
Fuse: A Technique to Anticipate Failures due to Degradation in ALUs

Jaume Abella, Xavier Vera, Osman Unsal†, Oguz Ergin‡, Antonio González

Intel Barcelona Research Center, Intel Labs – UPC
{jaumex.abella, xavier.vera, antonio.gonzalez}@intel.com

AbstractΨ‡

This paper proposes the fuse, a technique to anticipate
failures due to degradation in any ALU (Arithmetic Logic
Unit), and particularly in an adder. The fuse consists of a
replica of the weakest transistor in the adder and the
circuitry required to measure its degradation. By
mimicking the behavior of the replicated transistor the
fuse anticipates the failure short before the first failure in
the adder appears, and hence, data corruption and
program crashes can be avoided. Our results show that
the fuse anticipates the failure in more than 99.9% of the
cases after 96.6% of the lifetime, even for pessimistic
random within-die variations.

1. Introduction

As technology evolves, the geometry of transistors and

wires shrinks. However, supply voltage does not scale at
the same pace [23]; this causes transistors and wires to
suffer higher current densities, which also imply higher
temperatures. The increased current density and
temperature translate into higher vulnerability of circuits.
Under these conditions, transistors and wires will degrade
faster and will be more prone to failures (higher failure
rate per device). Furthermore, there will be an increased
number of failures in the chip because of the larger
number of such devices (transistors shrink but the chip
size is expected to remain constant [23]).

The increasing unreliability of processors will make
devices fail frequently during the normal lifetime of the
processor. Moreover, transistor geometry may change
significantly from one chip to another or even within the
chip itself, in such a way that some components are prone
to degrade faster than others. Similarly, dynamic
variations of operating frequency, voltage and
temperature may accelerate degradation significantly for
some blocks. Thus, lifetime of blocks in a chip is
unpredictable and mechanisms are required to detect
failures before such failures produce crashes or data
corruption.

† Osman Unsal is currently with the Barcelona Supercomputing
Center, Spain (osmal.unsal@bsc.es)
‡ Oguz Ergin is currently with the TOBB University of Economics
and Technology, Ankara, Turkey (oergin@etu.edu.tr)

Such unreliability can be addressed in several ways.
One solution consists in testing the blocks for errors
[11][18] and reconfigure the system accordingly.
However, testing only avoids future crashes, but it does
not prevent the system from crashing whenever failures
show up for the first time.

Another set of solutions is based on detecting failures
and avoiding data corruption. Memory-like structures,
such as caches and register files, can be protected with
ECC [9], which is useful to detect transient and permanent
errors. ALUs are very likely to cause crashes and data
corruption because most of the instructions use them, and
thus, it is mandatory to protect them. However,
combinational blocks like ALUs cannot use ECC or
parity, and require more expensive techniques like
reexecution or residue codes computation among others.
Reexecution can be performed in a different instance of
the same type of ALU [16][17] or in a special ALU
devoted to error detection [4]. Both solutions are
expensive either in terms of performance and/or extra
hardware. Residue computation [5][12] is an alternative to
detect failures in ALUs, especially in adders. Obtaining
residue codes requires special hardware to compute the
modulo function.

This paper proposes the fuse, a new technique to
anticipate failures due to degradation in ALUs at a very
low cost. In particular, we propose the design and
implementation of a fuse to anticipate failures in a sparse
tree adder [14], which is the one used in the Intel®
Pentium® 4. The fuse is built as a replica of the weakest
transistor in the adder and the circuitry required to
measure its degradation. Whenever the fuse does not meet
the delay constraints, it implies that the protected adder is
about to fail, so it can be disabled or its frequency
decreased [19] to prevent data corruption and program
crashes.

The fuse is a very efficient solution in terms of
hardware and power. We illustrate how to design and
implement a fuse for a sparse tree adder, although the
same idea can be extended to any other ALU without
requiring any special property for the protected block, as
it is the case for residue computation.

The rest of the paper is organized as follows. Section 2
introduces the main sources of failure affecting
microprocessors. Section 3 presents the fuse, our
technique to anticipate failures in adders. Section 4
presents the evaluation of the fuse. Section 5 reviews

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

some related work. Future work is introduced in Section
6. Finally, section 7 draws the main conclusions of this
work.

