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Introduction 

111 

Often a combinatorial optimization problem can be formulated as an integer 
linear programming problem: 

(1) max ex, 
subject to Ax::s; b, 

x integral. 

In some cases, the LP-relaxation, obtained from (I) by deleting the integrality con
dition on x, has already an integral optimum solution - without requiring so a 
priori. This allows to apply purely linear programming methods to solve the com
binatorial optimization problem. 

This is a basis of the polyhedral methods in combinatorial optimization. As an 
example consider the following optimum branching problem. Suppose we are given 
n locations 1,. .. , n, together with distances du between them (not-necessarily sym
metric, i.e., du-=l=dji is allowed). We wish to choose certain of the connections ij in 
such a way that they together form a rooted directed spanning tree, with root 1 (a 
I-branching), and so that the sum of the distances of the connections chosen is as 
small as possible. In terms of integer linear programming: 

n 

(2) min L duxu, 
i,j= I 

n 

subject to L xu= 1 
i= I 

L xu~ 1 
itEC,jeC 

xu~O 

xu integer 

U = 2,. . ., n), 

(0 * C \;; { 2, ... , n} ), 

(i,j=l, ... ,n), 

(i,j= 1, .. ., n). 
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112 A. Schrijver 

It was shown by Edmonds [1967] that in this program the integrality condition can 
be skipped without changing the minimum value. It means that we can solve the op
timum branching problem by solving the linear programming problem 

n 

(3) min 'E duxu, 
i,j=I 

n 

subject to 'E xu = 1 
i=l 

L Xu~l 
i$.C,jeC 

U=2, ... ,n), 

(0#:Cf: {2, ... ,n}), 

(i,j= 1, ... ,n). 

Note that this LP-problem has exponentially many constraints, so that a too 
straightforward application of LP-techniques will be not efficient. Yet, one can 
show the polynomial-time solvability of the problem with the ellipsoid method. This 
method gives that if for any given x the constraints Ax~ b can be checked in poly
nomial time, then also the linear program max{cxlAx~b} can be solved in poly
nomial time (cf. Grotschel, Lovasz and Schrijver [1981]). Here checking means: 
given x, decide if it satisfies Ax~ b, and if not, find a violated constraint. This can 
be done, sometimes, faster than by testing each of the inequalities one by one. 

E.g., the constraints in (3) can be checked as follows. Given (xu Ii, j = 1, ... , n), 
fi~st check the first and third class of constraints in (3), altogether n 2 + n -1 con
straints. If these conditions are fulfilled, check the remaining constraints by con
sidering xu as a 'capacity' function on the arcs ij, and by determining, for each 
}*- 1, a cut Cj separating 1 fromj of minimum capacity (with Dinits' version of the 
Ford-Fulkerson max-flow min-cut algorithm). If each of the cuts c1 has capacity 
at least 1, then all constraints in (3) are fulfilled. Otherwise, we have a cut Cj of 
capacity less than 1, yielding a violated inequality in (3). 

Note that this algorithm checks the constraints in (3) in time polynomially bound
ed by n and the size of x, while the constraint system itself has size exponential inn. 

The ellipsoid method now gives that also the minimum (3) can be determined in 
time polynomially bounded by n and the size of (du Ii, j = l, ... , n). Therefore, the 
optimum branching problem is also polynomially solvable. (In fact, Edmonds 
[1967] also gave a direct polynomial algorithm.) 

This gives one motivation for studying polyhedral methods. The ellipsoid method 
proves polynomial solvability, it is however not (yet) a practical method. The poly
hedral methods can be used to deduce also practical methods from the LP-represen
tation of the combinatorial problem, e.g., by imitating the simplex method or by 
a primal-dual approach (see Papadimitriou and Steiglitz [1982]). 

A theoretical corollary of many polyhedral results is the 'facial' description of 
combinatorial polyhedra. E.g., Edmonds' theorem mentioned above is equivalent 
to the statement that the feasible region of (3) has integral vertices. Equivalently, 
that the feasible region of (3) is the convex hull of the characteristic vectors of the 
1-branchings. 
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A second theoretical interpretation is in terms of a min-max relation. Edmonds' 
theorem says that (2) and (3) are equal for each choice of the du. By the duality 
theorem of linear programming, for du~ 0, (3) is equal to 

(4) max .E Ye. 
c 

subject to .E Yc~du 
C,i(;C,jeC 

(i,j=l, ... ,n), 

Yc~O (0* c~ {2, ... ,n}). 

Therefore, Edmonds' theorem is equivalent to: the minimum value in the optimum 
branching problem is equal to the maximum (4). It was shown moreover by Fulker
son [1974] that, if the dij are integer, then the maximum (4) also has an integral op
timum solution. 

So polyhedral methods can yield polynomial-time solvability, practical algorithms 
and theoretical facts. For NP-complete problems the situation is a little different, 
although polyhedral methods can be helpful. 

First observe that each integer linear programming problem can be viewed as an 
LP-problem, since the convex hull of the integral vectors in a convex polyhedron 
is itself a convex polyhedron. However, the inequalities necessary for describing this 
last polyhedron can be very complicated: it was shown by Karp and Papadimitriou 
[1980] that if a class of ILP-problems is NP-complete, and if we assume NP *co-NP 
(as is generally believed), then among the inequalities necessary for the correspon
ding LP-problem there are those for which a proof of validity requires exponential 
time. That is, the convex hull of the integral solutions has facets which cannot be 
shown even to be valid in polynomial time. So if NP* co-NP, there is no hope for 
a nice ILP-formulation of any NP-complete problem where the integrality condi
tions are superfluous. All necessary inequalities can be found in principle, viz. by 
the cutting plane procedure of Gomory [1958], but this is not a polynomial-time 
method. 

As an example, consider the NP-complete traveling salesman problem: 

n 

(5) min .E duxu, 
i,j= I 

n 

subject to .E xu= 1 
i=l 

n 

L Xu= 1 
j=I 

L Xu~ 1 
i(;C,jeC 

xu~O 

xu integer 

U=l, ... ,n), 

(i= 1, ... ,n), 

(0*C~ {2, ... , n}), 

(i,j= 1, ... ,n), 

(i,j=l, ... ,n). 



