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AbstractΨ‡ 
 

This paper proposes the fuse, a technique to anticipate 
failures due to degradation in any ALU (Arithmetic Logic 
Unit), and particularly in an adder. The fuse consists of a 
replica of the weakest transistor in the adder and the 
circuitry required to measure its degradation. By 
mimicking the behavior of the replicated transistor the 
fuse anticipates the failure short before the first failure in 
the adder appears, and hence, data corruption and 
program crashes can be avoided. Our results show that 
the fuse anticipates the failure in more than 99.9% of the 
cases after 96.6% of the lifetime, even for pessimistic 
random within-die variations.  

 
1. Introduction 

 
As technology evolves, the geometry of transistors and 

wires shrinks. However, supply voltage does not scale at 
the same pace [23]; this causes transistors and wires to 
suffer higher current densities, which also imply higher 
temperatures. The increased current density and 
temperature translate into higher vulnerability of circuits. 
Under these conditions, transistors and wires will degrade 
faster and will be more prone to failures (higher failure 
rate per device). Furthermore, there will be an increased 
number of failures in the chip because of the larger 
number of such devices (transistors shrink but the chip 
size is expected to remain constant [23]). 

The increasing unreliability of processors will make 
devices fail frequently during the normal lifetime of the 
processor. Moreover, transistor geometry may change 
significantly from one chip to another or even within the 
chip itself, in such a way that some components are prone 
to degrade faster than others. Similarly, dynamic 
variations of operating frequency, voltage and 
temperature may accelerate degradation significantly for 
some blocks. Thus, lifetime of blocks in a chip is 
unpredictable and mechanisms are required to detect 
failures before such failures produce crashes or data 
corruption. 
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Such unreliability can be addressed in several ways. 
One solution consists in testing the blocks for errors 
[11][18] and reconfigure the system accordingly. 
However, testing only avoids future crashes, but it does 
not prevent the system from crashing whenever failures 
show up for the first time.  

Another set of solutions is based on detecting failures 
and avoiding data corruption. Memory-like structures, 
such as caches and register files, can be protected with 
ECC [9], which is useful to detect transient and permanent 
errors. ALUs are very likely to cause crashes and data 
corruption because most of the instructions use them, and 
thus, it is mandatory to protect them. However, 
combinational blocks like ALUs cannot use ECC or 
parity, and require more expensive techniques like 
reexecution or residue codes computation among others. 
Reexecution can be performed in a different instance of 
the same type of ALU [16][17] or in a special ALU 
devoted to error detection [4]. Both solutions are 
expensive either in terms of performance and/or extra 
hardware. Residue computation [5][12] is an alternative to 
detect failures in ALUs, especially in adders. Obtaining 
residue codes requires special hardware to compute the 
modulo function.  

This paper proposes the fuse, a new technique to 
anticipate failures due to degradation in ALUs at a very 
low cost. In particular, we propose the design and 
implementation of a fuse to anticipate failures in a sparse 
tree adder [14], which is the one used in the Intel® 
Pentium® 4. The fuse is built as a replica of the weakest 
transistor in the adder and the circuitry required to 
measure its degradation. Whenever the fuse does not meet 
the delay constraints, it implies that the protected adder is 
about to fail, so it can be disabled or its frequency 
decreased [19] to prevent data corruption and program 
crashes. 

The fuse is a very efficient solution in terms of 
hardware and power. We illustrate how to design and 
implement a fuse for a sparse tree adder, although the 
same idea can be extended to any other ALU without 
requiring any special property for the protected block, as 
it is the case for residue computation. 

The rest of the paper is organized as follows. Section 2 
introduces the main sources of failure affecting 
microprocessors. Section 3 presents the fuse, our 
technique to anticipate failures in adders. Section 4 
presents the evaluation of the fuse. Section 5 reviews 
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some related work. Future work is introduced in Section 
6. Finally, section 7 draws the main conclusions of this 
work. 

