
Clemson University
TigerPrints

All Theses Theses

12-2007

RENDERING PRINCIPAL DIRECTION
CONTOUR LINES WITH ORIENTED
TEXTURES
Kelly Gallagher
Clemson University, kdgalla@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Gallagher, Kelly, "RENDERING PRINCIPAL DIRECTION CONTOUR LINES WITH ORIENTED TEXTURES" (2007). All
Theses. 226.
https://tigerprints.clemson.edu/all_theses/226

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/226?utm_source=tigerprints.clemson.edu%2Fall_theses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

RENDERING PRINCIPAL DIRECTION CONTOUR LINES WITH ORIENTED
TEXTURES

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Science

by
Kelly Gallagher
December 2007

Accepted by:
Timothy Davis, Committee Chair

Robert Geist
Stephen Hedetniemi

ABSTRACT

In this paper we explore the use of contour lines in computer graphics as a means

of conveying shape to the end-user. Contour lines provide an alternative to traditional

realistic rendering styles and may even provide a more appropriate visualization for

certain situations. For our images, contour line orientation is established in accordance

with principal curvature directions.

We present a method for rendering a texture, oriented in the principal curvature

direction, across a traditionally-modeled geometric surface that effectively forms

suggestive contour lines to enhance the visualization of that surface. We further extend

the method to create animated contour textures, wherein lines move across a surface to

suggest its shape. We demonstrate how the animation can be made more intuitive and

easier to follow through a meaningful generalization of the generated vector space.

ii

TABLE OF CONTENTS

Page

ABSTRACT... ii

LIST OF FIGURES.. v

CHAPTER

1. INTRODUCTION...1

2. BACKGROUND...3

2.1 Principle Curvature Direction...4
2.1.1 The Weingarten Matrix...5
2.1.2 The Second Fundamental Form.. 7
2.1.3 Gaussian and Mean Curvature.. 9

2.2 Visualizing Principal Curvature Direction... 10
2.3 Advection..13

2.3.1 Spot Noise Advection... 13
2.3.2 Line Integral Convolution (LIC)...14
2.3.3 Fast Line Integral Convolution (FLIC)...17
2.3.4 Animating Line Integral Convolution...18

2.3.4.1 DLIC..18
2.3.4.2 OLIC..19

3. RENDERING CONTOUR LINES WITH
ORIENTED TEXTURES... 21

3.1 Preliminary Information... 22
3.1.1 The Model... 22
3.1.2 Data Structures..23

3.1.2.1 A Collection of Surface Patches..23
3.2 Principal Curvature Directions... 24

3.2.1 Local Coordinate Space.. 25
3.2.2 The Cubic-Order Parametric Representation....................................26
3.2.3 Retrieving the Principal Curvature Direction

 Vectors and Values...26
3.2.4 Dealing With Error..27

iii

Table of Contents (Continued)

Page

3.3 Applying Texture..27
3.3.1 General Texture Parameterization.. 28
3.3.2 Simple Method for Rendering Contour Lines as Texture.................31

3.3.2.1 The Algorithm Explained..33
3.3.2.2 Area Distortion..36

4. ANIMATION AND SEGMENTATION..40

4.1 Simple Animation...39
4.1.2 Determining Direction.. 40

4.2 Segmentation for Clearer Animation..42
4.2.1 Approximate Convex Decomposition...43
4.2.2 Implementation... 46

4.3 Determining Direction and Order...49

5 CONCLUSION AND FUTURE WORK...52

5.1 Results...52
5.2 Future Work..55

REFERENCES... 56

iv

LIST OF FIGURES

Figure Page

2.1 Martian Land Form... 3

2.2 Principle Curvature Direction Strokes.. 12

2.3 White Noise Processed Using DDA
 Convolution (left) and LIC (right).. 16

2.4 Vector Field Rendered with OLIC Clearly Rotating
 in a Clockwise Direction...20

3.1 Lapped Texturing.. 30

3.2 Torus Model with Highlighted Patch and Input Texture.................................. 35

3.3 Model Vase Showing Area Distortion.. 37

4.1 Model Textured with the Six-Stripe Color Ramp... 41

4.2 Approximate Convex Decomposition...45

4.3 Segmented Model with Generalized Oriented Texture.....................................51

5.1 Transparent Rabbit Showing Enclosed Red Teapot..53

5.2 Segmented Horse.. 54

v

CHAPTER 1

INTRODUCTION

Generally the goal of computer graphics is to present information in a form that is

visually interpreted by human end-users. In the case of three-dimensional graphics, there

is a certain spatial element to this data that we wish to convey. Usually one is required to

work within the confines of a two-dimensional display area, which presents a challenge

of expressing data in a flat space without loss of depth and shape. Even though we realize

that there are three dimensions in our world, we know that the retina of the eye merely

interprets a two-dimensional projection of the light that enters the cornea. Therefore, by

recreating this projection, it is possible to “fool” the eye into extrapolating three

dimensions from two.

It is effective to create a realistic rendering of the data using accurate geometric

representations and sophisticated light modeling techniques. If we present our data as it

appears in real life, the viewer has a familiar frame of reference in which to interpret the

image. Lighting cues are therefore one of the most evocative ways of indicating shape.

There are instances, however, where lighting cues can be deceiving or inadequate in a

realistic rendering or even in a photograph.

For centuries, illustrators have been developing non-photorealistic methods to

more explicitly convey shape. The use of contour lines and selected stroke direction, for

example, are often used to indicate that an object has a rounded surface. Even though real

1

objects are seldom adorned with lines that run across the curvature of their shape, the

average viewer has no difficulty interpreting what these lines mean.

In this paper we explore various procedures that have been employed to add

similar suggestive contour lines to model surfaces in the area of computer graphics. We

present a simple method for applying contour lines to a mesh as a texture. These lines are

oriented on a surface according to local principal curvature directions for a meaningful

and intuitive result that is easy to visually interpret. We further demonstrate that these

lines can be animated to add even more definition to the underlying geometry.

We begin in Chapter 2 describing the background of the problem, along with the

foundational mathematics. We then move on to a discussion of how to render contour

lines through orientable textures in Chapter 3. Chapter 4 documents our design and

implementation of a new method for animating these textures to provide a more accurate

visualization of the surface features of a complex surface shape, and provide example

images from our system. Finally, Chapter 5 suggests future direction for this work.

2

CHAPTER 2

BACKGROUND

While lighting cues are often sufficient to convey the shape of many three-

dimensional models, alternative rendering methods are also exploited when additional

information is needed. Aside from simple aesthetic preference, a realistic rendering is

occasionally insufficient to inform the user of the precise shape of the subject.

Figure 2.1 Martian land form [MSSS 07]

Figure 2.1 shows two photographs of the same Martian land form. While many

believe the object in this famous photograph (left) strongly resembles a face, an alternate

photograph (right), taken from a different angle and with different lighting conditions,

reveals details which were not apparent in the original, including the fact that the object is

completely asymmetrical [MSSS 07]. The original photograph demonstrates how lighting

can obscure details and lead one to form a false impression.

3

Numerous types of visual cues can be used to convey information about shape. A

multitude of research approaches using non-realistic rendering techniques exploit these

visual cues; however, we focus specifically on the use of contour lines.

In this chapter we will examine some of the rendering techniques that have been

proposed to convey shape using contour lines. We include both static methods and

methods that employ animation to enhance the effect. We particularly focus on

techniques that use principal curvature direction (the direction of greatest curvature) to

orient contour lines because surface textures oriented along these directions have been

shown to be particularly indicative of shape (i.e., observers have a tendency to assume

that surface features on an object are aligned in these directions [Girs 00]).

2.1 Principal Curvature Direction

Contour lines must be drawn according to the shape and curvature of the subject.

To determine the direction for which the curvature is greatest, we turn to differential

geometry, wherein the direction of curvature can be conceptualized as a simple vector

tangent to the surface at that point.

For any given point on a smooth surface in three-dimensional Euclidean space,

there is a plane which lies tangent to the surface at that point. On this plane we can say

that the point is crossed by infinitely-many tangent vectors, which also represent

direction. Generally speaking, there is one single direction along which the surface is said

to be experiencing the highest degree of curvature. Of course, when this is true, there

must also be a direction of least curvature; further, these two vectors will always be

4

orthogonal when they can be measured meaningfully and are called the first and second

principal curvature directions (PCD), respectively. Along these direction vectors, the

quantified curvature values are called the first and second principal curvatures. A given

point on the surface, along with its normal, its two principal curvature direction vectors,

and principal curvature values are collectively called the Darboux frame for that point

[Pend 05].

