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Abstract

We introduce a directed analog of the local chromatic number defined by Erd˝os et al. [Discrete
Math. 59 (1986) 21–34] and show that it provides an upper bound for the Sperner capacity of a
directed graph. Applications and variants of this result are presented. In particular, we find a special
orientation of an odd cycle and show that it achieves the maximum of Sperner capacity among the
differently oriented versions of the cycle. We show that apart from this orientation, for all the others
an odd cycle has the same Sperner capacity as a single edge graph. We also show that the (undirected)
local chromatic number is bounded from below by the fractional chromatic number while for power
graphs the two invariants have the same exponential asymptotics (under the co-normal product on
which the definition of Sperner capacity is based). We strengthen our bound on Sperner capacity by
introducing a fractional relaxation of our directed variant of the local chromatic number.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Local chromatic number; Sperner capacity; Shannon capacity; Fractional chromatic number

1. Introduction

Colouring the vertices of a graph so that no adjacent vertices receive identical colours
gives rise to many interesting problems and invariants, of which the book [17] gives an
excellent survey. The best known among all these invariants is the chromatic number, the
minimum number of colours needed for such proper colourings. An interesting variant was
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introduced by Erd˝os et al.[10] (cf. also [12]). They define the local chromatic number of a
graph as follows.

Definition 1 (Erdős et al.[10] ). The local chromatic number�(G) of a graphG is the
maximum number of different colours appearing in the closed neighbourhood of any vertex,
minimized over all proper colourings ofG. Formally,

�(G) := min
c :V (G)→N

max
v∈V (G) |{c(u) : u ∈ �G(v)}|,

whereN is the set of natural numbers,�G(v), the closed neighborhood of the vertex
v ∈ V (G), is the set of those vertices ofG that are either adjacent or equal tov and
c : V (G) → N runs over those functions that are proper colourings ofG.

It is clear that�(G) is always bounded from above by the chromatic number,�(G). It
is much less obvious that�(G) can be strictly less than�(G). Yet this is true; in fact, as
proved in[10], there exist graphs with�(G) = 3 and�(G) arbitrarily large.

Throughout this paper, we shall be interested in chromatic invariants as upper bounds for
the Shannon capacity of undirected graphs and its natural generalization, Sperner capacity,
for directed graphs. For the sake of unity in the treatment of undirected and directed graphs
it is convenient and customary to treat Shannon capacity in terms that are complementary
to Shannon’s own, (cf. [24,20,14,18]). In this language Shannon capacity describes the
asymptotic growth of the clique number in the co-normal powers of a graph. Shannon
proved (although in different terms) that the Shannon capacityc(G) of a graph is bounded
from above by its fractional chromatic number.

We show that�(G) is bounded from below by the fractional chromatic number ofG.
This proves, among other things, that�(G) is always an upper bound for the Shannon
capacityc(G) ofG, but it is not a very useful upper bound since it is always weaker than the
fractional chromatic number itself. We make this seemingly useless remark only to stress
that the situation is rather different in the case of directed graphs.

We introduce an analog of the local chromatic number for directed graphs and show that it
is always an upper bound for the Sperner capacity of the digraph at hand. The proof is linear
algebraic and generalizes an idea already used for bounding Sperner capacity in [6,1,11],
cf. also [8]. To illustrate the usefulness of this bound we apply it to show, for example, that
an oriented odd cycle with at least two vertices with outdegree and indegree 1 always has
its Sperner capacity equal to that of the single-edge graphK2. We also discuss fractional
versions that further strengthen our bounds.

2. Local chromatic number for directed graphs

The definition of the directed version of�(G) is straightforward.

Definition 2. The local chromatic number�d(G) of a digraphG is the maximum number
of different colours appearing in the closed out-neighbourhood of any vertex, minimized
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over all proper colourings ofG. Formally,

�d(G) := min
c :V (G)→N

max
v∈V (G) |{c(w) : w ∈ �+

G(v)}

whereN is the set of natural numbers,�+
G(v), the closed out-neighborhood of the vertex

v ∈ V (G), is the set of those verticesw ∈ V (G) that are either equal tov or else are
endpoints of directed edges(v,w) ∈ E(G), originated inv, andc : V (G) → N runs over
those functions that are proper colourings ofG.

Our main goal is to prove that�d(G) is an upper bound for the Sperner capacity of
digraphG.

3. Sperner capacity

Definition 3. For directed graphsG = (V ,E) andH = (W,L), the co-normal (or dis-
junctive or OR) productG ·H is defined to be the following directed graph:

V (G ·H) = V ×W

and

E(G ·H) = {((v,w), (v′, w′)) : (v, v′) ∈ E or (w,w′) ∈ L}.
Thenth co-normal (or disjunctive or OR) powerGn of digraphG is defined as then-fold
co-normal product ofG with itself, i.e., the vertex set ofGn is V n = {x = (x1, . . . , xn) :
xi ∈ V }, while its edge set is defined as

E(Gn) = {(x, y) : ∃i (xi, yi) ∈ E(G)}.

