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Abstract

We introduce a directed analog of the local chromatic number defined s Etddl. [Discrete
Math. 59 (1986) 21-34] and show that it provides an upper bound for the Sperner capacity of a
directed graph. Applications and variants of this result are presented. In particular, we find a special
orientation of an odd cycle and show that it achieves the maximum of Sperner capacity among the
differently oriented versions of the cycle. We show that apart from this orientation, for all the others
an odd cycle has the same Sperner capacity as a single edge graph. We also show that the (undirected)
local chromatic number is bounded from below by the fractional chromatic number while for power
graphs the two invariants have the same exponential asymptotics (under the co-normal product on
which the definition of Sperner capacity is based). We strengthen our bound on Sperner capacity by
introducing a fractional relaxation of our directed variant of the local chromatic number.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Colouring the vertices of a graph so that no adjacent vertices receive identical colours
gives rise to many interesting problems and invariants, of which the book [17] gives an
excellent survey. The best known among all these invariants is the chromatic number, the
minimum number of colours needed for such proper colourings. An interesting variant was
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introduced by Erd§ et al[10] (cf. also [12]). They define the local chromatic number of a
graph as follows.

Definition 1 (Erd6s et al.[10]). The local chromatic numbef(G) of a graphG is the
maximum number of different colours appearing in the closed neighbourhood of any vertex,
minimized over all proper colourings ©f. Formally,

Y(G) = min  max [{cw):u e Tg)},
c:V(G)—>N veV(G)

where N is the set of natural number§,;(v), the closed neighborhood of the vertex
v € V(G), is the set of those vertices @f that are either adjacent or equal #cand
¢ : V(G) — N runs over those functions that are proper colourings of

It is clear that)(G) is always bounded from above by the chromatic nump@s,). It
is much less obvious that(G) can be strictly less thap(G). Yet this is true; in fact, as
proved in[10], there exist graphs witlt(G) = 3 andy(G) arbitrarily large.

Throughout this paper, we shall be interested in chromatic invariants as upper bounds for
the Shannon capacity of undirected graphs and its natural generalization, Sperner capacity,
for directed graphs. For the sake of unity in the treatment of undirected and directed graphs
it is convenient and customary to treat Shannon capacity in terms that are complementary
to Shannon’s own, (cf. [24,20,14,18]). In this language Shannon capacity describes the
asymptotic growth of the clique number in the co-normal powers of a graph. Shannon
proved (although in different terms) that the Shannon capatity of a graph is bounded
from above by its fractional chromatic number.

We show that)(G) is bounded from below by the fractional chromatic numbegGof
This proves, among other things, thatG) is always an upper bound for the Shannon
capacityc(G) of G, butitis not a very useful upper bound since it is always weaker than the
fractional chromatic number itself. We make this seemingly useless remark only to stress
that the situation is rather different in the case of directed graphs.

We introduce an analog of the local chromatic number for directed graphs and show that it
is always an upper bound for the Sperner capacity of the digraph at hand. The proofis linear
algebraic and generalizes an idea already used for bounding Sperner capacity in [6,1,11],
cf. also [8]. To illustrate the usefulness of this bound we apply it to show, for example, that
an oriented odd cycle with at least two vertices with outdegree and indegree 1 always has
its Sperner capacity equal to that of the single-edge giphWe also discuss fractional
versions that further strengthen our bounds.

2. Local chromatic number for directed graphs
The definition of the directed version ¢fG) is straightforward.

Definition 2. The local chromatic numbefr,(G) of a digraphG is the maximum number
of different colours appearing in the closed out-neighbourhood of any vertex, minimized
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over all proper colourings afr. Formally,

G):= min max cwe I
Y 4(G) Con L max l{c(w) :w e T';(v)}
whereN is the set of natural numberEg(v), the closed out-neighborhood of the vertex
v € V(G), is the set of those verticas € V(G) that are either equal to or else are
endpoints of directed edgés, w) € E(G), originated inv, andc : V(G) — N runs over
those functions that are proper colouring<of

Our main goal is to prove that,(G) is an upper bound for the Sperner capacity of
digraphG.

3. Sperner capacity

Definition 3. For directed graph& = (V, E) andH = (W, L), the co-normal (or dis-
junctive or OR) product - H is defined to be the following directed graph:

VIG-H)=VxW
and
E(G-H) ={((v,w), ¥, w)):(w,v)eE or (w,w)elLl.

