310 research outputs found

    Accelerated volumetric reconstruction from uncalibrated camera views

    Get PDF
    While both work with images, computer graphics and computer vision are inverse problems. Computer graphics starts traditionally with input geometric models and produces image sequences. Computer vision starts with input image sequences and produces geometric models. In the last few years, there has been a convergence of research to bridge the gap between the two fields. This convergence has produced a new field called Image-based Rendering and Modeling (IBMR). IBMR represents the effort of using the geometric information recovered from real images to generate new images with the hope that the synthesized ones appear photorealistic, as well as reducing the time spent on model creation. In this dissertation, the capturing, geometric and photometric aspects of an IBMR system are studied. A versatile framework was developed that enables the reconstruction of scenes from images acquired with a handheld digital camera. The proposed system targets applications in areas such as Computer Gaming and Virtual Reality, from a lowcost perspective. In the spirit of IBMR, the human operator is allowed to provide the high-level information, while underlying algorithms are used to perform low-level computational work. Conforming to the latest architecture trends, we propose a streaming voxel carving method, allowing a fast GPU-based processing on commodity hardware

    Virtual tour

    Get PDF
    Interactive 3D Visualization of Architectural models might be the best way to get some idea about an Architecture Plan. Photo-realistic visualization often attracts the investors and customers for whom the architectural blueprints are obscure. Architectural Visualization is considered to have a bright future ahead of it as more and more architects and real estate developers are using this technology. Virtual Walk-through can give not only ideas about your building but its interiors and design too. The Architectural Virtual Environment also most widely used in Gaming and Entertainment Industry in creating a complex movie scenes or a game environment

    A Characterization Of Low Cost Simulator Image Generation Systems

    Get PDF
    Report identifies and briefly discusses the characteristics that should be considered in the evaluation, comparison, and selection of low cost computer image generation systems to be used for simulator applications

    Visualization of interface instabilities in two-phase flow

    Get PDF
    The simulation of two-phase flow is a very important topic which influences many modern fields of research, such as the development of combustion engines and turbines. Hence, it is a crucial task to analyze these simulation results. To this end, this thesis introduces new ideas for the calculation of the change in size of the surface area of droplets, the so-called interface stretching, and its visualization. As underlying vector field, both the surface tension force, as well as the actual velocity field provided by the simulation are used. Reconstructing the interface of a Volume-of-Fluid (VOF) field using PLIC (Piecewise Linear Interface Calculation), the changes of the interface can be calculated using different methods and are visualized using various techniques. Coloring corresponding to the stretching or contraction of the surface, as well as vector glyphs can be used to find areas of interest and provide enough information that rough estimates of the transformation of the droplets can me made. Especially using the surface tension force, local changes, such as deformation and changes in topology can be predicted

    Development of Augmented Reality Code Application on 3D Animation in Learning Procedure at School

    Get PDF
    The use of AR (Augmented Reality) technology in the world of education continues to increase. Android as a booming trend is currently taking part in adopting AR technology. The ease and usefulness of Android-based AR technology can also be applied to the learning media development strategy. That spreads to the world community will also have an impact on students. Media Flyer Code as a marker on AR technology is applied to 3D Animation subjects. This study aims to determine the appropriateness of Augmented Reality Code Application especially the effectiveness, attractiveness, and efficiency of media. The product of this research and development is in the form of a Flyer Code product that will be used as a code and APK file. Each Flyer Code has one content that is run on the android application. In the augmented reality content contains 3D Animation Learning Procedure and questions contain evaluation material

    Laser printing of micro-electronic communication systems for smart implants applications