 
2. Sources of Wearout and Failure 

 
There are many sources of failure (SOF) [24] affecting 

transistors and wires such as electromigration, stress 
migration, time-dependent dielectric breakdown, negative 
bias temperature instability (NBTI), etc. . Although our 
invention can be used to detect failures due to degradation 
for most of such SOF, we focus on a single SOF for the 
sake of illustration: NBTI. NBTI, which mainly affects 
PMOS transistors, has emerged in recent years as the most 
important SOF for transistors in sub-130nm technology as 
shown in literature [3]. Our simulations show a similar 
trend since transistors fail much earlier due to NBTI than 
due to any other SOF. Some molecules at the gate 
interface are broken when the input voltage of the gate is 
negative and the source voltage is positive. As a 
consequence, the threshold voltage increases and the gate 
becomes slower, leading to failures due to time 
constraints. NBTI depends on temperature, voltage, 
utilization and transistor geometry. 

 
3. Fuse for a Sparse Tree Adder 

 
This section presents the fuse for a sparse tree adder 

[14]. The fuse is used to detect when a failure due to 
degradation is about to happen in the adder, but it does not 
detect the actual failure. A fuse consists of a transistor 
and some extra logic to (i) degrade it properly and (ii) 
measure its degradation. When the fuse fails (i.e., it does 
not meet the delay constraints), the adder is considered to 
be unsafe. As a result, the system may disable the adder or 
try to find a frequency [19] such that the fuse (and thus 
the adder) still meets the delay constraints. Similarly, such 
scheme can be used to remove part of the guardband that 
has been set up to tolerate some extent of degradation. 

A scheme of the adder can be found in Figure 1. The 
implementation used for the adder is the one provided by 
the authors of the adder and both the adder and the fuse 
have been designed in 65nm technology for Hspice-like 
simulation. The simulator is an Intel production aging 
simulator whose inputs are the spice description of the 
circuit, the technology description, the environmental 
parameters of the simulation (mainly temperature and 
voltage), the length of the simulation (how many years the 
circuit is expected to work), and the inputs for the circuit. 
Note that we do not feed the circuit with inputs for its 
whole lifetime. Instead, we provide the simulator with 
inputs for a given period of time, and the simulator 
repeats the circuit inputs for the whole lifetime. The 
experiment has been run sampling 1138 instructions 
requiring additions from a set of 569 traces from different 
workloads (see Table 1). Longer experiments have not 
been possible due to the large cost of such a long 
simulation at electrical level. Simulations have been 
conducted assuming a temperature of 110ºC, a supply 

voltage of 1.2V, and a lifetime of 7 years. Note that 
operating conditions (temperature and voltage) are those 
considered for TDP (Thermal Design Point), which are 
the ones used to decide whether a circuit passes or fails 
the test. 
 

 
Figure 1. Schematic of a 32-bit sparse tree adder 

[14] 

Table 1. Workloads 

Benchmark suite # traces Description 
Encoder 62 Audio/video encoding 
SpecFP2000 41 Floating-point specs 
SpecINT2000 33 Integer specs 
Kernels 53 VectorAdd, FIRs 
Multimedia 85 WMedia, photoshop 
Office 75 Excel, Word, PowerPoint 
Productivity 45 Internet contents creation 
Server 55 TPC-C 
Workstation 49 CAD, rendering 
Spec2006 71 New spec release 
 
The following sections identify and address the several 

key issues when designing the fuse. The first one is 
identifying the proper characteristics of the fuse; the 
second is designing the circuit in such a way that it is 
guaranteed that there is no transistor in the adder that will 
fail due to degradation before the fuse. Finally, we 
address the problem of pessimism: it must be minimized 
the time elapsed between the fuse failure and the time 
when the adder would have failed. 

 
3.1 How to Identify the Required Fuse 

 
The fuse replicates the weakest transistor of the adder. 

