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émanant des établissements d’enseignement et de
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Abstract
The Strong Perfect Graph Conjecture (SPGC) was certainly one of the most challenging conjec-

tures in graph theory. During more than four decades, numerous attempts were made to solve it, by
combinatorial methods, by linear algebraic methods, or by polyhedral methods. The �rst of these three
approaches yielded the �rst (and to date only) proof of the SPGC; the other two remain promising to
consider in attempting an alternative proof.

This paper is an unbalanced survey of the attempts to solve the SPGC; unbalanced, because (1)
we devote a signi�cant part of it to the `primitive graphs and structural faults' paradigm which led to
the Strong Perfect Graph Theorem (SPGT); (2) we brie�y present the other �direct� attempts, that
is, the ones for which results exist showing one (possible) way to the proof; (3) we ignore entirely the
�indirect� approaches whose aim was to get more information about the properties and structure of
perfect graphs, without a direct impact on the SPGC.

Our aim in this paper is to trace the path that led to the proof of the SPGT as completely as
possible. Of course, this implies large overlaps with the recent book on perfect graphs [81], but it also
implies a deeper analysis (with additional results) and another viewpoint on the topic.

1 Introduction
The theory of perfect graphs started in the early sixties, when Claude Berge [2], motivated
by Shannon's work on communication theory (and more particularly by the notion of zero-
error capacity of a noisy channel), started to investigate certain invariants of graphs. These,
in turn, led him to the study of various classes of graphs. Berge's repeated questions, and
his student Ghouila-Houri's (partial) answers, concerning the relations between these graph
classes led Berge to propose two fundamental conjectures, the so-called Weak Perfect Graph
Conjecture and Strong Perfect Graph Conjecture (WPGC and SPGC), which prompted an
impressive amount of research. Lovász gave in 1971 a proof of the WPGC [65], but the SPGC
remained open until 2002, when Chudnovsky, Robertson, Seymour and Thomas [13] proved it
using combinatorial methods.

To formulate these two conjectures, we �rst need several de�nitions.
De�nition 1.1 A hole is a chordless cycle with at least four vertices, while an anti-hole is the
complement of a hole. An odd hole (respectively odd anti-hole) is a hole (respectively anti-hole)
with an odd number of vertices.
De�nition 1.2 Let G be a graph.

• the clique number ω(G) is the size of its largest pairwise adjacent set of vertices (or clique);
• the stability number (or independence number) α(G) is the size of its largest pairwise

non-adjacent set of vertices (or stable set);
• the chromatic number χ(G) is the minimum number of stable sets (also called colours in

this context) needed to partition the vertices of G.
• the clique covering number θ(G) is the minimum number of cliques needed to partition

the vertices of G.
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Let G denote the complement of a graph G. Observe that ω(G) = α(G) and χ(G) = θ(G).

De�nition 1.3 A graph is called a Berge graph if it contains neither an odd hole nor an odd
anti-hole as an induced subgraph.

De�nition 1.4 A graph G is called perfect if, for each of its induced subgraphs G′, χ(G′) =
ω(G′). It is called minimal imperfect if it is not perfect but all its proper induced subgraphs
are perfect.

It is easy to see that a perfect graph is necessarily a Berge graph. The converse is the well
known Strong Perfect Graph Conjecture:

Conjecture 1.5 (SPGC, Berge [2]) A graph is perfect if (and only if) it is a Berge graph.

As noted by Berge, the SPGC implies the weaker conjecture:

Conjecture 1.6 (WPGC, Berge [2]) A graph is perfect if and only if its complement is perfect.

Further questions may be asked of perfect graphs: can one test in polynomial time whether
a graph is perfect or not? Do perfect graphs have an easily identi�ed structure? Can one
�nd a largest clique of a perfect graph in polynomial time? Can one colour a perfect graph in
polynomial time? and many others [18, 15]. To answer these questions, several approaches have
been used from the very beginning: combinatorial, polyhedral or algebraic methods. Colouring
a perfect graph or �nding its largest clique can be done in polynomial time using the ellipsoid
method [50]; the proof of the WPGC can be obtained using any one of these approaches [65,
45, 47]; the proof of the SPGC [13] and the polynomial algorithms to recognize perfect graphs
[12] use combinatorial methods exclusively. Many important features of perfect or minimal
imperfect graphs have been found using alternative approaches (described in the subsequent
sections). The theory of perfect graphs is therefore not one approach, but a collection of
approaches developed and applied in order to reach one goal: to understand what makes a
graph perfect from the point of view of its structure and its properties.

As noted above, the e�ciency of di�erent approaches to solve the perfect graph conjectures
became obvious when Lovász [65] and Fulkerson [45] obtained simultaneously (almost) the same
result. While Lovász used exclusively combinatorial methods to prove the WPGC, Fulkerson
used the theory of anti-blocking polyhedra to prove a theorem close to the WPGC (the Pluper-
fect Theorem) and formulated the missing result (see Section 2) which would have allowed him
to deduce the WPGC. Like the WPGC, the SPGC stimulated and encouraged the development
of more than one approach before a proof was eventually found. For many years, completely
di�erent viewpoints simultaneously co-existed, going from the `just do it' version (where it was
assumed that the existing tools were su�cient to prove the SPGC, and it remained to glue
the �bricks� together in a clever order) to the `nothing is done yet' version (where much more
powerful methods were considered necessary for a successful approach of the SPGC).

The �rst (and to date only) proof [13] showed that the �rst viewpoint (using combinatorial
methods) could be successful, and even that one could do without many of the existing tools ...
assuming much skill in 'gluing the bricks together '. In the spirit of Kronecker's Decomposition
Theorem for �nite Abelian groups [90] and of Seymour's Decomposition Theorem for regular
matroids [96], an idea was suggested in [18]: that every Berge graph could be constructible
from `primitive' Berge graphs, easily seen to be perfect, by perfection-preserving operations.
The proof in [13] does not go so far: `primitive' Berge graphs are e�ectively used to build larger
graphs, but not all the operations are perfection-preserving.

This paper is organized as follows. We present in Section 2 the polyhedral approach and
in Section 3 the study of partitionable graphs. Even if these approaches have not (yet) led
to a proof of the SPGC, they deserve to be highlighted for the alternative insights they o�er.
Many other approaches (including forbidden subgraphs, even pairs, edge orientations, colouring
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algorithms, P4-structure) have produced many deep results about perfect graphs. We choose
not to present them here, since they can be found in a recent volume of articles on perfect graphs
[81]. Section 4 is devoted to the approach which led to the proof of the SPGT, namely the
`primitive graphs and structural faults' paradigm. We present not only its early applications to
perfect graphs and the main theorems based on this paradigm, but also the diverse conjectures
(and counterexamples) to which it has given rise. In a word, we retrace the progression from
idea to ful�llment. In Section 5 we list statements equivalent to the SPGT. Finally, in Section
6 we mention further lines of research on graphs without holes and on the relationship between
the four parameters α, χ, ω, θ in these graphs.

In order to point out the similarities and di�erences between our paper and the volume [81],
every citation of a result which is also mentioned in [81] will be written in italics ([65] instead
of [65]).

Throughout the paper, we will use the notation G = (V, E) to denote a graph with vertex
set V (of cardinality n) and edge set E (of cardinality m). When no confusion is possible, ω(G)
will be simply denoted ω (and similarly for other parameters). Moreover, a clique (stable set,
respectively) of size k will be called a k-clique (stable k-set, respectively).

2 The polyhedral approach
The use of polyhedral methods to study combinatorial problems, and more speci�cally prop-
erties of graphs, was developed during the forties and the �fties by Dantzig, Ford, Fulkerson,
Ho�man, Johnson, Kruskal, and Kuhn on problems such as assignment problems, �ows, and
the traveling salesman problem. The �eld was extended and popularized by the works of Ed-
monds in the sixties and seventies, particularly by his characterization of the matching polytope
[38, 39]. He also emphasized the links among polyhedra, min-max relations, good character-
izations, and polynomial time solvability. For more information the reader can refer to the
survey of Schrijver [91]. The e�ciency of the polyhedral methods is strongly illustrated by the
algorithmic results obtained using the ellipsoid method. Since our goal here is to discuss the
proof of the SPGT as a characterization of perfect graphs, we do not focus our attention on the
algorithmic aspects (we only mention them in the appropriate context).

2.1 Matrices, graphs and polyhedra
In this section, we give the main de�nitions that allow us to transform matrices, graphs and
polyhedra into each other, all this in relation to linear programming (LP) and integer program-
ming (IP) problems. We will assume that the reader already has a basic knowledge about these
topics. More details and further properties concerning polyhedra can be found in [53].

We limit our presentation to {0,1}-matrices and to non-negative vectors, even if most of the
de�nitions hold in greater generality. By convention, the vectors are column vectors, except if
explicitely stated otherwise.

Let A be an m × n {0, 1}-matrix (that is with m rows and n columns), let 1m be the
m-vector having all components equal to 1 and let w and b be non-negative vectors of sizes n
and m, respectively. Consider the following IP-problem (wt is the transpose of w):

Find Max {wtx : Ax ≤ b,x ∈ Zn,x ≥ 0},

consider its LP-relaxation, the dual of its LP-relaxation, and the IP-problem associated with
this dual. Provided that the optima involved exist, we have the following inequalities:

Max {wtx : Ax ≤ b,x ∈ Zn,x ≥ 0} ≤ Max {wtx : Ax ≤ b,x ≥ 0} (1)
= Min {ytb : Aty ≥ w, y ≥ 0} ≤ Min {ytb : Aty ≥ w, y ∈ Zm, y ≥ 0}
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De�nition 2.1 The linear system {Ax ≤ b, x ≥ 0} is totally dual integral (TDI) if, for every
integral vector w for which the linear program Max {wtx : Ax ≤ b,x ≥ 0} has a �nite
optimum, the dual Min {ytb : Aty ≥ w, y ≥ 0} has an integral optimal solution y (that is,
the second inequality in (1) becomes an equality).

De�nition 2.2 A polyhedron P is the intersection of �nitely many a�ne half-spaces. A sup-
porting hyperplane of P is a hyperplane containing at least one point of P , and such that all
points in P lie on one of the closed half-spaces de�ned by the hyperplane. A face of a polyhe-
dron is either the polyhedron itself, or the intersection of P with a supporting hyperplane of
P . A facet of P is a maximal (relative to inclusion) face distinct from P .

Edmonds and Giles [40] showed that if a linear system {Ax ≤ b, x ≥ 0} is TDI and b is
integral, then the polyhedron P (A) = {x ∈ Rn | Ax ≤ b, x ≥ 0} is an integral polyhedron
(that is, each face of P (A) contains an integer point), but the converse is not true in general.
It is co-NP-complete to check in general whether a polyhedron {x ∈ Rn |Ax ≤ b} is integral
[76], even if A is a {0, 1}-matrix.

Consider now the case where b = 1m. We are going to show (Theorem 2.6) that the four
optima in (1) are strongly related.

To do this, we �rst de�ne (following Fulkerson [45]):

De�nition 2.3 The anti-blocking polyhedron of the matrix A, written P≤(A), is de�ned by

P≤(A) = {x ∈ Rn : Ax ≤ 1m, x ≥ 0} .

