5,814 research outputs found

    Parallel Genetic Algorithms with GPU Computing

    Get PDF
    Genetic algorithms (GAs) are powerful solutions to optimization problems arising from manufacturing and logistic fields. It helps to find better solutions for complex and difficult cases, which are hard to be solved by using strict optimization methods. Accelerating parallel GAs with GPU computing have received significant attention from both practitioners and researchers, ever since the emergence of GPU-CPU heterogeneous architectures. Designing a parallel algorithm on GPU is different fundamentally from designing one on CPU. On CPU architecture, typically data or tasks are distributed across tens of threads or processes, while on GPU architecture, more than hundreds of thousands of threads run. In order to fully utilize the computing power of GPUs, the design approaches and implementation strategies of parallel GAs should be re-probed. In the chapter, a concise overview of parallel GAs on GPU is given from the perspective of GPU architecture. The concept of parallelism granularity is redefined, the aspect of data layout is discussed on how it will affect the kernel performance, and the hierarchy of threads is examined on how threads are organized in the grid and blocks to expose sufficient parallelism to GPU. Some future research is discussed. A hybrid parallel model, based on the feature of GPU architecture, is suggested to build up efficient parallel GAs for hyper-scale problems

    Weighted p-bits for FPGA implementation of probabilistic circuits

    Full text link
    Probabilistic spin logic (PSL) is a recently proposed computing paradigm based on unstable stochastic units called probabilistic bits (p-bits) that can be correlated to form probabilistic circuits (p-circuits). These p-circuits can be used to solve problems of optimization, inference and also to implement precise Boolean functions in an "inverted" mode, where a given Boolean circuit can operate in reverse to find the input combinations that are consistent with a given output. In this paper we present a scalable FPGA implementation of such invertible p-circuits. We implement a "weighted" p-bit that combines stochastic units with localized memory structures. We also present a generalized tile of weighted p-bits to which a large class of problems beyond invertible Boolean logic can be mapped, and how invertibility can be applied to interesting problems such as the NP-complete Subset Sum Problem by solving a small instance of this problem in hardware

    Autonomous Probabilistic Coprocessing with Petaflips per Second

    Full text link
    In this paper we present a concrete design for a probabilistic (p-) computer based on a network of p-bits, robust classical entities fluctuating between -1 and +1, with probabilities that are controlled through an input constructed from the outputs of other p-bits. The architecture of this probabilistic computer is similar to a stochastic neural network with the p-bit playing the role of a binary stochastic neuron, but with one key difference: there is no sequencer used to enforce an ordering of p-bit updates, as is typically required. Instead, we explore \textit{sequencerless} designs where all p-bits are allowed to flip autonomously and demonstrate that such designs can allow ultrafast operation unconstrained by available clock speeds without compromising the solution's fidelity. Based on experimental results from a hardware benchmark of the autonomous design and benchmarked device models, we project that a nanomagnetic implementation can scale to achieve petaflips per second with millions of neurons. A key contribution of this paper is the focus on a hardware metric −- flips per second −- as a problem and substrate-independent figure-of-merit for an emerging class of hardware annealers known as Ising Machines. Much like the shrinking feature sizes of transistors that have continually driven Moore's Law, we believe that flips per second can be continually improved in later technology generations of a wide class of probabilistic, domain specific hardware.Comment: 13 pages, 8 figures, 1 tabl

    Advanced analytics through FPGA based query processing and deep reinforcement learning