114 A. Schrijver 

Removing the integrality condition generally will change the minimum, and finding 
all inequalities necessary to be added to make the integrality condition superfluous 
seems infeasible. We can use however the LP-relaxation of (5): 

n 

(6) min L duxu, 
i,j=l 

n 

subjectto LXiJ=I 
i=l 

n 

L xu= I 
j=I 

(j=l, ... ,n), 

(i=I, ... ,n), 

(0:t:C~ {2, ... , n}), 

(i,}=I,. .. ,n). 

This minimum can be used as a lower bound in a branch-and-bound method for the 
traveling salesman problem. Again one can show, with a method similar to the one 
used for (3), that (6) is solvable in time polynomially bounded by the size of diJ and 
by n, but this is with the ellipsoid method, and not practical. Among the practical 
methods proposed to solve (6) is the Lagrange-approach of Held and Karp [1962): 
The Lagrange function is: 

(7) F(,l.) := min ;,~ 1 duxiJ+ ;ti A;( 1-J1 xu). 

n 

subject to L Xu= 1 
i= l 

(j= 1, ... ,n), 

(0:t:C~{2, ... ,n}), 

(i,j= 1, ... ,n), 

for}. E !Rn. Note that (7) is a linear program of type (3), so that we can add integra
lity conditions on xu without changing the minimum value. Moreover, for each fix
ed A, F(J...) can be calculated in polynomial time. Fis a concave function, whose max
imum is exactly equal to the minimum value of (6), which can be seen by writing 
down the dual programs of the programs (6) and (7). Held and Karp applied the 
so-called subgradient method for maximizing F. 

An alternative method for solving (6) is to first solve (6) with the simplex method 
while deleting the third set of constraints. Next we check (e.g. with the max-flow 
min-cut algorithm), whether the optimal solution satisfies the third set of con
straints. If so we are finished. If not, add a violated constraint to the linear pro
gram, and do some dual pivot steps to obtain a new LP-optimum. Next check if this 
new solution satisfies the third set of constraints. If so we are finished. If not, repeat 
as before. This algorithm terminates, or can be stopped before termination if no 
significant progress is made anymore - in that case we can use the current LP-
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optimum value as a lower bound in the branch-and-bound method for the traveling 
salesman method. This cutting plane approach was used successfully by Crowder, 
Grotschel and Padberg for problems with up to 318 cities. 

Having given some introduction and motivation to polyhedral methods, we now 
discuss some of the proof methods. 

1. Elementary polyhedral methods 

Elementary, though nontrivial properties of polyhedra can be very helpful in 
polyhedral combinatorics. 

A set P of vectors in fRn is called a polyhedron if 

P= {xjAxsb} (8) 

for some system Axs b of linear inequalities. Here and in the sequel, by using nota
tion like Axs b, we shall assume implicitly compatibility of sizes, so that if A is an 
m x n-matrix, then b is a column vector of m components. 

A set P of vectors is called a polytope if it is the convex hull of finitely many vec
tors. Fundamental is the following intuitively clear, but nontrivial to prove, result, 
which is essentially due to Farkas [1894], Minkowski [1896] and Weyl [1935]: 

(9) P is a polytope iff P is a bounded polyhedron. 

An element x* of P is a vertex if it is not a convex combination of other elements 
of P. Each vertex of P= {xJAxsb} is determined by setting n linearly independent 
constraints in Ax s b to equality. 

Application 1. Perject matchings in bipartite graphs and doubly stochastic matrices. 
A square matrix A= (a;j) of order n is called doubly stochastic if 

n 
(10) L au=l (j=l, ... ,n), 

i=l 

n 

L au= I (i = 1, ... , n), 
j=I 

(i,j=l, ... ,n). 

A permutation matrix is a { 0, I }-matrix with in each row and in each column exactly 
one 1. Birkhoff [1947] and Von Neumann [1953] showed: 

(11) A is doubly stochastic iff A is a convex combination of permutation 
matrices. 

Proof. By induction on the order n of A, the case n =I being trivial. Consider the 
polytope P, in n 2 dimensions, of all doubly stochastic matrices. So P is defined by 
(10). To prove (11), it suffices to show that each vertex of Pisa convex combination 
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of permutation matrices. So let A be a vertex of P. Then n 2 linearly independent 
constraints among (10) are satisfied by A with equality. As the first 2n constraints 
in (10) are linearly dependent, it follows that at least n 2 - 2n + 1 of the au are 0. So 
A has a row with n -1 O's and one 1. Without loss of generality, a 11 =1. So all 
other entries in the first row and in the first column are 0. Then deleting the first 
row and first column of A gives a doubly stochastic matrix of order n - 1, which 
by our induction hypothesis is a convex combination of permutation matrices of 
order n - I. Therefore, A itself is a convex combination of permutation matrices of 
order n. D 

It follows that (10) has integral vertices. Hence in any integer linear program over 
(10) we can delete the integrality conditions. Therefore, the optimal assignment 
problem 

n 

(12) min .L cuxu, 
i,j= l 

n 
subject to I: xu = 1 (j = 1, ... , n), 

i=l 

n 

.L xu = 1 (i = 1, ... , n), 
j=l 

Xu=O or 1 (i,j= l,. .. ,n), 

is just a linear program. 
Another corollary is that each regular bipartite graph G of degree r?.. l has a 

perfect matching (Frobenius [1912], Konig [1916]). To see this, let {1, ... ,n} and 
{ n + 1, ... , 2n} be the colour classes of G, and define the n x n-matrix A =(au) by: 

(13) au:=~· (number of edges connecting i and n + )). 
r 

Then A is doubly stochastic, and hence, by (11), there exists a permutation matrix 
B = (biJ) such that au> 0 if bu = 1. Therefore, the edges connecting i and n + j if 
bu= 1 form a perfect matching in G. Deleting these edges and repeating this argu
ment gives that the edges of G can be split into perfect matchings. 