We will assume throughout that P≤(A) is bounded, that is, A contains no zero column. As
a result P≤(A) can be written as the convex hull of its extreme points x1, . . . ,xr.

De�nition 2.4 Let x1, . . . ,xr be the extreme points of P≤(A), and let X be the matrix whose
rows are (x1)t, . . . , (xr)t. The anti-blocker of P≤(A) is the polyhedron P≤(A) de�ned by

P≤(A) = {a ∈ Rn : Xa ≤ 1r, a ≥ 0} .

Notice that X has no zero column and that the anti-blocker of P≤(A) is P≤(A) [45]. The
theory of anti-blocking polyhedra, developed by Fulkerson [45], can be used (but this is only
one of its numerous applications) to attack the SPGC, as will be seen in subsections 2.2, 2.3.

We are mainly interested in matrices whose associated anti-blocking polyhedron is integral:

De�nition 2.5 An m× n {0, 1}-matrix A with no zero column is perfect if the anti-blocking
polyhedron P≤(A) is integral, that is, all vertices of P≤(A) are {0, 1}-vectors.

Thus, if A is perfect, then the linear program Max {wtx : Ax ≤ 1m, x ≥ 0} has an integral
optimal solution for all (non-negative) vectors w ∈ Rn.

The following result, due to Lovász, gives the relation we were looking for concerning the
optima:

Theorem 2.6 (Lovász [65])
For a m× n {0, 1}-matrix A with no zero column, the following statements are equivalent:
i) the linear system {Ax ≤ 1m, x ≥ 0} is TDI,
ii) the matrix A is perfect,
iii) Max {wtx : x ≥ 0, Ax ≤ 1m} has an integral optimal solution for all w ∈ {0, 1}n.
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Every m × n {0,1}-matrix is associated with a pair of polyhedra. This theorem states an
important result involving the matrix itself, (one of the) associated polyhedra, and the four
problems in (1), when b = 1m. In order to apply such tools to graphs, and particularly to
perfect graphs, matrices are associated with graphs. To do this, let G be a graph on n vertices
and associate with its vertex set V the vector space Rn, where the indices 1, 2, . . . , n of a vector
correspond to the vertices of G. The incidence vector of some U ⊆ V is de�ned as the n-vector
xU having value 1 for each index corresponding to a vertex in U , and value 0 for all the other
indices. The row vector (xU )t is called the row incidence vector of U .

De�nition 2.7 For a graph G, the clique matrix associated with G is the {0,1}-matrix CG

whose rows are the row incidence vectors of the cliques in G. Similarly, the stable set matrix
associated with G is the {0,1}-matrix SG whose rows are the row incidence vectors of the stable
sets in G.

When no confusion is possible, we will simply write C instead of CG and S instead of SG.
Now we are ready to investigate perfect graphs using the theory of polyhedra.

2.2 How to deal with perfect graphs?
One of Fulkerson's main goals in developing the theory of anti-blocking polyhedra was the proof
of the WPGC. To attack it, he expressed perfection in terms of integer programming.

Let G be a graph on n vertices, and let C and S be its associated clique and stable set
matrices. We assume C has size m × n and S has size r × n. Consider an arbitrary {0,1}-
vector w of size n, which de�nes the subgraph G′ of G for which the equality χ(G′) = ω(G′) is
requested: the vertices in G′ correspond to the 1 entries in w. The following statement is then
equivalent to the perfection of G:

for all w ∈ {0, 1}n,
Min {yt1r : Sty ≥ w, y ∈ Zr, y ≥ 0} = Max {wtx : Sx ≤ 1r,x ∈ Zn,x ≥ 0}. (2)

It is easy to see that, in either optimization problem, an optimal solution using nonnegative-
integer values is equivalent to an optimal solution using values in {0, 1}. The number of 1s in
y expresses the number of stable sets which are chosen to cover G′, while the number of 1s in
x corresponds to the size of the clique represented by x.

The perfection of G can therefore be expressed similarly to (2), by simply replacing the
stable sets of G with the cliques of G (and thus S by C):

for all w ∈ {0, 1}n,
Min {yt1m : Cty ≥ w, y ∈ Zm, y ≥ 0} = Max {wtx : Cx ≤ 1m,x ∈ Zn,x ≥ 0}. (3)

Now, consider this version of perfection proposed by Fulkerson [45]:

De�nition 2.8 A graph G is pluperfect if the inequality (2) holds for every non-negative integer
vector w.

Fulkerson proved that this property is preserved under complementation.

Theorem 2.9 (Pluperfect Graph Theorem, Fulkerson [45]) A graph G is pluperfect if and
only if G is pluperfect.

This is the main result on (plu)perfection that Fulkerson obtained, and he also noticed
that to deduce the WPGC from the Pluperfect Graph Theorem it would su�ce to show that
perfection implies pluperfection (the converse is obviously true). To do this, it is su�cient to
prove that when one replaces a vertex by a 2-clique in a perfect graph G, the new graph is also
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perfect. This is a particular case of the Substitution Lemma, used by Lovász [65] to prove the
WPGC (which becomes therefore the Perfect Graph Theorem, or PGT). In order to present it,
let H and G be two vertex disjoint graphs. Let v be a vertex of G, and let N(v) be the set of
vertices adjacent to v in G. The substitution of H for v in G creates a new graph by removing
v and its incident edges from G, and adding an edge between each vertex of H and each vertex
in N(v).

Lemma 2.10 (Substitution Lemma, Lovász [65]). The graph obtained from a perfect graph
G by substitution of a perfect graph H for a vertex of G is a perfect graph.

An alternative proof of the PGT, also given by Lovász, is a result of the following charac-
terization of perfect graphs:

Theorem 2.11 (Lovász [64])
A graph G is perfect if and only if for every induced subgraph G′ of G the following holds:

ω(G′)α(G′) ≥ |V (G′)|.

As a corollary, we get the next theorem, which introduces the �rst two of many fascinating
properties of maximum cliques and maximum stable sets in minimal imperfect graphs. See
Theorem 2.19 for some other such properties.

Theorem 2.12 (Lovász [65]) Every minimal imperfect graph G satis�es:
i) it has exactly α(G)ω(G) + 1 vertices;
ii) for every vertex v of G, the graph G\{v} can be partitioned into α(G) ω(G)-cliques, and

into ω(G) stable α-sets.

Many years later, Gasparyan [47] obtained a very short proof of the PGT exclusively based
on elementary linear algebra. A feature of the proof is that it does not use the Substitution
Lemma, but only simple deductions concerning structural properties of the maximum cliques
and maximum stable sets in minimal imperfect graphs.

Let us turn now towards the SPGT. A way to attack it using anti-blocking polyhedra consists
in characterizing perfect graphs with the help of properties of their associated polyhedra.

De�nition 2.13 The stable set polytope STAB(G) associated with a graph G with n vertices
is the convex hull of the incidence vectors of all stable sets in G, that is

STAB(G) = ConvHull {xS ∈ Rn : S is a stable set of G}.

De�nition 2.14 The fractional stable set polytope QSTAB(G) associated with G is the anti-
blocking polyhedron of the clique matrix C, that is

QSTAB(G) = P≤(C) = {x ∈ Rn : Cx ≤ 1m, x ≥ 0} .

Note that QSTAB(G) contains STAB(G) and that

ConvHull (QSTAB(G) ∩ {0, 1}n) = STAB(G). (4)

When one seeks a de�ning linear system for STAB(G), there are two types of inequalities
that are essential (they always de�ne facets of STAB(G)). The �rst type is given by the
nonnegativity of the variables (equivalently, x ≥ 0), while the other type is given by the clique
constraints:
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{qtx ≤ 1 : q is the incidence vector of some clique of G}

which enforces that a clique of G and a stable set of G can meet in at most one vertex. We can
write all the clique constraints concisely as Cx ≤ 1m (recall that m is the number of rows in
C, and the number of cliques in G).

For a general graph G, these constraints do not specify STAB(G) (that is, STAB(G) is
included in, but not necessarily equal to, QSTAB(G)). For a perfect graph, the inequalities of
(1) in the notation of (3) state for every w ∈ {0, 1}n that:

Max {wtx : Cx ≤ 1m,x ∈ Zn,x ≥ 0} ≤ Max {wtx : Cx ≤ 1m,x ≥ 0} (5)
= Min {yt1m : Cty ≥ w, y ≥ 0} ≤ Min {yt1m : Cty ≥ w, y ∈ Zm, y ≥ 0}

The �rst and fourth optima in (5) are exactly the two optima in (3), so they are equal.
We deduce that all the inequalities become equalities, and thus iii) in Theorem 2.6 holds.
Consequently, the linear system {Cx ≤ 1m,x ≥ 0} is TDI (see De�nition 2.1), and C is
a perfect matrix. This latter conclusion means that QSTAB(G) is an integer polyhedron.
Therefore, using (4) and recalling that a polyhedron is integral if and only if it is the convex
hull of the integral vectors it contains, we obtain equality between STAB(G) and QSTAB(G).
The converse also holds [14], so (see also [81]):

Theorem 2.15 (Lovász [65], Chvátal [14]) A graph is perfect if and only if STAB(G) =
QSTAB(G).

We deduce that (1) the nonnegativity constraints and clique constraints specify STAB(G)
if and only if G is perfect, and (2) G is perfect if and only if C is a perfect matrix.

Another way to study the properties of perfect graphs, equally involving the polytopes
STAB(G) and QSTAB(G), was initiated by Lovász [66]. He introduced a new geometric
representation of graphs linking perfectness to semide�nite programming.

Let G be a graph with n vertices, and let u0,u1, . . . ,un be a set of vectors in Rn+1 such
that u0 is special and ui corresponds to the vertex vi of G, for 1 ≤ i ≤ n. We de�ne the
following set of constraints, dependent on G:

• (u0)t · u0 = 1;
• (u0)t · ui = (ui)t · ui, for each i ∈ {1, 2, . . . , n};
• (ui)t · uj = 0, for each pair of indices i, j ∈ {1, 2, . . . , n} such that vivj is an edge of G.

De�nition 2.16 The theta-body THETA(G) of a graph G is the set

{z ∈ Rn : there exist vectors u0,u1, . . . ,un satisfying the constraints above
and such that (ui)t · ui = zi for each i ∈ {1, 2, . . . , n}}

It can be shown [53] that STAB(G) ⊆ THETA(G) ⊆ QSTAB(G). In general THETA(G)
is not a polytope, but Lovász proved

Theorem 2.17 (Grötschel, Lovász, Schrijver [53]) Let G be a graph. The following statements
are equivalent:

i) G is perfect;
ii) THETA(G) is a polytope;
iii) THETA(G) = STAB(G);
iv) THETA(G) = QSTAB(G).

These characterizations of perfect graphs did not yet furnish a proof of the SPGT, but they
provided important information about the properties of perfect graphs with impact on another
very di�cult problem: deciding whether the parameters ω(G), χ(G), θ(G) can be computed
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in polynomial time for perfect graphs. This problem has been solved using polytopes, in an
even more general form. Consider a graph G of order n whose vertices have prescribed weights
wi, for 1 ≤ i ≤ n. Let w = (w1, . . . , wn)t. Computing the weighted stability number α(G,w)
(that is the maximum, over all stable sets S in G, of the sum of the vertex weights in S) means
to maximize the linear function wtx over the stable set polytope STAB(G) (the restriction to
w ∈ {0, 1}n corresponds to computing α(G)). Grötschel, Lovász and Schrijver [50] showed that
this problem (as well as computing the parameters ω(G,w), χ(G,w), θ(G,w) de�ned similarly
to ω(G), χ(G), θ(G) on a weighted graph G) can be solved in polynomial time for perfect graphs
using the ellipsoid method and the polytopes STAB(G),QSTAB(G),THETA(G).