Thenth co-normal (or disjunctive or OR) powé€r" of digraphG is defined as the-fold
co-normal product o6 with itself, i.e., the vertex set af” is V" = {X = (x1, ..., x,) :
x; € V}, while its edge set is defined as

E(G") ={(%,y) : 3i (x;, i) € E(G)}.

(An edge(a, b) always means an oriented edge in this paper as opposed to undirected
edges denoted by, b}.)

Notice thatG" may contain edges in both directions between two vertices even if such a
pair of edges is not present .

Definition 4. A subgraph of a digraph is called a symmetric clique if its edge set contains
all ordered pairs of vertices belonging to the subgraph. (In other words, itis a clique with all
its edges present in both directions.) For a directed g@p¥e denote the order (humber

of vertices) of its largest symmetric clique by (G).

Definition 5 (Gargano et al[14]). The (non-logarithmic) Sperner capacity of a digraph
G is defined as

o(G) = sup J/ws(G").

Remark. Denoting the number of vertices in a largest transitive cliqué bl tr (G), it is
easy to show that(G) = sup, /tr(G") holds, cf[14,22] and the references therein. (By a
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transitive clique we mean a clique where the edges are oriented transitively, i.e., consistently
with some linear order of the vertices. It is allowed that some edges be present also in the
reverse direction.) Sinde(G") > [tr(G)]" this remark implies that (G) < ¢(G) holds for

any digraphG.

For an undirected grapti let us call the digraph we obtain froi by directing all its
edges in both ways the symmetrically directed equivalet.ah Shannon’s own language
the capacity (cf[24]) of the complement of an (undirected) gra@ttan be defined as the
Sperner capacity of its symmetrically directed equivalent. We denote this quantitihy
and by slight abuse of the terminology we also refer to it as the Shannon capadity of
whenever it may not cause confusion.

Thus Sperner capacity is a generalization of Shannon capacity. It is a true generalization
in the sense that there exist digraphs the Sperner capacity of which is different from the
Shannon capacitye(G) value) of its underlying undirected graph. Denoting Gyboth
an arbitrary digraph and its underlying undirected graph, it follows from the definitions
thata(G) <c(G) always holds. The smallest example with strict inequality in the previous
relation is a cyclically oriented triangle, cf. [8,6]. (See also [5] for an early and different
attempt to generalize Shannon capacity to directed graphs.)

Shannon capacity is known to be a graph invariant that is difficult to determine (not only
in the algorithmic but in any sense), and it is unknown for many relatively small and simple
graphs, for example, for all odd cycles of length at least 7. This already shows that the
more general invariant Sperner capacity cannot be easy to determine either. For a survey on
graph invariants defined via powers, including Shannon and Sperner capacities, we refer the
reader to [3]. There is an interesting and important connection between Sperner capacity
and extremal set theory, introduced in [19] and fully explored in [15]. Several problems of
this flavour are also discussed in [18].

4. Main result

Alon [1] proved that for any digrapty
a(G) < MiNfAL(G), A_(G)} + 1,

where A, (G) is the maximum out-degree of the graphand similarly A_(G) is the
maximum in-degree. The proof relies on a linear algebraic method similar to the one already
used in[6] for a special case (cf. also [11] for a strengthening and cf. [2] for a general setup
for this method in case of undirected graphs). We also use this method for proving the
following stronger result:

Theorem 1.
o(G) <Y, (G).

Proof. Consider a proper colouring: V(G) — N that achieves the value ¢f,(G). Let
N (v) denote the set of colours each of which appears as the colour of some vertex in the
(open) out-neighbourhood ofin the colouringe.
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For each vertea = (as, ..., a,) € V(G") we define a polynomial
n
Pac(xa,....x) =[] ] @i—p
=1 jeNt (a)

Let K be a symmetric clique inG". If a € K, b € K then by definition
Pac(c(b1), ..., c(by)) = 0if b # a, while Pa.(c(a1), ..., c(ay)) # 0 by the proper-
ness of colouring. This implies that the polynomialsPa . (x1, . . ., xn)}ack are linearly
independent over the reals. This can be shown in the usual way: substitdbngto
Y ack 4aPac(X) = 0 we obtainip = 0 and this can be done for eable K.