The weakness of transistors depends on different critical 
intrinsic SOF. Our simulations show that NBTI is much 
more significant than any other SOF affecting transistors 
for the evaluated technology. Thus, to design the fuse we 
must care about the weakest transistor due to NBTI.  

We choose as fuse the transistor whose combination of 
physical characteristics and activity patterns gives the 
shortest lifetime in terms of NBTI. Vulnerability depends 
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on the length and width of the PMOS transistors, and its 
inputs (i.e. the longer, narrower, and more time with input 
to zero, the more vulnerable). Since all transistors in the 
adder have the same length, only their width and inputs 
must be considered. How to weight the different factors is 
still an open research topic [1][2][20][22]. However, our 
empirical results as well as the literature [10] show much 
higher dependency on the input than on the size of the 
transistor. 

The weakest transistor for NBTI corresponds to the 
PMOS with smallest size and whose input is “0” more 
time than any other PMOS transistor. Regarding the size, 
the narrowest transistor has a width of 280nm (there are 
some tens of these transistors in the adder). On the other 
hand, the PMOS transistor whose input is “0” more time 
is one of those with smallest size, and therefore it is the 
weakest transistor in the adder (we refer to it as transistor 
Tweak for the sake of commodity). Such PMOS transistor 
(part of the “4bit 2:1 Mux” block outputting “Sum[3:0]” 
in Figure 1) has as input the clock signal when Cin is “1”, 
otherwise its input is “0”. Cin is “1” only for subtractions 
and additions with carry, which represent around 4-5% of 
the instructions requiring integer additions in the samples 
obtained from our traces. Hence, only about 2% of the 
time the PMOS transistor has input “1” (half of the time 
with the Cin set because of the clock signal), and 98% of 
the time the input is “0”, which is the worst-case input.  

Note that it could be the case that the PMOS whose 
input is “0” more time than any other (Tinput), and the 
smallest PMOS (Tsmall) were different transistors. In that 
case electrical simulation is required to identify the 
weakest PMOS transistor in the adder. In general, the 
fraction of time with the input set to “0” is much more 
relevant than the width of the transistor, and therefore, it 
is very likely that Tinput is the weakest PMOS. 

 
3.2 How to Implement the Fuse 

 
In this section we discuss the mechanisms that degrade 

the fuse and the methodology to detect whether the fuse is 
working properly. 

Input data for the adder vary dynamically. Usually, if 
the fuse is stressed assuming its worst-case input data all 
the time, it will fail long before the adder, becoming 
excessively pessimistic. Thus, the fuse has its own logic 
to determine when to stress it based on the inputs of the 
adder; this logic has to guarantee that no transistor in the 
adder degrades faster than the fuse, and at the same time, 
that the fuse will fail shortly before the adder would.  

To set up the fuse of the sparse tree adder in Figure 1, 
it must be guaranteed that it is stressed at least as much 
time as the most stressed PMOS transistor, which is Tweak. 
This is achieved by enforcing the fuse to be stressed with 
the same input as Tweak. To avoid interfering the circuitry 
of the adder, Tweak input is not snooped but rather 
replicated, which just requires an AND gate with the 
clock signal and Cin as inputs. 

In order to check whether the fuse meets the delay 
requirements, a ring oscillator [13] is used. Ring 

oscillators consist of an odd number of inverters arranged 
in a ring-manner so that the outputs of all inverters switch 
continuously. The switching time depends on the latency 
of the slowest component in the ring. Since the delay of 
each block is estimated at design time, the degradation of 
a fuse can be measured by integrating it in a ring 
oscillator and counting the number of times that the ring 
oscillates in a given number of cycles. If such number 
cannot be obtained statically, we can obtain it 
dynamically when the processor is turned on for the first 
time, because the fuse is not degraded yet. The number of 
cycles obtained must be decreased by the fraction of time 
that the adder (and hence, the fuse) is allowed to degrade 
while still considering that the circuit operates properly. 