2.3 How to deal with minimal imperfect and partitionable graphs?
We now investigate minimal imperfect graphs and a larger class, de�ned in this section, the
partitionable graphs.

Recall that, by Theorem 2.15, the non-negativity constraints x ≥ 0 and the clique con-
straints {qtx ≤ 1 : q is the incidence vector of a clique of G} are su�cient to describe
STAB(G) if and only if G is perfect.

When G is not perfect, these two types of constraints remain necessary, but they are no
longer su�cient to describe STAB(G). The problem of �nding a complete list of constraints
de�ning STAB(G) becomes much more di�cult. Two other types of constraints seem promising.

• the odd hole constraints: if C ⊆ V induces a chordless odd cycle in G with incidence vector
c, then ctx ≤ 1

2 (|c| − 1) is satis�ed for every incidence vector x of a stable set. Thus, the odd
hole constraints are valid for STAB(G).

• the odd anti-hole constraints: if D ⊆ V induces a chordless odd cycle in the complement
G of G, and d is the incidence vector of the anti-hole D in G, then dtx ≤ 2 is satis�ed for every
incidence vector x of a stable set. Thus, the odd anti-hole constraints are valid for STAB(G).

The graphs for which the non-negativity constraints, the clique constraints, and the odd
hole constraints are su�cient to specify STAB(G) are called h-perfect. Chvátal [14] was the
�rst author to be interested in h-perfect graphs, and it was shown by Grötschel, Lovász and
Schrijver [52] that the weighted stable set problem can be solved in polynomial time for these
graphs too.

The clique constraints, the odd hole constraints, and the odd anti-hole constraints are special
cases of the rank constraints de�ned as follows: if U ⊆ V and u denotes the incidence vector of
U then

utx ≤ α(G[U ])

(where G[U ] denotes the subgraph of G induced on the vertices of U).
A general rank constraint may be useless since in general we do not know how to calculate

α(G[U ]) e�ciently. At the same time, many rank constraints follow from others as in the case
of perfect graphs, where all the rank constraints follow from the clique constraints. Some other
results are known; for instance Chvátal [14] showed that if G is a connected α-critical graph
(that is, α(G−e) = α(G)+1 for each edge e of G), then the full rank constraint (1n)tx ≤ α(G)
de�nes a facet of STAB(G). However, no complete description of the rank constraints that
de�ne facets of STAB(G) is known. In fact, the set of all rank constraints (over all U ⊆ V ) is
not su�cient in combination with the nonegativity constraints to describe STAB(G) for general
graphs (an example may be found in [68]).

Padberg [74, 75] obtained many important results on minimal imperfect graphs and in
particular on STAB(G) and QSTAB(G) when G is a minimal imperfect graph G. Recall that
(see De�nition 2.14 and (4)):
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QSTAB(G) = {x ∈ Rn : Cx ≤ 1m, x ≥ 0} , and
STAB(G) = ConvHull (QSTAB(G) ∩ {0, 1}n).

Moreover, we can consider two similar polyhedra using the matrix S, which coincides with
the clique matrix for G.

QSTAB(G) = {x ∈ Rn : Sx ≤ 1r, x ≥ 0} , and
STAB(G) = ConvHull (QSTAB(G) ∩ {0, 1}n)

As noticed by Padberg, there is an (incomplete) `duality' relation between the vertices of
STAB(G) and the facets of QSTAB(G) (and hence between the vertices of STAB(G) and
the facets of QSTAB(G)). This remark is con�rmed by the following relation between these
polytopes:

Theorem 2.18 (Padberg [74]) If G is minimal imperfect, then QSTAB(G) is the anti-blocker
of STAB(G) and QSTAB(G) is the anti-blocker of STAB(G).

The study of the vertices and facets of these polyhedra allowed Padberg to obtain the
following structural features of minimal imperfect graphs:

Theorem 2.19 (Padberg [74]) Every minimal imperfect graph G on n vertices satis�es:
(P1) it has exactly n stable α(G)-sets and n ω(G)-cliques;
(P2) the incidence vectors of the n stable α(G)-sets are linearly independent, as are those

of the n ω(G)-cliques ;
(P3) each vertex of G lies in exactly α(G) stable α(G)-sets and in exactly ω(G) ω(G)-cliques;
(P4) for every ω(G)-clique Q there exists a unique stable α(G)-set S such that Q

⋂
S = ∅,

and conversely ;
(P5) for every vertex v, the set V \ {v} has a unique partition into α(G) ω(G)-cliques, and

a unique partition into ω(G) stable α(G)-sets.

Unfortunately, minimal imperfect graphs are not characterized by the nice properties in Theo-
rem 2.12 and Theorem 2.19. A larger class, de�ned by Bland, Huang and Trotter [5], has all
these remarkable properties:

De�nition 2.20 A graph G on n vertices is called (r, s)-partitionable if there exist integers
r, s > 1 such that:

• n = rs + 1, and
• for every vertex v of G, V \ {v} can be partitioned into r s-cliques and into s stable

r-sets.

By Lovász's Theorem 2.12, every minimal imperfect graph G is an (α(G), ω(G))-partitio-
nable graph. For this reason, partitionable graphs were intensively studied, both from a poly-
hedral point of view and from a combinatorial or linear algebraic point of view (see Section
3).

>From a polyhedral point of view, since for an imperfect graph G the stable set polytope
STAB(G) is strictly contained in its fractional stable set polytope QSTAB(G), the difference
between these two polytopes can be used as a tool to decide whether (intuitively) a graph
is �close to� or �far from� a perfect graph. In this direction, it would hopefully be possible
to distinguish a minimal imperfect graph from a partitionable graph which is not minimal
imperfect by studying their associated polytopes.

To this end, Padberg [75] introduced the notion of almost integral polytope, de�ned with
respect to a {0, 1}-matrix A with no zero column. To motivate this de�nition, �rst consider
the following polytopes:
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P≤(A) = {x ∈ Rn : Ax ≤ 1m, x ≥ 0}
PI(A) = ConvHull (P≤(A) ∩ {0, 1}n)

The �rst polytope is obviously the anti-blocking polyhedron associated to A, while PI(A) is
the polytope de�ned as the convex hull of the integral vectors in P≤(A). When A is the clique
matrix C of a graph G, we have QSTAB(G) = P≤(C) and STAB(G) = PI(C).

Furthermore, for 1 ≤ j ≤ n, de�ne the polytopes obtained from the preceding ones by �xing
the j-th coordinate to 0:

P j
≤(A) = P≤A ∩ {x ∈ Rn : xj = 0}

P j
I (A) = PI(A) ∩ {x ∈ Rn : xj = 0} .

Now, following Padberg [75], de�ne

De�nition 2.21 An m× n {0, 1}-matrix A with no zero column is almost perfect if
• PI(A) 6= P≤(A), and
• P j

I (A) = P j
≤(A), for every integer j ∈ {1, 2, ..., n} .

De�nition 2.22 A polyhedron P ⊂ Rn is an almost integral polytope if there exists an almost
perfect matrix A such that P = P≤(A).

The di�erence between almost integral polytopes and integral polytopes concerns exactly
one vertex:

Theorem 2.23 (Padberg [75]) If P≤(A) is almost integral then
i) Every fractional vertex has exactly n adjacent integral vertices;
ii) P≤(A) has exactly one fractional vertex.

Moreover, Padberg proved that A is almost perfect if and only if it is the clique matrix of
a minimal imperfect graph G and deduced this remarkable result:

Theorem 2.24 (Padberg [75]) A graph G on n vertices is minimal imperfect if and only if the
fractional stable set polytope QSTAB(G) has a unique vertex u with non-integral coe�cients.
This n-vector u is equal to 1

ω (G)1n, is contained in exactly n facets, and is adjacent to ex-
actly n other vertices, namely the incidence vectors of the n maximum stable sets of G. Also,
STAB(G) = QSTAB(G) ∩ {x ∈ Rn : x ≥ 0, (1n)tx ≤ α(G)}.

Remark 2.25 Theorem 2.24 states that G is minimal imperfect if and only if QSTAB(G) has
precisely one fractional vertex, which can be cut o� exactly without introducing new fractional
extreme points by the cutting plane (1n)tx = α(G) (this plane corresponds to V. Chvátal's full
rank constraint). This gives one of the very rare properties satis�ed by each minimal imperfect
graph and by no other partitionable graph.

Let us consider the following third polytope associated to G:

FSTAB(G) = {x ∈ Rn : x ≥ 0, Cx ≤ 1m, (1n)tx ≤ α(G)}.

Clearly STAB(G) ⊆ FSTAB(G) ⊆ QSTAB(G). Shepherd [98] de�ned:

De�nition 2.26 A graph G is near-perfect if STAB(G) = FSTAB(G).
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Minimal imperfect graphs and perfect graphs are near-perfect. For a near-perfect graph
G distinct from a perfect graph, only the full rank constraint is used to cut o� all fractional
vertices of QSTAB(G) (note that the full rank constraint is not a facet of STAB(G) for a
perfect graph G distinct from a complete graph). Shepherd [98] showed that the subclass of
near-perfect graphs closed under complementation consists exactly of all perfect graphs and
all minimal imperfect graphs. We know from Bland, Huang, and Trotter [5] that for every
partititionable graph G distinct from an odd hole and from an odd anti-hole, at most one of G
and G is near-perfect. More precisely, Wagler proved:

Theorem 2.27 (Wagler [106]) A partitionable graph G is minimal imperfect if and only if G
is near-perfect.

Remark 2.28 If G is partitionable but not minimal imperfect, then by Theorem 2.24 we
know that QSTAB(G) has at least two fractional vertices. Wagler noticed that, by [5], every
partitionable graph G produces the full rank facet, but by Theorem 2.27 the full rank facet
does not su�ce to cut o� all fractional vertices of QSTAB(G), so at least two cutting planes
are required to obtain STAB(G).

Wagler [105, 106] extended her analysis of polytopes associated with graphs by considering
two di�erent relaxations of STAB(G) (which are polytopes de�ned by the non-negativity con-
straints and (weak) rank constraints) and by studying the corresponding versions of perfection
obtained by requiring the equality between one of these polytopes and STAB(G). However,
for an alternative approach to the SPGT, the class of near-perfect graphs remains the most
interesting class.

The main and very important contribution of the polyhedral approach to the theory of
perfect graphs consists of an alternative proof of the PGT (using Fulkerson's Pluperfect Graph
Theorem and Lovász's Substitution Lemma) and of two algorithmic results. The �rst one,
already mentioned, was obtained by Grötschel, Lovász, Schrijver [50] in 1981 and concerns
the existence of polynomial algorithms to solve the four (weighted) optimization problems on
perfect graphs (maximum weighted stable set etc.). The other one, more recent, is due to
Shepherd [99] (2001): there exists a polynomial algorithm recognizing partitionable graphs.

