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Dilworth rate: a generalization of Witsenhausen’s
zero-error rate for directed graphs

Gabor Simonyi and Agnes Téth

Abstract—We investigate a communication setup where a
source output is sent through a free noisy channel first and an
additional codeword is sent through a noiseless but expensive
channel later. With the help of the second message the decoder
should be able to decide with zero-error whether its decoding
of the first message was error-free. This scenario leads to the
definition of a digraph parameter that generalizes Witsenhausen’s
zero-error rate for directed graphs. We investigate this new
parameter for some specific directed graphs and explore its
relations to other digraph parameters like Sperner capacity and
dichromatic number.

We also look at the natural variant of the above problem,
where the decoder should decode the first message with zero-
error, not only decide whether its earlier decoding was correct.
In this case the Witsenhausen rate of an appropriately defined
undirected graph turns out to be the relevant parameter.

Index Terms—zero-error, graph products, Sperner capacity,
dichromatic number, Witsenhausen rate

I. INTRODUCTION

ONSIDER the following situation. Alice writes a mes-

sage to Bob consisting of the numbers of several bank
accounts to which Bob has to send some money. She writes
in a hurry (she just got to know that the transfers are urgent
if they do not want to pay delay punishment, but currently
she has little time). Therefore her characters are not very well
legible, so Bob may misread some numbers. However, there
are some rules for the possible mistakes, e.g., a 7 may be
thought to be a 1 but never a 6. This relation between the
possible digits need not be symmetric: it is possible that a 0
is sometimes read as a 6 but a 6 may not be decoded as a 0.
These rules of possible confusions are known both by Alice
and by Bob.

As Alice is aware of the possibility that Bob misread her
message, later in the day she sends another message to Bob,
the goal of which is to make Bob certain whether he read
(decoded) the first message correctly or not. If he did he can
transfer the money with complete confidence that he sends it
to the right accounts. If he did not he will know that he does
not know the account numbers correctly and so he better wait
and pay the punishment than transfer the money to the wrong
place.
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The second message will be received by Bob correctly for
certain, but it uses an expensive device, e.g., Alice sends it as
an sms from another country after she has arrived there. (Now
we understand why she was in a hurry: she had to arrive to the
airport in time.) For some reason, every character sent from
this foreign country costs a significant amount of money for
her. So she wants to send the shortest possible message that
makes it sure (here we insist on zero-error) that Bob will know
whether his decoding of the original handwritten message was
error-free or not. The problem is to determine the best rate of
communication over the second channel as the length of the
original message received tends to infinity.

In Section II we describe the abstract communication model
for this scenario and show that the best achievable rate is a
parameter of an appropriate directed graph. We will see that
this parameter of a directed graph is a generalization of the
parameter (of an undirected graph) called Witsenhausen rate.

In Section III we investigate the relationship with other
graph parameters. These include Sperner capacity and the
dichromatic number. The former is a generalization of Shan-
non’s graph capacity [33] to directed graphs. Though originally
defined to give a general framework for some problems in
extremal set theory (see [16], [17]), Sperner capacity also has
its own information theoretic relevance, see [12], [30], [7].
The dichromatic number is a generalization of the chromatic
number to directed graphs introduced in [29]. Using the above
mentioned relations we determine our new parameter for some
specific directed graphs.

In Section IV we consider a compound channel type version
of the problem parallel to [30], [36].

In Section V some connections to extremal set theory are
pointed out.

In Section VI we will consider the setup where the require-
ment is more ambitious and we want that Alice’s second (the
error-free but expensive) message make Bob able to decode
the original message with zero-error. (That is, he will know the
message itself not only the correctness or incorrectness of his
original decoding of Alice’s handwriting.) We will see that
this setting leads to the Witsenhausen rate of an undirected
graph related to the problem. This gives a new interpretation
of Witsenhausen rate.

The natural logarithm of a number x will be denoted by
In z. All other logarithms are meant to be of base 2.
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II. THE DILWORTH RATE OF A DIRECTED GRAPH
A. The communication model

The abstract setting for our communication scenario is the
following. We have a source whose output is sent through
a noisy channel. (This belongs to Alice’s handwriting.) The
input and output alphabets of this channel are identical and
they coincide with the output alphabet of the source. It
is known how the noisy channel can deform the input, in
particular we know what (input) letters can become a certain,
possibly different (output) letter on the other side. (We always
assume though that every letter can result in itself, that is
get through the noisy channel without alteration. At the same
time, there is no other limitation than the length on how
many characters of a sequence can get changed.) Later another
message is sent (by the same sender) to the same receiver. This
second message is sent via a noiseless channel and its goal
is to make zero-undetected-error decoding possible, i.e., after
having received this second message the receiver should be
able to decide whether it decoded the first message correctly.
The use of the noiseless channel is expensive, so the second
message should be kept as short as possible.

Let the shortest possible message that satisfies the criteria
have length h(t) when t characters of the source output are
encoded together. (Though we will let £ going to infinity, for
finite ¢ we always assume that its value is known to Alice
and Bob, and thus may affect their coding strategy.) Let H
denote the noisy channel. The efficiency of the communication
is measured by the quantity

()
Rp(H) := lltIglol.}f —~
that we call the Dilworth rate of the noisy channel H. (For an
explanation of the name see Remark 5 in Subsection II-B.)

Remark 1: Note the special feature of the problem that we
characterize a channel by a rate, that is with a parameter that,
unlike channel capacity, we want to be as small as possible.
The reason is that we measure the reliability of a channel not
by the amount of information it can safely transfer but with
the amount of information needed fo be added for making the
communication reliable. O

B. Dilworth rate and Witsenhausen rate

The relevant properties of H are described by a directed
graph Gu having the (common input and output) alphabet as
its vertex set and the following edge set. An ordered pair (a, b)
of two letters forms a directed edge of Gy if and only if b # a
and the output of H can be b when it is fed by a at the input.

Remark 2: As usual we will use V(F) to denote the vertex
set and E(ﬁ) to denote the edge set of a directed graph F. We
will use similar notation for undirected graphs that we always
consider to be the same as a symmetrically directed graph. In
such a graph an ordered pair (u,v) of two vertices forms a
directed edge if and only if the reversely ordered pair (v, u) is
also present in the digraph as a directed edge. We will use the
term oriented graph for directed graphs that do not contain
any edge together with its reversed version. That is F is an
oriented graph if (u,v) € E(F) implies (v,u) ¢ E(F). As it

is also customary, the term digraph will be used as a synonym
for “directed graph”.

When we say underlying undirected graph of a directed graph
it means the undirected graph we obtain on the same vertex set
if we connect by an undirected edge exactly those vertices that
are adjacent in the directed graph (in either or both directions).
U

To express Rp as a graph parameter we need the following
notion.