    Get PDF
    Endow the implant with intrinsic communication system between sensors and actuators or between implant and patient is a key factor for its long-term success. The capacity of early diagnosis of failures and the ability to remedy them are necessary to minimize expensive complications and reducing revision procedures. Ti6Al4V is the most used titanium alloy for implant’s fabrication. In this sense, this work presents a promising approach to print communication systems by using laser technology, aiming integrate the smart components on titanium implants. Laser has been employed as a versatile tool to modify the surface in different ways, such as texturing, oxidizing and sintering. Silver wires have been printed on Ti6Al4V surface in order to conduct electrical current. To minimize current loss for the substrate, titanium oxide layer has been produced by different methods (laser and anodization). Laser sintering (LS) has been also compared to a conventional method (Hot-pressing- HP) to consolidate the silver powder into the cavities. In comparison to the conventional techniques, laser demonstrated to be a competitive approach to oxidizing the surface and also for consolidating the micro-wires on Ti6Al4V surface. Consequently, the micro-wires printed by laser approach presented satisfactory results in terms of electrical resistance, actuating as the conductor path for electrical current, with values of 0.0131 Ω, which is similar to the resistance of the wire printed in an insulator substrate.This work has been supported by FCT (Fundação para a Ciência e Tecnologia -Portugal) in the scope of the projects UID/EEA/04436/ 2019 and NORTE-01-0145-FEDER-000018-HAMaBICo and Add.Additive_Manufacturing to Portuguese Industry_POCI-01-0247- FEDER-024533. I wish to thank the CNPq (205791/2014-0)

    Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results

    Get PDF
    A critical component of SVS displays is the appropriate presentation of terrain to the pilot. At the time of this study, the relationship between the complexity of the terrain presentation and resulting enhancements of pilot SA and pilot performance had been largely undefined. The terrain portrayal for SVS head-down displays (TP-HDD) simulation examined the effects of two primary elements of terrain portrayal on the primary flight display (PFD): variations of digital elevation model (DEM) resolution and terrain texturing. Variations in DEM resolution ranged from sparsely spaced (30 arc-sec) to very closely spaced data (1 arc-sec). Variations in texture involved three primary methods: constant color, elevation-based generic, and photo-realistic, along with a secondary depth cue enhancer in the form of a fishnet grid overlay

    RENDERING PRINCIPAL DIRECTION CONTOUR LINES WITH ORIENTED TEXTURES

    Get PDF
    In this paper we explore the use of contour lines in computer graphics as a means of conveying shape to the end-user. Contour lines provide an alternative to traditional realistic rendering styles and may even provide a more appropriate visualization for certain situations. For our images, contour line orientation is established in accordance with principal curvature directions. We present a method for rendering a texture, oriented in the principal curvature direction, across a traditionally-modeled geometric surface that effectively forms suggestive contour lines to enhance the visualization of that surface. We further extend the method to create animated contour textures, wherein lines move across a surface to suggest its shape. We demonstrate how the animation can be made more intuitive and easier to follow through a meaningful generalization of the generated vector space

    A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations

    Get PDF
    The dissertation develops a framework for the visualization of dynamic terrains for use in interactive real-time 3D systems. Terrain visualization techniques may be classified as either static or dynamic. Static terrain solutions simulate rigid surface types exclusively; whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a static terrain approach lack realism due to their rigid nature. Disregarding the accurate representation of terrain surface interaction is rationalized because of the inherent difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain systems are a more correct solution because they allow the terrain database to be modified at run-time for the purpose of deforming the surface. Many established techniques in terrain visualization rely on invalid assumptions and weak computational models that hinder the use of dynamic terrain. Moreover, many existing techniques do not exploit the capabilities offered by current computer hardware. In this research, we present a component framework for terrain visualization that is useful in research, entertainment, and simulation systems. In addition, we present a novel method for deforming the terrain that can be used in real-time, interactive systems. The development of a component framework unifies disparate works under a single architecture. The high-level nature of the framework makes it flexible and adaptable for developing a variety of systems, independent of the static or dynamic nature of the solution. Currently, there are only a handful of documented deformation techniques and, in particular, none make explicit use of graphics hardware. The approach developed by this research offloads extra work to the graphics processing unit; in an effort to alleviate the overhead associated with deforming the terrain. Off-road ground vehicle simulation is used as an application domain to demonstrate the practical nature of the framework and the deformation technique. In order to realistically simulate terrain surface interactivity with the vehicle, the solution balances visual fidelity and speed. Accurately depicting terrain surface interactivity in off-road ground vehicle simulations improves visual realism; thereby, increasing the significance and worth of the application. Systems in academia, government, and commercial institutes can make use of the research findings to achieve the real-time display of interactive terrain surfaces
    corecore