(An edge(a, b) always means an oriented edge in this paper as opposed to undirected
edges denoted by{a, b}.)

Notice thatGn may contain edges in both directions between two vertices even if such a
pair of edges is not present inG.

Definition 4. A subgraph of a digraph is called a symmetric clique if its edge set contains
all ordered pairs of vertices belonging to the subgraph. (In other words, it is a clique with all
its edges present in both directions.) For a directed graphG we denote the order (number
of vertices) of its largest symmetric clique by�s(G).

Definition 5 (Gargano et al.[14] ). The (non-logarithmic) Sperner capacity of a digraph
G is defined as

�(G) = sup
n

n
√

�s(Gn).

Remark. Denoting the number of vertices in a largest transitive clique ofG by tr(G), it is
easy to show that�(G) = supn

n
√
tr(Gn) holds, cf.[14,22] and the references therein. (By a
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transitive clique we mean a clique where the edges are oriented transitively, i.e., consistently
with some linear order of the vertices. It is allowed that some edges be present also in the
reverse direction.) Sincetr(Gn)�[tr(G)]n this remark implies thattr(G)��(G) holds for
any digraphG.

For an undirected graphG let us call the digraph we obtain fromG by directing all its
edges in both ways the symmetrically directed equivalent ofG. In Shannon’s own language
the capacity (cf.[24]) of the complement of an (undirected) graphG can be defined as the
Sperner capacity of its symmetrically directed equivalent. We denote this quantity byc(G)

and by slight abuse of the terminology we also refer to it as the Shannon capacity ofG

whenever it may not cause confusion.
Thus Sperner capacity is a generalization of Shannon capacity. It is a true generalization

in the sense that there exist digraphs the Sperner capacity of which is different from the
Shannon capacity (c(G) value) of its underlying undirected graph. Denoting byG both
an arbitrary digraph and its underlying undirected graph, it follows from the definitions
that�(G)�c(G) always holds. The smallest example with strict inequality in the previous
relation is a cyclically oriented triangle, cf. [8,6]. (See also [5] for an early and different
attempt to generalize Shannon capacity to directed graphs.)

Shannon capacity is known to be a graph invariant that is difficult to determine (not only
in the algorithmic but in any sense), and it is unknown for many relatively small and simple
graphs, for example, for all odd cycles of length at least 7. This already shows that the
more general invariant Sperner capacity cannot be easy to determine either. For a survey on
graph invariants defined via powers, including Shannon and Sperner capacities, we refer the
reader to [3]. There is an interesting and important connection between Sperner capacity
and extremal set theory, introduced in [19] and fully explored in [15]. Several problems of
this flavour are also discussed in [18].

4. Main result

Alon [1] proved that for any digraphG

�(G)� min{�+(G),�−(G)} + 1,

where�+(G) is the maximum out-degree of the graphG and similarly�−(G) is the
maximum in-degree. The proof relies on a linear algebraic method similar to the one already
used in[6] for a special case (cf. also [11] for a strengthening and cf. [2] for a general setup
for this method in case of undirected graphs). We also use this method for proving the
following stronger result:

Theorem 1.

�(G)��d(G).

Proof. Consider a proper colouringc : V (G) → N that achieves the value of�d(G). Let
N+
c (v) denote the set of colours each of which appears as the colour of some vertex in the

(open) out-neighbourhood ofv in the colouringc.
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For each vertexa = (a1, . . . , an) ∈ V (Gn) we define a polynomial

Pa,c(x1, . . . , xn) :=
n∏
i=1

∏
j∈N+

c (ai )

(xi − j).

Let K be a symmetric clique inGn. If a ∈ K, b ∈ K then by definition
Pa,c(c(b1), . . . , c(bn)) = 0 if b �= a, while Pa,c(c(a1), . . . , c(an)) �= 0 by the proper-
ness of colouringc. This implies that the polynomials{Pa,c(x1, . . . , xn)}a∈K are linearly
independent over the reals. This can be shown in the usual way: substitutingc(b) into∑

a∈K �aPa,c(x) = 0 we obtain�b = 0 and this can be done for eachb ∈ K.
Since the degree ofxi in Pa,c(x) is at most�d(G) − 1, the dimension of the linear

space generated by our polynomials is bounded from above by[�d(G)]n. By the previous
paragraph, this is also an upper bound for|K|. ChoosingK to be a symmetric clique of
maximum size we obtain�s(Gn)�[�d(G)]n and thus the statement.�

LetGrev denote the “reverse ofG”, i.e., the digraph we obtain fromG by reversing the
direction of all of its edges. Since obviously�(G) = �(Grev), Theorem1 has the following
trivial corollary:

Corollary 1.