Definition 1: The AND product F A G of two directed
graphs F and G is defined as follows. The vertex set of
F A G is the direct product V(F) x V(G) and vertex (f,g)
sends a directed edge to (f',¢g’) iff either (f, f') € E(ﬁ) and
(9.9) € E(G) or (f.f") € E(F) and g = ¢’ or f = f' and
(9,9") € E(é) The ¢-th AND power of a digraph G, denoted
by Gt is the t-wise AND product of digraph G with itself.

Observe that this graph exponentiation extends to sequences
of letters the relation between individual letters f and f'
expressing that feeding f to the noisy channel H may result
in observing letter f’ at the output. A sequence of letters
at the input of H can result in another such sequence at
the output of H if at each coordinate the character in the
first sequence can result in the corresponding character of
the second sequence. (This includes the possibility that the
character does not change when sent through H.)

Remark 3: The terminology of graph products is not com-
pletely standardized. The AND product we just defined is also
called normal product [4], strong direct product [26], or strong
product [18]. We follow the paper of Alon and Orlitsky [3]
when use the name AND product, because we find this name
informative. A similar remark applies to the OR product that
we will introduce later in Definition 3. O

Recall that the chromatic number y(F') of a graph F is
the minimal number of colors that suffice to color the vertices
of F' so that adjacent vertices get different colors. If F' is a

digraph, its chromatic number x(F') is understood to be the
chromatic number of the underlying undirected graph.

Proposition 1:
_ 1 1 AL
Rp(H) = tlggo n log x(G%r)-

Remark 4: 1t is easy to see that the above limit always
exists. (The reason is the submultiplicative behaviour of the
chromatic number under the AND product). O

Proof: Alice and Bob can agree in advance in a proper
coloring of G4 with x(G/) colors. Alice can send Bob the
color of the vertex belonging to the original source output
using [log x(G/)] bits. Bob compares this to the color of
the vertex representing the sequence he obtained. If the latter
color is identical to the one Alice has sent him, then he can
be sure that his decoding was error-free. This is because any
other sequence that could result in his decoded sequence is
adjacent (in C_jﬁ[t) to this decoded sequence, so its color is
different.

On the other hand, if Alice sent a shorter message through
the noiseless channel, then she could not have X(é/l}t) distinct
messages and thus there must exist two adjacent vertices in
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éﬁt that are encoded to the same codeword by Alice (for the
noiseless channel). Then one of the two sequences represented
by these two adjacent vertices could result in the other one,
while this other one could also result in itself. Thus Bob
cannot make the difference between these two sequences, one
of which is the correct source output sequence while the other
one differs from it. So receiveing this message Bob could not
be sure whether his decoding was error-free or not. [ |

The right hand side expression in Proposition 1 can be
considered as a digraph parameter that we will call the
Dilworth rate of the digraph Gh.

Definition 2: For a directed graph G we define its (loga-
rithmic) Dilworth rate to be

_ 1 -
Rp(G) = lim 7 log x(G™).

The non-logarithmic Dilworth rate is

Obviously, Rp(G) = logrp(G).

Remark 5: Let L be the directed graph on 2 vertices with
a single directed edge. If we consider the vertices of LM as
characteristic vectors of subsets of a t-element set then Rp (E)
can be interpreted as the asymptotic exponent of the minimum
number of antichains (sets of pairwise incomparable elements)
in the Boolean lattice of these subsets that can cover all the
subsets. (This correspondence becomes clear by realizing that
antichains of the Boolean lattice belong to sets of pairwise
non-adjacent points of L™ and thus the minimum number
of antichains in said covering is just the chromatic number
of I_;/\t.) The exact value of this minimum number (which is
t+1), is given (easily) by a special case of what is called the
“dual of Dilworth’s theorem” [13]. (This theorem is also called
Mirsky’s theorem, see [28], and it states that the minumum
number of antichains covering a partially ordered set is equal
to the length of its longest chain. Dilworth’s theorem is
the analogous result with the role of chains and antichains
exchanged.) This connection to Dilworth’s celebrated result is
the reason for calling our new parameter Dilworth rate. Note
that the name Sperner capacity was picked by the authors
of [16] for analoguous reasons: the Sperner capacity of the
digraph L has a similar relationship with Sperner’s theorem
[37]. O

The AND product is also defined for undirected graphs. Con-
sidering undirected graphs as symmetrically directed graphs
the definition is straightforward.

Witsenhausen considered the “zero-error side-information
problem” that led him to introduce the quantity

1
Rw(G) = Jlim —logx(G")

that is called the Witsenhausen rate of (the undirected)
graph G.

It is straightforward from the definitions that if Gisa sym-
metrically directed graph and G is the underlying undirected

—

graph (that we consider equivalent), then Rw(G) = Rp(G).

Thus Dilworth rate is indeed a generalization of Witsenhausen
rate to directed graphs.

Remark 6: We note that Nayak and Rose [30] define what
they call “the Witsenhausen rate of a set of directed graphs”.
Though formally this gives the Dilworth rate of a directed
graph, the focus of [30] is elsewhere. When its motivating
setup results in a family consisting of a single digraph, then
this digraph is symmetrically directed. (See also Theorem 20
in Section IV.) O

ITII. BOUNDS ON THE DILWORTH RATE
A. Relation to Sperner capacity and a lower bound

Sperner capacity was introduced by Gargano, Korner and
Vaccaro [16]. Traditionally this parameter is defined by using
the OR product.

Definition 3: The OR ﬂproductﬁﬁ V G of directed graphs F
and G has vertex set V(F) x V(G) and (f, g) sends a directed
edge to (f’,g') iff either (f, f') € E(F) or (9,¢') € E(G).
The t-th OR power GVt is the t-wise OR product of digraph
G with itself.

Let K,, denote the complete directed graph on n vertices,
that is the one we obtain from a(n undirected) complete graph
K,, when substituting each of its edges {a,b} by the two
oriented edges (a,b) and (b,a). The (directed) complement
of a digraph G is the directed graph G¢ on vertex set V(é)
having edge set E(G¢) = E(K,) \ E(G).

Now we note the straightforward relation of the AND and
OR powers that (GV!)© = (G¢)"t.

The (logarithmic) Sperner capacity of digraph G is defined
(see [16], [17]) as

~ : 1 SVt
£(G) = lim logw,(GY),
where ws(ﬁ) denotes the symmetric cligue number, that is the
cardinality of the largest symmetric clique in digraph F: the
size of the largest set U C V(F) where for each f, f" € U
both (f, f') and (f’, f) are edges of F'.

Using the above relation of the AND and OR products,
Sperner capacity (of the complementary graph G°) can also
be defined as

. . 1 .
D(G) = X(G°) = lim - log a(G"Y),

where a(ﬁ) stands for the independence number (size of the
largest edgeless subset of the vertex set) of graph F'. This is
the definition given in [7]. (The authors of [7] call this value

=

the Sperner capacity of G.)