Since the degree of; in Py .(X) is at mosty,(G) — 1, the dimension of the linear
space generated by our polynomials is bounded from aboye Jiy5)1"”. By the previous
paragraph, this is also an upper bound [&i. ChoosingK to be a symmetric clique of
maximum size we obtaiw, (G") <[V ,(G)]" and thus the statement[]

Let Grey denote the “reverse @¥”, i.e., the digraph we obtain fror& by reversing the
direction of all of its edges. Since obvioustyG) = a(Grey), Theoreml has the following
trivial corollary:

Corollary 1.
a(G) < min{y4(G), Y4 (Grev)}-

In Sections7 and 8 we will strengthen Theorem 1 by introducing a fractional version of
Yq(G).

5. Application: odd cycles

We call an oriented cycle alternating if it has at most one vertex of outdegree 1. (In stating
the following results we follow the convention that an oriented graph is a graph without
oppositely directed edges between the same two points, while a general directed graph
may contain such pairs of edges.) Clearly, in any oriented cycle the number of vertices of
outdegree 2 equals the number of vertices of outdegree 0. Thus, in particular, an oriented odd
cycle of length 2 + 1 is alternating if it hag points of outdegree zerb points of outdegree
2 and only 1 point of outdegree 1. It takes an easy checking that up to isomorphism there is
only one orientation o€2.1 which is alternating.

Theorem 2. Let G be an oriented odd cycle that is not alternatimen

a(G) =2

Proof. Since any digraph with at least one edge has Sperner capacity at least 2 (see the
Remark after Definitiof), it is enough to prove that 2 is also an upper bound.

Colour the vertices of; so that two points receive the same colour if and only if they
have a common in-neighbour, i.e., a vertex sending an oriented edge to both of them. Itis



106 J. Kérner et al. / Journal of Combinatorial Theory, Series B 95 (2005) 101-117

easy to check that this colouring is proper if and only if the odd cgls not alternating.
In this case, our colouring also has the property that any vertex has only one colour in its
out-neigbourhood proving,(G) = 2. Then the statement follows by Theordm [J

Remark. Itiseasyto see thatthe following slightly stronger version of the previous theorem
can be proven similarly: I€; is a directed odd cycle not containing an alternating odd cycle,
theno(G) = 2.

The Sperner capacity of an alternating odd cycle can indeed be larger than 2. This is
obvious forCs, where the alternating orientation produces a transitive clique of size 3. A
construction proving that the Sperner capacity of the alternatinig at least/5 is given
in [13], and this is further analyzed in [22]. The construction is clearly best possible by the
celebrated result of Lovasz [20] showin(Cs) = +/5.

In [22] the invariantD(G) = maxa(G) was defined where the maximization is over all
orientations ofG. It follows from the definitions thaD(G) <¢(G), and it is asked in [22]
whether one always has equality. No counterexample is known, while equality is trivial if
7(G) = w(G) (just orient a maximum size clique transitively) and it is proven for vertex-
transitive self-complementary graphs in [22]. Denoting the alternatingly oriented by
CS‘,'}H Theorem 2 has the following immediate corollary:

Corollary 2.
D(Cay1) = 0(C5, 1)

holds for every positive integer k

The discussion in this section becomes more relevant in the light of a recent result by
Bohman and Holzmaf¥]. Until recently it was not known whether the Shannon capacity
(in our complementary sense) of the odd cy€lg 1, i.e., c(Cz41) is larger than 2 for
any value ofk > 2. In [7] an affirmative answer to this question was given by an ingenious
construction, showing that this is always the case, é@ 1) > 2 for every positive
integerk. This means that the bound provided y(G) goes beyond the obvious upper
boundc(G) of Sperner capacity in case of non-alternatingly oriented odd cycles, i.e., the
following consequence of Theorem 2 can also be formulated:

Corollary 3. If kis any positive integer and,;, , is a non-alternatingly oriented’1,
then

0(Coy1) < c(Coxt1).