�(G)� min{�d(G),�d(Grev)}.

In Sections7 and 8 we will strengthen Theorem 1 by introducing a fractional version of
�d(G).

5. Application: odd cycles

We call an oriented cycle alternating if it has at most one vertex of outdegree 1. (In stating
the following results we follow the convention that an oriented graph is a graph without
oppositely directed edges between the same two points, while a general directed graph
may contain such pairs of edges.) Clearly, in any oriented cycle the number of vertices of
outdegree 2 equals the number of vertices of outdegree 0. Thus, in particular, an oriented odd
cycle of length 2k+1 is alternating if it hask points of outdegree zero,k points of outdegree
2 and only 1 point of outdegree 1. It takes an easy checking that up to isomorphism there is
only one orientation ofC2k+1 which is alternating.

Theorem 2. Let G be an oriented odd cycle that is not alternating. Then

�(G) = 2.

Proof. Since any digraph with at least one edge has Sperner capacity at least 2 (see the
Remark after Definition5), it is enough to prove that 2 is also an upper bound.

Colour the vertices ofG so that two points receive the same colour if and only if they
have a common in-neighbour, i.e., a vertex sending an oriented edge to both of them. It is
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easy to check that this colouring is proper if and only if the odd cycleG is not alternating.
In this case, our colouring also has the property that any vertex has only one colour in its
out-neigbourhood proving�d(G) = 2. Then the statement follows by Theorem1. �

Remark. It is easy to see that the following slightly stronger version of the previous theorem
can be proven similarly: IfG is a directed odd cycle not containing an alternating odd cycle,
then�(G) = 2.

The Sperner capacity of an alternating odd cycle can indeed be larger than 2. This is
obvious forC3, where the alternating orientation produces a transitive clique of size 3. A
construction proving that the Sperner capacity of the alternatingC5 is at least

√
5 is given

in [13], and this is further analyzed in [22]. The construction is clearly best possible by the
celebrated result of Lovász [20] showingc(C5) = √

5.
In [22] the invariantD(G) = max�(G) was defined where the maximization is over all

orientations ofG. It follows from the definitions thatD(G)�c(G), and it is asked in [22]
whether one always has equality. No counterexample is known, while equality is trivial if
�(G) = �(G) (just orient a maximum size clique transitively) and it is proven for vertex-
transitive self-complementary graphs in [22]. Denoting the alternatingly orientedC2k+1 by
Calt

2k+1 Theorem 2 has the following immediate corollary:

Corollary 2.

D(C2k+1) = �(Calt
2k+1)

holds for every positive integer k.

The discussion in this section becomes more relevant in the light of a recent result by
Bohman and Holzman[7]. Until recently it was not known whether the Shannon capacity
(in our complementary sense) of the odd cycleC2k+1, i.e., c(C2k+1) is larger than 2 for
any value ofk > 2. In [7] an affirmative answer to this question was given by an ingenious
construction, showing that this is always the case, i.e.,c(C2k+1) > 2 for every positive
integerk. This means that the bound provided by�d(G) goes beyond the obvious upper
boundc(G) of Sperner capacity in case of non-alternatingly oriented odd cycles, i.e., the
following consequence of Theorem 2 can also be formulated:

Corollary 3. If k is any positive integer andC→
2k+1 is a non-alternatingly orientedC2k+1,

then

�(C→
2k+1) < c(C2k+1).

It is a natural idea to try to use the Bohman–Holzman construction for alternatingly
oriented odd cycles and check whether the so-obtained sets of vertices inducing cliques in
the appropriate power graphs will form transitive cliques in the oriented case. (If the answer
were yes it would proveD(C2k+1) > 2 for everyk strengthening the resultc(C2k+1) > 2
of [7].) This idea turned out to work in the case ofC7, thus showingD(C7) > 2. (To record
this we list the 17 vertices ofC4

7 that form a transitive clique defined by their ordering on
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this list. The labels of the vertices ofC7 are the first 7 non-negative integers as in[7] and
the unique point with outdegree and indegree 1 is the point labelled 5. Here we give the
vertices simply as sequences. Thus the list is: 4444, 0520, 2030, 2051, 0605, 1205, 1320,
3006, 3012, 5106, 5112, 0561, 0613, 1213, 6130, 6151, 1361.) Strangely, however, the
same construction did not work forC9: after our unsuccessful attempts to prove a similar
statement, Attila Sali wrote a computer program to check whether the clique of Bohman
and Holzman in the 8th power of an alternatingC9 contains a transitive clique of the same
size and the answer turned out to be negative. (Again, to record more than just this fact,
we give six vertices ofC8

9 that form a directed cycle without inversely oriented edges in
the clique of Bohman and Holzman whenever the path obtained after deleting vertex 5 of
C9 is oriented alternatingly. The existence of this cycle shows that the Bohman–Holzman
clique does not contain a transitive clique whenever the only outdegree 1, indegree 1 point
of the alternatingly orientedC9 is 4 or 6 (or 5, but this case is less important), that is one
of the neighbours of 5, the point the construction distinguishes. So the promised cycle is:
20302040, 12072040, 12140720, 40121207, 20401320, 07204012.) In spite of this, we
believe that the Sperner capacity of alternating odd cycles will achieve the corresponding
Shannon capacity valuec(C2k+1).