Application 2. The perfect matching po/ytope. Let G = ( V, E) be an undirected 
graph, with I VI even, and let P be the associated perfect matching polytope, i.e., 
P is the convex hull of the characteristic vectors (in { 0, l} £) of the perfect match
ings in G. Edmonds' matching polyhedron theorem [1965] states that P is the poly
tope defined by 

(14) 

x(J(v)) = 1 

x(J(W)) ?..1 

(eEE), 

(v E V), 

(W~ V, I WI odd). 
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Here o( W) is the set of edges of G intersecting Win exactly one point, o(v) :== 
o({v}), and x(F):= LeeFXe whenever Fr;;,E. 

Let Q be the set of vectors in !RE satisfying (14). As the characteristic vector of 
any perfect matching satisfies (14), it follows that Pr;;, Q - the content of Edmonds' 
theorem is the converse inclusion; equivalently, that the polytope defined by (14) has 
integral vertices only. 

Edmonds' matching polyhedron theorem. The perfect matching polytope is deter
mined by the inequalities (14). 

Proof. Let G be a smallest graph with Q $. P (that is, with J VI+ JE J as small as possi
ble). Let x be a vertex of Q not contained in P. Then O<xe< 1 for all e in E -

otherwise we could delete e from G to obtain a smaller counterexample. Moreover, 
IE I> I VJ - otherwise, either G is disconnected (in which case one of the components 
of G will be a smaller counterexample), or G has a point v of degree I (in which 
case the edge e incident with v has Xe = I), or G is an even circuit (for which the 
theorem is trivial). 

Since x is a vertex, there are 1£1 linearly independent constraints among (14) 
satisfied by x with equality. Hence there exists a Wr;;, V with I WJ odd, J WI ?::3, 
IV\Wl?::3, and x(o(W))=I. Let 0 1 and 0 2 arise from G by contracting Wand 
V\ W, respectively. Let x1 and x2 be the corresponding projections of x onto the 
edge sets of 0 1 and 0 2 , respectively. Since x 1 and x2 satisfy the inequalities (14) for 
the smaller graphs 0 1 and 0 2 , it follows that x 1 and x2 can be decomposed as con
vex combinations of perfect matchings in 0 1 and 0 2, respectively. These decom
positions can be easily glued together to form a decomposition of x as a convex 
decomposition of perfect matchings in G, contradicting our assumption. 

[This glueing can be done, e.g., as follows. By the rationality of x (as it is a vertex 
of Q), there exists a natural number K such that, for i = 1, 2, Kx; is the sum of the 
incidence vectors of the perfect matchings Ff, ... ,Fk of G; (possibly with repeti
tions). Since for each e in o( W), e is contained in Kxe of the Fj as well as in Kxe 

of the F}, we may assume that, for each j =I, .. ., K, F) and F} intersect in an edge 
of o( W). So F) UF} is a perfect matching in G, and Kx is the sum of the incidence 
vectors of these perfect matchings. Hence x itself is a convex combination of perfect 
matchings in G.] D 

Finding a minimum weighted perfect matching in G is clearly the same as solving 

(15) min L WeXe 
eeE 

subject to Xe?::O 

x(o(v)) = 1 

x(o(W))?::l 

Xe integer 

(eEE), 

(v E V), 

(Wr;;, V, I WJ odd), 

{eEE). 
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By Edmonds' theorem, we can delete the integrality condition, and just solve the 
LP-relaxation. Padberg and Rao [1980] showed that the constraints in (15) can be 
checked in polynomial time - hence, with the ellipsoid method, the minimum can 
be calculated in polynomial time. Edmonds [1965] gave a direct polynomial-time 
algorithm, the famous blossom-algorithm, which in fact yields the matching poly
hedron theorem as a by-product. 

2. LP-duality and complementary slackness 

Consider the following equations: 

(16) max{cx1Ax:$b} = min{yb Jy~O, yA =c}. 

and 

(17) max{cxlx~O, Ax:s;b} =min{ybly~O, yA~c}. 

The Duality Theorem of linear programming states that (16) (similarly (17)) holds 
provided that at least one of the two optima exists. 

Moreover, there are the complementary slackness conditions: if x and y satisfy 
Ax:$b and y~O, yA =c, then 

(18) x and y are optimal in (16) iff 
for eachj: yj>O implies (Ax)j=b1. 

Similarly, if x and y satisfy x~O. Ax:s;b and y~O. yA~c then: 

(19) x and y are optimal in (17) iff 
for each j: yj > 0 implies (Ax)j = bj, and 
for each i: xi>O implies (yA);=C;. 

Application 3. Max-flow min-cut. Let D = ( V, A) be a directed graph, let r, s E V, and 
c :A-+ IR+. Then the Duality Theorem of linear programming yields: 

(20} maxx(o+(r})-x(a-(r)) =min L CaYa 
DEA 

subject to subject to 

x(o+(v)} =x(o-(u)) (veV,v=f=.r,s) Ya~O (aeA), 

0:$Xa::5Ca (aeA) Z0 E IR (ve V), 

-zu+Zw+ Ya~O (a=(v, w)eA), 

z,= 1, Zs= 0. 

Here o+(v) and a-(u) denote the sets of arcs leaving v, and entering u, respectively. 
The maximum (20) can be seen as the maximum amount of r-s-flow subject to the 
capacity constraint c. 
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Now let x, y, z be a, possibly fractional, optimal solution for the optima in (20). 
Define 

(21) W: = { V E V J Zu 2:: l } . 

Then rE W, s$ W. Let o+(W) and o-(W) denote the sets of arcs leaving Wand 
entering W, respectively. If a=(v, w) Eo+(W), then Ya2::Zu-Zw>O, and hence, by 
complementary slackness, Xa =Ca. If a= (v, w) E o-( W), then Ya+ Zw-Zv2::Zw-Zu>O, 
and hence, again by complementary slackness, Xa = 0. Hence: 

(22) x(o+(r))-x(o-(r))= 2: (x(o+(v))-x(o-(v))) 
VE W 

=x(o\W))-x(o-( W)) =c(o\ W)). 