It is a natural idea to try to use the Bohman—Holzman construction for alternatingly
oriented odd cycles and check whether the so-obtained sets of vertices inducing cliques in
the appropriate power graphs will form transitive cliques in the oriented case. (If the answer
were yes it would prové (Car41) > 2 for everyk strengthening the resul{Coi4+1) > 2
of [7].) This idea turned out to work in the case®f, thus showingD(C7) > 2. (To record
this we list the 17 vertices af;‘ that form a transitive clique defined by their ordering on
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this list. The labels of the vertices @f; are the first 7 non-negative integers agdhand

the unique point with outdegree and indegree 1 is the point labelled 5. Here we give the
vertices simply as sequences. Thus the list is: 4444, 0520, 2030, 2051, 0605, 1205, 1320,
3006, 3012, 5106, 5112, 0561, 0613, 1213, 6130, 6151, 1361.) Strangely, however, the
same construction did not work fdfy: after our unsuccessful attempts to prove a similar
statement, Attila Sali wrote a computer program to check whether the clique of Bohman
and Holzman in the 8th power of an alternatifig contains a transitive clique of the same
size and the answer turned out to be negative. (Again, to record more than just this fact,
we give six vertices ofjg that form a directed cycle without inversely oriented edges in
the clique of Bohman and Holzman whenever the path obtained after deleting vertex 5 of
Cg is oriented alternatingly. The existence of this cycle shows that the Bohman—Holzman
cligue does not contain a transitive clique whenever the only outdegree 1, indegree 1 point
of the alternatingly oriented’g is 4 or 6 (or 5, but this case is less important), that is one

of the neighbours of 5, the point the construction distinguishes. So the promised cycle is:
20302040, 12072040, 12140720, 40121207, 20401320, 07204012.) In spite of this, we
believe that the Sperner capacity of alternating odd cycles will achieve the corresponding
Shannon capacity valugCao1).

One more remark is in order. It is easy to check that the verticas3f, can be
mapped to those afg,'fﬂ in an edge-preserving manner. This immediately implies that
a(CS ) <a(C3L. ), i.e., if there were any odd cyclex 1 With D(Ca11) = 2, then the
same must hold for all longer odd cycles as well.

6. The undirected case

Since identifying with any undirected graphits symmetrically directed equivalent gives
botha(G) = ¢(G) andy;(G) = Y(G), itisimmediate from Theorem 1 thatG) <y (G).
We will show, however, that(G) is always bounded from below by the fractional chromatic
number ofG, which in turn is a well known upper bound fetG), cf. [24,20]. Thus, unlike
in the directed case, the local chromatic number does not give us new information about
Shannon capacity. Looking at it from another perspective, this relation tells us something
about the behaviour of the local chromatic number. (For more on this other perspective, see
the follow up paper [25].)

One of the main tools in the investigations of the local chromatic number in [10] is the
recognition of the relevance of the universal graplis:, k) defined as follows. (From now
on we will use the notatiofm] = {1, ..., m}).

Definition 6 (Erd8s et al.[10]). Let the graphU (m, k) for positive integerg <m be de-
fined as follows:

VU, k) ={(x,A):xe[m],AC [m],|Al=k—1x ¢ A}
and

EWU@m, k) :={{(x,A),(y,B)}:x € B,y € A}
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The relevance of these graphs is expressed by the following lemma. Recall that a ho-
momorphism from some graph to a graphG is an edge-preserving mapping o{ F) to
V(G).

Lemma 1 (Erd6s et al.[10]). A graph G admits a proper colouring ¢ with m colours and
max,ev ) {c) : u € I'g(v)}|<k if and only if there exists a homomorphism of G to
U(m, k). In particular, y(G) <k if and only if there exists an m such that G admits a
homomaorphism t&/ (m, k).

We use these graphs to prove the relation between the fractional chromatic number and
the local chromatic number.

Recall that the fractional chromatic numbeyi§G) = min ZAes(G) w(A) whereS(G)
denotes the family of independent sets of gr&pland the minimization is over all non-
negative weightingsy : S(G) — R satisfying) ., w(A)>1 for everyx € V(G). It
is straightforward from the definition that (G) > w(G) holds for any graplG. Another
important fact we will use is that iy is vertex-transitive, thep*(G) = “;((g))' . For a proof
of this fact and for further information about the fractional chromatic number we refer to
the bookd23,16].

Theorem 3. For any graph G
Y(G) =" (G).

The proof relies on the following simple observation:
Lemma 2. For all m >k >2 we haver* (U (m, k)) = k.