Concerning the recognition of perfect graphs, it was known since the beginning of the eighties
that deciding whether a graph is not perfect is in NP ([9], [51], [67]). Until 2002, it was not
known whether testing the perfectness of a graph is a polynomial problem, and more generally
even if this problem is in NP. Unfortunately the polyhedral approach brought no answer to
the recognition problem. After the SPGT was proved by Chudnovsky, Robertson, Seymour,
and Thomas [13], the polynomiality of recognizing perfect graphs was proved by Chudnovsky,
Cornuejols, Liu, Seymour, and Vu²kovi¢ [12]. This method is combinatorial, but is not an
immediate application of the graph structural decomposition theorem for Berge graphs, `which
was a big surprise' as explained by Seymour in [97].

Deducing a proof of the SPGT from the study of the polytopes STAB(G) and QSTAB(G)
for a Berge graph G seems to be quite di�cult. Another possible way is to study STAB(G)
and FSTAB(G) for any partitionable graph, following the approach suggested by Shepherd and
Wagler. It is not clear that this way is easier than the previous one.

3 Partitionable graphs
Lovász's Theorem 2.12 can be seen as a �rst quantitative and qualitative result on minimal
imperfect graphs, which Padberg (Theorem 2.19) completed with a long list of remarkable
properties. The structure of minimal imperfect graphs seemed, at that moment, to be very
clear; the maximum cliques and stable sets in these graphs had very strong properties; yet, a
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proof of the SPGT could not be found in this way. The reason is that almost all of the structural
results on minimal imperfect graphs are also valid for the larger class of partitionable graphs.

As already noticed, by Theorem 2.12 a minimal imperfect graph G is an (α(G), ω(G))-
partitionable graph. Moreover, Bland, Huang and Trotter proved that:

Theorem 3.1 (Bland, Huang, Trotter [5]) Let G be an (r, s)-partitionable graph. Then
i) G is (s, r)-partitionable;
ii) r = α(G), s = ω(G);
iii) G is not perfect;
iv) the properties of minimal imperfect graphs (P1), (P2), (P3), (P4), (P5) in Theorem 2.19

also hold for G.

Due to (ii), from now on we will use the term (α, ω)-partitionable graph G instead of (r, s)-
partitionable graph.

Partitionable graphs form a very complex graph class, and the next subsections attempt to
justify this assertion by presenting the following facts: for each α, ω > 1, there exist (α, ω)-
partitionable graphs, and the number of partitionable graphs on n vertices grows exponentially
with n [6]. Various types of partitionable graphs have been identi�ed, but there is no exhaustive
description or classi�cation of them. The results obtained up to about partitionable graphs cast
only a little light on a subject where much more remains to be learned.

3.1 Equivalent statements
Di�erent relaxations of the de�nition of partitionability were proposed. The �rst, proposed by
Shepherd, is used in the proof of the existence of a polynomial algorithm to recognize (α, ω)-
partitionable graphs (see also [99]):

Theorem 3.2 (Shepherd [98]) A graph G with n vertices is an (α, ω)-partitionable graph if
and only if

i) n = αω + 1, and
ii) G has a family of n stable α-sets such that:

1. each vertex is contained in exactly α of these sets;
2. for every set S in the family, there exists at least one ω-clique Q such that

Q
⋂

S = ∅.

This theorem shows that we can replace a part of the de�nition of an (α, ω)-partitionable
graph (that is the condition that V − {v} has both a partition into α ω-cliques and a partition
into ω stable α-sets, for every vertex v) with that part of the properties (P1), (P3), (P4) that
concern the stable α-sets. The symmetry between stable sets and cliques, which was required
in the original de�nition, seems therefore not to be necessary.

Indeed, this idea is supported by a result due to Boros, Gurvich, and Hougardy [6], which
shows that in the de�nition of an (α, ω)-partitionable graph it is su�cient to demand parti-
tionability of V − {v} using only one of the families of maximum cliques and maximum stable
sets.

De�nition 3.3 Let V be a �nite set of n elements, and C be a family of its subsets. The family
C is partitionable if |C| ≤ |V | and, for every v ∈ V , the set V − {v} is the union of some family
Pv of pairwise disjoint sets from C.

In this more general context, we have:

Theorem 3.4 (Boros, Gurvich, Hougardy [6]) If C is a partitionable family of subsets of a
�nite set V of size n, such that 2 ≤ |C| ≤ n−2 for each C ∈ C, then there exist unique integers
α and ω, both at least 1, such that:
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i) n = αω + 1;
ii) |C| = n and |C| = ω, for all C ∈ C;
iii) |Pv| = α, for all v ∈ V ;
iv) there exists an (α, ω)-partitionable graph whose family of ω-cliques is C and whose family

of stable α-sets is {Pv : v ∈ V }.
In other words, the set of maximum stable sets of a partitionable graph can be uniquely

determined if one knows its family of maximum clique sets, and if this family is partitionable.
The analogous statement holds when cliques and stable sets are interchanged. However, once
the two families are known, the partitionable graph is not uniquely determined. It has this
property only if we ask for a normalized (α, ω)-partitionable graph, that is if we ask that every
edge belongs to some ω-clique. Every other (α, ω)-partitionable graph contains the normalized
(α, ω)-partitionable graph and can be obtained from this one by adding or removing edges
between indi�erent pairs, that is, pairs of vertices that do not belong to the same ω-clique or
to the same stable α-set.

Another property of minimal imperfect graphs, initially noticed by Padberg [74], turned
out to be true for partitionable graphs, and even to give a characterization of them. For a
graph G with clique number ω and stability number α, let Sα and Cω respectively denote the
incidence matrices of the maximum stable sets and the maximum cliques in G (each column is
the incidence vector of such a set). Let J be the n × n matrix with all entries 1. Combining
results from [5, 19, 47, 23] yields the following theorem:

Theorem 3.5 For a graph G with n vertices, and integers α, ω > 1, the following statements
are equivalent:

i) G is an (α, ω)-partitionable graph;
ii) α = α(G) and, for each vertex v in G and stable set S ⊆ V , ω = ω(G \ S) = χ(G \ {v}).
iii) J− (Sα)tCω is a permutation n× n matrix;
iv) J− (Sα)tCω has a submatrix that is a permutation n× n matrix.

All these results show that many of the properties initially discovered for minimal imperfect
graphs extend to partitionable graphs. In the following section, we discuss the advantages and
drawbacks of this situation.

3.2 Minimal imperfect graphs versus partitionable graphs
As long as the SPGC was open, every new property of minimal imperfect graphs was possibly
a way to prove the SPGT. Two remarkable results in this direction are that minimal imperfect
graphs have no star-cutset [16] (see Section 4.5) and no even pair [43, 73] (see Section 4.3); in
fact, minimal imperfect graphs share these two properties with the larger class of partitionable
graphs [16, 3]. Examples of properties posessed by all minimal imperfect graphs but not by all
partitionable graphs include the absence of a homogeneous pair [20] (see Section 4.5) and the
absence of a small transversal [18] (see Section 3.2).

Now that the SPGT is proved, several other properties have become especially signi�cant,
because of their capacity to express the SPGT in di�erent, but equivalent, ways.

For n, k ≥ 2 let Ck
n denote the graph with vertices v1, v2, . . . , vn whose edges vivj correspond

to the pairs i, j such that |i− j| ≤ k (mod n). A critical clique in a (α, ω)-partitionable graph
G is an ω-clique that intersects only 2ω − 2 other ω-cliques of G.

Three immediate corollaries of the SPGT are:
(A) Every partitionable graph contains an odd hole or an odd antihole.

(B) Every minimal imperfect graph G contains a spanning subgraph isomorphic to
C

ω(G)−1
α(G)ω(G)+1.

(C) Every minimal imperfect graph contains a critical clique.
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Conversely, the SPGT is an immediate corollary of (A); in [17] and in [80], it was deduced
from (B) and (C) respectively.

Statements (A) and (B) are related to several attempts to build speci�c partitionable graphs
with the aim of �nding among them an imperfect graph containing no odd hole and no odd
anti-hole. We discuss them next, and we brie�y discuss (C) in the context of uniquely colourable
graphs (next subsection).

The �rst method for constructing partitionable graphs was proposed by Chvátal [17]: con-
sider a graph with vertices v1, v2, . . . , vn and whose edges vivj correspond to the pairs i, j such
that |i − j| ≤ k (mod n). We obtain Ck

n, the graphs de�ned above. Then, for arbitrary α ≥ 2
and ω ≥ 2 the graph Cω−1

αω+1 is an (α, ω)-partitionable graph. Clearly, for α ≥ 2, C1
2α+1 is an

odd hole, and Cα−1
2α+1 is an odd anti-hole. Chvátal showed that a minimal imperfect graph G

with α(G) > 2 and ω(G) > 2 cannot contain a spanning subgraph C
ω(G)−1
α(G)ω(G)+1 thus deducing

that the SPGT is equivalent to (B).
Bland, Huang, and Trotter [5] were the �rst to construct a partitionable graph without a

spanning subgraph isomorphic to Cω−1
αω+1.

The two methods proposed in [19] by Chvátal, Graham, Perol, and Whitesides give in�nite
classes of normalized (α, ω)-partitionable graphs that we will call (using the �rst letter of each
author's name) CGPW1 and CGPW2. The class CGPW1 is obtained by recursive local replace-
ments of a piece of an (α, ω)-partitionable graph in order to obtain an (α + 1, ω)-partitionable
graph (and similarly in the complement of the graph, thus getting an (α, ω + 1)-graph). The
condition of the following theorem is satis�ed by the graphs in CGPW1 (a small transversal of
a graph G with stability number α and clique number ω is a set of α + ω − 1 vertices which
intersects every stable α-set and every ω-clique of G).
Theorem 3.6 (Sebö [92]) Let G be an (α, ω)-partitionable graph, and assume there exist ver-
tices v−(ω−1), . . . , v−1, v0, v1, . . . , vω such that, for all i ∈ {−ω, . . . , 0}, the vertices vi+1, . . . , vi+ω

form an ω-clique. Then G is an odd hole, is an odd anti-hole, or contains a small transversal.
This theorem con�rms what the SPGT ensured many years later, namely that there is no
counterexample to the SPGC in the class CGPW1.

The class CGPW2 contains graphs with circular symmetries obtained from prescribed fac-
torizations of ω and α. Grinstead [49] proved that every graph in the class CGPW2 contains
either an odd hole or an odd anti-hole (thus deducing that this class could not contain coun-
terexamples to the SPGC). Other results on partitionable graphs with circular symmetries can
be found in [1] and [79].

The construction CGPW1 was generalized by Boros, Gurvich, and Hougardy [6]. Their
method was suggested by a result of Seb® [92] and builds (α, ω)-partitionable graphs that all
contain a critical clique. The computations show that there exists a unique partitionable graph
with at most 25 vertices that is not an odd hole, is not an odd anti-hole, and contains no
small transversal. As it can be shown that this unique candidate is not a counterexample to
the SPGC, the construction in [6] ensured that such a counterexample must have at least 26
vertices, thus slightly improving the previous known lower bound of 25 obtained by Gurvich
and Udalov [54].

