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Abstract

Interactive 3D Visualization of Architectural models might be the best way to get

some idea about an Architecture Plan. Photo-realistic visualization often attracts the

investors and customers for whom the architectural blueprints are obscure.

Architectural Visualization is considered to have a bright future ahead of it as

more and more architects and real estate developers are using this technology.

Virtual Walk–through can give not only ideas about your building but its interiors

and design too. The Architectural Virtual Environment also most widely used in

Gaming and Entertainment Industry in creating a complex movie scenes or a game

environment.
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Chapter 1

Introduction

Virtual Tour computer generated environment, (mostly related with architectural

model), created along with landscape and sometimes moving people and vehicles.

Architectural models are drafted with exact proportion and scale as the real ones,

and are often added with real life textures and material to mimic reality.

Entertainment Industry, which spends millions in film production high uses CG

techniques. Creating a non-existing location set or to pull off the incredible visual

stunt requires lots of manpower and resources. Rich visual quality, camera movement,

etc. are some of the prevailing features making CG a much preferable option.

Photo-realistic visualization often attracts the investors and customers for whom

the architectural blueprints are obscure, giving designer leverage in conveying his

project ideas. Photo-realistic visualization and animation actually play major role in

real estate sales and construction.

Architectural models is the heart of the Gaming Industry. 3D gaming Environment

are created using architectural models where the game play takes palace. Gaming has

much to deal with the Real-time Processing than the accurate simulation.

1.1 Background

Making the Architectural model used to be the made with boxes, cardboard using glue

and paint. [1] Similar to like making the building model project for primary-school.

A knife or scissors to cut doors and windows holes in boxes, landscape with clay or

sand and wood for furnitures. Using natural materials to make it look realistic. Early

’60 to ’70 Si-Fi movies used these kinds of models to depict frictional location or the

future city.

The first use of a Virtual Tour and the derivation of the name was in 1994 as a
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Fig. 1.1: Physical Architectural Model [2]

museum visitor interpretation, providing a ‘walk-through’ of a 3D reconstruction of

Dudley Castle [3] in England designed by British engineer Colin Johnson. The system

featured in a conference held by the British Museum in November 1994 and in the

subsequent technical paper.

1.2 Overview

3D Model consists of 3D object, created using collection of points in 3D space

connected by several entities such as lines, curves, triangles, and surfaces. Its displayed

as a 2D image through a process called 3D rendering.

A 3D model are created manually or using algorithm and scanning which is not in

the scope of our project. In manual modeling process geometric data for 3D model is

similar prepared as to Architectural drawing but in 3D space. Pre-image (wireframe)

are then added with textures, lights and relative positioned to other objects to create

completed scene. These scene are used for movie animations.

The Interactive Models are made with the same scene in place but adding the

navigation and physical phenomena. These Interactive models have much do with

speed rendering as the animation would take much much time to get rendered.
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1.3 Implementation

In this project we aim to built the Virtual Tour of Department of Computer Science

& Engineering. Here we present how we built project using open source tools, with

main focused on Blender. Our primary objectives are to create:

• Animated Visualization (movie)

• Virtual Walk-through (Realtime 3D Render)

List of software and tools were used in building this project are given in Table 1.1.

Processor AMD Turion
TM

Dual-Core Mobile M500

3D Tool Blender 2.5x

Renderer Blender Render, YafaRay, LuxRender

Satellite Image Source Google
TM

Earth

Programing & Scripting C/C++, Python 3.1.2+

Other Tools GIMP, Inkscape

Table 1.1: Software and Hardware used during Project

1.3.1 Project Pipeline

Most of the Work has be done using Blender. We also have tried compare with some

external render engines. And finally worked on the Interactive Model.

Getting
Measurements

3D Modeling

Materials
& Textures

Rendering

Blender

Architectural
Animation

Game
Engine Virtual Tour

Composing

Fig. 1.2: Project Flow
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Chapter 2

3D Modeling

The 3D model is completely described in 3D space and can be viewed from any angle.

Building the 3D modeling is the complex process which need the help specialized tool

like 3D modeling software. Although you can draw complex and interesting models,

they’re all constructed from a small number of primitive graphical items. In 3D art

almost all models are built from triangles [1]. It may not seem so at first, because

many modeling tools let you work with quadrangles, curves, bevels, mathematical

surfaces etc. But in the end, it’s all triangles.