Proof. Itis easy to check that*(U (m, k)) > w(U (m, k)) = k thus we only have to prove
thatk is also an upper bound. It is straightforward from their definition that the graphs
U (m, k) are vertex-transitive. (Any permutation pf] gives an automorphism, and any
vertex can be mapped to any other by such a permutation.) Consider those \Vertites

for which x <a; for all ¢; € A. These form an independent st Thinking about the
vertices(x, A) ask-tuples with one distinguished element and the elemenfsasfthosé-
tuples whose distinguished element is the smallest one, we immediately( §ein, k)) =

WU @m.k)| ~ VWU m.k)| _ i
T ) ST s] = k proving the statement.[]

Proof of Theorem 3. Let us hava//(G) = k. This means that there is a homomorphism
from G to U (m, k) for somem (cf. Lemmal). Since a homomorphism cannot decrease the
fractional chromatic number, from Lemma 2 we obtgitG) < y* (U (m, k)) = k = Y(G).

O

In the rest of this section we formulate a consequence of Theorem 3 for the asymptotic
behaviour of the local chromatic number with respect to the co-normal power of graphs.

It is a well-known theorem of McEliece and Posner [21] (cf. also Berge and Simonovits
[4] and, for this particular formulation, [23]) that

lim Y/7(G") = 1(G).
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It is equally well-known (cf., e.g[23, Corollary 3.4.2]) thay*(G") = [¥*(G)]". These
two statements and Theorem 3 immediately imply the following:

Corollary 4.
lim (G = 77(6).

Proof. By y*(G™) <y/(G™) < x(G™) we haver*(G) = J/y*(G™) = lim,— 0 Vy*(G™) <

iMoo VY (G L iMoo /7(G™) = y*(G) wherethe last equality is by the McEliece—
Posner theorem mentioned abovél

Corollary4 can be proved also in a different way using the techniques of [9]. This latter
kind of proof can be generalized to show a similar statemenf j6G).

7. Fractional colourings

Now we define the fractional version of the local chromatic numbervForV (G) let
rg(v) denote, as before, the closed out-neighbourhoad bé., the set containing and
its out-neighbours.

Definition 7. For a digraphG its (directed) fractional local chromatic numbgf (G) is
defined as follows:
*(G) :==mi
Vi(G)=min max > w(A),
TENA#D

where the minimization is over all fractional colouringsof G. A

The fractional local chromatic numbér* (G) of an undirected graply is justiy/;(G)
whereG is the symmetrically directed equivalentGf

An r-fold colouring of a graphG is a colouring of each of its vertices withdistinct
colours with the property that the sets of colours assigned to adjacent vertices are disjoint.
More formally, anr-fold colouring is a set-valued functiofi : V(G) — @) satisfying
f) N f(v) =@ wheneveru, v) € E(G).

Definition 8. Lety,(G, r) denote the-fold (directed) local chromatic number of digraph
G defined as

Y (G, r) = rr}i.n max | | J fl.

uev(G)
verg(u)

where the minimization is over attfold colouringsf of G. .
The r-fold local chromatic numbey (G, r) of an undirected grapty is justy,(G, r)
whereG is the symmetrically directed equivalent@f
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It is obvious that

Vi(G) = inf LaG:1)
r r
for every digraphG. This includes the equality
v (G = inf LG
r r

for undirected graphs, too.
For a digraphG let G[ K, ] denote the graph obtained by substituting a symmetric clique
of sizer into each of its vertices. Formally this means

V(GIK,]) ={(v,):veV(G),i e{l,...,r}}
and
E(GIK,]) = {((u,i), (v, ) : (u,v) € E(G)oru =vandi # j}.

Itis easy to see thatt,(G[K,]) = V¥ ,(G, r) for every digraphG and positive integet.
Itis also not difficult to see thab, ((G[K,])") = r"wy(G™) for everyn. Indeed, any vertex
of G" can be substituted by* vertices of(G[K,])" in the natural way and a symmetric
cligue K of G" becomes a symmetric clique of siZ8 K| in (G[K,])" this way proving
w; ((GIK, D™ >2r"ws(G™). To see that equality holds let us denotediy) the unique
vertex of G from whichx € (G[K,])" can be obtained by the previous substitution. (Thus
the setAy := {y : a(y) = a(X)} hasr” elements for every € V((G[K,])").) The crucial
observation is that iK is a symmetric clique iNG[K,])" andX € K, thenK U Ay is still a
symmetric clique (it may be identical # but may also be larger). Thus maximal symmetric
cliques of (G[K,])" can always be obtained as the union of some ggfsvhich means
that they can be obtained as “blown up” versions of symmetric cliquég'oThis proves
our claim thatw; ((G[K,])") = r"ws(G™). This equality impliesr(G[K,]) = ra(G) for
every digraphG and positive integer.