It is possible to compute the Darboux frame for any point on a surface as long as

that surface is differentiable, except for two intuitive cases: first, if the the surface is

completely flat in the local area surrounding that point, and second, if the surface is

locally spherical, in which case the surface will curve equally in every direction. In each

case the surface is termed umbilical at that point.

 To find the Darboux frame, we can use several similar methods based on high-

order mathematics surrounding the tangent space of the surface at the point in question.

In each case we begin with a typical triangle mesh representation that approximates the

surface. The points which we wish to consider are the vertices of these triangles, so for

each of the Darboux frames, we already have the point value. In addition, methods for

finding the normals at these points are simple and well known.

2.1.1 The Weingarten Matrix

 The shape operator, also called the Weingarten matrix, is a 2x2 matrix that

concisely represents the tangent space of the surface as represented by the Weingarten

equations. This matrix is constructed such that two eigenvalues can be found that are

5

equal to the two principal curvatures k1 and k2, where the greater of the two is the first

principal curvature and the lesser is the second principal curvature. The corresponding

eigenvectors naturally represent the curvature directions, respectively. This matrix can be

defined in six terms.

W=[eG− fF
EG−F 2

fE−eF
EG−F 2

fG−gF
EG−F 2

gE− fF
EG−F 2] (2,1)

where

e=N p⋅ uu p (2.2)

E= u p ⋅ u p (2.3)

f =N p⋅uv p (2.4)

F=u p⋅v p (2.5)

g=N p⋅ vv p (2.6)

G=v p ⋅ v p (2.7)

given a point p where Np is the normal of local surface patch σ(u,v).

Goldfeather et al [Gold 04] presents several ways to approximate W, each of

which involves a polynomial representation of σ(u,v) in terms of x,y and z such that the

coefficients are terms of W. We know all of the points in our mesh representation;

therefore the coefficients can be discovered by finding the least squares solution from the

6

resulting set of equations. The most accurate, he discovered, is the cubic approximation:

W=[A B
B C] (2.8)

z= A
2

x2BxyC
2

y2Dx3Ex2 yFxy2Gy3
(2.9)

Notice the Weingarten matrix in this case is comprised of the first three

coefficients of equation 2.9. The normal at this point is also known and can be written in

the same terms:

N x , y=AxBy3Dx22 ExyFy2 , BxCyEx22 Fxy3Gy2 ,−1 (2.10)

This form presents us with three equations for each point on the local surface patch.

Using the coefficients A, B, and C, we can construct the Weingarten matrix. Then we

need only compute the eigenvalues and eigenvectors in order to complete the Darboux

frame [Gold 04][Pend 05].

2.1.2 The Second Fundamental Form

The second fundamental form in differential geometry is a roughly equivalent

way of describing the shape of a surface using a matrix, defined as the following:

7

L II du22 M II dudvN II dv2 (2.11)

where

L II= uu⋅N , M II=uv⋅N , N II=vv⋅N (2.12)

The second fundamental form is also expressed as a matrix:

II u , v =[L II M II

M II N II] (2.13)

When considering the second fundamental form at a particular point on the surface

approximation, it can be used to determine the curvature similarly to the Weingarten

matrix.

Interrante [Inte 97] describes a method to compute the principal curvature

directions and values from the second fundamental form. We begin with the set of three

mutually orthogonal vectors [e1 , e2
, e3] at a point P on the surface. e1 and e2 are arbitrary

vectors on the tangent plane of P. The remaining e3 vector points in the direction of the

normal at P. The values of the matrix are computed using these vectors.

The relationship between the second fundamental form and Weingarten matrix is

given as

II v , w=W v ⋅w (2.14)

8

where

v is a point on the surface and w is a point in the tangent space at v,

II(v,w) is the second fundamental form of the surface over v, and .

W(v) is the Weingarten matrix at point v [Weis 07].

The eigenvalues of the second fundamental form are, likewise, the first and second

principal curvatures [Inte 97].

2.1.3 Gaussian and Mean Curvature

In addition, Huang et al [Huan 05] shows how to compute k1 and k2 using the

mean curvature H and gaussian curvature K. As it turns out, the mean and gaussian

curvature are as follows:

K=
L II N II−M II

2

E I G I−F I
2 (2.15)

H=
L II G I−2M II F IN II E I

2 E I G I−F I
2

(2.16)

LII, MII, and NII are terms of the second fundamental form, defined in equation 2.12.

The following three values are terms of the first fundamental form [Pres 07]:

E I=∥u∥
2 ,F I= uv , G I=∥ v∥

2 (2.17)

9

Once we compute these values, we can solve equations 2.14 and 2.15, and finally for the

first and second fundamental curvature values:

k 1=H H 2−K , (2.18)

k 2=H− H 2−K (2.19)

For this application it was not necessary to find the corresponding directions.

Here we are also presented with an alternative method of computing the

curvatures using a local gradient direction vector and the Hessian matrix over the point

on the surface; however, this method is inaccurate when ||g|| (a gradient vector of the

surface) is 0 or very close to 0 [Huan 05].

2.2 Visualizing Principal Curvature Direction

To simply illustrate the PCD vectors, one can render short strokes across the

surface. [Girs 00] demonstrates that graphing a vector field of curvature directions as

short lines, while producing results that are rather crude in appearance, can effectively

convey the shape of the underlying surface.

Nicer results can be acquired using a technique described by [InFu 97] which can

be used to model the strokes such that they conform to the surface. Given a surface

representation where we have the Darboux frame at key points, we construct a box of a

10

certain length, width and height, which are user-defined according to the situation at

hand. This box is centered around a point P, where it is aligned with the orthonormal set

of the surface normal at P as well as the first and second curvature directions, k1 and k2,

such that the height is measured along the direction of the normal, and the length and

width along k1 and k2, respectively. The geometry that lies on the intersection of this box

and the surface can be used to represent a stroke over the surface. The length and width

of the box determine the length and width of the stroke. While a longer stroke is more

desirable, the accuracy of the stroke, as a representation of principal curvature direction,

degrades as the stroke extends from P in either direction, since methods used to

determine the principal curvature are very localized. Therefore, it is necessary to choose a

length that falls short of perceptible error. Likewise, narrowing the stroke will emphasize

its length, but there is a limit on how small the width can become before rendering

artifacts occur.

A publication by Interrante et al [InFu 97] demonstrates that this is a particularly

effective way to visually represent the surface when the surface must be transparent.

This transparency makes it difficult to judge the shape of the object based on lighting

cues; however, the contour strokes effectively define the surface. At the same time, the

sparseness of the strokes makes it easy to see the geometry that lies underneath (see

Figure 2.2).

11

Figure 2.2 Principle Curvature Direction Strokes [Infu 97]

A separate field of computer graphics, for which principal curvature data can be

applied, is the synthesis of images with the appearance of a pen-and-ink drawing. Here

we use the principal curvature to determine the direction of synthesized pen strokes.

When an artist renders in pen, lines are used to outline the shape of the subject, as

well as to darken regions in order to give the appearance of shadow from imaginary light

sources (often called hatching). Illustrators observe that using arbitrarily oriented parallel

lines for hatching can destroy the illusion of shape for an outlined object. On the other

hand, if the lines curve with the shape of the object, much like the contour lines that are

the subject of this chapter, the illusion of shape can be strengthened. Though other

possibilities exist, Hertzmann and Zorin argue that the PCD vector set is a good criterion

for determining the orientation of hatching strokes. Not only is it visually effective, but

12

the results are also consistent with real illustrations [HeZo 00]. Even when individual

strokes are rendered procedurally, realistic results can be achieved using a tensor field to

determine stroke direction [Sals 97].

2.3 Advection

Advection is a mathematical model of distributed movement, often of fluid. Say

we have a system in which fluid flows in a manner that is complex and the direction is

affected by numerous factors. We can sample the direction of flow at various points in

our system and record the direction of the flow as directional vectors. Eventually we

collect a representation of the entire system as a vector field. There are multiple methods

to create an intuitive visualization of advection, given the vector field as input.

Recall, however, that the topic of this paper concerns visually conveying the

shape of surface geometry using contour lines. For our purposes, if we substitute the

flow-direction vector field with the set of PCD vectors of a surface, we can create a

visualization that will convey the shape of the surface. While these vectors do not

represent motion, the application of advection methods to curvature vectors can create

visual contour lines that make the overall shape of the surface more apparent to the

viewer.