2.1 3D Representation

Graphics scenes can contain various kinds of objects: rocks, water, tree, marble,

steel, glass etc. So, there is no one method that we can use to describe objects

that will include all characteristics of these different materials. Producing a realistic

displays of scenes, requires accurate representations that accurately model object

characteristics. [4]

Polygon and quadric surfaces provide precise descriptions for simple Euclidean

objects such as polyhedrons and ellipsoids; spline surfaces end construction techniques

are useful for designing aircaft wings, gears, and other engineering structures with

curved surfaces; procedural methods, such as fractal constructions and particle

systems, allow us to give accurate representations for clouds, clumps of grass,

and other natural objects; physically based modeling methods using systems of

interacting forces can be used to describe the nonrigid behavior of a piece of cloth;

octree encodings are used to represent internal features of objects, such as those

obtained from medical C images; and isosurface displays, volume renderings, and

other visualization techniques are applied to 3D discrete data sets to obtain visual
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representations of the data. [4]

Representation schemes for solid objects are often divided into two broad

categories, although not all representations fall neatly into one or the other of these

two categories Boundary and Space-partitioning representations.

2.1.1 Boundary representations

Boundary representation describe a 3D object as a set of surfaces that separate the

object interior from the environment. Typical examples of boundary representations

are polygon facets and spline patches.

Wireframe: Its a representation is one of its kind where is the outlines of an

object represented by vertices and edges only. This is an advantage for simple objects

or while creating initial modeling.

Surface: Surface models represent the object as an ordered set of surfaces in 3D

space. Surface models are mainly used for the generation of models, whose surfaces

consist of analytical not easily describable faces having different curvatures in different

directions. This is often the case for models of automobiles, ships or airplanes.

Fig. 2.1: Modeling a Plane [5]

2.1.2 Space-partitioning representations

Space-partitioning representations are used to describe interior properties, by parti-

tioning the spatial region containing an object into a set of small, non-overlapping,

5



contiguous solids. A common space-partitioning description for a three-dimensional

object is an octree representation. [4]

2.2 Polygon Surfaces

Its most commonly used boundary representation for a 3D graphics object is a set

of surface polygons that enclose the object interior. Many graphics systems store

all object descriptions as sets of surface polygons. This simplifies and speeds up the

surface rendering and display of objects, since all surfaces are described with linear

equations. Objects to be described with other schemes, such as spline surfaces, that

are then converted to polygonal representations for processing.

A polygon representation for a polyhedron precisely defines the surface features

of the object. But for other objects, surfaces are tesselated (or tiled) to produce

the polygon-mesh approximation. Such representations are common in design and

solid-modeling applications, since the wireframe outline can be displayed quickly to

give a general indication of the surface structure. Realistic renderings are produced

by interpolating shading patterns across the polygon surfaces to eliminate or reduce

the presence of polygon edge boundaries. And the polygon-mesh approximation to a

curved surface can be improved by dividing the surface into smaller polygon facets.

2.3 Modeling Processes

There are mainly five ways of modeling:

Polygonal modeling: Also Known as the Mess modeling, is the technique where

vertices are placed 3D space, connected line to form a polygonal mesh. The vast

majority of 3D models today are built as textured polygonal models.

NURBS modeling: NURBS Surfaces are defined by spline curves which are truly

smooth surfaces, not approximations using small flat surfaces.

Patches modeling: Depend on curved lines to define the visible surface. Patches

fall somewhere between NURBS and polygons in terms of flexibility and ease of use.

Primitives modeling: Using geometric primitives (i.e. sphere, cubes) building

blocks for more complex models converted them meshes for further operations and
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rendering.

Sculpt modeling: Still fairly new method of modeling 3D. Sculpting allows artistic

exploration as the model will have a new topology created over it.

2.4 Measurement

Re-constructing 3D Model of existing structure requires the proper measurement.

Following section we will discuss about few basic technique to get approximate

dimensions.

2.4.1 Area

Big round earth’s surfaces can be consider as a flat plain for short distances.

Haversine formula [6] gives such approximate distance measure using longitudes

and latitudes between points. Let the two points in spherical coordinates be [lon1,

lat1] and [lon2, lat2] then distance will be:

d = R× c

4lon = lon2 − lon1 4lat = lat2 − lat1
a = sin(4lat

2
)2 + cos(lat1)× cos(lat2)× sin(4lon

2
)2

c = 2× atan2(
√
a,
√

(1− a))

where,

R is radius of earth (mean radius 6,371 km)

c is great circle distance in radians.

d is great circle distance d (same units as R).

Limitation: But, even though the circumference of the Earth is about 40,000

km, flat-Earth formulas for calculating the distance between two points start showing

noticeable errors when the distance is more than about 20 km.