So the amount of flow is equal to the capacity of the cut o+ ( W). That is, we have 
the famous max-flow min-cut theorem of Ford and Fulkerson [1956] and Elias, 
Feinstein and Shannon [1956]: 

(23) The maximum amount of r-s-flow subject to capacity c, is equal to the 
minimum capacity of an r-s-cut. 

By replacing y, z by ji, z with 

(24) Ya= 1 if aEo+(W), 

.Ya=O otherwise, 

z!i= I if u E W, 

zv=O otherwise, 

we obtain an integral optimum solution for the minimum in (20). If c is integral, 
also the maximum in (20) has an integral optimum solution, which is a result of 
Dantzig [1951] - see Application 6 below. 

Application 4. Edge-colourings. Let G = ( V, E) be an undirected bipartite graph, 
and consider the LP-duality equation: 

(25) max L Xe =min LYM, 
eeE M 

subject to subject to 

L Xe:5 l (M matching) L YM2:: 1 (e E £), 
eeM M3e 

Xe 2:: 0 (eEE) YM2::0 (M matching). 

Suppose we know that the maximum here always has an integral optimum solution 
(in Application 11 we shall see that this indeed holds). We show that this implies 
that also the minimum has an integral optimum solution. Let y be any, possibly 
fractional, optimum solution for the minimum. Let N be a matching with YN>O. 
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By complementary slackness, any optimum solution x for the maximum (25) has 
LeeNXe = 1. Therefore, µH=µ0 - l, where µ 0 denotes the common value of (25), 
and µH the common value of (25) with respect to the graph H obtained from G by 
deleting the edges in N. Now by induction, for H the minimum (25) has an integral 
optimum solution y. Adding YM= 1 gives an integral optimum solution for the 
minimum (25) with respect to G. 

Note that the fact that both optima (25) have integral optimum solutions, is equi
valent to the Frobenius-Konig theorem: 

(26) The maximum degree in a bipartite graph G is equal to the minimum 
number of colours needed to colour the edges of G so that no two edges 
of the same colour meet in a vertex. 

3. Total unimodularity 

A matrix is called totally unimodular if each of its subdeterminants is 0, + 1 or -1. 
In particular, each entry is 0, + 1 or -1. The link of total unimodularity with com
binatorial optimization was laid by Hoffman and Kruskal [1956] who showed that 
if A is totally unimodular and b is an integral vector, then max {ex I Ax:o;; b} has an 
integral optimum solution, for each vector c for which the optimum exists. Equiva
lently, the polyhedron {x!Ax:o;;b} is integral. This is not difficult to see: Any non
singular submatrix of A has integral inverse, and therefore any system of linear 
equations derived from Ax:o;; b has an integral solution. 

In fact, Hoffman and Kruskal showed: A is totally unimodular iff A is integral 
and the polyhedron { x ~ 0 I Ax :o:;; b} has integral vertices only, for each integral vec
tor b. 

There is the following characterization of total unimodularity due to Ghouila
Houri [1962]: 

(27) A is totally unimodular iff each subcollection R of the rows of A can 
be split into two classes R 1 and R2 such that the sum of the rows in R1, 

minus the sum of the rows in R2, is a vector with entries 0, + 1 and -1 
only. 

A famous characterization of total unimodularity was given by Seymour [1980], 
yielding a polynomial-time algorithm for testing total unimodularity. 

Application S. Optimal assignment. Let A be the incidence matrix of a bipartite 
graph, i.e., A is a {0, !}-matrix, whose rows can be split into two classes R 1 and R2 
so that each column has exactly one 1 in R 1 and exactly one 1 in R2 • It is not dif
ficult to see that A is totally unimodular. A consequence is what we showed in Ap
plication 1: In (12) the integrality conditions can be deleted. Another consequence 
is that the following equality holds between two ILP-optima, for any bipartite graph 
G=(V,E): 
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(28) max L Xe =min L Yu 
eeE UE V 

subject to subject to 

L Xe::::; 1 (VE V) I: Y"~1 (e E £), 
e3v VEe 

Xe:2:'.0 (eEE) Yu~O (v E V), 

xe integer Yu integer. 

This follows from the fact that by total unimodularity of the constraint matrix, we 
may delete the integrality conditions, and that the two LP-optima are equal by the 
LP-Duality Theorem. 

Note that an optimum solution for the maximum in (28) is the characteristic vec
tor of a matching in G, and that an optimum solution of the minimum in (28) is 
the characteristic vector of an edge-covering point set. Therefore, (28) is equivalent 
to the well-known Konig-Egervary Theorem: 

(29) The maximum size of a matching in a bipartite is equal to the minimum 
size of an edge-covering point set. 

Similarly, weighted versions follow. 

Application 6. Network flows. Let A be the incidence matrix of a directed graph. 
Then A is totally unimodular. A little more general: any { 0, ± 1 }-matrix with at most 
one + 1 and at most one -1 in each column is totally unimodular. 

This implies that the minimum (20) has an integral optimum solution, which fact 
we also proved as Application 3. Now we know moreover, if c is integral, also the 
maximum has an integral optimum solution. This fact was first shown by Dantzig 
[1951]: 

(30) If the capacities c are integers, there is an integral optimum flow. 

Similarly, a min-max relation for minimum cost flows follows. 

4. Total dual integrality 

The concept of total dual integrality was motivated by Edmonds and Giles [1977] 
through the following result. Suppose we are given a rational system Ax:::; b of linear 
inequalities with b integral, and consider the LP-duality equation 

(31) max{cxJAx::::;b} =min{ybJy~O, yA =c}. 

Suppose the minimum has an integral optimum solution y for each integral vector 
cjor which the minimum is finite. Then the maximum also has an integral optimum 
solution, for each such c. This last statement is equivalent to Ax:::=; b defining an in
tegral polyhedron. 
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A system Ax:=;;b is called totally dual integral if the minimum in (31) has an in
tegral optimum solution y for each c as above. Edmonds and Giles' result thus says 
that any totally dual integral system Ax:=;; b with b integral, defines an integral poly-
hedron. 