When G is an undirected (or symmetrically directed) graph,
then I'(G) = C(G), the Shannon capacity of graph G (see
[33]). (Recall, that Shannon capacity is the zero-error capacity
of a channel where the pairwise confusability or distinguisha-
bility of the input letters is described by the graph the Shannon
capacity of which we are talking about. Its formal definition
is just the above formula whith orientations ignored.) As
already mentioned in the Introduction, the main motivation for
introducing Sperner capacity came from extremal set theory,
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cf. [17], it turned out that it has its own relevance (that is not
only that via Shannon capacity) in information theory, cf. [12],
(301, [7].

We will need a sort of probabilistic refinement of our
capacity-like parameters called their “within-a-type” versions,
see [10]. First we need the concept of (P, €)-typical sequences,
cf. [11].

Definition 4: Let V be a finite set. The fype of a sequence
x in V' is the probability distribution P, on V defined by
Py(a) = $N(a|x) for every a € V, where N(a|z) = |{i :
x; = a}|. Given a probability distribution P on V, and € > 0,
a sequence = in V! is said to be (P,e)-typical if for every
a € V we have |Pg(a) — P(a)| < e. We denote the set of
(P, e)-typical sequences in V! by T'(P,e). When € = 0 we
also write 73 for T'(P,0).

Let GO stand for either G or GV!. For a directed (or
undirected) graph F and U C V(F) we denote by F[U] the
digraph induced by F on the subset U of the vertex set. We
also use the shorthand notation F’;@é = FOUT(P,e)).

Let B(é) be either of the following graph parameters of
the directed graph G independence number, clique number,
chromatic number, clique cover number (which is the chro-
matic number of the complementary graph), symmetric clique
number, or transitive clique number. (The latter is the size of
the largest subset U of V(G) the elements of which can be
linearly ordered so that if u precedes v then the oriented edge
(u,v) is present in E(G).)

Let the asymptotic parameter Z(G) be defined as

. 1 .
Z(G) := limsup : log B(G®").

t—o00

Definition 5: The parameter Z (G, P) of a digraph G within

a given type P is the value
= . . ]- =101
2(G, P) = lim lim sup - log 8(G'p.).

We note that for several of the allowed choices of 5(G) and
GO we obtain a graph parameter that already exists in the
literature. For example, when 5(G) = w,(G) and the power
we look at is the OR power, we get Sperner capacity within
a given type, that has an important role in the main results of
the papers [16], [17].

If we choose 3(G) = x(G) and the OR power, we obtain
the functional called graph entropy, which is defined in [20]
and has several nice properties, see [34], [35], as well as
important applications, see e.g. [19]. When 3(G) = x(G)
but the exponentiation is the AND power, then we arrive to
the within a type version of Dilworth rate Rp(G,P). The
special case of this for an undirected graph G was already
known under name “‘complementary graph entropy” that could
justifiably be called “Witsenhausen rate within a given type”.
This parameter was introduced by Korner and Longo [22] and
further investigated by Marton [27]. Although this within-a-
type version of Witsenhausen’s invariant was introduced earlier
than the non-probabilistic version (cf. [22], [38]), for the sake
of consistancy we denote it by Ry (G, P).

Note that Marton [27] proved the important identity
Rw (G, P)+ C(G*, P) = H(P),

where H(P) = —XI" ,p;logp; is the entropy of the prob-
ability distribution P = (p1,...,p,). This holds for any
probability distribution P on V(G). Along the same lines one
can also prove the following theorem, the proof of which we
will give for the sake of completeness.

Theorem 2: Let G be a directed graph and P an arbitrary

=

fixed probability distribution on V' (G). Then

We will use the notion of fractional chromatic number x ;(G)
in the proof. Let S(G) denote the set of independent sets
in G. A function (a “weighting” of the independent sets)
g : S(G) — R U{0} is a fractional coloring of G if for every
vertex v € V(G) we have ) c 1cg(q) 9(A) = 1, that is the
sum of the weights g puts on independent sets containing v is
at least 1. (A proper coloring is also a fractional coloring:
the color classes get weight 1, the other independent sets
get weight 0.) The fractional chromatic number is x7(G) =
ming 3 4c (e 9(A), that is the minimum (taken over all
fractional colorings) of the total weight put on independent
sets by a fractional coloring g. (Formally we should write
infimum but it is known that the minimum is always attained.
See the book [32] for a detailed account on fractional graph
parameters.)

We will need the following properties of the fractional
chromatic number.

Definition 6: A directed graph G is vertex-transitive if for

=

any two vertices u, v € V(G) it admits an automorphism that
maps u to v.

If F is a vertex-transitive graph, then x ¢(F) = ‘Z((g))l (For

a proof see [32], Proposition 3.1.1 on page 41.)

For every graph I’ we have

lim +/x(FO!) = lm ¢/ xf(F).
t—o00 t—o0

The latter follows from Lovész’s result [24] stating that

X(F) < x5;(F)(1 + Ina(F)) and the obvious inequality

Xf(F) < x(F) that holds for all (finite simple) graphs.

Proof of Theorem 2: Note that by the well-known (and
more or less trivial) inequality x(F') > VAR for every graph

At O‘(F)
F, we have x(Fpt) > ‘Z((ﬁgt:))‘
holds if we have a directed graph Fin place of the undirected
graph F. This is straightforward since y(F) and o(F) are
defined to be identical to the corresponding parameter of the
underlying undirected graph F'. It is also well-known (cf. e.g.
[11]) that lim._,0 limy . + log(|T*(P,€)|) = H(P). The last
two relations immediately give Rp (G, P)+T(G, P) > H(P).
For the reverse inequality let us fix a sequence of probability
distributions P, on the vertex set of our graph so that

. Clearly, this relation also

I P(a) — Py(a)] = 0
Jim max |P(a) = Pifa)]
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and 1
tliglo glog x(G™, P) = Rp(G, P).

Notice that G (P,,0) is a vertex-transitive graph, since
every sequence forming an element of 7¢(P,0) can be
transformed into any other such sequence by simply permuting
the coordinates.

Thus
Rp(G,P) = limy_ o log )((C?M7 P)

limt%oo % IOg Xf(é/\tv Pt)

1 [V(G,Py)|

¢ a(GNE,Py)

= limy,e0 + log |V(§M, P)|—
—  limy oo %log a(GN Py

= H(P)-T(G,P).

= limg o0

log

Using standard techniques of the method of types, cf. [9],
[11] we can already state our lower bound on RD(é). We
need the fact that the number of distinct types that a ¢-
length sequence over some fixed alphabet can have is only
a polynomial funcion of ¢ (cf. the Type Counting Lemma 2.2
in [11]), while the parameters we investigate are asymptotic
exponents of some graph parameters that grow exponentially
as ¢ tends to infinity. With this in mind it follows that

Rp(G) = sup Rp(G, P), I'(G) = supT'(G, P).
P P

Theorem 3:
Rp(G) > log|[V(G)| - T(G).