2.3.1 Spot Noise Advection

Spot noise for flow visualization is a simple technique to generate a texture

13

illustrative of the vector field. While the results are not as visually impressive as more

advanced procedures, it is useful because it is less computationally demanding. In spot

noise advection, dark spots are placed on a texture in a random, but roughly even,

distribution and then elongated and oriented according to the underlying vectors. The

spots appear as ellipses that are aligned with the direction of the vectors in the vector

field. From a distant vantage point, the elongated ellipses blur together and appear as

curving lines [deLe 95].

2.3.2 Line Integral Convolution (LIC)

An early method to view vector information was named after the well known

digital differential analysis line drawing algorithm. It is called DDA convolution. Using

the vector field as a basis for convolving a two-dimensional pixel image, this method

creates a reasonably intuitive visualization for a vector field from that image. The

procedure is straight forward: for each pixel in the input image, select a line of pixels in

the direction of the corresponding vector using the DDA algorithm (this line serves as the

convolution mask). Replace the color of that pixel with the average color of the pixels

that fall within this line. The mapping between the pixel and the underlying vector is up

to the implementation, but the mask can follow a twisting path of several vectors.

Due to the nature of the filter, there will be much greater color correlation in

directions that are parallel to the vector directions. When a simple random-dot noise

pattern is chosen as the input image, the result is that the image will show streaks in the

directions indicated by the vectors. While this illustrates the vector flow, the appearance

14

of such an image is often blocky and disjointed, due to the fact that the algorithm is based

on straight lines when for many systems being modeled, the vectors are only approximate

measures for what are meant to be continuous curves.

Line integral convolution is a method to model these curves. Simply put, we know

that our vectors represent the direction of flow at particular points on our curve;

therefore, they must be tangent to the curve, or at least parallel to tangents. If we take the

common integral of several direction vectors the result will be a curve, or streamline, that

passes through these directions. If we adjust the DDA convolution to use these computed

streamlines as the convolution mask at each point, the result will be a smoother pattern.

As described in [CaLe 93], this can be done in a piecewise method where we

divide the vector field into segments, called cells, where each represents the influence of

a single vector in the field. The part of our filter kernel through this cell is described as

h i= ∫
si

si si

k wdw (2.20)

that is, the integral of k(w), the kernel for this cell, over the estimated parametric distance

between cells. For each pixel, we construct a filter from the summation of these integrals

over the path with a length of L pixels. The value L is variable and is set as appropriate to

the application. It is also suggested that a similar path be traced backwards from the pixel

in directions reverse to the underlying vectors to help maintain a smoother stream line

[CaLe 93]. The results are shown in Figure 2.3.

15

Figure 2.3 DDA Convolution (left) and LIC (right) [CaLe 93]

In addition to representing vector flows, the streamlines applied to a three-

dimensional surface may resemble contour lines that an artist might draw to define the

shape of an object. In effect, the LIC rendering becomes a procedural texture that can

enhance the shape of an object. The usual method for applying texture to a mesh, that is,

the direct mapping of an image to a mesh via pairs of texture coordinates, can be

employed for applying this texture as well. However, this approach works well only if the

texture is evenly mapped over the object. Further, popular procedures for automatic

texture coordinate generation typically create mirroring or distortion.

Another application, presented by [Inte 97], involves an arbitrary transparent,

blobby object that is only visible by the sparse pattern of lines on its surface. To render

this pattern, the author takes advantage of the high resolution of triangle vertices that

form the object's surface by simply coloring each vertex according to the computed LIC.

The object is still transparent due to the fact that the pattern's opacity is keyed to

16

luminance. A voxel-based, three-dimensional implementation of LIC is used to compute

the intended color intensity at each voxel, which is then mapped to the corresponding

surface vertex.

In addition, LIC can be used in artistic non-photorealistic rendering. Using the

same type of direction vector field generated from PCD vectors, LIC can be used to

convolve a Perlin noise pattern to generate a texture that appears similar to brush strokes.

This technique is useful for rendering oil-painting and watercolor style images. It can

synthesize how an artist might choose the direction of his brush strokes to emphasize

shape, and how a brush passing through paint can leave streaks of color in the direction

of a stroke [LumM 01].

2.3.3 Fast Line Integral Convolution (FLIC)

Line integral convolution is an inherently expensive operation as multiple

integrals must be approximated for each pixel in the target image; therefore, researchers

have investigated optimizing the process to reduce calculation time.

A prominent area of redundancy in the algorithm is the overlap of generated

streamline filter kernels along the same integral. Consider that the filters for LIC are

determined by computing an integral curve over the vector space using numerical

methods. Several pixels lay under the integral curve, yet the traditional algorithm

computes a new filter kernel for each pixel that falls within this domain. These kernels

will overlap and include many identical pixels. To optimize the algorithm for speed, it is

possible to store the pixel locations computed for one pixel's kernel and reuse them for

17

other kernels that would fall in the same streamline.

Secondly, even streamlines that do not overlap can be under the influence of the

same vectors in the underlying vector field. When this happens the filter kernel will be

identical except for a correction term that is part of the formula. Once again, a set of

precomputed pixel locations can be stored for the sake of eliminating redundant

computation. A procedure that computes LIC using these two optimizations, while

yielding identical results, is Fast LIC, and is generally used in place of traditional LIC

[StHe 95].

2.3.4 Animating Line Integral Convolution

There are two reasons one might wish to animate an LIC rendering. Obviously if

the vector field over which the LIC is rendered changes over time, the visualization

should change accordingly. If the vector field is static, animation can still be used to

indicate the direction of the flow and illustrate the flow as being in motion. In the case

where LIC strokes are used to convey shape, animation could possibly provide a clearer

picture. Various methods can be used to achieve this goal.

2.3.4.1 DLIC

Dynamic Line Integral Convolution (DLIC) is an extension of LIC for vector

fields that are dynamically changing. DLIC is particularly useful for visualizing electric

current, where the current flows in more than one direction. The result is an animation

18

that shows how the flow changes over time.

For this procedure, a second vector field is used which represents the direction of

movement for each vector in the initial vector field. Initially a texture pattern of random

noise was continually modified according to this second vector field, and traditional LIC

was applied on top of this field. While this method works in theory, the random and even

distribution of the underlying texture is essential for visually pleasing results. Modifying

the texture according to the second vector field eventually caused patterns to appear in

the image map, resulting in an overall softening in contrast of the LIC result. The solution

is to treat the initial pixel map as a particle system, wherein the method carefully tracks

each particle and recreates the texture image at every frame, factoring the overall

distribution of color [Sund 03].

2.3.4.2 OLIC

Oriented line integral convolution (OLIC) [WeGP 97] is also a variation of LIC.

Rather than averaging the colors in a streamline in order to find the resulting color, the

kernel itself is a color ramp. The resulting fade from black to white is a visual indicator of

the flow direction. The viewer would typically have a strong predilection to interpret the

strokes like a comet, i.e., the light end is leading, while the dark is trailing off. This result

represents an advantage over traditional LIC, in which there is no indication of the

direction in which the streamlines flow.

This arrangement of color lacks clarity in LIC, where color separates one

streamline from another. For the purpose of OLIC, however, a much sparser underlying

19

dot pattern for the source image ensures that each stroke remains distinct against a dark

background. Further, these strokes can be animated by continuously re-rendering the

image while shifting the phase of the ramp kernel. [BeGr 00] notes that this result can

also be achieved simply and efficiently using color-table rotation. A resulting pattern is

shown in Figure 2.4.

Figure 2.4 Vector Field Rendered with OLIC Rotating Clockwise [WeGP 97]

In this chapter we have looked at the research background of computing principle

curvature directions for mesh surfaces as a means to create illustrative renders. In the

next chapter, we implement the cubic-order algorithm described in Section 2.1.1 and use

the resulting PCD vector data in a new texturing method. In Chapter 4 we further

demonstrate that the concept of animation presented in Section 2.3.4.2 works well with

our goal of animating the surface texture that we create.

20

CHAPTER 3

RENDERING CONTOUR LINES WITH ORIENTED

TEXTURES

Many techniques exist to determine primary curvature direction and also to

display the results. Most of the methods presented in the previous chapter rely on

volumetric methods to ultimately render the results to the screen. Here we present a

simple method to convey the visualization on the surface of input geometry using a

repeating texture that is locally applied and oriented.