The result of Edmonds and Giles is not difficult to show in the special case where 
p: = {x Ax:=;; b} is pointed, i.e., where each minimal face of P is a vertex (see Hoff
man [1974]). Suppose a vertex x is not integral, say x 1 is not an integer. We can 
find integral objective functions c and c' such that both c and c' attain their max
imum over pin x, and such that c' - c = (1, 0, ... , 0). Since for c and c' the minimum 
(31) has an integral optimum solution and since b is integral, in both cases the 
minimum value is an integer. These minimum values are ex and c'x, and therefore, 
also cx-c'x=x1 is an integer, contradicting our assumption. 

This also shows the following special case of total dual integrality. Let A be a ra
tional matrix and let b be an integral vector. If the maximum in 

(32) min{cxJx~ 0, Ax~b} = max{yb Jy~ 0, yA :5 c} 

has an integral optimum solution for each integral vector c for which the maximum 
is finite, then the same holds for the minimum. 

Application 7. Branchings and rooted cuts. Let D = ( V, A) be a directed graph, and 
let r E V. An r-branching is a set T of arcs of D forming a rooted directed spanning 
tree, with root r. That is, T contains no circuit and each vertex s=F r is entered by 
exactly one arc in T. A cut rooted in r or an r-cut is a set of arcs of the form o-( W) 
with 0:t Wi;;; V\r. 

It is immediate that each r-branching intersects each r-cut. Moreover, the minimal 
r-cuts are exactly the minimal sets intersecting all r-branchings, and vice versa. 

Fulkerson [1974] (cf. Edmonds [1967]) proved the following min-max equation. 

Fulkerson's optimum branching theorem. For any 'length' function I: A~ Z+, the 
minimum length of an r-branching is equal to the maximum number t of r-cuts 
C1,. . ., Cr (repetition allowed), such that no arc a is in more than /(a) of the Ci. 

Before we prove the theorem, observe the following. Let B be the matrix with 
columns indexed by A, and with rows the characteristic vectors of the r-cuts. Then 
the theorem states that for any I: A-> Z+, the optima in 

(33) min{txJx~O, Bx~ I} =max{yl J y~O, yB:=;;I} 

are attained by integral optimum solutions. Here I denotes an all-one vector. By the 
~heory of t~tal dual integrality, it suffices to show that the maximum in (33) has an 
integer optimum solution. 

Proof. Let Y be an optimum solution for the maximum in (33), such that 

(34) L Ya (WJ ·I w1 2 
0;< Wi;; V\r 
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is as large as possible. Such a y exists by reason of compactness. Now let 

(35) .f:= {We;;; VIYo-on>O}. 

Then .f is laminar, i.e., if U, We.f then Ur;;,. Wor We;;; U or Un W=0. For suppose 
to the contrary that U$ W$ U and Un W=1=0. Let e := min{y0 <u»Yo-(w)} >0. Let 
the vector y' be given by: 

(36) Y6 (U) :=Yo-(U)-e, 

Y6 (W) :=yo <W)-e, 

Y8 wnw> :=Yo (Un w>+ e, 

Y8 <VUW):=Yo-(UUw)+e, 

and let y' coincide with yin the other coordinates. Then y';;:::O, y'B-s;,yB, and y'l = 
yl, soy' again is an optimum solution in (33). However, (34) is augmented, contra
dicting the maximality of (34). 

Now let 8 0 be the submatrix of B consisting of those rows of B corresponding 
to sets in f. Then B0 is totally unimodular, as can be seen with Ghouila-Houri's 
characterization (27), using the Iaminarity of .f. 

Now we have 

(37) max{zl I z<::O, zB0 -s;,/} =max{yl I y<::O, yB-s;; l}. 

Indeed, ;::;; is trivial (by extending z with O's), while;;:::: follows from the fact that the 
second maximum in (37) is attained by the vector y above, which has O's outside 
Bo. 

Since B0 is totally unimodular, the first maximum, and hence also the second 
maximum has an integer optimum solution. D 

So although the constraints x<:: 0, Bx<:: 1 generally are not totally unimodular, in
tegral optimum solutions are shown by proving that in the optimum the active con
straints can be chosen to be totally unimodular. This method of proof is an example 
of a general technique for deriving total dual integrality - see Edmonds & Giles 
[1977] and Hoffman & Oppenheim [1978]. 

Edmonds [1967] and Fulkerson [1974] designed a polynomial-time algorithm for 
finding a shortest branching. The polynomial solvability also follows with the ellip
soid method, as the constraints for the maximum in (33): 

(38) (aeA), 

(0=F We;;; V\r), 

can be checked in polynomial time, although there are exponentially many r-cuts in
volved; for as in the Introduction above, we can consider x as a capacity function, 
and find a minimum capacitated cut. 

Application 8. Directed cuts and their coverings. Let D = ( V, A) be a directed graph. 
A directed cut is a set of arcs of the form 1r( W), where 0=1= W=1= V and o+(W) =0. 
A (directed cut) covering is a set of arcs intersecting each directed cut. It follows 
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that a set E of arcs is a covering, iff the contraction of the arcs in E makes D strongly 

connected. 
By a method similar to that of proving Fulkerson's optimum branching theorem, 

one can show that the system 

(39) (a EA), 

(0:f=W=FV, J+(W)=0), 

is totally dual integral. So the polyhedron determined by (39) has all its vertices in
tegral, each being the characteristic vector of a directed cut covering. 

The total dual integrality of (39) is equivalent to the following theorem of 
Lucchesi and Younger [1978] (cf. Lovasz [1976]): 

Lucchesi-Younger theorem. The minimum size of a directed cut covering is equal 
to the maximum number of pairwise disjoint directed cuts. 

Since the system (39) can be checked in polynomial time, again with the help of 
Ford and Fulkerson's max-flow min-cut algorithm, also minimum length directed 
cut coverings can be found in polynomial time, with ellipsoids. Direct polynomial 
algorithms were given by Karzanov [1979], Lucchesi [1976] and Frank [1981]. 

