor image space, the color of

pixel with known XWYW ZW could be looked up from the RGB image space. The pinhole

camera matrix M is used to map from world space to RGB image space. Using the frame

data from Kinect RGB streams and Kinect NIR streams, a Matlab prototype of RGB pixels

alignment is shown in Fig. 3.13a, where the RGB textured is mapped onto its correspond-

ing NIR image, who has same pixels with depth sensor. The total black area on the top

edge and bottom edge is where the depth sensor’s view goes beyond the RGB sensor’s

view. Figure 3.13 shows the screen-shot of live video after calibration with the RGB pixels

aligned by a pinhole camera model M.

(a) (b)

Figure 3.13: Alignment of RGB Texture onto NIR Image
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Chapter 4 Results of Calibration and 3D Reconstruction

As discussed in section 3.3, the per-pixel calibration method is supposed to handle both

of radial dominated lens distortions and depth distortion. A two-dimensional high-order

polynomial model would be employed to remove lens distortions and generate estimated

(XW , YW )s from image space (R,C)s. And the depth distortion would be removed during

the per-pixel D to ZW mapping during 3D reconstruction. In this chapter, we will show

how well the lens distortions and depth distortion are removed by compare both of intuitive

image data and quantitative numerical data, before and after calibration, in both of Matlab

prototypes and real-time 3D reconstructions.

4.1 Calibration and Analysis

Figure 4.1 shows the Matlab prototypes of the simulated original image, world space

XWYW plane result after a two-dimensional 1st order polynomial transformation, 2nd or-

der polynomial and 4th order polynomial transformation. With squared-shaped distributed

points (C, R)s extracted from image streams, fig. 4.1(a) recovers the original distorted im-

age in Matlab. Using a mathematical distortion (d) measurement [52]

d(%) = e∗100/L, (4.1)

we can get the original distortion d0 = (R3−R1)/(C2−C1) = (403−393)/(492−20) =

2.1%. Figure 4.1b shows estimated world space XWYW plane after a two-dimensional 1st

order polynomial transformation, whose distortion d1 =(Y 1−Y 3)/(X2−X1)= [−3.772−

(−4.004)]/[5.713− (−4.735)] = 2.2%. As we may have expected, the distortion d1 is not

getting smaller at all.

Figure 4.1c and Fig. 4.1d show the transformed world space XWYW plane images after
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(a) Image Space (b) 1st Order

(c) 2nd Order (d) 4th Order

Figure 4.1: XWYW Matlab Polynomial Prototype

the 2nd order and 4th order polynomial transformation respectively, from which we can get

d2 = [−3.807−(−4.035)]/[5.779−(−4.8)]= 2.1% and d4 = [−3.936−(−3.992)]/[5.923−

(−4.928)] = 0.516%. It is straightforward to tell that, d4 is much smaller than d0 and

Fig. 4.1d intuitively shows a satisfying undistorted image. From eqn. (3.20) and eqn. (3.21),

we know that the second order polynomial mapping has 2× 6 = 12 parameters, and the

fourth order polynomial mapping has 2× 15 = 30 parameters. The higher order poly-

nomial we use, the better radial distortion we are able to correct. In the meantime, the

distortion removal model will have more parameters to calculate, and need more calibrat-
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(a) Before transformation (b) Perspective (1st )

(c) 2nd Order (d) 4th Order

Figure 4.2: NIR Stream High Order Polynomial Transformation

ing points to train the model.

By applying those two-dimensional polynomial models into real-time streams transfor-

mation, we can get the transformed stream images. As shown in Fig. 4.2, the outlines of

the transformed steam images are same with Matlab prototypes in Fig. 4.1. It is easy to

tell that the 4th order polynomial surface mapping is much better than the second order,

and a higher order than 4th should be more accurate. However, as the order of the polyno-

mial mapping goes higher, the number of parameters also get larger and larger, which costs

more calculations and requires more data (coordinate-pairs) for training the transformation
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Figure 4.3: 63 Frames NIR Calibrated 3D Reconstruction

model. Considering that a 5th order polynomial mapping will have much more parame-

ters (2× 21 = 42) to calculate while may not enhance much accuracy, we choose the 4th

order polynomial as the main mapping model to get XWYW values from RC. Limited by

the static dot pattern, fewer and fewer dot-clusters could be observed by the camera as the

camera getting closer to the dot pattern. Practically, 4th order calibration is replaced by 2nd

order to guarantee a robust software when the observed dot-clusters are too few to train the

transformation model.