One more remark is in order. It is easy to check that the vertices ofCalt
2k+3 can be

mapped to those ofCalt
2k+1 in an edge-preserving manner. This immediately implies that

�(Calt
2k+3)��(Calt

2k+1), i.e., if there were any odd cycleC2k+1 withD(C2k+1) = 2, then the
same must hold for all longer odd cycles as well.

6. The undirected case

Since identifying with any undirected graphG its symmetrically directed equivalent gives
both�(G) = c(G) and�d(G) = �(G), it is immediate from Theorem 1 thatc(G)��(G).
We will show, however, that�(G) is always bounded from below by the fractional chromatic
number ofG, which in turn is a well known upper bound forc(G), cf. [24,20]. Thus, unlike
in the directed case, the local chromatic number does not give us new information about
Shannon capacity. Looking at it from another perspective, this relation tells us something
about the behaviour of the local chromatic number. (For more on this other perspective, see
the follow up paper [25].)

One of the main tools in the investigations of the local chromatic number in [10] is the
recognition of the relevance of the universal graphsU(m, k) defined as follows. (From now
on we will use the notation[m] = {1, . . . , m}).

Definition 6 (Erdős et al.[10] ). Let the graphU(m, k) for positive integersk�m be de-
fined as follows:

V (U(m, k)) := {(x,A) : x ∈ [m], A ⊆ [m], |A| = k − 1, x /∈ A}
and

E(U(m, k)) := {{(x,A), (y, B)} : x ∈ B, y ∈ A}.
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The relevance of these graphs is expressed by the following lemma. Recall that a ho-
momorphism from some graphF to a graphG is an edge-preserving mapping ofV (F) to
V (G).

Lemma 1 (Erdős et al.[10] ). A graph G admits a proper colouring c with m colours and
maxv∈V (G) |{c(u) : u ∈ �G(v)}|�k if and only if there exists a homomorphism of G to
U(m, k). In particular, �(G)�k if and only if there exists an m such that G admits a
homomorphism toU(m, k).

We use these graphs to prove the relation between the fractional chromatic number and
the local chromatic number.

Recall that the fractional chromatic number is�∗(G) = min
∑
A∈S(G) w(A)whereS(G)

denotes the family of independent sets of graphG and the minimization is over all non-
negative weightingsw : S(G) → R satisfying

∑
A�x w(A)�1 for everyx ∈ V (G). It

is straightforward from the definition that�∗(G)��(G) holds for any graphG. Another
important fact we will use is that ifG is vertex-transitive, then�∗(G) = |V (G)|

�(G) . For a proof
of this fact and for further information about the fractional chromatic number we refer to
the books[23,16].

Theorem 3. For any graph G

�(G)��∗(G).

The proof relies on the following simple observation:

Lemma 2. For all m�k�2we have�∗(U(m, k)) = k.

Proof. It is easy to check that�∗(U(m, k))��(U(m, k)) = k thus we only have to prove
that k is also an upper bound. It is straightforward from their definition that the graphs
U(m, k) are vertex-transitive. (Any permutation of[m] gives an automorphism, and any
vertex can be mapped to any other by such a permutation.) Consider those vertices(x,A)

for which x�ai for all ai ∈ A. These form an independent setS. Thinking about the
vertices(x,A) ask-tuples with one distinguished element and the elements ofS as thosek-
tuples whose distinguished element is the smallest one, we immediately get�∗(U(m, k)) =
|V (U(m,k))|
�(U(m,k)) � |V (U(m,k))|

|S| = k proving the statement.�

Proof of Theorem 3. Let us have�(G) = k. This means that there is a homomorphism
fromG toU(m, k) for somem (cf. Lemma1). Since a homomorphism cannot decrease the
fractional chromatic number, from Lemma 2 we obtain�∗(G)��∗(U(m, k)) = k = �(G).

�

In the rest of this section we formulate a consequence of Theorem 3 for the asymptotic
behaviour of the local chromatic number with respect to the co-normal power of graphs.