Proof: Using the above equalities, we obtain
Rp(G) + T'(G) = supp Rp(G,P) + supp'(G,P) >
supp(Rp(G, P) + I'(G, P)) = supp H(P) = log|V(G)|.
This gives the lower bound in the statement. [ |
Note that Sperner capacity is unkown for many graphs, so the
lower bound above usually does not give a known numerical
value. Still, there are some examples of graphs where Sperner
capacity is known and is non-trivial. A basic example is the
cyclically oriented triangle, or more generally, any cyclically
oriented cycle.

First we formulate a consequence of the above formula.
Corollary 4: If G is a vertex-transitive digraph then
Rp(G) =1og|V(G)| - T(G).

Proof: Let Py denote the uniform distribution on the
vertex set of G. If G is vertex-transitive then by symmetry
(see more details below) Rp(G) = Rp(G, Py) and T'(G) =
F(é, Py). Combining these equalities with Theorem 2 we
obtain Rp(G) + I'(G) = H(Py) = log|V(G)| and thus the
statement.

The use of symmetry can be justified as follows. If the
maximum of RD(é, P) over P would be achieved by a
non-uniform distribution @, then we could take an optimal
construction and use time sharing for a realization of this
construction according to all possible automorphisms of the

digraph G. There are a finite number of automorphisms, so this
gives a construction of finite length where no vertex can appear
a different number of times than any other, so we achieve the
same optimal rate with uniform distribution. [ ]

Now we will use this Corollary to determine the Dilworth
rate of the cyclically oriented k-length cycle C_”k for every k.
Note that the complement of a cyclically oriented cycle is
a cyclically oriented cycle of the same length together with
all diagonals as bidirected (or equivalently, undirected) edges.
For k = 3 there are no diagonals, so the cyclic triangle is
isomorphic to its complement.

The Sperner capacity of the cyclic triangle was determined
in [8], cf. also [5], and its value is log2. The upper bound
part of this result was generalized by Alon [1], who proved
the following.

_ Theorem 5: ([1]) The Sperner capacity of a directed graph
G always satisfies

(@) < logmin{A,(G),A_(G)} +1,

where A (F) and A_(F) stand for the maximum outdegree
and maximum indegree of F', respectively, i.e., the number of
edges at v that are oriented outwards or towards v, respectively.

Remark 7: See [23] for a generalization of Theorem 5,
where the maximum in- and outdegrees are substituted with
what is called the directed local chromatic number of digraph
G. 0

On the other hand, Sperner capacity is bounded from
below by (the logarithm of) the transitive clique number, the
number of vertices in a largest transitively directed complete
subgraph, denoted by Wtr(é). (This is an easy observation
which implies that substituting ws(GV?) by w,(GY!) in the
definition of Sperner capacity gives the same value, i.e. it
gives an alternative definition of Sperner capacity, see [21],
[14], [31] and also Proposition 4 and the Remark following it
in [15].) Note that a transitively directed complete subgraph
meant here is not necessarily induced. It is allowed that some
reverse edges are also present on the same subset of vertices.

Corollary 6: The Dilworth rate of the cyclically oriented
k-cycle is

Proof: Let the directed complement of C), be denoted by

Sy. Since Ay (Sy) = A,(g@) = k — 2, Theorem 5 implies
that the Sperner capacity of Sy is at most log(k — 1).

It is easy to see that wtr(gk) = k — 1, so the lower

bound mentioned above is also log(k — 1). Since the above

two bounds coincide, the Sperner capacity of §k is equal to

log(k — 1).
Using that C} is vertex transitive Corollary 4 implies the
statement. ]

Note that Corollary 6 shows that the Dilworth rate is a strict
generalization of Witsenhausen rate since log % <log2 <
Rw(Cy) if k > 3.

Definition 7: Call a subset of the vertex set of a directed
graph G acyclic if it induces an acyclic subgraph. The latter
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means that there is no oriented cycle on these vertices. The
acyclicity number a(G) of a directed graph G is the number
of vertices in a largest acyclic subset of V(G).

Note that unlike for a transitive clique we do not allow
reverse edges in an acyclic subgraph. The following lemma

is from [7] (see also the discussion before Corollary 6 for an
equivalent statement concerning the complementary digraph).

Lemma 7: ([7]) For all directed graphs G we have

I'(G) > loga(G).

Let m > 1 be an odd number. The following tournaments
(oriented complete graphs) are also generalizations of the
cyclic triangle. (They are, in fact, called cyclic tournaments.)
Let V(T,,) = {0,1,...,m — 1} and (i, j) is an edge iff
j—i=r (mod m) for some 1 < r < =1 (Figure 1 shows
the tournament T5.) Note that it holds for every directed graph
that reversing all of its edges does not change the value of
either its Sperner capacity or of its Dilworth rate. This implies
that if Tis a tournament then we have (7€) = %(T) and
[(T¢) = I(T). By I(T) = %(T¢) all the four values are
equal.

The tournament f5.

Fig. 1.

Corollary 8: For all odd integers m > 0 we have

2m

RD(fm) m4+1

= log

Proof: Lemma 7 gives I'(T},,) > log 7L

By I'(T,,) = %(T,,) (see the note before stating the
Corollary) Alon’s Theorem 5 can be applied implying that
our lower bound is sharp. Since fm is vertex-transitive we
can apply Corollary 4 to complete the proof. [ |

Observe that Corollary 8 shows not only that the value
of the Dilworth rate of an oriented graph may differ from
the Witsenhausen rate of the underlying undirected graph, but
also that they can differ arbitrarily. The latter is meant in the
strong sense that the Witsenhausen rate cannot be bounded
from above by any function of the Dilworth rate. Indeed,
denoting the complete graph on m vertices by K,, we have
log 73’_7:1 < logm = Rw(K,,) for every m > 2. The left
hand side of the inequality is bounded above by log 2, while
the right hand side goes to infinity with m.

B. Dichromatic number and upper bounds

Now we show that the (logarithm of the) dichromatic
number defined in [29] is an upper bound on the Dilworth
rate.

Definition 8: The dichromatic number X(lir(é) of a directed
graph G is the minimum number of acyclic subsets that cover
V(G). A partition of V(G) into acyclic subsets will be called
a directed coloring or dicoloring.

We note that an undirected edge (meaning a bidirected edge)
is considered to be a 2-length cycle, therefore its two endpoints
cannot be both contained in an acyclic set. This shows that for
undirected (equivalently, symmetrically directed) graphs the
dichromatic number is equal to the chromatic number.