3.3 Uniquely colourable graphs
The approach by uniquely colourable graphs combines two types of methods: linear algebraic
methods and combinatorial methods.

By Padberg's result (Theorem 2.19), in a minimal imperfect graph G, there are exactly n
ω-cliques, their incidence vectors are linearly independent, and for every v ∈ V , the set V −{v}
is uniquely partitioned into α maximum cliques and into ω maximum stable sets. The same
holds for every partitionable graph, by Theorem 3.1.
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De�nition 3.7 Every graph that has exactly one partition into the fewest stable sets is said
to be uniquely colourable.

We deduce that in every partitionable graph G, for every v ∈ V , the graph G − {v} is
uniquely colourable.

Tucker [102] �rstly proposed to attack the proof of the SPGT by studying uniquely colourable
graphs. Based on the idea that two vertices adjacent to the same (ω − 1)-clique must have the
same colour (the colour of each vertex is therefore �forced� by the colour of the other vertex),
Tucker proposed a two-step approach:

Step 1. Describe a combinatorial �forcing� procedure to colour uniquely colourable perfect
graphs (and more particularly graphs of the form G \ {v}, where G is a minimal
imperfect graph).

Step 2. Show that this forcing procedure can be applied to every minimal imperfect graph
(because of its uniquely colourable subgraphs), and that in this case the minimal
imperfect graph is necessarily an odd hole or an odd anti-hole.

Fonlupt and Sebö [42] investigated the structure of the graphs to which such a forcing
procedure could be applied. Let G be an arbitrary graph. For every vertex x of G, the
neighbourhood of x, denoted N(x), is the set of all vertices adjacent to x.

De�nition 3.8 Two non-adjacent vertices x and y of G form a co-critical nonedge if the com-
mon neighbourhood of x and y in G contains an (ω − 1)-clique. A co-critical nonedge (x, y) of
the complementary graph G is called a critical edge of G.

It is easy to see that two vertices that form a co-critical nonedge must have the same colour
in every ω-colouring of G (if such a colouring exists). Transitivity is introduced by replacing
an edge with a path:

De�nition 3.9 A path of G whose edges are all critical is a critical path of G. A critical path
of G is a co-critical path of G. A maximal subgraph of G, the vertices of which are connected by
critical paths, is a critical component of G. A critical component of G is a co-critical component
of G.

De�nition 3.10 Two vertices x and y are said to be forced in G if there exists a co-critical
path joining x and y in G.

It is easy to see that two forced vertices also must have the same colour in every ω-colouring
of G (if such a colouring exists).

All these de�nitions treat the necessity of two vertices to have the same colour. In particular,
the notion of co-critical nonedge allows us to easily imagine a forcing colouring procedure (given
below), which will work only if the graph H resulting from G is 'simple', that is, it belongs to
a graph class for which a colouring algorithm is available:

Forcing colouring procedure
H := G;
while (a co-critical nonedge (x, y) exists in the graph H) do

let Hxy be the graph obtained from H by contracting x, y into a single vertex with
neighbourhood N(x) ∪N(y)

H := Hxy

endwhile;
if (H belongs to a class of graphs for which a colouring algorithm A is known) then

colour H using algorithm A;

15



for all v ∈ V do
give to v the colour of the vertex w ∈ H which �contains� v, by contraction

endfor
endif

For an arbitrary graph G, the resulting graph H could still be di�cult to colour, as shown for
example by the case where H = G since G contains no co-critical nonedge. But for uniquely
colourable perfect graphs, it is conjectured that the graph H is very easy to colour:

Conjecture 3.11 (Fonlupt, Seb® [42]) If G is a perfect graph, then G is uniquely colourable if
and only if the graph H obtained by repeatedly contracting all co-critical nonedges is a clique.

This conjecture is equivalent to a conjecture earlier formulated by Tucker [102]. If it were
true, the preceding forcing procedure would be a good (or at least a natural) candidate for the
forcing procedure in Step 1 above.

Turning our attention to the SPGT, consider the two following conjectures:

Conjecture 3.12 (Fonlupt, Seb® [42]) Every uniquely colourable perfect graph contains a co-
critical nonedge.

Conjecture 3.13 (Seb® [93]) If G is a partitionable graph that has both a co-critical nonedge
and a critical edge, then it is an odd hole or an odd anti-hole or has a small transversal.

The SPGT can be deduced from Conjectures 3.12 and 3.13 as follows. Let G be a minimal
imperfect graph. Apply Conjecture 3.12 to G \ {v} and to G \ {v}, where v ∈ V , to obtain that
G \ {v} contains a co-critical nonedge and a critical edge. Apply Chvátal's lemma [17] stating
that minimal imperfect graphs do not contain small transversals to deduce, using Conjecture
3.13, that G must be an odd hole or an odd anti-hole. A related conjecture, implying the SPGT,
was proposed by G. Bacsó and was invalidated in [88].

Several e�orts [42, 93, 92] concentrated on Conjecture 3.13 and several partial results were
found:

Theorem 3.14 (Seb® [93]) If G is a partitionable graph such that (v1, v2) is a co-critical
nonedge with respect to the (ω−1)-clique K, and there exist u1, u2 ∈ K (not necessarily distinct)
such that (u1, v1) and (u2, v2) are critical edges, then G is an odd hole or an odd anti-hole or
has a small transversal.

Theorem 3.15 (Seb® [92]) If G is a partitionable graph having a vertex v such that v is
incident to two critical edges and one co-critical nonedge of G, then G is an odd hole or an odd
anti-hole or has a small transversal.

Furthermore, it can be proved [80] that any critical component that is not a complete graph
contains a critical clique, that is an ω-clique which meets exactly 2(ω − 1) other ω-cliques, so
that (C) (see previous subsection) is equivalent to the SPGT.

Critical cliques are related to critical edges by the following result:

Theorem 3.16 (Seb® [92]) If G is an (α, ω)-partitionable graph, and Q is an ω-clique of G,
then the following statements are equivalent:

i) Q is a critical clique;
ii) the critical edges in Q form a spanning tree of Q;
iii) the subgraph G−Q is uniquely colourable.
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The equivalence between i) and ii) in Theorem 3.16 is the result used in the construction of
Boros, Gurvich, and Hougardy [6], as noted in the preceding subsection.

More particular applications, related to proving the SPGT for particular classes of graphs,
can be found in [69] (split-neighbourhood graphs), [70] ((P5,K5)-free graphs) [89] (chair-free
graphs), [100] (3-chromatic graphs), [101] (K1,3-free graphs). For additional information on
partitionable graphs, see [80].

The results and conjectures presented in this section, devoted to partitionable graphs, amply
explain the interest of this approach to the SPGT. More statements showing possibilities to
prove the SPGT using partitionable graphs and small transversals can be found in Section 5.

4 Primitive graphs and structural faults
4.1 Preliminary remarks
Say that an operation φ de�ned on p graphs G1, . . . , Gp and yielding a graph φ(G1, . . . , Gp)
(denoted G) is perfection preserving if the perfection of G1, . . . , Gp implies the perfection of G.
Say that a partition (de�ned by some speci�c properties) of a graph G is friendly if no minimal
imperfect graph admits such a partition.

Here are two main ways to prove that a graph class C only contains perfect graphs.

Find a decomposition theorem: Let G be a graph in C. Show that either G belongs
to a class of already known perfect graphs, or show that G can be built from smaller perfect
graphs in C using some perfection preserving operation.

Find a friendly partition: Let G be a graph in C. Show that either G belongs to a class
of already known perfect graphs, or G admits a friendly partition.

The �rst of these two methods is particularly interesting since it permits successively de-
composing the graph G until all the pieces are already known perfect graphs in C. Meanwhile,
as long as we only require the existence of smaller perfect graphs in C allowing us to build
G, we need to prove two di�erent statements: that G can be obtained using the perfection-
preserving operation, and that this can be done using perfect pieces. Therefore, the particular
case of a perfection-preserving operation which ensures that G is perfect if and only if the pieces
G1, G2, . . . , Gp are perfect is even more interesting (but also more di�cult to obtain).

The second method permits showing that C is a class of perfect graphs in the following way.
If the contrary holds, then C contains a minimal imperfect graph G. Since G must then admit
a friendly partition, this is impossible.

In both cases, the already known perfect graphs usually form a small, well known class of
perfect graphs. We will call them primitive graphs.

Remark 4.1 Sometimes, it is possible to deduce from a friendly partition a perfection preserv-
ing operation yielding a decomposition theorem for the class C. However, this is not always the
case. Many friendly partitions yield operations that allow perfect graphs to be glued together
to produce a graph that is not a Berge graph and hence is not perfect.

The SPGT was proved using friendly partitions, and no decomposition theorem is available
yet. In this section we present the evolution of the concepts related to primitive graphs from
the very �rst results until the SPGT was proved.

4.2 The �rst decomposition theorems
Historically, the �rst results concerning the decomposition of each graph in a prescribed class
into primitive graphs are due to Dirac [37] (1961) and Gallai [46] (1962). They concern trian-
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gulated and i-triangulated graphs respectively (a graph is triangulated or chordal if every cycle
of length larger than 3 has a chord). Since triangulated graphs are a subclass of i-triangulated
graphs, we give here the most general result.

De�nition 4.2 Two chords x1x2 and y1y2 of a cycle are said to cross if the vertices x1, y1, x2, y2

appear in this order along the cycle. A graph G is said to be i-triangulated whenever every odd
cycle of length at least �ve has at least two non-crossing chords.

The join of disjoint graphs G and H is the graph obtained from the union of G and H by
joining each vertex of G to each vertex of H. A graph G is i-primitive if it has one of the
following properties: (1) either G is the join of a nonempty complete graph and a connected
bipartite graph with at least three vertices, or (2) G is a complete k-partite graph (for some
k ≥ 1). Moreover, say that a connected graph G has a clique cutset if there exists a clique Q
in G such that G \ Q is disconnected. It is easy to see how to de�ne a composition using the
notion of clique cutset:

De�nition 4.3 Let G1 and G2 be connected graphs containing cliques C1 and C2 of the same
size. A graph G obtained from G1 and G2 by merging C1 and C2 according to a bijection is
obtained from them by clique identi�cation.

It is easy to show that this operation is perfection-preserving. Gallai proved the following
theorem:

Theorem 4.4 (Gallai [46]) If G is an i-triangulated graph, then either G is i-primitive or G
contains a clique cutset.

Remark 4.5 This theorem is not a characterization theorem: every i-triangulated graph can
be successively decomposed until only i-primitive graphs are obtained, but the iterative com-
position of graphs starting with i-primitive graphs does not always give an i-triangulated graph
(see [48] for an example). The class of graphs built using the i-primitive graphs and clique
identi�cation was studied by Gavril [48] and is called the class of clique separable graphs.

Remark 4.6 Dirac's [37] result on triangulated graphs states that these graphs are either
cliques or have a clique cutset.

Based on these early results, the following question was raised: given a primitive class of
perfect graphs and some perfection-preserving operations can we show that every perfect graph
decomposes via these operations into primitive graphs? In [18], Chvátal mentions a discussion
with Whitesides in the fall of 1977 where she suggested that this might be possible (see also
[107]). Several subsequent results supported this belief.