It is a well-known theorem of McEliece and Posner [21] (cf. also Berge and Simonovits
[4] and, for this particular formulation, [23]) that

lim
n→∞

n
√

�(Gn) = �∗(G).
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It is equally well-known (cf., e.g.,[23, Corollary 3.4.2]) that�∗(Gn) = [�∗(G)]n. These
two statements and Theorem 3 immediately imply the following:

Corollary 4.

lim
n→∞

n
√

�(Gn) = �∗(G).

Proof. By �∗(Gn)��(Gn)��(Gn)we have�∗(G) = n
√

�∗(Gn) = limn→∞ n
√

�∗(Gn)�
limn→∞ n

√
�(Gn)� limn→∞ n

√
�(Gn) = �∗(G)where the last equality is by the McEliece–

Posner theorem mentioned above.�

Corollary4 can be proved also in a different way using the techniques of [9]. This latter
kind of proof can be generalized to show a similar statement for�d(G).

7. Fractional colourings

Now we define the fractional version of the local chromatic number. Forv ∈ V (G) let
�+
G(v) denote, as before, the closed out-neighbourhood ofv, i.e., the set containingv and

its out-neighbours.

Definition 7. For a digraphG its (directed) fractional local chromatic number�∗
d(G) is

defined as follows:

�∗
d(G) := min

w
max
v∈V (G)

∑
�+
G(v)∩A�=∅

w(A),

where the minimization is over all fractional colouringsw of G.
The fractional local chromatic number�∗(G) of an undirected graphG is just�∗

d(Ĝ)

whereĜ is the symmetrically directed equivalent ofG.

An r-fold colouring of a graphG is a colouring of each of its vertices withr distinct
colours with the property that the sets of colours assigned to adjacent vertices are disjoint.
More formally, anr-fold colouring is a set-valued functionf : V (G) → (N

r

)
satisfying

f (u) ∩ f (v) = ∅ whenever(u, v) ∈ E(G).

Definition 8. Let �d(G, r) denote ther-fold (directed) local chromatic number of digraph
G defined as

�d(G, r) := min
f

max
u∈V (G)

∣∣∣∣∣∣∣
⋃

v∈�+
G(u)

f (v)

∣∣∣∣∣∣∣ ,
where the minimization is over allr-fold colouringsf of G.

The r-fold local chromatic number�(G, r) of an undirected graphG is just�d(Ĝ, r)
whereĜ is the symmetrically directed equivalent ofG.
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It is obvious that

�∗
d(G) = inf

r

�d(G, r)
r

for every digraphG. This includes the equality

�∗(G) = inf
r

�(G, r)
r

for undirected graphs, too.
For a digraphG letG[Kr ] denote the graph obtained by substituting a symmetric clique

of sizer into each of its vertices. Formally this means

V (G[Kr ]) = {(v, i) : v ∈ V (G), i ∈ {1, . . . , r}}
and

E(G[Kr ]) = {((u, i), (v, j)) : (u, v) ∈ E(G) or u = v andi �= j}.
It is easy to see that�d(G[Kr ]) = �d(G, r) for every digraphG and positive integerr.

It is also not difficult to see that�s((G[Kr ])n) = rn�s(Gn) for everyn. Indeed, any vertex
of Gn can be substituted byrn vertices of(G[Kr ])n in the natural way and a symmetric
cliqueK of Gn becomes a symmetric clique of sizern|K| in (G[Kr ])n this way proving
�s((G[Kr ])n)�rn�s(Gn). To see that equality holds let us denote bya(x) the unique
vertex ofGn from whichx ∈ (G[Kr ])n can be obtained by the previous substitution. (Thus
the setAx := {y : a(y) = a(x)} hasrn elements for everyx ∈ V ((G[Kr ])n).) The crucial
observation is that ifK is a symmetric clique in(G[Kr ])n andx ∈ K, thenK ∪Ax is still a
symmetric clique (it may be identical toK but may also be larger). Thus maximal symmetric
cliques of(G[Kr ])n can always be obtained as the union of some setsAx, which means
that they can be obtained as “blown up” versions of symmetric cliques ofGn. This proves
our claim that�s((G[Kr ])n) = rn�s(Gn). This equality implies�(G[Kr ]) = r�(G) for
every digraphG and positive integerr.

The observations of the previous paragraph provide the following strengthening of The-
orem1.

Theorem 4. For every digraph G

�(G)��∗
d(G)

holds.

Proof. By Theorem1 and the previous observations we have

�(G) = �(G[Kr ])
r

� �d(G[Kr ])
r

= �d(G, r)
r

.

Since this holds for everyr we can write

�(G)� inf
r

�d(G, r)
r

= �∗
d(G). �

We can formulate again the following trivial corollary:
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Corollary 5.

�(G)� min{�∗
d(G),�

∗
d(Grev)}.