 
 
 
 
 
 
 
 

 

Figure 2. Fuse (in dark) and its ring oscillator to 
measure fuse delay (RE stands for ring enable) 

Figure 2 presents an implementation of the circuit 
required for the fuse. The ring oscillator consists of 3 
inverters (A, B and C). The transistor being used to detect 
failures is integrated in the inverter A of the ring 
oscillator. The circuit works as follows:  
• During normal operation, RE signal (ring enable) is 

low. In this state the multiplexer (e.g. two pass-gates) 
drives the stress signal, and the inverter A works. The 
rest of the circuit is disabled. Should the output of the 
inverter A feed any circuit due to testing requirements, 
we can add a NMOS transistor whose source and 
drain are connected to ground and whose gate is 
connected to the output of A with a pass-gate that is 
activated during normal operation. 

• Whenever it is time to check whether the fuse works 
properly, RE is high. In this state inverters A, B and C 
oscillate, and the counter tracks the number of 
oscillations. At the end of the checking period, the 
value of the counter is compared with the minimum 
number of oscillations computed at design time that 
are required to consider that the circuit works 
properly. If the number of oscillations is below it, the 
fuse does not fit its delay requirements, which means 
that the fuse fails.  
One important observation must be done regarding the 

design of the ring oscillator. The inverters of the ring 
oscillator are sized in such a way that the slowest 
component in the ring is the device being stressed. For 
instance, for the design shown in Figure 2 it implies 
making A slower than B and C. This is achieved by using 
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larger, and hence, stronger transistors for inverters B and 
C.  

Several other constraints must be taken into account 
when sizing transistors of inverters B and C. As told 
above, they must be larger than A, but they cannot be too 
large because A must be able to feed B, and B must be 
able to feed C. Finally, C must be able to feed A and the 
counter. At the end, they are sized in such a way that the 
output of A is amplified to feed the counter. The sizes of 
the NMOS and PMOS transistors of the three inverters as 
well as the total size of the transistors in the counter fed 
by C are detailed in Table 2. The PMOS transistor of 
inverter A is the replica of Tweak so its width is 280nm. As 
we can see, inverter size grows at a rate of 5X. 

The checking period must be measured with a non-
degrading circuit to ensure that the number of oscillations 
of the ring is tracked during a constant period of time 
during product lifetime. If there is no such device inside 
the chip, the system clock can be used as reference (e.g., 
the checking period can be the time elapsed between two 
consecutive clock interrupts).  

Table 2. Transistor sizes for the ring oscillator 
and their extra fan-outs 

Circuit NMOS size 
(nm) 

PMOS size 
(nm) 

Total size 
(nm) 

Inverter A 200 280 480 
Inverter B 1000 1400 2400 
Inverter C 5000 7000 12000 
Counter 32540 12160 44700 

 
The output of the inverters when they oscillate is 

shown in Figure 3. They oscillate between 0.2V and 0.8V 
for inverter A, between 0.1V and 1.1V for inverter B, and 
between 0V and 1.2V for inverter C. As we can see, their 
outputs are strong enough to feed all transistors at their 
output. Note that if further amplification of the signal is 
required, an even number of inverters can be added into 
the ring oscillator to produce stronger outputs. 

 

 

Figure 3. Behavior of the ring oscillator for the 
output of inverters A (black line), B (blue/dark 

gray line) and C (red/light gray line) 
 

3.3 How to Make the Fuse Fail Short before the 
Adder 

 
At first sight, it seems that ensuring that the fuse fails 

short before the adder would require stressing it just a bit 
more than the adder or using a slightly weaker replica of 
Tweak. However, variations [6][8] (i.e., process variations, 
voltage changes and temperature) may cause the circuit to 
behave differently from expected. When designing the 
fuse, variations may make the fuse weaker or stronger 
than the original transistor (Tweak). Thus, to ensure that the 
replica is weaker than Tweak, the replica width must be 
slightly reduced.  