4.3 Extending Gallai's approach: parity and Meyniel graphs
Two decomposition theorems were developed to characterize two related classes of graphs:
parity graphs and Meyniel graphs. These two major generalizations of Gallai's approach are
due to Burlet and Uhry [8] and to Burlet and Fonlupt [7], respectively.

De�nition 4.7 A graph G is a parity graph [8] if for any two induced paths joining the same
pair of vertices their lengths have the same parity.

Note that G is a parity graph if and only if each of its odd cycles of length at least �ve has
at least two crossing chords (see [72, 87]). These graphs are perfect by a theorem of Olaru [87].

To characterize parity graphs, say that two vertices x and y are true (respectively false) twins
if they are adjacent (respectively non-adjacent) and N(x) = N(y). By Lovász's Substitution
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Lemma [65], whenever a perfect graph is substituted for a vertex in a perfect graph, the resulting
graph is still perfect. In particular adding a true or false twin to a perfect graph also yields
a perfect graph. If B is a bipartite graph and X ∪ Y is the bipartition of its set of vertices,
then the extension of a graph G by B is the graph obtained from G and B by (1) considering
a subset {x1, · · · , xp} of X, (2) considering a set {t1, · · · , tp} of pairwise false twins, and (3)
for each i, 1 ≤ i ≤ p, contracting xi and ti into a unique vertex. This operation creates either
a clique cutset in G (in the case where p = 1) or an even pair, that is a pair of non-adjacent
vertices such that every chordless path joining them has an even pair of edges. Since minimal
imperfect graphs contain neither clique cutsets, nor even pairs [73], the extension of a graph
by a bipartite graph is perfection-preserving.

Theorem 4.8 (Burlet, Uhry [8]) A graph G is a parity graph if and only if it can be obtained
from a single vertex by iteratively applying the following operations: creation of a false twin,
creation of a true twin, extension by a bipartite graph.

As a consequence of the �if and only if� statement and of the algorithmic simplicity (that is,
polynomiality) to decide whether a graph is obtained by one of the three indicated compositions,
Theorem 4.8 yields a polynomial algorithm to recognize parity graphs. Note that Jansen [63]
proved that G is a parity graph if and only if the Cartesian product G×K2 is a perfect graph.

The class of Meyniel graphs is a larger class that contains the class of parity graphs:

De�nition 4.9 A graph G is a Meyniel graph if every odd cycle of length at least 5 has at
least two chords.

These graphs owe their name to Meyniel [72], a student of Berge who showed in 1976 that
the strong perfect graph theorem holds true for Meyniel graphs. They were also studied (and
proved to be perfect) independently from Meyniel in [71]. An alternative and very nice proof
can be found in [67].

Burlet and Fonlupt in [7] gave a characterization theorem and deduced a polynomial time
algorithm to construct Meyniel graphs starting from primitive ones.

De�nition 4.10 A graph is M-primitive if has disjoint sets S and Q such that S is a stable
set, Q is a clique, G− S −Q is a 2-connected bipartite graph B, every vertex of Q is adjacent
to every vertex of B, and every vertex of S has at most one neighbour in B.

We next introduce another combining operation.

De�nition 4.11 Let G1 and G2 be graphs. Suppose that each graph Gi has a vertex vi whose
neighbourhood consists of a clique Qi and a set Ri such that every vertex of Ri is adjacent
to every vertex of Qi. If also |Q1| = |Q2|, then the amalgam G formed from (G1, v1, Q1) and
(G2, v2, Q2) is obtained by deleting v1 and v2, identifying every vertex in Q1 to a vertex of Q2,
and making every vertex of R1 adjacent to every vertex of R2.

Burlet and Fonlupt show that the amalgam operation is perfection-preserving, and that:

Theorem 4.12 (Burlet, Fonlupt [7]) A graph G is a Meyniel graph if and only if either G is
M-primitive or G can be obtained from two smaller Meyniel graphs using the amalgam operation.

As pointed out before, the result of Burlet and Fonlupt goes further, since an O(n7) algo-
rithm can be derived to recognize a Meyniel graph. This time bound was later improved to
O(m2) by Roussel and Rusu following a di�erent approach [84].
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4.4 Alternative attempts to de�ne perfection-preserving operations
The paper [103] by Tucker introduces stable cutsets in a similar way to clique cutsets: we
say that a connected graph has a stable cutset if it contains a stable set S such that G \ S is
disconnected. The operation of stable-set identi�cation can be de�ned similar to De�nition 4.3,
but it is not perfection-preserving:

Theorem 4.13 (Tucker [103]) No minimal imperfect graph contains a stable cutset, except for
the odd holes.

To obtain a perfection-preserving operation, supplementary conditions related to path parity
have to be satis�ed by the two initial graphs and their stable sets (see [31]). Unfortunately,
these conditions are not natural at all and no further important results support investigating
stable cutsets in proving the SPGC.

Cornuéjols and Cunningham in [33] proposed the following operations on graphs. Let G1

and G2 be graphs. De�ne a general operation φik(G1, G2) as follows.

De�nition 4.14 For j ∈ {1, 2}, consider a clique of size i+k in Gj with vertices {vj
1, . . . , v

j
i }∪

Qj , and let Uj be the remaining vertices of Gj . Assume that:
• no vertex of Uj is adjacent to more than one vertex vj

h (1 ≤ h ≤ i);
• each vertex of Uj that is adjacent to vj

h for some h = 1, . . . , i is also adjacent to all the
vertices in Qj .

The φik(G1, G2) is obtained by:
• one-to-one identifying the vertices in the cliques Q1 and Q2, and
• for each h ∈ {1, . . . , i}, deleting v1

h and v2
h and joining every neighbour of v1

h to every
neighbour of v2

h.

Not all these operations (obtained for di�erent values of i and k) are perfection-preserving.
Nevertheless, many of them are already known operations, which are presented now in a common
form, showing their common features.

For i = 0, we �rst have (as φ00(G1, G2)) the disjoint union of two graphs G1 and G2, which
is obviously perfection-preserving. Clique identi�cation is the special case φ0k(G1, G2), where
k is the size of the clique.

For i = 1, we �nd (as φ10(G1, G2)) the operation introduced by Bixby [4] under the name
"composition", who also proved that it is a perfection-preserving operation. As pointed out by
Chvátal, Bixby obtained this result in 1972 but did not publish it till much later. Cunnigham
(re-)introduced this operation in [36] (in fact he introduced the so-called split decomposition
of directed graphs and gave an O(n3) algorithm to decompose a graph folllowing this split
decomposition). Going further, φ1k(G1, G2) is the amalgam operation de�ned by Burlet and
Fonlupt [7] in order to characterize Meyniel graphs, and also proved to be perfection-preserving
by Chvátal [16]. His short proof is an illustration of the power of the Star-cutset Lemma
(Lemma 4.17).

For i = 2, the operation φ2k(G1, G2) is a new one that Cornuéjols and Cunningham [33] call
2-amalgam. Their proof that the 2-amalgam operation is perfection-preserving is independent
of the Star Sutstet Lemma. Morerover, they give an O(m2n2) algorithm to decide whether a
graph can be obtained from two other graphs using the 2-amalgam operation.

De�nition 4.15 A graph G has a 2-join if its vertices can be partitioned into sets X1 and X2,
each of size at least 3, such that each Xi contains nonempty disjoint subsets Ai and Bi with
the properties that all of A1 is adjacent to all of A2, all of B1 is adjacent to all of B2, and these
are the only adjacencies involving X1 and X2.

A graph G arising from the operation φ20(G1, G2), which is a particular case of the 2-
amalgam, has a 2-join (assuming that the cardinality condition on X1, X2 is satis�ed). While
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the operations φ20(G1, G2) and 2-join are perfection-preserving [33], the authors observe that
one cannot claim the stronger statement that the result of these operations is perfect if and only
if the pieces G1 and G2 are perfect. Indeed, two imperfect graphs can yield a perfect graph.
Cornuéjols and Cunningham [33, 32] showed that one can de�ne blocks G′1, G

′
2 in a graph G

possessing a 2-join such that G is perfect if and only if G′1, G
′
2 are perfect (see [33]).

For i ≥ 3, if we try to de�ne i-amalgam by φik(G1, G2), then we do not obtain a perfection-
preserving operation. The reader can easily check that a 7-hole can be constructed via a
3-amalgam starting from two perfect graphs.

Further perfection-preserving operations have been investigated by Hsu [61], who generalized
the amalgam and the 2-amalgam. The generalized amalgam and 2-amalgam allowed Hsu to
design a recognition algorithm for planar perfect graphs (see [62]).

Interest in these operations was �rst to obtain new classes of perfect graphs, and second to
seek a structural characterization of perfect graphs. For the following classes, well-speci�ed op-
erations have been found which, when repeatedly applied, build all the graphs of the prescribed
class, starting from a restricted list of elementary graphs: P4-free graphs [95], triangulated
graphs [37], parity graphs [8], Meyniel graphs [7], diamond-free perfect graphs [44], claw-free
graphs [21], planar perfect graphs [62], etc. These results are characterizations, and they also
provide polynomial recognition algorithms for the graphs in each of these families.

4.5 A major breakthrough: the Star-Cutset Lemma
As indicated in subsection 4.1, the border between friendly partitions and perfection-preserving
operations is unclear, since friendly partitions can sometimes, but not always, yield perfection-
preserving operations. Chvátal's results [16] on star-cutsets helped both to prove new perfection
results and to make this context much more clear.

De�nition 4.16 A star-cutset of a connected graph G is a nonempty subset C of vertices such
that G − C is disconnected and such that some vertex in C is adjacent to all the remaining
vertices in C.

Chvátal showed with a short and elegant proof that

Lemma 4.17 (Star-Cutset Lemma, Chvátal [16]) No minimal imperfect graph has a star-
cutset.

A star-cutset of a graph G thus de�nes a friendly partition of G. Also, the notion of
star-cutset appears in all the various decompositions known at the time, except for the 2-join
operation de�ned by Cornuéjols and Cunningham [33].

Remark 4.18 Assume we want to make use of the existence of this speci�c friendly partition
in order to de�ne a (possibly) perfection-preserving operation. Consider the natural star-
identi�cation operation, similar to the one we de�ned for clique cutsets (De�nition 4.3): let G1

and G2 be disjoint connected graphs in which C1 and C2 are isomorphic stars. Build a new
graph G from G1 and G2 by merging the corresponding vertices in C1 and C2. As for stable
cutsets, the operation de�ned in this way is not a perfection-preserving operation, since an odd
hole can be built (as a subgraph of G) by star-identi�cation.

Since the star-identi�cation does not necessarily give a perfect graph, a little more care is
necessary to de�ne a perfection-preserving operation involving star-cutsets.

De�nition 4.19 Let G be a class of graphs and P a predicate. The closure of G under P
(denoted GP ) is de�ned recursively by the rules:
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• if G ∈ G, then G ∈ GP ;
• if G satis�es P , and G− v ∈ GP for every vertex v, then G ∈ GP .

It is easy to see (by induction) that, whenever P is a property that a minimal imperfect
graph cannot have, the perfection of every graph in G implies the perfection of every graph in
GP . Chvátal considered the particular case of the predicate (denoted ∗) " G or G has a star-
cutset ". With the notation TRIV for the class of graphs with at most two vertices and BIP
for the class of all bipartite graphs, he showed that Meyniel graphs are contained in BIP ∗ while
Hayward [56] proved that TRIV ∗ is the class of weakly triangulated graphs (graphs containing
no induced cycle of length at least 5 and no complement of such a cycle).

