433 research outputs found

    A Fully Integrated 24-GHz Eight-Element Phased-Array Receiver in Silicon

    Get PDF
    This paper reports the first fully integrated 24-GHz eight-element phased-array receiver in a SiGe BiCMOS technology. The receiver utilizes a heterodyne topology and the signal combining is performed at an IF of 4.8 GHz. The phase-shifting with 4 bits of resolution is realized at the LO port of the first down-conversion mixer. A ring LC voltage-controlled oscillator (VCO) generates 16 different phases of the LO. An integrated 19.2-GHz frequency synthesizer locks the VCO frequency to a 75-MHz external reference. Each signal path achieves a gain of 43 dB, a noise figure of 7.4 dB, and an IIP3 of -11 dBm. The eight-path array achieves an array gain of 61 dB and a peak-to-null ratio of 20 dB and improves the signal-to-noise ratio at the output by 9 dB

    Receiver Front-Ends in CMOS with Ultra-Low Power Consumption

    Get PDF
    Historically, research on radio communication has focused on improving range and data rate. In the last decade, however, there has been an increasing demand for low power and low cost radios that can provide connectivity with small devices around us. They should be able to offer basic connectivity with a power consumption low enough to function extended periods of time on a single battery charge, or even energy scavenged from the surroundings. This work is focused on the design of ultra-low power receiver front-ends intended for a receiver operating in the 2.4GHz ISM band, having an active power consumption of 1mW and chip area of 1mmÂČ. Low power consumption and small size make it hard to achieve good sensitivity and tolerance to interference. This thesis starts with an introduction to the overall receiver specifications, low power radio and radio standards, front-end and LO generation architectures and building blocks, followed by the four included papers. Paper I demonstrates an inductorless front-end operating at 915MHz, including a frequency divider for quadrature LO generation. An LO generator operating at 2.4GHz is shown in Paper II, enabling a front-end operating above 2GHz. Papers III and IV contain circuits with combined front-end and LO generator operating at or above the full 2.45GHz target frequency. They use VCO and frequency divider topologies that offer efficient operation and low quadrature error. An efficient passive-mixer design with improved suppression of interference, enables an LNA-less design in Paper IV capable of operating without a SAW-filter

    Realizing a CMOS RF Transceiver for Wireless Sensor Networks

    Get PDF

    A robust 2.4 GHz time-of-arrival based ranging system with sub-meter accuracy: feasibility study and realization of low power CMOS receiver

    Get PDF
    Draadloze sensornetwerken worden meer en meer aangewend om verschillende soorten informatie te verzamelen. De locatie, waar deze informatie verzameld is, is een belangerijke eigenschap en voor sommige toepassingen, zoals het volgen van personen of goederen, zelfs de meest belangrijke en mogelijkmakende factor. Om de positie van een sensor te bepalen, is een technologie nodig die de afstand tot een gekend referentiepunt schat. Door verschillende afstandsmetingen te combineren, is het mogelijk de absolute locatie van de node te berekenen

    A Single-Stage Low-Power Double-Balanced Mixer Merged with LNA and VCO

    Get PDF
    This paper proposes three types of single stage low-power RF front-end, called double-balanced LMVs, by merging LNA, mixer, and voltage-controlled oscillator (VCO) exploiting a series LC (SLC) network. The low intermediate frequency (IF) or baseband signal can be directly sensed at the drain nodes of the VCO switching transistors by adding a simple resistor-capacitor (RC) low-pass filter (LPF). By adopting a double-balanced mixer topology, the strong leakage of the local oscillator (LO) at the IF output is effectively suppressed. Using a 65 nm CMOS technology, the proposed double-balanced LMVs (DB-LMVs) are designed. Oscillating at around 2.4 GHz ISM band, the phase noise of the proposed three DB-LMVs is −111 dBc/Hz at 1 MHz offset frequency. The simulated voltage conversion gain is larger than 36 dB and the double-side band (DSB) noise figure (NF) is less than 7.7 dB. The DB-LMVs consume only 0.2 mW dc power from 1-V supply voltage

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Design of Low-Power Transmitter and Receiver Front End

    Get PDF
    This thesis focuses on the design of "RF front-end blocks" for the transmitter and receiver. The blocks include the low noise amplifier (LNA) and mixer downconversion at the receiving side, while the power amplifier includes the pre-driver circuit, and mixer up-conversion at the transmitter side. All of the blocks were designed in a 65nm design kit. The basics of these RF blocks are first described in chapters two to four. After that, the general principle of operations is then described and different topologies are discussed. In chapter 5 the proposed design is discussed. The proposed design is composed of a differential IDCS narrow band LNA, with a passive down-conversion mixer on the receiving side, designed for bluetooth low energy (BLE) applications, that operates at 2.4 GHz with a 1.2 V supply voltage. The overall conversion gain at the receiving side was found to be greater than 13 dB with a double side band noise figure of 8.3 dB having a 1 dB compression point of -11.8 dB, and with IIP3 of -2.06 dBm having a power consumption of 251 ÎŒwatts. On the transmission side, a power amplifier with a pre-driver circuit and a passive up-conversion mixer has been designed to operate at a 1.2 V supply at the frequency of operation 2.4 GHz, having overall gain of 24 dB with maximum power added efficiency of 34% when using maximum output power of 11 dBm. The Cadence virtuoso design kit was used for simulation. Additionally, the layout considerations were discussed, followed by presentation of the post-layout results and graphs, and, finally, some conclusions have been drawn

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Design of RF Receiver Front end Subsystems with Low Noise Amplifier and Active Mixer for Intelligent Transportation Systems Application

    Get PDF
    This paper presents the design, simulation, and characterization of a novel low-noise amplifier (LNA) and active mixer for intelligent transportation system applications. A low noise amplifier is the key component of RF receiver systems. Design, simulation, and characterization of LNA have been performed to obtain the optimum value of noise figure, gain and reflection coefficient. Proposed LNA achieves measured voltage gains of ~18 dB, reflection coefficients of -20 dB, and noise figures of ~2 dB at 5.9 GHz, respectively. The active mixer is a better choice for a modern receiver system over a passive mixer. Key sight advanced design system in conjunction with the electromagnetic simulation tool, has been to obtain the optimal conversion gain and noise figure of the active mixer. The lower and upper resonant frequencies of mixer have been obtained at 2.45 GHz and 5.25 GHz, respectively. The measured conversion gains at lower and upper frequencies are 12 dB and 10.2 dB, respectively. The measured noise figures at lower and upper frequencies are 5.8 dB and 6.5 dB, respectively. The measured mixer interception point at lower and upper frequencies are 3.9 dBm and 4.2 dBm
    • 

    corecore