5,210 research outputs found

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Parallel Mesh Processing

    Get PDF
    Die aktuelle Forschung im Bereich der Computergrafik versucht den zunehmenden Ansprüchen der Anwender gerecht zu werden und erzeugt immer realistischer wirkende Bilder. Dementsprechend werden die Szenen und Verfahren, die zur Darstellung der Bilder genutzt werden, immer komplexer. So eine Entwicklung ist unweigerlich mit der Steigerung der erforderlichen Rechenleistung verbunden, da die Modelle, aus denen eine Szene besteht, aus Milliarden von Polygonen bestehen können und in Echtzeit dargestellt werden müssen. Die realistische Bilddarstellung ruht auf drei Säulen: Modelle, Materialien und Beleuchtung. Heutzutage gibt es einige Verfahren für effiziente und realistische Approximation der globalen Beleuchtung. Genauso existieren Algorithmen zur Erstellung von realistischen Materialien. Es gibt zwar auch Verfahren für das Rendering von Modellen in Echtzeit, diese funktionieren aber meist nur für Szenen mittlerer Komplexität und scheitern bei sehr komplexen Szenen. Die Modelle bilden die Grundlage einer Szene; deren Optimierung hat unmittelbare Auswirkungen auf die Effizienz der Verfahren zur Materialdarstellung und Beleuchtung, so dass erst eine optimierte Modellrepräsentation eine Echtzeitdarstellung ermöglicht. Viele der in der Computergrafik verwendeten Modelle werden mit Hilfe der Dreiecksnetze repräsentiert. Das darin enthaltende Datenvolumen ist enorm, um letztlich den Detailreichtum der jeweiligen Objekte darstellen bzw. den wachsenden Realitätsanspruch bewältigen zu können. Das Rendern von komplexen, aus Millionen von Dreiecken bestehenden Modellen stellt selbst für moderne Grafikkarten eine große Herausforderung dar. Daher ist es insbesondere für die Echtzeitsimulationen notwendig, effiziente Algorithmen zu entwickeln. Solche Algorithmen sollten einerseits Visibility Culling1, Level-of-Detail, (LOD), Out-of-Core Speicherverwaltung und Kompression unterstützen. Anderseits sollte diese Optimierung sehr effizient arbeiten, um das Rendering nicht noch zusätzlich zu behindern. Dies erfordert die Entwicklung paralleler Verfahren, die in der Lage sind, die enorme Datenflut effizient zu verarbeiten. Der Kernbeitrag dieser Arbeit sind neuartige Algorithmen und Datenstrukturen, die speziell für eine effiziente parallele Datenverarbeitung entwickelt wurden und in der Lage sind sehr komplexe Modelle und Szenen in Echtzeit darzustellen, sowie zu modellieren. Diese Algorithmen arbeiten in zwei Phasen: Zunächst wird in einer Offline-Phase die Datenstruktur erzeugt und für parallele Verarbeitung optimiert. Die optimierte Datenstruktur wird dann in der zweiten Phase für das Echtzeitrendering verwendet. Ein weiterer Beitrag dieser Arbeit ist ein Algorithmus, welcher in der Lage ist, einen sehr realistisch wirkenden Planeten prozedural zu generieren und in Echtzeit zu rendern

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    Interactive inspection of complex multi-object industrial assemblies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.cad.2016.06.005The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection during these displacements. Our solution–based on the analysis of several existing view-dependent visualization schemes–uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the models involved are presented and discussed in the paper.Peer ReviewedPostprint (author's final draft

    Study of Subjective and Objective Quality Evaluation of 3D Point Cloud Data by the JPEG Committee

    Full text link
    The SC29/WG1 (JPEG) Committee within ISO/IEC is currently working on developing standards for the storage, compression and transmission of 3D point cloud information. To support the creation of these standards, the committee has created a database of 3D point clouds representing various quality levels and use-cases and examined a range of 2D and 3D objective quality measures. The examined quality measures are correlated with subjective judgments for a number of compression levels. In this paper we describe the database created, tests performed and key observations on the problems of 3D point cloud quality assessment

    Robust and Scalable Transmission of Arbitrary 3D Models over Wireless Networks

    Get PDF
    We describe transmission of 3D objects represented by texture and mesh over unreliable networks, extending our earlier work for regular mesh structure to arbitrary meshes and considering linear versus cubic interpolation. Our approach to arbitrary meshes considers stripification of the mesh and distributing nearby vertices into different packets, combined with a strategy that does not need texture or mesh packets to be retransmitted. Only the valence (connectivity) packets need to be retransmitted; however, storage of valence information requires only 10% space compared to vertices and even less compared to photorealistic texture. Thus, less than 5% of the packets may need to be retransmitted in the worst case to allow our algorithm to successfully reconstruct an acceptable object under severe packet loss. Even though packet loss during transmission has received limited research attention in the past, this topic is important for improving quality under lossy conditions created by shadowing and interference. Results showing the implementation of the proposed approach using linear, cubic, and Laplacian interpolation are described, and the mesh reconstruction strategy is compared with other methods

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation
    corecore