2.4.2 Height

Reference object: Including something in the photo of known height (eg. a meter

stick or a person) close to the building, photo scale can be easily determined. Using

this scale we can calculate any height in the photograph by multiplying 1/scale with
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measured length in the photo. The vertical distortion error can arise in this method,

which can be minimize by shooting photo from adequate distance.

Basic trigonometry: With a few simple measurements, it’s possible to estimate

heights with some accuracy which is height = (tan θ × distance) + eyeheight.

eye height

h
ei

gh
t

distance

Fig. 2.2: Basic trigonometry

Repeated units: Buildings are constructed modular materials i.e bricks, blocks

Overall height can be approximated using the no of units multiplied height of a single

unit.
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2.5 Implementation

The 3D models are generally made before the construction takes place. In our project

we are re-constructing the 3D model of the existing building which is our Department

building. We start with the basic measurement survey before hand start building

model.

2.5.1 Comparing Measurements

After failed attempts to create the model with photo reference and approximate map

overlay. We took the different step to approximate the measurement starting with

comparing and calculating errors. We took choose test points on site, took down

longitude and latitude of those point using Google Earth.

Example: Sample Test Case

Point A: 22◦15′06.73′′N, 84◦54′2.26′′E Point B: 22◦15′06.86′′N, 84◦54′2.62′′E

Measurement Value (in m) Error

Actual 10.87 0%

Haversine 11.05 1.65%

Google Earth Ruler 10.64 2.12%

Fig. 2.3: Google Earth Ruler

Conclusion

We found that a some small error, due to the fact that the Earth is very slightly

ellipsoidal, using spherical model gives errors typically up to 0.3 %.
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2.5.2 Making Model

Overlaying model onto the reference image acquired we start tracing the boarders of

the building and scale the model to proportion to measurements taken during survey.

Fig. 2.4: Outline of Building using Reference Background

Fig. 2.5: Ground floor Model
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Chapter 3

Rendering

Rendering is the process of generate its images 2D images using 3D model. Rendering

engines are fed with the view point and 3D scene information like geometry, lighting

& shading, textures etc which processed to give a digital image output. Rendering

comprises of performing complex mathematical calculations which requires intensive

processing, therefore rendering engines are outlined with graphics pipeline. [7]

In 3D graphics rendering are done slowly, as in pre-rendering to giver real-time

effect to the displaying scene. Real-time rendering is used in 3D video games relying

on the use of graphics cards bearing 3D hardware accelerators. While Pre-rendering,

a computationally intensive process, is used in movie creation.

Due to these problems, different modeling techniques for the transportation of light

have been devised. They are categorized into four different families Rasterization,

Ray Casting, Ray Tracing and Radiosity.

Radiosity isn’t generally used for rendering, but it helps in calculation the amount

of light leaving the source of light and illuminating the surface. Excluding radiosity,

the other three techniques are often used for the surface rendering. Cost efficient good

results are achieved by softwares which use a combination of one or more rendering

techniques.

3.1 Rasterization

Rasterization is most fastest rendering technique in comparison to other rendering

techniques. Its the process of computing the mapping from scene geometry to pixels

and does not prescribe a particular way to compute the color of those pixels. Shading,

may be based on physical light transport, or artistic intent.

Rasterization is most popular technique for producing real-time 3D computer
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graphics. Real-time applications need to respond immediately to user input, and

generally need to produce frame rates of at least 25 frames per second to achieve

smooth animation.

3.2 Ray Casting

The geometry which has been modeled in ray casting is parsed line by line, pixel by

pixel, from the point of view outward, as if the casting rays coming out from the point

of view. The point where an object is intersected, value of the color value at the very

point can be evaluated using several possible methods. The simplest for that, the

value of color at that point of intersection becomes the pixel value. We can determine

the color from a texture-map. The more challenging and sophisticated method would

be modifying the value of the color by an factor for illumination, but we don’t have to

calculate the relationship to a simulated light source. For reducing artifacts, a certain

number of rays may be averaged in slightly different directions.

The rough simulations may be additionally employed for optical properties: its a

very simple calculation in which the ray from the object to the point of view is made.

one more calculation is made for the angle of incidence of light rays from the very

light source(s), and from these as well as the specified intensities of the light sources,

then the value of pixel is calculated. One more simulation is illumination plotted from

an algorithm called radiosity algorithm, or cb be combination of these two.

Primary use of Raycasting is for realtime simulations, it is same as those used in

3D cartoon animation and computer games, in which details are not important, or

where the more efficient way is to manually fake the details in order to obtain a better

performance in the very computational stage. This is mostly the case when a huge

number of frames are needed to be animated. The result is the surfaces which have

a characteristic ’flat’ appearance without any use of additional tricks, as if objects in

the scene were all painted with matte finish.