There are different sources of variation that may make 
the fuse and Tweak to behave and degrade differently: 
• Temperature variations. Transistors at different 

locations in the chip may observe different 
temperature that may make them degrade differently. 
Fortunately, this is not the case for the fuse and the 
adder if both pieces of logic are placed one next to the 
other as explained later [7][8]. 

• VDD variations. It is common observing VDD changes 
during operation due to some blocks being turned on 
or off. That can make the VDD to be different in 
different parts of the chip. Similarly to the case of 
temperature, this is not an issue for the fuse and the 
adder because both pieces of logic are placed one next 
to the other so that they observe the same VDD [7][8]. 

• Systematic within-die (WID) process variations. 
Some transistors sized to be identical may have 
different sizes if they are in different parts of the chip 
due to systematic process variations. Such variations 
are regular and predictable, and may have some 
impact between distant parts of the chip (σ/µ ~ 3.5%-
4% [7]), which is not the case for the fuse and the 
adder if they are placed one next to the other. Thus, 
systematic variations between the fuse and Tweak are 
negligible [7][8]. 

• Random WID process variations. Due to 
imperfections in the fabrication process there are some 
random variations affecting the size of transistors, and 
hence, their weakness. Such variations are in the order 
of 3.5%-4% for σ/µ [7][21]. Thus, the fuse must be 
made narrower (and hence, weaker) to take into 
account such variations to ensure that the fuse is 
weaker than Tweak, and therefore, the fuse fails before 
the adder and the failure is effectively anticipated. 
Note that the narrower the replica of Tweak is, the 
earlier it will fail. Thus, the replica of Tweak in the fuse 
must be slightly narrower than Tweak to anticipate the 
failure but not too much to not report the failure so 
early. 
In summary, only random WID variations [6][8] are an 

issue for the design of the fuse. They can be handled by 
making the fuse a bit weaker by adjusting its size. In order 
to effectively remove temperature, voltage and systematic 
WID variations [6][8], the fuse must be placed as close as 
possible to the adder. Note that both the adder and the 
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fuse are very small pieces of logic, and hence, there are no 
variations other than random WID process variations. In 
this way, the fuse mimics the adder behavior more 
accurately. The weakness of the fuse must be increased by 
a factor that depends on the expected amount of random 
WID variations: a scenario with large random WID 
variations requires increasing more the extra weakness of 
the fuse, and therefore, it becomes more pessimistic. 
Detailed results about how much it must be narrowed to 
make it weaker are reported in the next section. 

 
4. Fuse Evaluation 

 
This section evaluates the fuse for the sparse tree 

adder. First, some results are presented to illustrate the 
theoretical impact of random WID variations in the 
lifetime and accuracy of the fuse. Later, circuit 
simulations considering variations for both the adder and 
the fuse show the effectiveness of the fuse as a 
mechanism to anticipate failures in the adder. 

 
4.1 Analytical Evaluation: Lifetime and 
Accuracy of the Fuse 

 
In order to measure the lifetime of the fuse and the 

adder, as well as the accuracy of the fuse, three different 
scenarios have been considered for random WID 
variations [6][8] between the adder and the fuse: 
optimistic (σ/µ=2%), pessimistic (σ/µ=5%), and highly 
pessimistic (σ/µ=8%). According to our simulations and 
state-of-the-art measurements [10], a transistor whose 
width decreases by x% has a lifetime (x/5)% shorter. For 
instance, using a transistor in the fuse 10% narrower than 
its counterpart in the adder implies that its lifetime is 2% 
shorter. 

Figure 4 shows (a) the expected lifetime of the fuse for 
a sparse tree adder whose lifetime is 7 years, and (b) the 
probability of having a failure in the adder before the fuse 
signals an error for different percentages of width 
decrease (from 0% to 30%).  