Remark 8: We do not use the term “acyclic coloring”,
because it is already used for a completely different concept,
see [2]. O

Theorem 9: For any directed graph G
p(G) < xair(G).

Proof: Let us fix a directed coloring of digraph G
consisting of k := Xdir(é) acyclic subsets (“color classes”).
For each v € V(G) let g(v) denote the color class that contains
V.

Now consider G/, Tts vertex set is [V (G)]*. For each
sequence (ai,...,a;) € V(G™) we attach the sequence of
colors (g(ay),...,g(as)). There are k' such color sequences,
so this gives a partition of V (G") into k! partition classes.
We also give another partition of V(é“) according to types.
Two vertices are in the same partition class if their type is
the same. The Type Counting Lemma 2.2 in [11] states that
the number of possible types a sequence of length ¢ over a
k-element alphabet can have is not more than (¢ + 1)*. Thus
we know that the latter partition has at most (¢ + 1)IV(&),
that is a polynomial number (in t) of classes. Now let
Q = (Q1,...,Qs) be the common refinement of these two
partitions. We have s < (¢t + 1)IV(SIk! by the foregoing.
Now we show that each partition class (); induces an inde-
pendent set in G/*. Let two sequences a = (aj,...,a;) and
b= (b1,...,b;) belong to the same @), that is, they have the
same type and Vi : g(a;) = g(b;). Let j be an index for which
a; # b;. Since a; and b; are in the same color class of a valid
dicoloring, we cannot have both (a;,b;) and (b, a;) present
in the graph as a directed edge. If neither is present then there
is no edge between a and b. If (a;,b;) € E(G), then we
know that (b;, a;) ¢ E(G 7), so the oriented edge (b, a) cannot
be an edge of GM We need to show that neither the opposite
oriented edge (a, b) can be present in G/, If (a;, b;) € E(G),
then we claim that there should be another position ¢ for which
(be,ar) € E(G). If this is true, then (ar,be) ¢ E(G) and so
(a,b) ¢ E(G™). Now we prove the above claim. Consider
all coordinates h, for which g(an) = g(a;) = g(b;) = g(bn).
Denote the set of these h’s (including j itself) L. Since vertices
v € V(G) with the same “color” g(v) induce an acyclic
subdigraph, we can put these vertices into a linear order so,
that (v,v') € E(G) implies that v precedes v’ in this linear
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order. So if (a;,b;) € E(G), then for our edge (aj,b;) a;
precedes b;. However, since a and b have the same type it
cannot happen that for each h € L aj precedes by, in this
linear order. So there must be a coordinate £ where b, precedes
ay and this implies the claimed properties. Thus each partition
class Q; is independent indeed, so the undirected graph under-
lying G/t can be properly colored with s < (¢ + 1)IV(©Ijt

colors. This implies that TD(C_j) = limg_, o (/X([C_T“H]/\t) <
lim inf;_y oo V/(t + DIVOIEt = k = a1 (G). n
As a strengthening of the previous theorem we will show
that we can also write a natural fractional relaxation of the
dichromatic number on the right hand side above. (We could
not prove this right away, as the weaker statement will be
used in the proof.) To prove this stronger statement we need
some preparation, in particular we will use the following
observations.

First note, that yai:(F) < x(F) holds for any digraph F'. This
is simply because independent sets in F' are special acyclic

sets, so any proper coloring of F is also a directed coloring
of F.

Proposition 10: The dichromatic number is submultiplica-
tive with respect to the AND product, i.e.

dlI‘(F/\G) <Xd1r( ) dlr(é)

In particular,

Xair(F™) < [xaie(F)]".
A straightforward consequence of Proposition 10 is that the
limit limg o0 / Xdir (F) exists.

In the proof we will use the following simple fact.

Claim 11: The AND product of two acyclic subdigraphs,
A of F and B of G results in an acyclic subdigraph of FAG.
Proof: Assume for contradiction that (F A G)A x B
contains a directed cycle. (Recall that Y[U] denotes the
digraph Y induces on U C \40% ) ) Let its vertices be
(a1,b1),...,(ak,bg) in the (cyclic) order the cycle defines,
ie. ((ai,b;), (aiz1,bip1)) is an edge of F A G for all i €
{1,...,k} where addition is intended modulo k. We may as-
sume without loss of generality that not all a;’s are equal. Then
in the sequence ai,as, ..., a, we have for all i € {1,...,k}
either a; = a;y1 or (a;,a;41) € E(F ) (addition is again
modulo k) and for some i the second case occurs. But then
there must be a directed cycle in F[{a1, ..., aj}] contradicting

the assumption that A is acyclic. ]
Proof of Proposition 10:  Let cp V(ﬁ) —
{]—7'~7Xdir(F)} and Ca V(G) — {]-w-'deir(Gl} be

optimal directed colorings of the digraphs F and G, re-
spectively. Usmg these colorings we define the function ¢ :
V(F) x V(G) = {1,. ~-aXd1r(F)Xd1r( 7)} as follows. For
(u,v) € V(F) x V(G) let é : (u,v) (cF( u), cG( v)).
Claim 11 implies that ¢ is a directed coloring of FAG. As it
uses Xdir(ﬁ )Xdir(é) colors the statement is proved. [ |

Lemma 12: For any digraph F and positive integer k we
have

rp(F™*) = [rp(F)]X.

Proof: Fix an arbitrary positive integer k. We can write

ro(F) = limpe "X (FAmH)
= limpoeo {/ §/X(FA)A™)
= {/hmm%oo R/ X([FAk]Am)
= {/rp(Frk),
that implies the statement. [ ]

Proposition 13: For any digraph F we have

lim
t—o00

Proof: By xair(F) < x

'/ xair(FAY) = rp (F).

(F) we have

V/ Xaie (FA) < lim (/X (FAY) = rp(F).

lim
t—o00 t—o0

For the reverse inequality we can write

lim

t AL < 1
Jim rp(F )_thm

) — oy (A
TD(F) el Xdlr(F )a
where the equality follows by Lemma 12 and the inequality is
a consequence of rp (@) < xair(G) (see Theorem 9) applied
for G = F/™. [ |

Definition 9: Let the set of subsets of the vertex set in-
ducing an acyclic subgraph in a digraph G be A(é) A
function g : A(G) — R, U{0} is called a fractional directed
coloring (or fractional dicoloring) if Yo € V(G) we have
Ea;eUeA(é)g(U) > 1. The fractional dichromatic number of
G is .

Xair,f (G)

where the minimum is taken over all fractional directed
colorings g of G.

= mgin Eyea@9U);

Note the obvious inequality Xair, f(é) < Xdir(é) for any
digraph G.
We will need the following lemma.

Lemma 14: For any digraphs F and G we have
Xadir,f (F A G) < Xair, f (F)Xair, £ (G).