3.3 Ray Tracing

Ray tracing a technique which used to generate an image by tracing the path of light.

This technique is very proficient for producing a visual realism of high degree reality,

the reality is usually higher than that of rendering methods done by typical scanline,

but the computational cost is quite high. This helps in making ray tracing best suited

for applications in which the image can be rendered slowly and ahead of time, its just
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same as in still images and film and in the television special effects, but it real time

applications like video games where speed is critical it is poorly suited for these kind

of applications. Capable of simulating optical effects, such as scattering, reflection

and refraction, and chromatic aberration; ray tracing can simulate the natural flow

of light, reded as particles.

Often, ray tracing methods are utilized to approximate the stimulated solution

or behavior to the rendering equation by applying Monte Carlo methods to it.

Bidirectional Path Tracing, Path Tracing, or Metropolis light transport are the mostly

used methods, also Whitted Style Ray Tracing, or hybrids methods are used which

are semi realistic. While light propagate on straight lines in most implementations,

still relativistic spacetime effects stimulation applications exist.

For the final quality rendered product of a ray traced work, each pixels are

generally shot with multiple rays, and traced not just from the interaction of the first

object, but rather, through a series of sequential bounces, utilizing the basic principles

of optics as “angle of incidence equals angle of reflection” and other advanced laws

dealing with surface roughness and refraction.

Once the ray either encounters a light source, or more probably once a set limiting

number of bounces has been evaluated, then the surface illumination at that final

point is evaluated using techniques described above, and the changes along the way

through the various bounces evaluated to estimate a value observed at the point of

view. This is all repeated for each sample, for each pixel.

In distribution ray tracing, at each point of intersection, multiple rays may be

spawned. In path tracing, however, only a single ray or none is fired at each

intersection, utilizing the statistical nature of Monte Carlo experiments.

3.4 Radiosity

Radiosity is the method to stimulate ways in which surfaces are used to illuminate

using reflection from other surfaces which are directly illuminated. This some what

produces a realistic form of shading and thereby capture a better ambience of an

indoor scene. Shadows caressing the corners of rooms is a classic example.

The simulation optical basis is that a given area is illuminated by a scattered

spectrum of light which are reflected from a given surface whose source light can be

from any point.

Complexity in the stimulation technique varies. A rough radiosity estimate can

be made in renderings i.e. a simple illumination of a scene with factors such the
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ambiance factor. Realism is exerted when advanced radiosity estimation along with

high quality algorithm for tracing ray like those for the indoor scenes.

The advanced part of radiosity is the recursive bouncing of light rays forth and

back between surfaces in the model, until a limited recursion reached. In this process

colouring of the surfaces are influenced, one influence the colouring of there neighbour

and vice versa. The results for illuminated model(including empty spaces) can be used

for the additional inputs as carrying out calculations in a ray-tracing model or ray-

casting .

Iterative/recursive technique makes the emulation process of complex objects slow.

Before rapid radiosity calculation came to standardized, some graphic artists were to

a technique of referring loose as false radiosity by simply darkening areas in the

texturing scene corresponding to joints, corners and recesses, and implication by

self-illumination or diffuse mapping for use in scanline rendering. Even presently,

advanced radiosity calculations are reserved for calculating the ambiance of the room,

from the light reflecting off ceiling, walls and floor without considering the facts that

contribute like the complex objects. The complex objects or otherwise be be replaced

with similar simpler objects for radiosity calculation .

Radiosity calculations, inspite of being independent of viewpoints which tends to

increase involved computations ,makes all viewpoints useful. Reuse of same radiosity

data are implemented in a number of frames, making radiosity effective to improve

on the flatness condition of ray casting, without impingement the overall rendering

time-per-frame.

This makes radiosity a prime component in leading the real-time rendering, and

has been used in the full length creation of well-known animated 3D-cartoon films.

3.5 Shading

It is the phenomenon of colouring and setting up varying intensities of brightness to

a surface in accordance with the amount of lighting.

3.5.1 Ambient Occlusion

Ambient occlusion is a shading method used in 3D computer graphics which helps

add realism to local reflection model by taking into account attenuation of light due

to occlusion. Ambient occlusion attempts to approximate the way light radiates in

real life, especially off what are normally considered non-reflective surfaces.
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Unlike local method Phong Shading, amient occlusion is a global method, meaning

the illumination at each point is function of thoer geometry in the scene. However, if

is a very crude approximation to full global illumination. The soft appearance achived

by ambient occlusion alone is similar to the way an object appear on in over cast day.