For the pessimistic scenario, the probability of 
anticipating the failure1 is 99.98%2 for the fuse when 
adding 20% weakness (20% narrower fuse). The failure is 
anticipated on average around 0.25 years3 (after 6.75 
years in-use). For the optimistic scenario, the coverage is 
99.9998% for the fuse when its weakness is increased 
only by 10%. The pessimism is 0.12 years on average (the 
failure is detected after 6.88 years in-use). Thus, by 
adding an extra weakness of 20% (or only 10% for the 
optimistic scenario), the adder practically never fails 
before the fuse when considering both optimistic and 
pessimistic scenarios for WID variations, and the failure 
is anticipated few weeks before the actual failure in the 

                                                
1 We refer to this probability as coverage in the rest of the paper 
2 Note that values above 99.9% are very high in the reliability 
community 
3 We refer to the time of failure anticipation as pessimism in the rest 
of the paper 

adder shows up. For evaluation purposes we have 
included a highly pessimistic scenario with random WID 
variations of σ/µ=8%. In this case, a coverage of 99.93% 
can be achieved by increasing the weakness of the fuse by 
30%. In this case the pessimism is 0.36 years on average 
(the failure is detected after 6.64 years in-use). 

The overhead in terms of area and energy is described 
in the next subsection. Finally, since the lifetime of the 
circuits is expected to be several years, the interval to 
check the fuse can be any order of magnitude (minutes, 
hours or days) without compromising their accuracy/well-
function. The time required to check the fuse is just a few 
cycles. 

 
Fuse lifetime

0
1
2
3
4
5
6
7
8

0% 5% 10% 15% 20% 25% 30%

Safety margin
ye

ar
s Adder
Fuse

 
Probability of failing later than the adder

0,0000001%
0,0000010%
0,0000100%
0,0001000%
0,0010000%
0,0100000%
0,1000000%
1,0000000%

10,0000000%
100,0000000%
0% 5% 10

%

15
%

20
%

25
%

30
%

Safety margin

Fuse (WID 8%)
Fuse (WID 5%)
Fuse (WID 2%)

 
Figure 4. Lifetime and detection capabilities of 

the adder fuse 

4.2 Empirical Evaluation 
 
Electrical level simulations have been run for the adder 

and the fuse with in-home simulators based on state-of-
the-art degradation models for transistors.  

Figure 5 shows the output of the ring oscillator (output 
of inverter C in Figure 2) before and after degradation. 
We can observe that for a given period of time (around 
1ns), there are 7 oscillations before degradation (black 
line) and only 6 after 7 years of degradation at TDP 
conditions (red/gray line). This information is caught by 
the counter, whose content after the measurement is used 
to decide whether the ring oscillates fast enough or not. If 
it is the latter case, then the fuse fails, and therefore the 
adder is very likely to fail soon.  

 

(b)

(a)
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Figure 5. Waveforms for the ring oscillator 
before (black line) and after degradation 

(red/gray line) 
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Figure 6. Failure anticipation for optimistic 

random WID variations of σ/µ=2% 
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Figure 7. Failure anticipation for pessimistic 

random WID variations of σ/µ=5% 
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8% WID (extra weakness 30%)
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Figure 8. Failure anticipation for highly 

pessimistic random WID variations of σ/µ=8% 

In order to evaluate the real anticipation of failures 
provided by the fuse and how often it anticipates the 
failure of the adder, three Monte-Carlo experiments have 
been set up. Each experiment consists of 10K individual 
samples where transistor geometry is set according to the 
random WID variations for both the adder and the fuse. 
Once we have the 10K samples, the lifetime for both the 
adder and the fuse can be measured with the Hspice-like 
simulator for all samples. Then, we count how many 
times out of the 10K samples the fuse anticipates the 
failure on time and how much the failure is anticipated. 
Each experiment has two parameters: the level of 
variations and the decrease in size of the PMOS transistor 
of inverter A in the fuse (the replica of the weakest 
transistor in the adder). We have set up experiments with 
optimistic random WID variations (2%) and 10% size 
decrease, pessimistic random WID variations (5%) and 
20% size decrease, and highly pessimistic random WID 
variations (8%) and 30% size decrease, which are 
expected to be safe the very most of the times (the 
coverage is higher than 99.9% in all cases). Results are 
presented in Figure 6, Figure 7 and Figure 8. Our results 
show that for 10K samples the failure is always 
anticipated. On average, the failure is anticipated by 1.7% 
of the lifetime for the optimistic scenario (e.g., the failure 
would be detected after 6.88 years for an adder whose 
lifetime is 7 years), and only in some cases the failure is 
anticipated by 4% of the lifetime. For the pessimistic 
scenario failures are anticipated by 3.4% of the lifetime on 
average, and failures are anticipated by up to 7% of the 
lifetime in more than 99% of the cases. Finally, even for 
the highly pessimistic scenario failures are anticipated 
only by 5.2% of the lifetime on average, and failures are 
anticipated by up to 10% of the lifetime in more than 99% 
of the cases.  