The procedure divides an input triangle mesh into a collection of small patches of

triangles, one for each vertex, which represents the surface local to that vertex. Each

patch overlaps and shares triangles with other patches around it. For each patch we

determine a vector, which represents the direction in which the patch curvature is the

highest and also stipulates the orientation of a texture image (a strongly directional

pattern that will appear as contour lines when rendered), which is applied locally to that

patch. The textures on the patches will blend together and create a pattern that will

globally suggest the shape of the mesh. Though the results are not guaranteed to be as

coherent as explicitly determined contour lines, the overall impression is the same.

21

3.1 Preliminary Information

Before we detail this procedure, we begin with some preliminary information

about the specific implementation which led to the results presented in this paper. The

procedure is written in the language C#, except where noted. In addition to Microsoft's

standard .NET library, we use two open-source libraries that provide useful functionality.

To aid in visualization we use the Irrlicht.NET library, which provides a high-

level scene graph for either OpenGL or DirectX rendering. Open GL is chosen, of

course, for its traditional role in academics. Irrlicht.NET is used to quickly establish a

visual framework in which to display the results of our implementation.

Mapack is a simple mathematics library that provides basic Matrix operations, as

well as a least-squares solver and a matrix diagonalization function for finding

eigenvalues. All of these features will be used in the process.

3.1.1 The Model

Models for this exercise exist internally in the form of the typical type of triangle

mesh used in graphics applications. They are taken from files in Wavefront's OBJ format.

This format is easy to parse and suggests a convenient data representation, particularly in

referencing triangle corners as indices to vertices, rather than using the vertices

themselves. This scheme facilitates determining which triangles share a particular vertex

without performing potentially error-prone floating-point comparisons. Additionally,

there is no redundant storage of vertex information: if a vertex is updated, it applies to all

22

triangles that share that vertex.

3.1.2 Data Structures

The model is a collection of surfaces, and a surface is represented as a list of

vertices and a list of triangles. Each triangle simply stores the indices of the three corner

vertices, along with the midpoint and the normal of that triangle. Each vertex stores the

Darboux frame for that point, as defined in the previous chapter, which includes the

point, the normal at that point, the two principal curvature direction vectors, and the two

principal curvature values.

 The normals are computed immediately upon loading the model. For each face

we create two vectors parallel to the face by selecting two corner vertexes and subtracting

the remaining corner vertex from each. Taking the cross product of these two vectors

results in an orthogonal vector, which when normalized, represents the normal for that

face. The normal for each vertex in the model is approximated by averaging the normals

of the faces that share that vertex.

3.1.2.1 A Collection of Surface Patches

For each vertex, there is also a separate local patch which is necessary for

computing the principal curvatures. Each patch is a duplicate of the vertex along with its

surrounding neighbors. Here a neighbor is defined as any vertex that can be reached from

the center vertex by crossing exactly one triangle edge. This set of neighbors is also

23

called the first n-ring, or 1-ring, because the remaining triangle edges form a ring around

the center vertex.

Once we isolate the geometry that we need to include in a patch, it is duplicated

so that during the calculations, each patch can be translated to its own local coordinate

space, while the underlying model is preserved. As we shall see, the patch is also useful

later for computing texture coordinates when the texturing solution is applied.

3.2 Principal Curvature Directions

Our goal is to compute the Darboux frame for each point on each component. We

start by loading each component and computing the normal for each vertex. We then

iterate over each vertex and apply the cubic-order algorithm discussed in [Gold 04] and

further substantiated by [Pend 05].

For each vertex we obtain a surface patch as described in Section 3.1.2.1.

Generally there will be at least three vertices in the neighbor-set, which will be necessary

for the calculations. However, if the set has fewer than three, we can obtain a wider

sample by combining the neighbor-sets of the included vertices and constructing a larger

patch. For each patch we apply calculations to approximate the shape operator for the

patch. The eigenvectors and eigenvalues of the shape operator are the first and second

PCD vectors and their corresponding values, respectively.

24

3.2.1 Local Coordinate Space

To simplify the computation, we translate the local patch to a local coordinate

space so that the normal of the surface at that point, and the two essentially arbitrary

vectors that we derive from the normal, form an orthonormal basis. For now we know

that the center point will be at the origin, and the normal of the patch at that point is axis

aligned at (0,0,1). We are given the following equations to construct a rotation matrix:

R=[r1, r 2, r 3]
T (3.1)

r 1=
 I−n . nT i

∥ I−n . nT i∥
(3.2)

r 2=r 3×r 1 (3.3)

r 3=n (3.4)

where

I is the 3x3 identity matrix

n is the normal at the center point p

i is the x-axis represented as the vector [1,0,0]T.

A degenerate case appears when the normal is aligned with the x axis. In this case we

must alter the procedure to use a different axis [Pend 05].

25

3.2.2 The Cubic-Order Parametric Representation

The cubic-order parameterization of the shape operator was detailed previously in

section 2.2.1. Recall that we have an equation expressed as a cubic order polynomial with

seven terms. In addition, expressed in similar terms, is an equation for both the x and y

components of the normal at that point. Also recall that we must ensure that at least three

vertices are included in the extracted neighbor-set for each patch. Now we can find the

coefficients using all of the values of x and y that we have in the patch vertices. With

each set of values substituted in each of these three equations, we have enough equations

to solve for the coefficients. To solve the series of equations, we use the Mapack

Library's Solve() method, which determines the least squares solution.

Note that center point p, for which we are determining the shape operator, should

not be included in the patch. Because its x, y and z value are all zero, this point is not

useful for solving the equations, and will cause the Solve() method to fail.

3.2.3 Retrieving the Principal Curvature Direction Vectors and Values

The shape operator, or Weingarten Matrix, is also defined in the previous chapter

Section (2.2.1) where it is composed of only the first three of the computed coefficients.

Diagonalizing this matrix using Mapack provides us with the necessary values. The

resulting 2x2 diagonal matrix will contain the first and second principal curvature values.

One need only determine which is greater to distinguish the primary from the secondary

principal curvature value. This procedure is also used in determining which column in the

26

other resulting 2x2 matrix is the first PCD vector, and which is the second.

3.2.4 Dealing With Error

Several issues arise when computing the principal direction curvature. Some of

these are identified in the literature along with ways of dealing with them. One issue

already mentioned is the visible and abrupt reversal of first and second PCD vectors,

which results when vectors are undefined on a surface that is locally spherical or flat. Our

algorithm is imprecise; therefore, when a local surface patch meets, or is extremely close

to meeting, either of these criteria, the result is left to the fate of rounding error. If the

surface in question has several vertices that fit this category, the results can be

inconsistent. One can resolve these situations by simply substituting the result with a

consistent reference vector. Such problematic vertices can be identified by comparing the

primary and secondary curvature values, which will be very close.

3.3 Applying Texture

Once we have computed the Darboux frame for each vertex in the target

geometry, that information can be used to create a pattern on the surface of the model that

will cue the viewer to its overall shape. To apply contour lines or marks to the surface of

the model, we use texture mapping since it is supported by most graphics hardware for

rendering in real-time and by graphics libraries through a straightforward process.

The challenge, however, is establishing the mapping between the model vertices

27

and image-map points. Currently, procedural methods exist to apply textures to simple

objects such as spheres and cylinders. Although more generally applicable procedures

covering an arbitrary surface without visible distortion can be difficult.

3.3.1 General Texture Parameterization

Surface parameterization is a general term that, in the case of procedural

texturing, refers to a surface being “unfolded” and projected onto a plane. Because it is

much easier to map points of a flat image to points on a plane, an accurate

parameterization can be very useful in texture mapping.

One type of parameterization is the conformal map, which is based on methods of

conformal geometry that allow any arbitrary surface, without holes or self intersection, to

be mapped first to a sphere, and then to a flat surface. The mapping is called a

“conformal mapping” and when such a mapping exists between two surfaces, they share

a “conformal equivalence.” [Hake 00] presents a method in which the conformal

mapping is approximated from a number of discrete elements, corresponding to vertices

on the surface. Since the model is represented as a triangle mesh, rather than a continuous

surface, the approximation is especially appropriate. Theoretically the conformance map

is represented as a partial differential equation, but here it is approximated as a matrix of

linear equations that can be easily solved using a least-squares solution [Hake 00].