The two-dimensional high-order polynomial mapping model will be applied in the first

calibration step of XWYW ZW +D frames data collection. Figure 4.3 shows 63 frames of

collected XWYW ZW , which gives an pyramid shape of a camera sensor’s undistorted world

space field of view. For each single pixel, its field of view is a beam, which could be math-

ematically expressed as equation (3.9). Some sample beams are shown in Fig. 4.4, whose

beam equation parameters c/d/e/ f are determined as the best-fit totally by the collected

undistorted data. As for the handling of depth distortion, a pre-process of depth stream

is needed. Considering that there will be irregular noises (different with the regular depth
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Figure 4.4: Sample Beams of Calibrated NIR Field of View

distortion) in the depth stream, especially those brought in by the defects affected by huge

transitions of color (or intensity), we will find a best-fit plane for each frame based on its

XWYW D data and throw away 10% worst pixels that are far away from the best-fit plane.

Figure 4.5 shows 10 frames of flat-shading 3D reconstructions in Matlab for both of before

and after calibration. In Fig. 4.5(a), the 3D reconstructions are based on camera space coor-

dinates XCYCZC generated by eqn. (3.7) and (3.8); which are then transformed into world

space for a better comparison with the calibrated reconstruction, using best fit rotation and

translation matrix based on corresponding XWYW ZW . In Fig. 4.5(b), the 3D reconstruc-

tions are based on world space coordinates generated by eqn. (3.9) and (3.22). We can tell

that the 10 frames in the LUT calibrated 3D reconstructions are a little bit thinner than that

of raw Pin-Hole reconstructions, which means the per-pixel calibration method has posi-

tive effect on the removal of depth distortion. The depth distortion removal in real-time is

shown in section 4.2 Fig. 4.7.
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(a) Raw Pin-Hole Reconstructions in World Space
through best-fit rotation and translation

(b) Calibrated LUT based Reconstructions

Figure 4.5: Depth Distortion, before and after Calibration

4.2 Real-Time 3D Reconstruction on GPU

The 3D Reconstruction of undistorted XW/YW/ZW in real-time is the final aim of a 3D

camera’s calibration. In the traditional camera calibration method, which consist of one

pinhole-camera matrix to generate raw world space 3D coordinates and another model for

lens distortion removal, three big transformations are needed to generate the world space

coordinates: from 2D distorted image space to 2D undistorted image space, then to 3D

camera space, and finally to 3D world space. For every single pixel’s processing, it needs 5

parameters from distortion removal model for the first step non-linear calculation, and then

a 3× 3 intrinsic matrix to get its camera space coordinates, and a 3× 4 extrinsic matrix

to finally acquire the world space coordinates. The 3D reconstruction after the traditional

calibration requires a lot of calculations for every single pixel, and depth distortion is not

corrected at all.

Using the proposed per-pixel calibration method, only three linear calculations with

six parameters are needed to determine the world space coordinates for every single pixel.

Two parameters e/ f are utilized to generate world space ZW , as expressed in eqn. (3.22).

And the other four parameters a/b/c/d are applied to get XW/YW respectively based on

eqn. (3.9). In this way, there is no need to calculate any non-linear equation for distortions

removal, and the camera space is totally left aside. Combining two equations together,

the undistorted 3D world coordinates (XW , YW , ZW ) for every single pixel could be looked
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(a) Raw (Distorted) (b) Calibrated

Figure 4.6: Lens-Distortions Removal by Per-Pixel Calibration Method

(a) Raw (b) Calibrated

Figure 4.7: Depth-Distortions Removal by Per-Pixel Calibration Method

up based on D from a C-by-R-by-6 look-up table. Figure 4.6 shows how lens distortions

are moved, and Fig. 4.7 shows how the depth distortion is removed by per-pixel D to ZW

mapping.

Copyright© Sen Li, 2016.
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Chapter 5 Conclusion and Future Work

The depth sensor technologies opens a new epoch for 3D markets. Ever since Microsoft

brought the low-cost depth camera Kinect into consumer market, RGBD cameras are fa-

mous for their 3D reconstruction applications in research areas of HCI. Graphic processing

units (GPUs) can solve large data parallel problems at a higher speed than the traditional

CPU, while being more affordable and energy efficient [53]. With floating point calcula-

tion and matrix operation, GPUs are specialized many-core processors that are optimized

for graphic processing [54]. Without calibration, the horizontal and vertical FoV could

help generate 3D reconstruction in camera space naturally on GPU through proportional

calculations in fragment shader, which nevertheless is badly deformed by the lens distor-

tions and depth distortion. Due to image formation, some methods must be designed to

establish the correct correspondence between raw images streams from the camera and the

real-time 3D reconstruction feedback. Traditionally, the camera calibration is done based

on a pinhole-camera model and a high-order distortion removal model. However, there

will be a lot of calculations in the fragment shader to process parameters. There will be

at least five intrinsic parameters from intrinsic camera matrix and another five parameters

from distortion removal vector, while the distortion correction in this method requires mul-

tiplication calculations to achieve the high order polynomial. In order to get rid of both the

lens distortion and the depth distortion while still be able to do simple calculations on the

GPU fragment shader, a new solution is needed.

