71 research outputs found

    Polyhedral proof methods in combinatorial optimization

    Get PDF

    The Strong Perfect Graph Conjecture: 40 years of Attempts, and its Resolution

    Get PDF
    International audienceThe Strong Perfect Graph Conjecture (SPGC) was certainly one of the most challenging conjectures in graph theory. During more than four decades, numerous attempts were made to solve it, by combinatorial methods, by linear algebraic methods, or by polyhedral methods. The first of these three approaches yielded the first (and to date only) proof of the SPGC; the other two remain promising to consider in attempting an alternative proof. This paper is an unbalanced survey of the attempts to solve the SPGC; unbalanced, because (1) we devote a signicant part of it to the 'primitive graphs and structural faults' paradigm which led to the Strong Perfect Graph Theorem (SPGT); (2) we briefly present the other "direct" attempts, that is, the ones for which results exist showing one (possible) way to the proof; (3) we ignore entirely the "indirect" approaches whose aim was to get more information about the properties and structure of perfect graphs, without a direct impact on the SPGC. Our aim in this paper is to trace the path that led to the proof of the SPGT as completely as possible. Of course, this implies large overlaps with the recent book on perfect graphs [J.L. Ramirez-Alfonsin and B.A. Reed, eds., Perfect Graphs (Wiley & Sons, 2001).], but it also implies a deeper analysis (with additional results) and another viewpoint on the topic

    Min-max results in combinatorial optimization

    Get PDF

    Local chromatic number and Sperner capacity

    Get PDF
    We introduce a directed analog of the local chromatic number defined by Erdos et al. [Discrete Math. 59 (1986) 21-34] and show that it provides an upper bound for the Sperner capacity of a directed graph. Applications and variants of this result are presented. In particular, we find a special orientation of an odd cycle and show that it achieves the maximum of Sperner capacity among the differently oriented versions of the cycle. We show that apart from this orientation, for all the others an odd cycle has the same Sperner capacity as a single edge graph. We also show that the (undirected) local chromatic number is bounded from below by the fractional chromatic number while for power graphs the two invariants have the same exponential asymptotics (under the co-normal product on which the definition of Sperner capacity is based). We strengthen our bound on Sperner capacity by introducing a fractional relaxation of our directed variant of the local chromatic number. (C) 2005 Elsevier Inc. All rights reserved

    Digraph Coloring Games and Game-Perfectness

    Get PDF
    In this thesis the game chromatic number of a digraph is introduced as a game-theoretic variant of the dichromatic number. This notion generalizes the well-known game chromatic number of a graph. An extended model also takes into account relaxed colorings and asymmetric move sequences. Game-perfectness is defined as a game-theoretic variant of perfectness of a graph, and is generalized to digraphs. We examine upper and lower bounds for the game chromatic number of several classes of digraphs. In the last part of the thesis, we characterize game-perfect digraphs with small clique number, and prove general results concerning game-perfectness. Some results are verified with the help of a computer program that is discussed in the appendix

    Dilworth rate: a generalization of Witsenhausen's zero-error rate for directed graphs

    Get PDF

    Packing and covering in combinatorics

    Get PDF
    corecore