65 research outputs found

    Deep conv-attention model for diagnosing left bundle branch block from 12-lead electrocardiograms

    Full text link
    Cardiac resynchronization therapy (CRT) is a treatment that is used to compensate for irregularities in the heartbeat. Studies have shown that this treatment is more effective in heart patients with left bundle branch block (LBBB) arrhythmia. Therefore, identifying this arrhythmia is an important initial step in determining whether or not to use CRT. On the other hand, traditional methods for detecting LBBB on electrocardiograms (ECG) are often associated with errors. Thus, there is a need for an accurate method to diagnose this arrhythmia from ECG data. Machine learning, as a new field of study, has helped to increase human systems' performance. Deep learning, as a newer subfield of machine learning, has more power to analyze data and increase systems accuracy. This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data. This model consists of 1D dilated convolutional layers. Attention mechanism has also been used to identify important input data features and classify inputs more accurately. The proposed model is trained and validated on a database containing 10344 12-lead ECG samples using the 10-fold cross-validation method. The final results obtained by the model on the 12-lead ECG data are as follows. Accuracy: 98.80+-0.08%, specificity: 99.33+-0.11 %, F1 score: 73.97+-1.8%, and area under the receiver operating characteristics curve (AUC): 0.875+-0.0192. These results indicate that the proposed model in this study can effectively diagnose LBBB with good efficiency and, if used in medical centers, will greatly help diagnose this arrhythmia and early treatment

    Phase Space Reconstruction Based CVD Classifier Using Localized Features

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData Availability: The datasets analysed during the current study are available in the ‘PhysioNet’; the web address is [https://physionet.org/cgi-bin/atm/ATM].This paper proposes a generalized Phase Space Reconstruction (PSR) based Cardiovascular Diseases (CVD) classification methodology by exploiting the localized features of the ECG. The proposed methodology first extracts the ECG localized features including PR interval, QRS complex, and QT interval from the continuous ECG waveform using features extraction logic, then the PSR technique is applied to get the phase portraits of all the localized features. Based on the cleanliness and contour of the phase portraits CVD classification will be done. This is first of its kind approach where the localized features of ECG are being taken into considerations unlike the state-of-art approaches, where the entire ECG beats have been considered. The proposed methodology is generic and can be extended to most of the CVD cases. It is verified on the PTBDB and IAFDB databases by taking the CVD including Atrial Fibrillation, Myocardial Infarction, Bundle Branch Block, Cardiomyopathy, Dysrhythmia, and Hypertrophy. The methodology has been tested on 65 patients’ data for the classification of abnormalities in PR interval, QRS complex, and QT interval. Based on the obtained statistical results, to detect the abnormality in PR interval, QRS complex and QT interval the Coefficient Variation (CV) should be greater than or equal to 0.1012, 0.083, 0.082 respectively with individual accuracy levels of 95.3%, 96.9%, and 98.5% respectively. To justify the clinical significance of the proposed methodology, the Confidence Interval (CI), the p-value using ANOVA have been computed. The p-value obtained is less than 0.05, and greater F-statistic values reveal the robust classification of CVD using localized features.Department of Science & Technology (DST

