12 research outputs found

    Fuse: A technique to anticipate failures due to degradation in ALUs

    Get PDF
    This paper proposes the fuse, a technique to anticipate failures due to degradation in any ALU (arithmetic logic unit), and particularly in an adder. The fuse consists of a replica of the weakest transistor in the adder and the circuitry required to measure its degradation. By mimicking the behavior of the replicated transistor the fuse anticipates the failure short before the first failure in the adder appears, and hence, data corruption and program crashes can be avoided. Our results show that the fuse anticipates the failure in more than 99.9% of the cases after 96.6% of the lifetime, even for pessimistic random within-die variations.Peer ReviewedPostprint (published version

    RECTIFICATION OF TIME ERRORS BY USING YARDSTICK CHRONOMETER CONSTITUENTS

    Get PDF
    One of your a lot dynamic uses of progressive potential scaling is gauge thought, whatever succeeding calls for rapid editing of adjusting. The stable extant transgression castigation performance imposes a one-rhythm show cost simplest, however it is prescribed to two-phase candid bar-based intelligence. We carry out one-round offense editing by gating simplest the closest in every single performance of your pipe that precedes a failed mount. This new approach belongs to conventional witness elements, reminiscent of flip-flops and pulsed locked. Because it prevents grant move ado, that's stalled, it may even be utilized in intelligence with more than one fan-in, fan-out, and looping. Simulations show up a strength redeeming of 8%–12% using an objective throughput of 0.9 instructions per series, and 15%–18% immediately upon the objective is 0.8

    Timing error tolerance in nanometer ICs

    Full text link
    Abstract—Timing error tolerance turns to be an important design parameter in nanometer technology, high speed and high complexity integrated circuits. In this work, we present a low cost, multiple timing error detection and correction technique, which is based on a new Flip-Flop design. The proposed design approach provides timing error tolerance at the small penalty of one clock cycle delay in the circuit operation for each error correction. In addition, it is characterized by very low silicon area requirements compared to previous design schemes in the open literature. The proposed technique has been applied in a 90nm pipeline design of a digital FIR filter and the simulation results validated its efficiency

    New Reprogrammable and Non-Volatile Radiation-Tolerant FPGA: RT ProASIC®3

    Get PDF

    DART: Dependable VLSI Test Architecture and Its Implementation

    Get PDF
    Although many electronic safety-related systems require very high reliability, it is becoming harder and harder to achieve it because of delay-related failures, which are caused by decreased noise margin. This paper describes a technology named DART and its implementation. The DART repeatedly measures the maximum delay of a circuit and the amount of degradation in field, in consequence, confirms the marginality of the circuit. The system employing the DART will be informed the significant reduction of delay margin in advance of a failure and be able to repair it at an appropriate time. The DART also equips a technique to improve the test coverage using the rotating test and a technique to consider the test environment such as temperature or voltage using novel ring-oscillator-based monitors. The authors applied the proposed technology to an industrial design and confirmed its effectiveness and availability with reasonable resources.2012 IEEE International Test Conference, 5-8 November 2012, Anaheim, CA, US

    Single event upset testing of flash based field programmable gate arrays

    Get PDF
    In the last 50 years microelectronics have advanced at an exponential rate, causing microelectronic devices to shrink, have very low operating voltages and increased complexities; all this has made circuits more sensitive to various kinds of failures. These trends allowed soft errors, which up until recently was just a concern for space application, to become a major source of system failures of electronic products. The aim of this research paper was to investigate different mitigation techniques that prevent these soft errors in a Video Graphics Array (VGA) controller which is commonly used in projecting images captured by cameras. This controller was implemented on a Flash Based Field Programmable Gate array (FPGA). A test set-up was designed and implemented at NRF iThemba LABS, which was used to conduct the experiments necessary to evaluate the effectiveness of different mitigation techniques. The set-up was capable of handling multiple Device Under Tests (DUT) and had the ability to change the angle of incidence of each DUT. The DUTs were radiated with a 66MeV proton beam while the monitoring equipment observed any errors that had occurred. The results obtained indicated that all the implemented mitigation techniques tested on the VGA system improved the system’s capability of mitigating Single Event Upsets (SEU). The most effective mitigation technique was the OR-AND Multiplexer Single Event Transient (SET) filter technique. It was thus shown that mitigation techniques are viable options to prevent SEU in a VGA controller. The permanent SEU testing set-up which was designed and manufactured and was used to conduct the experiments, proved to be a practical option for further microelectronics testing at iThemba LABS

    Cache designs for reliable hybrid high and ultra-low voltage operation

    Get PDF
    Increasing demand for implementing highly-miniaturized battery-powered ultra-low-cost systems (e.g., below 1 USD) in emerging applications such as body, urban life and environment monitoring, etc., has introduced many challenges in the chip design. Such applications require high performance occasionally, but very little energy consumption during most of the time in order to extend battery lifetime. In addition, they require real-time guarantees. The most suitable technological solution for those devices consists of using hybrid processors able to operate at: (i) high voltage to provide high performance and (ii) near-/sub-threshold (NST) voltage to provide ultra-low energy consumption. However, the most efficient SRAM memories for each voltage level differ and it is mandatory trading off different SRAM designs, especially in cache memories, which occupy most of the processorÂżs area. In this Thesis, we analyze the performance/power tradeoffs involved in the design of SRAM L1 caches for reliable hybrid high and NST Vcc operation from a microarchitectural perspective. We develop new, simple, single-Vcc domain hybrid cache architectures and data management mechanisms that satisfy all stringent needs of our target market. Proposed solutions are shown to have high energy efficiency with negligible impact on average performance while maintaining strong performance guarantees as required for our target market

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems
    corecore