2. Sources of Wearout and Failure

There are many sources of failure (SOF) [24] affecting

transistors and wires such as electromigration, stress
migration, time-dependent dielectric breakdown, negative
bias temperature instability (NBTI), etc. . Although our
invention can be used to detect failures due to degradation
for most of such SOF, we focus on a single SOF for the
sake of illustration: NBTI. NBTI, which mainly affects
PMOS transistors, has emerged in recent years as the most
important SOF for transistors in sub-130nm technology as
shown in literature [3]. Our simulations show a similar
trend since transistors fail much earlier due to NBTI than
due to any other SOF. Some molecules at the gate
interface are broken when the input voltage of the gate is
negative and the source voltage is positive. As a
consequence, the threshold voltage increases and the gate
becomes slower, leading to failures due to time
constraints. NBTI depends on temperature, voltage,
utilization and transistor geometry.

3. Fuse for a Sparse Tree Adder

This section presents the fuse for a sparse tree adder

[14]. The fuse is used to detect when a failure due to
degradation is about to happen in the adder, but it does not
detect the actual failure. A fuse consists of a transistor
and some extra logic to (i) degrade it properly and (ii)
measure its degradation. When the fuse fails (i.e., it does
not meet the delay constraints), the adder is considered to
be unsafe. As a result, the system may disable the adder or
try to find a frequency [19] such that the fuse (and thus
the adder) still meets the delay constraints. Similarly, such
scheme can be used to remove part of the guardband that
has been set up to tolerate some extent of degradation.

A scheme of the adder can be found in Figure 1. The
implementation used for the adder is the one provided by
the authors of the adder and both the adder and the fuse
have been designed in 65nm technology for Hspice-like
simulation. The simulator is an Intel production aging
simulator whose inputs are the spice description of the
circuit, the technology description, the environmental
parameters of the simulation (mainly temperature and
voltage), the length of the simulation (how many years the
circuit is expected to work), and the inputs for the circuit.
Note that we do not feed the circuit with inputs for its
whole lifetime. Instead, we provide the simulator with
inputs for a given period of time, and the simulator
repeats the circuit inputs for the whole lifetime. The
experiment has been run sampling 1138 instructions
requiring additions from a set of 569 traces from different
workloads (see Table 1). Longer experiments have not
been possible due to the large cost of such a long
simulation at electrical level. Simulations have been
conducted assuming a temperature of 110ºC, a supply

voltage of 1.2V, and a lifetime of 7 years. Note that
operating conditions (temperature and voltage) are those
considered for TDP (Thermal Design Point), which are
the ones used to decide whether a circuit passes or fails
the test.

Figure 1. Schematic of a 32-bit sparse tree adder

[14]

Table 1. Workloads

Benchmark suite # traces Description
Encoder 62 Audio/video encoding
SpecFP2000 41 Floating-point specs
SpecINT2000 33 Integer specs
Kernels 53 VectorAdd, FIRs
Multimedia 85 WMedia, photoshop
Office 75 Excel, Word, PowerPoint
Productivity 45 Internet contents creation
Server 55 TPC-C
Workstation 49 CAD, rendering
Spec2006 71 New spec release

The following sections identify and address the several

key issues when designing the fuse. The first one is
identifying the proper characteristics of the fuse; the
second is designing the circuit in such a way that it is
guaranteed that there is no transistor in the adder that will
fail due to degradation before the fuse. Finally, we
address the problem of pessimism: it must be minimized
the time elapsed between the fuse failure and the time
when the adder would have failed.

3.1 How to Identify the Required Fuse

The fuse replicates the weakest transistor of the adder.

The weakness of transistors depends on different critical
intrinsic SOF. Our simulations show that NBTI is much
more significant than any other SOF affecting transistors
for the evaluated technology. Thus, to design the fuse we
must care about the weakest transistor due to NBTI.

We choose as fuse the transistor whose combination of
physical characteristics and activity patterns gives the
shortest lifetime in terms of NBTI. Vulnerability depends

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

on the length and width of the PMOS transistors, and its
inputs (i.e. the longer, narrower, and more time with input
to zero, the more vulnerable). Since all transistors in the
adder have the same length, only their width and inputs
must be considered. How to weight the different factors is
still an open research topic [1][2][20][22]. However, our
empirical results as well as the literature [10] show much
higher dependency on the input than on the size of the
transistor.

The weakest transistor for NBTI corresponds to the
PMOS with smallest size and whose input is “0” more
time than any other PMOS transistor. Regarding the size,
the narrowest transistor has a width of 280nm (there are
some tens of these transistors in the adder). On the other
hand, the PMOS transistor whose input is “0” more time
is one of those with smallest size, and therefore it is the
weakest transistor in the adder (we refer to it as transistor
Tweak for the sake of commodity). Such PMOS transistor
(part of the “4bit 2:1 Mux” block outputting “Sum[3:0]”
in Figure 1) has as input the clock signal when Cin is “1”,
otherwise its input is “0”. Cin is “1” only for subtractions
and additions with carry, which represent around 4-5% of
the instructions requiring integer additions in the samples
obtained from our traces. Hence, only about 2% of the
time the PMOS transistor has input “1” (half of the time
with the Cin set because of the clock signal), and 98% of
the time the input is “0”, which is the worst-case input.