To apply this method cleanly, the mesh must have spherical topology for direct

spherical mapping. The mesh will therefore need to be divided into segments. Further,

even a topologically spherical segment will need to be divided further to achieve the

28

ultimate planar mapping. When a model is sufficiently divided, the resulting segments

will be homeomorphic to disks. The planar mapping of a model segment for texture-

mapping is referred to as a “chart.” The collection of charts that comprise the complete

geometry is called the “atlas.”

Along the lines which segment the mesh, discontinuity will appear in the texture

mapping. The model, therefore, should be divided in areas where a natural line already

exists. Cusps in the model can be detected as areas where adjacent triangles are facing

each other at a sharp angle. A predetermined threshold can be used to determine how

concave a cusp will need to be for it to be selected [Levy 02].

There are generally two categories of inaccuracy that affect an approximate

parameterization: angular distortion and area distortion. The conformity map described

above preserves global orientation such that angular distortion is not problematic. Area

distortion, on the other hand is occasionally observed. This artifact is caused by a

disproportionate ratio between the areas of a triangle and the region of the texture image

that is mapped that triangle. The result is a stretching or compressing of the texture image

over part of the model.

To deal with this phenomenon, evenness of the area distortion can be controlled

by finding the optimal solution to an objective function that minimizes the deviation. This

remedy is not always appropriate, however, because maximizing the area conformity

without compromising the angular conformity is not always possible [Dege 03].

Rather than attempting to create an accurate parameterization of the entire surface,

one can also break down the surface into smaller pieces and apply the texture mapping

29

locally to each component. This technique, called “lapped texturing,” can be used in

cases where a repetitive pattern is applied to the model. Here, the overall texture map is

constructed of a collection of overlapping patches, each displaying an iteration of the

same repeating pattern, as in Figure 3.1.

Figure 3.1 Lapped Texturing [Prau 00]

The applicable texture element is part of a repeating pattern and is surrounded

with an alpha-channel to fade out the edges. When the texture is mapped to adjoining

surface patches, it results in smooth overlapping areas without visible seams.

According to the algorithm put forth by [Prau 00], we begin at a random triangle

on the surface and create a corresponding mapping to a random region of the texture

image according to a predetermined spatial ratio. From that triangle we “grow” the patch

by spreading out to incorporate other triangles into the mapping until we reach the extents

of the single texture element, or we reach a point where adding new faces will introduce

30

an excessive amount of distortion. Once we reach this point, we have completed a patch

and we proceed to select a new random triangle that has not been covered yet. Iteration

continues until all triangles are covered.

As before, the resulting patch segment must be homeomorphic to a disk. When

adding the next triangle to the patch, the algorithm considers how the triangle will affect

the topology of the resulting patch, and determines whether the triangle will be added to

the patch.

Another consideration is the orientation of the texture. Unless the texture is

isotropic, there will be a correct direction for the texture orientation. In the application

described, a user-specified tangent vector is provided for key vertices and interpolated to

all vertices. For any given vertex, this vector indicates the local “up” vector for the

orientation of the texture. Since a patch has multiple vertices and vectors as such, the

texture can change direction over the course of the patch. The algorithm allows for the

intentional distortion of the textured image to improve the appearance of the texture

orientation [Prau 00].

3.3.2 Simple Method for Rendering Contour Lines as Texture

We can think of contour lines as a repeating pattern across the surface of a model

that are locally oriented according to primary curvature direction. The algorithm

described above can therefore be adapted to the task of rendering contour lines. For a

texture image, we use a pattern of parallel lines. These lines will be oriented, according to

the algorithm, by the orientation vectors provided at each vertex. In this case we use the

31

primary PCD vectors that we compute in section 3.2. Ideally, the lapped texturing

algorithm should yield impressive results; however, for the sake of expediency, we use a

simplification of this method.

Recall that in the course of computing the Darboux frames, we represented the

triangle mesh as a set of patches consisting of a center point surrounded by its 1-ring.

Because a patch is generated for every vertex on the surface of the mesh, these patches

clearly overlap. We propose that this patch can be used as part of the lapped texture

algorithm in place of the dynamically “grown” patches that cover a mesh, which greatly

simplifies the algorithm in several ways. First, we no longer need patch growing criteria

to be considered for each triangle on the mesh. Second, given the size and nature of the

patch is generally guaranteed to be of the correct topology, the “unwrapping” of the patch

is now trivial as well and is often unnecessary. Any patch with a reasonably gradual

curve will exhibit very little visible distortion when compared to a flattened version of the

same patch.

One drawback to using this simplified algorithm is due to the much smaller patch

size that generally results. Most obvious will be that for a mesh with a high triangle

resolution, the repeating pattern will appear to be very small in the context of the full

model. Also, a smaller patch introduces more border area, and the border around the

patch is an area where aliasing and seams are visible. We also have less room to shape

the texture according to local orientation. Due to the high degree of blending we employ

for our method, however, these effects are not highly visible and so do not result in a

significant loss of image quality.

32

3.3.2.1 The Algorithm Explained

To map the texture onto the patch, we must find texture coordinates for the vertex

on the patch. We first orient the patch to a local coordinate space according to the

orientation vector (or “up” vector) for the vertex in the center (here we let the orientation

vector be the principal curvature direction). A useful orientation would lay the patch flat

on the xy plane so that x and y coordinates would roughly correspond to uv texture

coordinates. This result could be achieved by translating the patch to the same local

coordinate space that was used in Section 3.2.1. Essentially, what we will have is an

orientation basis for the patch's center vertex, consisting of the mutually orthogonal

normal, and primary and secondary PCD vectors, translated to the canonical basis.

In the algorithm to compute the Darboux frame for the center point, the principal

curvature direction is found originally as a two-dimensional vector, to which a translation

is applied to map it to three-dimensional space. We use this two-dimensional vector now

to finish computing an orientation for the surface patch. Once we have translated the

patch so that the normal is aligned with the z axis, the patch can simply be rotated again

along the z axis.

To find the angle between the PCD vector and the y axis, we use the following:

cos= e1⋅Y
∥e1∥∥Y∥ (3.5)

sin=∥e1×Y∥
∥e1∥∥Y∥ (3.6)

33

In this case e1 is our principal curvature direction vector and Y is the global Y axis

(0,1,0). Note that we can simplify these formulas because both vectors e1 and Y should be

normalized. Once we have determined the angle, a simple rotation matrix can be

constructed.

Once the patch is in this orientation, texture coordinates can be applied. We take

the simplistic approach of projecting the texture flat onto the patch. Iterating through the

1-ring points on the patch, we discover the minimum and maximum x and y values that

the patch covers and simply map them to established uv constraints of 0 and 1.0. We can

then find the texture coordinates for any given point P using the the following formula:

u , v = xP

xmax− xmin
,

y P

 ymax− ymin (3.7)

where

u and v are the (u,v) texture coordinates of P

xp and yp are the x and y component of P

xmax, xmin, ymax, and ymin represent the extrema of x and y values for all

points on the patch.

The edges of each patch also need to be made transparent so that the textured

patches blend together to form a continuous textured surface. We can accomplish this

task by adding transparent alpha-channel data to the texture image. Several image format

types support multiple levels of transparency in the form of an alpha-channel.

34

Additionally, the alpha channel can also be stored in a separate image map file. We create

the alpha channel data so that the center of the texture is opaque but the edges fade from

opaque to completely transparent.

Figure 3.2 Torus Model with Highlighted Patch and Input Texture

A similar effect can be achieved using vertex alpha values as well. Generally, the

graphics renderer will also support setting color values, including an alpha value, for each

vertex in the mesh. During the render, the vertex color will be modulated with texture

color to create the color that will appear on the screen. Setting the center vertex of the

patch to opaque, and the edges to completely transparent, will also produce the desired

result. Even though this leaves much of the patch transparent, the amount of overlap will

essentially cross-fade the patches together, resulting in a full level of opacity at every

35

point on the continuous surface. We implement both methods to achieve different

rendering effects.

Figure 3.2 shows the results of applying a highly oriented texture to a simple torus

model using this technique. An example patch is highlighted. The texture is centered at

the center point of the patch and the edges are faded to transparency. Due to overlap of

textured patches, no transparent portion of any patch is visible. The texture appears to be

solid and continuous.