In this thesis, a novel per-pixel calibration method with look-up table based 3D re-

construction on GPU in real-time is introduced, using a rail calibration system. This rail

calibration system offers possibilities of collecting infinite calibration points with dense

distributions that can cover all pixels in a sensor. Not only lens distortions, but depth

distortion can also be handled by a per-pixel D to ZW mapping with data along ZW -axis
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collected on the rail. Instead of utilizing the traditional pinhole camera model, two poly-

nomial mapping models are employed in this calibration method. The first model is the

two-dimensional 4th order polynomial mapping from R/C to XW/YW during the frames

data collection, which takes care of the removal of lens distortions; and the second model

is the linear mapping from D to ZW , which can handle “depth distortion”. The method

consists of two big steps: XWYW ZW +D data collection and mapping parameters deter-

mination. D is simply from depth streams. ZW is from external based on the camera’s

position on the rail. And the undistorted (XW , YW ) are from the transformation of R/C by

a 4th order polynomial mapping model, during which lens-distortions could be removed.

This method is claimed as “data-based” calibration method, because both of the two map-

ping models are determined and calculated by real streams data from the camera.

With the fewest calculations, the undistorted 3D world coordinates (XW , YW , ZW ) for

every single pixel could be looked up in real-time based on D from a C-by-R-by-6 look-up

table. Only three linear equations with six parameters need to be calculated in the fragment

shader. Two out of six parameters a/b are to determine the per-pixel ZW , which is gener-

ated from per-pixel depth value D; and the other four parameters c/d/d/ f are to determine

the per-pixel XW/YW respectively, which are mapped by per-pixel linear beam equation

from the per-pixel ZW . Note that “real-time” here means being able to show an undistorted

frame in 3D world space before the start of the second frame processing, and this LUT

based 3D reconstruction method can realize real-time very well. The data-based per-pixel

calibration method could be applied universally on any RGBD cameras. With the align-

ment of RGB pixels using a pinhole camera matrix, it could even work on a combination

of a random Depth sensor and a random RGB sensor.

The rail calibration system and per-pixel calibration method with LUT-based real-time

3D reconstruction could be applied universally to all kinds of RGBD cameras. With a

more precise calibration system and corresponding DIP technologies, there could be a

huge improvement space for calibration accuracy. Hardware improvement is sometimes
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more important than a software updating. Concretely the system in the lab now can only

handle a working distance ZW from 1.165m to 2.565m. Considering that the depth resolu-

tion deteriorates notably with depth, it might not be a simple linear relationship from D and

ZW , when the depth D value goes much further than the limit of the rail. In that case, the

per-pixel D to ZW mapping could be changed from singular linear to segmented mapping

function when D gets larger than a certain value.

Not only the rail, the planar pattern could also be changed based on the resolution of

the camera (e.g., size of the dots and side distance of the unit square-shaped of the uniform

grid could be larger when the camera has a supper high resolution). A two dimensional

object is totally enough for calibrating KinectV2, because the NIR stream have same pix-

els’ distortions with the depth stream. However, if NIR stream could not be used to extract

points R/C in image space (e.g. a structured light based depth sensor) while the size (pixel

numbers) of the RGB sensor does not share the same one with the depth sensor, we could

make the planar pattern into a “three dimension mode”: change the printed dots into real

wholes such that the depth stream could detect a difference between the “dots” and “white

background”.

Instead of using a laser distance measurer to manually input ZW into every frame at

the very beginning of the frame data collection, we could add a tracking module onto the

rail to active the frame collection by software. In this way, not only ZW could be traced

by the tracking module, but also the frame collection could be automatically done by the

activation from the tracking module, recording one frame data after every certain distance

of movement has been detected.

Besides the hardware enhancement, softwares like DIP process can also be improved.

The order of polynomial model that help map from image space R/C to world space

XW/YW could also be heightened for a better accuracy, as long as there will be enough

calibrating points to offer the coordinates pairs of both image space and world space. Con-

sidering the possible lens-distortions of the RGB sensor, the high order polynomial map-
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ping could also be applied into the color values’ alignment from RGB sensor pixels to

depth sensor pixels.