Note that it could be the case that the PMOS whose
input is “0” more time than any other (Tinput), and the
smallest PMOS (Tsmall) were different transistors. In that
case electrical simulation is required to identify the
weakest PMOS transistor in the adder. In general, the
fraction of time with the input set to “0” is much more
relevant than the width of the transistor, and therefore, it
is very likely that Tinput is the weakest PMOS.

3.2 How to Implement the Fuse

In this section we discuss the mechanisms that degrade

the fuse and the methodology to detect whether the fuse is
working properly.

Input data for the adder vary dynamically. Usually, if
the fuse is stressed assuming its worst-case input data all
the time, it will fail long before the adder, becoming
excessively pessimistic. Thus, the fuse has its own logic
to determine when to stress it based on the inputs of the
adder; this logic has to guarantee that no transistor in the
adder degrades faster than the fuse, and at the same time,
that the fuse will fail shortly before the adder would.

To set up the fuse of the sparse tree adder in Figure 1,
it must be guaranteed that it is stressed at least as much
time as the most stressed PMOS transistor, which is Tweak.
This is achieved by enforcing the fuse to be stressed with
the same input as Tweak. To avoid interfering the circuitry
of the adder, Tweak input is not snooped but rather
replicated, which just requires an AND gate with the
clock signal and Cin as inputs.

In order to check whether the fuse meets the delay
requirements, a ring oscillator [13] is used. Ring

oscillators consist of an odd number of inverters arranged
in a ring-manner so that the outputs of all inverters switch
continuously. The switching time depends on the latency
of the slowest component in the ring. Since the delay of
each block is estimated at design time, the degradation of
a fuse can be measured by integrating it in a ring
oscillator and counting the number of times that the ring
oscillates in a given number of cycles. If such number
cannot be obtained statically, we can obtain it
dynamically when the processor is turned on for the first
time, because the fuse is not degraded yet. The number of
cycles obtained must be decreased by the fraction of time
that the adder (and hence, the fuse) is allowed to degrade
while still considering that the circuit operates properly.

Figure 2. Fuse (in dark) and its ring oscillator to
measure fuse delay (RE stands for ring enable)

Figure 2 presents an implementation of the circuit
required for the fuse. The ring oscillator consists of 3
inverters (A, B and C). The transistor being used to detect
failures is integrated in the inverter A of the ring
oscillator. The circuit works as follows:
• During normal operation, RE signal (ring enable) is

low. In this state the multiplexer (e.g. two pass-gates)
drives the stress signal, and the inverter A works. The
rest of the circuit is disabled. Should the output of the
inverter A feed any circuit due to testing requirements,
we can add a NMOS transistor whose source and
drain are connected to ground and whose gate is
connected to the output of A with a pass-gate that is
activated during normal operation.

• Whenever it is time to check whether the fuse works
properly, RE is high. In this state inverters A, B and C
oscillate, and the counter tracks the number of
oscillations. At the end of the checking period, the
value of the counter is compared with the minimum
number of oscillations computed at design time that
are required to consider that the circuit works
properly. If the number of oscillations is below it, the
fuse does not fit its delay requirements, which means
that the fuse fails.
One important observation must be done regarding the

design of the ring oscillator. The inverters of the ring
oscillator are sized in such a way that the slowest
component in the ring is the device being stressed. For
instance, for the design shown in Figure 2 it implies
making A slower than B and C. This is achieved by using

1

RE

stress

1

0
counter

A

RE

GND

RE

VDD

RE

GND

RE

VDD

C B

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

larger, and hence, stronger transistors for inverters B and
C.

Several other constraints must be taken into account
when sizing transistors of inverters B and C. As told
above, they must be larger than A, but they cannot be too
large because A must be able to feed B, and B must be
able to feed C. Finally, C must be able to feed A and the
counter. At the end, they are sized in such a way that the
output of A is amplified to feed the counter. The sizes of
the NMOS and PMOS transistors of the three inverters as
well as the total size of the transistors in the counter fed
by C are detailed in Table 2. The PMOS transistor of
inverter A is the replica of Tweak so its width is 280nm. As
we can see, inverter size grows at a rate of 5X.

The checking period must be measured with a non-
degrading circuit to ensure that the number of oscillations
of the ring is tracked during a constant period of time
during product lifetime. If there is no such device inside
the chip, the system clock can be used as reference (e.g.,
the checking period can be the time elapsed between two
consecutive clock interrupts).