3.3.2.2 Area Distortion

Not evident in Figure 3.2 is the possibility of area distortion when using this

method. We examine an example for which significant area distortion is present due to

the translation of the entire texture to each patch. In the case of the torus, all of the

triangles that comprise the model are of comparable size. In practice however, patches in

the model can have a wide variance in size, according to the size of the triangles they

encompass. With a triangle mesh, areas that require more detail often contain smaller

triangles than other parts of the mesh.

A render of the same procedure applied to a different model, a vase, shows a

definite shrinkage of the texture at the neck of the vase, as compared to the body. The

surface of the neck across the circumference happens to be segmented the same as the

body; therefore, triangles at the neck are smaller then those at the body. The proposed

texturing method currently fits the texture to the extents of the patch to which it is being

applied, which results in scaling the texture to the patch size.

36

Figure 3.3 Model Vase Showing Area Distortion

Alternately, texture coordinates can be scaled adaptively so that the patch uses a

portion of the texture that is proportionate to its area. Previously we computed the u,v

coordinates for each patch in terms of the maximum and minimum x and y values for the

patch vertex locations. Instead we can survey all of the patches in the mesh and find the

global extrema for use in the formula. Using the global x and y maximum and minimum,

as opposed to the local, will scale all of the textures to the same frame of reference, but

for smaller patches, parts of the texture edge will be cut off. This may not matter,

however, if the texture is a regular pattern.

Another evident problem is a potentially distracting periodic pattern due to

numerous repetitions of the texture. While distracting patterns from low-frequency

components of a texture are also a limitation of the lapped texture on which we have

37

based our algorithm, the fact that we require more repetitions to cover the model

exacerbates the problem. While carefully selecting a texture with an evenly distributed

appearance can mitigate the problem, it is inherent in any application of a repeating

texture. We use a texture comprised of straight stripes of the same width, which is even

enough so that such patterns are not distracting enough to deter from the perception of

orientation. Even when the stripes on each patch do not line up, the underlying

directionality of the texture is still evident.

Now that we have a system of applying oriented textures to a mesh, we describe,

in the next chapter, how this method can be extended to render animations that will

further enhance the illusion of shape. In Chapter 4 we explore a simple procedure to

animate the contour lines over a surface. In addition, we divide the surface to achieve a

cleaner animation that is easier to interpret visually.

38

CHAPTER 4

ANIMATION AND SEGMENTATION

To expand upon the texturing method introduced in the previous chapter, we now

demonstrate how these textures can be animated to enhance the impression of shape.

Further, the results can be clarified using a technique to segment the model.

For animation, there is less of a precedent to draw from, for while one might see

countless illustrations which include contour lines, examples showing contour lines that

are specifically animated for the purpose of conveying shape are uncommon. Computer

graphics research has shown that rendering an animation of a particle system traveling

across an ambiguously-lit three-dimensional surface can enhance the perception of the

shape of that surface [LuSM 02]. This “kinetic visualization” is based on the casual

observation of flowing water and how its motion indicates the rocks beneath. In addition

to computer graphics research, psychological research in this topic has shown that users

were more readily able to identify key topographical points when viewing surfaces with

the kinetic element added [LuSM 02].

4.1 Simple Animation

Recall that in Chapter 2 we discussed animation methods such as OLIC that can

achieve adequately illustrative results simply through color manipulation over a simple

image map. A similar procedure can be used to animate the image map used in the

39

oriented texturing algorithm presented in this paper. One would then apply the animated

texture image to the geometry, rather than the static image assumed in the previous

chapter. Much like the kinetic visualization method, our animation will be highly

directional. The animation would be repeated over the surface for every patch; therefore,

the animation must be one that is visually effective despite being distributed in repetition.

The animated texture is similar to the line pattern used in the previous chapter.

The texture is composed of a series of stripes, but now these stripes are drawn as a

gradient ramp of grayscale colors. In each frame, the color ramp is moved and the colors

of the stripes are rotated accordingly giving the appearance of motion. In this method, the

absolute minimum number of stripes per repetition is three, while much smoother results

can be obtained using six.

4.1.2 Determining Direction

The actual direction that the texture is observed to move is related directly to the

texture orientation. The rendering of the Stanford bunny in Figure 4.1, shows the striped

pattern oriented in the direction of the locally computed vectors. The motion vector for

each patch is therefore in the secondary PCD. Unfortunately, the animation presents a

problem with directionality not present when applying the texture statically. Though we

compute a single secondary PCD vector for each patch, the curvature in the reverse

direction is essentially identical; therefore, we cannot be certain which direction will be

selected for the secondary PCD. This uncertainty is not a problem with a static texture,

which is symmetrical in that direction. The animation is directional, however, and this

40

ambiguity in orientation direction produces disruptions in the resulting animation.

To eliminate these unnecessary vectors, the algorithm to find the secondary PCD

can be adjusted slightly to pull from only one half of the available tangent space. Any

result that falls outside the half can be easily reversed by multiplying the vector by -1.

Though the edges of this artificial range will still introduce ambiguity, this adjustment

will greatly reduce the number of disparately oriented animated patches.

Figure 4.1 Model Textured with the Six-Stripe Color Ramp

Additionally the direction of the PCD vector can be purposefully manipulated to

control the direction of animation to suit the application at hand. However, there is no

41

general scheme that is considered definitively correct. In the general case where the

animation is allowed to flow in the default direction, the result will be animation that is

generally coherent over patches with similar orientation.

4.2 Segmentation for Clearer Animation

While we focus on techniques that utilize principal curvature directions, when a

subject is sufficiently complex, these methods often provide us with complex data sets

that are difficult to visually interpret and may result in a display that is unsatisfactory to

convey the intended information. The rendering of the Stanford bunny in Figure 4.1 is

arguably one such case.

We endeavor to find a solution that is more intuitive; hence we consider how a

human being might approach the same problem. Given the body of a horse for example:

an artist wishes to illustrate the horse using contour lines to convey shape. It is unlikely

that the artist will survey a large sample of points on the horse’s surface and consider the

curvature separately for each one. Though this task is easy enough for a computer

program, more than likely the artist will generalize the curvature of the object.

An artist might consider the legs of a horse and decide that they look roughly

cylindrical, so the contour lines should wrap around the legs. The body of the horse can

be similarly generalized, but the artist is likely to draw those lines arcing in a different

direction, according to the curvature. In fact, illustrations in which contour lines are

rendered show that an artist will tend to use cylindrical approximations to determine the

direction of the contour lines. In addition, contour lines typically do not reflect small

42

details and variations in the surface curvature, but rather give a broad indication of the

overall shape [HeZo 00].

The use of approximation and generalization in programmatic techniques may

yield results that are more familiar to an observer. This prospect is especially promising

for use in animation, where a quick interpretation of any given frame is crucial to

perception as a whole.

Consider how one might then animate contour lines in an intuitive way. We might

expect to see contour lines move across the length of the object, perpendicular to the

direction over which they are oriented. Given this constraint, however, there are still two

possible directions that lines can travel (we can say “forwards” and “backwards”, in

relative terms). In the case of the horse, we may expect the lines to begin at the center and

extend outward to the extremities. Lines would travel from the body upward across the

neck and downward toward each of the hooves.

 Here we outline a procedure to render animated contour lines over an arbitrary

smooth surface according to this concept. The process is to divide the geometry into

parts. For each part we generalize the principal curvature direction and render lines

oriented along those directions. Finally we animate these lines, determining the best

direction for the lines to flow.

4.2.1 Approximate Convex Decomposition

Approximate convex decomposition is the name of the method used to segment

the model. Convex decomposition, in general, is the practice of decomposing an arbitrary

43

mesh into the minimal number of purely convex components. The technique is very

useful for adapting an algorithm that would normally require a simple or convex mesh,

and applying it to a mesh of arbitrary complexity. Pure convex decomposition is not

practical here, however. Many of the types of meshes we intend to use are complex

enough that they could possibly break down into tens of thousands of parts.

One technique an artist uses to determine how he will render depth cues is to

imagine a complex subject as a collection of basic shapes, but it would be overwhelming

for an artist to imagine a subject as a collection of many thousands of shapes. The artist

therefore considers only an approximation of the geometry. Since we intend to obtain

results that are intuitive to observe, it makes sense that we do the same. In fact, one

concept of approximate convex decomposition subdivides the model into meaningful

parts.