The observations of the previous paragraph provide the following strengthening of The-
oreml.

Theorem 4. For every digraph G

o(G)<Yy(G)
holds

Proof. By Theoreml and the previous observations we have

a(G[K,]) - Y (GIK: D) Y,(G,r)
r = r - ro

a(G) =

Since this holds for every we can write

V(G

s <int PO _ gy o

We can formulate again the following trivial corollary:
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Corollary 5.
a(G) < min{yr(G), Y (Grev)}.

To illustrate the usefulness of Theordmve consider the complement of a 7-cycle with
its only orientation in which all triangles are oriented cyclically. We denote this graph by
D7 (abbreviating double 7-cycle). None of the earlier bounds we know give a better upper
bound for the Sperner capacity bf; than 3. Now we can improve on this.

Proposition 1.

NI o

VB<a(D7) <

Proof. The lower bound follows by observing thBt contains an alternating 5-cycle. The
upper bound is a consequence of Theodesince); (D7) = 2 We actually need here only

V(D7) < g and this can be seen by giving weiggwto each 2-element stable setf. O
This example can be further generalized as follows. Dgt, 1 denote the following
oriented graph:
V(Dyi1) = {0, 1, ..., 2k}
and
E(Dyy1) ={(w,v):v=u+jmodx+1), je{23,...,k}}.

Observe that this definition is consistent with the earlier definitiorDefand that the
underlying undirected graph @y 1 is the complement of the odd cyal®; 1. Now we
can state the following:

Proposition 2.
k—1 k
—— | +1<oDxus) <z + 1
2 2
In particular, 6(D2+1) = % + 1ifkis even

Proof. It is easy to verify for the transitive clique number thla(tDzk+1)=(";211+1 and
this gives the lower bound. The upper bound is proven by assigning Wéightev-
ery 2-element independent set Bf;1 which clearly gives a fractional colouring. The
weight thus assigned to any closed out-neighbourhoédﬁﬂ giving the upper bound by
Theoremd.

If k is even, the two bounds coincidelJ

We remark that while the upper bound in Proposition 2 generalizes that of Proposition 1,
the lower bound does not; it is weaker in case 3 than that of Proposition 1. Therefore
we consider the oriented grafly a particularly interesting instance of the problem.
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As it was the case without fractionalization, Theor&nioes not give us new information
in the undirected case, i.e., about Shannon capacity. The reason for this is the following
relation:

Theorem 5. Let G be an undirected grapfhen
Y (G) = 1 (G).
To prove Theorerh we need the following generalization of the universal grdphs, k):

Definition 9. We define the graplti, (m, k) for positive integers 2< k <m as follows.
V(Ur(m, k) :={(X,A): X, A [m], XNA=0[X|=r|Al=k—r}
and

EU,(m,k)) == {(X,A), (Y, B)}: X C B,Y C A}.

Remark. Note thatUi(m, k) = U (m, k), while U, (m, m) = K,,.,, the Kneser graph with
parameters: andr. Thus the graphs we just defined provide a common generalization of
Kneser graphs and the universal graph@:, k) of [10].

The following lemma is the general version of Lemma 1 for multicolourings:

Lemma 3. A graph G admits a proper r-fold colouring f with m colours in which the
closed neighbourhood of every vertex contains at most k colours if and only if there exists
a homomorphism from G tG, (m, k). In particular, (G, r) <k if and only if there exists

an m alongside with a homomorphism from Gitdm, k).

Proof. The proof is more or less identical to that of Lemih4cf. [10]). If the required
colouringf exists then assign to each vertexpair of sets of coloursY, A) with X = f(v)
andU{M,v}eE(G) f) C A.If f has the required properties then this assignment is indeed
a homomorphism t&/, (m, k).

On the other hand, if the required homomorphisrxists then the-fold colouring f
defined by theX-part of h(v) = (X, A) as f (v) satisfies the requirements]

The following lemma is a generalization of Lemma 2:
Lemma 4. For all feasible parameters, &, r
. k
1 (Ur(m, k) = .
Proof. Think of the vertices ol/, (m, k) ask-sets of the sefm] with r elements of the
k-set distinguished. The number of vertices is tif{$("), while the number of those

vertices in which the smallest element of the chogeset is among the distinguished
ones |s(’}j)(’r‘j) Since the latter kind of vertices form an independent sét.im, k), we
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havex(U, (m, k)) = () (7). The reverse inequality(U, (m, k)) < (') (:77) follows from
the Erdds—Ko—Rado theorem: once the chogeset is fixed, we can have at m((ért:i)
vertices(X;, A;) with the property thatif # jthenX; N X; #0.If X; UA; = X;UA;,
then the latter is the very same condition as non-adjacenéy (im, k). Thus we know
(U m. 0)) = () ;).