Table 2. Transistor sizes for the ring oscillator
and their extra fan-outs

Circuit NMOS size
(nm)

PMOS size
(nm)

Total size
(nm)

Inverter A 200 280 480
Inverter B 1000 1400 2400
Inverter C 5000 7000 12000
Counter 32540 12160 44700

The output of the inverters when they oscillate is

shown in Figure 3. They oscillate between 0.2V and 0.8V
for inverter A, between 0.1V and 1.1V for inverter B, and
between 0V and 1.2V for inverter C. As we can see, their
outputs are strong enough to feed all transistors at their
output. Note that if further amplification of the signal is
required, an even number of inverters can be added into
the ring oscillator to produce stronger outputs.

Figure 3. Behavior of the ring oscillator for the
output of inverters A (black line), B (blue/dark

gray line) and C (red/light gray line)

3.3 How to Make the Fuse Fail Short before the
Adder

At first sight, it seems that ensuring that the fuse fails

short before the adder would require stressing it just a bit
more than the adder or using a slightly weaker replica of
Tweak. However, variations [6][8] (i.e., process variations,
voltage changes and temperature) may cause the circuit to
behave differently from expected. When designing the
fuse, variations may make the fuse weaker or stronger
than the original transistor (Tweak). Thus, to ensure that the
replica is weaker than Tweak, the replica width must be
slightly reduced.

There are different sources of variation that may make
the fuse and Tweak to behave and degrade differently:
• Temperature variations. Transistors at different

locations in the chip may observe different
temperature that may make them degrade differently.
Fortunately, this is not the case for the fuse and the
adder if both pieces of logic are placed one next to the
other as explained later [7][8].

• VDD variations. It is common observing VDD changes
during operation due to some blocks being turned on
or off. That can make the VDD to be different in
different parts of the chip. Similarly to the case of
temperature, this is not an issue for the fuse and the
adder because both pieces of logic are placed one next
to the other so that they observe the same VDD [7][8].

• Systematic within-die (WID) process variations.
Some transistors sized to be identical may have
different sizes if they are in different parts of the chip
due to systematic process variations. Such variations
are regular and predictable, and may have some
impact between distant parts of the chip (σ/µ ~ 3.5%-
4% [7]), which is not the case for the fuse and the
adder if they are placed one next to the other. Thus,
systematic variations between the fuse and Tweak are
negligible [7][8].

• Random WID process variations. Due to
imperfections in the fabrication process there are some
random variations affecting the size of transistors, and
hence, their weakness. Such variations are in the order
of 3.5%-4% for σ/µ [7][21]. Thus, the fuse must be
made narrower (and hence, weaker) to take into
account such variations to ensure that the fuse is
weaker than Tweak, and therefore, the fuse fails before
the adder and the failure is effectively anticipated.
Note that the narrower the replica of Tweak is, the
earlier it will fail. Thus, the replica of Tweak in the fuse
must be slightly narrower than Tweak to anticipate the
failure but not too much to not report the failure so
early.
In summary, only random WID variations [6][8] are an

issue for the design of the fuse. They can be handled by
making the fuse a bit weaker by adjusting its size. In order
to effectively remove temperature, voltage and systematic
WID variations [6][8], the fuse must be placed as close as
possible to the adder. Note that both the adder and the

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

fuse are very small pieces of logic, and hence, there are no
variations other than random WID process variations. In
this way, the fuse mimics the adder behavior more
accurately. The weakness of the fuse must be increased by
a factor that depends on the expected amount of random
WID variations: a scenario with large random WID
variations requires increasing more the extra weakness of
the fuse, and therefore, it becomes more pessimistic.
Detailed results about how much it must be narrowed to
make it weaker are reported in the next section.

4. Fuse Evaluation

This section evaluates the fuse for the sparse tree

adder. First, some results are presented to illustrate the
theoretical impact of random WID variations in the
lifetime and accuracy of the fuse. Later, circuit
simulations considering variations for both the adder and
the fuse show the effectiveness of the fuse as a
mechanism to anticipate failures in the adder.

4.1 Analytical Evaluation: Lifetime and
Accuracy of the Fuse

In order to measure the lifetime of the fuse and the

adder, as well as the accuracy of the fuse, three different
scenarios have been considered for random WID
variations [6][8] between the adder and the fuse:
optimistic (σ/µ=2%), pessimistic (σ/µ=5%), and highly
pessimistic (σ/µ=8%). According to our simulations and
state-of-the-art measurements [10], a transistor whose
width decreases by x% has a lifetime (x/5)% shorter. For
instance, using a transistor in the fuse 10% narrower than
its counterpart in the adder implies that its lifetime is 2%
shorter.