One particularly effective algorithm for this subdivision was developed by [LiAm

04, LiAm 06]. Viewing the results in figure 4.2, it is apparent that by using

approximation to decompose the model, an intuitive separation can be achieved. In the

case of the example elephant model, the components are identifiable as the head, tusks,

trunk, ears, body, and legs. The fact that all of these components are nameable indicates

that a human being would conceptualize a similar decomposition.

This algorithm is a three-dimensional extension of their method to approximate

convex decomposition of two-dimensional polygons. The algorithm involves two basic

steps. First, the concavity of the geometry must be evaluated to determine where key

features are located. Second, the features are used to determine where to divide the

44

model, and along what lines.

Figure 4.2 Approximate Convex Decomposition [LiAm 04]

Measuring the concavity of the model involves the concept of bridges and

pockets. Bridges are defined as expansive convex approximations of an object that

broadly cover an object’s surface, intersecting at some points and sweeping over others.

When these bridges enclose an object in space, they collectively form a convex hull

around that object. Pockets are the concave geometry underneath the bridges. The

concavity of a pocket can be measured by surveying the distances between vertices on the

surface of the pocket, and a plane implied by the surface of the bridge. Areas of measured

concavity are called features. Note that a bridge is constructed over the original surface

model, whereas a pocket is an identified portion of the original surface of existing

45

geometry.

In order to segment the model into convex segments, we divide the model at the

features. Because the intent is to make this division arbitrarily approximate, we sort the

features according to their measured concavity. Beginning with the area of greatest

concavity, we divide the model at each subsequent feature until a specified threshold is

reached. To determine how the model is divided, key points, called knots, are identified

in the concavity of a feature and are grouped together. Eventually a line is formed that

indicates where the division is to be made.

This algorithm will generally work for surfaces that are identified as “genus zero,”

or contain no “handles” (also referred to as homological loops). These areas of geometry

are likened to the handle of a coffee cup, where a branching segment rejoins the model,

forming a hole. If the model has such topography, it must be reduced to a set of genus

zero models. This creates a preliminary step where this type of topography must be

identified and processed [LiAm 06].

4.2.2 Implementation

For this project, we use a preexisting implementation of this algorithm by [Ratc

07]. The code is written in C++ and is confined to the standard (std) library. Though

originally intended to be an implementation of the algorithm described above [Ratc 07],

an alteration to the procedure reduces its usefulness to decomposing a model into

meaningful parts.

The intent of this application is to create a simplified version of the input model

46

constructed from a small number of convex hulls. The simplified model is to be used in

physics simulations as a reduced-polygon surrogate for the complex geometry from

which it was constructed. The result can be used in collision detection to reduce the

number of polygon-to-polygon collisions that need to be computed. Because the

application does not require meaningful feature extraction, this element of the

implementation was not fully developed. Instead, the program recursively divides the

model in half for a user-specified number of iteration steps. The pieces are converted

into convex hulls and then rejoined in cases where the resulting rejoining would also be

convex. The output is a number of convex hulls that approximate the shape.

For the purpose of our experiment, the implementation was altered to output the

divided original geometry, rather than the convex hulls. This did not represent a

significant modification to the algorithm, however. The problematic aspect of this altered

procedure is that divisions in the surface are no longer guaranteed to be in places of

greatest surface concavity. While results can be improved by altering the operating

parameters (in particular, setting the number of recursive iterations to be very high),

arbitrary divisions in the model are difficult to eliminate. Models processed using this

algorithm are not ideal, but they should be adequate for our purpose. One small

consolation is that the altered procedure no longer has the “genus zero” requirement that

constrained the original.

47

More specifically, the actual procedure takes the following steps to segment the

model:

1) Generate a convex hull around the model by generating bridge planes over the

surface.

2) Roughly estimate the difference in volume between the geometry and its hull by

tracing the distance from points across the surface of the model to nearest points

on the hull.

3) Compare this difference to a predetermined threshold. If the difference is small

enough, consider the model to be convex.

4) If the difference is greater than the threshold, divide the model in half along an

arbitrary, axis-aligned plane. Repeat steps 1-4 until no more recursion can be

done. This process will generate a number of roughly complex pieces.

5) For each pair of adjacent pieces, join them temporarily and create a hull around

them, the same as step 1.

6) Estimate the difference in volume between the combined pieces and their hull,

the same as in step 2. If the difference is less then the threshold, combine the

pieces permanently. Together they form a roughly convex object.

7) If the threshold is exceeded, separate the pieces again.

8) Repeat steps 5-8 for all new combinations created.

In addition our procedure introduces a new potential source of error. To compute

48

the curvature extrema at a point as discussed, we require that the point be part of a

continuous surface, at least locally. Since we divide the model into segments, there are

now several vertices that rest on the edges of the surface segments. Values computed at

these vertices will not be accurate. When possible, this scenario can be avoided by

computing the curvature extrema before segmenting the model. Short of that,

reconstructing a local surface patch if corresponding points can be found on the adjoining

segments would not be difficult. In our case, since we intend to generalize this

information for each segment, these vertices can be ignored as long as enough surface

vertices remain to indicate the shape of the surface segment.

For all intents and purposes, it is easy to determine whether a vertex is at the edge

of the surface segment or not. Recall that according to our data structure, a triangle is

represented as a set of three indices to vertices. If we are examining a vertex at a point on

the surface that is completely surrounded by triangles, i.e., in a locally continuous portion

of the surface, then each triangle is necessarily adjacent to two others. Therefore, in

addition to the center vertex that is shared by every triangle in the neighbor-set, each

triangle will share its remaining vertices with two other triangles in the neighbor-set. If a

triangle contains a vertex that is not shared by another triangle in the neighbor-set, then

the vertex in question is at an edge of the segment.

4.3 Determining Direction and Order

Now that the model is segmented, the final step is to simplify the PCD vector

49

field for the sake of the animation. To do this we find the mean of the untranslated PCD

vectors in each Darboux frame. Recall that the Darboux frame stores the vertex location,

normal, and PCD vectors and values. For each of these frames, we additionally store the

untranslated PCD vectors because they are defined relative to the same basis, and are thus

comparable to one another. We also store the original R1 and R2 rotation vectors, so that

the new PCD vector can be translated back to each of the original locations.

The result is a greatly simplified surface texture; however, the surface maintains

key directionality from PCD calculations, making it advantageous over non-adaptive

contour line rendering schemes. Adjusting parameters in the segmentation algorithm

allows control of the number of segments into which the model is subdivided. More

segments will demonstrate more accuracy, but lose clarity. Figure 4.3 illustrates the result

of this procedure. The broad dark lines show the separation of segments.

50

Figure 4.3 Segmented Model with Generalized Oriented Texture

51

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Results

While several methods have been developed to construct a visualization of a

model that is based on principal curvature directions to enhance the appearance of shape,

these involve either geometric construction or procedurally generated texture images. We

successfully demonstrate, however, that such a visualization can be created simply by

affecting the orientation of a repeating texture across the model's surface. We further

demonstrate that this viewing experience can be enhanced through the concept of kinetic

visualization.

The texturing method, despite its limitations, is versatile due to the fact that it uses

simple texturing and is thus able to exploit the wide variety of texture features offered by

graphics rendering software and devices. After the initial time taken to compute the PCD

vector field, the method is also quite capable of rendering in real-time, both with and

without the added element of animation.

Chapter 2 discussed algorithms for visualizing PCD vectors that are useful for

conveying the shape of transparent objects. The algorithm presented in this paper is also

capable of this feature, given the proper alpha-channel map and sparseness of stripes.

Figure 5.1 shows a rendering of the Stanford bunny in blue bands. The model contains a

teapot which can be seen between the bands. The input image is a simple pattern of two

52

thin blue stripes on a transparent background. When mapped to a surface, it bears

resemblance to other methods that render surface notches over a PCD vector field.

Figure 5.2 shows how the method to segment and simplify the model texture

presents an intuitive render with the cost of some precision. This simplification enhances

the effect of the animation because it creates a smooth area of coherent flow. The divide

between the model segments is clearly visible, which will need to be corrected, but the

renders are functional as a proof-of-concept.

Figure 5.1 Transparent Rabbit Showing Enclosed Red Teapot

53

figure 5.2 Segmented Horse

In conclusion, these techniques are useful for rapid development of real-time

interactive visualizations based on PCD vectors. If the set of PCD vectors were

precomputed and stored to file, a negligible amount of time would be required to

reconstruct this visualization. In addition, rendering of the visualization is dependent only

on common-place techniques that are supported by most graphics rendering hardware.