The Star-Cutset Lemma provided a useful way to prove the perfection of some new classes
of graphs. See [86] for examples of classes included in G∗, where G takes di�erent values and
more speci�cally when G is the class BIP or the class BIP (of graphs whose complement is
bipartite). These examples strongly suggest the idea that bipartite graphs are very important
in the structural analysis of perfect graphs. This idea is con�rmed along many results cited in
this paper, including the Strong Perfect Graph Theorem.

Returning to star-cutsets, their main value is their combination with other operations to
elucidate the structure of perfect graphs.

An early result involving decomposition operations was proposed in [20] by Chvátal and
Sbihi, when they proved the SPGT for the class of bull-free graphs (a bull is a 5-vertex graph
obtained by adding pendant vertices to two distinct vertices of a triangle).

De�nition 4.20 A homogeneous pair in a graph G is a pair (A1, A2) of disjoint vertex subsets
such that, with B = V −A1 −A2, we have:

• |A1|+ |A2| ≥ 3 and |B| ≥ 2;
• if a vertex in B is adjacent to one vertex in Ai then it is adjacent to every vertex in Ai

(i = 1, 2).

Theorem 4.21 (Chvátal, Sbihi [20]) No minimal imperfect graph has a homogeneous pair.

This result leads to the validity of the SPGT for bull-free graphs from the following theorem:

Theorem 4.22 (Chvátal, Sbihi [20]) Every bull-free Berge graph G satis�es at least one of the
following conditions:

i) G or G contains a star-cutset;
ii) G has a homogeneous pair;
iii) G or G is bipartite.

4.6 The �rst conjectures
In 1986, Reed [82] stated the following conjecture with the goal of decomposing every Berge
graph. The line graph L(G) of a graph G is the graph whose vertices are the edges of G, such
that two vertices in L(G) form an edge if and only if their corresponding edges in G share a
vertex.

Conjecture 4.23 (Reed [82]) Every Berge graph G satis�es at least one of the following con-
ditions:

i) G or G contains a star-cutset;
ii) G or G contains an even pair;
iii) G or G is the line graph of a bipartite graph.

Hougardy [59] gave a 20-vertex counterexample to this conjecture, to which he added a
38-vertex counterexample to the same conjecture reduced to C4-free graphs (where C4 is the
chordless cycle on four vertices). Several authors then proposed a weaker conjecture (the
diamond is the graph obtained from K4 by removing one of its edges):
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Conjecture 4.24 [59] Every Berge graph G satis�es at least one of the following conditions:
i) G or G contains a star-cutset;
ii) G or G contains a stable cutset;
iii) G or G contains an even pair;
iv) G or G is diamond-free.

Since the diamond-free Berge graphs are perfect [104], a proof of this conjecture would imply
the SPGT. Unfortunately, Conjecture 4.24 also is not true. Rusu [85] disproved it together
with various extensions obtained by replacing the diamond with any graph in a prescribed
class, and by adding a new condition on odd pairs (an odd pair of a graph G is a pair of non-
adjacent vertices such that every chordless path joining them has an odd number of edges).
The conjecture that no minimal imperfect graph has an odd pair was open until the proof of
the SPGT was obtained.

4.7 The skew partition
The large class of counterexamples found in [85] shows that other properties of minimal im-
perfect graphs are needed before being able to prove the SPGT. The (clique, star) cutsets are
certainly of great utility in proving perfection of particular classes of graphs (see [86] for a
survey), but they seem to be insu�cient to attack the whole class of Berge graphs. Chvátal
[16] had this intuition very early (1984) and proposed a more general decomposition; we focus
here on this new notion; it is essential for the proof of the SPGT.

De�nition 4.25 A skew partition of G is a partition (A,B,C, D) of V such that all vertices
of A are adjacent to all vertices of B, and all vertices of C are nonadjacent to all vertices of D.
Given a skew partition, the set A ∪B is a skew cutset of G.

It is easy to see that if (A,B,C, D) is a skew partition of G, then (C, D, A, B) is a skew
partition of G. Moreover, if |A|=1, then A ∪ B is a star-cutset. In [41] de Figueiredo, Klein,
Kohayakawa, and Reed designed a polynomial-time algorithm to recognize graphs that admit
a skew partition and to �nd a skew partition in such graphs.

An alternative way to de�ne a skew partition of a graph G is to ask for a partition of its
vertex set into subsets X and Y such that the subgraph of G induced by X is not connected
and the subgraph of G induced by Y is not connected. In this view of the skew partition, Y
(identical to A ∪ B in De�nition 4.25) induces a cutset in G while X (identical to C ∪ D in
De�nition 4.25) induces a cutset in G. This latter form is used intensively by Chudnovsky,
Robertson, Seymour, and Thomas in their proof [13].

Chvátal conjectured:

Conjecture 4.26 (Skew Partition Conjecture, Chvátal [16]) No minimal imperfect graph
admits a skew partition.

Almost a decade passed between this conjecture and the �rst results involving skew par-
titions more general than star-cutsets. One can think that all this time was needed to reach
a general consensus that the existing properties were not su�cient to formulate a decomposi-
tion statement for Berge graphs. As a result, one began to accept the feeling that a solution
to Chvátal's Conjecture 4.26 would be a decisive step toward a solution to Berge's conjecture.
This feeling was con�rmed later by Chudnovsky, Robertson, Seymour, and Thomas, who solved
a particular (but su�cient) case of the Skew Partition Conjecture a few months before they
completed their proof of the Strong Perfect Graph Theorem (which in turn implies the skew
partition conjecture).

Between 1993 and 2001 various particular cases of the skew partition conjecture were proved
(Cornuéjols, Reed [34], Hoàng [57], Roussel and Rubio [83], Conforti, Cornuéjols, Gasparyan,
Vu²kovi¢ [23]). We list them here.
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Theorem 4.27 (Cornuéjols, Reed [34]) No minimal imperfect graph contains a skew partition
(A,B, C,D) with the property that A ∪B induces a complete multi-partite graph.

To this �rst result, Hoàng added a generalization of Chvátal's Star-cutset Lemma:

Theorem 4.28 (Hoàng [57]) No minimal imperfect graph contains a skew partition (A, B, C,
D) with the property

(H) there exist optimal colourings C1, C2 of G[A ∪ B ∪ C], G[A ∪ B ∪D] respectively, such
that |C1(A)| ≥ |C2(A)| and |C1(B)| ≥ |C2(B)|.

To see that this is a generalization of the Star-Cutset Lemma, let S be a star-cutset of G
with central vertex x, set A = {x}, and let B = S \ {x}.

Hoàng used Theorem 4.28 to prove two other special cases of the Skew Partition Conjecture.
Let G be a graph with a skew partition (A,B, C,D). The notions of U -cutset and T -cutset
de�ned below follow the terminology in (Hoàng [57]) (in particular, note that U and T are not
variables). The set A ∪ B is a U -cutset if there are distinct vertices u1, u2 ∈ C such that u1

is adjacent to all the vertices of A and u2 is adjacent to all the vertices of B. The set A ∪ B
is a T -cutset if there are vertices u1 ∈ C, u2 ∈ D such that each of the vertices u1 and u2 is
adjacent to all the vertices of A. Then we have:

Theorem 4.29 (Hoàng [57]) No minimal imperfect graph contains a U -cutset (respectively a
T -cutset).

On the road to the Skew Partition Theorem, Roussel and Rubio [83] generalized Theorem
4.27 of Cornuéjols and Reed:

Theorem 4.30 (Roussel, Rubio [83]) No minimal imperfect graph contains a skew cutset A∪B
such that A induces a stable set.

The proof of Theorem 4.30 by Roussel and Rubio uses a lemma which, in turn, is crucial in
the proof of the SPGT by Chudnovsky, Robertson, Seymour, and Thomas [13].

Lemma 4.31 (Roussel-Rubio Lemma [83]) Let G be a Berge graph, and let X be a vertex
subset such that G[X] is connected. Let P = [v1, . . . , vn] be a chordless path in G \X with odd
length, such that both ends of P are adjacent to all the vertices of X. Then either :

i) there exists some vertex x 6= v1, vn of P such that x is adjacent to all the vertices of X,
or

ii) P has length at least 5 and X contains two non adjacent vertices a, b such that
[a, v2, . . . , vn−1, b] is a chordless path of P ∪ {a, b}, or

iii) P has length 3 and there is an odd chordless antipath of X ∪ P joining the internal
vertices of P with interior in X.

Conforti, Cornuéjols, Gasparyan, and Vu²kovi¢ [13] de�ned a new partition that contains
several special cases of skew partition:

De�nition 4.32 A graph G has a universal 2-amalgam if its vertex set can be partitioned into
nonempty vertex subsets VA, VB and (possibly empty) U , such that :

• VA contains sets A1 and A2 such that A1 ∪ A2 is non-empty, VB contains sets B1 and
B2 such that B1 ∪B2 is non-empty, every vertex of A1 is adjacent to every vertex of B1,
every vertex of A2 is adjacent to every vertex of B2, and these are the only adjacencies
between VA and VB ;

• every vertex of U is adjacent to A1 ∪A2 ∪B1 ∪B2 and possibly to other vertices of V (G);
• |U ∪ VA| ≥ 2, and if (VA ∪ U) \ (A1 ∪A2) = ∅ then A1 or A2 has size at least 2;
|U ∪ VB | ≥ 2, and if (VB ∪ U) \ (B1 ∪B2) = ∅ then B1 or B2 has size at least 2.
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The universal 2-amalgam extends the notions of join, amalgam, 2-amalgam and homoge-
neous pairs. If U , VA\(A1∪A2), and VB\(B1∪B2) are not empty, then the universal 2-amalgam
is a special case of a skew partition. Before the SPGT was proved, Conforti et al. [23] proved:

Theorem 4.33 (Conforti, Cornuéjols, Gasparyan, Vu²kovi¢ [23]) If G is a minimal imperfect
graph that contains a universal 2-amalgam, then G or G is an odd hole.

This theorem was used by Conforti and Cornuéjols [22] to show the validity of the SPGT
for a generalization of Meyniel graphs, and for the line graphs of bipartite graphs. The paper
by Conforti and Cornuéjols is important for another reason: it revealed the value of using the
decompositions based on 2-joins in the context of perfect graphs (remarkable results involving
2-joins on other classes of graphs were obtained earlier [28], [24], [25]).

4.8 Near the goal
A popular way to attack the SPGT used to be proving it for graphs not containing a prescribed
(usually small) graph F as an induced subgraph. When F has four vertices, the validity of the
SPGT was proved for P4- graphs (also called cographs) [95], claw-free graphs [77], diamond-free
graphs [104] (see also Parthasarathy and Ravindra [78]), and K4-free graphs [100]. The only
remaining case was the class of C4-free (or square-free) graphs.

In 2001, this long standing problem was solved:

Theorem 4.34 (Conforti, Cornuéjols, Vu²kovi¢ [29]) For every square-free Berge graph G, at
least one of the following statements holds:

i) G has a star-cutset;
ii) G has a 2-join;
iii) G is bipartite or is the line graph of a bipartite graph.