Figure 4 shows (a) the expected lifetime of the fuse for
a sparse tree adder whose lifetime is 7 years, and (b) the
probability of having a failure in the adder before the fuse
signals an error for different percentages of width
decrease (from 0% to 30%).

For the pessimistic scenario, the probability of
anticipating the failure1 is 99.98%2 for the fuse when
adding 20% weakness (20% narrower fuse). The failure is
anticipated on average around 0.25 years3 (after 6.75
years in-use). For the optimistic scenario, the coverage is
99.9998% for the fuse when its weakness is increased
only by 10%. The pessimism is 0.12 years on average (the
failure is detected after 6.88 years in-use). Thus, by
adding an extra weakness of 20% (or only 10% for the
optimistic scenario), the adder practically never fails
before the fuse when considering both optimistic and
pessimistic scenarios for WID variations, and the failure
is anticipated few weeks before the actual failure in the

1 We refer to this probability as coverage in the rest of the paper
2 Note that values above 99.9% are very high in the reliability
community
3 We refer to the time of failure anticipation as pessimism in the rest
of the paper

adder shows up. For evaluation purposes we have
included a highly pessimistic scenario with random WID
variations of σ/µ=8%. In this case, a coverage of 99.93%
can be achieved by increasing the weakness of the fuse by
30%. In this case the pessimism is 0.36 years on average
(the failure is detected after 6.64 years in-use).

The overhead in terms of area and energy is described
in the next subsection. Finally, since the lifetime of the
circuits is expected to be several years, the interval to
check the fuse can be any order of magnitude (minutes,
hours or days) without compromising their accuracy/well-
function. The time required to check the fuse is just a few
cycles.

Fuse lifetime

0
1
2
3
4
5
6
7
8

0% 5% 10% 15% 20% 25% 30%

Safety margin
ye

ar
s Adder
Fuse

Probability of failing later than the adder

0,0000001%
0,0000010%
0,0000100%
0,0001000%
0,0010000%
0,0100000%
0,1000000%
1,0000000%

10,0000000%
100,0000000%
0% 5% 10

%

15
%

20
%

25
%

30
%

Safety margin

Fuse (WID 8%)
Fuse (WID 5%)
Fuse (WID 2%)

Figure 4. Lifetime and detection capabilities of

the adder fuse

4.2 Empirical Evaluation

Electrical level simulations have been run for the adder

and the fuse with in-home simulators based on state-of-
the-art degradation models for transistors.

Figure 5 shows the output of the ring oscillator (output
of inverter C in Figure 2) before and after degradation.
We can observe that for a given period of time (around
1ns), there are 7 oscillations before degradation (black
line) and only 6 after 7 years of degradation at TDP
conditions (red/gray line). This information is caught by
the counter, whose content after the measurement is used
to decide whether the ring oscillates fast enough or not. If
it is the latter case, then the fuse fails, and therefore the
adder is very likely to fail soon.

(b)

(a)

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

Figure 5. Waveforms for the ring oscillator
before (black line) and after degradation

(red/gray line)

Distribution of failure time anticipation for
2% WID (extra weakness 10%)

0%
10%
20%
30%
40%
50%
60%
70%

0-
1%

1-
2%

2-
3%

3-
4%

4-
5%

5-
6%

6-
7%

7-
8%

8-
9%

9-
10

%

Lifetime anticipation

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

Figure 6. Failure anticipation for optimistic

random WID variations of σ/µ=2%

Distribution of failure time anticipation for
5% WID (extra weakness 20%)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

0-
1%

1-
2%

2-
3%

3-
4%

4-
5%

5-
6%

6-
7%

7-
8%

8-
9%

9-
10

%

Lifetime anticipation

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

Figure 7. Failure anticipation for pessimistic

random WID variations of σ/µ=5%

Distribution of failure time anticipation for
8% WID (extra weakness 30%)