Note that recommended assumptions for today’s 
random WID variations are 3.5-4% [7][21], so the lifetime 
anticipation will be between 2% and 3%, with a coverage 
higher than 99.9%. Both the accuracy and the lifetime 
anticipation are noticeable because the failure is 
anticipated right before it actually happens in the adder 
with very high coverage. If further accuracy is desired, 
some more lifetime should be sacrificed, which could be 
the case of highly reliable servers. Conversely, if lower 
lifetime anticipation is desired, some coverage will be 
lost, which could be the case for low-end computers.  

The overhead of the fuse in terms of area and energy is 
rather small. Our results for the fuse of the sparse tree 
adder show that the area overhead is around 4% of the 
adder area. Most of the overhead corresponds to the 
counter, which occupies most of the area. Such overhead 
can be further reduced if several adders are in place 
because we could set up only one counter for the fuses of 
the different adders, and it could be used in a round-robin 
fashion by the fuse of each adder. The power overhead is 
negligible because most of the time the ring oscillator is 
off (it is used only every several minutes or hours), and 
stressing the fuse just requires plugging a signal that 
hardly switches to inverter A. 
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5. Related Work 
 
Detecting failures in circuits has been a concern for 

years, so the literature in this area is abundant. Nowadays, 
processors go through the burn-in process where they are 
stressed at extreme environmental conditions (very high 
temperature and voltage) for some hours or days to weed 
out those that would have failed prematurely. During 
burn-in, processors are tested with some on-chip special 
hardware that can be also used to test processors during 
normal life. Main approaches for processor testing 
[11][18] consist of mechanisms to detect and correct 
failures once they have appeared. Typically, these 
mechanisms take control of the circuit and test those 
inputs that are expected to identify most of the errors, 
comparing the obtained outputs with the expected outputs. 
None of these mechanisms anticipates failures. Hence, if 
failures are frequent, the system becomes unreliable. 

Some mechanisms have been proposed to detect 
failures before committing wrong results in such a way 
that program crashes and data corruption are avoided. 
Mechanisms for storage structures like caches and register 
files consist in generating a signature of any value when it 
is written and checking such signature when the value is 
read. If the actual signature of the data and the one 
previously stored do not match, a failure has been found. 
Testing techniques can be used to check whether the 
failure was a soft error or a hard error. Signatures can be 
very simple like parity (a single bit), which does not 
provide error correction, or more complex like ECC [9]. 

Techniques to protect combinational blocks such as 
ALUs have been also proposed. Such techniques are 
based on computing a property of the output based on the 
inputs and checking whether the output has this property 
or not. Among those techniques residue codes are the 
most popular solution. Residue codes [5][12] are based on 
computing the residue of the result in two different ways: 
as the modulo of the result itself, and as the modulo of 
operating the residues of the input operands: 