54

5.2 Future Work

The project detailed in this paper could benefit from future work. Specifically, the

techniques used to apply the texture coordinates, and also for segmenting the model into

smaller components, are in their primacy. Certainly they can both be improved to create

more impressive results. Convex segmentation may even be implemented through the use

of the PCD vector space as surface areas with concavity will presumably contain troughs

with a high degree of negative curvature.

Currently the texture application is limited in size by the triangle density of the

target mesh. The algorithm is also susceptible to blockiness in appearance, due to the

rigid orientation and placement of the mesh. Texturing could be improved if texture

stripes could be distorted to bend more gradually with the input vectors. More coherency

of the stripes could also be achieved by means of a more sophisticated surface

parameterization algorithm. We believe that if the true algorithm described in [Prau 00]

were applied, the results would be greatly improved.

Finally, the effectiveness of the results have not been formally verified by end

user testing. Testing the results against use from multiple users in various applications

would validate the work beyond informal acceptance.

In this paper we have demonstrated the beginnings of an effective algorithm to

render visuals that are evocative of shape without relying on illumination. With these

enhancements, this work has the potential to provide meaningful and necessary detail to

models with complex surface characteristics.

55

REFERENCES

[BeGr 00] S. Berger and E. Groller. ColorTable Animation of Fast Oriented Line
Integral Convolution for Vector Field Visualization, Proceedings of the
8th International Conference in Central Europe on Computer Graphics,
Visualization and Interactive Digital Media 2000, 2000, pp. 4-11.

[CaLe 93] B. Cabral and L. Leedom. Imaging Vector Fields Using Line Integral
Convolution, Computer Graphics (SIGGRAPH 1993 Proceedings), Vol.
27, No. 4, 1993, pp. 263-272.

[Dege 03] P. Degener, J. Meseth, and R. Klein. An Adaptable Surface
Parameterization Method, Proceedings of the 12th International Meshing
Roundtable, 2003, pp. 201-213

[deLe 95] W.C. de Leeuw and J. Wijk, Enhanced Spot Noise for Vector Field
Visualization, Proceedings of Visualization '95, 1995, pp. 233-239

[Girs 00] A. Girshick, V. Interrante, S. Haker, and T. Lemoine. Line Direction
Matters: An Argument for the Use of Principal Directions in 3D Line
Drawings, Proceedings of NPAR 2000, pp. 43-52.

[Gold 04] J. Goldfeather and V. Interrante. A Novel Cubic-Order Algorithm for
Approximating Principal Direction Vectors, ACM Transactions on
Computer Graphics (SIGGRAPH 2004 Proceedings), Vol. 23, No. 1,
2004, pp. 45-63.

[Hake 00] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M.
Halle. Conformal Surface Parameterization for Texture Mapping, IEEE
Transactions on Visualization and Computer Graphics, Vol. 6, No. 2,
2000, pp. 181-189.

[HeZo 00] A. Hertzmann and D. Zorin. Illustrating Smooth Surfaces. Computer
Graphics (SIGGRAPH 2000 Proceedings), Vol. 34, No 3, 2000, pp. 517-
526.

[Huan 05] A. Huang, R. Summers, and A. Hara. Surface Curvature Estimation for
Automatic Colonic Polyp Detection, Proceedings of SPIE -- Volume 5746:
Medical Imaging 2005: Physiology, Function, and Structure from Medical
Images, Amir A. Amini, Armando Manduca, Editors, 2005, pp. 393-402.

56

[Inte 97] V. Interrante. Illustrating Surface Shape in Volume Data via Principal
Direction-Driven 3d Line Integral Convolution, Computer Graphics
(SIGGRAPH 1997 Proceedings), Vol. 31 No. 1, 1997, pp. 109–116.

[InFu 97] V. Interrante, H. Fuchs, and S. Pizer. Conveying the 3D Shape of
Smoothly Curving Transparent Surfaces via Texture, IEEE Transactions
on Visualization and Computer Graphics, Vol. 3, No. 2, 1997, pp 98-117.

[Levy 02] B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least Squares Conformal
Maps for Automatic Texture Atlas Generation, Computer Graphics
(SIGGRAPH 2002 Proceedings), Vol. 21, No. 3, 2002, pp. 362-371.

[LiAm 04] J.-M. Lien, N. Amato. Approximate Convex Decomposition Proceedings
of the Twentieth Annual Symposium on Computational Geometry, 2004,
pp. 457-458.

[LiAm 06] J.-M. Lien, N. Amato. Approximate Convex Decomposition of Polyhedra,
Technical Report, TR06-002, Parasol Laboratory, Department of
Computer Science, Texas A&M University, 2006,
http://parasol.tamu.edu/groups/amatogroup/research/app-cd/ (2007)

[LumM 01] E. B. Lum and K.-L. Ma. Non-Photorealistic Rendering Using Watercolor
Inspired Textures and Illumination. PG '01: Proceedings of the 9th Pacific
Conference on Computer Graphics and Applications, 2001, pp. 322-330.

[LuSM 02] E.B. Lum, A. Stompel, and K.-L. Ma. Kinetic visualization: A technique
for illustrating 3d shape and structure, Proceedings of IEEE Visualization,
2002, pp. 435-442.

[MSSS 07] Mars Orbiter Camera: Highest-Resolution View of "Face on Mars," Malin
Space Science Systems web page,
http://www.msss.com/mars_images/moc/extended_may2001/face/
index.html (2007).

[Pend 05] N. Pendluru. 3D Shape Representation Using Principle Direction
Oriented Textures, Master's thesis, Clemson University, 2005.

[Prau 00] E. Praun, A. Finkelstein, and H. Hoppe. Lapped Textures, Computer
Graphics (SIGGRAPH 2000 proceedings), Vol. 34, annual, 2000, pp. 465-
470.

[Pres 07] A. Pressley. Elementary Differential Geometry. Springer-Verlag, London
Ltd. 2007.

57

http://parasol.tamu.edu/groups/amatogroup/research/app-cd/
http://www.msss.com/mars_images/moc/extended_may2001/face/index.html
http://www.msss.com/mars_images/moc/extended_may2001/face/index.html
http://www.msss.com/mars_images/moc/extended_may2001/face/index.html
http://www.msss.com/mars_images/moc/extended_may2001/face/
http://www.msss.com/mars_images/moc/extended_may2001/face/
http://www.msss.com/mars_images/moc/extended_may2001/face/
http://parasol.tamu.edu/groups/amatogroup/research/app-cd/
http://parasol.tamu.edu/groups/amatogroup/research/app-cd/

[Ratc 07] J. Ratcliff http://codesuppository.blogspot.com/2006_08_01_archive.html
(2007).

[Sals 97] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin, "Orientable
Textures for Image-Based Pen-and-Ink Illustration," Computer Graphics
(SIGGRAPH 1997 proceedings), Vol. 31, Annual, 1997, pp. 401-406.

[StHe 95] D. Stalling, and H.-C. Hege. Fast and Resolution Independent Line
Integral Convolution, Computer Graphics (SIGGRAPH 1995
proceedings), Vol 29, Annual, 1995, pp. 249-256.

[Sund 03] A. Sundquist. Dynamic Line Integral Convolution for Visualizing
Streamline Evolution, IEEE Transactions on Visualization and Computer
Graphics, Vol. 9 No. 3, 2003, pp. 273-282.

[WeGP 97] R. Wegenkittl, E. Groller, G. Purgathofer. Animating flow fields:
rendering of oriented line integral convolution. Computer Animation '97,.
IEEE Computer Society Press, 1997, pp. 15-21.

[Weis 07] Weisstein, E. Second Fundamental Form. MathWorld-A Wolfram Web
resource
http://mathworld.wolfram.com/SecondFundamentalForm.html, (2007)

58

http://mathworld.wolfram.com/SecondFundamentalForm.html
http://mathworld.wolfram.com/SecondFundamentalForm.html
http://mathworld.wolfram.com/SecondFundamentalForm.html
http://codesuppository.blogspot.com/2006_08_01_archive.html
http://codesuppository.blogspot.com/2006_08_01_archive.html
http://codesuppository.blogspot.com/2006_08_01_archive.html

	Clemson University
	TigerPrints
	12-2007

	RENDERING PRINCIPAL DIRECTION CONTOUR LINES WITH ORIENTED TEXTURES
	Kelly Gallagher
	Recommended Citation

	tmp.1387585722.pdf.1h9jQ