    Compelling new electrocardiographic markers for automatic diagnosis

    Get PDF
    Producción CientíficaBackground and Objective: The automatic diagnosis of heart diseases from the electrocardiogram (ECG) signal is crucial in clinical decision-making. However, the use of computer-based decision rules in clinical practice is still deficient, mainly due to their complexity and a lack of medical interpretation. The objetive of this research is to address these issues by providing valuable diagnostic rules that can be easily implemented in clinical practice. In this research, efficient diagnostic rules friendly in clinical practice are provided. Methods: In this paper, interesting parameters obtained from the ECG signals analysis are presented and two simple rules for automatic diagnosis of Bundle Branch Blocks are defined using new markers derived from the so-called FMM delineator. The main advantages of these markers are the good statistical properties and their clear interpretation in clinically meaningful terms. Results: High sensitivity and specificity values have been obtained using the proposed rules with data from more than 35000 patients from well known benchmarking databases. In particular, to identify Complete Left Bundle Branch Blocks and differentiate this condition from subjects without heart diseases, sensitivity and specificity values ranging from 93% to 99% and from 96% to 99%, respectively. The new markers and the automatic diagnosis are easily available at https://fmmmodel.shinyapps.io/fmmEcg/, an app specifically developed for any given ECG signal. Conclusions: The proposal is different from others in the literature and it is compelling for three main reasons. On the one hand, the markers have a concise electrocardiographic interpretation. On the other hand, the diagnosis rules have a very high accuracy. Finally, the markers can be provided by any device that registers the ECG signal and the automatic diagnosis is made straightforwardly, in contrast to the black-box and deep learning algorithms.Ministerio de Ciencia, Innovación y Universidades (grant PID2019-106363RB-I00

    Reining in the Functional Verification of Complex Processor Designs with Automation, Prioritization, and Approximation

    Full text link
    Our quest for faster and efficient computing devices has led us to processor designs with enormous complexity. As a result, functional verification, which is the process of ascertaining the correctness of a processor design, takes up a lion's share of the time and cost spent on making processors. Unfortunately, functional verification is only a best-effort process that cannot completely guarantee the correctness of a design, often resulting in defective products that may have devastating consequences.Functional verification, as practiced today, is unable to cope with the complexity of current and future processor designs. In this dissertation, we identify extensive automation as the essential step towards scalable functional verification of complex processor designs. Moreover, recognizing that a complete guarantee of design correctness is impossible, we argue for systematic prioritization and prudent approximation to realize fast and far-reaching functional verification solutions. We partition the functional verification effort into three major activities: planning and test generation, test execution and bug detection, and bug diagnosis. Employing a perspective we refer to as the automation, prioritization, and approximation (APA) approach, we develop solutions that tackle challenges across these three major activities. In pursuit of efficient planning and test generation for modern systems-on-chips, we develop an automated process for identifying high-priority design aspects for verification. In addition, we enable the creation of compact test programs, which, in our experiments, were up to 11 times smaller than what would otherwise be available at the beginning of the verification effort. To tackle challenges in test execution and bug detection, we develop a group of solutions that enable the deployment of automatic and robust mechanisms for catching design flaws during high-speed functional verification. By trading accuracy for speed, these solutions allow us to unleash functional verification platforms that are over three orders of magnitude faster than traditional platforms, unearthing design flaws that are otherwise impossible to reach. Finally, we address challenges in bug diagnosis through a solution that fully automates the process of pinpointing flawed design components after detecting an error. Our solution, which identifies flawed design units with over 70% accuracy, eliminates weeks of diagnosis effort for every detected error.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137057/1/birukw_1.pd

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Music in Evolution and Evolution in Music

    Get PDF
    Music in Evolution and Evolution in Music by Steven Jan is a comprehensive account of the relationships between evolutionary theory and music. Examining the ‘evolutionary algorithm’ that drives biological and musical-cultural evolution, the book provides a distinctive commentary on how musicality and music can shed light on our understanding of Darwin’s famous theory, and vice-versa. Comprised of seven chapters, with several musical examples, figures and definitions of terms, this original and accessible book is a valuable resource for anyone interested in the relationships between music and evolutionary thought. Jan guides the reader through key evolutionary ideas and the development of human musicality, before exploring cultural evolution, evolutionary ideas in musical scholarship, animal vocalisations, music generated through technology, and the nature of consciousness as an evolutionary phenomenon. A unique examination of how evolutionary thought intersects with music, Music in Evolution and Evolution in Music is essential to our understanding of how and why music arose in our species and why it is such a significant presence in our lives

    Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders

    Get PDF
    The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders
    corecore