( ) ( ) ( )( ) xxbopxaxbopa modmodmodmod =   (1) 
In equation (1), a and b stand for the input operands, 

and op stands for the ALU operation (addition, 
subtraction, multiplication, etc.). Whenever both residues 
do not match, there is an error and the ALU can be tested 
to find out whether the error is soft or hard. Residue codes 
involve a tradeoff between accuracy and cost. In order to 
be effective and not very expensive, x must be of the form 
2n-1. For instance, if x is 7 residue codes are 3-bit codes, 
and the coverage is 87.5%. Such coverage can be 
increased by using larger values of x, and hence, larger 
residue codes, but the cost is high to compute such larger 
residues. Such logic is expensive in terms of area and 
power (especially much more than the fuse), and its 
coverage is largely below the coverage of the fuse unless 
extremely large and expensive residue codes are used. For 
instance, the expected coverage for the fuse in the 
pessimistic scenario is 99.98%, which would require 12-
bit residues (x = 4095). 

A different scheme that detects failures is DIVA [4], 
which uses a simple in-order core as a checker for an out-
of-order core. Such checker may be a significant hardware 
overhead if it has to keep pace with the out-of-order core 
for high ILP programs. On the other hand, although the 
fuse is presented only for a sparse tree adder, fuses can be 
used for any ALU in the processor, with negligible 
hardware and energy overhead, and without introducing 
any performance loss.  

Similarly to DIVA, redundant multithreading (RMT) 
[16][17] is a solution to detect failures based on 
reexecution either in the same core (SMT core) or in 
another core (CMP processor). Again, although RMT is a 
generic solution to detect errors in any ALU, its 
performance cost is huge because the performance of a 
thread is wasted to run the replicated thread, and the 
original thread observes some performance drop because 
of the synchronization and resource sharing of both 
threads. Moreover, if both threads run in the same core, 
hard errors cannot be detected for non-replicated ALUs 
(e.g., multipliers, dividers) and may not be detected for 
replicated ALUs (e.g., adders) if both instances of an 
instruction are executed in the same ALU. Comparatively, 
the coverage of the fuse to detect failures is huge, its 
hardware cost very low and there is no performance loss. 
Although the fuse does not detect soft errors in ALUs, 
some other techniques can be used for such purpose [15]. 

 
6. Future Work 

 
This paper contributes presenting the fuse as a 

mechanism to accurately and timely anticipate failures 
due to NBTI aging in a sparse tree adder. We plan to 
extend such technique to deal with other ALUs in the 
processor and other types of adders. Furthermore, blocks 
such as the decoding logic can be also protected with 
fuses. So far, there is no technique to anticipate failures in 
combinational logic where residue codes do not work 
unless the hardware is replicated. 

In this work we have considered degradation due to 
NBTI. However, we plan to extend fuses to deal with 
other sources of failure affecting transistors and wires. 
The concept of the fuse holds the same for wires, and the 
weakest wire can be replicated and integrated into the ring 
oscillator between two of the inverters to measure its 
degradation. In this way, there will be several fuses for 
each block protecting it from the main sources of failure. 
Whenever any of these fuses anticipates a failure due to 
degradation, the protected block is considered unsafe and 
it can be disabled. 

 
7. Conclusions 

 
Faster device degradation is one of the main challenges 

that future technology is posing. In the forthcoming 
process generations, it will be crucial to anticipate failures 
due to degradation to prevent frequent system crashes and 
data corruption.  
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State-of-the-art solutions to detect failures in ALUs 
detect them a posteriori or are very expensive in terms of 
performance and/or hardware cost. To deal with these 
issues we propose a new technique to anticipate failures 
(fuse) in ALUs. The fuse is a small piece of hardware that 
replicates the weakest transistor in the block and mimics 
its behavior to anticipate failures due to degradation. Our 
evaluation shows that even if random WID variations are 
high, the fuse is very effective. Even in a pessimistic 
scenario, the fuse only  anticipates the failure by 3.4% of 
the adder lifetime (less than three months for an adder 
whose lifetime is 7 years), its coverage is very high 
(99.98%), and area and power overheads are low. 
Although we propose the fuse for a sparse tree adder, this 
solution can be extended to deal with any other 
combinational block such as other adders, multipliers, 
dividers, decode logic, etc. 
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