3.5.2 Phong Shading

Phong shading are techniques used in 3D computer graphics for shading purposes to

produce certain degree of realism.Here three elements come to play- specular, diffuse

and ambient lighting for each surface point considered of a model.it encloses the

method of interpolating surface normals into rasterized polygons to estimate pixel

colours.

This reflection from the surface points of the model may be referred as the Phong

lighting, Phong illumination or namely Phong reflection model. In the linguistic

context of pixel shaders or circumstances where calculation of lighting comes into

play in “shading” techniques, it is called as Phong shading. Phong interpolation

refers to the method of interpolation with each surface points which is also referred

as per-pixel lighting.

3.6 Subsurf

A subdivision surface populary known as subsurf, is a method of representing a smooth

surface via the specification of a coarser piecewise linear polygon mesh. The smooth

surface can be calculated from the coarse mesh as the limit of a recursive process of

subdividing each polygonal face into smaller faces that better approximate the smooth

surface.

3.6.1 Refinement schemes

Subdivision surface refinement schemes can be broadly classified into two categories:

interpolating and approximating.

Interpolating schemes are required to match the original position of vertices in

the original mesh. Approximating schemes are not; they can and will adjust these

positions as needed. In general, approximating schemes have greater smoothness,

but editing applications that allow users to set exact surface constraints require an

optimization step. This is analogous to spline surfaces and curves, where Bezier

splines are required to interpolate certain control points, while B-splines are not.
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There is another division in subdivision surface schemes as well, the type of polygon

that they operate on. Some function for quadrilaterals(quads), while others operate

on triangles.

Scheme Type Technique

Catmull–Clark (1978) Approx. Generalized bi-cubic uniform B-spline to

produce

Doo–Sabin (1978) Approx. Extended Chaikin’s corner-cutting method for

curves to surfaces Analytical expression of bi-

quadratic uniform B-spline surface

Loop (1987) Approx. quartic box-spline of six direction vectors

Mid-Edge (1999) Approx. four-directional box spline
√

3 (2000) Approx.

Butterfly (1990) Inter. extended the four-point interpolatory

Kobbelt (1996) Inter. Variational subdivision method that tries to

overcome uniform subdivision drawbacks

Table 3.1: Subsurf Techniques

3.7 Realtime Rendering

Rendering for interactive media, such as games and simulations, is calculated and

displayed in real time, at rates of approximately 20 to 120 frames per second. In

real-time rendering, the goal is to show as much information as possible as the

eye can process in a 30th of a second (or one frame, in the case of 30 frame-per-

second animation). The goal here is primarily speed and not photo-realism. In fact,

exploitations can be applied in the way the eye ’perceives’ the world, and as a result

the final image presented is not necessarily that of the real-world, but one close enough

for the human eye to tolerate. Rendering software may simulate such visual effects

as lens flares, depth of field or motion blur. These are attempts to simulate visual

phenomena resulting from the optical characteristics of cameras and of the human

eye. These effects can lend an element of realism to a scene, even if the effect is

merely a simulated artifact of a camera. This is the basic method employed in games,

interactive worlds and VRML. The rapid increase in computer processing power has

allowed a progressively higher degree of realism even for real-time rendering, including

techniques such as HDR rendering. Real-time rendering is often polygonal and aided

by the computer’s GPU.
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3.8 Scene

A scene contains more than the 3d object a light source (point light) and virtual

camera. A camera determines the viewpoint of the scene where as the without like it

impossible see anything i.e. whole rendered output will be pitch black. Table 3.2 list

different types of light modes as given in out modeling software.

3.8.1 Virtual Camera

The virtual camera is the main link between the areas of visualization and vision of

3D scenes. It is the element that maps 3D objects in the scene into 2D information

in the image, and it is used in a dual manner in visualization and vision processes. [8]

Fig. 3.1: Blender’s virtual Camera [5]

The simplest model of a virtual camera is the pinhole camera, which has 7 degrees

of freedom representing the parameters position (3 degrees of freedom), orientation

(3 degrees of freedom) and focal length (1 degree of freedom).
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Light Effect Type Description

Point

This light emits in all directions from a single point.

With appropriate falloff, it can resemble a candle or a

small lightbulb. It is very useful for rim light effects,

where parts of an object need to be lit in order to stand

out from the background.

Sun

Otherwise known as a directional light, this is light that

floods a scene from a given angle. It gets its name

because it is similar to how the sky lights the world:

flooding the scene from a given direction, not from a

single point. Location does not affect sun lights; it is

the rotation that is important. Whichever way a sun

light is rotated, the whole scene gets light from that

particular angle with parallel light rays.