Proof Let f and g be optimal fractional directed color-
ings of F and G, respectively.
Recall that by Claim 11 if A € A( ) and B € A(G) then the
direct product A x B is in A(F A @), ie. A x B induces an
acyclic subdigraph in FAG.

Now give the following weights w to the acyclic sets
of FAG. If H € A(F AG) has a product structure,
ie. H = Ax B for some A € A(F) and B € A(G),
then let w(H) = f(A)g(B). If H is not of this form,
then let w(H) = 0. For any (a,b) € V(F A G) we have

ZHs(a,b),HeA(ﬁ/\é) w(H) = (ZAB@ f(A))(ZBBb f(B)) >



IEEE TRANSACTIONS ON INFORMATION THEORY

1, thus w is a fractional dicoloring of F A G. Now we
have Xair.f (F A G) < (X acacr f () pen 9(B)) =

— —

Xdir,f (F')Xair, £ (G). This completes the proof. [ |

Corollary 15: For any digraph G and any positive integer
t we have

Xdir,f(éAt) < [Xdir,f(é)]t-

We also need the following result.

Proposition 16: For any digraph F we have
; i (A — nl
thj{é Xair,f (F) = rp(F).

For the proof we need some preparation.

A hypergraph H = (V,€) consists of a vertex set V' =
V(M) and an edge set £, where the elements of £ are subsets
of V. A covering of hypergraph H is a set of edges the
union of which contains all elements of V(#H). Let k(H)
denote the minimum number of edges in a covering of H.
A fractional covering of a hypergraph H = (V,&) is a
function ¢ : &€ — Ry U {0} satisfying for every v € V
that > _pce 9(E) > 1. The fractional covering number is
kf(H) := ming ) 5. g(E) where the minimization is over
all fractional covers g. Clearly, k(1) < k(#). Lovdsz proved
in [24] (cf. also [32]) that

k(H) < kp(H)(1+Inp(H)),

where u(H) = max{|E|: E € E(H)}, that is the cardinality
of a largest edge in .

For a directed graph G let Hs = (V(G), Eg) where E5 =
A(C_j), i.e. it consists of the acyclic subsets of vertices in G.
It is straightforward that k(z{@) = xair(G) and ki(Ha) =

Xdir,f (G) while p(H) = a(G). Thus the above result implies
that

Xair(G) < xair,r(G)(1 +Ina(G)).

Proof  of We

1y o0 \/ Xatie,f (FA) < limyoyo0 \/Xaie(FM) = rp(F)
by  Proposition 13 and the obvious  inequality
Xair, £ (G) < xair(G) applied to F/.

For the reverse inequality we write

Proposition 16: have

o (F) limy o0 v/ Xair (F/?)

limyso /Xt (FA)(L + Ina(F)
= (hmt—)oo \/ Xdir,f(ﬁ/\t)) X
X (limtﬁoo /(14 In a(ﬁ“)))

= hmt—>oo y Xdir,f(ﬁ/\t)a

IN

where the last equality follows from the fact, that the second

term of the multiplication before it is 1, since Ina(F/) is

only linear in t¢. ]
Theorem 17: For any directed graph G

— —

™D (G) < Xdir,f(G)‘

Proof: Using Corollary 15 we obtain

rp(G) = limy o0/ Xair, £ (GAY)
< timy oo/ [air (] = e ():

|
There are several directed graphs G for which the above upper
bound is sharp. In particular, Corollaries 6 and 8 can be proved
using Theorem 17 instead of vertex-transitivity. (An optimal
fractional dicoloring of T is shown on Figure 2. Here we
L on all the five acyclic sets formed by three

put weight =
consecutive vertices.)

Fig. 2. An optimal fractional dicoloring of Ts.

Note however, that Theorem 17 is not always tight: for
the graph (symmetrically directed digraph) C5, we have
Rw(C5) = logy/5 by results in [38] and [25], while
Xair,f (C5) = 3.

We present another such example which is not symmetri-
cally directed. Let the 5-length cycle be oriented in an (as
much as possible) alternating manner, that is so that only one
of its vertices will have outdegree 1 (implying that two of
the 4 others will have outdegree 2, and the remaining 2 have
outdegree 0). Denote this oriented graph by 14’5. (See Figure
3)

Fig. 3. The directed graph As.

We know that 3(As) = log v/5. (This is proven as Proposi-
tion 4 in [15], see [31] for more details on the Sperner capacity
of oriented self-complementary graphs. All other orientations
of the 5-cycle have Sperner capacity log 2, see [15] and [23].
By Theorems 3 and 17 this implies that the Dilworth rate
of their complements is log g.) Thus by Theorem 3 for the
complement of As we have Rp(A%) > logh — log /5 or
equivalently TD(ng) > /5. (The digraph /_l'g is shown on
Figure 4.)
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Fig. 4. The directed graph /Yg (complement of /Tg,). Bidirected edges are
shown as undirected ones.

Proposition 18:
- 5 -
V5 <rp(A5) < V6 < 5 = xain £ (A7),

Proof: The first inequality was already given above. To
prove the second inequality we give 6 acyclic sets of vertices
in the second power [/Tg]m of our graph, that cover all vertices
in V([AS)"2). The existence of this covering implies that
TD([gg]/\z) < Xair([A€)"2) < 6, thus by Lemma 12 we get
rp(Ag§) < V6. . .

Let us denote the vertices of V(A§) = V(A5) by 0,1,2,3,4
in their cyclic order, so that in As we have d4+(3) =1 and the
unique outneighbor of 3 is 2. (That is, the outdegree 1 vertex
is 3, the outdegree 2 vertices are 4 and 1, while 2 and 0 have
outdegree 0.) The following six subsets of V(A5) x V(Aj)
induce acyclic subgraphs of V/([A¢]*2) that entirely cover its
vertex set:

44,31, 10,23, 02;
14, 43,01, 30, 22
41,33,32,20
13,21, 42,00
11,12,04,03
34,24, 40.

One can check that within all these five sets if xy is to the
left of zw in the same line above (x,y, 2z, w may not all be
different), then either (x, z) or (y,w) (or both) form an edge
of /Y5, thus this is a missing edge in /_1'5 This implies that as a
vertex of [A¢]"2 the pair(z,y) does not send an edge to vertex
(z,w), therefore the corresponding set of vertices induces an
acyclic subgraph in [/T?,]AQ This completes the proof of the
second inequality.

To see that xair, f(ffg) > g it is enough to realize that any
3 vertices of /Yg contains a bidirected edge, thus any acyclic
induced subgraph has at most two vertices. To see equality we
can put weight % on all the five 2-element acyclic subsets. W

Remark 9: Getting the same upper bound for the values
determined in Corrollaries 6 and 8 in two different ways above
is not pure coincidence. It follows from the fact that if G is
vertex-transitive then

Xdir, f (C_j) -

Note that this is a generalization of the relation, that for every
vertex-transitive (undirected) graph G

V@)
a(G)

that we already referred to right after Definition 6 in Subsec-
tion III-A. This latter equality is presented in [32] (Proposition
3.1.1 on page 41) as a consequence of a more general
equality concerning vertex-transitive hypergraphs (see Propo-
sition 1.3.4 on page 7 of [32]).