    Get PDF
    Today, vast streams of structured and unstructured data have been incorporated in databases, and analytical processes are applied to discover patterns, correlations, trends and other useful relationships that help to take part in a broad range of decision-making processes. The amount of generated data has grown very large over the years, and conventional database processing methods from previous generations have not been sufficient to provide satisfactory results regarding analytics performance and prediction accuracy metrics. Thus, new methods are needed in a wide array of fields from computer architectures, storage systems, network design to statistics and physics. This thesis proposes two methods to address the current challenges and meet the future demands of advanced analytics. First, we present AxleDB, a Field Programmable Gate Array based query processing system which constitutes the frontend of an advanced analytics system. AxleDB melds highly-efficient accelerators with memory, storage and provides a unified programmable environment. AxleDB is capable of offloading complex Structured Query Language queries from host CPU. The experiments have shown that running a set of TPC-H queries, AxleDB can perform full queries between 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient compared to MonetDB, and PostgreSQL on a single workstation node. Second, we introduce TauRieL, a novel deep reinforcement learning (DRL) based method for combinatorial problems. The design idea behind combining DRL and combinatorial problems is to apply the prediction capabilities of deep reinforcement learning and to use the universality of combinatorial optimization problems to explore general purpose predictive methods. TauRieL utilizes an actor-critic inspired DRL architecture that adopts ordinary feedforward nets. Furthermore, TauRieL performs online training which unifies training and state space exploration. The experiments show that TauRieL can generate solutions two orders of magnitude faster and performs within 3% of accuracy compared to the state-of-the-art DRL on the Traveling Salesman Problem while searching for the shortest tour. Also, we present that TauRieL can be adapted to the Knapsack combinatorial problem. With a very minimal problem specific modification, TauRieL can outperform a Knapsack specific greedy heuristics.Hoy en día, se han incorporado grandes cantidades de datos estructurados y no estructurados en las bases de datos, y se les aplican procesos analíticos para descubrir patrones, correlaciones, tendencias y otras relaciones útiles que se utilizan mayormente para la toma de decisiones. La cantidad de datos generados ha crecido enormemente a lo largo de los años, y los métodos de procesamiento de bases de datos convencionales utilizados en las generaciones anteriores no son suficientes para proporcionar resultados satisfactorios respecto al rendimiento del análisis y respecto de la precisión de las predicciones. Por lo tanto, se necesitan nuevos métodos en una amplia gama de campos, desde arquitecturas de computadoras, sistemas de almacenamiento, diseño de redes hasta estadísticas y física. Esta tesis propone dos métodos para abordar los desafíos actuales y satisfacer las demandas futuras de análisis avanzado. Primero, presentamos AxleDB, un sistema de procesamiento de consultas basado en FPGAs (Field Programmable Gate Array) que constituye la interfaz de un sistema de análisis avanzado. AxleDB combina aceleradores altamente eficientes con memoria, almacenamiento y proporciona un entorno programable unificado. AxleDB es capaz de descargar consultas complejas de lenguaje de consulta estructurado desde la CPU del host. Los experimentos han demostrado que al ejecutar un conjunto de consultas TPC-H, AxleDB puede realizar consultas completas entre 1.8x y 34.2x más rápido y 2.8x a 62.1x más eficiente energéticamente que MonetDB, y PostgreSQL en un solo nodo de una estación de trabajo. En segundo lugar, presentamos TauRieL, un nuevo método basado en Deep Reinforcement Learning (DRL) para problemas combinatorios. La idea central que está detrás de la combinación de DRL y problemas combinatorios, es aplicar las capacidades de predicción del aprendizaje de refuerzo profundo y el uso de la universalidad de los problemas de optimización combinatoria para explorar métodos predictivos de propósito general. TauRieL utiliza una arquitectura DRL inspirada en el actor-crítico que se adapta a redes feedforward. Además, TauRieL realiza el entrenamieton en línea que unifica el entrenamiento y la exploración espacial de los estados. Los experimentos muestran que TauRieL puede generar soluciones dos órdenes de magnitud más rápido y funciona con un 3% de precisión en comparación con el estado del arte en DRL aplicado al problema del viajante mientras busca el recorrido más corto. Además, presentamos que TauRieL puede adaptarse al problema de la Mochila. Con una modificación específica muy mínima del problema, TauRieL puede superar a una heurística codiciosa de Knapsack Problem.Postprint (published version

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    How machine learning informs ride-hailing services: A survey

    Get PDF
    In recent years, online ride-hailing services have emerged as an important component of urban transportation system, which not only provide significant ease for residents’ travel activities, but also shape new travel behavior and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns, including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order matching and vehicle dispatching strategies, which are among the most important components of on-line ride-hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-hailing services are discussed

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners
    • …
    corecore