Spot

This is similar to a point lamp, but within a restricted

V-shape direction. This light works very much like a

theater spotlight. It casts a circle on a surface it is

aimed at, and has settings to control the softness of the

circular edges.

Hemi

A hemi light produces an ambiance similar to a sun

light, except that instead of creating light from a single

direction, it acts as though the light is emitted from

a sky dome. It is like having a single sun from the

dominant direction, accompanied with smaller lights to

illuminate the sides of objects in the scene.

Area

Type An area light is like having a cluster of lights over

an area of a specified size. It is useful for creating light

emitted from a surface, such as a TV or the back of a

fridge.

Table 3.2: Different Types of Light modes in Blender [5]
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3.9 Implementation

We Tried testing with the different render option available with in the blender. We

gave the try to some of the external render engines like LuxRender and YafaRay which

was quite unsuccessful. We made the short video of 360◦ bird eye view.

Fig. 3.2: Blender internal Render Video Output

3.9.1 Conclusion

Cameras and lights setup plays major role in visualization. Emphasis on the

importance of setting up key lights and fill lights to illuminate a scene for creating

renders.
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Chapter 4

Texture and Materials

Natural Surfaces can be quite complex in their appearance. Color, specularity, and

reflection can organically change across a surface as a result of location, climate

interaction, and variations in the natural substance. Learning how to create believable

natural surface materials help in development of many other material types. After

all, most manufactured objects are created from, or based on, natural materials. [9]

4.1 Texture Mapping

In the visual arts, texture is the perceived surface quality of a work of art. It is an

element which is distinguished by its perceived visual and physical properties. Texture

mapping is a method of adding texture(a bitmap or raster image) detail or color to

the surface of 3D-object.

A texture map is applied to the polygon surfaces. Every polygon is assigned

with the texture information either by procedural or explicitly assignment. Sampling

Image coordinates are then interpolated across the surface to produce a rich visual

result. Mapping is set of parameters that describe how a texture should be applied

to an object i.e. scale, offset, rotate, and so on. [9, 10]

The way the resulting pixels on the screen are calculated from the texels (texture

pixels) is governed by texture filtering. The fastest method is to use the nearest-

neighbor interpolation, but bilinear interpolation or trilinear interpolation between

mipmaps are two commonly used alternatives which reduce aliasing or jaggies. In

the event of a texture coordinate being outside the texture, it is either clamped or

wrapped. [7]
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4.1.1 Projection

Texture can be mapped to the surface with the various orientation, as if it was a slide

projection. It is achieved computing texture coordinates or coordinate generation.

(a) Texture (b) Sphere (c) Cube (d) Non Uniform

Fig. 4.1: Flat Projection on different Surfaces

Four main types of projection that are available in the texture mapping are Flat,

Cube, Sphere and Tube which is show in the Fig 4.2.

(a) Flat (b) Sphere

(c) Cube (d) Tube

Fig. 4.2: Types of Projection

4.1.2 Perspective Correctness

Each vertex of a given polygon are specified by texture coordinates are interpolated

using an extended Bresenham’s line algorithm which determines plotting of the

straight line between two given points in an n-dimensional raster forming a close

approximation. If these texture coordinates are linearly interpolated across the screen,

the result is affine texture mapping.
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Bresenham’s gives considerably fast calculation, but when polygons are at the

angle to the plane of screen noticeable discontinuity between adjacent triangles is

found. Perspective correct texturing accounts for the positions of vertices’s in 3D

space, but it is slower to calculate. Instead of interpolating the texture coordinates

directly, the coordinates are divided by their depth, and the reciprocal of the depth

value is interpolated and used to recover the perspective-correct coordinate. This

correction makes it so that in parts of the polygon that are closer to the viewer the

difference from pixel to pixel between texture coordinates is smaller (stretching the

texture wider), and in parts that are farther away this difference is larger (compressing

the texture). [7]

4.2 Procedural Texture

Getting multiple 2D texture to form a visually consistent appearance without looking

tiled is a difficult and tedious task. As an alternative for the traditional methods

procedural texturing are created using an algorithm and have realistic representation

of natural elements such as wood, stone, granite, marble etc. Unlike traditional

method of using 2D surface position, 3D position are used to evaluate all visible. [5]

Realistic looking render is usually achieved by using function like turbulence,

fractal noise or some simple functions like sum of sinusoidal functions. These functions

are used of the “randomness” found in nature. These are called solid texturing. Other

Different types of procedural texturing exist like Generic and Cellular which we won’t

be using.