A vertex-transitive hypergraph is a hypergraph that attains
for every pair u,v of its vertices an automorphism that maps
u to v. Proposition 1.3.4 in [32] states that if H = (V,£) is a
vertex-transitive hypergraph then

vl

n(H)’

where (as before; cf. the discussion after stating Proposi-
tion 16) pu(H) = maxgee |E|. For a directed graph G
we attach again the hypergraph H :#(V(é),gé) where
Es = A(G). 1t is straightforward that if G is vertex-transitive
then so is H 5. The equality quoted for ky from [32] gives

xr(G)

ky(H) =

—

the stated equality xair,f(G) =

% for vertex-transitive
digraphs G. -

IV. COMPOUND SYSTEMS

Imagine that the handwritten message is left to Bob by
one of his three secretaries but it is not known in advance
which one. Their handwriting is rather different and this has
two consequences that are important for us. One is that the
possible mistakes Bob can make when decoding the message
are different depending on which secretary wrote him the
message. (For example, in the first secretary’s handwriting a 7
can be thought to be a 1, while the second secretary “crosses”
the leg of 7, so it can never look like a 1, however it can be
confused with a 4, etc.) This means that in place of the noisy
channel H we had so far, now there are three distinct channels
Hi,Hy, and Hs and we do not know in advance which
one will be used. The other important consequence of the
secretaries’ handwriting being different is that Bob recognizes
who wrote the message, i.e., he will know which one of the
three noisy channels models the actual situation. The relevant
characteristics (the graphs G'g,) of each of these channels are
known by Bob and also by his bank. Now it is the bank that
will send the second, error-free but expensive message to Bob.
Although the bank knows the characteristics it does not know
which secretary left the first message. So the second message
should make Bob able to decide whether his decoding (of
the first message) was correct irrespective of which secretary
wrote it. As before, we are interested (asymptotically) in the
shortest possible message the bank can send to satisfy the
requirements.

Notice that this scenario is basically that of having a
compound channel for the first communication. See [17], [30]
for more on compound channels from a zero-error point of
view.



IEEE TRANSACTIONS ON INFORMATION THEORY

Here is the abstract setting for the above situation. We
have k distinct noisy channels described by the family
{Hi,...,Hy}. The relevant properties of this set
are characterised by the family of directed graphs JH =
{GH 190 GH k}
Definition 10: (cf. [30] and [36]) The Dilworth rate of a
family of directed graphs G = {G1,..., Gy} all having the
same vertex set V, is

-,

Rp(9)

where Uiég\t denotes the graph on the common vertex set V'
of the graphs G/t with edges set U; E(G/').

Proposition 19: If my(t) is the shortest possible message
the bank should send to inform Bob about the correctness
of his decoding of the handwritten message for ¢ consecutive
rounds, then

1 1 At
= lim - log x(U:G7),

lim matt) (*)

t—o0

= Rp(Gn)-
Proof: Tt is enough to prove my(t) = [x(UiG%)].

Let a proper coloring of the graph Uléf{i be fixed and
agreed on by Bob and the bank in advance. Bob knows that
he received the first message via, say, H;. Since the fixed
coloring is a proper coloring of G?It, Proposition 1 implies
that the right hand side is an upper bound. If my (t) would be
smaller, then there is some j for which C_J'gt has two adjacent
vertices for which the bank sends the same message. If the
channel in use is just H; then Proposition 1 implies that the
right hand side above is also a lower bound. ]

The interesting fact about the above quantity is that it is not
more then its obvious lower bound.

Theorem 20: ([30] cf. also [36]) For every finite family of

directed graphs G = {G1,..., G} we have
Rp(G) = max Rp(G)).
Gieg

The analogous result for Witsenhausen rate (that is the
special case of the above when all graphs are undirected) is
proven in [36]. The above general form is already stated by
Nayak and Rose in [30] (cf. Remark 6 of the present paper).
They write that the proof uses essentially the same argument
as in [36] and they omit it for the sake of brevity. We do the
same.

V. CONNECTIONS TO EXTREMAL SET THEORY

As is the case with Sperner capacity, Dilworth rate also
has relevance in extremal set theory. (Recall that both notions
got their name from this relationship, cf. Remark 5.) These
connections become clear when we consider the t-length
sequences of vertices of a (di)graph G as characteristic vectors
of partitions of a t-element set. We already mentioned that
if G is the digraph consisting of two vertices and a single
oriented edge between them, then the Dilworth rate is just
the asymptotic exponent of the minimum number of Sperner
systems (antichains in the Boolean lattice) that cover all
subsets of a t-element set (the elements of the Boolean lattice).

This is known (and easy to prove) to be ¢ + 1, that is the
asymptotic exponent is 0. (The situation with Sperner capacity
is similar: its value for the above mentioned single edge graph
is the asymptotic exponent of the size of a largest Sperner
system on a t-element set which is easy to see to be 1.)

Here we present another example that we believe to be
interesting. Let us call a family of pairs of disjoint subsets
(A;, B;) of a t-element set cross-intersecting if for every two
pairs (A;, B;) and (A;, B;) both of the intersections A; N B;
and A; N B; are nonempty. (In other words, A, N B, = 1]
iff k& = {.) Bollobds [6] proved that for such a family

Zi W < 1. Now we ask, what is the minimum number
of cross-intersecting families that can cover all possible pairs

of disjoint subsets of a t-element set. If we are satisfied with
determining the asymptotic exponent (i.e. not the exact value)
of this number, then this question is equivalent to asking the
Dilworth rate of an appropriate graph.

Proposition 21: Let B(t) denote the minimum number of
cross-intersecting families that cover all pairs of disjoint
subsets of a t-element set. Then

1
lim - log B(t) =

Proof: Let F be the following directed graph. The
vertex set of F is {0,1,2} and the edge set is E(F) =
{(0,1),(1,0),(0,2),(2,0),(1,2)}. That is F has two undi-
rected (bidirected) edges connecting 0 to the other two vertices
and one oriented edge from 1 to 2. If we encode pairs of
disjoint sets of a t-element set by ternary sequences (the
positions of 1’s are the elements of A; and the positions of
2’s are the elements of B; in the ternary sequence encoding
the pair (A;, B;)), then it is immediate to see that B(t) is
just the chromatic number of Ft Thus RD(ﬁ) can indeed
be interpreted as the limit in the statement.