To illustrate the usefulness of Theorem4 we consider the complement of a 7-cycle with
its only orientation in which all triangles are oriented cyclically. We denote this graph by
D7 (abbreviating double 7-cycle). None of the earlier bounds we know give a better upper
bound for the Sperner capacity ofD7 than 3. Now we can improve on this.

Proposition 1.

√
5��(D7)�

5

2
.

Proof. The lower bound follows by observing thatD7 contains an alternating 5-cycle. The
upper bound is a consequence of Theorem4 since�∗

d(D7) = 5
2. We actually need here only

�∗
d(D7)� 5

2 and this can be seen by giving weight1
2 to each 2-element stable set ofD7. �

This example can be further generalized as follows. LetD2k+1 denote the following
oriented graph:

V (D2k+1) = {0,1, . . . ,2k}
and

E(D2k+1) = {(u, v) : v ≡ u+ j (mod 2k + 1), j ∈ {2,3, . . . , k}}.
Observe that this definition is consistent with the earlier definition ofD7 and that the
underlying undirected graph ofD2k+1 is the complement of the odd cycleC2k+1. Now we
can state the following:

Proposition 2.⌈
k − 1

2

⌉
+ 1��(D2k+1)�

k

2
+ 1.

In particular, �(D2k+1) = k
2 + 1 if k is even.

Proof. It is easy to verify for the transitive clique number thattr(D2k+1)=� k−1
2 �+1 and

this gives the lower bound. The upper bound is proven by assigning weight1
2 to ev-

ery 2-element independent set ofD2k+1 which clearly gives a fractional colouring. The
weight thus assigned to any closed out-neighbourhood isk

2 + 1 giving the upper bound by
Theorem4.

If k is even, the two bounds coincide.�

We remark that while the upper bound in Proposition 2 generalizes that of Proposition 1,
the lower bound does not; it is weaker in casek = 3 than that of Proposition 1. Therefore
we consider the oriented graphD7 a particularly interesting instance of the problem.
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As it was the case without fractionalization, Theorem4 does not give us new information
in the undirected case, i.e., about Shannon capacity. The reason for this is the following
relation:

Theorem 5. Let G be an undirected graph. Then

�∗(G) = �∗(G).

To proveTheorem5 we need the following generalization of the universal graphsU(m, k):

Definition 9. We define the graphUr(m, k) for positive integers 2r�k�m as follows.

V (Ur(m, k)) := {(X,A) : X,A ⊆ [m], X ∩ A = ∅, |X| = r, |A| = k − r}
and

E(Ur(m, k)) := {{(X,A), (Y, B)} : X ⊆ B, Y ⊆ A}.

Remark. Note thatU1(m, k) = U(m, k), whileUr(m,m) = Km:r , the Kneser graph with
parametersm andr. Thus the graphs we just defined provide a common generalization of
Kneser graphs and the universal graphsU(m, k) of [10].

The following lemma is the general version of Lemma 1 for multicolourings:

Lemma 3. A graph G admits a proper r-fold colouring f with m colours in which the
closed neighbourhood of every vertex contains at most k colours if and only if there exists
a homomorphism from G toUr(m, k). In particular, �(G, r)�k if and only if there exists
an m alongside with a homomorphism from G toUr(m, k).

Proof. The proof is more or less identical to that of Lemma1 (cf. [10]). If the required
colouringf exists then assign to each vertexv a pair of sets of colours(X,A)withX = f (v)

and
⋃

{u,v}∈E(G) f (u) ⊆ A. If f has the required properties then this assignment is indeed
a homomorphism toUr(m, k).

On the other hand, if the required homomorphismh exists then ther-fold colouringf
defined by theX-part ofh(v) = (X,A) asf (v) satisfies the requirements.�

The following lemma is a generalization of Lemma 2:

Lemma 4. For all feasible parametersm, k, r

�∗(Ur(m, k)) = k

r
.

Proof. Think of the vertices ofUr(m, k) ask-sets of the set[m] with r elements of the
k-set distinguished. The number of vertices is thus

(
m
k

)(
k
r

)
, while the number of those

vertices in which the smallest element of the chosenk-set is among the distinguished
ones is

(
m
k

)(
k−1
r−1

)
. Since the latter kind of vertices form an independent set inUr(m, k), we
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have�(Ur(m, k))�
(
m
k

)(
k−1
r−1

)
. The reverse inequality�(Ur(m, k))�

(
m
k

)(
k−1
r−1

)
follows from

the Erdős–Ko–Rado theorem: once the chosenk-set is fixed, we can have at most
(
k−1
r−1

)
vertices(Xi, Ai) with the property that ifi �= j thenXi ∩Xj �= ∅. If Xi ∪Ai = Xj ∪Aj ,
then the latter is the very same condition as non-adjacency inUr(m, k). Thus we know
�(Ur(m, k)) = (m

k

)(
k−1
r−1

)
.