4.3 Bump Map

Simulating bumps and wrinkles on the surface of an object is done using technique

called bump mapping. It allows the texture to directly control the surface and gives a

very good appearance of a complex surface, such as tree bark or rough concrete. This

is achieved by perturbing the surface normals of the object and using the perturbed

normal during illumination calculations. The result is an apparently bumpy surface

rather than a perfectly smooth surface although the surface of the underlying object

is not actually changed. Normal and parallax mapping are the most commonly used

ways of making bumps. [7, 11].
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4.4 UV Mapping

Making a 2D image representation of a 3D model is know as UV mapping. UV

texturing also permits 3D object to be painted with color from an image which is

knowns as UV texture map, just an ordinary texture.

Fig. 4.3: Working of UV-Mapping. Illustrative by Tschmits [7]

The letters “U” & “V” are describe the 2D mesh because “X”, “Y” and “Z” are

already used to describe the 3D object in space and “W” when using quaternions.

UV texture coordinates to determine how to paint the 3D-surface, which reduce

the computationally intensive rendering like procedural, multilevel texturing. This

technique enhance the visual richness of texture immensely with the relatively low

computation. [12]

The UV Mapping process at its simplest requires three steps: unwrapping the

mesh, creating the texture, and applying the texture. Often a UV map is be generated,

and then the artist adjusts and optimize it to minimize seams and overlaps. If the

model is symmetric, the artist might overlap opposite triangles to allow painting both

sides simultaneously. UV coordinates are applied per face, not per vertex. This means

a shared vertex can have different UV coordinates in each of its triangles, so adjacent

triangles can be cut apart and positioned on different areas of the texture map. [12]

UV in the Sphere is given by:

u = sin θ cosφ =
x√

x2 + y2 + z2
v = sin θ cosφ =

y√
x2 + y2 + z2
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4.5 Multi-Texturing

Multi-Texturing is the use of more than one texture at a time on a polygon. For

instance, a light map texture may be used to light a surface as an alternative to

recalculating that lighting every time the surface is rendered. It can give a very good

appearance of a complex surface, such as tree bark or rough concrete, that takes on

lighting detail in addition to the usual detailed coloring. [9]

Fig. 4.4: Multiple Procedural Textures with Bump mapping [9]

4.6 Materials

Materials system is an advanced type of texture mapping. It allows for 3D objects to

simulate different types of materials in real life. This makes it so that the texture not

only contains graphical data, but references for sound data and physics data (such as

density). For example, if a texture makes an object look like wood, it will sound like

wood(if something hits it or its scraped along a surface), break like wood, and even

float like wood. If it was made of metal, it will sound like metal, dent like metal, and

sink like metal. This allows more flexibility when making objects in games. [7]

A materials system allows a designer to think about objects in a different way.

Instead of the object just being a model with a texture applied to it, the object, or

part of the object, is made up of a material. Currently there are these major materials:

wood, concrete (or stone), metal, glass, dirt, water, and cloth (such as carpeting). [7]
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4.7 Implementation

The surface of a natural material may seem one of the easiest to reproduce in a 3D

suite such as Blender. In many ways simulating natural objects in Blender will require

more complex materials and textures than man-made objects to make them look

convincing. Blender offers a vast array of material and texture tools to aid you in the

creation of natural-looking surfaces. Because of this there are many ways to produce

similar, and equally pleasing, results. However, there are approaches that will speed

material creation and make the process easier, adaptable, and more enjoyable. [9]

We tested the steps involved in applying a simple procedural texture to a mesh and

other surface qualities such as bumpiness. We tried to bring out the photo realistic

effect as possible. Yet much of the areas were not explored due to time restriction

and the goal of our project.

Fig. 4.5: Texturing Process

4.7.1 Conclusion

Materials and texturing are very in-depth subjects, and these examples have only

scratched the surface. Yet further learning have to be done understanding. The

optimization of the rendering computation is the main aim of our project for the

virtual tour would be requiring the lots of texturing techniques like Procedural

Texturing, UV-mapping etc
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Chapter 5

Physic Engine

A physics engine is computer software that provides an simulation of certain physical

systems, such as rigid body dynamics, soft body dynamics, and fluid dynamics, of use

in the domains of computer graphics. Their main uses are for games engines, films

and for scientific purposes. [7]

Generally, there are two classes of physics engines: real-time and high-precision.

High-precision engines require raw processing power and used in computer animated

movies and scientific purposes. We will be focusing mainly in the Real-time

engines for this project which provide simplified approximate calculation for real-

time response. As its used in video games and other forms of interactive computing.