This theorem, which con�rmed (once again) the important role played by the bipartite
graphs and their line graphs in the structure of perfect graphs, suggested that for many classes
of Berge graphs the primitive graphs are the same:

De�nition 4.35 A graph is primitive if it is
• bipartite, or
• the complement of a bipartite graph, or
• the line graph of a bipartite graph, or
• the complement of a line graph of a bipartite graph.

Conjecture 4.36 (Conforti, Cornuéjols, Vu²kovi¢ [29]) If G is a Berge graph, then G is prim-
itive, or G or G has a 2-join or a skew partition.

It is known today that this conjecture is true, with a slight modi�cation of the de�nition of
a 2-join. This was pointed out by Zambelli [108] as a consequence of the results obtained by
Chudnovsky, Robertson, Seymour, Thomas [13] and Chudnovsky [11].

4.9 The �nal assault
Conjecture 4.36 could not be proved directly for several reasons: the skew partition conjecture
was not yet proved, and the initial de�nition of a 2-join was not su�cient for the conclusion.
To �nd the complete statement of the Strong Perfect Graph Theorem, three modi�cations were
necessary:

The �rst one: since the skew partition conjecture was not yet proved, skew partitions in
their general form were not so useful. A restricted version was needed.
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De�nition 4.37 A balanced skew partition is a skew partition (A,B, C, D) such that there is
no chordless path of odd length joining nonadjacent vertices in A∪B with the internal vertices
in C ∪D, and there is no odd chordless path in G between nonadjacent vertices in C ∪D with
the internal vertices in A ∪B.

The result in [13] concerns smallest imperfect Berge graphs, that is, Berge graphs that are
minimal imperfect and have the fewest vertices (assuming that such graphs exist). It is easy
to see that proving such a result for a smallest (instead of minimal) imperfect graph is not a
limitation when we are looking for a decomposition theorem with concern to the whole class of
Berge graphs.

Theorem 4.38 (Chudnovsky, Robertson, Seymour, Thomas [13]) If G is a smallest imperfect
Berge graph, then G admits no balanced skew partition.

The second modi�cation: to the class of primitive graphs, a new type of graphs was added:

De�nition 4.39 A graph G is a double split graph if its vertex set V can be partitioned into
four sets {a1, . . . , am}, {b1, . . . , bm}, {c1, . . . , cn}, {d1, . . . , dn}, for some m,n ≥ 2, such that:

• ai is adjacent to bi for 1 ≤ i ≤ m, and cj is nonadjacent to dj for 1 ≤ j ≤ n;
• there are no edges between {ai, bi} and {ai′ , bi′} for 1 ≤ i ≤ i′ ≤ m, and all four edges
exist between {cj , dj} and {cj′ , dj′} for 1 ≤ j ≤ j′ ≤ n;

• there are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
and these two edges are vertex disjoint.

A graph is B-primitive (that is, Berge-primitive), if it is primitive as in De�nition 4.35 or is
a double split graph. It is not a di�cult task to see that all B-primitive graphs are perfect.

The third modi�cation: two new terms are de�ned, obtained by slightly modifying the
de�nitions of a 2-join and of a homogeneous set. Denote the subgraph of G induced on some
set X ⊆ V by G|X.

De�nition 4.40 A proper 2-join in G is a partition (X1, X2) of V such that there exist disjoint
nonempty sets Ai, Bi ⊆ Xi (1 ≤ i ≤ 2) satisfying:

• every vertex of A1 is adjacent to every vertex of A2, and every vertex of B1 is adjacent
to every vertex of B2;

• there are no other edges between X1 and X2;
• for 1 ≤ i ≤ 2, every component of G|Xi meets both Ai and Bi, and
• for 1 ≤ i ≤ 2, if |Ai| = |Bi| = 1 and G|Xi is a path joining the members of Ai and Bi,
then it has odd length at least equal to 3.

De�nition 4.41 A proper homogeneous pair in G is a pair (A,B) of disjoint subsets of V , such
that V − (A ∪B) has a partition (C, D,E, F ) with the following properties:

• every vertex in A has a neighbour in B as well as a nonneighbour, and vice versa;
• the pairs (A,C), (A,F ), (B, D) and (B, F ) are complete (every vertex of one set is
adjacent to every vertex of the other);

• the pairs (A,D), (A,E), (B, C) and (B, E) are anticomplete (no edge between the two
sets).

A proper 2-join is a special case of a 2-join, and a proper homogeneous pair is a special case
of a homogeneous pair. We deduce that no minimal imperfect graph has a proper 2-join or a
proper homogeneous pair.

The �nal (proved) result is now:
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Theorem 4.42 (Chudnovsky, Robertson, Seymour, Thomas [13])
Every Berge graph G satis�es at least one of the following conditions:
i) G or G admits a proper 2-join;
ii) G admits a proper homogeneous pair;
iii) G admits a balanced skew-partition;
iv) G is B-primitive.

Hence, this long standing conjecture of Berge is now a theorem

Theorem 4.43 (SPGT, Chudnovsky, Robertson, Seymour, Thomas [13])
A graph is perfect if (and only if) it is Berge.

A natural question is whether every condition in Theorem 4.42 is really necessary. Since the
proper homogeneous sets are needed in only one case of the proof of Theorem 4.42, it would
be desirable to eliminate them. Chudnovsky [10, 11] proved that one can eliminate proper
homogeneous sets.

Remark 4.44 It should be noticed here that Theorem 4.43 is not a decomposition theorem
according to the de�nitions in Subsection 4.1, even if one eliminates proper homogeneous sets.
This is due to skew partitions, which permit combining perfect graphs to produce a non-Berge
graph.

The algorithmic point of view was the next step toward a better understanding of Berge
graphs. Two teams worked separately on a recognition algorithm for Berge graphs: Chudnovsky
and Seymour on the one hand, and Cornuéjols, Liu and Vu²kovi¢ on the other hand. Their
distinct approaches followed similar ideas: given a graph G, �rst produce a `clean' graph H
or decide that the graph is not a Berge graph; then, test whether H is odd-hole-free or not.
The overlap between the results of the two teams was very important, and a joint paper on
recognizing perfect graphs was written [12]. The idea of `cleaning' a graph (as well as the precise
de�nition of this notion) was introduced in [30], and it was further developed in [28], [24] and
[26].

The problem of recognizing in polynomial time whether a graph contains an odd hole remains
open. The particular case of graphs of bounded clique size is solved in [27].

5 Possible new ways to prove the SPGT
The possible new ways to prove the SPGT that we present in this section rely on several results
with common features: they are corollaries of the SPGT; they imply (alone or combined with
some other results) the SPGT; no direct proof (not using SPGT) is known for them.

The list we give here is not exhaustive; we mainly tried to select results that give di�erent
points of view on the SPGT, and therefore we avoided di�erent variants of the same result
obtained by simply replacing a condition with an equivalent one. We did not include in this list
the di�erent statements implying the SPGT that have been presented in the rest of the paper.

For a graph G with clique number ω and stability number α, the intersection graph of G,
denoted I(G), is the graph whose vertices are the maximum cliques in G, with two such cliques
adjacent if they have a common vertex. Tucker [102] observed that if G is partitionable, then
so is I(G) and, moreover, ω(I(G)) = ω and α(I(G)) = α.

Also recall that an (α, ω)-partitionable graph is normalized if each of its edges belongs to
some ω-clique.

A 2-division of a graph is a partition of its vertex set into two parts neither of which contains
an ω-clique. A graph is said to be 2-divisible if each of its induced subgraphs with at least one
edge has a 2-division.
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Here are several corollaries of the SPGT:

(I.) A minimal imperfect graph has cutsets of cardinality 2ω− 2, and the neighbor-
hood of every vertex is such a cutset.

(II.) If G is a minimal imperfect graph, then G has two adjacent forced vertices.

(III.) If G is a minimal imperfect graph, then G has a co-critical nonedge.

(IV.) If G is a minimal imperfect graph, then I(G) has a vertex of degree 2ω − 2.

(V.) If G is a normalized minimal imperfect graph, then G is an odd hole or odd
anti-hole.

(VI.) A graph G is perfect if and only if G and G are 2-divisible.

(VII.) No minimal imperfect graph contains an even pair, but every proper induced
subgraph of it contains an even pair or is a clique.

It is easy to see that (I.) implies the SPGT, assuming that the following conjecture is true:

Conjecture 5.1 (Sebö [94]) If G is a partitionable graph such that G (respectively G) has a
cutset of cardinality 2ω− 2 (respectively 2α− 2), then G is an odd hole, is an odd anti-hole, or
contains a small transversal.

The proof that assertion (II.) implies the SPGT is given in [93]. A similar theorem (with
similar behaviour with respect to the SPGT), involving two critical edges and one co-critical
nonedge of G, is suggested by Theorem 3.15.

Assertion (III.) implies the SPGT assuming that Conjecture 3.13 is true. Indeed, in this
case we can apply (III.) to a minimal imperfect graph G that is not an odd hole or anti-hole
(assuming that such a graph exists) to deduce that G contains a co-critical nonedge. Since
G is minimal imperfect too, we also deduce that G) contains a co-critical nonedge, so that G
contains a critical edge. By Conjecture 3.13, G has a small transversal, and this is impossible.

Assertion (IV.) implies the SPGT as proved in [94].
Concerning assertion (V.), Tucker [102] showed that if G is partitionable, then I(I(G)) is

the normalized graph of G. So, if G is a minimal imperfect graph, using (V.) we deduce that its
normalized graph is an odd hole or an odd anti-hole. Since odd holes and odd anti-holes do not
have indi�erent pairs, G is identical to its normalized graph, so G is an odd hole or anti-hole.
The SPGT then follows from (V.).

The equivalence between each of the assertions (VI.), (VII.) and the SPGT is shown in [58]
and [60] respectively.

6 Related problems
We close this paper with several open problems on graphs without odd or even holes.

Hoàng and McDiarmid [58] studied the relationship between the divisibility of graphs and
the four parameters ω, α, χ, θ. A graph G is k-divisible if, for each induced subgraph H of G
with at least one edge, there is a partition of the vertex set of H into sets V1, V2, . . . , Vk such that
no Vi contains a maximum clique of H. When k = 2, this notion reduces to the 2-divisibility
de�ned in the preceding section. It is easy to prove, by induction, that for a k-divisible graph
G one has χ(G) ≤ kω(G)−1. In addition:

Conjecture 6.1 (Hoàng, McDiarmid [58]) A graph contains no odd holes if and only if it is
2-divisible.
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If this conjecture is true , then χ(G) ≤ 2ω(G)−1 for every odd-hole-free graph. The following
three conjectures are due to Gyárfás [55] (see [15]):

Conjecture 6.2 (Gyárfás [55]) There is a function f such that if G is odd-hole-free, then
χ(G) ≤ f(ω(G)).

Conjecture 6.3 (Gyárfás [55]) For every positive integers k, there is a function fk such that,
if G has no hole with length exceeding k, then χ(G) ≤ fk(ω(G)).

Conjecture 6.4 (Gyárfás [55]) For every positive integers k, there is a function gk such that,
if G has no hole with length exceeding k, then χ(G) ≤ gk(ω(G)).

Further comments on these problems can be found in [15].
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