SinceUr(m, k) is vertex-transitive (because any permutation of the elements of[m] gives
an automorphism), we have�∗(Ur(m, k)) = |V (Ur (m,k))|

�(Ur (m,k))
= k

r
. �

Proof of Theorem 5. We know by Lemma3 that�(G, r) = k implies the existence, for
somem, of a homomorphism fromG toUr(m, k). Since a homomorphism cannot decrease
the value of the fractional chromatic number, this implies�∗(G)��∗(Ur(m, k)) = k

r
=

�(G,r)
r

, where, in particular, the first equality holds by Lemma 4.
On the other hand, denoting by�(G, r) the minimum number of colours needed for a

properr-fold colouring ofG, inf r
�(G,r)
r

��∗(G) follows from infr
�(G,r)
r

= �∗(G) (cf.
[16, Theorem 7.4.5]) and the obvious inequality�(G, r)��(G, r). �

We note that universal graphs can also be defined for the directed version of the local chro-
matic number. Denoting these graphs byUd(m, k) they haveV (Ud(m, k)) = V (U(m, k))

while

E(Ud(m, k)) = {((x,A), (y, B)) : y ∈ A}.

To show the analog of Lemma1 is straightforward. ComparingUd(m, k) to U(m, k)
one can see that the symmetrically directed edges ofUd(m, k) are exactly the (undi-
rected) edges present inU(m, k). This means (but the same can be seen also directly)
that�s(Ud(m, k)) = k. On the other hand, naturally,�d(Ud(m, k)) = k, thus for these
graphs we have�(Ud(m, k)) = �s(Ud(m, k)) by Theorem 1 and the obvious inequality
�s(G)��(G).

8. Fractional covers

A non-negative real-valued functiong : 2V (G) → R is called a fractional cover ofV (G)
if
∑
U�v g(U)�1 holds for allv ∈ V (G).

The most general upper bound on�(G) we prove in this paper is given by the following
inequality that generalizes Theorem 4 along the lines of a result (Theorem 2) of [11].

Theorem 6. For any digraph G we have

�(G)� min
g

∑
U⊆V (G)

g(U)�∗
d(G[U ]),

where the minimization is over all fractional covers g ofV (G) andG[U ] denotes the
digraph induced by G onU ⊆ V (G).
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By �(G) = �(Grev) we again have the following immediate corollary (cf. Corollary1 of
Theorem 1).

Corollary 6.

�(G)� min


min

g

∑
U⊆V (G)

g(U)�∗
d(G[U ]),min

g

∑
U⊆V (G)

g(U)�∗
d(Grev[U ])


 .

The proof of Theorem6 is almost identical to that of Theorem 2 of [11].Yet, we give the
details for the sake of completeness.

We need some lemmas. Following [2], we can speak about therepresentationof a
(di)graphG = (V ,E) over a subspaceF of polynomials inm variables over a fieldF .
Such a representation is an assignment of a polynomialfv in F and a vectorav ∈ Fm to
each vertexv ∈ V such that the following two conditions hold:
(i) for eachv ∈ V , fv(av) �= 0,
and
(ii) if (u, v) ∈ E(G) thenfu(av) = 0.

Notice that we adapted the description of a representation given in[2] to our terminology
(where capacities are defined via cliques instead of stable sets) and to digraphs.

The following two lemmas are from [2]. Their proofs are essentially identical to those
of Lemma 2.2 and Lemma 2.3 in [2] (after some trivial changes caused by the different
language).

Lemma 5 (Alon [2] ). LetG = (V ,E)beadigraph and letF bea subspace of polynomials
in m variables over a field F. If G has a representation overF then�s(G)� dim(F) .

Lemma 6 (Alon [2] ). If G and H are two digraphs, G has a representation overF and H
has a representation overH,whereF andH are spaces of polynomials over the same field
F, then�s(G ·H)� dim(F) · dim(H).

Remark. Lemmas5 and 6 imply that ifG andF are as in Lemma 5 then�(G)� dim(F)
(cf. [2, Theorem 2.4]). Notice that our Theorem 1 is a specialized version of this statement
where the subspaceF of polynomials is defined via a proper colouring of the vertices
attaining the value of�d(G).

Our next lemma is analogous to Proposition 1 of [11].

Lemma 7. LetF1, F2, . . . , Fn be digraphs. Then

�s(F1 · F2 · · · · · Fn)�
n∏
i=1

�∗
d(Fi).

Proof. First observe that the argument for�s((G[Kr ])n) = rn�s(Gn) that led us to state
Theorem4 generalizes to

�s(F1[Kr ] · F2[Kr ] · · · · · Fn[Kr ]) = rn�s(F1 · F2 · · · · · Fn).
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(This is simply by realizing that in the argument mentioned above we have not used anywhere
that in then-fold product in question all the graphs were the same whereby we dealt with
thenth power of a fixed graph.)