5. Blocking polyhedra 

Blocking and anti-blocking are variants of the classical polarity of polyhedra. It 
was shown by Fulkerson [1970, 1971, 1972] that these relations have interesting 
combinatorial implications. 

The basis of the theory of blocking polyhedra is as follows. Let al> ... , am and 
bi> ... , b1 be vectors in IRZ such that: 

(40) {xE IRZ I aTx;:: 1, ... , a~x;:: I}= conv.hull{b 1, .•• , b1} + IRZ =: P. 

Then the blocking polyhedron b(P) of P is defined by 

(41) b(P) :={YE IRZ lxTy;:: I for each x in P}, 

and satisfies: 

(42) b(P) = {y E IRZ I b{y;:: I, ... , b(y::::: I}= conv .hull{al> ... , a111 } + fRZ. 

So for b(P) the roles of the a; and bj are interchanged compared with P. So the 
facets (vertices, respectively) of P correspond to the vertices (facets, respectively) of 
b(P). Moreover, b(b(P)) =P. 

Note that (40) is equivalent to: 

(43) for each lefR~: min{lbI>····lb1 } =max{yl[y:::::O, yA::::;;f}, 

where A is the matrix with rows aT, ... , a~. This equivalence follows by writing 
down the dual program for the maximum in (43). Similarly, (42) is equivalent to: 
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(44) for each we IR~: min{ waI> ... , wam} = max{zl lz~O. zBs w}, 

where Bis the matrix with rows bf, ... , b{. Since (40) and (42) are equivalent, also 
(43) and (44) are equivalent: one class of min-max relations implies another, and 
vice versa. 

It follows from the ellipsoid method that if al> ... , am and b1, ••• , b1 are related as 
above, then 

(45) for each I e IR~ min { lb1' ... , /b1 } can be determined in polynomial time, 
iff for each we IR~ min{ wa1, ••• , wam} can be determined in polynomial 
time, 

also if t and m are exponentially large with respect to the 'original' problem. 

Application 9. Shortest paths and network flows. The theory of blocking polyhedra 
gives another proof of the max-flow min-cut theorem. Let D = ( V, A) be a directed 
graph, and let r, s e V. Let ai. ... , am be the characteristic vectors of the r-s-cuts; so 
these are vectors in { 0, 1} A. Let b 1, ••• , b1 be the characteristic vectors of the r-s
paths, again in { 0, 1} A. 

We first show that (43) holds. First suppose I: A--+ Z+, and let k be the length of 
a shortest r-s-path. For each i with 1 sisk, define 

(46) Vi:= { v e VI there is an r-v-path of length < i}. 

Then V1 ~ V2 ~ • • • ~ Vk, and re Vi, s $ Vi. Let x1 denote the characteristic vector of 
the r-s-cut b+(J.j). Then each x1 occurs among the a;, and x1+x2+···+xksl. 
Therefore, (43) holds. Next, for rational-valued/, (43) follows from the integral case 
by multiplying I with a large enough natural number. For real-valued/, (43) follows 
by continuity. 

So (43) holds, and hence, by the theory above, (44) also holds. But this is the max
flow min-cut theorem: zB is an r-s-flow of value zl subject to the capacity w, while 
the minimum in (44) is the minimum capacity of an r-s-cut. 

Since a shortest path can be found in polynomial time (with Dijkstra's algorithm), 
it follows from the ellipsoid method that a minimum capacitated cut can also be 
determined in polynomial time - here polynomial means: polynomially bounded by 
the sizes of D and c, not by the number of paths or cuts. 

Application 10. Branchings and rooted cuts. Let D = ( V, A) be a directed graph, and 
let re V. Let a1, ••• , am be the characteristic vectors of the r-cuts, and let b" ... , b1 

be the characteristic vectors of the r-branchings (cf. Application 7). 
From Application 7 we know that (43) holds. Therefore, by the theory of blocking 

polyhedra, also (44) holds. It says that the minimum capacity of an r-cut is equal 
to the maximum value of }q + · ·· + ilm for which there exist r-branchings T1, ••• , Tm 
such that for each arc a, the sum of the il; for which a belongs to Ti is at most c0 • 

Edmonds [1973] showed that if c is integral, we can take the ili integral. It means 
that the system 
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(47) (T r-branching), 

(a EA) 

is totally dual integral. In particular (in fact, equivalently), the minimum number 
of arcs in an r-cut is equal to the maximum number of pairwise disjoint r-branchings 
(disjoint in the sense of having no common arcs). The proofs however (cf. also 
Lovasz [1976], Tarjan [1976]) are combinatorial and/or algorithmical, and not 
polyhedral. 

6. Anti-blocking polyhedra 

A theory of anti-blocking polyhedra was also developed by Fulkerson [ 1971, 
1972]. Let ai. ... , am and b1, ••• , b1 be vectors in IR~ such that 

(48) {x E IR~ I aT X:$ 1,. -. 'a~x:S 1} = (conv .hull { b1' ... ' b1) + IR.".) n rR~ =: P. 

Then the anti-blocking polyhedron of P is defined by 

(49) a(P) :={YE IR~ lxTy:S 1 for each x in P}, 

and satisfies: 

(50) a(P)= {YE IR~ I bfy:S 1, ... , biy:S l} 

=(conv.hull{ai. ... ,am}+ rR.".)lllR~. 

So again facets and vertices are interchanged, and we have another variant of the 
classical polarity. It follows that a(a(P)) = P. 

Note that (48) is equivalent to: 

(51) for each l E IR~: max{/bl> ... , lb1 } = min{yl I y::::: 0, yA ~ /}, 

where A is the matrix with rows aT, ... , a~, - This equivalence follows by writing 
down the dual program for the minimum in (51). Similarly, (50) is equivalent to: 

(52) for each WEIR~: rnax{wa1, ••• ,wam}=min{zllz~O,zB~w}, 

where Bis the matrix with rows bf, ... , bi. Since (48) and (50) are equivalent, also 
(51) and (52) are equivalent: one class of min-max relations implies another, and 
vice versa. 