Copyright© Sen Li, 2016.
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Appendix: List of Symbols

3D Three-Dimensional. i–iv, 3–11, 13–16, 18, 19, 21, 24, 25, 31, 34–38, 50–53, 55, 58,
60, 62, 63

CDF Cumulative Distributive Function. 41, 42

C′ Undistorted Column coordinate in Virtual Focal Plane image space. 29, 30

xc Camera pace coordinate of a random object point P along XC-axis. 16–18, 29

yc Camera pace coordinate of a random object point P along YC-axis. 16–18, 29

zc Camera pace coordinate of a random object point P along ZC-axis. 16–18, 29

XC Camera Space X-axis of Cartesian coordinate. iv, 10, 15, 20, 31–35, 59, 66

YC Camera Space Y -axis of Cartesian coordinate. 10, 15, 20, 31–35, 59, 66

ZC Camera Space Z-axis of Cartesian coordinate. 10, 15, 20, 21, 24, 31–36, 59, 66

N Size of a sensor’s total pixels in Column. 32–34, 36, 42, 52

n Discrete Column coordinate in two-dimensional image space. 26, 36, 41–43, 45, 46

C Column coordinate in two-dimensional image space. iv, 12, 16, 18–20, 29, 30, 33, 36,
40, 51, 61, 63

DIP Digital Image Processing. 12, 40, 63, 64

D Depth value. ii, iv, 10–12, 31, 32, 36, 37, 39, 44–46, 51, 58, 59, 61–64

FoV Field of View. ii, iv, 10, 27–29, 32–34, 48, 52, 62

FLOAT Data type of single precision floating point. 31, 32, 41, 44, 45

θh Horizontal Field of View. 32–34

θv Vertical Field of View. 32, 34

GPU Graphics Processing Unit. i–iv, 10, 11, 13, 31, 32, 34, 36, 37, 40, 41, 44, 45, 51, 60,
62

g Gray level classified based on a pixel’s intensity. 42

G Size of total gray levels assigned for PMF determination. 41, 42

HCI Human Computer Interface. 2, 62

IR Infrared. 2, 3
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KinectV1 The first generation of Kinect RGBD camera, using PrimeSense technology.. 3

KinectV2 The second generation of Kinect RGBD camera, features ToF sensor. iv, 2, 10,
12, 31, 32, 34, 37, 38, 40, 64

K Intrinsic Camera Matrix. 18–20, 23, 36

LUT Look-Up Table. iii, 12, 50–53, 60, 63

M Pin-Hole Camera Matrix. 20–23, 26, 30, 36, 48, 53

NIR Same with NearIR. iv, 3, 37, 38, 40, 41, 43, 44, 46, 50, 53, 57–59, 64

NUI Natural User Interface. 1, 2

NearIR Near infrared, electromagnetic spectrum from about 700 nm to 2500 nm.. iv, 10,
67

PMF Probability Mass Function. 41, 42, 66

Principle Point The center point of the virtual focal plane, intersected by ZC-axis. 16, 17,
19

RGB-D Red-Green-Blue and Depth. 67

RGBD Same with RGB-D. ii–iv, 1, 4–7, 10, 13, 14, 27, 31, 37, 62, 63, 66, 67

R′ Undistorted Row coordinate in Virtual Focal Plane image space. 29, 30

R3∗3 Standard Rotation Matrix, part of the extrinsic camera matrix. 19, 20, 23, 36

m Discrete Row coordinate in two-dimensional image space. 26, 36, 41–43, 45, 46

M Size of a sensor’s total pixels in Row. 32, 34, 36, 42, 52

R Row coordinate in two-dimensional image space. 12, 16, 18–20, 29, 30, 33, 36, 40, 51,
61, 63

SLAM Simultaneous Localization and Mapping. iv, 4–7, 10, 31

ToF Time-of-Flight. 1, 2, 67

T3∗1 Standard Translation Matrix, part of the extrinsic camera matrix. 19, 20, 23, 36

XW World Space X-axis of Cartesian coordinate. ii, iv, 11, 12, 21–23, 26, 29, 30, 36, 37,
40, 47–50, 52, 55, 56, 58–60, 63, 64

YW World Space Y -axis of Cartesian coordinate. ii, iv, 11, 12, 21–23, 26, 29, 30, 36, 37,
40, 47–50, 52, 55, 56, 58–60, 63, 64

ZW World Space Z-axis of Cartesian coordinate. ii, iv, 11, 12, 21–23, 26, 29, 30, 36, 37,
39, 40, 48, 51, 52, 55, 58–64
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