0%
5%

10%
15%
20%
25%
30%

0-
1%

1-
2%

2-
3%

3-
4%

4-
5%

5-
6%

6-
7%

7-
8%

8-
9%

9-
10

%

10
-1

1%

11
-1

2%

12
-1

3%

13
-1

4%

14
-1

5%

Lifetime anticipation

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

Figure 8. Failure anticipation for highly

pessimistic random WID variations of σ/µ=8%

In order to evaluate the real anticipation of failures
provided by the fuse and how often it anticipates the
failure of the adder, three Monte-Carlo experiments have
been set up. Each experiment consists of 10K individual
samples where transistor geometry is set according to the
random WID variations for both the adder and the fuse.
Once we have the 10K samples, the lifetime for both the
adder and the fuse can be measured with the Hspice-like
simulator for all samples. Then, we count how many
times out of the 10K samples the fuse anticipates the
failure on time and how much the failure is anticipated.
Each experiment has two parameters: the level of
variations and the decrease in size of the PMOS transistor
of inverter A in the fuse (the replica of the weakest
transistor in the adder). We have set up experiments with
optimistic random WID variations (2%) and 10% size
decrease, pessimistic random WID variations (5%) and
20% size decrease, and highly pessimistic random WID
variations (8%) and 30% size decrease, which are
expected to be safe the very most of the times (the
coverage is higher than 99.9% in all cases). Results are
presented in Figure 6, Figure 7 and Figure 8. Our results
show that for 10K samples the failure is always
anticipated. On average, the failure is anticipated by 1.7%
of the lifetime for the optimistic scenario (e.g., the failure
would be detected after 6.88 years for an adder whose
lifetime is 7 years), and only in some cases the failure is
anticipated by 4% of the lifetime. For the pessimistic
scenario failures are anticipated by 3.4% of the lifetime on
average, and failures are anticipated by up to 7% of the
lifetime in more than 99% of the cases. Finally, even for
the highly pessimistic scenario failures are anticipated
only by 5.2% of the lifetime on average, and failures are
anticipated by up to 10% of the lifetime in more than 99%
of the cases.

Note that recommended assumptions for today’s
random WID variations are 3.5-4% [7][21], so the lifetime
anticipation will be between 2% and 3%, with a coverage
higher than 99.9%. Both the accuracy and the lifetime
anticipation are noticeable because the failure is
anticipated right before it actually happens in the adder
with very high coverage. If further accuracy is desired,
some more lifetime should be sacrificed, which could be
the case of highly reliable servers. Conversely, if lower
lifetime anticipation is desired, some coverage will be
lost, which could be the case for low-end computers.

The overhead of the fuse in terms of area and energy is
rather small. Our results for the fuse of the sparse tree
adder show that the area overhead is around 4% of the
adder area. Most of the overhead corresponds to the
counter, which occupies most of the area. Such overhead
can be further reduced if several adders are in place
because we could set up only one counter for the fuses of
the different adders, and it could be used in a round-robin
fashion by the fuse of each adder. The power overhead is
negligible because most of the time the ring oscillator is
off (it is used only every several minutes or hours), and
stressing the fuse just requires plugging a signal that
hardly switches to inverter A.

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

5. Related Work

Detecting failures in circuits has been a concern for

years, so the literature in this area is abundant. Nowadays,
processors go through the burn-in process where they are
stressed at extreme environmental conditions (very high
temperature and voltage) for some hours or days to weed
out those that would have failed prematurely. During
burn-in, processors are tested with some on-chip special
hardware that can be also used to test processors during
normal life. Main approaches for processor testing
[11][18] consist of mechanisms to detect and correct
failures once they have appeared. Typically, these
mechanisms take control of the circuit and test those
inputs that are expected to identify most of the errors,
comparing the obtained outputs with the expected outputs.
None of these mechanisms anticipates failures. Hence, if
failures are frequent, the system becomes unreliable.

Some mechanisms have been proposed to detect
failures before committing wrong results in such a way
that program crashes and data corruption are avoided.
Mechanisms for storage structures like caches and register
files consist in generating a signature of any value when it
is written and checking such signature when the value is
read. If the actual signature of the data and the one
previously stored do not match, a failure has been found.
Testing techniques can be used to check whether the
failure was a soft error or a hard error. Signatures can be
very simple like parity (a single bit), which does not
provide error correction, or more complex like ECC [9].

Techniques to protect combinational blocks such as
ALUs have been also proposed. Such techniques are
based on computing a property of the output based on the
inputs and checking whether the output has this property
or not. Among those techniques residue codes are the
most popular solution. Residue codes [5][12] are based on
computing the residue of the result in two different ways:
as the modulo of the result itself, and as the modulo of
operating the residues of the input operands:

() () ()() xxbopxaxbopa modmodmodmod = (1)
In equation (1), a and b stand for the input operands,

and op stands for the ALU operation (addition,
subtraction, multiplication, etc.). Whenever both residues
do not match, there is an error and the ALU can be tested
to find out whether the error is soft or hard. Residue codes
involve a tradeoff between accuracy and cost. In order to
be effective and not very expensive, x must be of the form
2n-1. For instance, if x is 7 residue codes are 3-bit codes,
and the coverage is 87.5%. Such coverage can be
increased by using larger values of x, and hence, larger
residue codes, but the cost is high to compute such larger
residues. Such logic is expensive in terms of area and
power (especially much more than the fuse), and its
coverage is largely below the coverage of the fuse unless
extremely large and expensive residue codes are used. For
instance, the expected coverage for the fuse in the
pessimistic scenario is 99.98%, which would require 12-
bit residues (x = 4095).