5.1 Collision Detection

Interaction between objects, environment and the player makes a game realistic.

Meshes are used to represent the 3D objects in a game, which are basically of two

types. One of them is used to represent highly complex and detailed shapes i.e.

the smooth surfaces of an object in a game. The second one which represents a

simplified version of the same object (invisible wire frame mode) to the physics engine

as a purpose of speed. The physics processing of the mesh objects which may be a

bounding sphere, box or a convex hull is often referred to as the collision geometry.

Use of bounding boxes or spheres is used in simple collision detection use to reduce

the cost of computation.

Precision in discrete collision can be achieved by calculation of framerate. Each

frame is treated as separate entity. Situations where there is a small-fast moving

object with low framerate, it appears as if it teleported another place, instead of the

smooth visible motion. Projectiles moving at sufficiently high speeds will miss targets,
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if the target is small enough to fit in the gap between the calculated frames of the fast

moving projectile. Continuous collision detection such as in Bullet or Havok physics

engine does not suffer this problem.

A finite based element-based system is an alternative to this, where a volumetric

tessellation is created. Aspects such as plasticity, volume preservation and toughness

of the object are results of tessellation, after which solver are used to model the stress

within the 3D object. Degree of fracture, deformation and other physical effects

with realism and uniqueness are derived using stress control. The engine’s ability to

modeling physical behavior increases as the content of modeled elements. Changes

are confirmed to visual representation of the 3D object by the finite element system in

application to deformation shader run on the GPU or CPU. As a result of performance

overhead and lack in creation of finite element representations for 3D art objects,

which is impractical for games.

5.2 Brownian Motion

Physics is always seen active, in the real world. All particles in the universe experience

the constant Brownian motion jitter as the forces push forth and back against each

other. Such constant activities unnecessarily waste the CPU power of a game physics

engine which causes problem like decreased framerate. Thus, putting of objects to

“sleep” by disabling the computation of physics on objects that have been inactive for

a certain period of time. i.e. freezes in the place until it is reactivated by a collision

with some other actively physical object, only than physical processing starts again.

Earlier use of rigid body dynamics in physics-based character animation had

prevailed as they were easier to calculate and faster, whereas modern games and

movies have started using soft body physics for particle effects, liquids and cloth.

For stimulating characteristic of water and other fluid like properties Fluid dynamics

simulation are deployed as well as the flow of fire and explosions through the air.

5.3 Paradigms

Two core components of Physics engines games as collision response or detection

system and the dynamics simulation. These are responsible to solve the forces affect

on the simulated objects. Modern physics engines have been introducing many physics

like fluid simulations, control animated systems and asset integration tools. The three

major paradigms for the physical simulation of solids are as:
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Penalty method: Mainly for soft-body physics, popular for deformable. Here

interactions are modeled as mass-spring systems.

Constraint based method: where constraint equations are solved that estimate

physical laws.

Impulse based method: where impulses are applied to object interactions.

Finally, hybrid methods are possible that combine aspects of the above paradigms.

5.4 Simulation

Simulation is also knows as Procedural Animation, all natural processes are governed

by the laws of physics, like a collapsing wall or water splashing into a glass. With

a greater or lesser degree of success, be simulated by a computer program. Often, a

computer can do a much better job of animation than a human being can, because it

can actually simulate the physics of the situation.

Fig. 5.1: Testing Cloth and Fur Simulation

5.5 Game Engine

A game engine a different beast, designed for the creating games. A game engine offers

much more than the physics engine, it a rendering engine, sound, scripting, anima-

tion, artificial intelligence, networking, streaming, memory management, threading,

localization support etc. Same game engines are used for creating many different

games to economized the cost of development. [7]
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5.6 Implementation

We used Game Engine for creating interactive demo of Virtual Tool. We used the

Blender 2.56 version for this purpose.

The Blender Game Engine (BGE) has several ways in which interactivity can be

programmed into a game environment.

5.6.1 Blender Game Engine

Blender comes with the game engine support. built-in game design tools with Bullet

physics support. Blender’s game design tools like logic blocks, have the advantage of

GUI implement functionality. For beginners, might be easiest way to get started

without prior programming knowledge. Although for the greater scalability and

versatility, Python can be used with the combination with logic blocks.

5.6.2 Conclusion

As far as the Implementation point of the view project seems to be working good

enough. But its inadequate in the field of professionalism. We made this project as

for our exploration in 3D Graphics and use open-source for creating the working 3D

model. As our project time constrains, we had to highly neglect visualization and

atheistic part of the project.
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