Take the representation (by subspaces of polynomials) given in the proof of Theorem1
now forF1[Kr ], F2[Kr ], . . . , Fn[Kr ], i.e., representFi[Kr ] for eachi by the polynomials
{Pa,ci (xi) := ∏

j∈N+
ci
(a) (xi − j)}a∈V (Fi [Kr ]), whereci is a colouring ofV (Fi[Kr ]) that

attains the value of�d(Fi[Kr ]). The dimension of this representation ofFi[Kr ] is bounded
from above by�d(Fi[Kr ]). Now applying Lemma 6 we obtain

�s(F1[Kr ] · F2[Kr ] · · · · · Fn[Kr ])�
n∏
i=1

�d(Fi[Kr ]) =
n∏
i=1

�d(Fi, r).

Thus

�s(F1 · F2 · · · · · Fn) = �s(F1[Kr ] · F2[Kr ] · · · · · Fn[Kr ])
rn

�
n∏
i=1

�d(Fi, r)
r

.

Since this last inequality is true for every positive integerr we can also write

�s(F1 · F2 · · · · · Fn) � inf
r

n∏
i=1

�d(Fi, r)
r

= lim inf
r

n∏
i=1

�d(Fi, r)
r

=
n∏
i=1

lim inf
r

�d(Fi, r)
r

=
n∏
i=1

�∗
d(Fi). �

Proof of Theorem 6. We call a functionh assigning non-negative integer values to the
elements of 2V (G) ans-cover (s is a positive integer) ofV (G) if

∑
U�v h(U)�s holds for

all v ∈ V (G).
It is clear that

min
g

∑
U⊆V (G)

g(U)�∗
d(G[U ]) = inf

s

1

s
min
h

∑
U⊆V (G)

h(U)�∗
d(G[U ]),

where the minimization on the left-hand side is over all fractional coversg while the
minimization on the right-hand side is over alls-coversh.

Let us fix ans and leth be thes-cover achieving the minimum on the right-hand side.
Let U be the multiset of those subsets ofV (G) that are assigned a positive value byh and
let the multiplicity ofU ∈ V (G) in U beh(U).

Fixing any natural numbern denote byUn the multiset of alln-fold Cartesian products
of sets fromU . (The multiplicity of someA = U1 × U2 × · · · × Un ∈ Un is thus given by
h(U1) · h(U2) · · · · · h(Un).)

We consider a maximum size symmetric cliqueK in Gn and observe that

sn|K|�
∑

×n
i=1Ui∈Un

�s

(
Gn
[ n×
i=1

Ui

])
.
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Each summand in this last inequality satisfies by Lemma7

�s

(
Gn
[ n×
i=1

Ui

])
= �s

(
n∏
i=1

G[Ui]
)

�
n∏
i=1

�∗
d(G[Ui]).

Substituting this into the previous inequality we get

sn|K|�
∑

×n
i=1Ui∈Un

n∏
i=1

�∗
d(G[Ui]) =


∑
Ui∈U

�∗
d(G[Ui])



n

,

where the summations are meant with multiplicities.
SinceK is a maximum size symmetric clique ofGn and the multiplicity ofUi in U is

h(Ui), we obtained

�s(Gn)�
1

sn


 ∑
U⊆V (G)

h(U)�∗
d(G[U ])



n

.

This implies

�(G)� inf
s

1

s


 ∑
U⊆V (G)

h(U)�∗
d(G[U ])


 = min

g

∑
U⊆V (G)

g(U)�∗
d(G[U ]),

where the minimization is over all fractional coversg of V (G), i.e., we arrived at the
statement. �

To illustrate that the bound of Theorem6 may indeed give an improvement over that
of Theorem 4 (or, in fact, over that of Corollary 5) consider the following digraphG. Let
V (G) = {1,2, . . . ,2k+1, a, b}andE(G)=E(C→

2k+1)∪{(a, i), (i, b) : i ∈ {1, . . . ,2k+1}},
whereC→

2k+1 is an arbitrary non-alternatingly oriented cycle on 2k+1 vertices. It is easy to

check that�∗
d(G) = 3+ 1

k
(and also�∗

d(Grev) = 3+ 1
k
) , i.e., Theorem 4 gives�(G)�3+ 1

k
only, whileTheorem 6 gives�(G)�3. Indeed, using the fractional cover (which is also an in-
teger cover)g(V1) = g(V2) = 1, whereV1 = {1,2, . . . ,2k+1}, V2 = {a, b} (andg(U) =
0 for all otherU ⊆ V (G)) we get�(G)��∗

d(C
→
2k+1) + �∗

d(K̄2)��d(C
→
2k+1) + 1 = 3.

This bound is sharp sinceG contains transitive triangles.
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