A different scheme that detects failures is DIVA [4],
which uses a simple in-order core as a checker for an out-
of-order core. Such checker may be a significant hardware
overhead if it has to keep pace with the out-of-order core
for high ILP programs. On the other hand, although the
fuse is presented only for a sparse tree adder, fuses can be
used for any ALU in the processor, with negligible
hardware and energy overhead, and without introducing
any performance loss.

Similarly to DIVA, redundant multithreading (RMT)
[16][17] is a solution to detect failures based on
reexecution either in the same core (SMT core) or in
another core (CMP processor). Again, although RMT is a
generic solution to detect errors in any ALU, its
performance cost is huge because the performance of a
thread is wasted to run the replicated thread, and the
original thread observes some performance drop because
of the synchronization and resource sharing of both
threads. Moreover, if both threads run in the same core,
hard errors cannot be detected for non-replicated ALUs
(e.g., multipliers, dividers) and may not be detected for
replicated ALUs (e.g., adders) if both instances of an
instruction are executed in the same ALU. Comparatively,
the coverage of the fuse to detect failures is huge, its
hardware cost very low and there is no performance loss.
Although the fuse does not detect soft errors in ALUs,
some other techniques can be used for such purpose [15].

6. Future Work

This paper contributes presenting the fuse as a

mechanism to accurately and timely anticipate failures
due to NBTI aging in a sparse tree adder. We plan to
extend such technique to deal with other ALUs in the
processor and other types of adders. Furthermore, blocks
such as the decoding logic can be also protected with
fuses. So far, there is no technique to anticipate failures in
combinational logic where residue codes do not work
unless the hardware is replicated.

In this work we have considered degradation due to
NBTI. However, we plan to extend fuses to deal with
other sources of failure affecting transistors and wires.
The concept of the fuse holds the same for wires, and the
weakest wire can be replicated and integrated into the ring
oscillator between two of the inverters to measure its
degradation. In this way, there will be several fuses for
each block protecting it from the main sources of failure.
Whenever any of these fuses anticipates a failure due to
degradation, the protected block is considered unsafe and
it can be disabled.

7. Conclusions

Faster device degradation is one of the main challenges

that future technology is posing. In the forthcoming
process generations, it will be crucial to anticipate failures
due to degradation to prevent frequent system crashes and
data corruption.

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

State-of-the-art solutions to detect failures in ALUs
detect them a posteriori or are very expensive in terms of
performance and/or hardware cost. To deal with these
issues we propose a new technique to anticipate failures
(fuse) in ALUs. The fuse is a small piece of hardware that
replicates the weakest transistor in the block and mimics
its behavior to anticipate failures due to degradation. Our
evaluation shows that even if random WID variations are
high, the fuse is very effective. Even in a pessimistic
scenario, the fuse only anticipates the failure by 3.4% of
the adder lifetime (less than three months for an adder
whose lifetime is 7 years), its coverage is very high
(99.98%), and area and power overheads are low.
Although we propose the fuse for a sparse tree adder, this
solution can be extended to deal with any other
combinational block such as other adders, multipliers,
dividers, decode logic, etc.

8. Acknowledgements

This work has been partially supported by the Spanish

Ministry of Education and Science under grant TIN2004-
03702. The authors would like to thank James Tschanz
and Subhasish Mitra for their feedback in the early stages
of this work, and Alex Piñeiro for his thorough reading of
the draft of this paper.

References

[1] W. Abadeer, W. Ellis. Behavior of NBTI under AC

Dynamic Circuit Conditions. In International Reliability
Physics Symposium (IRPS) 2003.

[2] M.A. Alam. A Critical Examination of the Mechanics of
Dynamic NBTI for PMOSFETs. In International
Electron Devices Meeting (IEDM) 2003.

[3] M.A. Alam, S. Mahapatra. A Comprehensive Model of
PMOS NBTI Degradation. In the Journal of
Microelectronics Reliability, vol. 45, no. 1, January
2005.

[4] T. Austin. DIVA: A Reliable Substrate for Deep
Submicron Microarchitecture Design. In International
Symposium on Microarchitecture (MICRO) 1999.