Again, it follows from the ellipsoid method that if al> ... , am and b 1,. .. , b1 are 
related as above, then 

(53) for each /E IR~ min{/b1, ... ,lb1 } can be determined in polynomial time, 
i ff for each w E IR ~ min { wa 1, •.. , wa m } can be determined in polynomial 
time, 

also if t and m are exponentially large with respect to the 'original' problem. 
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Application 11. Stars and matchings. In Application 5 we saw that for any bipartite 
graph G = ( V, E), the polytope defined by: 

(54) 

x(o(v)):S: 1 

(eeE), 

(v E V), 

has integral vertices. (Here o(v) denotes the set of edges incident with v, and 
x(B') := EeeB'xe.) So the vertices are exactly the characteristic vectors of match
ings of G. Therefore, taking al> .. .,am to be the characteristic vectors of the 'stars' 
o(v), and b1, ••• , b1 the characteristic vectors of the matchings, we know that (48) 
holds. Therefore, (50) also holds, i.e. 

(55) Ye~O (eeE), 

y(M):S: 1 (M matching), 

defines a polytope whose vertices are the characteristic vectors of the stars. So the 
maximum in the LP-duality equation 

(56) max L Ye =min L ZM 
e M 

subject to subject to 

Ye~O (eeE) ZM~O (M matching), 

y(M):S: 1 (M matching) L ZM~I (eeE), 
M3e 

has an integral optimum solution, namely the incidence vector of a star. So the 
maximum is equal to the maximum degree of G. In Application 4 we saw that this 
implies that also the minimum has an integral optimum solution: hence it is equal 
to the minimum number of matchings needed to cover E, i.e., it is the minimum 
number of colours needed to colour the edges of G such that no two edges of the 
same colour meet in a vertex of G. So (56) gives the Frobenius-Konig theorem. 

Application 12. Perfect graphs. Perfect graphs were introduced by Berge [1961, 
1962]. Consider the following numbers for an undirected graph G=(V,E): 

(57) w(G):=the clique number of G=maximum size of a clique; 
y( G) : =the colouring number of G =the minimum number of colours 

needed to colour the vertices of G such that no two adjacent 
vertices have the same colour (i.e., the minimum number of 
cocliques needed to cover V); 

a(G) :=the coclique number of G =the maximum size of a coclique 
(=set of pairwise non-adjacent vertices); 

Y(G) :=the clique covering number= the minimum number of cliques 
needed to cover V. 
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Obviously, w(G):::;;y(G), a(G):::;jl(G), w(G)=a(G), and y(G)=y(G), where G 
denotes the complementary graph of G (which has vertex set V, two vertices being 
adjacent in G iff they are not adjacent in G). The circuit on 5 vertices shows that 
the inequalities can be strict. 

Now G is called perfect if w(G') = y(G') for each induced subgraph G' of G. 
Examples of perfect graphs are: (1) Bipartite graphs (trivially); (2) Complements 

of bipartite graphs (by a theorem of Konig, which can be derived from the total uni
modularity of the incidence matrix of a bipartite graph - see Application 5 above); 
(3) Line graphs of bipartite graphs (by the Konig-Egervary theorem - see Applica
tion 5); (4) Complements of line graphs of bipartite graphs (by the Frobenius-Konig 
theorem - see Application 11); (5) Comparability graphs (which, by definition, arise 
from a partial order ( V, ::5), two vertices being adjacent iff they are comparable -
the perfectness is easy); (6) Complements of comparability graphs (by a theorem of 
Dilworth [1950]). 

It was conjectured by Berge [1961, 1962] and proved by Lovasz [1972] that the 
complement of each perfect graph is perfect again, which implies several other min
max relations. We give a polyhedral proof of this theorem, due to Fulkerson [1972], 
Lovasz [1972] and Chvatal [1975]. To this end, define for any undirected graph 
G=CV,E) the clique polytope as the convex hull of the cliques in G, i.e., of their 
characteristic vectors. Clearly, any vector x in the clique polytope satisfies 

(58) (i) Xv2'::0 

(ii) x(S) ::S 1 

(v E V), 

(S ~ V, S coclique), 

as the characteristic vector of each clique satisfies (58). The circuit on 5 vertices 
shows that generally (58) can be larger than the clique polytope. Chvatal [1975] 
showed that the clique polytope coincides with (58) if and only if G is perfect. This 
can be seen to imply the perfect graph theorem. 

First observe the following. Let Ax ::5 l denote the inequality system (58) (ii). So 
the rows of A are the characteristic vectors of the cocliques. Then it follows directly 
from the definition of perfectness that G is perfect iff the optima in 

(59) max{ wxlx;::::O, Ax::S 1} = min{yl I y;::::O, yA ;:o: w} 

have integral optimum solutions, for each {O, !}-vector w. 

Chvatal's Theorem. G is perfect iff its clique polytope is determined by (58). 

Proof. (I) First suppose G is perfect. For w: V-+l+, let cw denote the maximum 
weight of a clique. To prove that the clique polytope is given by (58), it suffices to 
show that 

(60) cw=max{wxlx;:o::O, Ax:51} 

for each w: V-+ l+. This will be done by induction on " w 
.l.,,UE V V" 
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If w is a {O, !}-vector, then (60) follows from the note preceding the statement 
of Chvatal' s theorem. So we may assume that w u :=::: 2 for some vertex u. Let eu = I 
and ev = 0 if v * u. Replacing w by w- e in (59) and (60), gives, by induction, a vec
tor y:=:::O such that yA2::w-e and yl=cw-e· We may assume yA=w-e. Since 
(w- e)u;::: 1, there is a coclique S with Ys > 0 and u ES. Let a be the characteristic 
vector of S. Note that asw-e, sinceyA=w-e. 

Then Cw-a<Cw. For suppose Cw-a=Cw. Let C be any clique with (w-a)(C)= 
Cw-a· Since Cw-a=Cw, a(C)=O. On the other hand, since w-asw-esw, we 
know that (w-e)(C)=cw-e• and hence, by complementary slackness, a(C)>O, a 
contradiction. 