SinceU, (m, k) is vertex-transitive (because any permutation of the elemefts|afives
an automorphism), we hayé (U, (m, k)) = W =t O
Proof of Theorem 5. We know by LemmaB thaty/(G, r) = k implies the existence, for
somem, of a homomorphism frong to U, (m, k). Since a homomorphism cannot decrease

the value of the fractional chromatic number, this impligsG) < y* (U, (m, k)) = ’;‘ =

@, where, in particular, the first equality holds by Lemma 4.
On the other hand, denoting kY G, r) the minimum number of colours needed for a
properr-fold colouring of G, inf, @ < y*(G) follows from inf, @ = x*(G) (cf.

[16, Theorem 7.4.5]) and the obvious inequalityG, r) < y(G,r). O

We note that universal graphs can also be defined for the directed version of the local chro-
matic number. Denoting these graphstiy(m, k) they haveV (U, (m, k)) = V(U (m, k))
while

EWUa(m, k) ={((x, A), (y, B)) : y € A}.

To show the analog of Lemma is straightforward. Comparing/,;(m, k) to U(m, k)

one can see that the symmetrically directed edge® ain, k) are exactly the (undi-
rected) edges present li(m, k). This means (but the same can be seen also directly)
that wg (Ug(m, k)) = k. On the other hand, naturally;; (Us(m, k)) = k, thus for these
graphs we have (U;(m, k)) = ws(Uy(m, k)) by Theorem 1 and the obvious inequality
05 (G) <a(G).

8. Fractional covers

A non-negative real-valued functign: 2V(© — Ris called a fractional cover df (G)
if > 15, €(U) =1 holds for allv € V(G).

The most general upper bound @¢G) we prove in this paper is given by the following
inequality that generalizes Theorem 4 along the lines of a result (Theorem 2) of [11].

Theorem 6. For any digraph G we have

aG)<min 37 gUWH(GIUD,

UCV(G)

where the minimization is over all fractional covers g W{G) and G[U] denotes the
digraph induced by G oty C V(G).
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By 0(G) = 6(Grey) We again have the following immediate corollary (cf. Corollargf
Theorem 1).

Corollary 6.

s(G)y<minimin Y gWUWYHGIUD, min > g(U)i(GredUD)
§ UcVv(G) § Ucv(G)

The proof of Theorend is almost identical to that of Theorem 2 of [11]. Yet, we give the
details for the sake of completeness.

We need some lemmas. Following [2], we can speak aboutgpeesentationof a
(di)graphG = (V, E) over a subspacg& of polynomials inm variables over a field-.
Such a representation is an assignment of a polynofpial F and a vectom, € F™ to
each vertex € V such that the following two conditions hold:

(i) foreachv € V, f,(a,) # 0,
and
(i) if (u,v) € E(G) thenf,(a,) = 0.

Notice that we adapted the description of a representation gijghtmour terminology
(where capacities are defined via cliques instead of stable sets) and to digraphs.

The following two lemmas are from [2]. Their proofs are essentially identical to those
of Lemma 2.2 and Lemma 2.3 in [2] (after some trivial changes caused by the different
language).

Lemma 5(Alon[2]). LetG = (V, E) be adigraph and lef be a subspace of polynomials
in m variables over a field FIf G has a representation ovef thenw, (G) < dim(F) .

Lemma 6 (Alon[2]). If G and H are two digraphsG has a representation ovefr and H
has a representation ovét, whereF and’H are spaces of polynomials over the same field
F, thenwg (G - H) < dim(%) - dim(H).

Remark. Lemmasb and 6 imply that ifG andF are as in Lemma 5 then(G) < dim(F)

(cf. [2, Theorem 2.4]). Notice that our Theorem 1 is a specialized version of this statement
where the subspacg of polynomials is defined via a proper colouring of the vertices
attaining the value of,(G).