Now we have to show that R, (F') = 1. We have XdlI‘(F) =
2, so we have RD(F) < 1 by Theorem 9. Since F contains
an undirected edge, F contains a symmetric clique of size
2!, This implies X(FM) > 2" and thus Rp(F) > 1. The two
inequalities prove Rp(F) = 1. [ |

VI. COMPLETE ZERO-ERROR DECODING

Here we consider the more ambitious setup, where Bob,
otherwise in the same situation as described in the Introduc-
tion, should decode the actual message with zero-error. (Not
only getting to know whether his earlier decoding was correct
or not.)

A. The closure graph

It remains true that all the relevant information to solve
this problem is contained in the directed graph G p defined at
the beginning of Subsection II-B. We will need the following
operation on directed graphs.

Definition 11: Let F be a directed graph on vertex set V.
Let the closure graph cl(F) of F be the following undirected
graph. =

V(I(F):=V(F)=V
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and
E((F)) := {{a,b} : (a,b) € B(F)}U

U{{a,b} : v € V s.t. (a,v), (b,v) € E(F)}.

Note that if F = Gy then cl(F) = cIl(Gp) is the graph
where two vertices a and b are connected if and only if the
input letters they represent can result in the same output letter.
This output letter can be one of a and b but also a third element
v of the alphabet. (Recall that the input and output alphabets of
the noisy channel H are identical.) The last possibility means
that cl(é g ) may have edges the two endpoints of which are
not adjacent in G in either direction.

For example, if G g has three verticgs, a, b, c and only two
(directed) edges (a, ¢) and (b, ¢), then G is a bipartite graph,
while cl(G ) is the complete (undirected) graph on 3 vertices.

B. Relevance of the Witsenhausen rate in this case

Now we are ready to state the graph theoretic solution of
the problem considered here.

Theorem 22: Let h.(t) denote the minimum number of bits
Alice should send to Bob via the noiseless channel for making
Bob able to decode a t-length sequence of the source output
with zero-error. (The subscript ¢ stands for “complete”.) Then

he(t)
t

lim

t—o0

= Rw(cl(Gn)),

the Witsenhausen rate of the closure graph cl(G ).

Proof: Assume that a t-length source output is sent
through channel H, and the second message sent by Alice
is shorter than log x ([c1(Gzr)]"*t). Then there are two t-length
source outputs, that is two sequences x,y in V([cl(éH)]At)
that are adjacent in [c1(G )] and for which Alice sends the
same message when encoding either of them for the noiseless
channel. The adjacency of  and y in [cl(éH)]At means that
for every i there is a v; € V(cl(Gp)) such that both ; and
y; can result in v; when sent through the noisy channel H.
(The reason of this can be that z; = y; = v; or that (x;,y;) is
an edge of Gy, in which case v; = y; or (y;, ;) is an edge
of Gy and v; = z; or we have (zi,v5), (yi,v;) € E(éH)
where v; differs from both z; and y;.) Thus if Bob’s original
decoding of Alice’s (first) message was v = (vy,...,v;) then
he knows that the message sent could be either of x or y.
Since Alice’s second message for «x is identical to that for y,
Bob will not know even after receiving the second message
whether the original message was x or y.

On the other hand, if the length of Alice’s second message
is at least log x([c1(G#)]") then Alice can make Bob able
to decide for sure what the original message was. Indeed, fix
a proper coloring of [cl(G )] with x([cl(Gg)]™) colors
in advance that is known by both parties. Encode each color
by a (distinct) sequence of [log x([cl(Gg)]*)] bits. If the
original message was z = (z1,...,2:) then send Bob the
(codeword for the) color of z. Since as a vertex of [cl(G )]
z is connected to all those sequences that could result in the
same sequence when sent through H what z can result in, all
these sequences have a different color than z in our coloring

of [cl(Gy)]. Thus when Bob gets to know the color of z
from Alice’s second message he will know that whatever he
saw at the output of H could only arise from z as the input.
So he will decode z with zero-error.

Thus we proved that

he(t) = [og x([cl(G)]")].

So im0 hct(t) = lim; 00 % log X([Cl(éH)]/\t) =

Ry (cl(Gp)) as stated. [ |

C. What graphs can be closure graphs?

Not every graph can appear as the closure graph cl(é) of
some directed graph G.

Proposition 23: Let G be a(n undirected) bipartite graph
with |E(G)| > |V(G)| + 1. Then G cannot be the closure
graph of any directed graph.

Proof: Let Cl(ﬁ) be the closure graph of a directed graph
F'. Observe that if cl(ﬁ) has an edge e connecting two vertices
that were not adjacent (in either direction) in F, then e is
contained in a triangle in cl(F). Let G be a bipartite graph
with more edges than vertices. By bipartiteness G contains no
triangle, so if it is a closure graph of some graph G, then G is
just a directed version of G. If any vertex has indegree at least
2 in G that would generate a triangle in cl((_}"), so the closure
graph could not be G itself. Since the sum of indegrees equals
the number of edges, we cannot avoid having a vertex with
indeegree at least two if |E(G)| > |V(G)|. This proves the

statement. |

To give a complete characterization of those graphs that can
arise as a closure graph seems tedious and complicated. It is
certainly not a family of graphs possessing the nice property
that it would be closed under taking induced subgraphs. In
fact, the following statement is true.

Proposition 24: For any finite simple undirected graph G,
there exists a directed graph F such that cl(ﬁ) contains G as
an induced subgraph.

Proof: Let G be an arbitrary finite simple undirected
graph. For every edge e = {a,b} € E(G) consider a new
vertex v.. We add the oriented edges (a,v.) and (b,v.) to
our graph G. Now delete the edges of G thus obtaining a
graph F* on vertex set V(G) U {v, : e € E(G)} containing
only the 2|E(G)| oriented edges leading to some vertex ve. It
is straightforward to see, that cl(ﬁ) contains graph G as an
induced subgraph. u

VII.

The general problem concerning the Dilworth rate is to
determine it for specific directed graphs. Since this is a difficult
and mostly open problem to the related notions of Shannon
and Sperner capacities as well as for the Witsenhausen rate,
we cannot expect that this problem is easy. Nevertheless,
we have seen some digraphs for which it was solvable (at
least when using some non-trivial results already established
for Sperner capacity). Still, there are some directed graphs
for which determining the Dilworth rate seems particularly
interesting.

OPEN PROBLEMS
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Problem 1: What is the Dilworth rate of the graph /Tg we
presented in Subsection III-B? Recall that we know NG <
rp(Ag) < V6.

Tournaments play a special role in our setting, because they
are exactly those oriented graphs the complement of which is
also an oriented graph (that is one without bidirected edges).
So it may have some particular interest how their Dilworth
rate behave.

Problem 2: Is there a tournament T  for which rp(T) is

—

strictly smaller than xdir, ¢(7')?
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