Therefore, 

(61) Cw= 1 +cw-a= I +max{(w-a)x\x:=:::O, Axsl} 

;::max{wxlx2::0, Axsl} 
implying (60). 

(II) Conversely, suppose that the clique polytope is determined by (58), i.e., that 
the maximum in (59) is attained by a clique, for each w. To show that G is perfect 
it suffices to show that the minimum in (59) also has an integral optimum solution 
for each {0,1}-valued w. This will be done by induction on Lvevwv. 

Let w be { 0, 1 }-valued, and let jibe a, not-necessarily integral, optimum solution 
for the minimum in (59). Let S be a coclique with .Ys > 0, and let a be its character
istic vector (we may assume as w). Then the common value of 

(62) max{ (w- a)x I x2:: 0, Axs 1} = min{yl I y 2:: 0, yA;::: (w- a)} 

is less than the common value of (59), since by complementary slackness, each op
timum solution x in (59) has ax= 1. However, the values in (59) and (62) are integers 
(since by assumption the maxima have integral optimum solutions). Hence they dif
fer by exactly one. Moreover, by induction the minimum in (62) has an integral op
timum solution y. Increasing component Ys of y by 1, gives an integral optimum 
solution in (59). D 

The theory of anti-blocking polyhedra now gives directly the perfect graph 
theorem of Lovasz [1972): 

Perfect graph theorem. The complement of a perfect graph is perfect again. 

Proof. If G is perfect, by Chvatal's theorem, the clique polytope P of G is defined 
by (58). Hence, by the theory of anti-blocking polyhedra, the coclique polytope of 
G, i.e., the clique polytope of(; is defined by (58) after replacing coclique by clique, 
i.e., coclique of G. Applying Chvatal's theorem again gives that G is perfect. D 

So for any undirected graph, w(G') = y(G') for each induced subgraph, iff 
a(G') = Y(G') for each induced subgraph. 
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It is conjectured by Berge [1969] that a graph is perfect iff it has no induced sub

graph isomorphic to an odd circuit of length at least five or its complement. This 

strong perfect graph conjecture is still unproved. 
It was shown in Grotschel, Lovasz and Schrijver [1981] that a clique of maximum 

size and a minimum vertex colouring in a perfect graph can be found in polynomial 

time. 

7. Cutting planes 

For any polyhedron P, define P1 as the convex hull of the integral vectors in P. 
it is not difficult to show (and trivial if P is bounded) that P1 is a polyhedron 
again. Generally it is a difficult problem to find the inequalities defining P1. Karp 
and Papadimitriou [1982] showed that generally P 1 has some 'difficult' facets, at 
least if NP=Fco-NP. 

The cutting plane method, developed by Gomory [1958], is a non-polynomial 

method to find the facets of P1 - see Chvatal [1973] and Schrijver [1980]. 
Obviously, if His the affine half-space { x I ex::; d}, where c is a nonzero integral 

vector whose components are relatively prime integers, then 

Geometrically, H 1 arises from H by shifting the bounding hyperplane until it con
tains integral vectors. Now define for any polyhedron P: 

(64) P' := n H1, 
H":!_P 

where the intersection ranges over all affine half-spaces Has above with HJ P. As 
P s;; H implies P1 ~ H1, it follows that P1 ~ P'. So 

( 65) P J P' J P" J P 111 "J · • • "J P1• 

It can be shown that if P is a rational polyhedron (i.e., defined by rational inequa
lities), then P' is a rational polyhedron again, and that pUl == P1 for some natural 
number t. (Here pUl is the (t+ 1)-th polyhedron in (65).) 

This is the theory of Gomory's famous cutting plane method. The successive half
spaces H1 (more strictly, their bounding hyperplanes) are called cutting planes. 

It can be shown that, for any fixed t, the class of integer linear programs for 
which P 1 = pUl has a 'good characterization', i.e., is in NP n co-NP. 

Application 13. The matching polytope. Let G = ( V, E) be an undirected graph, and 
let Q be the matching polytope of G, i.e., Q is the convex hull of the characteristic 
vectors of matchings in G (so Q ~ fRE). Let P be the polytope defined by 

(66) Xe2:::0 (eEE), 

x(J(u)) :5 l (v E V). 
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Since the integral vectors in Pare exactly the characteristic vectors of matchings in 
G, we know Q =Pi. It is not difficult to see that P' is the polytope determined by 

(67) 

x(J(u)) :5 l 

x(<U)):;;t(IUl-1) 

(eEE), 

(u E V), 

(Ur;;. V, IUI odd). 

Edmonds [1965] showed that in fact P' =Pi= Q. That is, (67) determines the 
matching polytope. One can derive this in an elementary way from the characteriza
tion of the perfect matching polytope given in Application 2. 

Application 14. The coclique polytope. Let G = ( V, E) be an undirected graph, and 
let Q be the coclique polytope of G, i.e., Q is the convex hull of the characteristic 
vectors of cocliques (so Qr;;. IR v). It seems to be a difficult problem to find a set of 
linear inequalities determining Q. If NP* co-NP, then Q will have 'difficult' facets. 

As an approximation of the coclique polytope, let P be defined by 

(68) (u E V), 

x(C):;; 1 (Cr;;. V, C clique). 

So P is the anti-blocking polyhedron of the clique polytope - cf. Application 12. 
As the integral solutions for (68) are exactly the characteristic vectors of cocliques, 
we know Q=Pi. Now we can ask: given G, for which t is pU)=Pi=Q? 

There is no natural number t such that pUl = Q for each graph G, as was shown 
by Chv:ital [1973]. In Application 12 we saw that the class of graphs with P= Q is 
exactly the class of perfect graphs. Chvatal [1973] raised the question whether there 
exists, for each fixed t, a polynomial-time algorithm for finding the maximum size 
of a coclique in G, for graphs G with pU) = Q. This is true for t = 0 - see Grotschel, 
Lovasz and Schrijver [ 1981]. 
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