[5] A. Avizienis. Arithmetic Error Codes: Cost and
Effectiveness Studies for Application in Digital System
Design. IEEE Transactions on Computers, vol. 20, no.
11, November 1971.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A.
Keshavarzi, V. De. Parameter Variations and Impact on
Circuits and Microarchitecture. In Design Automation
Conference (DAC) 2003.

[7] K.A. Bowman. Intel Guidelines for Variations. Personal
communication.

[8] K.A. Bowman, S.G. Duvall, J.D. Meindl. Impact of Die-
to-Die and Within-Die Parameter Fluctuations on the
Maximum Clock Frequency Distribution for Gigascale
Integration. In IEEE Journal of Solid-State Circuits, vol.
37, no. 2, February 2002.

[9] C.L. Chen, M.Y. Hsiao. Error-Correcting Codes for
Semiconductor Memory Applications: A State of the Art
Review. In Reliable Computer Systems – Design and
Evaluation, Digital Press, 2nd edition, 1992.

[10] S.S. Chung, C.H. Yeh, H.J. Feng, C.S. Lai, J.J. Yang,
C.C. Chen, Y. Jin, S.C. Chen, M.S. Liang. Impact of
STI on the Reliability of Narrow-Width pMOSFETs
with Advanced ALD N/O Gate Stack. In IEEE
Transactions on Device and Materials Reliability, vol. 6,
no. 1, March 2006

[11] R.R. Fritzemeier, H.T. Nagle, C.F. Hawkins.
Fundamentals of Testability – A Tutorial. In IEEE
Transactions on Industrial Electronics, vol. 36, no. 2,
May 1989.

[12] G.G. Langdon, C. K. Tang. Concurrent Error Detection
for Group Look-ahead Binary Adders. IBM Journal of
Research and Development, vol. 14, no. 5, September
1970.

[13] J.G. Maneatis, M.A. Horowitz. Precise Delay
Generation Using Coupled Oscillators. In IEEE Journal
of Solid-State Circuits, vol 28, no 12, December 1993.

[14] S. Mathew, M. Anders, B. Bloechel, T. Nguyen, R.
Krishnamurthy, S. Borkar. A 4GHz 300mW 64b Integer
Execution ALU with Dual Supply Voltages in 90nm
CMOS. In International Solid-State Circuits Conference
(ISSCC) 2004.

[15] S. Mitra, M. Zhang, S. Waqas, N. Seifert, B. Gill, K.S.
Kim. Combinational Logic Soft Error Correction. In
Workshop on System Effects of Logic Soft Errors
(SELSE) 2006.

[16] S. K. Reinhardt, S. S. Mukherjee. Transient Fault
Detection via Simultaneous Multithreading. In
International Symposium on Computer Architecture
(ISCA) 2000.

[17] E. Rotenberg. AR-SMT: A Microarchitectural Approach
to Fault Tolerance in Microprocessors. In Dependable
Systems and Networks (DSN) 1999.

[18] E. Schuchman, T.N. Vijaykumar. Rescue: A
Microarchitecture for Testability and Defect Tolerance.
In International Symposium on Computer Architecture
(ISCA) 2005.

[19] G. Semeraro, G. Magklis, R. Balasubramonian, D.H.
Albonesi, S. Dwarkadas, M.L. Scott. Energy-Efficient
Processor Design Using Multiple Clock Domains with
Dynamic Voltage and Frequency Scaling. In
International Symposium on High-Performance
Computer Architecture (HPCA) 2002.

[20] Y. Sun, K.L. Pey, C.H. Tung, S. Lombardo, F. Palumbo,
L.J. Tang, M.K. Radhakrishnan. Geometry Dependence
of Gate Oxide Breakdown Evolution. In International
Conference on Physical and Failure Analysis (IPFA)
2004.

[21] X. Vera, O. Unsal, A. González. X-Pipe: An Adaptive
Resilient Microarchitecture for Parameter Variations. In
Workshop on Architectural Support for Gigascale
Integration (ASGI) 2006 (in conjunction with ISCA
2006).

[22] E. Wu, J. Suñe, W. Lai, E. Nowak, J. McKenna, A.
Vayshenker, D. Harmon. Interplay of Voltage and
Temperature Acceleration of Oxide Breakdown for
Ultra-thin Gate Oxides. IBM Journal of Research and
Development, vol 46 no 2/3, 2002.

[23] Semiconductors Industry Association. International
Technology Roadmap for Semiconductors 2003.
http://public.itrs.net/Files/2003ITRS/Home2003.htm

[24] Toshiba Corporation. Semiconductor Reliability
Handbook (discrete devices), January 2002.
http://www.semicon.toshiba.co.jp/eng/prd/common/data
/semi.html

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