Our next lemma is analogous to Proposition 1 of [11].
Lemma 7. Let Fy, F>, ..., F, be digraphsThen

n
ws(FL- Fp - )< [ | wacFo.
i=1

Proof. First observe that the argument fog((G[K,])") = r"w;(G") that led us to state
Theoremd generalizes to

o5 (F1[Ky] - F2[K/] - -- - FulKyD) = r"og(FL- Fo - Fy).
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(Thisis simply by realizing thatin the argument mentioned above we have notused anywhere
that in then-fold product in question all the graphs were the same whereby we dealt with
thenth power of a fixed graph.)

Take the representation (by subspaces of polynomials) given in the proof of Th&orem
now for F1[K,], F2[K,], ..., Fy[K,], i.e., represenk;[K,] for eachi by the polynomials
{Pae;(xi) = []jenzt@ i — Dlaev(rik,1), Wherec; is a colouring ofV (F;[K,]) that
attains the value of/;(Fi[K,]). The dimension of this representationfgf K, ] is bounded
from above by, (F;[K,]). Now applying Lemma 6 we obtain

oy (Fi[K ] Fol K] - Bl KD [ | wa (B =[] waFiur).

i=1 i=1

Thus

g(Fr-Fp----- Fy) =

s (F1[Ky] - F2[Ky] - -+ - FulKr]) < ﬁ Y (Fi,r)
i=1 r

},-n
Since this last inequality is true for every positive integere can also write

n n
1—[ Fi, . F;,
wg(Fy-Fp----- F,) <inf lelmmf | | lpa’( r)
r r r r
i=1 i=1

= [ lim inf w =[[vaFn. O
i=1 i=1

Proof of Theorem 6. We call a functionz assigning non-negative integer values to the
elements of 2(© ans-cover § is a positive integer) o¥/ (G) if Y sy h(U) =5 holds for
allv e V(G).

It is clear that

min 37 gWWHGIUD =inf = min 37 hUWH(GIUD,

ucv(G) Ucv(G)

where the minimization on the left-hand side is over all fractional coyevghile the
minimization on the right-hand side is over altoversh.

Let us fix ans and leth be thes-cover achieving the minimum on the right-hand side.
Let be the multiset of those subsetslofG) that are assigned a positive value/bgnd
let the multiplicity of U € V(G) inU beh(U).

Fixing any natural number denote by/" the multiset of allz-fold Cartesian products
of sets froni/. (The multiplicity of someA = Uy x Uz x --- x U, € U" is thus given by
h(U1) -h(U2) - --- - h(Up).)

We consider a maximum size symmetric cligkign G" and observe that

"K|< s |G| X Ui |).
skl ¥ oo xul)

X}1=1U,' eur
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Each summand in this last inequality satisfies by Lenima

n

o, <G” ['x U,}) = o, ( G[Ui]> <[] visGu.
1 i=1

Substituting this into the previous inequality we get
n "
sSIKIS Y [ vEGuin = | Y- viGIu |

X Uieldn i=1 U, el

where the summations are meant with multiplicities.
SinceK is a maximum size symmetric clique 6f* and the multiplicity ofU; in U is
h(U;), we obtained

n

n 1 *
o (G| Y UGGV

Ucv(G)

This implies

1 . o .
oG <inf = 3 hWYHGID [ =min 37 gWGIUD,

UEV(G) ¢ veve

where the minimization is over all fractional coveysof V(G), i.e., we arrived at the
statement. [

To illustrate that the bound of TheoreBnmay indeed give an improvement over that
of Theorem 4 (or, in fact, over that of Corollary 5) consider the following digrépth.et
V(G)={1,2,...,2+1 a,b}andE(G)=E(Cy, )U{(a. i), (i,b) :i € {1,..., 2k+1}},
whereCy;, , is an arbitrary non-alternatingly oriented cycle dn21 vertices. Itis easy to
check that)(G) = 3+ 1 (and alsa);(Grev) = 3+ 1) , i.e., Theorem 4 gives(G) < 3+ +
only, while Theorem 6 gives(G) < 3. Indeed, using the fractional cover (which is also anin-
teger coverg(Vy) = g(V2) = 1,whereVy = {1, 2, ...,2k+ 1}, Vo = {a, b} (andg(U) =
0 for all otherU < V(G)) we geta(G) <yy(Cyyq) + lﬂfz(kz)@//d(C?kH) +1=3
This bound is sharp sina@ contains transitive triangles.
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